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Abstract

A perfect fluid perturbation theory, which neglects the effect of
gravity, and which assumes that the pressure inside a cavitation
bubble remains constant during the collapse process, is given for the
case of a non-hemispherical, but axially symmetric cavity which
collapses in contact with a solid boundary. The theory suggests the
possibility that such c®vities may deform to the extent that the cavity
wall strikes the solid surface befbre minimum cavity volume is
reached.

High speed motion pictures of cavities generated by spark
methods are used to test the theory experimentally. It is found that
the theory describes the change of shape of such cavities fairly well,
and that the phenomenon of the cavity wall striking the solid boundary
does indeed occur. |

By studying the damaging effects of various cavities of this type
on aluminum samples, it is shown that pressures resulting from the
cavity wall striking the surface are much higher than pressures caused
by compression of gases inside the cavity. It is furthermore found
that the estimated impact velocities of the cavity walls on the solid
boundary can account for water hammer pressures sufficiently large

to have caused the observed damage.
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Chapter 1

Introduction

Cavitation is the occurrence of cavities containing substances in
the gaseous phase in a region of liquid phase. The gaseous substances
always include some vapor of the surrounding liquid, and may be com-
posed completely of such vapor in special cases.

The equilibrium size of cavities of this nature is determined by
the difference between the local pressure of the liquid and the pressure
of the included gas, as well as by the surface tension of the liquid. If
equilibrium is disturbed by a change of this pressure difference, the
caivity will grow or collapse depending on whether the change was nega-
tive or positive. If one neglects the effect of surface tension it is seen
that no equilibrium size exists when the pressure of the liquid is below
its own vapor pressure. Cavities can thus be expected to form in
regions where liquid pressures satisfy this requirement. *

In the collapse process of a cavity it is possible to obtain very
high local pressures due to the convergent nature of the flow. Under
certain conditions pressures may become high enough to damage most
known solid materials. The process is known as cavitation damage.

The first experimental investigations of cavitation resulted fzjom
observations of severe pitting on propeller blades of English warships

around 1915, The Propeller Subcommittee of the Institute of Naval

* The effect of surface tension and the presence of nuclei around
which cavities may grow play a very important part in the formation of

e e
AR

cavities (1) *".

#% Numbers in parentheses refer to Bibliography.



*
Architects was commissioned to study the problem. The report (2)

published by them attributed the pitting to the localized repeated
hammering that resulted from the collapse of small cavities directly
on the blade surfaces. In an experiment performed to substantiate the
statements of the report, pressures of the order of 300,000 p.s.1i.
were demonstrated to occur during the collapse process.

Attempts towards analytical solution of the problem were made
as early as 1917 by Cook (2) and Rayleigh (3). Both achieved essential-
ly the same 'results independently., Their efforts were based on an
earlier work of Besant (4) who formulated the problem as follows:

An infinite mass of homogeneous incompressible fluid

acted upon by no forces is at rest, and a spherical portion

of the fluid is suddenly annihilated; it is required to find

the instantaneous alteration of the pressure at any point of

the mass, and the time in which the cavity will be filled up,

the pressure at an infinite distance being supposed to re-

main constant.

The main difficulty of their solution was that physically un-
acceptable infinite velocities and pressures occurred at the end of
collapse.

In the years which followed much time and effort were devoted to
experimental and theoretical studies of the cavitation problem.
Schneider (5) gives a good summary of the literature up to 1949. | It
became apparent that experimental investigation of the detailed process
of cavitation damage is extremely difficult because of the very high
interface velocities, and the microscopic sizes of the cavities close to

the collapse po{nt. High speed motion picture cameras with higher

framing rates and optical resolution than those available today would

* Numbers in parentheses refer to Bibliography.



be needed for a successful study.

Work in the theoretical field indicated that the collapse process
of a spherical bubble required a much more sophisticated analysis
than that used by Rayleigh and Cook. The compressibility of the liquid
becomes important at the high collapse velocities, and viscous effects
may become quite large close to the collapse point.

One of the most comprehensive theoretical surveys of the subject
was done by Gilmore (6) at the California Institute of Technology. He
included effects of compressibility, surface tension and viscosity. His
analysis is based on the so-called Kirkwood-Bethe (7) assumption
which certainly appears to be a plausible one. Gilmore's results indi-
cate that the real fluid properties do not eliminate the infinite velocities
at the end of collapse, as long as the pressure in the cavity is assumed
to remain constant.

It appears that the only remaining physical effect which can re-
move the singularity in the mathematical solution is the compression
of the gas in the cavity. If the cavity contains a gas which does not
dissolve in the liquid, the gas will be compressed along a curve which
must lie somewhere between the adiabatic and the isothermal curves.
Such a compression does remove the infinite collapse velocity. The
final pressure which is reached depends strongly on the amount of gas
present, increasing as the amount of permanent gas is reduced. It
seems logical to expect that the highest collapse pressure will be ob-
tained when t]r:e éavity contains no gas other than the vapor of the sur-
rounding liquid. In this case the behavior of the vapor under high rates

of compression becomes of decisive importance, and since very little



is known about this subject, the maximum pressure cannot be calcu-
lated.

As a conclusion one may state that there are still several aspects
of the problem of the collapse of a spherical cavity in an infinite liquid
which are not completely understood. Of these the behavior of the
vapor during the collapse of a vaporous cavity appears to be the most
important.

It was usuélly argued that once the collapse of a sphericaly cavity
in an infinite liquid is solved, it would be a relatively simple matter to
extend the results to the collapse of a hemispherical cavity on a solid
plane bounding a semi-infinite liquid, and thus into the field of cavi-
tation damage. If asymmetric perturbing effects like those of gravity,
viscosity and adhesion were negligible, the solution would in fact be
directly applicable.

A recent paper by Plesset and Mitchell (8) shows that the spheri-
cal shape of a collapsing cavity is unstable in the sense that a finite
perturbation of the initial spherical shape will grow very large as the
collapse point is approached. In the light of this result one may be led
to think that the occurrence of a completely spherical collapse in
practice would be the exception rather than the rule. One meaningful
consequence is readily observed when one considers the small perturb-
ing effect of viscosity when a hemispherical cavity collapses in contact
with a boundary. It becomes apparent that it will be impossible to
apply the th;ory of a spherical cavity in an infinite liquid.

In a study of the mechanism of c‘avitation damage it therefore

appears of importance to examine the collapse process of cavities



which do not remain hemispherical.

The object of the present study is to investigate the collapse
process of, and the mechanism of damage by, cavities in contact with
a solid boundary in the case where these cavities collapse non-hemi-
spherically because of initial perturbations of the hemispherical shape.
It is hoped that such a study may be the first step in understanding the
mechanism of cavitation damage for cavities which collapse non-hemi-

spherically as a result of other effects.



Chapter II

Theoretical Treatment of the Collapse of a Nearly Hemispherical

Cavity on a Plane Boundary of a Semi-Infinite Liquid

1. The assumptions and the basic equations.

Experimental observations of hemispherical cavities in water,
collapsing on a plane boundary, show that such cavities retain their
hemispherical shape very lwell for a very large portion of the collapse
process. Since viscous forces will have a definite tendency to distort
the hemispherical shape, it will be assumed that viscous forces are
small in the problem under consideration.

The effect of compressibility of the liquid will be qmitted with the
realization that the resulting equations will be a poor approximation
when liquid velocities become comparable to the velocity of sound in
the liquid.

The only external force acting on the flowin this problem is gravity.
The effect of gravity will be neglected because of experimental evidence
that hemispherical cavities on a boundary, with lifetimes as long as 1
millisecond, do not suffer visible distortion during the collapse. Tlﬁs
experimental result was also obtained with cavities in water. External
forces are therefore omitted from the equation of motion.

With these simplifications the equation of continuity becomes (9):
V-4d=0 (2.1)

-
where q is the velocity vector. The momentum equation reduces

to (9):



9 1 2 1 - -
5c * 3V = -pVp + Ax (v x ] (2. 2)

where p is the pressure

P is the liquid density

t is the time.

It is further assumed that the flow is initially irrotational (i.e.

'¥Xq vanishes throughout the liquid). Helmholtz's theorem (10) then
states that the flow will remain irrotational for the entire duration‘of
the motion, because the only forces acting on the nonviscous, incom-
pressible liquid are conservative pressure forces.

One may therefore write
T=v4 (2.3)

where @ is a scalar potential function of position and time. Equation

[

2.1 now becomes:

v‘Z@ = 0. (2.4)

Equation 2.2 can be written

v[®2 . L(vd)? +8] =0 (2.5)

due to the interchangeability of partial derivatives. Integration of

equation 2.5 gives:

2 L) - c. (2.6)

C(t) is an integration constant which depends on time only. It can be
evaluated at infinity because the velocity, V é , vanishes at infinity

while the pressure assumes a constant value Por @ becomes



independent of the space coordinates at infinity, and may be set equal
to zero.

Thus equation (2.5) becomes

P P

%Q; +3(v)® - (2. 7)

It will now be assumed that the pressure inside the cavity is a
constant, and that surface tension is negligible. These assumptions
are known to become bad when the cavity reaches small sizes near the
end of collapse. With these assumptions equation 2.7 yields the follow-

ing condition on @ at the bubble wall:

8@ 1 2 poo_pc
‘5}+§(V@) =5 (2.8)

where Pe is the constant cavity pressure.

Because the shape of the cavity boundary is unknown a further
condition is required to determine @ uniquely throughout the liquid.
The Kinematical condition (10) will be used for this purpose. This

condition states that if a free surface can be represented by the

‘equation
f(position, t) = 0 (2.9)
then
DE _0f v o,
Do=3c+avi=o. (2.10)

The problem is thus reduced to solving equation 2.4 with the
following boundary ¢onditions.

i) @ vanishes at infinity.

ii) The derivative of é in a direction normal to the plane

boundary of the liquid half-space vanishes on this boundary.



iii) Conditions 2.8 and 2.10are satisfied on the cavity wall, the

shape and motion of which are known initially.

2. The coordinate system and the mathematical formulation of the

problem.

Only cavities which are symmetric around a line normal to the
solid plane boundary will be considered. This line will then be chosen
as the 6 =0 line of a spherical coordinate system, as indicated in

figure 1.

Solid plane

” boundary

X777

Figure 2.1

The conaition that the normal derivative of @ vanishes on the
solid plane boundary is satisfied by means of a reflection in the plane

6 = Tr/Z. Such a reflection removes the solid boundary as far as the
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mathematics is concerned, and equation 2.4 is now valid everywhere
except in the region occupied by the cavity. The only requirement is
that the flow be symmetric around the plane 0 = w/2.

The solu:cion of equation 2.4 which vanishes at infinity and which

satisfies the condition of symmetry around the plane 6 = m/2 is:

00
D (r,0,1) = Z g ) _2.—1%-_1_ P, (cos 0) (2.11)
n=0 2Zn T
where Q{Zn are the time dependent coefficients in the series, and
Pzn(cos 8) are Legendre Polynomials.
The only boundary conditions that still have to be satisfied are
those expressed by equations 2.8 and 2.10. Writing these in the

spherical coordinate system one obtains for equation 2. 8

2 2 Po,"P
[éi; * %(%%) t Ziz(%%) ]rzR == (2.12)

Equation 2,9 for the bubble wall becomes

R(6,t) - r = O. (2.13)

Thus equation 2. 10 takes the form

[.8_@__1_&@_5] _ B8R (2. 14)

The form of @ as given by equation 2.11, and the boundary conditions

2.12 and 2.14 leads one to express R(0,t) in the following way

R(6,1t) = ioo R, (1) Pén(cos 0) (2.15)

where the RZn are time dependent coefficients in the Legendre series



expansion of R(9,t).
In view of the nonlinearity of the boundary conditions it is hoped

to obtain a perturbation solution for a cavity whose shape does not devi-
The initial conditions are therefore

ate much from the hemispherical

specified in the form
0
R(0,0) = R _(0)P (cos®) +¢ rz_l )P, (cos6) (2.16)
00 dR'
dR
-a-? Z P (cos e). (2.17)
€ dR'zn
The quantities RO(O), € R'Zn(O) and —g=— (0) are given. It
dR
is supposed that at vanishes initially.
A solution of the following form is sought
0
R(6,t) = R _(t)P_(cos®) + ¢ Z t) P, (cos6) (2.18)
= 1
(cos©9). (2.19)

_ 1 ' _1
@(r,@,t) “ o (t) 2n+1 PZn
n=1 r

is introduced only for mathematical convenience

‘The quantity e
2.15, 2.18 and 2.19 show that

O P n(COS 8) 00 P n(cos 8)
Y;, g, i2n+1 = ¢ \; 7 (t) Zan—l-l (2. 20)

Equations 2.11,

(cos 0). (2.21)

N"

8

and '
ki m
RZ.n(t) Pzn(cos 0 ) Z

™

1

is to be chosen such that the sums on the right hand side of equations

n

€
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2.20 and 2.21 are of the same magnitude as Qo/r and Ro respective-

ly.

3. The Solutions.

The procedure for solution is now to substitute expressions 2.18
and 2.19 into the boundary conditions 2. 12 and 2. 14, neglecting terms
of order e 2. Due to the orthogonality of the Legendre polynomials the
terms multiplied by PZn on the left must equal the terms multiplied
by PZn on the right of the resulting equations. In this way the differ~
ential equations that must be satisfied by Qfo(t), R _(t), ﬁzn(t) and
RZn(t) are obtained, These equations are then solved with the initial
conditions 2.16 and 2.17.

Substituting equations 2.18 and 2.19 into equation 2. 12 one ob-

tains
1
N ag e o S © df P, (cos8)
R dt R 2n" 2n'©°° 2. dt 2n+1
o o n=1 n=1 Ro

= R2n+2.
o

WL%(—f—)[l-"tE Y R! Pn(cose)] r5 ¥ Sy e,

+ 0(e%). (2.22)

It will be noted that the relation

(1+§)_k_1_k§+1_<1.12i;__1)§2-0.o. (2.23)

was used in the above substitution. Substituting equations 2.18 and

2.19 into equation 2.14 and using relation 2.23 one gets
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-¢f s ‘
o) _ 2e . 2n+1
2 [1 R Z RZnPZn Z 2.n+2 Zn PZn
RO o n=1 n=1
dRo o) dR'Zn 2
= ‘e nzl at Fap t O(e 7). (2.24)

2
g g p_-p

1 o) 1 "o o c 2
=— —— +5 = = ——— + O(e") (2.25)
R dt 2R4 JO

o

dR g
o 0 2
rrali _;E+ O(e™). (2.26)
e}

The Pzn(cos 8) terms of equations 2.22 and 2.24 can be combined in

the following general equations

2
) . T 1
L iig—‘?—R' p— o - o + (2n+1) ol = 0 + Ofe)
RZ dt 2n R2n+1 dt R5 R2n+4
O O O o
n=1,2,... (2. 27)
gl dR!
o 2n 2n _
R3 R'Zn B (21’1"’1) R2n+2 - dt + O(e) 4 n = 1, 2: e+ e o (2. 28)
o o

The time t is now eliminated from the equations 2. 27 and 2. 28 with

the use of the following relationship, which follows from equation 2. 26

dR g
. & . _o. 19 dE L o?). (2. 29)
t T dR_ ERTH
O

Elimination yields

d¢ d¢' g ¢l
1 2n o) 2n

—2 R . 5 9 opro L _ 9 .

dR_"en " [ZnT AR, “°R_Fon” (2ntl) =2 + O(e) (2.30)
Ro e} o R
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Wi _ o 2n
g, TR = "R Rpy * (2n+1) ==+ O(¢) n=1,2,.... (2.31)
o o R
o
Equations 2.30 and 2.31 can be written
1
d 'Q(Zn _ d SZ{O N
IR ( Zn+1) R, 3R (=) + O(e) n=1,2,... (2.32)
o R o Ro
g g
Zn "o d 2 -
(2n+1) a2 - 4 IR (Ro R'Zn) + O(e) n=1,2,.... (2.33)
Ro Ro o]

an is now eliminated between

P
R'Zna(‘iﬁ_(——z) = _.l__ii-—[?) c?_R_ (RgR'Zn)] + O(e) (2.34)

Equation 2.34 ‘reduces to

2
, d°RS R _df_ dR!

2n
R + (1 + == —=2)R + (2n-1)(2 - —>) R!
o dRi ﬁo dR0 o) dRO ﬁ

= 0 + O(c) e (2. 35)

Before equation 2.35 can be further simplified it is necessary to ob-

tain the solution for Qfo from equations 2.25 and 2.26. Using

relation 2.29 to eliminate time from equation 2. 25 one obtains

5 Yo 1% s e

2
+5 5= = R —————+ 0O(e")
o dRO 2 Ro o j)
which can be written
d 1 21 .2 (P, - P) 2
"dR {Ro ¢o]_2Ro +0(e7) .

O

(2.36)
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dR
Noting that 550 must vanish initially in order for dto to vanish,

equation 2.36 can be integrated to give:

. -
9o = %Ro[ﬁ—E-C-] (R2(0) - R2) + O(c?)

P

or

p - L
g =\/§(%ﬁ> R_ (R2(0) - R)) + O(e?) | (2.37)

where the positive sign is used for a collapsing cavity. Substituting the

value of 550 in equation 2.26 one obtains R_ as a function of time

(2.38)

The functions ¢O(R ) and Ro(t) thus obtained correspond to the

0]

Rayleigh solution.

The time for complete collapse is given by (11)

R (0) 1 R _(0)
T————9————f—@§——+0e2 = 915 ——2 1 O(e9). (2.39
= ) T (e7) 1. (e7). ( )

e — 3

3 P € JO
A graphicél representation of RO/RO(O) as a function of t/T 1is given
in figure 2. 2.

Substituting the value of ¢O given by equation 2.37 into equation



1/3 3o vonduny e se (0) g/ 9 ‘7 7 Hig
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2. 35 one obtains the differential equation which must be satisfied by the

R:‘Z , with n=1,2,3, .., .
n

2
d R! dR!
3 3, ,2 2n , , 3.3 3 2  3(2n-1) .3
(RO(O)—RO)RO TmZ +(5R (O)-3R0)Ro dRO+ 5 RO(O)R'Zn
o
= 0+ O(c) . (2. 40)
RZn

3 3
. . : - 1 1 = ———— =
With the substitutions RO(O)/RO = x, and RZn/RZn(O) = Rzn(o) " Yo

equation 2.40 becomes:

2
dy dy
2 1 5 2 1
(l—x)x—';“z—n+ (3 - 6x) an - Z (2n l)y2 = 0+ O(e). (2.41)
X

(1-z)z ——t ¢ -(a+b+ 1)z %— abu = 0, (2.42)

It is seen that equation 2.41 is of hypergeometric form with

1
c =3 (2.43)
a(n) = T3 (-1+i(48n-25)"?) (2. 44)
b(n) = 75 (-1 -i(48n - 25)7?). (2. 45)

The general solutions of equation 2.41 can thus be written (12)

g
oo
|

) ' ,
n A'Zn Yan + BZnyZnZ

R L

Al x @ F(a,a+l-c;a+b+l-c;1-
2n

)

+BL x°7C (1-x)c'a'b F(c-b; 1-b;c+l-a-b; 1-L)
2n b'e



18

or

Yon = Aznxha F(a, a+%;%; 1—;1(')
+B, x ° (1-}1—()1/2 F(—b+':1,;; —b+1;§’; 1-%)
- AZn yan * BZn yZn2 (2. 46)
where a and b are specified by relations 2.44 and 2.45 and
F(a,8;v;2) = io (T\i;n(ﬁ)m 2" (2.47)
m=0 m

with

= [oc+m) /o). (2. 48)

The hypergeometric functions in equation 2.46 are complex, and
so is x °. One can see that the products must be real for a limited
range by using alternative expressions for these products; Such ex-

pressions are given by (12)
x 2 F(a, a+1-c;a+b+1—c;1--j;) = F(a, b;atbtl-c;1-x)
for l= x=< 2. (2.49)

Because a and b as given by equations 2.44 and 2.45 are complex
conjugates the right hand side of equation 2.49 is purely real, so that
the left hand side must be purely real.

Similarly

Xb-c F(c-b,1-b;c+l-a-b; 1—)1?) = F(c-a,c-b;ctl-a-b;1-x)

le x<2. (2.50)
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The right hand side of equation 2.50 is again purely real, and since

with a, b and c specified by equations 2,44, 2.45 and 2.43 Xb—C is

~a_ -1
the same as x °x /2', Yon is real.
2

Since the derivatives of a hypergeometric function can be written
in the form (12)

n (o) _(p)

d n'/'n
;—Z—-r-l- F(o, piyiz) = ——(\-{K— F(aﬂ+n,ﬁ+n;y+n;z) (2.51)

it is seen from equations 2.49 and 2.50 that the imaginary parts of all

the derivatives of V,,. and V5, ~Vvanish in the range 1< x <2,
1 2 -

Furthermore it is noted that Yo, @S given by equation 2.46, and all its
derivatives as calculated by equation 2.51 are analytic except at the
points x =0, 1, co. One may therefore conclude that Yon is real
throughout the range of variation of x.

The solutions obtained here correspond exactly to the solutions
given by Plesset and Mitchell (8) in their work on the stability of the
spherical shape of a collapsing cavity. This result could have been
anticipated immediately after it was shown that the only effect of the

boundary is to eliminate odd Legendre polynomials from the expansion

R(O,t) = Ro(t) + E R (t)Pn(cos ).

n=0 n

The method of solution was nonetheless demonstrated here in order to
clarify the work which follows in chapter III.

In fi uresvfz. 3 and 2.4, and are presented as
g yan Y2n p

functions of RO/RO(O) for n between 1 and 6. The values of Von
1
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and vy were calculated by means of an electronic computer. The
an

accuracy in the range where the functions are shown was estimated to
" be within 1%. Close to the point RO/RO(O) = 0 the hypergeometric
series of equation 2.46 converges extremely slowly. It was however
expected that the theory would become invalid in this range, due to the
effects of compressibility, surface tension and viscosity which were

neglected. For this reason the functions vy and vy for n
2n an

between 2 and 6 were not computed for RO/RO(O) less than 0.15,
The functions Vo2 and Yo, Were computed for RO/RO(O) larger than
0.1.

The constants AZn and B still have to be evaluated in terms

2n

of the initial conditions. Consider Vo, 285 given by equation 2.46 at

x = 1. This gives

A, =L (2.52)
dyz
Consider also (/T at x =1
) Won % 4 ()
alt/T) - at R2 dR_ ‘V2n
(o]

, , dy
_ 2y [/fc0 e | 1 4/3 - 2n
= 31\ 5V % R o) * V-1 2. (2.53)

Substituting the value of T as given by equation 2.39 into equation 2.53

.dy dy
2n _ 2 11/ 1 2n
qie/T) - 2O = VL. T

(.915) B

one obtains

2n

2l
o+ | <
oo
S=lis]
=
{1
v jw
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B dyzn 2.54
It is observed in figures 2.3 and 2.4 that the RZn oscillate with
increasing amplitude and increasing frequency as Ro approaches

zero. The perturbation theory is expected to become invalid when
1
Z RZn(t) Pzn(cos 8) becomes comparable to R

If the requirement that the perturbation remains small is ignored

for the present, one notices that the theory becomes invalid by a com-
pletely different mechanism when Z R} (t cos 8) becomes

equal and opposite to RO for any value of 6. Physically this means
that the bubble becomes deformed to the extent that opposite sides of
it strike 0né another. The effect is demonstrated in figure 2.5.

Nothing conclusive can be said about this type of collapse at the
present stage because of the large perturbation quantities that are
involved. The experimental study described in Chaptei‘s IV, Vand VI
will cast more light on the subject.

The solutions given here were obtained by treating the sums

oo Pzn(cos 0)
X 1 ‘ — - i
€ b Rzn(t) Pzn(cos 0) and ¢ Z ;J ol as perturbation

-quantities. Terms of order 62 were assumed to have a negligible
effect on these sums. It should be realized that if the terms corre-
sponding to a given n 1in these sums were v;ry small, they may be
seriously affected by terms of order 62. The effect of such small
individual terms are however negligible as far as the values of the

perturbation quantities are concerned, provided ¢ is very small.
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a) R (8, 0) = R (0) + ¢©,05 R (0) P, (cos 8)
%%3 (6, 0) = o
R, =
/Ro(o)

025

J777777777777777777777777 //}////////7///////7////
- 0163

b) R (6, 0) = R (0) + 0.1 R_ (0) P, (cos 8)
B0 = o

Fig. 2.5. Theoretical cavity shapes during the collapse process
shown at different values of R_/R_ (0).
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For larger values of € effects of the type discussed above may
become important. Chapter IIT deals with a special case which falls

in this category.
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Chapter III

An Extension of the Theory for Large Perturbations

The results of Chapter II indicate that experimental investi-
gations of the problem will have to be performed before any con-
clusions can be reached. The experimental results will consist of
high speed motion pictures of collapsing cavities, which will have to
be analysed to find the values of the Legendre components of the
bubble shape. Since the optical resolution of high speed photographs is
limited, one is forced to use fairly large perturbations of the hemi-
spherical shape in order to obtain accurate results. With this purpose
in mind the results of Chapter II will be extended to cover larger
perturbations.

Before one plunges into the theoretical work it is useful to con-
sider some experimental results in order to obtain an idea of the order
of magnitude of quantities that are involved. The experimental result
which will be used here is that if the shape of a normal cavity collaps-

ing in contact with a wall is expressed as
R(B,t) = Ro(t) Po(cos 8) + Rz(t) PZ( cos 9) + R4(t) P4( cos®) + ... (3.1)

where the coordinate system is chosen as 1in figure 2.1, then

Ro> R2> R4> R6. R6 is usually so small that it becomes compara-
ble to errors in the measurements.

The analysis proceeds in exactly the same way as that of Chapter
II, the main difference being that the most important terms of order «

are saved.
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In order to keep track of the relative sizes of quantities, the

initial conditions are now specified as follows:

R(8,0) = R (O)Po(cos 8) + ¢ [R'Z(O)Pz(cos 6) + « RV(0) P4(cos 9)

o 4
+PR'6'(O)P6(COS 8) + J (3.2)
dR! dR)
%%(@,0) = ¢ [—dgi(()) Pz(cos 0) + d‘f(O)P4(COS 6)
dR'é'
+ﬁ—az—(O)P6(cos(9)+"']. (3.3)

A solution of the following form is sought

R(6,t) = R_(t)P_(cos®) + [R‘(t)P (cos ) + RY(t) P,(cos 0)

2 2 4
+ B Rg(t) Pé(cos 8) + ] (3.4)
g () 3 (1) 90
@(r,@,t) = = Po(cos 8) + e[ 53 Pz(cos g) +& j5 P4(cos 9)
g(t)
+p—= Pé(cosG)Jr“'] . (3.5)

Referring to equations 2.11, 2,15, 2.18 and 2.19 it is seen that

eR‘Zz RZ

«c Py, = 9,

eochL‘ = ERZL = R4 (3.6)
cxfy=cgy=9,

¢pRY = ¢RL = R,

PPy =<0y =9
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The values of ¢, & and /3 are to be chosen such that the

quantities R'Z, R}i and RY

g are of the same magnitude as RO

, while
Q'Z/r3, QE/I‘S and 53‘(::/1'7 are comparable to Qfo/r.

Substituting expressions 3.4 and 3.5 into equation 2.12 and saving

2
terms of order ¢, ew, e/s, €

and € of one obtains

2
1 ag_ . RSP, RyP, RyP, R!
R dt ¢ R

R CXR
o O (o]

)
5 R2 ‘3574777275

> R

VRH
+2¢ ™ 2

2 p +20p +éP) +—1—d¢"2
RZ (11 6 7774 772

(@]

!
> R

d¢"
2 4,5 20 2 1 494
+7P2+'5")'3€“RO(TTP6+77P4+7P2)]+; [

2 R

2
dgu Qj
25 .20, .2 1 97 1%
- 5e “ﬁ;('ﬁpe+77p4+7pz)] +R7 at [Eﬁpé] t3 [1
Q

2

Rl RH RH Rl
2 4 6 2%2 18 .2 L
- 4e ROP2—4EOC ROP4-4eﬁ R0P6 +10e (55 P4+ 5P,+3)

. RIRY

4 5., 205 .2 %
+20€ "¢ RZ (11P6+77P4+7P2)]+ [

2Ry 5 20 2
N (TP, T 77F, +5F,)

11
5 .20 .2 6
7 (TPt 77 P4t 7F) +7ep R3P ]
O [e]

6



11 "6 77 47752 "N tet7r st T F

glgn .
2?4 2.5 20 .2 2, 40 .60 .20
0 [lSe (=P +=5P +5P,)) +e & ( 1T Fet 77 P4t 55 2)]

Substituting expressions 3.4 and 3.5 into 2. 14 one obtains

2
¢ R! RY RY R!
o ) R4 26 222 18, 2. .1
2[1—2€R PZ—ZeocR P4—2eﬁR P+ 3¢ 2(35P4+7P2+5)
RO o) o) o Ro

TR gv
2 5 20 2 72
+ 6¢ et RZ (ll P6+77P4+-7—P2)] + R4[36P2

o

1 R -
218 2 ] 2 Ry 5 29 2
R (35F4t7Pytg) -l2e RO(11P6+77P4+7P2)J

Tt by

5 20 2 6
”‘(11P6+77P4+7P2)} * 8[715€P6
o) Ro J

RH
6 2 4 40 60 20
)+e o= 7 Z)]

o ﬁ—(;(—-l—l*Pé-i—??P +—P

g R! dR dR!
a2 Ro 40 6o 20 o 2
+ 6[6 "‘RO('11P6+77P4+‘7‘P2) ot e B

11
dRZ dR6

2
4 _bp . 3.8
teod == P tep 4P = 0 +o(e}5). (3.8)
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It will be noted that equation 2. 23 and the following identities

have been used repeatedly in the derivation of equations 3.7 and 3. 8.

2 18 2 1
Po=35Py 75 +3
_ 5 20 Z
PPy = TiFe T 77 B v 75,
(3.9)
de 374 772 ' 5
__..__.dpz' .——.-_._dP4 —_ _ép_p +.é9_}_:) +;Q'P
ds de -~ 1176 7774 772
Collecting the Po terms of equations 3.7 and 3. 8 one obtains
ag | gt p ag R agt R!
[_1_ o,1% Po C]+€2.[1 o2 3 YR
R dt 2R4 P 5Ro dt RZ 5R3 dt RO
(o] (o] O
2 2.2
P A5 Ry 5 @7 PR!
R 062]:0+O(eig) (3. 10)
R o) R R
o] (o] [0}
g dR g R1Z gL R!
[—3+——O—J+e2[i——o———2~-é—%—§]:o+o(e2p) (3.11)
RZ dt 5 RZ RZ 5R4 RO
O O (o] O
The P, terms of equations 3.7 and 3.8 give
ag agy o 9! ag
[ TS U L NN (e Z]HZ[_}___O_R,Z
RZ dt 2 RB dt RS 2 R6 7R3 dt 2
o] (o] (o] (o] O
2 3 2
6 P 10% 2 368 127 }
T4 Tdt 7 B 8
7R4 dt 2 7 R6 2 7 R7 2 7 R
o} o o] O



2
d d¢' dﬁ” Q
+€Z&[ 43 dto RoRy - 64 tz Ry - IOSE%R'ZJFE’YQ_%R.'ZR”
7R 7R 7R R
o] O O O
1o
36 %o 80 %o 50 939 2
_ 36’0 ¢x R"-'———-‘Sj"R’ 22 L2 212 0 +O(€,B) (3.12)
7 RZ 2 7 RZ 4 7 RlO

The P4 terms of equations 3.7 and 3.8 give

2
a agy ag
1 o 1 4 0 0 21 18 1 0 2
€ ol R' + —_—_2 —= R'"+5 ¢”} + ¢ [________ R!
[RZdt 4t FE& P 2874 5 o3 dt 2
O O O O O
2 2
1 !
a1 Y000 saafo +§=_5_g.2_]
35 p& ar 2 T35 e R T35 7 7Re T35 s
(o] (o] (o] (o]
1 1
Hzm[.@g_l_i‘i’_qR,R., 60 1 100 1 WY
77 23t "2 7 E d T o6 @ "2
(o] O (o]
2 1 1
200 % . 360% . 800 % 360 727
YT g RoRY - FT 7 IRRL - S 5 MR 57 T
R R R R
O O (@] (o]
2
= 0+ Ofe p)



+
R3 4 R6 dt R4 5 R5
(o] o 0] o]
t 18
2 T120 % 150 72 540 74 ~ 2
*e °°[ 7 TARPRY -7 TERY - T TRy | =0+0(eB)
R R R
(o] (o] O
(3.15)

The P6 terms of equations 3.7 and 3. 8 give

2
dg agy ¢ g d
1 7o 1 6 o 2 l10 1 %%

e R+ 2-——R”+7———¢”}+e o(,[-—-——-—-R'R
2 [ 22 dt o7 4t 75 2 IT .3 dt 2
(o] (o] (o] O (0]

g’ g’y e p
__1_5.___1__ 2 RY _2‘_5_1._ R! +_5£_9_ R!R" _9__Q__Q¢|Ru
I o4 dt Il 6 dt "2 71T ;6 72 L 772
(o] (o] O (o]
1 it
200 %o 35 930 2
- 5T ;—é PyR. +-1-————-—R10 ] = 0 +o(eja) (3.16)
(o] o]

R~ sz} - 0+ 0(<3p). (3.17)

Studying the equations 3.10 to 3.17 one notices that RO and Qfo will

not be badly affected by large perturbations, because the largest per-

turbing terms in equations 3.10 and 3.11 are of order eZ, The error

caused by neglecting the terms of order ez from equations 3.12 and

3.13 will be much larger, but will not be intolerable unless € becomes
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very big. This is no longer true in equations 3.14 and 3.15 because
terms of order eZ may be almost as big as the terms of order e,

. 2 . 2
One must therefore include the ¢~ terms, while the ¢ ® terms may

still be neglected. Similarly terms of order ezol. may become com -

parable to the ¢ B terms in equations 3. 16 and 3.17 and must also be

included.

Fortunately no non-linearities are introduced in the equations
3.14, 3.15, 3,16 and 3.17 by including these higher order terms, for
by the time equations 3.14 and 3.15 are solved for RZ and 9&', R‘z
and Qf'z are already known functions of R_. Similarly R), q‘z, Ry» Q
are known when equations 3.16 and 3.17 are solved for ¢} and R'é'.
With the use of equation 3.11, equations 3.14 and 3.15 can be

written in the following form:

2 1
__@__(:{‘_')—Ru_dﬁ(g_c_’.)_;__lﬁ_(f_)(ﬁg) 5£d0R2+15_—_d2R1
dR 5/ 7 drR ‘27 T175 ‘w/ig Rr> 4R T2 6dR 2

o R o R o
O O O
2 : 2
g g9 gl
+ 25 —% R‘ZZ - 90 072 R}, +—2725- —28—} + O(e) (3.18)
R R R
(o] O (e}
gn Q{ Sj Q/!
170 d 18 ey i3l0 pi2_ 1,72
;{-5 =z R3 IR (R o12'4')-17 (&) [3 3 Ry - 16 =5 R'Z] + O(e). (3.19)
O O O (e}

g y ag
S a (RERY|- SRR < 2@ - B RS
oRO oRO RO o
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2
1 1 1
L 95 P 2 2 25 9 PR dR)
" TTar Rptl6Ty Ry - 26 R Ry 4+ 3 4R
R o R R g R R )
O O (0] O O
yf'z dR},
- lé—zgﬁ'— + O(e¢) (3.20)
RO o

Using equations 3.12 and 3.13 to eliminate 552 from equation 3. 20
gives

( )__1_(5.) [-%%R'Z

- o
o dRO RZ 35 R3 RO 2

o o
dR! g drY 2
0 2 go 2 o) 2

+76—4R'2 -158 —3 R'Zd 71 Z(a?{—) J-I—O(e) (3.21)

RO RO o Ro o

3
L RO(O) ) RZ ) Ry
R03 ’ Y2 7 R,(0)° Y4 7 R,(0)
and using equation 3. 6, the final form of the R4 equation is obtained
2
dvy 1 5 Yy
oxe =7+ 3 g9 & "2
X

L Rg(o) -2/3 2
Y [RO(O) R4:(O):l [X ] [(49x+32)y2 +474(x - 1)

dyz
*V2 dx
dy 2
- 639 (x- 1)x” (=2) ] (3.22)

The differential equation thus remains the same as equation 2.41,

except for the fact that a forcing function has been added.
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When 91‘6 is eliminated between equations 3.16 and 3.17 one
obtains

dg
d go d 2 d Sjo 5 Jew 8 o
—_ (R R”)} :7RH-——__(__)+____ (__> - — —— R!'RU
dRO[R3 dR o d.RO RZ 11 ' A R3 d o 2
(o] O (o]
d¢' dg” 1 ¢u
1 2 3 4 o
+ 555~ Ry - = == R, +52 — RLR! -46 —= R} -52 — R!
R4dRo 4 R6 dR 2 R4 2 R5 R? 2
(o] O O (o] O
1ot dR Y dR! ' 4R
49¢2¢4+6%R‘ —4 6?-{%R”-——— .zo?%t——~4
RS R’ 2 dR R’ dR I dR
¢4 dR}
38— == |+ O(e). (3.23)
6 dR
Ro o

Eliminating 552 and 9'4 from equation 3.23 with the help of equations
3.12, 3.13, 3.14 and 3.15 one arrives at

d ¢O d Z 1 — |'—-(i—_. g—
drR [_3 dR (RoR())] =R (
0 RO o

g
150 0
)+ (iﬁ)[__________R!Rn
drR_‘'p2’/ "33 'R g2 dR_"2
O O
o] ¢O dR‘Z g0 dRZ
——— 1 L B e — — 1 [
+204 =3 RYRY - 255 —3 Ry g~ - 213 =3 R} ==
R R o R o
(o] (@] (o]
1
- 165 Po X dRﬂ— 1 (ii) {—-—-540 P R1> + 3148 %o R
g2 dR_dR_ | 385 'B'| .4 dR_T2 RS 2
O O (o]
o dR! o dRY 2
o) 2 2 o) 2
+5776 =4 Ry gx= + 2155 — R} (377) j|+O(e) (3. 24)
Ro o Ro o)

Substituting again for Qo from equation 2.37, putting
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L o 2ol®) _ e R
Ri Y2 T R,(0) Y4 T R,(0) Y6 T R,(0)

and using equations 3.6, the final form of the R6 equation is obtained

2
dy dy
1 5 6 5
(1-x)x P t(3-8%) 5 "8V
X
R,(0) R4(0) dy
| 2 4 -2/3 5
- 297[RO(0)R6 o)] (x )[(129x+96) Y, Yy tT65(x-1)x 377y,
dy dy, dy
+639(x-1)xy, ’ES‘ - 1485(x-1)x" dxz dx4J
3
R5(0) i
* 34165[ 2 : } (x 1ﬁ) [(3418x—4228)y3
RZ(0) R (0)
O
2 472 » dy, 2
- 17328(x - 1)xy, o T 19395(x - 1)x yz('E;) ] . (3.25)

Again the equation is the same as equation 2.41 with n = 3, with the
exception that a forcing function has been added.

Equations 3.22 and 3. 25 can both be written in the form

- %(Zn—l)yzn = F X) (3-26)

Zn(

Since the solutions to the homogeneous equation are known, the com-
plete solution can be formed by variation of parameters (13). The
solutions to the homogeneous equation 2.41 as given by equation 2.46
already satisfy the initial conditions of equations 3.2 and 3.3 provided

AZn and an are chosen according to equations 2.52 and 2.54. The
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complete solution will therefore satisfy the initial conditions if the

particular solution of the nonhomogeneous equation 3. 26, Yonp’
satisfies the homogeneous initial conditions
yznp(l) =0 (3.27)
dy
205 (1) is finite. (3. 28)

Equation 3. 28 gives rise to a homogeneous initial condition because
% vanishes initially

Let U, be a solution of the homogeneous differential equation
and assume that a particular solution of equation 3. 26 can be written

in the form

Yonp ~ Y2n UZn(X)' (3. 29)

Substituting equation 3. 29 in equation 3. 26 one obtains

2 1 5
d UZn dUZn 2 duZn (—3— "6 x) _ FZn
2 tTax | o ax T (I-x)x T (1-x)xu (3.30)
dx 2n 2n
dUZn
Equation 3.30 is linear and of first order in Ix SO that one may
dUZn
always find an integrating factor. Then dx  can be written
4Von 1 j‘X UonF 2a®) i (3. 31)
dx ugn(x_l)l/le/s ) (X_1)1/2X2/3
dyZnP
The lower limit has been chosen such that ax (1) is finite if
either of Yan or yzn.2 are used for Uy - Yan and YZnZ are the

solutions to the homogeneous equation as given by equation 2. 46.
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Integrating equation 3.31 and choosing the lower limit such that

yznp(l) =0 for wu, = yan or yZnZ’ one obtains

* 1 * _YanTon
U, (x) = J; [uén(x—l)l/le/:)’ ‘[; NI dx]dx. (3.32)

The particular solution of equation 3. 26 now follows from equations

3.29 and 3.32

x 1 x o on
v = -1 [ f I dx} dx. (3.33)
2nP 2n J [ugn(x_l)l/zxw L (x-1) 1ﬁxz/3

The general solution of equation 3.26 is then of the form

YZn = A'ZnYan * BZn yZnZ + Yonp: (3. 34)

The integrals of equation 3.33 will now be examined in order to
obtain an understanding of the meaning of the singular points in the
integrands.

The singularities at x = 1 are considered first. Let

uZn F.21'1

1 X
gzn(x) = (::-I—)W fl W dx. (3.35)

If Uy S Yo an(X) has no singular points for l<x < o. In the

neighborhood of x =1, g(x) can be expanded to give

anl(X) = 2F, (1) + O(x-1). (3.36)

If u, = YZnZ’ an(X) may be expanded to give
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g, (x) = (x-1)"2 F, (1) + O(x-1)2 (3. 37)
2

in the neighborhood of x = 1.
Using either of the equations 3.36 or 3.37, the following ex-

pansion for Vonp is obtained in the neighborhood of x =1

Voup = -2 F, (1) (x-1) + O(x-1)%

The point x = 1 thus presents no difficulty.
The other singular points which must be considered are the

zeros of U, which do not coincide with the point x = 1. Both Yon
1

and Yon have a finite number of zeros for le« x <. These zeros

2
dyZn
are simple, as can be seen from equation 2.41; for if i vanishes

dzy

at a zero of Vo dXZ‘Zn and all the higher derivatives of y,, must

must also vanish. Then Von is identically zero, and this case may be

excluded. The functions an(X) as given by equation 3,35 are well

behaved for l« x< 00, and

yZnP =

‘uznjlx (=) (3.38)

X gx.
uy ()
2n
Let u, (x) have its ith zero at x = Then one may write
2n A Y
uZn(x) = (X_/“-i) h(x) (3' 39)
where h(x) # 0 for My 1= X<, ;. One may also write

)+ (eopt) T () + (o) mils) (3. 40)

1

ax) = () —ﬂ(/“
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where m(x) contains no singularities for/a o1 < x</u nE It can be

shown that éﬁ_( ) vanishe ¥ viz:
dx i S ’

s _ glu;) 1 dg 2 dh
dx Wi’ T hz(/a‘) [g(/u_i) ax M) h(u,) dx (/'*1)}
1 5 2
(1 _(ig_(/u.)_?’;;g/“i _ 1 aduZn( )
g(n) dx i T ila.-1) T da 2 My
b Siv din ( i) dx
2
du
= au, L p gn ( 1) from equation 2.41
dxn (/ul) -
= —2_dh o f ion 3.3
= h(/ui) ax (/“i rom equation 3,39
g’f?(/"i) = 0. (3.41)
Equation 3.40 can now be written
~%EL:=AX)=zV%)+bgﬂgznﬂ@. (3. 42)

In the interval M= Vo= X </Ai+l , the integral of equation 3. 35 then

becomes

x ig78
fY —g!—LZ X d4x +f [—————(/Al)z + m(x)} dx
IENE R N .
2 p.)

(X"/ul)

+ M(x) + C(y) (3.43)

* This is a general property of the integrals which arise from the
variation of parameters method., A proof is given in appendix 1.
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. where fm dx

is a constant which depends on v.
One may now write

Vonp = B0 5 = h(x) (o) M(x) - h(x) (x-p) C()

in the interval /“1-1<Y<X</“i+1’ and

Lim Yonp K(';:'} . (3.43)

x> pu. i

The singularities at all the zeros of u, ~are thus seen to be

removable, and the resulting functions Vonp 2TF€ well behaved for
1 = X< 0.

The functions F which appear in equation 3.26 contain non-

2n
linear terms in the Yo and since the analytical expressions for the
Yon consist of slowly converging power series, it appears the inte-

grals are most easily evaluated numerically. A convenient method for

numerical integration close to a singular point at x =45 is as follows:

X_EIEEL - Y__Q{l_ y X[ (x) g(/“i) } N
f 2 d j; % d +j; ugn(x) [dzzn(/a.)] z( _/‘)2 d

where vy 1is chosen in such a way that —%L&L has no singular points

U’2.n<x)
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for:‘ Y <X </u.i. The second integral on the right hand side of equation
3.44 is now evaluated numerically, and is well behaved at x = pos
while the third integral can be evaluated analytically.

A particular integral for equation 3,22 will now be calculated.
In order to make the results generally applicable, Vo is written in
the form (cf. equation 2.46)

v, = Ay, +B,y, (3. 45)
1 2

where AZ =1 from equation 2.52, and aBZ is given by equation 2,54

with n = 1. The right hand side of equation 3. 22 can then be written

1 R;(0) -2/3 2 V2,
Fy = -373 [RO(O) R4(O)J (x) “(49){4- 32)Y2.1 +4.74:(X-1)Xy21 e
dyZ 2
- 639 (X-l)x2 ( dxl) ] + B2 [2(49x+32)y21 y22

dyz dyz dy2 dy‘2

2 1 2 1 z]
+474(x—1)x(y21-a—;—- +y22 = ) - 2(639)(x-1)x I dx

, dy, dyzz 2
2
+ B, [(49x+ 32)y22 + 474(x—1)xy22—a; 639(x- l)x ( )]J
2
- I:)Z(RO)(O [f4 +B,f, +B,f, ] (3. 46)
R (0)R4(0) 1 2 3

To obtain V4p One must evaluate three integrals of the type

X Y4 41
Vapi = 'Y42L [ 4 (-1) 1f173' f 1/2 23 } x o (3.47)

2
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where Y4 2s given by equation 2.46 with n = 2 is used for the so-
' 2
lution to the homogeneous equation, Uy-
The integrations of equation 3.47 can all be accomplished
readily by the method of equation 3. 44. Y4p1’ y4p2 and Y4p3 are
shown in figures 3.1, 3.2 and 3.3 as functions of RO/RO(O).

Yap then becomes .

2
RO + B + B2 (3. 48)
Yap = R_(0)R,(0) [Y4p1 2V4p2 2Y4p3] :

and the general solution of equation 3.22 is

= A +B (3.49)

Y4 4V, 4¥a, T Vyp

where V4 and V4. are given by equation 2.46 with n = 2, and A4
1 2

and B4 follow from equations 2.52 and 2. 54.

A particular integral for equation 3. 25 can be calculated in the
same way. This will however not be done here, because the R6 term
is usually quite unimportant.

The following procedure is thus used to calculate the approximate
behavior of cavities which satisfy the conditions expressed by equation

3.1:
Ro
m is calculated from equation 2. 38.
o

R
ﬁjz-(-ﬂ is calculated from equation 2.46 with n = 1,
2

A, and B, are obtained from equations 2.52 and 2.54.

2

R
-R———Z%y is calculated from equation 3.48
4

2
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A, and B

4 are again found by means of equations 2.52 and

4
2.54,

As a concluding remark it may be emphasized again that the theo-
retical treatment presented here was based on the assumption that real
fluid properties do not affect the problem appreciably. The validity of
such an assumption is questionable, and too much importance should
not be attached to the results without examining effects of the real
fluid properties more carefully. Another weakness of the theoretical
work is that the range of convergence of a perturbation solution of the
type discussed here could not be shown theoretically,

These objections were not regarded as serious in cases of pre-

sent interest, because it was possible to obtain experimental results

which would expose any large errors in the theory.



48

Chapter IV

The Experimental Equipment and Procedure

1. The high speed camera

In an experimental study of the behavior of a collapsing cavity
the high speed motion picture camera plays an essential role. The
Ellis Kerr cell camera, which was developed specifically for a study
of cavitation, is admirably suited for this purpose because of the rela-
tively long history that can be covered at framing rates and exposure
times that compare favorably with any other commercially available
cameras. The camera used in this study can, for example, cover a
history of 660 microseconds at 1, 600,000 pictures per second, and
with an exposure time of .05 us per frame. By reducing the framing
rate, longer processes can be studied, the only limitation being the
duration of the light which is used to illuminate the subject. A brief
discussion of the Ellis camera is included here. For more details
the reader is referred to a publication by Ellis (14).

The Kerr cell shutter, which forms the basis of the Ellis camera
is shown schematically in figure 4.1. The behavior of such a shutter

when a voltage is applied to the electrodes is given by the equation (15)

I= I sin2 WB£E2 (4.1)
where I = transmitted intensity
IO = a constant fraction of the incident intensity
B = Kerr constant of the liquid in the cell
E = electric field in the Kerr cell
£ = length of the electrodes.
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The theoretical treatment that leads to equation 4.1 is given by
Kingsbury (16).
Maximum transmission takes place when the electric field is

given by

) with n=0,1,2, ... . (4.2)

Using an average value of B for Nitrobenzol, which can be computed
from the table given by Beams (15), the smallest voltage for maximum

transmission is given by

V. = 33.6 4 kilovolts (4.3)

M NG

where d is the distance between the electrodes, and £ and d are in
centimeters.

In the Ellis camera pulses of amplitude VM’ with variable
frequency and width, are applied to the Kerr cell to operate it as a
high speed shutter.

The rest of the camera is shown schematically in figure 4.2. In
view of the dependence of the Kerr cell pulse voltage on the distance
between the electrodes as expressed by equation 4.3 it is desirable to
keep d a minimum. For this reason two lenses are used. The first
lens Ly forms an image between the Kerr cell electrodes, and the
second lens L, focuses this image on the film F through the mirror
M which is rotated by air turbine T. The film lies on the inside of
the cylindrical drum D. The voltage pulses on the Kerr cell in this
manner produce consecutive frames on the film.

The light source consists of a Xenon filled quartz helix (General

Electric FT 623) through which a bank of condensers is discharged. In
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order to obtain a flash of light of reasonable duration the condenser
bank is connected as shown in figure 4.3, With the circuit parameters
given in figure 4.3 the light intensity stays approximately constant
over a period of one millisecond. About thirty microseconds is re-
quired to reach full intensity after triggering. After the one milli-

second period at full intensity, the intensity drops off fairly rapidly.

2, The method of producing cavities

The second basic requirement for an experimental study of the
behavior of a collapsing cavity is that it must be possible to create
such a cavity under controlled laboratory conditions at a predetermined
time and position. Because the optical resolution of the high speed
camera is limited, it is desirable to make the cavity as large as possi-
ble, the limitation being that the cavity lifetime should not exceed the
duration of the light flash which illuminates the cavity. It should
furthermore be taken into account that the effect of gravity was neglected
in the theoretical work of chapters II and III, so that a check on the
theory will only be obtained if bubble lifetimes are short enough to
make this influence negligible.

Assuming that the cavity lifetime is about twice the collapse time
T as given by equation 2.36, cavities in water as large as half an inch
in diameter can be studied during the available period of illumination,
provided the pressure difference, (poo - pc), is approximately one
atmosphere.

The only proven method of generating a cavity which satisfies the
requirements mentioned above is that of discharging a spark in the

liquid. Although a great deal of controversy still exists about whether
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spark“bubbles are good imitations of actual cavitation bubbles, the
spark method was used in this work because no alternative could be
found. It was argued that if differences between the two types of cavities
did not become evident from comparing the Pé(’COS Q) component of
experimental cavities with the curve of figure 2.2, the spark cavities
would be a sufficiently good imitation for the purpose of the study
contemplated here. This argument can be justified from Gilmore's (7)
results which show that the Rayleigh theory falls very close to the
theory which includes effects of compressibility for a cavity collapsing
under a constant pressure difference, provided the cavity wall does not
exceed velocities of the order of 1/10 of the velocity of sound in the
liquid.

The tank in which the spark bubbles were produced is shown in
figure 4.4. The distance of the spark gap above the bottom plate is
adjustable. Two types of spark gaps were used to determine the effect
of the wires on the flow. These are demonstrated in figures 4. 6a and
b. After it became evident that the two different gap geometries were
not causing any visible differences in the cavity shape, the gap of figure
4. 6a was used throughout. This gap was chosen because it was better
suited to the methods of obtaining pressure measurements on the
boundary which are discussed in the next section. Figure 4.5 shows
a single flash picture of a cavity in an advanced stage of collapse. The
spark gap, and also the spark which produced the cavity are clearly
visible.

The electronic circuit which was used to produce the spark is

shown in figure 4.7. It was found that the bias of the 2050 thyratron
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Fig. 4.4. The tank in which cavities were generated.

Fig. 4.5. A single flash photograph of a collapsing spark bubble.
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could be adjusted to give dependable triggering of the circuit with input

pulses of 25V, and l/us duration.

3. Techniques used in an attempt to measure pressures on the boundary

A rather obvious fact is demonstrated in figure 4.5, namely that
it is impossible to tell from high speed photographs alone whether the
cavity actually folds in as is indicated in figure 2.5. Since this type of
collapse is one of the most interesting features of the theoretical
treatment, provision had to be made to obtain additional data. Several
methods of measuring pressures on the boundary were tried in an effort

to satisfy this requirement. These methods are discussed briefly below.

i) Quartz Crystal Pickup

The quartz crystal pickup which was constructed is shown in
figure 4. 8. The crystal Q 1is glued onto the end of an aluminum bar
which is made up of the tubes Cl’ C2 and C3 and the rod C4. All
these elements are electrically insulated from one another, and thus
form the connections to four different areas on the back of the crystal,
The insulation of Cl’ CZ’ C3 and C4 was achieved by anodizing them
before they were glued together. The aluminum plate P forms the
connection to the front of the crystal. Troubles from reflections were
minimized by the lead bar L which was glued to the other end of the
unite Electrical connections to CZ’ C3 and C4 are obtained with
wires through size 80 holes drilled down the center of 0-80 nylon
screws SZ’ S3 and 84. An 0-80 brass screw S1 forms the con-

nection to Cl' The unit was inserted through a 1/2'" hole in the bottom

of the tank, and was suspended by friction of the O-ring seal. The
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lower end of the unit is visible in figure 4. 4.

Figure 4.9 shows the output obtained from C2 and C4 with Cis
C3 and P grounded, when a l/16" ball bearing is dropped on the
center of the crystal, The curves are photographed from the screen of
a Tektronix Type 551 Dual Beam oscilloscope. A 25 Megacycle X-cut
quartz crystal was used to obtain these curves.

In view of the results shown in figure 4.9 it was hoped that a
bubble which collapses as shown in figure 2.5 would produce a pulse

on C’4 before a pulse on CZ would be observed.

1i) Photoelastic Material

Figure 4.10 shows the photoelastic pickup which was used to indi-
cate pressures on the boundary. The photoelastic material was placed
between two half-inch thick Lucite plates, so that a fairly wide flat
surface was obtained for the cavity to collapse on.

Two types of photoelastic materials were used, namely CR 39

and Hysol 8705.

iii) Damaging of Materials

The damaging of material samples inserted in the boundary pro-
vided a useful tool in obtaining rough estimates of the pressure distri-
butions on the boundary. High purity aluminum samples of 1/2"
diameter and approximately 3/8'" long were sanded smooth on one end
with number 600 metallurgical emery paper. These samples were
then carefully annealed, and chemically polished with Alcoa R5 bright
dip.

The samples were glued on the end of a 1/2" diameter aluminum
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Fig., 4.9. The response of the quartz crystal pickup when
a 1/16'" ball bearing is dropped through 2' on the center of
the crystal. The upper trace was connected to CZ and the
lower trace to C4,

I
—
o

h 3
n

Horizontal scale 1 division
Vertical scale 1 division = .005 V.

Fig. 4.10. The photoelastic pressure indicator.
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rod, and inserted in the bottom of the tank through the same hole as

was used with the quartz crystal pickup.

4. Procedure

Bubble pictures were obtained by triggering the camera and the
spark with a single 25V pulse of llu.s duration. This pulse was made
by feeding a single sawtooth wave form from a Tektronix Type 162
wave form generator into a Tektronix Type 163 pulse generator.

When the quartz crystal pickup was used it became necessary to
trigger the oscilloscope shortly before the collapse pulse was expected.
This was done with a 50V pulse of about l/us duration generated by a
Tektronix Type 161 pulse generator into which the same sawtooth was
fed. Both pulse generators can be adjusted to trigger at any fraction
of the maximum sawtooth voltage, and the duration of the sawtooth
waveform can be varied. A delay could therefore be obtained between
the pulse which triggered the camera and the pulse which triggered the
scope.

The relative timing between the motion pictures and the scope
records was easily observed, because stray fields from the Kerr cell
pulses caused pulses on the scope. A reference point was obtained by
adjusting the camera so that the Kerr cell pulses stopped shortly after
the collapse pulse was observed, so that the last Kerr cell pulse on the
scope corresponded in time to the last picture on the film.

For the photoelastic pictures it was necessary to place another
polaroid between the tank and the light source with its axis parallel to
that of the first polaroid of the shutter. Quarter wave plates were

placed on both sides of the tank, and between the two polaroids
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mentioned above. Since all the data are in this case contained in the
motion pictures the oscilloscope and its triggering equipment were not
needed.

High speed motion pictures of the cavities which caused the
damage of the aluminum samples were taken in the same way, but of
course without the polaroid and quarter wave plates.

The equipment used is shown in figure 4.11. The rack on the
far right contains the condenser bank for the light source, and the
power supply used to charge it. The rack next to it contains the
electronic equipment which produces the Kerr cell pulses. The light
source is contained in the black cylinder, and is aimed at the camera
through the tank in which the bubbles were made.

The small rack on the left contains the electronics needed for
generating the spark, and the unit sitting on top of it contains the
Tektronix Type 162 waveform generator, the Type 163 pulse generator,
and the Type 161 pulse generator. The Type 551 TektronixDual Beam

oscilloscope stands between the spark equipment and the bubble tank,
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Chapter V

The Experimental Results Compared with the Theory

A large number of motion picture records of cavities collapsing
in contact with a solid boundary were obtained by the methods dis-
cussed in chapter IV. In an attempt to demonstrate a representative
sample of the results, the cavities of figures 5.1 through 5.7 were
chosen. The pictures of figures 5.1 and 5.2 were obtained with CR-39
as a pressure indicator, and are different inasmuch as the cavity in
figure 5.1 contains a larger initial perturbation of the hemi spherical
shape than the one of figure 5.2, The cavities of figures 5.3 and 5.4
were obtained with Hysol 8705 and the quartz crystal unit as the re-
spective pressure indicators. The oscilloscope record accompanying
figure 5.4 is shown in figure 5.8, Figures 5.5, 5.6 and 5.7 show the
most important cavities which were used in the damage studies.

In all these reproductions frames below one another in the verti-
cal columns are consecutive in the motion picture record. A vertical
column follows the one immediately to its left. The following notation

will be used in the discussion of the pictures:
Frame i,j = the jth frame of the ith column.

The cavities of figures 5.1, 5.2 and 5.3, which collapsed on
photoelastic boundaries, all exhibit an important common character-
istic, némely that they all become deformed to the extent that the cavity
wall strikes the solid surface before the cavity reaches its minimum
volume. The phbtoelastic materials show this effect in the form of a

small disturbance close to the origin of the spherical coordinate
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Fig, 5.1. A cavity collapsing on the CR-39 photoelastic
boundary. Time between frames is 10 microseconds.



64

Fig. 5.2. A second cavity collapsing on the CR -39 photoelastic
boundary. Time between frames is 5 microseconds.
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Fig. 5.3. A cavity collapsing on the Hysol 8705 photoelastic
boundary. Time between frames is 10 microseconds.
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Fig. 5.4. A cavity collapsing on the quartz crystal pickup.
The accompanying oscilloscope record is shown in figure
5.8. Time between frames is 10 microseconds.
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Fig. 5.5. A cavity collapsing on a soft aluminum sample.
Time between frames is 10 microseconds. Frames 3,6
and 3,7 are 90 microseconds apart.
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4

Fig. 5.6. A second cavity collapsing on a soft aluminum sample.
Time between frames is 10 microseconds.
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4 __

Fig. 5.7. A third cavity collapsing on a soft aluminum sample.
Time between frames is 10 microseconds.
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Fig. 5.8. The oscilloscope record accompanying
the cavity of figure 5. 4.

Horizontal scale 1 division = 20 us.
Vertical scale 1 division = 0.2 V.

Fig. 5.9. An oscilloscope record obtained with a
cavity very similar to the one of figure 5.7.

Horizontal scale 1 division = 50 us.
Vertical scale - 1 division = 0.02 V.
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system which was used for the theoretical work. (Refer to figure 2.1,)
These pressure pulses will be called water hammer pulses for the
purpose of the discussion which follows. The observation of this effect
indicates that the type of collapse which is shown in figure 2.5 indeed
occurs in practice.

The photoelastic materials indicate that the force, which is initi-
ated by the wall of the cavity striking the boundary, is sustained over
a relatively long period. This effect is explained by regarding the
folded-in portion of the cavity boundary as a jet which enters the cavity,
strikes the solid surfac‘e and impinges upon the surface after its initial
contact. The pressure necessary to deflect the liquid so that it eventu-
ally flows in a direction parallel to the solid boundary causes the water
hammer pulse to appear sustained.

The water hammer pulse is followed by a second, and much
larger, disturbance which coincides in time with the period during
which the cavity reaches its minimum volume. During this period shock
waves are usually visible in the liquid, even though no experimental
provisions were made for their observation. It is believed that this
second disturbance results from compression of gases in the cavity.

It is accordingly referred to as the gas compression pulse for the re-
mainder of this discussion.

The results which were obtained with the quartz crystal pickup
were somewhat discouraging. The oscilloscope record of figure 5.8
which was obtained from connections C4 and CZ with Cl’ C3 and
P grounded, shows no signs of é pulse from the C4 connection (upper

trace) before the pulse on the C, connection (lower trace) is observed.,
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At this stage a pulse appears on both traces which can be seen to corre-
spond to the compression pulse because of the shock waves which are
visible in frame 5, 10 of figure 5.4. It will be noted that the Kerr cell
pulse which immediately follows the compression pulse in figure 5. 8
corresponds in time to frame 5, 10 of figure 5.4.

The situation was explained when the amplification of the oscillo-
scope was increased. In figure 5.9 an oscilloscope record, which was
obtained for a cavity almost exactly the same as the one of figure 5.7
is shown. In this case CZ’ C3 and C4 were connected together while
C1 and P were still grounded. The small disturbance which is seen
to start about 65/LS before the compression pulse is believed to corre-
spond to the cavity wall striking the boundary. These disturbances
were in general so small that it was difficult to separate them from
noise in the system. For this reason the quartz crystal pickup was
considered useless for purposes of detecting this effect.

One has no indication of the relative time at which the walls of
the cavities of figures 5.5, 5.6 and 5.7 struck the boundary, because
these bubbles were used to damage aluminum samples. These pictures
were nonetheless included here because they are of extreme interest in
the damage studies which are discussed in chapter VI.

The method of analyzing motion picture records will now be dis-
cussed.

Suppose the cavity of figure 5.10 can be described sufficiently

accurately by the equation

R(6,t) = ROPO(cos 8) + RZPZ(COS 8) + R4P4(coks 9) + R6P6(cos 8). (5.1)
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eoc P
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i
Figure 5,10
Then one may write
r Po(l) Pz(l) P4( 1) Pé(l) R
r, P (V3/2) P,(32) P,(V32) P, (V3/2) R,
= (5. 2)
T, Pg(y@) P,(1/2) P4(y2) I%(yé) Ry,
re Po( 0) PZ(O) P4( 0) P6(0) Ry
where r , r,, r, and r, are the values of R at OO, 300, 60° and
o 2 4 6

90° respectively.

Inverting the matrix of equation 5.2 and substituting the values of

P, , one obtains
2n
R, |- .0287 . 2540 .4569 . 2604 r
R, . 1590 L7616 -,2540 -.6666 r,
= ' (5.3)
Ry, L4430 -,2772 -.9420 L7762 ry

R6 .’3696 -. 7392 .7392 -.3696 Ty
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Ro’ RZ’ R4 and R() may thus be obtained as functions of time if T

Ty Ty and r, are measured from the motion picture records, pro-
vided the time between frames of the motion picture is known.,
In order to compare the Rzn(t‘) which are measured in this

way with the theory, it is necessary to find RO(O), T, RZn(O) and
dRZn
dt

above differs from the t used in the theoretical treatment by an addi-

(0) from the experimental results. It should be noted that t'

tive constant.

The point t =0 was found by a graphical determination of the
maximum of Ro plotted against t'. RO(O) was then of course this
maximum value of RO.

Two procedures were used for determining T. The first was to
fit the best Rayleigh curve (cf. figure 2. 2) through the experimental
points and then to find the value of t at which RO becomes 0. These
values of T will be called Te. The other procedure was to calculate
T from equation 2.39. The value of p. was considered to be the
vapor pressure of water at room temperature. For Peo atmospheric
pressure plus the pressure due to 6 inches of water was used, since
the depth of submergence of the cavities was approximately 6 inches.
It was found that Te and T never differed by more than a few
percent,

R.?.n(o)’ with n=1, 2 and 3, was determined by plotting R,

against time, and determining its value at t = 0. The slope of RZn

dR.2

n
at t =0 gave Tt (0).

The most important parameters for the cavities of figures 5.1

through 5.7 are listed in table 5.1.
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In figure 5.11 experimental values of RO/RO(O) are plotted
against t/T for the cavities of figures 5.4 and 5.7. The dotted verti-
cal line at t/T = 0.82 indicates where the cavity of figure 5.7 became
indented. The other cavity became dented somewhat later., Points
after the dotted line depend on estimating the shape of the folded-in
portions of the cavities. The solid curve of figure 5,12 is the theo-
retical curve for RO/RO(O) as a function of t/T calculated from
equation 2. 38.

In figures 5.12 through 5. 18, the experimental points of
RZ/RZ(O) and R4/R4(0) are plotted against RO/RO(O) for the cavities
of figures 5.1 through 5.7 respectively. The dotted vertical lines in
these figures indicate where the cavities became indented. Points to
the right of the vertical line are again based on an estimate of the
shape of the folded-in portions of the walls of the cavities. The accu-
racy of these estimates depended a great deal on a knowledge of when
the water hammer pulse occurred. The results should thus be more
trustworthy in cases where a cavity collapsing on a photoelastic bounda-
ry was analysed.

The solid lines in figures 5.12 through 5. 18 are the theoretical

curves. RZ/RZ(O) was calculated from the equation

(5. 4)

R4/R4(0) “followed from

R ' T, dR,
R,(0) - Va1 T (08925 7oy —q (0) vap *vyp (5.5)
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where V4p is given by equation 3.48.
Calculating the theoretical curves in this fashion is consistent

with the theoretical work of chapter III.

Discussion of the Results

The Hysol 8705 photoelastic material which was used in figure
5.3 is so sensitive that the pressure gradient under which the cavity
collapsed is clearly visible. It is seen that no severe changes of the
pressure in the cavity occur until after the water hammer pulse which
appears in frar;le 6,2. The pressure only changes drastically close to
the compression pulse. This effect is seen in frame 6,11. One might
thus expect that the assumption of constant pressure in the cavity
would be good for the cavities which were considered experimentally.

The comparisons with the theoretical curve in figure 5.12 demon-
strate that Po(cos @) components of the spark bubbles actually obey
the simple Rayleigh theory very well in the range of the experiments
which were done here. The spark method for producing cavities is
thus proved satisfactory for purposes of the present study.

In figures 5.12 through 5. 18 the theoretical curves are seen to
describe the behavior of the Pz(cos 8) and P4(cos 8) components of
the collapsing cavities fairly well, especially if it is remembered that
the experimental points were obtained from Legendre analyses of
pictures which were at best somewhat blurred. One should also take
into account that small deviations of Ro from its theoretical values
close to t =0 will introduce greatly amplified deviations in the curves
for R

and R, close to RO/RO(O) = 1, because of the zero slope of

2 4
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the Ro curve at t = 0. The large differences between theory and
experiment for small values of RO/RO(O) in figures 5. 15 through 5.18
could be the result of erroneous estimates of the times at which the
water hammer pulses occurred for the cavities of figures 5.4 through
5.7.

In order to obtain an estimate of the significance of the differences
between theory and experiment for the individual cavities which are
presented here, an attempt was made to achieve a simultaneous com-
parison of the PZ( cos 8) component of R(6,t) with the theory for a
fair number of cavities. Such a comparison is necessarily based on an
apportioning of the difference between theory and experiment to the yzl
and YZZ parts of RZ/RZ(O). The method of apportioning that was used
is as follows:

Suppose that at RO/RO(O) =, an experimental value of RZI/RZ(O)

was found to be y,_ . The difference, § , between theory and experi-

ment at this point is then
§ = YZ((D) - YZe((D) =Y, (w) + BzYz (w) - Yo

One may then write

1
Yze(UJ) = [Yzl(w) - iyzl(m)l + leyZZ(w)!]
+ B [ (@) .Slel Iyzz(w)l ]
[ P
= Vze () * Byvae () (5. 6)

The "experimental'' points of Y, and y, = are compared with
2

1

the theoretical curves for yzl and YZ?_ in figures 5.19 and 5. 20
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respectively. These points were obtained from motion picture records
of ten cavities different from the ones shown in figures 5.1 through 5.7.
-All the cavities collapsed on photoelastic boundaries, so that the experi-
mental results for small RO/RO(O) should be relatively trustworthy.

Even though the weakness of the method of apportioning differences
between theory and experiment is quite apparent, figures 5.19 and 5. 20
give an excellent indication of the scatter involved in the experimental
data., The experimental points appear to be well grouped around the
theoretical curves.

A similar representation of experimental dajta for R4/R4(O) was
not attempted because Vg4 is a linear combination of five different
functions of RO/RO(O). Results based on assumptions about apportion~-
ing of differences between theory and experiment to each of these five
curves would become quite meaningless. However, it may be expected
that the scatter of the experimental data for R4/R4(O) would be much
more severe than the scatter of the RZ/RZ(O) points.

Experimental data for R6/R6(O) were extremely erratic because
R6 was usually comparable in magnitude to inaccuracy in the measure-

ments. These experimental results are not presented here.
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Chapter VI

The Pressures on the Solid Boundary

In chapter V one became acquainted with two types of pressure
disturbances which act on the solid boundary during the collapse of a
non-hemispherical cavity. The firstis a result of the cavity boundary
striking the solid surface, and the second is due to compression of
the gases in the cavity. At this stage the relative importance of the
two pressure pulses is undetermined. No conclusions can be drawn
from the fringe patterns in the photoelastic materials, because the
area over which the water hammer pulse acts is unknown.

The problem of determining the relative importance of the two
disturbances was finally resolved by studying the damaging effects of
cavities on metal samples. Figures 6.1, 6.2 and 6.3 show microscope
pictures of pits which were produced by the cavities of figures 5.5,
5.6 and 5.7 respectively. The pits were made in samples of high
purity aluminum which were annealed and chemically polished. The
rather strange appearance of these pictures is due to the method of
illuminating the sample surfaces. The small holesv are a result of
the chemical polishing and only the large dents were caused by the
cavities. The scale in the photographs is .004" per division. Figure
6.4 shows a phovtograph of a pit in 2-S Aluminum which was made by
a cavity very much the same as the one of figure 5.5. In this case the
surface was smo;thened with number 600 metallurgical emery paper,
and no further polishing was employed.

Several facts are demonstrated by these pictures in conjunction

with figures 5.5, 5.6 and 5.7. The most important is that the diameters
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Fig. 6.1 The pit produced in high purity Aluminum
by the cavity of figure 5.5.

Fig. 6.2 The pit produced in high purity Aluminum
by the cavity of figure 5. 6.
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Fig. 6.3 The pit produced in high purity Aluminum by
the cavity of figure 5. 7.

Fig. 6.4 The pit produced in 2-S Aluminum by a
cavity similar to the one of figure 5.5. Average pit
diameter is approx. 0.014". ‘
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of the pits are much smaller than the minimum base diameters of the
cavities that caused them. It is further noted that the pit diameter
decreases as the minimum base diameter of the cavity increases, or
correspondingly, as the magnitude of the initial perturbation of the

hemispherical shape is increased. Table 6.1 illustrates these facts

numerically,
Figure number | Diameter of Minimum -
in which pit caused base diameter
cavity is shown by cavity of cavity
v inches , inches

5.5 | 0.0150 0.111

5.6 0.0125 0.157

5.7 0,0120 0.179

Table 6.1 Results of the damage experiments

It becomes clear that the pits could not have been produced by the
gas compression pulses, and that the water hammer pulses must have
been responsible for the damage.

The fact that the pit diameter decreases as the minimum base
diameter is increased cannot easily be explained on the basis of the
experimental results. This effect is more pronounced than table 6.1
indicates, because cavities with slightly larger initial perturbations of
the hemisphericél shape than the one in figure 5.7 were found to cause
no visible damage of the soft aluminum samples. Impact velocities
that were estimatéd from the motion picture records were not signifi-
cantly different for the threé cavities of figures 5.5 through 5.7, and
these velocities seemed to be of the order of 200 feet per second.

" Higher impact velocities than this were estimated for cavities with
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larger initial perturbations than the one of figure 5.7.

An explanation of this effect could possibly be found if the radius
of curvature of the portion of the cavity wall which strikes the boundary
could be estimated. The theory is of no help at this stage because it
predicts that the radius of curvature will be zero at the point of impact.
This is of course a physical impossibility which would not occur if
surface tension had been included as a property of the liquid. Because
the pictures do not show the indented portion of the cavity walls, one
cannot determine the radius of curvature experimentally.

Another factor which should be taken into account is that the
estimates of the impact velocities could be very inaccurate, because
the details of the shapes of the cavities are not known in the period
during which the cavities remain indented.

Now that it has been shown that the water hammer pulse is re-
sponsible for the damage, one expects that the pressure on the boundary

will be given by
P =/) cv (6.1)

where
p is the pressure
P is the density of the liquid
c is the velocity of sound in the liquid
v is the impact velocity of the cavity wall.
The equation 6.1 is the well known water hammer equation (17).
Pressures calculated from this- equation using the estimated impact
velocities for thé cavities of figures 5.5, 5.6 and 5.7 are of the order

of 18,500 p.s.i. These pressures could certainly cause damage of the
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high purity aluminum samples, which had a yield strength of approxi-
mately 2500 p. s.i.,\ and also of the 2-S aluminum with a yield strength
of approximately 5,000 p.s.i.

In order to afford an additional check on the results, the quartz
crystal pickup was calibrated in a shock tube., Such a calibration enables
one to form an idea of the pressures involved in the compression pulses
| which were recorded with the quartz crystal pickup. This pressure was
only 2000 p.s.i. for the cavity of figure 5.4, so that it could not even
damage the high purity aluminum,

The pressures due to the compression of gas in the cavity decreased
as the initial perturbation of the hemispherical shape was increased.

As the spark gap was moved further away from the wall, these pressures
reached a very pronounced minimum, and then started increasing again.
In figure 6.7 a curve of the magnitudes of the compression pulse on the
boundary is shown as a function of the distance of the spark gap from

the boundary. The spark energy was kept constant during these pressure
recordings. Figure 6.5 shows a picture of the cavity corresponding to
point A of figure 6.7 at maximun‘l radius and a few frames at the time

of the compression pulse, Figure 6.6 shows the same frames for the
cavity corresponding to point B of figure 6.7,

It is seen that the minimum in pressure of the compression pulse
results from a cavity which is barely touching the solid boundary
initially, and which still collapses on the boundary. The pressure starts
rising a;gain when the cavities collapse away from the wall, and are
more nearly spherically symmetric close to the collapse point. It
reaches a maximum value when the inverse square dropoff due to the

increase in distance cancels the gain of pressure due to the more nearly
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Fig. 6.5 The cavity corresponding to point A of figure 6.7 at maximum
volume and close to minimum volume.

Fig. 6.6 The cavity corresponding to point B of figure 6.7 at maximum
volume and close to minimum volume.
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spherical collapse, and then decreases gradually as the distance is
increased further.

The mechanism of damage which was observed in the present
work is not an entirely new concept. As early as 1950 Eisenberg (18)
speculated that jets formed during the unsymmetrical collapse of
cavitation bubbles could be responsible for damage. It is believed that
the present results are the first in which this effect was actually ob-
served.

It should be pointed out that this effect was observed for a very
limited range of cavity types. When initial perturbations of the hemi-
spherical shape were too large, cavities failed to cause damage of soft
aluminum samples even though the jet could be shown to occur. Cavi-
ties with rather small initial perturbations of the hemispherical shape
could not be studied in detail because of limitations imposed by the
resolution of the high speed camera.

A further limitation of the present experimental data is that it
was not shown that the initial conditions obtained with cavities gener~
ated by spark methods can be duplicated with cavities formed by

strictly hydrodynamic processes.
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Chapter VII

Summary and Conclusions

In order to collect the ideas which are distributed throughout the
preceding chapters a brief summary is presented here.

The collapse process of non-hemispherical cavities in contact with
a solid boundary was examined theoretically. In the theoretical treat-
ment real fluid effects such as those of compressibility, viscosity,
surface tension and adhesion were neglected. The effect of gravity
was assumed to be small, and the pressure inside the cavity was as-
sumed to remain constant.

Only cavities which remain axially symmetric with respect to a
line normal to the solid boundary were considered. The radii of such

cavities were expressed by the equation

R(9, ) = R_(t) P_(cos 6) + fl R, (t) P, (cos 8).  (7.1)
n=

Two perturbation solutions for the collapse problem were obtained.

For purposes of the first solution it was assumed that the sum

0
Z R, (t) P, (cos 6) was much smaller than R (t), and all the
n Zn o)

n=1

interactions between terms in the sum were neglected. It was found

that the R 0 in this case all satisfied the equation

2

D(R, n) [ RZn(RO)] =0 (7.2)

where D(R_ n) is a linear second order differential operator in Ro
which depends only on n. RO was found to satisfy the Rayleigh theory

to this approximation., It was realized that a small term in the sum of

equation 7.1 can be seriously affected by interactions among other
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terms in the sum and that the coefficient of such a term may not satisfy
the equation 7.2 at all. However, this effect is negligible as far as

(e}
R (8, t) is concerned provided nz_:l Rzn(t) Pzn(cos 8) is small com-

pared to Ro'

In the second solution the most important interactions between the
terms of the sums in equation 7.1 were taken into account for the case
where the following conditions were satisfied

R(8, t) = Ro(t) Po(cos 8) + RZ(t) Pz(cos 8) + R4(t) P4(cos 8)

+ R6(t)/ Pé(cos ) +. ..

where R2n+2 =3 RZn

and RZn was negligible compared to Ro for n=>3. (7.3)
The most important influence on R0 arose from interactions of
RZ with itself. These terms were still considered negligible, R2 was
also affected most seriously by nonlinear terms in itself, but this effect
was considered small enough to neglect. The quadratic nonlinear terms
in RZ could however have an appreciable effect on R4 and these terms
were retained for purposes of calculating R4. Similarly, cubic non-
linear terms in RZ’ and interaction terms between R2 and R4 were
retained in calculating Ré'
Inclusion of terms of this type caused no nonlinearity in the

equations, and it was found that Rzn(Ro), with n = 1, 2 and 3 now

satisfied the equation

D(R, n) [Rzn(Ro;)] = FonlRy) (7.4)

where D is still the same operator as in equation 7.2, and an(Ro)
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is a' forcing function. In the special case of n = 1, FZ = 0. Ro still
satisfied the Rayleigh theory to this approximation,

.The behavior of the theoretical solutions for the R RO) suggest

Zn(
the possibility that the cavity wall may strike the solid boundary before
the cavity reaches its minimum volume. This effect has as a conse-
quence the possibility of damage by a water hammer mechanism, and
is therefore of great interest, Unfortunately, large perturbation
quantities are involved at the time that this type of impact occurs, so
that one is not justified in drawing any definite conclusions. The theory
also shows that the radius of curvature of the part of the cavity wall
which strikes the boundary is zero at impact. This is a physical im-~-
possibility which results from the perfect fluid assumption.

Because of these questionable results, which could conceivably
be an attempt of the mathematics to describe some important physical
effects, experiments were performed with spark bubbles in water which
collapsed in contact with a solid boundary. The shapes of these cavities
were analyzed and compared with the theory and the detailed mechanism
of damage was examined experimentally.

The main conclusions that can be drawn from the study are listed

below.

1). Experimental cavities were all found to satisfy the conditions
of equation 7.3, The theoretical work which was based on these as-
sumptions described the behavior of the Pz(cos 8) and P4(cos 0)
terms of the experirﬁental cavities fairly well. When the scatter of the
experimental data was taken info account, it was apparent that no

definite conclusions about the difference between the théoretical curves
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and experimental points could be drawn.

2). The fact that the experimental points for the P, (cos 8)
and P4 (cos 8) components of the cavity radius fell so close to the
theoretical curves indicates that gravity, viscosity, surface tension,
compressibility and adhesion were indeed negligible for the type of

cavities considered in the experiments.

3)s The effect of a cavity deforming to the extent that its wall
strikes the solid boundary before the cavity reaches minimum volume

was observed to occur by means of photoelastic boundaries.

4), The pressure pulse caused by the cavity wall striking the
solid boundary was followed by a second pressure disturbance, which
appeared to be the result of a compression of gases in the cavity. No
evidence was found that the gas compression pulse gave rise to higher
pressures than the water hammer effect, and in cases where the
cavities damaged the solid boundary, it was proved conclusively that

the water hammer pulse caused the damage.

5). It was found that pressures calculated from the equation

p = J‘O‘CV

o
il

pressure

liquid density

“o
1}

O
t

velocity of sound in the liquid

v = estimated impact velocity
were large enough to explain the observed damage.
Another parameter, however, appeared to play an important

role in the damaging process, because nearly equal estimated impact

velocities could produce vastly different pit sizes. It appeared that
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the radius of curvature of the portion of the cavity wall which
struck the solid boundary could be the other parameter. No
evidence could, however, be found to prove this hypothesis. It
is also conceivable that errors in the estimated collapse

velocities could be responsible for the observed effects.

6). Measurements of the pres‘sure arising from compression
of gases in the cavity showed that these pressured dropped sharply
as the initial perturbation of the hemispherical shape was increased.
Pressures obtained from cavities with very large initial perturbations
which still collapsed on the solid surface were in some cases lower
than shock wave pressures on the surface due to cavities of the same
energy that collapsed away from the boundary. This result can be
explained by the fact that cavities which collapse away from the solid
surface remain much more closely spherically symmetric.than
largely perturbed hemispherical cavities which collapse on the

boundary, and that the included gases are compressed much more.

7). Experimental evidence showed that the spark method for
making cavities was very satisfactory. The P_ (cos 8) components of
such cavities obeyed the Rayleigh theory extremely well in the range
of the experiments. Sensitive photoelastic materials showed that no
pressure rise occurred inside the cavities for a range Qf Ro well

exceeding the requirements of the experiments.

8). The cavities that were studied experimentally all deformed
to strike the solid surface for Ro/Ro (0)>0.3. This is the result of

using fairly large initial perturbations of the hemispherical shape.
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Even at these large values for Ro/Ro (0) optical resolution of the
high speed photography limited the accuracy of the experiments.
The results obtained here cannot be extended to cavities which
collapse much more nearly hemispherically without further
experimental verification, because of the high collapse velocities,
and the pressure rise in the cavity which would occur. It is believed,
however, that the water hammer mechanism of damage may be
important even in these cases. Further investigation of this question
will require high speed motion picture cameras with optical

resolution beyond that of the one used in the present study.
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- Appendix 1

A Property of Integrals Arising from the Variation of Parameters

Method

Consider a general second order linear differential equation

2
L(y) = p, (% 3-7 tpp () Erp ()= w (A1)

and suppose that u (x) satisfies the equation

<

L(u) = 0. (A.2)
It is desired to find a particular solution of eq. A.1l by the method
of variation of parameters.

The particular solution is then expressed as follows

v, = ulx UG (4.3)

Substituting eq. A.3 in eq. A.1l one obtains

2

d°U du dU
P, (%) u——dxz + [sz (x) I + py u] = -V (A.4)

Multiplying through with the integrating factor

PL dx
uq P2

— where q = e one obtains
adr 2 dul. wugq |
&= F - 5 ’ - (A

The case bf present interest arises when u vanishes for some
value of x. Withqut loss éf generality one may choose this value of
x to be the point x = 0., Thus
w(0) = 0 (4.6)

In the case where
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d
() ¢ o (A7)
p, (0) # 0 (A. 8)
w and q are well behaved atx = 0 (A.9)
one may then write
dU _ H (x) _
u. (A.10)
uq
where H (x) =[wpu 4
2
Expanding H (x) and qu in the neighborhood of x = 0 one obtains
H(x) = H(0) + 231 (0)x" +... (A.11)
dx

because of eqs. A.5 and A. 6 and

2 du a%u 2 . 2 (A.12)
uq:[a_..}E (0) x + 1/2d—xz(0) x o+ .,] [q(O) +-a§(0)x..] :
because of eq. 6.5.

From eq. A.2 it follows that

2 P,
du 1 du
4% o) = -2 9u (g, (A.13)
dx2 P2 dx
Furthermore dq _ P
= (0) = -——-pz q (0). (A.14)

Eg. A.12 thus takes the form

2 4

u’q = (§2 ()% q(0) x* + O (=)

so that
W_oLIEO o
* Lz onalo)

Thus g-;gcontains no terms of order -}12 in its expansion around the
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origin, and

o . HO) + O(x) © (A.15)

<2 (0) q(0)

The integral in the expression for Yp thus gives rise to no log x
term. This is of importance because otherwise the resulting particular

solution Yo would not be analytic around the origin.
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