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ABSTRACT

By applying a transonic expansion procedure to a conical flow
field, a system of approximate transonic equations, boundary condi-
tions, and shock relations is derived. A similarity law for the
pressure coefficient on the surface of slender cones is established,
The surface pressure is computed by solving the approximaté equa-
tions.

By use of similarity, the second order differential equations
of the first two steps of the approximation scheme are reduced to
first order equations. The solution of the first step is carried out
numerically in great detail for different transonic parameters; the
procedure for solving the latter is explained in the Appendix.

The results are compared with the exact solution, and a highly

satisfactory agreement is reached.
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SYMBOLS

local speed of sound
critical speed of sound for M=}

transonic similarity parameter = ——

I-m2
82

characteristic length

Mach number = %
pressure

local velocity

local speed

axial and radial velocity respecti.vely

dimensionless axial and radial coordinate respectively
transformed Cartesian coordinates

flight speed

shock wave angle

tangent of semi-cone angle = tan §

transformed Cartesian coordinates

semi-cone angle

parameter independent of J =K

P

pY
density
velocity potential
ith approximation

value at shock wave

free stream value
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I. INTRODUCTION

The purpose of this investigation is to study the axial super-
sonic flow around slender cones in the transonic range by applying the
expansion procedures and similarity laws for conical transonic flow.
The derivation 6f the procedures and laws is based upon the techniques
in Reference one. The investigation will thus serve to justify the use-
fulness of the expansion method and it will also determine what range
of the transonic similarity parameter will give a good. result from the
present theory.

As is well known, the subject of axial supersonic; fléw around
cones was first introduced in 1929 by Busemann (ref. 2)., This same
type of flow has since then been dealt with by G. I. Taylor and
J. W. Maccoll (ref. 3), Z. Kopal (ref, 4) and several other authors.
However the numerical as well as the graphical solution is carried out
in a very laborious way., This paper presents a much simpler method
for solving this type of problem in the transonic range.

The transonic equation has been derived in many different ways,
but most of them la;k a systematic procedure. The techniques adapted
from Reference one make the derivation of the approxima-te equations
for conical transonic flow part of a systematic expansion procedure.
Thus it becomes possible to compute the higher terms of this approxi-
mation or at least to estimate errors.

The transonic differential equation thus derived can be simplified
to a first-order differential equation by means of a transformation. The

shock relations reduce to a single curve which we shall call the univer-
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sal hedgehog and the axis of the cone reduces to a point at the origin in
this new system. As the equation is of first order, the computation
work is much less than that for a second order differential equation.
Furthermore, by use of similarity, the solution of a flow problem
represents the flow of a family of cones having the same transonic
parameter, while the usual method of investigation requires a calcu-
lation for every cone angle.

Although transonic similarity laws for the pressure distribution
around slender bodies have been derived by von Ka/rm.a’n (ref. 5), and
Oswatitsch and Berndt (ref. 6) previously, the function of similarity
parameter in the pressure formula has not been deterr‘nined explicitly.
In this paper, this function is found by numerical integration.

The results from the approximate solution agree with those from
the exact solution (ref. 4) in a very satisfactory manner for a slender
cone. However, as the cone angle and the transonic para'meter be-
come larger, the agreement becomes poorer.

Oswatitsch and Sjadin (ref. 7) have independently studied the same
type of transonic flow over a cone in a quite different approach which re-
quires much more computation work than that required in the present

theory.
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II. EXPANSION PROCEDURE FOR TRANSONIC EQUATIONS

AND BOUNDARY CONDITIONS.

5 .
U’Mm w
8 = tan 8

Fig. 1

Supersonic Flow Past a Cone.

The basic differential equations of flow (ref. 1) which apply be-

hind the shock on a cone as shown in fig. 1 are:

' 2
Continuity: a® div q = ﬁ’v(i) ' (2-1)
(Modified) 2
Irrotationality: curl g = O ' (2-2)
2 2 2 2
: 4,90 Y e Lyt o«
Energy: 5 +}"| 5+ >-1 " 250 a (2-3)
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The shock relations (ref. 1) are:

2
2 (Q)glu _ g_*>
Shock polar: ((_9_1'_.)JN.> =<|_ (qXLN) U U (2-4)
U U <u*y 2 (ayw
Ut T
|_(qflw 7+|
Wave angle: tgn B= — (2-5)
(g, )y
U
Pressure: (P)W ) + P, U{u -(qx)w) (2-6)
Density: & - BX)JN - —(gj-)m | (2-7)
P U U tan B
The boundary condition on the body is

4 9y

— = A (2-8)

U U 8

It is known from the similarity of the problem that the velocity is
a function only of —)é- . An expansion procedure is now applied to the
above system of equations. The following form of expansion which pre-
serves similarity is assumed for the velocity components
%Z‘ =1t e(3)u (o M) + e(B)uy(o N) 4.
(2-9)

9 _
U. = vI(S) vl(o-.’X) +v2(8)vz(a'.’k) +.o

where the €5 v each form a decreasing sequence as 8 — (0 and

= Sw (2-10)

>
H

parameter independent of §
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The assumed form of expansion is now substituted into equa-

tion 2-1, and reasoning as in Reference one, we find the following

expansions:
B 14 8%, (0, K) #5809 Bu, (0 K) + 87U (oK)
+ §° |0928u4(o;K) + 8% log 8u5(o--,K) +o
q ' (2-11)
TJI = 83V!(O",K)+ 85 log SVZ(O",K) + 85V3(0",K)
+ 87l0928v4(or;K) + 87 log Svs(cr ; K)+ .
|-M2
where o = Sx_r and K= —ST‘”
The approximate equations which result are:
(2) First approximation.
du ov, _
[K-(y+nu ]S+ -0 24 -0 (2-12a)
o .-, dy, (2-12b)
ao' 60‘
o . )2 G+ 2K]
Shock polar: (Vw = ' 5 ' (2-13)
Wave angle: tan B = 8 (_V:-);u { [+ } (2-14)
L p- 82, +
Pressure: P | 7(u, w T (2-15)
Density: 5 = |+ 32(“|)w+ ...... (2-16)



(b) Second approximation

do 0 do
ov, _ _ Uduz
do oo

Shock polar:

ov (o)
7724-—| V|(°'|w)<V2(°'|w) + Uzw_()lT::_ >

2
= UI(O—IW)(% Ylopw -;,—4!-'<|><uz(°'|v) to,

Wave angle:

tan=l— E—'—%’—w) {I+82Iog8[—L— (

S vl U {ojy)

Pressure:

(p),

P,

Density:

Phw

W
d gy,

— = -8 yuy,loy) - 8 log By (uz(q,,,) + o

%" = |+ 8%yl +8%log 8 (uz(cr,w) +0.sz

{(2-17a)

(2-17b)

(2-18)

(2-19)

(2-20)

(2-21)



where O, + 52 log S Opy T - -~ 1is the expansion for the shock

location o, , and Uloy), V(o) and o), are results from

the solution of the first approximation.

(c) Third approximation.

Qus_ 0 4 . duus 1. 2 Oy,
K3y o5, twu=ly+5o + 52y -Nly+hy, P
du oy,
_ZKYUIa_O'I—ZVIO-aO'
ov du
Ovs __ _ COYs
60 o ad

(d) Fourth approximation.

Kty 8= (-0 B oS4 vy = (411,

ou,
oo

{(2-22a)

(2-22b)

(2-27a)

(2-27b)
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III. INTRODUCTION OF POTENTIAL FUNCTION AND ITS EXPANSION

NEAR THE AXIS.

Since the flow is irrotational, there exists a velocity potential 65

which is represented by the following expansion (cf. equation 2-11)

® - UL{x +8% (oK) + 8%logSxpforiK) + 8xpfo; K)

6. 2
+ 8°log 8964(0;}() +} (3-1)
It can easily be shown from equations 2-11 and 3-1 that
u;lo; K) = ¢>i(0",K)+ log Y
i=1,2,3,4.... -2
vilo; K) = _o_zééi
oo
and consequently
2 :
7 d d i=1,2,3,4.... (3-3)
2
i =—-20 idll - gt a—(‘ézl
do do

do

With equations 3-2 and 3-3, the transonic equations 2-12a, 2-17a,

2-22a and 2-27a reduce to

4 d¢, Cl d¢, ’¢p
[K-(y+l)<¢|+o£'>]<2£+o-a—ﬁ>+ crza—f + 030—;%‘: 0 (3-4)



dc2 do oc
5, 3 0%
+Uzao_2 + 50,22 =0 (3-5)

O T O P P e

du dy,
“(y+1S by -2vo oo 4oy -y + Du-2Kyfu Y (3-6)

and

o3 az¢4 + g2 _4)4 - auz ( |) @u, (4’.{* s %4)

(y+1) Y255 oo

- [K—(y-nu,](zgf" ¥ a——""“> | (3-7)

do 2

respectively,

In the process of achieving the expansion form 2-11, the behavior
of u;,V, near the axis has been assumed from the same physical
reasoning as in Reference one. After the introduction of the potential
function, the expansions near the axis are now carried out in more
detail.

Equation 3-4 can be rewritten as

[(yﬂ)(%(o'cﬁl)-l‘(][ T?'-HT ] =0'2£ (O‘%)
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Consequently
| d 0., ;9P +
=f;_‘z[(7+l)a—o_(c'¢|)- KJ<2£'+0'60_12 ) do +C
or

5L i et

do o O

or
2
¢ (oK)= C/logo + C +f [( +I)— 0'96,) K "4)40'%')0'0'

The successive terms in the expansion can be obtained from iteration
by using the first terms in the right hand side. The result is the
following asymptotic expansion near the axis (o= )

Y+l alogo C[K—2(7+I)C, ‘(7+I)Cz] 1

¢ploK)= C/logo +C,+ 2 G52 4 o?

+ o( 09 ") - - (3-8)
o- .

+1
uloiK)=C log o +C, + C,m L= ¢ '°gf

c[K —(y+he ~+ie) 1 log?cr
+ — 2 o2 +0 =y (3-9)



-11-

V|(0';K)=—'C}U'+ C| 4 o

AL logo I[ZK-3(y+l)C.— 2(Y+I)Cz]l_
2 o

+o< log "o ) (3-10)

g

Also by applying the same reasoning to equations 3-5, 3-6,and

3-7, it has been found that

(y+NC,Cs log o

¢fo;K)=Cslog o + C,+ > —2
CK-{y+IN4CC+CL+CC,) | log’c
- 2 2 T O\ % (3-11)
(y )
ufo;K)=Ciogo +Cy+ C, - —Z-é— CICB%U
CK-(y+1(2CC,+CL, +CC,) | <|ogza> .
3 173 Y273 e S )
+ 2 2T O\ & (3-12)
| c +1)3C,CHCLHCG) |
W03 K) = ~CgHy +NCC o - £y > —
Iogzo- (3-13)
+0 o3 -
| log“o
$,(03K)= Clog’s + Cylog o+ Cy* Z(y+|)(—+ y)C2—r g
log o
oy i+ 2167+ SRy HICTCH 50,0 2 oK}

‘o <_|_2> - (3-14)
o
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3loga

u;(;K)=CZ log®o +(2CH+Clog o +(CstCd ~ 7+I)(5+7’)Cl

log o
+(y+|){ S+ 2167 - Z(2y+Ncics 'ch5+ SR} =
+O(—l—2> (3-15)

o
310920' |
v (oK)= -2C, ?gloge—Co t+ (7+I)(— v2

IgU
7+|{3(y+ YC + _(2y+1)C2C+ 0,05 ZC,K}

+O<I—o_> (3-16)

and

I logo
bioK) = Clog & +Cet 7 {ly+1C3 + 20y -1CCY —2

|
+ 2 {+RCE 4 CL)H IOy CCet G- oL,

2
+0<!—0936> - (3-17)
[on .

logo
ufo;K)=Cjlogo +C,t Cs-;—{(y-i-l) CZ+ 2(7‘”0;0} _&9?

- {yHnei+cg) iy - ece# o ce* cL-CK} =

fog .
o ( 6) (3-18)

0'
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lo
v (oK) =-Co + S{ly+1 62 + 200G} =0

+ lZ{(yﬂ)(z»c; +2CG,) +Hy - 16C,C, + 2C,Cy+ 2C,C)).

. :
| log o |
- 20K} ¢ + 0|~ - (3-19)
where the Ci 's , independent of O , are either functions of K or

constants.
It will be shown in the next section that C,, Cs, Cgy. - can be
found from expansion at boundary while C,, G;,Cq,-..., being functions
of K , can be obtained only by solving the transonic equations. The
Ci 's , as will be seen later, are important in determining the pressure

on the cone suriace.
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IV. EXPANSION ON THE BOUNDARY.

In applying the reasoning in Reference one for deriving the tran-

sonic equations, use is made of the requirement for flow tangent to the

body surface, that is, on o=

82

A . Sx
u - u

S ‘ (4-1)

By using the form of expansion 2-11, equation 4-1 becomes

5 /| |
83V‘<_|82 5 K) + 5° log SVZG'SZ; K> + 3v3<§2 3 K>+ ......
- 8{' +32“|<§|25K> + 8%log SUZ(—lszi K\)"” 34u3<‘—82; K)+--~-} - (4-2)

Equation 4-2,which holds on the boundary, gives the expansion on
the boundary as 8 —=0. By substituting the asymptotic expansions
for u; , V; near the axis from previous section into equation 4-2

and collecting terms of the same order, it is found

3 g . (4-3)

With equation 4-3, the following expansions at the boundary are

obtained:
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D= 1+8%10g 8 (2) + 8%C,1) +8%1088(0) + 5% 1098 (2C 1+ Cy- 4)

+0(8%  (4-4)

= 8+ 3%l0g 8(-2) +8%(C,- 1) + 0(8%10gd) (#-3)

P

a¥ _/q,\ ., (q\
(U> :<Ux)+<—n> = 1+8%10g 314) + 8°(2C,1) +8%109°8 (@)

+8%10g $ (BC,+ 2C, —16) + 0(8%) (4-6)
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V. SURFACE PRESSURE.

It follows from the definition of speed of sound that

) P P
OV, 7P (P \ Pa _ 1 Pa
<U> pU° (PU2>£ M2 P
@® Pm &
.OTr
2
)

Defining T = p/p7 equation 5-1 reads

.
[o-ksn 8]

- .
: (=)

and is valid at the body surface as well as away from the body.

Equation 2-3 can be rewritten as

a?_ _| y! q\° |
TR {“(U>} | (5-3)

which, evaluated at the cone surface, reduces to

(%>2 |+ 8%10g8 [-2(y-1)] +57K- 77' (2C,1)] +8* 1og’8-2(y 1]

+8%log 8 [(y-118-4,-G)] +0(8%) (5-4)
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) 6
Now using the fact 7T/7fm= |+ 0(&°) , that is, the entropy change is

very small, equation 5-2 becomes:
% = {I+82log 8[-27] +8* [' % (2C,- I)] + 8*10g%8(0)

+8%10g 8 | y (7-26,-C,+ 2K)] +0(8") - (5-5)

By substituting this result into the expression for the pressure coeffi-

cient, it is found

or 2 - El8) e (1)
P Lpuf yM2\P, y(I-K8% \ p_

=5%10g8(-4) + 8%(1-2C,) + 8*10g®8 (0)
+ 8%log 8 (14-4C,- 2C,) + 0(8*) - (5-6)

where C, and G4 are functions of K only and can only be found by
solving the transonic equations.

By defining

. C
C, = —é% + 41log 3-1=-2C(K}+ O(Sélog 3) (5-7)

a similarity léw for pressure coefficient is introduced; that is Cg
is the same function for flows over a family of cones provided that K
for such flows is the same.,

The similarity law thus defined is essentially the same as that
derived by Oswatitsch and Berndt (ref. 6). However, they do not show
the relation of equation 5-7 to an expansion procedure or estimate the

error.
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VI. SOLUTION FOR TRANSONIC EQUATION OF FIRST

APPROXIMATION.

It has been pointed out in Section III that C,(K), C(K), C(K), ...

can be found only by solving the transonic equations of the first, second,

and third approximations........respectively. The method of finding

C,{K) is explained as follows:

Formulation of the boundary value problem.

(a).
The transonic equation of the first approximation is given by equa-

tion 2-12
_ Ou oV, _
[K (y'l'l)u,] Fp + v, —c'a_l- =0
o (6-1)
oV, Ou
oo e
By defining
u=(y+hu-K (6-2)
v = (7+|)V|
Equation 6-1 reduces to
L) AR
Py c Fpe v = : (6-3a)
Ov _ _ Ou
Py % 3 (6-3b)

Since the flow is conical,
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u="f(v) (6-4)

and consequently

du . du adv
do av do

But from equation 6-3b

av___du
do % do
Therefore
du_ _ L
dv o (6-5)

Differentiating equation 6-5 with respect to o yields

dv '2
do 2d°u (6-6)
C dv?
and therefore
du ___ !
do ~ _sd%u (6-7)
T av?

Substituting equations 6-5, 6-6, and 6-7 into equation 6-3a, the result

is

(6-8)

The following conditions are prescribed for equation 6-8.
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(1) At the shock wave: -

Substitution of equation 6-2 into equations 2-13 and 2-14 yields

2 _ 2 UM_K
Vw = (Uw+ K) 5 (6-9)
and
[ u,t+K
tan z - — W +. -
B 5 v (6-10)

Hence, from equation 6-5

uy, + K
(%)w = (—W-\T— +> (6-11)

(2) On the cone surface:

The boundary condition on the cone surface is replaced by the
expansion near the axis as carried out in Section III. For u and v ,
the following expansions near the axis are obtained frém equations 3-9,

3-10, and 6-2

K

u=ly+huy—K=(y+1){-log o—|+C2—7—+T +......) (6-12)
and consequently

- R AL (6-14)

dv oy v -
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(B) Reduction to first order differential equation.

Equation 6-8 is a non-linear second order differential equation.
It has the property of scale invariance, that is, if a scale transfor-
mation is introduced to both U and Vv {(v=AvV , u=BU’) itis invari-
ant with a suitable choice of the scale factors for the U and V
2 g (v

( B=A3® ). This means thatif U = f(v) is a solution, U =A_§f(z>
is also a solution. For differential equations with this property, it

is possible to reduce the order of the differential equation. Conse-

quently, if the following transformation

.2 .

s=vou (6-15a)
|

t= v?% (6-15b)

is introduced, the second order equation 6-8 is reduced to the following

first order differential equation

dt _ 3st®-2t
ds 3t -2s : (6-16)

Furthermore, from equation 6-15

log v = 3Jf s 6
9 3t -2s (6-17)

If, now, equation 6-16 is solved so that ' as a function of § 1is
known, then equation 6-17 will give the value of V corresponding to a

certain value of § . Then from equation 6-15, the values of U can be
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found. Therefore, the solution in the uy,v -system can be obtained if
the solution in the $-{ system is known.

The boundary condition in the S-t system will be

(1} At the shock wave:

From equation 6-15

-2 1 d
U
Sw = Vw3 Uys tw® Vi(a‘\/‘)w (6-18)

Substitution of equations 6-9 and 6-11 into equation 6-18 yields

L -
Sw= 2%%("<%<W —|>3<9§g + |> 3 - (6-19a)
Lo 1
3 3/ U 3
tw= 2 (—K‘”— l) (RW’L') (6-19b)

From equation 6-19b

t'+3 |
KTz (6-20)

By substituting equation 6-20 into equation 6-19a, it is found that

g = W =_f_2u+ (6-21)

1
te
which represents the shock relation. The curve corresponding to e-
quation 6-21 shall be called the universal hedgehog.

(2) On the cone surface:

The boundary condition on the cone surface is replaced by the ex-



-23-

pansion near the axis as in equations 6-12, 6-13, and 6-14. In the s-t

system, they reduce to

-5 3 % K

s=v uEbﬁ%)ongo-hf%-;:TfnmJ (6-22)
Ld 2 1.2

f=V3d—:IJ 2 —(y+IWi+.. == (y+1Pc? (6-23)

Near the axis, o approaches infinity, hence s and { approach zero.

Hence the axis of the cone in the X~ r system corresponds to the
origin in the $-1 system.

Before carrying out the numerical integration of equation 6-16, the
gualitative picture of the integral curves is investigated. The procedure
is:

Firstly, the singular points of the differential equation in the sys-
tem will be located. The structure of the integral curves at these points
will be studied. |

Secondly, isoclines will be drawn for the general orientation of
the integral curves.

The singular points of the differential equation is found from the
fact that the derivative % is indeterminate at these pOil;ltS. For
equation 6-16, the singular points in the finite S-t | plane are found to

be

(6-24)
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Consider first the singularity at the point $=0, t=0 . By
following the usual procedure (ref. 8) for investigating the conditions
near a singular point, the essential behavior of the integral curves

will be described by the approximate equation

dt o~ z2t . (6-25)
ds -2s+3t

The criterion of distinguishing the types of singularities (ref. 8)
shows that this point is a node.

Equation 6-25, being a homogeneous equation, can be integrated
directly to give

-4

t= Ce 3 (6-26)

where C is a constant of integration.
The structure of the integral curve is shown in fig. 2.

For the investigation of the condition near the sirigular point at

L 2
(3 {23
so-( 2) , 1‘0 (3> . (6-27)
the following transformation

s =0 +s,, t =79+t (6-28)

is inserted into equation 6-16 which, after neglecting higher order terms,

reduces to



FIG. 2

STRUCTURE OF SINGULAK POINT AT s=0, t=0
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dn . 3t 0+(9st?-2)9

>~ 6-29
JT - 3p-2t (6-29)
: 4 2
With S°=<-g—>3, ty= <%>3 it becomes
an o 4L-127 (6-30)

at —6C+977

By following the criterion for classifying the types of singularities,
it is found that this point is a node.

The integral curves approximated by (6-30) are

143

- [3n+u- «/?)E]%-# E H1+/BL [? 2/ (6-31)

1
C

with the structure shown in fig. 3.

di .o, dt .o db.

Now with the help of the isoclines (09)
P ds ' ds

Iy

Y ds
and the universal hedgehog the integral curves are shown in fig. 4.
However, owing to the fact that v>O, gg =‘}; < Q0 and u>0

for supersonic flow, it follows from equation 6-15 that t <O and s> 0
Hence only the fourth quadrant of fig. 4 has physical meaning in super-

sonic flow.

(C) Determination of Cz(K) by numerical integration.

It is apparent from the transformation by equation 6-15 that each
point in the §,t system corresponds to a certain u and V in the
physical plane. Since this is a conical flow, U and V are constant

along a ray from the tip of the cone. Consequently each point in the



’

FIG. 3

!
(3)1-(2
STRUCTURE OF SINGULAR POINT AT s-= ?) ) .t=(“3‘
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&
\b
&
&
\/q,
V, -
T, %
2
L/ ™y
§/ g s<0 s >0
S I
S/ - SUBSONIC SUPERSONIC

FIG. 4
INTEGRAL CURVES OF THE s-f SYSTEM
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s-t system corresponds to a ray in the X-r system. The shock
relation in the physical plane is thus represented by a point on uni-
versal hedgehog.

Furthermore, from equations 6-5, 6-9, and 6-11, it is found

that

R

_I-:__q_li g_Eui-_K+ -
(“L <dvl TRRREE ‘V%EE T (6-32)

Thus u , being a function of & and K , is now only a function of
K at the shock, that is

uy, = u,(K) (6-33)

Accordingly each point on the universal hedgehog has a different

Equation 6-16, being a non-linear differential equation, can be
solved only by numerical integration. The numericai integration is
started by using the Runge Kutta method (ref. 9} with a certain —%‘":m
which corresponds to a certain point on universal hédgehog, as initial
condition and continued by the method of successive approximations
(ref. 9) until the desirability for decreasing the interval of integration
by applying the Runge-Kutta method again arises. The integration is
carried out toward the origin until the singularity solution (equation

6-26) holds. The constant C of integration can thus be found. The

scheme of numerical integration is shown as follows:
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Equation 6-23
3
t==(y+l)v
and equation 6-26

_2
t =Ce (%)

combine to give

X :
+1\: ¥
v <J—> e (6-34)
-C
Then equation 6-17 can be used to find V,, , equation 6-15a will give
Uy > and K is thus determined.

By substituting equations 6-22 and 6-23 into the singularity solu-

tion 6-26, it is found that
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(Y+1)+1 +-K— - -3—Iog(—C) (6-35)

L
C,(K) = % T3

2s
where C , being constant of integration, is equal to (-t)e '

From equation 5-7

C,"(K) = - 2 C,(K) + 0(8%log &)

Cp+ is thus found.

(D) Results from numerical integration.

C,(K) has been computed by the method described above with

four different values of My as initial conditions. The results are:

K

e Vi Uy K CK) - Cp=-2CiK
-.970 1.963 15,832 -16.322 1,613 -3,226
-.950 2.198 11.934 -12.562 1.438 -2.8717
-.897 2.523 7.710 -8.594 1.239 -2.477

-.800 2.917 4,946 -6.182 .961 -1,923
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VIiI. COMPARISON OF SIMILARITY SOLUTION WITH

EXACT SOLUTION.

In order to show the accuracy of the first order transonic

approximation from the similarity solution, the results computed

from it are compared with those from Kopal's table (ref. 4).

12.5°

The results from Kopal's table are as follows:

)

. 087489

. 131652

176327

.221695

. 267949

M

1.0152
1.0385
1.0795

1,0484
1.0737
1.1144
1.1902

1.0902
1.1162
1.2330
1.4028

1.1381
1.1646
1.2825
1.4552

1.1916
1,2186
1.3382
1.5144
1.7178

K

-4.00169
-10.25311
-21.59841

-5.72010
-8.81760
13.95596
-24,03478

-6,06409
-7.90899
-16.73431
31.12938

-6.00771
-7.24925
-13,11962
-22,73%44

-5.84859
-6,75504
-11,01414
-18.01488
-27.17170

Co

.07482
.06142
. 05478

.12522
.11378
. 10440
. 09456

. 18444
17262
. 14730
. 13020

. 24754
.23504
.20476
. 18228

.31302
.29996
. 26554
.23840
.21936

+
Co

“ 97006
-2.72072
-3.58821

-1.88573
-2.54577
-3.08695
-3.65468

-2.00946
-2.38963
-3,20401

. -3,75401

-1.98923
-2.24356
-2.85965
-3.31704

-1.90803
-2,08994
-2.56934
-2.94736
-3.21255
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The results from the similarity solution are as follows:

.
6 K Cp Cp M

59 -6.182 -1.923 L0675 1.023

-8.594 -2.477 L0633 1.032

-12.562 -2.877 . 0602 1.047

-16,322 -3.226 .0576 1.061

7.5° -6.182 -1.923 . 1246 1.052

-8.594 -2.477 L1150 1.072

-12.562 -2.877 .1080 1.104

-16,322 -3.226 .1020 1.133

10° -6.182 -1.923 L1871 1.092

-8.594 -2.477 .1699 ‘ 1.126

-12.562 -2.877 .1575 1.179

-16.322 -3.226 . 1466 1.228

12,5° -6.182 -1.923 .2508 1.142

-8.594 -2.477 .2235 1.193

-12.562 -2.877 .2039 1,272

-16.322 -3.226 L1867 1,342

15° -6.182 -1.923 .3120 1.202

-8.594 -2.477 L2721 1.272

-12,562 -2.877 .2435 1.379

-16.322 -3.226 .2184 1.474

The comparison between the exact solution and the similarity

solution is shown in the following figures (fig. 6, fig. 7 and fig. 8).
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VIII. CONCLUSIONS

The transonic expansion procedures by Cole and Messiter (ref.1)
have been successfully applied to the problem of flow past a cone. The
similarity law for the pressure coefficient on the cone surface is es-
tablished by means of the expansion. By applying this law, a great
deal ‘of labor in the computation of pressures for different cones is
saved. Because of the scale invariance property of the transonic
equations of the first and second approximations, the problem has been
reduced to integration of first order differential equations. Four
different values of 3 ( - =-.970, -.950, -.897, and -.800)
have been used as initial conditions in the numerical ini:egration.

The results have been compared with those from exact solution (ref. 4)
for semi-cone angles of 50, 7.50, 100, 12.50, and 150, and a very
satisfactory agreement is noticed. However, the deviation becomes
larger as | K| becomes greater than 10 for a less slender cone (say

8 =12.5° and 150). For a much more slender cone { 8 = 50, 7.5

o
and 10°), the theory holds very well even for |K| gfeater than 10.
Furthermore, the deviation will be less if higher order terms are
included, the computation of which is possibie under the present syste-
matic expansion procedure.

The transonic approximation is found to be very good in the case
of flow over a cone. The same technique should be expected to be also
valid in the case of flow over any slender body of revolution,

The transonic theory is also compared with the linearized super-

sonic theory which gives a pressure coefficient
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Cy* -ZSZIOQ\EQE—S- - §°

The comparison shown in fig. 9 for a 10° cone shows that transonic
theory gives a much better result than supersonic theory in the

transonic region.
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APPENDIX

FORMULATION FOR TRANSONIC EQUATION

OF SECOND APPROXIMATION.

In order to find C, which appears in the expression 5-6 for

pressure coefficient, equation 2-17

ou, 6v2 duu,

_— - —_— = + -
K Py iy (yth)—— e (A-1a)
Oy, Y du, (A-1b)
oo do

has to be solved with the shock relations specified in equation 2-18

and equation 2-19

ov, (o)
2 1\Wiw
e (o) + om0 )
3 - 2K aU(O'M)
-ulo) (3wl - 7)) + o ) -2

' dufoyy)
)<ua(<fm) + oawgf- )

w

Tonﬁ‘-—vl( {I+82I098[

lw

-v:c' )( VolOy) + Gy ZW(O-W))] } (A-3)

17w

and with the surface condition replaced by expansion near the axis in

equations 3-12 and 3-13

UglosK) = Cylog o + Cy+ C,- % c c3'°3_f+ 0 (%2) (A-4)
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v,lo;K) = - Cyo +(7+|)CIC3|_02_? +o(%) (A-5)

where

C,=-l and Cgs2 (A-6)

Since U,= u,(o;K) and v,=v,{0;K) , hence u,= f(v,) pro-
vided that K 1is fixed. By applying the same reasoning as in Section

6, equation A-1 reduces to the following form

frlorn 2oy Lov 22 - [0 -k](22)

Again, as equation A-7 has the property of scale invariance, by

the following transformation

it is reduced to
(n- _(,) T [7+n 2] Lig- g)dc = [+, K ']nf (A-9)
Furthermore, since
e
>0

and from equation 6-8
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S48 @)

it follows that

gg!: v = v -
(7+W)dd u-o? u-L (A-10)

Consequently equation A-9 finally becomes

[1- ——:7 E]en- g) e 7 = un’ | (Aa-11)

In addition, it follows from equation A-8 that

0g v, [ %.%; (a-12)

The boundary conditions in the 7)"C plane are:

(a) Near the axis

-yl - _Jd~ _ _C -
L=v, u,=(-20 .. Y2 log o +2+C, +.. )= ;;iﬁKA 13a)

n =":; (A-13b)

Near the axis, ¢ —=® . Thus [ =0 and —O .

(b) At the shock wave

2

9v, (o)
y'+l )

v, (o) (Vz(o?w) + G do
W

du,(gq,)
) (A-14)

=) ( u0,)- iil)(u(a) o,
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L ~ Ulopy 2 du(a)
™o, dtan B = W) {|+8 log 8[ { M)(uz(am) +o-2w——ao_lw )

Before‘starting the numerical integration, the singular points of
equation A-1l are investigated. It is found that 7=0, [=0 isa
singular point (node) and equation A-1l can be approximated near

this singular point by

dn 7 | (a-16)
at  L-q

which, by integration, gives

L
n = Ce K (A'17)

where C 1is a constant of integration.

Equation A-ll, being a non-linear differential equation, can be
solved only by numerical integration. The procedure of numerical
solution is:

(1) Choose K , then u{gy) and vig,) are known from the

v ov{o;
previous solution in Section VI. Thus o = “ﬂ ) —JM y
W u|(o-|\u ) 0 Ow
and Ou, (g) can easily be calculated.

0 Ow
(2) Assume 8 , u,lg,) , and v,(g,) . Then Lo, . ow

and 7 (0],,,) can be calculated from equations A-8, A-14, and A-15.
(3) Using g(a;w) and T](O‘,w) as initial conditions, the numerical
integration of equation A-11 is carried out toward 7 *-— - - %
0

|
o)
[+)
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(4) From the result of numerical integration, form the following

integral
v, (o) [(c)
log v, : Iw_ =f " E_E_ (A-18)
(Voo Lo n-t
where
(v2)°=--§—5 +4(y+) 52i0g S + ... (a9

Va(O]w) is thus determined.
(5) If v,lo) calculated from equation A-18 is different from the
assumed value, then repeat the above procedures until they check satis-

factorily.
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