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ABSTRACT.

Experimental results é.re presented for the lift characteristics of
thin, two-dimensional airfoils .at high-subsonic speeds and small angles
of attack. Symmetrical airfoils with different locations of maximum
thickness were investigated using a surface pressure probe technique
whiéh should find use in other applications.

The flow fields over each airfoil are discussed and the quantita-
tive results for the lift and location of the center of lift are compared
with theory.r whenever possible. The effects of flow separation caused
by boundary-layer shock-wave interaction are noted and discussed. In
particular, the possibility of the forced oscillation of control surfaces

due to boundary layer separation is mentioned.
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SYMBOLS .
sound velocity
airfoil chord

pressure drag coefficient per unit span

(z/+/)‘/3

(t)c)¥s

Oﬂ?

reduced drag coefficient, (,
lift coefficient per unit span
reduced lift coefficient, C, [(z/,r-/) f/C] s or ¢, [(b’+/) 5] 1/3_—_ EL
moment coefficient about leading edge. per unit length

pressure coefficient

Mach number based on local speed of sound

Mach number based on speed of sound at sonic velocity
pressure

dynamic pressure

airfoil thickness ratio

free stream velocity

horizontal component perturbation velocity

vertical component perturbation velocity



X,y

( Voo

-V -

Cartesian coordinates, origin at leading edge of profile
angle of attack
ratio of .specific heats (1.4 for air)

wedge nose semi-angle

J-M*? /- m*

[ren 8?27 [ooen) 51%

reduced Mach number,

Subscripts and Superscripts
conditions in free stream
conditions at sonic velocity, note that M* is not included

symbols used without subscripts indicate local conditions



I. INTRODUCTION

When a body moves through a compressible fluid at constant low
subsonic or high supersonic spéeds the fluid velocity relative to the
body remains, in most cases, entifely subsonic or entirely supersonic.
At transonic speeds, between the above extremes, the fluid velocity will
be both subsonic and supersonic in the flow field near the body. The
complicated mixed subsonic and supersonic flow patterns, which occur
at transonic speeds, have been the subject of many experimental and
theoretical investigations.

Much of the experimental work already published on steady tran-
sonic flow has been concerned with lifting two-dimensional profiles.
However, most of this work has dealt with specific profiles or was done
for a specific purpose with direct application to immediate design prob-
lems. Accordingly, the present investigation was initiated with the
purpose of systematically investigating and describing the steady, two-
dimensional flow over thin, lifting airfoils at transonic speeds'and small
angles of attack. The experiments should help in understanding the
qualitative behavior of wing and control surfaces at transonic speeds.

The present investigation of lifting profiles was also a natural ex-
tension of previous experimental work done at GALCIT by Bryson and
Solomon. Bryson (Ref. 1) examined the transonic flow at zero angle of
attack over two-dimensional wedge and circular arc forebodies followed
by a straight afterbody. Solomon (Ref. 2) considered axially-symmet-
ric transonic flow over cone cylinder sections. The above investiga-

tions of flow over forebodies were not unduly complicated by viscous



effects. The surface pressure gradients ahead of the point of maximum
thickness were favorable, thus minimizing boundary layer growth. In
a;ddition, the shock waves, which occurred at subsonic speeds, inter-

sected the body surface downstream of the point of maximum thickness,
where their effect on the forebody was small,

- Lifting two-dimensional profiles present a more complicated prob-
lem than the above forebody investigations, since closed profiles, made
up of a forebody and an afterbody, must be considered. The adverse
pressure grédients over the afterbody cause the boundary layer to grow
rapidly and make separation possible. In addition, shock waves are
usually present on the afterbody surface at subsonic speeds. The shock
waves often cause boundary layer separation with subsequent loss of
lift. The realization of the importance of boundary-layer shock-wave
interaction for lifting bodies is not new (Réf. 3), but can hardly be over-
emphasized.

In spite of the importance of viscous effects, a great deal of infor-
mation about lifting two-dimensional profiles has already been obtained
from theoretical work with the non-viscous transonic equations of mo-
tion (Ref. 4). In particular, von Karman (Ref. 4) and Busemann (Ref. 5),
followed by Spreiter (Ref. 6) and Harder (Ref. 7) have discussed vari-
ous forms of similarity laws based on the transonic equations. In addi-
tion, Guderley and Yoshihara {(Ref. 8) have obtained a soiution in the
hodograph plane, where the transonic equations are linear, for the lift
of a double wedge with small angle of attack at a free stream Machnum-
- ber of one. Between Mach number one and the attachment Mach num-

bers Vincenti and Wagoner (Ref. 9) have done a relaxation computation



in the hodograph plane for the lift of a double wedge at small angles of
attack.

At subsonic speeds there are, of course, many solutions based
upon the Prandtl-Glauert similarity law and well known incompressible
flow solutions. However, when shock waves appear in the flow field the
Prandtl-Glauert similarity law breaks down. Recently Gullstrand
(Ref. 10) obtained an approximate solution, in the physical plane, for
the lift of a 6 percent thick symmetrical parabolic arc profile at small
angles of attack with shock waves present on the airfoil surface.
Gullstrand's results showed that as the Mach number increased, the
lift curve slope rose to values above those given by the Prandtl-Glauert
law and then fell rapidly only to rise again to a constant value at speeds
near Mach number one.

Another result, which is very useful, is the principle of station-
arity for flows near Mach number one. The stationarity of a flow near
Mach number one was discussed by Liepmann and Bryson (Ref. 11).
They based their discussion on the well-known result that the Mach num-
ber behind a normal shock wave is approximately 1 - € when the Mach
number ahead of the shock is 1 + ¢, where € << 1. At supersonic speeds
with Mach number equal to 1 + ¢ the detached bow wave is far upstream,
so that the body, in effect, is immersed in an approximately uniform
subsonic flow at Mach number 1 - ¢. Therefore, as ¢ — 0 the local
Mach number near the body does not change, which is expressed by the
condition 8M /My, = 0 near Mg = 1. This principle is used in Appen-
dix A to derive an expression for the lift coefficient at Mach number

one.
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Ad mentioned previously, a great deal of experimental work has
been done on lifting two-dimensional profiles at transonic speeds. In
‘the discussion of the present experiments, mention will be made of pre-
vious work where it applies.

In order to obtain a better understanding of the flow patterns for
lifting profiles, the next section gives a qualitative description of steady

flow over a two-dimensional profile at transonic speeds.



II. A QUALITATIVE DESCRIPTION OF THE FLOW

OVER A LIFTING PROFILE AT TRANSONIC SPEEDS

In order to discuss the main features of steady, two-dimensional,
transonic .flow patterns, the relatively simple lifting double wedge will
be considered. The flow at zero angle of attack is well known (Refs. 12,
13, | and 14), however, a brief review will be given. Next, the changes
to be expected when the wedge is at small angle of attack will be dis-

cussed.
1. Zero Angle of Attack

From the experimental work of Bryson (Ref. 1) and Griffith
(Ref. 15), it is apparent that the flow patterns over a given body change
smoothly and continuously with free stream Mach number. This prin-
ciple gives a valuable check on the accuracy of the following discussion.

At zero angle of attack and low subsonic speeds, the flow of air
over a thin double wedge is everywhere subsonic. The velocity is a
maximum at the sharp corner formed by the intersection of the wedge
flanks. A non-viscous compressible fluid would, however, attain at
least sonic velocity at the corner. This is not the case for a viscous
fluid flowing at low subsonic speeds, since the boundary layer 'rounds
off" the corner.

At higher subsonic speeds the air velocity, in the vicinity of the
wedge shoulder, does not remain subsonic in spite of the effect of the
boundary layer. Sketch 1 shows a half wedge at a subsonic free stream

Mach number, such that the air velocity is supersonic near the wedge
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Sketch 1

shoulder. The local supersonic region is bounded by a sonic line
(dashed), the body surface, and a terminating shock wave which is ap-
proximately normal. At the corner, the sonic line is normal to the
front flank of the wedge. The flow very near the corner is locally
Prandtl-Meyer with expansion characteristics running from the corner
to the sonic line, where they are feflected as compression characteris-
tics which intersect the body surface. Guderley (Ref. 12) has shown
that upon reflection from the body surface, the compression character-
istics coalesce to form a weak oblique shock wave running from just be-
hind the corner out into the supersonic region. This oblique shock, a
few characteristics, and a typical streamline are shown in Sketch 1, but
will be omitted from the succeeding discussion.

Sketch 2a shows the complete wedge at zero angle of attack and
the above low subsonic Mach number. In Sketch 2b the Mach number is
higher but still subsonic. The original supersonic region now covers
the entire afterbody. Oblique shocks now arise at the trailing edge and
deflect the flow over the wedge afterbody to a direction approximately

parallel to the free stream direction. They leave the air velocity
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Sketch 2

supersonic, so that an approximately normal shock behind the double
wedge is necessary to terminate the supersonic region.

As My approaches one, the flow over the wedge remains essen-
tially the same. The supersonic zone, however, becomes larger until
at My = 1 (Sketch 2c¢), the terminating normal shock has receded infi-
nitely far downstream and the sonic lines from the wedge shoulder ex-
tend to infinity above and below the body.

Since the sonic lines, at Mg = 1, extend to infinity above and be-
low the airfoil, the rear portion of the body should have no effect on the
front portion. The exact line of separation between the front and rear
flow fields is not the sonic line but the limiting Mach line as discussed
by Guderley and Yoshihara {(Ref. 13). The limiting Mach line, in the
present case, is the last expansion characteristic from the wedge
shoulder, which intersects the sonic line at infinity. Since there are
expansion characteristics both upstream and downstream of the limit-

ing Mach line, only that portion of the shoulder expansion which is
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upstream of the limiting Mach line can influence the subsonic flow over
the wedge forebody. The fore- and afterbody flow fields for My = 1
ére thus separated.

At higher supersonic speeds (Sketch 2d) a curved bow wave ap-
pears far ahead of the body. The sonic lines now run from the wedge
shoulder to the shock. The subsonic zone ahead of the body is bounded
by the bow shock, the wedge forebody, and sonic lines. At still higher
supersonic speeds (sketch 2e), the curved bow wave attaches and fur-
ther reduces the size of the subsonic zone. At still higher speeds the

bow shock is straight and the flow over the forebody becomes uniform

with a Mach number equal to or greater than one.
2. Small Angle of Attack

The change in the above symmetrical flow patterns due to a small
angle of attack can now be discussed. Briefly, the shock wave positions

at low subsonic speeds (Sketch 3a) are not symmetrical, because the air

Sketch 3



flowing over the upper surface is expanded more than that flowing over
the lower surface. Thus, the upper supersonic zone becomes larger
fhan the lower one. In addition, a small supersonic zone arises due to
the expansion of the air flowing around the nose. This small supersonic
zone is again bounded by a sonic line, a terminating shock, and the body
surface near the nose.

The velocity at any given point on the lower surface of the double
wedge is now less than that at a corresponding point on the upper sur-
face. Thus, a pressure difference exists which can be integrated to
give the lift and moment acting on the airfoil. At higher subsonic speeds
(Sketch 3b), the main supersonic zone now encloses the entire rear half
of the airfoil, and the terminating normal shocks are no longer on the
body (the small nose supersonic zone also grows slightly larger). The
Kutta condition is now satisfied locally by unsymmetrical shock waves
at the trailing edge through which the flow from the upper and lower sur-
faces is deflected to give an approximately parallel stream with a small
amount of downwash. At Mach number one (Sketch 3c), the nose super-
sonic zone is again larger, but the over-all flow pattern near the body
is unchanged. The terminating shock has receded infinitely far down-
stream. At higher supersonic speeds (Sketch 3d) an unsymmetrical,
curved bow wave appears ahead of the body, while the nose supersonic
region again grows larger. The main supersonic zone over the upper
half of the afterbody remains larger than that over the lower half. Thus,
the subsonic zone ahead of the wedge forebody is larger on the bottom
half than on the top. The portion of the bow shock which is normal to

the free stream will now be slightly below the position it occupied at
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zero angle of attack. With a further increase in Mach number, the bow
shock attaches and isolates the upper and lower surface flow fields
(Sketch 3e) causing the disappearance of the supérsonic zone at the nose.
The bow shock will be curved on the lower side with subsonic flow be-
hind the shock. On the top side the flow may be subsonic with a curved
shock or supersonic with a straight shock. The type of flow on the up-
per side depends on the Mach number, angle of attack, and wedge in-
cluded angle. It is shown as subsonic on both sides in Sketch 3e. Fin-
ally, at higher Mach numbers the attached shocks both become straight
and the velocity is everywhere supersonic.

From the above discussion, the main features concerning the
growth of the supersonic regions have been considered. Similar flow
patterns have been observed on curved symmetrical airfoils when the
angle of attack is small, although the location of the sonic line on a
curved surface changes somewhat with free stream Mach number, ex-
cept at My = 1.

For symmetrical airfoils at small angles of attack, Spreiter
(Ref. 6) has suggested that the pressure increment due to angle of at-
tack should change linearly with « , if «<< t/c, so that Cj, would be
proportional to o« . This assumption was checked experimentally and
is discussed in Section IV. Also, the effects of boundary layer growth
and possible separation have not been mentioned but are considered

later where they arise in the experimental results.
3. Larger Angles of Attack

It is also interesting to consider the changes in the flow field
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about a éouble wedge when only the angle of attack is varied. For this
purpose, the free stream Mach number is assumed to be subsonic, yet
high enough to give supersonic zones behind the wedge shoulder. As be-
fore, the supérsonic zoneé are terminated by shocks on the airfoil

(Sketch 4a).

o< 1
Local Separation, p = 0
'//*
/
/
{
{
\
\
\\U
Zero Stream Line
(a) o =da=0 (b) o >dgy

Sketch 4

When the angle of attack is increased to a small angle the flow

pattern (Sketch 4b) is the same as that of Sketch 3a. A consideration
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of the no’n—viscous flow over the wedge nose leads to the conclusion that
the flow must separate locally on the upper surface near the nose.

The flow over the wedge nose has been discussed by Guderley and
‘ Yoshihara (Ref. 8). They considered the flow in the physical and hodo-
graph planes. From their discussion it is apparent that the zero stream-
line branches at the stagnation point just under the nose of the wedge.
From the stagnation point, the upper branch of the zero streamline flows
forward along the lower surface of the wedge until sonic velocity is at-
tained at thé nose. The flow then turns through a large angle in going
around the sharp nose. The turning is accomplished by a local, Prandtl-
Meyer expansion. For thin wedges the expansion required can easily
exceed the maximum turning angle (approximately 135°) for a Prandtl-
Meyer expansion. Hence, the flow must separate locally at the nose.
After the local separation, the flow is turned back toward the upper sur-
face of the wedge, because the static pressure increases as one moves
upward and away from the wedge surface. At the point of flow reattach-
ment, an oblique shock appears which readjusts the flow direction so
that the zero streamline again follows the body surface. Note that, ac-
cording to the above discussion, the sonic line should be normal to the
lower surface at the nose and then run forward and upward around the
nose. The above features of the flow near the wedge nose are shown in
exaggerated form in Sketch 4b, but they are omitted in the other figures.

The flow pattern is shown at a higher angle of attack in Sketch 4c.
The separation at the nose is assumed to be only local. The nose super-
sonic region is now enlarged, and the lower surface supersonic zone be-

hind the wedge shoulder is reduced in size. The supersonic zone,
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behind the wedge shoulder on the upper surface, has grown so that the
terminating shock no longer intersects the body surface. The flow is
.now supersonic on the upper side at the trailing edge and is at a lower
pressure than the flow from the lower surface near the trailing edge.
Thus, the flow along the lower surface is accelerated with a sonic line
appearing on the lower surface at the trailing edge. The sonic line runs
from the trailing edge to the terminating shock so that the supersonic
zone is again enclosed. Weak oblique shocks arise at the trailing edge
in order to make the flow behind the trailing edge approximately parallel
and at small downwash angle.

At a larger angle of attack, again assuming only local separation
at the nose, the flow is that shown in Sketch 4d. The nose supersonic
zone has increased in size until it merges with the supersonic zone be-
hind the upper shoulder of the wedge. The terminating shock for the
nose supersonic zone is no longer necessary, and the flow over the up-
per surface is entirely supersonic., On the lower surface, the super-
sonic zone behind the shoulder is further reduced in size. The flowpat-
tern at the trailing edge does not differ from the previous pattern,
Sketch 4c. The flow of Sketch 4d is essentially the pattern one would
expect to find over a flat plate at high subsonic speeds.

Note that at Mg = 1, a double wedge has Cyg, ~ 0(2/3, if
L/f(t/c) >>1 (Ref. 6). This result, CL~0(2/3, is also true for a flat
plate at Mg, = 1, since o/(t/c) — o even for small o« . This result,
from similarity arguments, provides a check on the above flow pattern

arguments.

The above flow patterns at large angles of attack may not actually
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be obtaixie_d if the flow separates completely at the nose or behind the

wedge shoulders. However, the ‘above qualitative discussion should aid

in giving an understanding of the results obtained later by experiment.
This is particularly true at high subsonic free stream Mach numbers

where analytical solutions for lifting bodies are very difficult.
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III. DESCRIPTION OF AIRFOILS AND EXPERIMENTAL TECHNIQUES

From the discussion of flow patterns over a double wedge (Sec-
tion II), it should be clear that an important feature of the flow at tran-
sonic speeds over lifting profiles is the existence and growth of local
supersonic regions adjacent to the profﬂe surface. When the present
investigation was initiated, the importance of the local supersonic re-
gions with their associated terminating shocks was recognized, and the

experimental program was conducted accordingly.
1. Description of Airfoils

Only symmetrical profiles were tested in the present investiga-
tion. The following three basic profiles were investigated.

A, Truncated Wedge

The truncated wedge profile was simply the forebody of a double
wedge. The profile dimensions are shown in Fig. 1. The flow over the
truncated wedge will be essentially the same as that over the férebody
of a double wedge (Section II), At transonic speeds, the sonic lines will
emanate from the rear of the body on both upper and lower surfaces and
will run to a terminating shock behind the body. The only supersonic
zone on this profile will occur near the nose when the body is at a small
angle of attack. Thus, one would expect the surface pressure distribu-
tion to change smoothly with Mach number and angle of attack, if the
angle of attack is small enough to minimize the effect of the nose expan-
sion region.

B. Round Nose Airfoil

This profile represents an extreme case where the maximum
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thicknesé_ is reached very near the nose. The profile dimensions are
shown in Fig. 1. At transonic épeeds the flow over the round nose air-
foil will always be supersonic near the nose if the free stream Mach
number is high enough. Sonic lines will originate on the round nose and
run back to terminating shocks which may or may not be on the airfoil,
depending on the angle of attack and Mach number. The flow over this
profile will be essentially similar to that over the rear half of the double
wedge (Section II).

C. Double Wedge

The flow over this profile has already been discussed (Section II).
One profile had a thickness ratio of 0.054, and the other was approxi-
mately twice as thick. The profile dimensions are again shown in
Fig. 1. The double wedges and the truncated wedge had a nose radius

of approximately 0.0003 inches.
2. Experimental Technique and Apparatus

A. Measurement of Lift Forces and Moments

There are a number of well-known experimental techniques which
can be used to determine the lift and moment characteristics of airfoils
in wind tunnels. These techniques include direct balance measurements,
integration of static pressure along the tunnel walls, interferograms of
the flow field about the airfoil, and conventional static pressure mea-
surements on the airfoil surface. All of these methods were considered
at the beginning of the present investigation. Each had certain disadvan-
tages which are described below.

A balance gives only integrated values of forces or moments and
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little detailed information about the flow field around an airfoil. Since
the present investigation was intended to be mainly descriptive, a bal-
ance was not considered desirable or at any rate efficient.

Static pressure measurements on the tunnel walls also give little
information about the flow field around an airfoil. In addition, they are
subject to large tare corrections so that small changes in lift or mo-
ment are difficult to detect. Furthermore, extensive instrumentation
is required.

Interferometric techniques seem very desirable since one can ob-
tain a quantitative description of the entire flow field about an airfoil
with one picture. Unfortunately, the least increment in density and
hence pressure that the GALCIT interferometer (Ref. 16) can detect is
quite large when one wishes to obtain small changes in lift or moment.
This need not be the case for all interferometers, since the sensitivity
increases with tunnel width, air density, and light frequency (Ref. 1).

Conventional static pressure taps on the airfoil surface give more
detailed information about the flow field than can be obtained with a bal-
ance or by static pressure measurements on the tunnel walls. In order
to minimize wind tunnel wall effects, the airfoils used in the present in-
vestigation were necessarily small. With airfoils of small thickness
ratio and chord, it was found to be quite difficult to include sufficient
piping inside the airfoil to measure the entire pressure distribution.

A reasonable solution to the above difficulties was found. The
method finally adopted consisted of two slender static pressure probes
which could be traversed over the upper and lower airfoil surfaces. The

probes were made of stainless steel tubing through which pressure sensing
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holes we':e drilled parallel to the airfoil surface and approximately two
inches downstream of the conicél probe tips.
| A description of the probes and the probe calibration procedure is
given in Appendix B. Fig. 2 shows a schematic drawing of the probe di-
mensions and arrangement on a thin airfoil. The calibration of the
probes showed that the surface pressure could be measured with preci-
sion on flat surfaces and even near a corner formed by the intersection
of two flat surfaces. The method failed, however, near a stagnation
point, for example, the nose of a wedge. The failure was not consid-
ered detrimental for the present investigation, since the errors were
confined to a small region near the nose. As a matter of fact, one has
the same difficulty with conventional surface pressure taps which are
difficult to install very near a sharp nose.

B. Description of Tunnel and Tunnel Calibration

The experiments were performed in the GALCIT 4- x 10-inch
Transonic Wind Tunnel. A description of the tunnel and flexible nozzle
is give;l in Ref. (17). The flexible nozzle can be adjusted to give a uni-
form supersonic flow in the test section. For subsonic flow, the second
throat area was reduced until the test section Mach number became sub-
sonic. The flexible nozzle was then flattened to give a uniform subsonic
flow in the test section. The subsonic Mach number was varied by
changing the second throat area-.

The static pressure in the tunnel was measured for calibration by
inserting a 12-inch diameter aluminum "window" in the tunnel wall at
the test section. The "window" was fitted with a number of surface

pressure taps. For subsonic calibration, eight static pressure taps
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were also installed in the tunnel wall upstream of the test section "win-
dow''. |

After calibration, the model was installed and tested. At super-
sonic speeds the model should introduce no upstream disturbances. At
subsonic speeds the upstreamdisturbances were appreciable and changed
with angle of attack. Accordingly, the pressures from the eight tunnel
wall taps, ahead of the test section, were displayed on a multiple mer-
cury manometer so that the decay of the upstream influence of the model
could be determined. With the models used in the present investigation,
it was always possible to measure the undisturbed free stream velocity
at one or more of the eight upstream static pressure taps.

C. Probe and Airfoil Mounting and Instrumentation

The two-dimensional airfoils were mounted from wall to wall
across the four inch width of the Transonic Tunnel. The airfoils were
wider than the tunnel width so that each end could be clamped in mount-
ing plugs. The plugs were inserted into recesses in twelve inch diam-
eter solid steel "windows'" flush with the tunnel walls at the test section.

The steel windows on each side of the tunnel were fastened to-
gether by a rigid bracket extending around the tunnel. The airfoil angle
of attack could then be changed by rotating the steel windows as a unit.
The angle of attack was indicated by a vernier scale to an accuracy of
+5 minutes of arc. The sliding surface pressure probe was passed
through one of the steel "windows' behind the airfoil and extended for-
ward to the airfoil surface as shown in Fig. 2. A picture of a double
wedge airfoil and the sliding probe mounted in the wind tunnel are shown

in Fig, 4. In Fig. 4 the airfoil mounting plug and "window' have been
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removed from the near side of the airfoil.

The deflection of the thin airfoils due to spanwise bending was
considerably reduced by the airfoil mounting method which made the
airfoil and tunnel walls fan.integral unit. Since the airfoil passedthrough
the tunnel walls, upwash flow through gaps near the walls did not occur.
However, the flow over the airfoil was not strictly two-dimensional
since the ends of the airfoil were immersed in the side wall boundary
layer. Bryson (Ref. 1) has found that approximately two-dimensional
flow over s&mmetrical models at zero angle of attack can be obtained by
leaving gaps of the order of the boundary layer momentum thickness be-
tween the tunnel wall and model. This procedure was not considered
practical due to gap effects and mounting difficulties. The effect of the
flow disturbances due to airfoil mounting is discussed at the beginning
of Section IV.

The probe pressures were measured by two mercury microma-
nometers accurate to +0.02 cm. Hg. One manometer measured the
pressure difference between the upper and lower surface probes, and
the other measured the difference between the lower probe and free
stream static pressure.

Schlieren pictures of the flow over the airfoils using a spark
light source and horizontal knife edge were also made. After the sur-
face pressure tests were completed, the ends of the airfoils were cut
off so that they just spanned the tunnel. The steel "windows'" were re-
placed with glass windows, and the airfoils were supported on the lower
surface by two internal struts running downstream along each side of
the tunnel. The complete upper surface and portions of the nose and

trailing edge were then visible for schlieren pictures.
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IV, EXPERIMENTAL RESULTS

In this section the results of the experiments on the three basic_
airfoil shapes (Fig. 1) will be discussed. The results include schlieren
pictures of the flow, pressure distribution measurements, lift forces,
and.locations of center of pressure,.

Unfortunately, no measurements at supersonic free stream Mach
numbers with a detached bow wave were possible with the method of air-
foil mounting used in this investigation. As was mentioned previously,
the model completely spanned the tunnel so that each end of fhe airfoil
was immersed in the side wall boundary layer. At supersonic speeds,
the interaction of the bow shock wave and the side wall boundary layer
caused a large deviation from two-dimensional flow. In particular, it
was observed that the bow shock detached from the nose of a wedge .
model at much higher Mach numbers than predicted by exact shock
theory. Even with an attached bow shock wave, it was observed that
large pressure disturbances originated at the intersection of the airfoil
leading edge and the side walls of the tunnel. These disturbances
caused a large change in the pressure distribution over the rear half of
the airfoil on the tunnel center line. Consequently, measurements at
supersonic free stream Mach numbers were not attempted.

At subsonic speeds, however, the above difficulties were not en-
countered. As a matter of fact, the sharpness of the shock waves which
intersect the airfoil surface (Figs. 6, 10, 13, and 17) indicates that the
flow was approximately two-dimensional at subsonic free st ream Mach

numbers. The results obtained at subsonic speeds will now be
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discussed.
1. Truncated Wedge

The flow field over the truncated wedge may be expected to be
qualitatively similar to the flow field over the forebody of a double
wedge, since the sonic line will be fixed at the wedge shoulder. How-
ever, the shoulder expansion on the truncated wedge cannot be accom-
plished without flow separation. Thus, at zero angle of attack and low
subsonic speeds the shedding of vorticity at the shoulder gave ‘rise to
a vortex street in the wake behind the airfoil (Fig. 5, Mg = 0.773).
The sound waves generated: by this process could not penetrate into the
small supersonic zone above and behind the wedge shoulder (Fig. 5).

At higher speeds and zero angle of attack (Fig. 5, My = 0.812,
0.838, and 0.852) the sﬁpersonic regions grew in size, and the associ-
ated terminating shock moved downstream. At Mg = 0.852, the vortex
street has probably disappeared, and a ""dead air" region exists behind
the truncated wedge.

At an angle of attack a supersonic region due to flow expansion
around the nose appeared. This region grew in size with increasing
free stream Mach number as shown in Fig. 6.

Since the only shock wave on the airfoil surface was that termi-
nating the nose supersonic region, one might expect a smooth variation
of lift curve slope with Mach number for small angles of attack. Such
was found to be the case when the pressure distribution measurements
were integrated and plotted in similarity form (Fig. 7).

Note that the similarity parameters used are those advocated by



-23-

‘Spreiter (Ref. 6) and are based on the assumption that lift is a linear
function of angle of attack for srhall angles. The assumption of linear-
ity was found to be good up to angles of attack of approxirﬁately two de-
grees for My, =~ 0.90. Of course, the lift curve was linear for greater
angles of attack at lower Mach numbers.

In Fig. 7, and those following, the vertical bars on the experi-
mental points indicate the estimated error of measurement. Alsoshown
for comparison are the results of Eggers (Ref. 18). It can be seen that
the similarity rules advocated by Spreiter do reduce the lift curve slope
for similar airfoils of different thickness ratios, to a common curve.

Also shown on Fig. 7 are a number of theoretical results. As
discussed previously, at sonic or supersonic speeds the limiting Mach
wave "isolates" the rear half of a double wedge from the front half.
Using this concept, the double wedge results of Guderley and Yoshihara
(Ref. 8) and Vincenti and Wagoner (Ref. 9) have been plotted for the
wedge forebody at sonic and supersonic speeds. Also included are the
results from transonic shock expansion theory above the bow shock at-
tachment Mach number. Using the stationarity principle at Mg =1, it
can be seen (Fig. 7) that there is a smooth transition between the ex-
perimental subsonic and theoretical supersonic results.

At subsonic speeds (Fig. 7), the Prandtl-Glauert rule for the lift
curve slope in an unbounded flow is plotted for comparison with the
Prandtl-Glauert result of Tsien and Lees {(Ref. 19) for flow between
walls using the actual tunnel and airfoil dimensions. Since the differ-
ence between these curves was small, it was concluded that the tunnel

wall corrections could be ignored, at least at low subsonic speeds. No
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attempt was made to correct any of the data for the presence of the tun-
nel walls even when the Mach nﬁmber approached the choking Mach num-
‘ber. Admittedly, the results are affected by the presence of the tunnel
walls. However, the lack of a wall correction theory, when shocks are
present in the flow at high speeds and the small corrections at lower
speeds, makes use of the uncorrected data plausible at low speeds and
necessary at higher speeds. Another method for accounting for wall
effects requires testing with similar, but different size models, and ex-
trapolating to zero size, which would be equivalent to letting the tunnel
walls recede infinitely far from the airfoil. This procedure was not at-
tempted since the lift at subsonic speeds would be greatly affected by
the low Reynolds number {(R// ~ 3 x 105/in.) of the flow in the Tran-
sonic Tunnel.

The last theoreticall result, appearing as a dashed line on Fig. 7,
is an approximate computation for the lift of the truncated wedge at sub-
sonic speeds. The complete computation is carried out in Appendix C,
but the results will be interpreted here.

The computation was done in the hodograph plane, where the tran-
sonic equations (Ref. 4) are linear, assuming the lifting solution to be a
small perturbation to the zero angle of attack solution given by Cole
(Ref. 20). The boundary conditions were the usual flow tangency condi-
tions on the wedge surface with a uniform free stream far ahead of the
body and a stagnation point on the nose. At the wedge shoulder, the ve-
locity was assumed to be sonic for 0 < Mg =1. Cole's solution was ob-
tained without specifying conditions on the sonic line and also ignores,

when My <1, the upstream influence of the flow downstream of the



-25-

super sozﬁc regions. Thus, the present computation, which is a small
perturbation of Cole's solution, gives zero lift as Mg — 0, because an
.effective "Kutta condition' for. this blunt trailing edge body (that is, the
upstream influence of the downstream flow) has not been included. In
fact, a solution for the lift of bodies with a cut-off trailing edge is not
yet possible due to a lack of knowledge of flow separation at bluff ends
(that is, the base pressure problem).

There is, however, some interest in the present lifting solution
since it does not include a condition analogous to the Kutta condition. In
particular, at Mach number one the solution for the lift curve slope is
only 10 percent lower than the more exact result of Guderley and
Yoshihara (Ref. 8). The error arises because the boundary conditions
on the sonic line, which can be obtained from the influence of the shoul-
der expansion on the flow at the sonic line (Ref. 13), were not satisfied.
However, at Mach number one a "Kutta condition" is not necessary,
since the flow downstream of the limiting Mach wave cannot influence
the upstream flow.

As Mg — 0 the supersonic zone behind the wedge shoulders de-
crease in size and the upstream flow field is no longer independent of
the flow downstream. Since no '"Kutta condition" was included in the
present computation,. the lift gradually decreases to zero, as Mgk — 0.
The actual smooth transition from classical incompressible flow, with
the inclusion of a Kutta condition, to transonic flow which at Mg =1
requires no Kutta condition, has thus been demonstrated by the present
experiments.

Fig. 8 shows the location of the center of lift on the truncated
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wedge at small angles of attack, o < 20,- as a function of the reduced
Mach number. If the local preésure difference across the airfoil is
linear in the angle of attack, so are the lift and moment. The center
of lift will thus be independent of the angle of attack. As a matter of
fact, the location of the center of lift did not change appreciably when
&« was varied at constant Mg. In addition, the center of lift was not
greatly affected by changes in Mg. However, the location of the center
of lift as My, —".1 does not go over smoothly to the sonic and super-
sonic theoretical results, whereas the lift curve slope did check the
theory for Mg — 1. The discrepancy is believed to be due to the dif-
ference in the "rounding off" of the upper and lower wedge shoulders by
the boundary layer. Thus, the sonic line was located farther forward
on the upper surface than the lower. Therefore, an increment of lift
occurred at the wedge shoulder and moved the center of pressure rear-
ward. Without viscosity, the pressure difference between the upper and
lower wedge surfaces will be zero at the shoulder, since sonic velocity
can be attained only at that point.

The lift and location of center of pressure for large angles of at-
tack, at My = 0.841, are shown in Fig. 9. The lift was not a linear
function of angle of attack for o > 2°. The rapid growth of the nose
supersonic region and consequently lower pressure on the upper wedge
surface accounts for the non-linear increase in lift. At larger angles
of attack, « > 60, the nose supersonic region grew and made the flow
supersonic over the entire upper surface (discussed in Section II). The
pressure on the upper surface then changed less with angle of attack

than before, and the slope of the lift curve decreased as shown in
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Fig. 9. Flow separation from the leading edge may have been partially
responsible for the decrease in lift at high angles of attack. Unfortun-
afely, no check for flow separation was made.

‘The behavior of the center of lift for large angles of attack is also
vsho_wn in Fig. 9. Here the growth of the nose supersonic region shows
up as a shift in center Of, lift toward the nose when 2° < « < 5%, At
higher angles, the increased size of the nose supersonic zone and possi-
ble separation caused the center of lift to move rearward slightly be-

hind its former location.
2. Round Nose Airfoil

The flow field over the round nose airfoil, abbreviated by R.N.A.,
will be completely different from the flow over the truncated wedge.
The point of maximum thickness is reached on the R.N.A. very near
the nose. At the critical Mach number, sonic velocity will be attained
at the point of maximum thickness very near the nose. Above the criti-
cal Mach number sonic lines will emanate from the round nose, and the
approximately normal shocks which terminate the nose supersonic re-
gions on each side of the airfoil will intersect the airfoil surface. As
M, —> 1, the terminating shocks will move downstream off the airfoil.
The R.N.A. flow patterns will thus be qualitatively similar to those
over the rear half of the double wedge (Section II).

Schlieren pictures of the flow over the upper surface of the R.N.A.
are shown in Fig. 10. Three of the photographs were taken at zero

- angle of attack for increasing free stream Mach numbers. At M, = .803,

small nose supersonic zones have just appeared. The normal shocks



-28-

which tefr_ninate the small supersonic zones caused the boundary layer
to separate locally and then reattach. After reattachment the boundary
layer was much thicker. An impact pressure probe traversed chord-
wise along the airfoil surface was used to ascertain that the boundary
| layer did reattach. When the boundary layer was locally separated
under the normal shock, the impact pressure probe read the local sta-
tic pressure near the point of separation. - After reattachment the im-
pact pressure read by the probe was 3 to 5 cm. Hg higher than the
local static pressure. The probe opening was rectangular, approxi-
mately 0.002 x 0.020 inches, with the center of the opening within
0.003 inches of the surface.

At higher Mach numbers the nose supersonic region grew rapidly
until at Mg = 0.915 (Fig. 10) the terminating shocks moved off the air-
foil and were downstream out of the field of view. Liocal separation un-
der the normal shocks on the airfoil surface was not as severe at Mach
numbers above Mg =0.803 as it was at My = 0.803, even with the air-
foil at an angle of attack. In the last picture of Fig. 10 (Mg = 0.897,
d = 0. 20) the change in size of the upper and lower supersonic zones
should be compared with the picture taken at zero angle of attack at the
same Mach number. It can be seen that a small change in angle of at-
tack had a very large effect on the flow field.

In Fig. 11, the lift coefficient is shown as a function of angle of
attack for six free stream Mach numbers. At low speeds, the lift was
a linear function of angle of attack. At higher speeds, non-linear ef-
fects began to appear. The non-linear behavior of lift coefficient was

caused by the non-linear growth and shrinkage of the upper and lower
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super sofx_ic regions and was not due to flow separation. When the Mach
number was increased to higher values, the terminating shocks moved
bff the airfoil surface leaving the flow supersonic on each side. At these
speeds the lift coefficient was again a linear function of angle of attack,
but considerably lower lift was developed. Large values of dCy,/da
near &« = 0 were obtained at Mg = 0.90, where the size of the super-
sonic zone was very sensitive to changes in angle of attack (see Fig. 10
My, =0.897, & = 0° and 0.20). The behavior of the lift curve slope for
the R.N.A. as a function of My is compared with the other airfoils in
the summary at the end of this section.

Fig. 12 shows the location of the center of lift for the R.N.A. as
a function of angle of attack at different Mach numbers. At low speeds
the center of lift was independent of o and was located near the quarter
chord point. As the Mach number increased to My = 0.80, the center
of 1lift moved forward to the two-tenths chord point but was still inde-
pendent of o . At the above speed an increased increment of lift due
to the difference in size of the supersonic regions near the nose ac-
counted for the forward movement of the center of lift. The fixed loca-
tion of the center of lift was due to the linear growth and shrinkage of
the small nose supersonic regions when the angle of attack was changed.

At higher speeds the growth and shrinkage of the supersonic re-
gions were no longer linear in « . From the plot it can be seen that at
constant My the center of lift moved progressively rearward as the rel-
ative size of the upper and lower supersonic regions changed with in-
creasing angle of attack. It can also be seen that at constant angle of

attack the center of lift moved to approximately mid-chord when Mg
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increased. Finally, at Mg = 0.918, the terminating shocks were down-
stream of the airfoil surface, and the center of lift was located at
55 percent chord and was not dependent on the angle of attack.

The lift characteristics of the truncated wedge and the R.N.A.
were completely different due to the presence of supersonic flow and
shock waves on the surface of the R.N.A. and the absence of super-
sonic flow on the truncated wedge surfaces. The double wedge, which
has both subsonic and supersonic surface velocities, will be discussed

in the next section.
3. Double Wedges, t/c = 0.054 and 0.104

Since the flow field over the double wedge has already been dis-
cussed (Section II), the schlieren pictures can be considered immedi-
ately. The first three pictures of Fig. 13 show the flow over the thin-
ner double wedge at zero angle of attack. At Mg = 0.805 a small su-
personic zone originated at the wedge shoulder. The terminating shock
again caused local separation which was checked with the impact pres-
sure probe as described in Part 2 of this Section. The boundary layer
on the wedge afterbody, downstream of the local separation point, was
much thicker than on the wedge forebody. At a higher Mach number,
My = 0.879, the supersonic regions grew larger, but the shocks still
caused local boundary layer separation with a thicker boundary layer
downstream of the shock. Finally, at My =0.913 the shocks were
downstream out of the field of view, and the boundary layer was not
locally separated or as thick as it had been.

‘The last picture of Fig. 13 shows the thin double wedge at an
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angle of attack. All the characteristic features of the flow field, dis-
cussed in Section II, are visible, even though the boundary layer was
‘still locally separated under the shock wave. Two of the pictures
(M, = 0.879, "« =1.5% and o = 0°) should be compared. At an angle
of attack, o = 1. 50, the local separation under the shock appears dif-
ferent from the separation at zero angle of attack. Apparently, the
boundary layer was turbulent at « =1. 50, since the flow over the sharp
wedge nose "trips" the boundary layer. The tripping effect of the flow
over a poinfed nose was mentioned by G. P. Wood of the Langley Aero-
nautical Laboratory in a private communication. The effect was also
substantiated by the experiments on the t/c = 0.104 double wedge, and
it will be described in the following pages.

Fig. 14 shows schlieren pictures of the flow over the thicker
double wedge, t/c = 0.104, at low and high Mach numbers and zero
angle of attack. The boundary layer on the afterbody of the wedge was
very thick, but not separated, at My =0.730 (Fig. 14). At higher
speeds, the shocks terminating the supersonic zone caused complete
separation of the flow over the afterbody. This case will be discussed
later. Finally, when Mg = 0.878 (Fig. 14) the terminating shocks were
downstream off the airfoil, and the boundary layer was not separated.

A. Double Wedée Results. Only Local Separation

Throughout the Mach number range the lift curve slope of the
thin wedge was linear in an angle of attack for 0°< « < 2°, The thicker
double wedge also showed a linear variation of lift curve slope at low

and high Mach numbers where the flow did not separate completely.

Since the lift was linear in « , the results for the lift of the double
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~wedges have been plotted in Fig. 15, using the transonic similarity pa-
rameter (Ref. 6). Also included are the experimental results of Bartlett
ﬁnd Peterson (Ref. 21) for a 10 percent thick double wedge at the same
Reynolds number as the present experiments, R// ~ 3 x 10° /in.

At low speeds the lift curve slope for the wedges (Ref. 15) was
considerably lower than the Prandtl-Glauert value based on the classi-~
cal incompressible result, Cy, = 2a. The low values of dCp,/dd were
due to the thick boundary layer which lowered the airfoil efficiency.
However, as the Mach number was increased, the slope of the lift curve
increased in accordance with the Prandtl-Glauert rule until at £, =~ -1,
dCj,/d« decreased abruptly to approximately the value computed by
Guderley and Yoshihara (Ref. 8). The subsonic experimental points
thus appear to fair smoothly into the theoretical results for My > 1.
Note that the thicker boundary layer on the 10 percent thickness ratio
wedge had a considerable effect on the lift curve slope so that the simi-
larity rules were not followed very well at low speeds. However, at the
highest speeds attainable without choking, the shock waves were off the
airfoil, and the boundary layer was apparently thin enough to allow the
similarity rules to be followed.

The above drop in lift at £, = -1 was not due to separation or
stalling but was due to the formation of supersonic zones behind the
shoulder which grew rapidly as §,— -1. Near £y = -1 the terminat-
ing shocks moved off the airfoil, and the flow over the rear portion of
the wedge was supersonic. As was found with the truncated wedge at
large o and with the R.N.A., the double wedge was less efficient in

the production of lift when the flow over it was supersonic. Thus, the
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supersoﬁi_c flow over the rear half caused the decrease in lift near
£s = -1. Note that only half of the airfoil was supersonic, so that the
decrease in lift was not as great as the decrease found on the R.N.A
(Fig. 24)."

The location of the center of lift is shown in Fig. 16. The center
of lift was located at approximately 1/4 chord at low speeds. As the
Mach number was increased, the center of lift moved rearward to
40 percent chord and then forward toward the value given by Guderley
and Yoshihara for My =1.

The center of lift travel can be explained in a manner similar to
that for the R.N.A. Near £, = -1, the change in size of the supersonic
zones over the rear portion of the wedge was quite sensitive to changes
in & . Thus, near £y, = -1, larger increments in lift occurred on the
rear portion of the wedge than at lower subsonic speeds so that the cen-
ter of lift moved rearward. At higher speeds the supersonic zones had
grown and included the entire rear half of the wedge so that the conse-
qﬁent decrease in lift over the wedge afterbody shifted the center of lift
forward again.

The location of the center of lift was not dependent on o for the
10.4 percent thick double wedge when the flow was not separated (that
is, .at low and high My). The center of lift on the 5.4 percent thick
double wedge was also independent of o except at high subsonic speeds,
0.90 < Mg < 0.92, when the terminating shocks were no longer on the
wedge afterbody. When 0.90 < M < 0.92 the center of lift on the
5.4 percent thick wedge moved forward as the angle of attack was in-

creased. Thus, although the lift was linear in « , the moment was
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non-linear. The forward shift was caused by the very strong expansion
over the upper surface near the nose. It is interesting that there were
cieviations from linear behavior at angles of attack which were less than
the wedge-nos‘e semi-angle (30).

B. Double Wedge Results. Separation on the Wedge Afterbody

As mentioned above, the flow over the afterbody of the 10.4 per-
cent thick double wedge separated completely under the shocks for ap-
proximately 0.75 < My, < 0.87. In Fig. 17, schlieren pictures of the
flow over the wedge are shown for the Mach number (Mg = 0.848) at
which the effects of separation were the greatest. The two pictures

labeled '"no rake" for « = 0° and « = 1°

will be considered first. At
o = 0° the separation points on the upper and lower surfaces were ap-
proximately symmetrical. The separation was apparently laminar and
similar to the less severe separation which occurred on the 5.4 percent
thick double wedge (Fig. 13, My, = 0.879, « = 0°). At o =1°, the sep-
aration was apparently turbulent on the upper surface and again similar
to the less severe separation shown in Fig. 13 (Mg = 0.879, « = 1.50)
for the 5.4 percent double wedge.

The important effect of separation on the flow field over the
10.4 percent thick wedge (Fig. 17) will now be discussed. It can be
seen that the upper surface supersonic zone grew smaller as o was in-
creased, instead of larger as one would expect, while the size of the
lower surface supersonic zone did not change appreciably. Thus, the
flow separation was severe enough to effectively alter the airfoil shape

and hence the flow field when the angle of attack was increased.

Fig. 18 shows the pressure distribution measured by the static
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probes for d = 2.30 at My, = 0.848. The forebody of the wedge car-
ried lift as indicated by the "+" sign while the afterbody carried nega-
five lift as shown by the "-" sign. It can be seen from the schlieren
pictures (Fig. 17) and pressure distribution (Fig. 18) that the flow over
the afterbody was supersonic (low pressure) over a large portion of the
lower surface. The pressure was much higher, due to separation, over
most of the upper afterbody surface. Thus, a large increment of nega-
tive lift was developed on the afterbody. The net lift obtained from the
pressure distribution shown in Fig. 18 was actually negative, Cj, =-.022.

Fig. 19 shows the lift coefficient as a funcﬁon of angle of attack
for different Mach numbers. From the figure, it can be seen that the
effects of separation became more severe as 1;he supersonic regions
grew in size when the Mach number increased from M,y = 0.730 to
My, = 0.848. With a further increase in Mach number, My = 0.848,
the supersonic zones grew larger and the separation effects decreased
until, at Mg = 0.888, the shock waves were no longer on the airfoil
and the lift was again linear in o . The phenomenon of negative lift
caused by separation at high subsonic speeds is not new. For instance,
Goethert (Ref. 3) reported negative lift forces on NACA 0-00xx sym-
metrical airfoils at high subsonic speeds in 1942. Goethert concluded
that flow separation was the cause of negative lift, and he showed that
the effect of separation was intensified as the airfoil thickness ratio in-
creased.

Goethert's results were obtained for Reynolds numbers greater
than 2.2 x 106, whereas the Reynolds number of the present experi-

ments was 6 x 105, based on the airfoil chord. The present Reynolds
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number could not be greatly increased; however, tests were made to
ascertain that flow separation would still occur if the boundary layer
ﬁ/ere turbulent.

The boundary layer was tripped by a ''rake' or "fence" cemented
on the nose of the double wedge. The '"'rake' consisted of many short
lengths of wire of 0.006 inch diameter cemented to the airfoil's upper
and lower surfaces near the nose and projecting upstream 1/16 inch.
After the cement had hardened the wires were bent around the nose so
that they were normal to the upper and lower surfaces. The wires were
spaced approximately 1/16 inch apart along the airfoil span.

Fig. 17 (rake, o = 0° and 1°) shows the flow over the wedge with
the rake in place. On comparing the o = 0° pictures with and without
the rake, it can be seen that the flow separation has changed character.
It seems clear that the boundary layer was laminar for no rake, & = Oo,
and turbulent with the rake. This conclusion is also supported by the
well-known qualitative result (Ref. 22) that upstream effects for shock-
wave boundary-layer interaction are greater if the boundary layer is
laminar. Thus, with no rake the boundary layer was appreciably thick-
ened well ahead of the shock-wave interaction point (Fig. 17, & = 00).
With the rake, the upstream influence through the boundary layer was
smaller (Fig. 17, o = 0°).

Qualitative results for the lift of the double wedge with and without
the rake are shown in Fig. 20, where it can be seen that the effect of
the rake was considerable. Without the rake, dCy,/dd was positive at
o = 0° and only became negative for « = 0.7°. With the rake installed,

dCj, /da was negative for 0°< & <« 10. Since the rake both tripped and
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thickened the boundary layer, the effect of tripping alone could not be
determined from the tests with the rake. However, the rake did make
the boundary layer turbulent on both the upper and lower surfaces for
all small angles of attack. Without the rake, the boundary layer was

| always laminar on the lower surface and changed from laminar to tur-
bulent on the upper surface as «« was increased.

The non-linear lifting effects shown in Fig. 19 and Fig. 20 were
caused by increments of negative lift acting on different portions of the
afterbody surface. As one might expect, the location of the center of
lift was greatly affected by separation. The actual values measured
for the double wedge, at different Mach numbers, have not been shown
since the location of the center of lift was greatly influenced by the low
Reynolds number of the flow. As an illustration of the effect of separa-
tion on the center of lift, Fig. 21 shows the location of the center of lift
at M_ = 0.848 with and without the rake. The large positive and nega-
tive location of the center of lift without the rake was caused by the net
lift passing through zero. This may be readily understood from the
equation for the location of the center of lift, x/c =C,,/Cy,. The lift
was positive on the forebody and negative on the afterbody, so that Cy,
was approximately constant. However, as Cjp, passed through zero,
the location of the center of lift went to large positive andnegative values.

The changes in center of lift were striking and should indicate the
difficulties a pilot would have when flying an airplane at high speeds with
separation on the wings or control surfaces. One possible effect will
be mentioned. With either a laminar or turbulent boundary layer, nega-

tive lift was obtained on the afterbody of the wedge for small o« . With
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an increase in angle of attack to larger values, the afterbody lift would
eventually become positive. If the afterbody was used as an elevator,
rudder, or aileron, a forced oscillation of the control surface could be
established by' the negative lift increments on the rear portion of the
airfoil. The oscillation would be limited in amplitude by the positive
lift occurring at large « . As a matter of fact, Goethert (Ref. 23, p. 42)
investigated separation effects due to the deflection of a flap mounted
on an NACA 0-0009 airfoil at zero angle of attack. His results showed
that at high 'speeds the flap forces were negative for small flap deflec-
tions and became positive for larger flap angles. Thus, a "limit cycle"
oscillation of a control surface seems quite possible. The oscillation
of control surfaces would be an interesting and important problem for

further research.
4. Summary of Lift and Drag Results

In Fig. 22, the lift curve slope at zero angle of attack for the three
basic profiles has been plotted as a function of Mach number. The dif-
ferences between the curves were due almost entirely to the different
locations of the point of maximum thickness. In other words, the dif-
ferent results were due to the varying amounts of supersonic flow ad-
jacent to the airfoil surfaces. Thus, the truncated wedge, with maxi-
mum thickness at the trailing edge, had only the small, supersonic nose
expansion zone on the surface., The lift curve slope was a monotonic in-
creasing function of Mach number for My < 1.

The double wedge surfaces had partially supersonic flow over the

afterbody at high subsonic speeds. dCp,/dd increased according to
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the Prandtl-Glauert law up to’the Mach number at which the supersonic
zones and their terminating shocks began to move over the wedge after-
bédy. As the Mach number increased, dCj,/da increased still further
and then decreased as the shocks passed off the afterbody.

| The R.N.A. had sﬁpersonic flow over almost the entire surface.
The behavior of dCy,/dat was qualitatively similar to the double wedge,
but the peak in dCy,/dK was much greater. The large peak was parti-
ally due to the small thickness ratio of the airfoil but probably would
not have been as great if it had been a double wedge of the same t/c.
A double wedge with t/c = 0.033 would have EL/O( ~ 5 (Fig. 15), so
that dCyp,/do = 12. Whereas, the R.N.A, had dCy,/dot = 33. Unfor-
tunhtely a double wedge with t/c ¥ 0,03 was not tested.

Drag coefficients for the truncated wedge and the double wedges
are shown in Fig. 23. The truncated wedge had the same maximum
thickness as the t/c = 0.104 double wedge. The truncated wedge drag
was much higher, due to the low pressure on the base of the airfoil.
(The base pressure was measured by a tap at the center of the base and
was assumed constant over the entire base.) Note that D'Alembert's
paradox (Cp —0 as My ™ 0) was approximately true for the double
wedges, but of course it does not apply to the truncated wedge where
the flow separates at the base.

From the above lift and drag results one can see that the favor-
able lift characteristics of the truncated wedge at high subsonic speeds
are offset by high drag coefficients at low subsonic speeds. Actually,
at higher Reynolds numbers, of the order of 4 x 106, the lift coeffi-

cient of the truncated wedge might be increased to as much as
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50 perce'n_t more than the values herein reported, since other airfoils
have Cp, > 27 at low speeds when a substantial portion of the trailing
edge is cut away (Ref. 24). However, the variation of Cp with Reynolds
number for the truncated wedge must be investigated before definite
conclusions can be reached.

The last figure, Fig. 24, shows the good agreement for the drag
of the double wedges when plotted in similarity form. Note that the
points obtained with laminar separation on the afterbody of the thick
wedge have been included. The separation occurred when the drag
was rising rapidly. Therefore, the effect of separation does not show

up well on this plot.
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V. CONCLUSIONS

After investigating the lift characteristics at subsonic speeds of
the three basic, two-dimensional profiles, the following conclusions

can be drawn:

1. The surface pressure distribution can be measured with good
accuracy by a conventional static probe if the airfoil thickness ratio is
small. The method should have application to other bodies which are
difficult to instrument with surface pressure taps.

2. For the three basic profiles, the lift coefficient is a linear
function of angle of attack when « << t/c with the following exceptions:

a) Non-linear effects appear when a substantial amount of
flow separation takes place.

b) If the airfoil profile has its maximum thickness near
the leading edge, non-linear effects appear for free stream
Mach numbers where the shock waves terminating the su-
personic zones move rapidly with « over the airfoil sur-
face. At higher Mach numbers the shocks move down-
stream off the airfoil, and the lift is again linear in « .

3. The slope of the lift curve, for « = 0, is a monotonic increas-
ing function of free stream Mach number for profiles with no supersonic
zones on the airfoil surface. With supersonic flow on a portion of the
surface, a maximum value of (dCj,/d« )O( -0 is reached between the
critical Mach number and the Mach number at which the shocks termi-

nating the supersonic zone move off the airfoil. The maximum value

of (dCy,/d« )o( -0 increases when the location of the sonic line is
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moved tdward the leading edge by shifting the location of maximum
thickness forward.

4. Severe flow separation caused by the shocks terminating the
supersonh:zohe is to be expected on profiles of thickness ratios of the
order of 10 percent. The flow separation can cause negative lift coef-
ficients, control surface oscillation, and rapid changes in the location
of the center of lift.

5. The location of the center of lift is greatly influenced by flow
separation and the movement of shock waves over the airfoil surface at
high subsonic speeds. Each particular profile presents different prob-
lems depending on the airfoil thickness ratio and the proportion of sub-
sonic to supersonic flow over the airfoil surface.

6. The transonic similarity rules advocated by Spreiter are ap-
plicable at subsonic speeds when his assumptions, « << t/c and
Ci,~ &, are not violated, and when boundary layer effects are small.

7. The experimental results for the lift of wedges are in agree-
ment with the computations of Guderley and Yoshihara for Mach num-

ber one.
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APPENDIX A -

AIRFOIL CHARACTERISTICS NEAR MACH NUMBER ONE

Previously, Liepmann and Bryson (Ref. 11) have proposed that
for steady flow near 4/ = /, the local Mach number at any point on a
body does not change with changes in free stream Mach number. They

expressed this by setting
oM
- = ()

Bryson (Ref. 1) then used the exact pressure coefficient formula
, L, zz—/ n’ 3/(%-1)

Cp =
P = um?

—_— -/ (A-2)
/+——Xz-/ m?

and Eq. (A-1) to compute the slope of the drag coefficient at Mach num-
ber one.

Here, using a method suggested by Drougge (Ref. 25), the drag
curve itself can be computed for A/, near one.

For a two-dimensional body the drag coefficient is

CD = “é % CP (:;7-) ds (A-3)

where

unit vector in stream direction

o~
1

n

unit vector normal to profile pointing outward

H

ds

element of length along profile contour

Using Eq. (A-2)

r N ¢ T
/2 ¥-1 -n ds ==
Co="C Mz [(H z M"f) %(L 31 )b’/x-/ ) %“'") ds | (a-4)

2
/+ZM
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But, accbrding to the stationarity principle, 4 is not a function of 4,
near M, =/. Thus, the first integral of (A-4) is a constant near M, =/
and the second is zero. Therefore, including - //c in the constant,

Eq. (A-4) becomes

C, = CoNsT. (A-5)

2 (/-f- a/_—/ /1/12 X/X-/
¥ M 2 =

Butat M, =/, CD = CD* s0 the constant may be evaluated, giving the

result
¥y

% _ [2+(a/-/)MfJ ! (A-6)

CD* Mz Y+l ]
if the relation

2
mt=
Y (A-7)
= - (%-1)
M*

between 4 and M* is substituted into (A-6) and M* is approximated

by M*= /s for & <</ . The result is, to the first order,

C
R ! . (A-8)
o m

which is Drougge's result (Ref. 25).

The same process may be carried out for the lift coefficient of a
two-dimensional body at constant angle of attack when A/, is near one.

Here,
/ - =
¢ = -+ % Co (7. 7)ds (A-9)

where
j = unit vector normal to stream direction

This is similar to Eq. (A-3) and following the same procedure as be-

fore one obtains
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| oy,
C r o/ 2 71
L*= /2 L2+( ) Moo , o = ComsT. (A-10)
) Mo T+l
or, to the first order,
C
———i = —/* , o = coast (A-11)
Cr M

If it is assumed that lift is a linear function of angle of attack for

A <</ , then

2¢, G Ly
-_— = _— A"
Ik o ( )
and the result for the lift curve slope near M, =/ is
7/ 5-1
p [2 (1) Mf,} (A-13)
(C(_/o()* Moﬁ o+

In addition, the moment coefficient about the leading edge is

=—§>x6p(j n) (A-14)
Thus, for constant o , near M, =/

-
Cm e [245-/} MJJ i

Cm* ML ¥+

(A-15)

Eq. {A-15) was derived in the same way as Eq. (A-4), using the fact

that
c%%(f-/—v)d5=0 (A-16)

If the moment coefficient is linear in angle of attack for ol <</,
a result for BCm/Qo( similar to that for 2@,/90( is obtained. All the
previous results may be collected here

221
o G Cn G Gk | ee(a-nme !
2z ¥ r/ “m

" =

Cp

* *

R Y S CA ST
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Frb_m the definition of the location of center of lift from the lead-
ing edge

*X __Cm _
- (A-18)

and Eq. (A-17), it follows that

zo (2

for M, near one.

Eq. (A-17) can be differentiated with respect to M, and M, set

equal to one to obtain
/ (dCD )* o (da ) . (dc,,, )*_ / (d(CL/a()>*
Cp' \ dMoo Cgf\ dMa Cm' \ M ‘(CL/O()* IM o

- ! I (Cnfa)Y = -2 (A-20)
(Cnfo )\ dMao #+/ i

which corresponds to Bryson's result (Ref. 1) for the slope of the air-

foil drag coefficient only at M_,=/.
The results of Eq. (A-20) and not Eq. (A-17) were used on the

plots of Figs. 22 and 23, due to the lack of experimental data near

Mo=1.
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APPENDIX B .
THE MEASUREMENT OF SURFACE PRESSURE

WITH STATIC PROBES

Surface pressures on two-dimensional bodies of small thickness
ratio can be measured by traversing a conventional static pressure
probé over the surface. The method can be applied to thinbodies which
are difficult, if not impossible, to instrument with conventional surface
pressure taps. The same method should prove very useful in problems
involving the shaping of aerodynamic surfaces to obtain a givenpressure
distribution, for example, in wind tunnel tests on pylons, fuselage-wing
fillets, etc.

The fact that surface pressures on thin bodies can be measured
with precision at points off the surface depends on two effects. The
first is the effect of viscosity in providing a boundary layer through
which the static pressure is constant in a direction normal to the body
surface when the surface curvature is small. The second effect depends
on the fluid being irrotational outside of the boundary layer. In conven-
tional notation, using two-ciimensional perturbation velocities, « and

V', the irrotationality condition is

2

Uy ~Vy =0 (B-1)

The linearized boundary condition on the body surface is

V/Uoo = (body slqpe) on y=20 (B-2)

and the pressure coefficient is

Co = - (2u/U,) (B-3)

From Eqs. (B-1) and (B-2), it is apparent that in the inviscid



-48 -

flow near the surface the change in « in the ¢ -direction is propor-
tional to the X -derivative of the kslope of the body when the boundary
léyer growth is small. For flat surfaces 2u/29 is negligible and from
Eq. (B-3) the pressure change normal to the surface ( y= 0) will be
very small. On slightly éurved surfaces the change of body slope is
small and the normal pressure gradients must also be small.

Using the above considerations, a pair of slender static pressure
probes were used to measure the pressure distribution on an airfoil.
The probe arrangement on the airfoil cross section is shown in Fig. 2.
In order to minimize tunnel blockage, the probes slide inside larger
supporting tubes which lead back from the airfoil and out through the
tunnel wall, The probes were held together by a loop of wire approxi-
mately two diameters from the tips. The wire loop also made the probe
boundary layer turbulent, which is important when measuring steep
pressure gradients (Ref. 22). The ratio of probe diameter to airfoil
thickness was of the order of one-half.

The effect of the small three-dimensional probe disturbances on
the basic two-dimensional flow over the airfoil was checked with the
Mach-Zehnder interferometer, described in Ref, (16). An interfero-
gram of the flow over one surface of the 3 percent thick airfoil shown
in Fig. 2 was made and the pressure distribution computed. The probes
were then installed and used to find the surface pressure distribution.
The airfoil was investigated for an angle of attack of approximately one
degree at two supersonic Mach numbers. On one case the bow shock
wave was attached with completely supersonic flow over the airfoil. The

second case was at a lower Mach number with a detached bow wave
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giving subsonic flow over the front portion of the airfoil. The agree-
ment between interferometer and probe measurements was good except

in the vicinity of the airfoil nose, as shown in Fig. 3.
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APPENDIX C

COMPUTATION OF THE LIFT OF A TRUNCATED WEDGE

An approximate computation for the lift of a truncated wedge at
high subsonic speeds and small angle of attack will be discussed. This
computation is based on the transonic approximation to the equations of
gas aynamics (Ref. 4)and depends on the previous work of Cole (Ref. 20).
The method was suggested by the work of Guderley and Yoshihara
(Ref. 8) who computed the lift of a double wedge at s.onic speed using
the assumption that for small angles the change in pressure is propor-
tional to the angle of attack. The present method of solution differs
from that of Guderley and Yoshihara in that the free stream singularity
is not shifted, but it is essentially the same as that used by Vincenti
and Wagoner (Ref. 9) in their independent computation of the subsonic
flow field at an angle of attack over the front portion of a double wedge
with a detached bow wave. The author wishes to thank Dr. J. D. Cole

for his suggestions and useful criticism.
1. Equations of Motion

The equations of motion are the two-dimensional equations of gas
dynamics which are approximately valid for the transonic flow of a
non-viscous, compressible fluid. A discussion of the equations and
their appl‘icability has been given by Spreiter (Ref. 6), who showed that
the transonic equations are valid throughout the subsonic and low super-
sonic Mach number range.

In the hodograph plane the equations of continuity and
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irrotationality are given approximately by:
UYyp = X\ =0 {C-1)
Kyp= Yy =0 (C-2)
The notation of Ref. (20) will be used throughout this appendix. Substi-
tution of - w for « and elimination of X yields
Wy t Y = O (C-3)
an equation of mixed type studied by Tricomi (Ref. 26). Eq. (C-3) will
be approximately solved for the lifting finite wedge and the pressure
forces on the wedge surface obtained from this solution with the aid of

Eq. (C-2) and the formula for the local pressure coefficient

%s
_ 2 cw) = 2 (3
CP—ZH(W W) )

2
F+/N 2 [Z ’

s
- Z,g/:l (C-4)
where the substitution z=(2/7) w¥ has been made.
2, Formulation of the Boundary Value Problem

The wedge has a semi-angle & and the axis of symmetry of the
wedge cross section is inclined at an angle & to the uniform subsonic

flow at upstream infinity (Sketch C-1).

Sketch C-1
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T_Ii¢ angle o is assumed to be much less than 4 . The nose of
the wedge is located at the origin of the coordinate system, and the
@edge has unit length. Since the Mach number of the flow is given ap-
proximately by

/- M* = w (C-5)

The uniform perturbation velocity at infinity is
%3
W, = 1- M2 =(§ z,) V=0 (C-6)

Another condition is that the flow must be tangent to the body surface.

The actual condition is m— = 747 (S5-o) on the upper surface and
v

I+1+w
v
by

= 74w (-5-«) on the lower surface. These are approximated

v =(5+1) (5-) =V, - € for gy=0+, 0<x<]|
(C-7)

v==(¥+1)(§+«) = -V;-€ for y=0-, 0=<x</

it

where V, =(9’+/)5 and € = (¥+ /)X . In addition, it can be shown
(Ref. 29) that sonic velocity must be reached at the wedge shoulders.
Sbnic velocity will also be obtained as the flow expands over the upper
side of the wedge nose, but Guderley and Yoshihara have shown (Ref. 8)
that at M, =/, for vanishingly small angles of attack, the nose expan-
sion effect can be neglected. Thus, in the neighborhood of the nose,
assuming the result of Ref. (8) to be valid for M, </ , the principal
effect is a stagnation point which may be approximated by the stagnation
condition of linearized theory.
W —= oo at x=0, y=0 (C-8)
The boundary value problem in the hodograph plane can now be

formulated. The problem will be approximately solved by assuming



-53-

g (W, ) = ¢, (W) + €y, (w,v) (C-9)
and

X (W,v) = %, (W, V)+e %, (W,v) (C-10)
where %, and ¢y, refer to the solution of Cole (Ref. 20) for a finite
wedge at zero angle of attack. Hence, the first order perturbation solu-
tion for the wedge at an angle of attack is givenby ¢, and %,

The boundary conditions for X and {4 in the hodograph plane are
obtained from the previous physical plane conditions. At infinity condi-
tion (C-6) becomes

Y = too , X% o0 ' when w=w, , v=20 (C-11)
which répresqnts the free stréam singularity and is discussed in
Ref. (20). On the wedge surfaces

y =0 on v=r - €

(C-12)
g = 0 on wo= - I/Z) - &
and at the linearized nose stagnation point
y=0, x=0 as W —= oo (C-13)

Aiso, the attainment of sonic velocity at the shoulder determines the
wedge length in the hodograph. The exact condition is that on the upper
or lower surface X equals one plus or minus a small quantity account-
ing for the change in the X coordinate of the shoulder as the wedge is
rotated through an angle o . For small « this correction term is ap-
proximately equal to + 5. The correction term will be ignored, and
the problem solved will be that for a slightly deformed wedge whose
shoulders remain at X =/ as « is changed. Hence, the wedge length
in the hodograph is gi\;'en approximately by

X =/ when w=0, v=Xwv -¢€ (C-14)
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Finally, if the expansion of the flow over the nose of the wedge is
ignored, all subsonic points of the physical plane, including the sonic
l.ine, are mapped into a semi-infinite strip with

V€S VE V- , W>O (C-15)
as discussed in Ref. (20).

The conditions on the wedge surface (C-12) may be expanded in a

Taylor series about w= # v :

0=9(w,vo)—6gv(W,v*o)+(9(€2) for v=v,-¢€
(C-16)
O = Yy (W, Vo) =€y, (W,-v,)+O8(c? for v=-1y,-¢
These become
0=y, (Wyvs) + € [ g (W)= to (W, V) ]+ O(€7) for v=vy,-€
(C-17)

O= o (W,-V,)+ € [y,(w,-v;)~ yoV.(W‘,-V‘o)]'/'&(éz) for v=-\,-€

when substitution of Eq. (C-9) is made. Cole's solution for ¢, (w,w)

and %, (W, ) of Ref. (20) satisfies the following conditions

Yy, =0 at =2,
Y, =9, X, =0 as W —=oo (C-18)
X,=1 at v=2v, , w=0

Thus, the conditions (C-13), (C-14), and (C-17) which ¢, and X, must

satisfy are:

Yy, =0, X,=0 as W —> oo (C-19)
x, =0 at v=%v 6 w=0 (C-20)
Y, :gov: £(z) at V=TV, (C-21)

It will be noted that the above conditions for Y, and A, are satisfied

on the symmetric hodograph boundaries for a wedge at zero angle of
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attack inéil:‘ead of 'on‘the éctual unsymmetric boundaries.

The solution for ¢, may Be simplified by symmetry considera-
tions. It can be shown that ¢, is an even function of { by the follow-
ing argument. If the wedge is at a positive angle of attack « = ! P
then at a point %’ y' let the perturbation velocity in the % direction
be denotedv by w' and the vertical velocity by w' . If the wedge is now
rotated to a negative angle of attack o= - , the perturbation veloci-
ties at the point x’, -y' must be w' and -' by symmetry. From
Eq. (C-9) and the fact that go(w‘;v") =Y, (w-5-v') it is apparent that
g (whv') =y (w'- +") . Thus, y, (w,v) is an even function of » .
Hence from Eq. (C-2) it is apparent that X, (W)=~ x,(n, -v) and
%, (w, ) is an odd function of v . The solution for y, and %, may
now be obtained in the upper half of the strip O« v <V,, w >0 if the

symmetry of ¢, is expressed by the boundary condition

——2 / =0 t = (C-22)
a = -
P o, w >0

The conditions (C-19) through (C-22) are shown in Sketch C-2, where

) v
2y, !
f//=_2—;~_ V=% /Xl=0
————— A = -
2y _ > ¢
o =
W,Z —* L 1)
Y, =0 :
«{x,=0 _ %% . % =0
y/ 2V V= VZ)
—— T —— —— S——— —— V=_V;_6

Sketch C-2
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the dashed lines of constant y indicate the actual boundaries for a

wedge at angle of attack.
3. Representation of the Solution

A solution of Eq. (C-3) obtained by separation of variables is

TAv /
y ~e " z%c, 12 (C-23)

Using solutions of this type a solution for ¢, which satisfies Eq. (C-22)

is
{ o & e
y = Z'/3 X f;ﬁ IZ:(A z) AdA % f(z') ]:'/3 (AzZ') z dz (C-24)
o © p
Here J. is used instead of i /)
ere J_ is used instead o LK? , since L,/g has ¢, = v

on the sonic line, Z = . Thus, the flow field on the sonic line would

not change when the angle of attack changed, if ]; vy Were used,

At v=v,
y (z,v,) =z OSOI_,@ (Az) AdA iof(z’) Ty Azl zdz"  (C-25)
using Hankel's repeatez integral form:la (Ref. 27)
°§ zdz' °§ Flo) [)(Z'a) ], (z'2) odo = F(A) (C-26)
> >

Eq. (C-25) becomes

y (z,v)= 2" frz) (C-27)
In order to satisfy Eq. (C-21)

gov-(zo V:o)
f(z)= A (C-28)

From Ref. (20)
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Yoy (Z,:Vs 2z, % 7, (cz') T p(0z) 0 de
Flz)= 22w 2 ( ) S / 3 (C-29)
SWH TV,
Thus Eg. (C-24) becomes
B oo o o9 ' 2
2zz Av Tylaz') Tfoz)adr
(Z,v)=~ _/) cost ‘ N ot 4 ]
y,(z,v) ( 3 lfogmH NOI%,,(/\Z)AdA T,(¥2)zdz o o (C-30)
> o 3
which becomes with the use of Eq. (C-26)
_ 22_2,)%? ¢ @sH Av 2
Y, (Z,V) (——3 v g cost Ave v Ty (A2) Ty (A2) X¥dA (C-31)

o

It may also be seen from the asymptotic behavior of J;/

—~ 2 ' 2T
{ = _—_ e —— - —
7, (2) W/'nz cos (z > "7 > (C-32)

that ¢ (z,#) of Eq. (C-31) approaches zero as z — oo 50 that
Eq. (C-19) is satisfied.
From Eq. (C-2)
3z s
X = Yy = ~Yp =~ AW é/z‘—'—(—z) Yz (C-33)

so that the value of %, (Zz,+) corresponding to Eq. (C-31) may be ob-

tained. Using

/3
(2" 7y (32)) ==22% T, (22) (C-34)
we have
Vg P CosH AV 3 _
Xip =7 (z%z)" v, cosH AV, SMH AV, ‘T%/ (Az) IVs(AZ’)A g (C-33)

)
Integrating with respect to Vv

3 SINE AV 2
2, =—(2*z) VOS I T 0P A2 A 1y (Z) (C-36)

[o}
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Considering Eq. (C-1)} it can be shown that X, must be constant. From
condition (C-20) and the fact that the series for f2/3 (Az) contains only
positive powers of Az it is apparent that %, =0 . Collecting the re-

sults, the integral representation for ¢, and %, is

Vg =
Y, (Z,v) -——-—(—Z%Z’) A X cost AV J'_ygmz)]_yg(ﬂz,)ﬁzd/\ {C-39)

CosH A Ve SINH AV
[»)

3

oo
SINH AV
x, (z,v) == (2z%2,)" v, g
o

CosH AV, SwH AV,

Ty (12) Ty (A2)A°dA (C-40)

The solution given by Eqs. (C-39) and (C-40) will now be discussed.
From Ref. (20), the solution for ¢, and %, has a doublet singularity
representing the free stream. The sonic line is straight in the physical
plane, so that ¢, and X%, satisfy the problem for a finite wedge of unit
length at zero angle of attack, with sonic lines locatedat %X =/ . The
additional solutions %, and Y, are non-singular and the sonic line is
still located at % =/. The solutions X, and y,; do fulfill, to the first
order in o , the condition that the flow be tangent to the surface of the
wedge. It will be noted that no attempt has been made either in Ref. (20)
or here to account for the influence on the upstream subsonic flow of the
supersonic flow around the wedge shoulders. This has already been

discussed in Section IV.
4. Lift Coefficient of the Wedge

The lift coefficient is defined as

LIFT ForRCE
C, = l " PER ULNMIT WIDTH (C-41)
? Poo (A¥+ Uoo)
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Using the local pressure coefficient of Eq. (C-4) the lift coefficient be-

comes

| |

23

= \(on - Cpan = 55 (5) (227 o (c-42)
[o} o]

where the subscripts L and U refer to the lower and upper surfaces.

Since X = %(z) on the wedge surface, (; becomes
2 3T
3 2/3 (2x 2%)
C ——) z ———) ==\ | 9z -
t =y 2 S { 2zly \ 2z (C-43)
' o
Using the formula for % , Eq. (C-10), and the symmetry conditions
(%), = (%), and (X)), =-(%;), , Eq. (C-43) becomes
2l ¥ (2%,
= 4 (- ) ———) d C-44
S 22/, % ( )
Integrating by parts and using conditions (C-19) and (C-20)on «x,, we
have
15T
Cp =~ F& (j) . % z 2,(2Z) dz (C-45)

o
Upon substituting Eq. (C-40) into Eq. (C-45) and integrating with

respect to Z ,

oo /3
e Ty, (Az) A% dA
/3 g ls (C-46)

cost AV,

—_(3) F(3

o

Or using the similarity parameters

~ i

% M-
CL — \/‘o CL - [(2/+/)5]K?CL : an: (3 Z/)3 o0

2 Vo) [+ 8]

Eqg. (C-46) becomes

~20 _ %
E /3 oo T an
_A=-( 45 S /3( - ) a8 do- (C-47)
A« g CosH T

o
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Using a partial fraction expansion for /-/casﬂ g (Ref. 28),

(20%

_-_{8)%% f?; i SHEE ’)n§ T (C-48)

mo0 (””E 1t +¢”

The integral is evaluated in Ref. 27, p. 424. Therefore

1
(8)3 82 Z o (it )zla 2/3K+’/3[_2_;z ’”’”ZL)E’% }(C 49)

The series converges rapidly for large values of the argument of K+,/5 s
however, for small values of the argument the convergence is slow. If

the expansion for //CK)SH ¢ 1is taken to be

- /
/ = 2 E (-7 e mEia
COsH T
m=0

then the integral occurring in Eq. (C-48) is different and has also been

evaluated in Ref. 27, p. 386. Therefore, for small arguments

EL /6 r (%) N (=™ (2m+1)
— = — -) (C-50)
Ao 3B [r (%)]z ,;0 [(2m+/) - (2) 3}7/6 |

Using Eqgs. (C-49) and (C-50) the curve shown on Fig. 7 has been com-
puted. The results have been discussed in Section IV. In particular at
Mo =7, 81,/0( = 4,54 which is approximately 10 percent lower than

Guderley and Yoshihara's result for the lift of the front half of a double

wedge.
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Fig. 4 - Surface Pressure Probe and Double Wedge

Installed in Wind Tunnel
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