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ABSTRACT

The analogy existing between linear, lumped parameter
network functions and the complex potential function of line
charges is applied to various problems in network analysis and
synthesis. A means of determining the stream function directly
is described. It is shown how the analogy may be used for
both steady state and transient analysis when the zeros and
poles of the network function are known., In addition, methods
of determining the poles of special networks by means of the

analogy are described.
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-
I TINTRODUCTION

The potential analogy useful in network analysis relates
the potential and stream functions of a two-dimensional field
to the amplitude and phase functions, respectively, of a corres-
ponding network. How this analogy comes about can be seen by
considering the general rational algebraic fraction F(s) which
arises in the solution of linear network problems by operational

means (ref. 1).

R ORE e T S

If the roots of the equation P(s)=0 are -a;, and those of

Q(s)=0 are -b;, then the fraction may be written

654*30
=GRy *
It follows that
log [F(s)] =1log K +§llog(s +qp) —%Iog (s+b;) (3)

While F(s) may represent any linear network function, let
it here be the dimensionless transfer ratio Eo . If A is the
i
logarithmic amplitude and B the phase of the transfer ratio

(ref. 2), then
log [F(s] =1og °(s) log e (s)+JB(§)-A(S)+JB(S) (L)

To see how these functions are related to the field of a

two-dimensional potential distribution, consider the complex
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potential function W(s)=U(s)43V(s) of a line charge (ref.3)
perpendicular to the s-plane and piercing it at s=-vw;

W(s) = -2q log (s+%)=U(s)+3V(s)  (5)

Here U(s) is the potential and V(s) the stream function of
W(s). Comparing (5) with (3) and (L), it is seen that W(s) can
be made identical to log F(s), by making it represent the field
of p+q charges of strength %; one of negative sign being placed
at each of the zeros of F(s), -a;, and one of positive sign being
placed at each of the poles, -=b;. Doing so makes the potential
function U correspond to the amplitude A and the stream function
V correspond to the phase B of F(s). In addition, the poles and
geros of the network transfer ratio, which become the negative
and positive logarithmic singularities of log F(s), correspond
to the sources and sinks of the equivalent field. These relation-
ships constitute the potential analogy.

Practical application of the analogy to the solution of
network problems dates from 1945, when Hansen and Lundstrom
(ref. L) experimentally measured an impedance function by using
an electrolytic tank to obtain the desired potential distribution,
In a later paper, Huggins (ref. 5) pointed out the value of cer-
tain transformations in simplifying the experimental problems
posed by the limitation to a tank of finite size. Both of these
papers were limited in scope to steady—stéte analysis. More
recently, the potential analogy has been applied to problems in

transient analysis (ref. 6, 7). Results similar to some given
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in reference 7 and in this paper have been independently ob=-
tained by Evans (ref. 8), who used an approach not involving

the potential analogy.
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II EXPERIMENTAL APPARATUS

Although many useful results can be obtained from the
analogy from purely theoretical considerations which make use
of the mathematical techniques of potential theory, there are
important applications which require experimental means for pro-
ducing the analogous fields. Since the fields required are those
of line charges, the potential function may be produced in an
electrolytic tank (L, 5, 6), or on recently available conducting
paper (9), by introducing and removing current at points corres-
ponding to the poles and zeros of F(s). Consideration must be
given to the problems posed by the limitation to a tank of finite
size, since in general the boundary, by its distortion of the
field, introduces non-negligible errors in the readings. Hansen
and ILundstrom (l;) used a circular tank, and applied a first-order
correction to the readings to compensate for the influence of the
boundary. Huggins (5), making use of the symmetry of the field
about the real axis, transformed the upper half of the s-plane
into a strip, using the logarithmic transformation s’z log s.
The logarithmic coordinates, in which an increase in length of
the strip of an amount lgérlg, or 0,733, times its width is equiva-
lent to an increase in radius of the circular tank by a factor of
ten, make possible a tank of convenient dimensions in which the
boundary distortion is entirely negligible., A clever method of
avoiding boundary distortion in a circular tank, involving a double

current sheet, is described in reference 6.
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Once having established the potential distribution, the
logarithmic amplitude of F(s) for any value of s is then deter-
mined by measuring the potential at the corresponding point in
the s-plane. The phase of F(s), which is analogous to the stream
function, can be determined from the potential distribution by
making use of the relations between the conjugate functions U and

V. letting s=oc 4 jw, these relations are

- V - -
85 _gE ‘3%—81‘6 (3, p. 72)

k= [av = [(3 doo+ 2L do) = [(32 d- 2L )

Since the value of U is knmown by inspection along the entire
real axis, as will be demonstrated below, the path of integration

can always be taken parallel to the imaginary axis, making the

second term of the integral zero. The derivative gtojc’ which is
approximated by'f%é%, can be determined by using closely spaced
pick-up probes separated a distance A0C, Two procedures have been
used tovevaluate the phase in this manner., In references lj, 5, and
6, readings of ‘széare taken at a series of stations and integrated
numerically to give the phase. In reference 9, a set of permanent-
1y mounted pick-up probes are scanned mechanically and the inte-
gration performed electronically to give the phase. This method,
/%hough rapid, is limited to measurements made along the frequency
axis, restricting the usefulness of the analogy to steady-state

analysis only,

étill a third method may be used to determine the phase, one
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which is less time consuming than the first and more versatile
than the second. Since the value of the phase at any point is

the algebraic sum of the phase contributions of each of the fac-
tors of F(s), measurements of these individual contributions can
be used as the basis of a phase function analyzer. For a typical
numerator factor (s+a;), the phase at a point «+jw is tan"lo-(—}a;-,

If a; is complex, then, letting a; =c+jd, the phase at s is

tap~l _wW+d
[+ S ¢

correcting the point -aj to s, and the positive real axis. If

. In either case, it is the angle between the line

the sum of angles of the factors of the denominator is subtracted
from that of the numerator, the result is the phase of F(s).

A phase function analyzer, which simultaneously measures and
adds these angles, has been constructed. As shown in Figure 1,
it consists of a frame, a number of potentiometers which act as
goniometers, a power supply, a control box, and a voltmeter. A
schematic diagram of the electrical circuits employed is given in
Figure 2, In operation, the frame is placed over a sheet of graph
paper which represents the s-plane, A potentiometer, fitted with
a slotted arm, is positioned on the frame at each zero and pole
of F(s). The slotted arms are constrained by the pointer pin to
pass through the point at which the phase is to be measured. On-
off ‘and reversing switches in the control box supply voltage of
proper polarity to the potentiometer, those representing poles re-
quiring opposite polarity to those representing zeros. The coils
of the potentiometers used are linear with shaft rotation to within

an accuracy of 0.,25%, which allows an angular measurement accuracy
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of about * one degree. The angular gap in each coil is only
i degrees, which enables measurements to be made almost every-
where in the plane. The voltage of each potentiometer arm is
then proportional to the shaft angle, which is the phase angle
of a factor of F(s). These voltages are summed by a resistive
network in the control box, and the sum read by the voltmeter
which indicates the phase.

The method of determining the amplitude function which has
been found most convenient is the use of conducting paper cut in
a logarithmic strip. The experimental apparatus is shown in
Figure 3. Current sources and sinks at the zeros and poles of
F(s) establish a potential distribution in the strip which is pro-
portional to the logarithmic amplitude of F(s). The currents are
adjusted to a convenient value of about 5 milliamperes by rheostats
in series with the\bcwer supply. The potential measured by the
voltmeter at any point is then proportional to the logarithmic am-
plitude of F(s) at.that point, and can be calibrated in decibels.
Sources or sinks must be included at zero and infinity, represent-
ed by the left and right edges of the strip, when log [F(s)] is

singuler at these points.
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IIT STEADY STATE AND TRANSTENT ANALYSIS
\

In steady state analysis, the driving function is sinusoid-
al and only the steady state component of the response is cal-
culated., In this case, the amplitude and phase of the transfer
ratio F(s) is given by

a=log | F(w;)]

B=Arg F(jw;)
where a; is the frequency of the driving function (1, p. 176).
The frequency response curves A(jw) and B(jw) can therefore be
determined from the field of log[F(s)] by measuring the amplitude
and phase along the frequency axis.

The fields of familiar network functions have been plotted
in Figures lj and 6 to illustrate their use in determining the
frequency response curves. Figure li shows the equipotentials for
two decibel increments and streamlines for 10° increments of two
line charges of the same sign. They were obtained by superimpos-—
ing graphically the fields of the individual charges, before the
experimental apparatus described above had been constructed. By
properly positioning the s-plane on the field, the steady state
frequency response curves for a damped oscillator of any damping
ratio may be determined, simply by reading the values of A and B
along the frequency axis. The normalized network transfer ratio
and the frequency response curves for two Qalues of the damping
ratio § are shown in Figure 5.

The field of two opposite charges, which consists entirely

of circles (ref. 3, p. 75), is plotted in Fig. 6. Again, the equi-



=0

potentials are two decibels apart and the streamlines 10° apart.
The transfer ratio of an analogous phase lead network and the fre-
quency response curves for two values of maximum phase lead are
shown in Fig. 7.

Because the poles and zeros of any network function either
are real or occur in conjugate pairs, the corresponding fields
are symmetric about the real axis so that no flux crosses it. .The
real axis can therefore be a non-conducting boundary without dis-
turbing the field. When the s-plane is transformed into a strip
by the logarithmic transformation s’ = log s, only the upper half
of the s-plane need be transformed, and the positive and negative
real axes of the s-plane become the non-conducting lower and upper,
edges, respectively, of the strip. To illustrate this transforma-
tion, the field of Figure 6 has been mapped in the log s-plane in
Figure 8. The origin of the s~plane was chosen so that the field

Je

represents the transfer ratio g_;;.ég. let s = + jw=re’,

then log s =1log r +J@, The abscissa indicated in Figure 8is r
and the ordinate is @, in degrees.

As mentioned previously, the logarithmic transformation makes
convenient the physical dimensions necessary to produce a suffi-
ciently low boundary distortion., The transformation is also
valuable from a purely analytical standpoint - it makes evident,
in many important cases, a symmetry in the’ field which is not ob-
vious from the position of the siﬁgularities in the s-plane, In the

example plotted in Figure 8, it is obvious by inspection that the
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vertical line midway between the zero and pole must be an equi-
potential, and that this equipotential is therefore a circle in
the s-plane. By shifting the origin before transforming, it can
be seen that every equipotential is a circle in the s-plane, a
fact which requires some algebraic manipulation to deduce by
standard means. A knowledge of logarithmic symmetry, when it
exists, reduces the region in the s-plane which need be covered
by the phase function analyzer to determine the phase function
throughout the plane. In addition, it makes the shape in the
s-plane of critical flux lines evident without measurement or
calculation, As will be shown later, this simplifies the labor
in finding the roots of equations when logarithmic symmetry exists.
The potential analogy can be used to determine the coeffi-
cients and phase angles of the various terms of the transient
response as well as those of the steady state terms. The
analytical method of transient analysis by means of the ILaplace
Transformation results in a function of s which must be inverted
to yield the desired function of time. This requires that the
residues of the function at the various poles be evaluated.
These residues, which for complex terms are in general complex,
appear as the coefficients and phase angles in the various terms
of the time function. In the field corresponding to the function,
the residue at any pole can be determined by removing the pole and
measuring the amplitude and phase due to the remainder of the
function at that point. The difficulty of setting up the field

experimentally compared to that of straightforward analytical
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solution makes it impractical at present to use the analogy for

this purpose for an ordinary problem, If it were desired to de=-
termine the response of a system for a number of initial condi-

tions, the use of the analogy could prove practical, since only

the zeros of the function are shifted with changing initial con-
ditions.

In concluding the discussion of steady state and transient
analysis by means of the analogy, it might be pointed out that
obtaining the steady state response by means of the analogy is
merely a special case of the method used for transient analysis,
in which the forcing function is sinusoidal and the residue at the

poles of the forcing function only are obtained,
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IV SOLUTION OF NETWORK EQUATIONS

In the applications of the potential analogy treated so far,
a knowledge of the zeros and poles of the network function F(s)
has been assumed. However, the problem of finding the roots of
P(s) and especially of Q(s) is usually the most difficult step in
the treatment of network problems. It is therefore gratifying that
the analogy itself can be used in determining the roots of pply-
nomials. By this property it affords the user valuable insight
regarding the effects of loading, coupling, and feedback on the
natural modes of networks,

The method of using the potential analogy in determining the
roots of polynomials to be described is dependent upon a knowledge
of the field of a given distribution of logarithmic singularities.

Let the polynomial to be factored be

f(s)=a, s"ya, 3 sl ... ays+2a,

Let a minor M;(s) of this polynomial be defined as any tern
or group of terms contained in f(s), and let its complement Nj(s)
be £(s)= M;(s)s Then

£(s) =Yy () 4y (s)

The equation £(s)=0 can then be written as

1 (s) ¥i(s) — .

The roots of f(s) are those values of s which satisfy the
above equation, If the roots of 1y (s) and N;(s) are known, the

equation can be solved by a single set of field measurements.
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If f(s) contains no pair of complementary minors whose roots
are known, a preliminary step must be taken to find those of an
arbitrarily chosen pair. The roots of M;(s) and Nj(s) are used
in generating the field log %%_% « The ppoints in the field
at which the potential is zero and the phase TT radians or 180
degrees are then the M roots of f(s).

Before demonstrating the application of this method to the
solution of particular network problems, several examples of its
use in finding the roots of polynomials will be given. Consider

first the quadratic s+ as+b=0

let M=s?+as = s(s+a) and let N=b.
Then 3(_5.’61.":‘_)_ = -1 or s(s+a)= -b

The field required for the solution is that of two charges of
the same sign, one at the origin and the other at -a. The complete
field is shown in Figure l;. Because only the 180° phase lines are
needed for the solution, however, these lines have been redrawn
Separately in Figure 9. Several features of the solution of
equations by this method are demonstrated by this diagram. The
real axis must be a flux line because the charges are symmetric
about the real axis when the coefficients are real., More specifi-
cally, a line segment on the real axis having an even number of
singularities to its right is a zero degree or 2nT radians flux
line, while one having an odd number of s{ngularities to its right

is a 180 degree or (2n+ 1) radians flux line. By symmetry, the

180 degree flux lines between the two charges meet at a neutral
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point on the real axis and become the vertical flux line whose
constant abscissa is ‘— % . Roots of the equation are constrain~
ed to lie on the 180 degree flux lines, their position being de-
termined by the potential requirement that A =log .ls(s+a)1, —log b.
Values of A along the flux lines can be obtained from the equi-
potentials of Figure ), the zero of potential being determined
by its known value of 2 log (% )at the neutral point.

If the roots are desired as a function of the coefficient a,
then M should be chosen to include the terms not involving a. Thus,

M=s2+b and N=as, giving g2+

= -3 or_QS"l'JJ-E)(S’JE) -——a
s S -

The critical flux lines for this charge configuration is shown in
Figure 10. The existence of the neutral point on the real axis
and the circular path of the flux line from the neutral point to
the imaginary axis is obvious from the charge distribution in the
logarithmic strip. The location of the root along the flux line
may be obtained from the potential requirement that A =log a. Al-
ternately, if the roots are complex, they are given by the inter-
section of the flux lines of Figure 9 with those of Figure 10,

The general solution of a cubic equation requires a family
of curves, since either of two coefficients can be varied relative
to a third. Consider the cubic g3 +as?+bs +bc =0, Let the
minors be chosen as M =s3+as? and N=bs +bc. The equation
may then be written

s?(s+a) -
s+cC

The analogous field has a double charge at the origin, corres-
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ponding to the double zero, a single charge of the same sign
at -a, and one of opposite sign at -c, as shown in Figure 11,
If a=c, the two charges of single magnitude and opposite polar-
ity coincide, their external field dropping to zero. Since all
values of the stream and potential function are present at the co-
incident point, this point is a root. The other two roots, for
this special case, lie on the imaginary axis, since it is a 180
degree flux line because of the double charge at the origin. The
180 degree flux lines for a=3c are shown in Figure 11, and the
family of critical flux lines obtained for various values of the
ratio a/c is shown in Figure 12. The phase function analyzer pre-
viously described was used to determine these flux lines. For all
values of a/c, the portion of the real axis between a and ¢ is a
180 degree flux line. For a/c= 9, a neutral point exists at =3c;
for a/c>9, a portion of the flux lines terminating at infinity
is detached from the lines originating at the origin, and only
the detached portion is shown in Figure 12, The position of the
roots along the flux lines is determined by the value of b, and
can be obtained from the potential requirement A =1log b.

A similar family of critical flux lines, which arises in the
solution of the particular group of quartic equations
sh42s3 42 4 as + ab= 0, is shown in Figure 13. They were ob-
tained by separating the quartic into M= sh4 252 + s? and
N=as + ab, giving

sg(s+ 1)2 =
S+

-a

A double charge at the origin and at -1 and one of opposite sign
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at =b were simulated by the phase function analyzer for the values
of b indicated to obtain the 180 degree flux lines of Figure 13.
The effect of coupling on the modes of two inductively coupled
circuits can be determined in a similar application of the analogy.
Consider the tuned circuits shown in Figure lla. The modes of the
coupled network are the zeros of the main determinant; these can
be found for any value of coupling coefficient k when the un-
coupled modes are known, as follows. Expanding the determinant
gives (L10132+,R1015 + 1)¢( L20282+-R2023 +1) -M?Clczsh. This can
be written in terms of the uncoupled modes and the coefficient of

coupling as

s +0c)?+ w25 +x.)* + wa?] — k2 s%
w2 w,2

where w:

; is the undamped resonant frequency, and o¢; the damping co-

efficient, of the ith circuit when no coupling exists, and k, the
coefficient of coupling, is I?%j .
-a

The equation for the coupled modes becomes

fs+oc)? + w0 216 +x )2 +w,?] 2
5 = k

The solution by potential aﬁalogy requires a charge at each of
the uncoupled modes and a fourth order charge of opposite sign at
the origin. The flux lines along which the roots must lie are the
zero degree lines, since the right hand s%@e of the equation is
positive. These lines, for a particular distribution of uncoupled

modes, are shown in Figure 1llb., The arrows on the lines show the

direction of travel of the coupled roots with increasing k; for
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k=0 they coincide with the uncoupled modes. For the case of
small damping of the tuned circuits and low values of k, the var-
iation of the field in the vicinity of the two roots can be con-
sidered to be due to these two roots alone, the rest of the singu-
larities contributing a nearly constant field in this small region.
When this holds, the field of Figure ) can be used to determine
the steady state frequency response curves, The ratio of the
separation of the roots to their distance from the frequency axis
determines the position of the frequency axis in Figure L. As the
coupled roots become separated more and more with increasing k,
the frequency axis gets closer and closer to the singularities in
Figure L, giving rise to the familiar family of frequency response
curves shown in Figure llic.

The effect of loading on the modes of a ladder network can be
demonstrated in connection with the network of Figure 15a., The
nodal equation for the n-l node is £ +E (s+2) -En_2=:0. The
voltage transfer ratio for any number of meshes in cascade can be
determined by solving the above difference equation by means of
the potential analogy. If the voltage at the output node E, is 1,
then that at the first node, El, becomes s +1, since g§‘='gfér”
These two boundary conditions, inserted in the difference equation,
give for E2

E,= By (s+2) £ = (s+1) (s%2) -1

2

The zeros of this expression, which are the poles of the transfer

. E .
ratio 0, occur at the points where (s+1) (s+2)=1, In general,
E
2
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for the n'th node, the poles of EE are the points at which the
ratio En-1(5+2) —1, For this network, the poles of the trans-
fer ratio ?5% all nodes are constrained to the negative real axis
because of the absence of inductors and active elements. This

makes the logarithmic strip well suited for an analogous solution,
since the insertion of currents representing the singularities of
the n-1 and n-2 nodes and the search for poles of the n'th node

take place along the upper edge of the strip only. The solution

for the poles of the n'th node by standard means requires first

that the n'th degree polynomial be found by solution of the net-
work equations, and secondly that the polynomial be factored to
determine its roots. Both of these steps are avoided in the solu-
tion by analogy. The location of the zero degree flux lines and

the zeros of potential which determine the poles are shown for the
first few nodes in Figure 15b, If the individual meshes of the net-
work were completely isolated from one another by means of vacuum
tubes, the poles would all fall at -l. The spreading of the poles
outward from -1 is the result of the finite load presented each
mesh,

If a network whose poles and zeros are known is used as the
only frequency function in a feedback amplifier, the potential an-
alogy can be used to determine the variation with feedback of the
modes of the amplifier, Iet the amplifier-have a forward gain of
M and a feedback factor B. ILet F(s)::g%g% be the transfer ratio

of the network used in the amplifier. If it is used in the forward

loop, the overall transfer ratio of the amplifier becomes
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P
Eo— _eeM ﬂf":ﬁs)) -
: - s) + S
EiT 1+ —Q%MB Q M

When used in the feedback loop,

Eo- M M_Q¢S)
Ei ~ :+1_)Q<;) MB QS)+ P()uB

The two cases differ only in the numerator, whose zeros in the
first case coincide with those of P(s) and in the second with Q(s).
For both configurations, the poles are the zeros of Q(s)+P(s)uB .

Proceeding as before, the denominator is written

Q -

Only the 180 degree flux lines and the values of potential
along them in the field analogous to the left hand side are needed
to solve this equation., For the network described in Figure 16,
however, the complete analogous field has been determined, and is
shown in Figure 17, the values of the equipotentials being indi-
cated in decibels. The intersections of the 180 degree phase
lines with the equipotential whose value is 20 log “’/‘B 5 locates
the poles of the feedback network.

The inverse of the vélues of the field along the frequency
axis give the steady state response of E%§2, which is plotted in

Q(s
Figure 18. Conversely, if one starts with the steady state re-

sponse, the entire field can be reconstructed, either by analytic
continuation or its graphical equivalent, flux plotting. Both pro-

cesses are simplified when the field is desired only in regions
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neighboring the frequency axis. Flux plotting is especially con-
venient when some of the singularities of the field are knownj; in
the present example of feedback circuit analysis this is generally
the case. When sufficient portions of the field are thus deter-
mined, the locations of the closed loop poles are readily obtained
for various values of loop gain by the process described above.
These examples have demonstrated only a few of the many
possible applications of the potential analogy in network analysis.
The practical range of application would be greatly increased if
more convenient means were available for generating the amplitude
and phase functions., It is hoped that future workers will uncover

new applications and better tools for exploiting them,
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PHASE FUNCTION ANALYZER

Figure 1
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SET-UP FOR MEASURING POTENTIAL DISTRIBUTION

Figure 3
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