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ABSTRACT

It is demonstrated with experiments and theory that the per-
formance of an axial flow pump can be described very accurately by
application of two-dimensional cascade theories including the thickness
effect of the blades on the flow, The blade thickness is found to be an
important parameter which is mainly responsible for discrepancies
between the experimental results and predictions of '"thin-airfoil"
cascade theories. Three-dimensional effects and the effect of the
boundary-displacement thickness on the cascade flow are shown to be
negligible for the case of the axial flow pump of high stagger angle and

low aspect ratio, which was the case for the present work.
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APPLICATION OF CASCADE THEORIES TO AXIAL FLOW PUMPS

I. INTRODUCTION

This paper is concerned with the analysis of application of
cascade theories to axial flow pumps. An axial flow pump, in its
simplest form, has a cylindrical cuter casing, in which an impeller
congisting of a hub section with attached blades is mounted. The
rotation of the impeller imparts energy to the axially approaching fluid.
The flow through the blade system is usually analyzed in two steps.
First, an effective axisymmetric meridian flow, which accounts for the
radial shift of the stream-lines in the meridian plane, is determined.,
The influence of one blade upon another, flow turning and other physical
effects are then treated on this cylindrical surface in the second step.
Under some conditions the stream-line shift is small and it has been
found possible to assume that the flow passes through the impeller on
straight, circular cylindrical sections concentric with the casing., The
flow in each of these cylindrical sections is then developed into a plane.
The blade system appears in this plane as a two-dimensional lattice or
cascade as shown in Fig. 1. The cascade is described by the ratio of the
chord to the spacing, called solidity, and the angle, called the stagger
angle, between the perpendicular to the chord and the cascade plane., All
airfoils of the lattice are identical., The flow through a lattice of airfoils
has been determined theoretically with the assumption that the flow is
inviscid, incompressible and irrotational (1)=zj The viscous effect may be
estimated later by use of well known boundary-layer theory as outlined

in references (2), (3), (4).

A
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Numbers in parentheses refer to the references at the end of the text,



The case of thin blades with a small camber ('"shallow' mean line)
is particularly susceptible to potential flow analysis., Theories of this
kind are called "thin-airfoil theories'"., Among the first of such theories
to achieve widespread use is that of Weining (5). He treated the case of
a cascade of circular arc airfoils of zero thickness. Many papers have
appeared in recent years on this subject, and among the most noteworthy
may be mentioned the work of Traupel (6), Katzoff (7), Klingmann (8)
and Rannie (9).

Cascade theories, when used in conjunction with estimates of the
stream-line shift of the particular blade section considered, have resulted
in successful design procedures and methods of analysis for high per-
formance axial-flow compressors., An excellent comprehensive review
of these problems is given in a recent series of NACA reports (10).
However, it has been reported (11) that for certain types of axial flow
pumps these procedures are inadequate. These pumps are characterized
by low blade angle and a relatively small ratio of blade height to axial
extent. Axial-flow water pumps usually have such geometries due to
limitations of construction, motor speed and expense., As a result such
devices as a rule have few blades of low blade angle (high stagger angle)
with ratios of blade height to chord length of one half or less. In addition
- the low blade angles result in a machine operating at much lower flow
coefficients {see notation Appendix I} than are typical for modern high-
performance compressor stages, Thus, for such designs the range of
typical performance parameters {i.e,, head coefficient, flow coefficient)

is significantly different from that experienced in the compressor field.



It is not uncommon in axial flow pump practice for one blade to
subtend an arc of 60-70°, The small ratio of blade height to chord,
with the axial projection of the blade frequently being equal to or ex-
ceeding the blade height results in an impeller of strikingly different
appearance than a fan or compressor. In fact, the bladed aspect
presented by so many axial flow-pump impellers is so pronounced that
one wonders whether 1argé deviations from the model of a two~dimension-
al cascade might occur, Considering this, some designers doubt whether
two-dimensional cascade theories are even meaningful for axial flow
pump designs (12}, Yet again many axial-flow pumps have been designed
by applying two-dimensional, isolated airfoil data in connection with
certain empirical corrections (13), (14). Some of these methods pro-
duced fair designs but have not been satisfactory in certain cases of low
aspect ratio and modest solidity as observed by Bowerman (I1). In view
of all these facts Bowerman made an attempt to establish theoretical
corrections to the performance of isolated airfoil sections when subjected
to the influence of the cylindrical boundaries of a pump. His method
takes into account the interference effect of one helical blade upon another
in the presence of a cylindrical hub and case. For this purpose the
blades were replaced by several discrete, radial vortices of constant
strength from hub to tip. An exact solution was obtained for a single
vortex and the effect of a complete blade was built up in an approximate
way by superposition., The effect of the blade thickness was neglected
completely.

However, to determine the validity of his approximate theory,

Bowerman designed a two-bladed test impeller of the free-vortex type



as shown in Fig. 2. The performance of the impeller was then
evaluated by measuring the distribution of the static pressure on the
blades using the method of {15), and these measurements were employed
to determine lift coefficients. BSince the test results seemed to agree
very well with his interference theory, and showed rather severe
deviations from thin air-foil theories, Bowerman concluded that two-
dimensional cascade theories do not predict properly the performance
of axial flow pumps. A strict comparison was only made at zero angle
of attack since his design method was restricted to this value. It was
found that the measured lift coefficients were about twenty to twenty five
percent lower than the values determined by cascade theories for air-
foils of zero thickness. These results are disturbing since much
research has demonstrated overwhelmingly the accuracy and usefulness
of the cascade approach, in connection with the boundary-layer concept,
for predicting the performance of other turbo-machines,

The comparison of compressor and pump geometries, previously
mentioned, reveals that the pump utilizes a smaller number of blades of
moderate thickness, lower aspect ratio and higher stagger angles than a
compressor. PFreliminary comparison of rather skefchy results from a
current cascade theory including the effect of blade thickness {6) indi-
cated that this effect may be much more important for pump designs of
the type described than a typical compressor design, Therefore, rather
than abandon what has proved to be a fruitful design procedure for a
difficult and tedious calculation of three-dimensional effects, it seems
necessary to examine the possibility of blade-thickness and boundary-

layer effects being responsible for the deviations quoted by Bowerman.



Thus, it appears desirable to reconsider in detail the performance of
Bowerman's test impeller,

The objective of the experimental and theoretical program
discussed herein will be outlined in the next section. A description
of the test facilities and of the test procedure is then presented and the
method of data reduction is explained thoroughly. The theoretical per-
formance calculations follow and are compared with the experimental
results. Finally the results of these investigations are reviewed

critically and their use for practical application discussed.

II. OBJECTIVE OF MEASUREMENTS

The objective of the experimental program is to establish the
cascade performance of Bowerman's impeller and to compare it with
modern cascade theories. The performance of an airfoil isolated or in
cascade is usually determined by dimensionless parameters called lift
and drag coefficients., The 1lift coefficient is a criterion of the blade
loading and the drag coefficient is a measure of the viscous losses,

Both parameters are functions of the particular blade and cascade
geometry and the angle of attack (defined as the angle between the mean
relative vector velocity and the chord line}, Of particular interest is
the lift coefficient for zero angle of attack and the slope of the lift curve,
since the lift coefficient is nearly a linear function of the angle of attack,
The design point of Bowerman's impeller was for zero angle of

attack. This was done with the expectation of superior cavitation per-

formance due to the particular mean-line chosen, However, his method



did not enable him to predict the lift-slope curve and hence also the
off-design performance of the impeller. Needless to say, it is of great
importance to be able to determine off-design behaviour and for this
purpose it is necessary to know the slope of the lift curve., An important
feature of interest is to find out if the discrepancy at zero angle of attack
previously mentioned extends also to the lift-slope curve.

To measure these quantities experimentally, it is necessary to
make extremely accurate flow surveys upstream and downstream of the
impeller at several different flow rates. Stream-line shifts, the 1lift and
drag coefficients corresponding to each stream-line and the section lift
slope as well as the cascade factor (the ratio of the lift-slope in the cascade
to the isolated case) can then be calculated. The actual performance so
found is then compared with several cascade theories including thickness
and viscous effects,

Any type of axial-flow pump could have been used for the present
study. However, because of the importance of this problem for the
designer, it was believed best to use the same equipment Bowerman
employed in his work in order to reduce the uncertainty in applying the

results to his machine,

III. TEST EQUIPMENT

1. Impeller,

The details of the test impeller used by Bowerman are shown in
Fig, 2, which is taken from (11). Briefly, Fig, 2 shows the test pump
and its blade sections from hub to tip. The geometric parameters are

also listed in this figure. It will be seen that the solidity is nearly constant



from root to tip with a value of about 0,716, The aspect ratio is

h/c* = 0.556 and the stagger angle of the mean section is y = 66.40°,
The blade sections consist of symmetrical NACA 65 camber lines and
NACA 16009 thickness functions. The thickness is scaled linearly from
tip to hub. The isolated lift coefficient of the mean section is quoted by
(11) to be CL = 0,604 and the lift coefficient in the cascade is predicted
to be CL = 0.558, The design head coefficient amounts to W qa- 0.126
at the design flow rate a= 0.315, The design flow rate occurs at the
flow rate ¥, , indicated by the venturi meter at about Y, = 0.295 as
observed by Bowerman, This is due to some wall-boundary layer

blockage. In the following the indicated flow rate ¥, is used for pre-

sentation of the measurements,

2, Test Facilities,

The experimental facilities of the rotating machinery laboratory of
the California Institute of Technology have been discussed many times in
Hydrodynamic Laboratory reports (15) and (11). Therefore, only a brief
discussion will be given here.

The test impeller is driven by a dynamometer, which is speed-
controlled and permits accurate torque measurements, The flow is
supplied by a speed-controlled service pump and is measured by a venturi
meter.

The pump installation deviates from that of (11) by several counts in

so far as the rotating manometer was disconnected and that the discharge

S
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— See notations in Appendix I at the end of the text.



section was extended by a plexiglas ring. The measuring station down-
stream was chosen at 2.5 in. axial distance from the trailing edge,
where uniform-flow conditions can be expected. This station is located
at {x/c) = 0.5 with respect to the absolute flow.

The measuring probes are attached to a probe holder, shown in
Fig. 3, which is mounted on the outside of the test pit. A special joint
was machined which allows the calibrated probe positions to match
accurately the probe holder readings. The probe holder permits accurate
angle and pressure readings for any radial position. The upstream
station is taken at the same location as (11} reported. Three static
pressure taps were located in this plane to provide an accurate reference
point for all measurements. All pressure measurements were conducted
with an 0.2 psi Statham strain gage in connection with a Baldwin, high
precigion amplifier and bridge circuit. The flow angles were determined

with the same equipment.

3. Measuring Probes.

The flow angles are measured with a wedge probe as shown in Fig,
4a., The static pressure is recorded by a static pressure probe of such
design that no disturbance is produced by the instrument itself. Fig. 4b
shows the dimensions of the probe. The total pressure of the mean-flow
passage /) = 0.70 - 0,90 is measured with a ducted total pressure probe,
known as Kiel probe (Fig. 4c). For all other positions a boundary-layer

probe was employed for very accurate measurement of the total pressure

near the casing and wall. The probe is shown in Fig. 4d.



4, Expected Measuring Errors.

Based on past experience, the error of the static pressure probe
should be smaller than + 1 percent, that of the total pressure probe
about = 1/2 percent and that of the angle or wedge probe on the order of
+1/4 percent. These deviations are referred to two-dimensional flow
surveys. In such a case the velocities should be measured accurately
in the range of + 0,75 percent. The lift coefficient should be close to
+ 3 percent and (dCL/da) should be obtained with an accuracy of £3.72
percent in the case of a drag coefficient of the order CD = 0. 008, If
higher drag coefficients occur near the hub and the casing, higher
deviations are expected. In view of these facts, extremely careful and
accurate measurements are necessary to establish a reliable cascade
performance. Accurate calibrations of all instruments, especially of the
wedge probe and static pressure probe, have to be established before the
internal contimn/ty and reliability of the results can be checked and final
calculations performed.

Results of the detailed calibrations are mentioned in the next

section where the test procedure is described generally.

IVv. TEST PROCEDURE

The strain gage was first calibrated over a wide range of pressures
using a water manometer as a reference station as shown in Fig. 5. The
calibration was usually checked after each test run and was found fairly
good for all the measurements. The flow angles at the inlet and discharge

station were measured for different flow rates. The angles at each radial
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station were obtained by rotating the probe holder to that position where
the differential pressure of both sides of the wedge probe indicated zero
on the Baldwin bridge circuit. The test circuit of the tubing was
arranged in such a way that all air bubbles could be removed by bleeding
the system as shown in Fig. 5. The speed of the pump and the service
pump motor was controlled by automatic and manual control. The
water level of the test pit was kept constant at the 3.0 ft mark above the
laboratory floor. Two angle measurements were obtained for each flow
rate, which showed very good agreement. After consistent flow angles
were established/ the total and static pressureswere measured at each
station with reference to a total pressure at the middle passage of the
inlet or three static pressure taps placed symmetrically around the inlet
diameter of the casing. Each probe, i.e., static pressure probe, ducted,
and boundary layer total pressure probes, was set according to the
respective flow angles and the magnitude of these pressure differentials
was read on the Baldwin indicator,

Special care was necessary for reading average values of static
pressure differentials because of the unsteady characteristic of the test
system and the small pressure gradient across the impeller passage.
Several measurements were obtained and repeated very well. The torque
was measured by the reaction torque of the motor casing on a strain gage
which was connected to an accurate mirror galvanometer. The torque is
measured by weights after the zero position is calibrated. The static
pressure probe was calibrated in the free surface tunnel of the hydro-

dynamic laboratory and the test section itself, recording nearly negligible
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deviations. It was found that the wedge probe is mainly responsible
for errors in the range of 1° to 3°. The wedge probe was calibrated
using an airjet and the test section where the blades were removed. The

zero position of both calibrations did not coincide because the alignment

of the probe differs somewhat in the actual test set-up.

V. DATA REDUCTION AND PRESENTATION OF RESULTS

1. Velocity Profiles.

Two separate sets of downstream velocity profiles were calculated
from the m;asured velpcity head and flow angle. In the first case test
runs were cond/ucted‘for the following flow rates, indicated by the venturi
meter: Y. = 6.280, 0,2835? 0.290, 0.300. The accuracy of the measure-
ments is checked by ckyompariso‘n of the mass-averaged flow rate with

the flow rate indicated by the venturi meter. The mass averaged flow

rate is defined by the following equation;
7
d
p, 0P 97
77
[T n dy
2

H
and is obtained by numerical integration. Since an average error of

v (1)
about 4 percent was found, new measurements were necessary in view
of the desired accuracy. A new wedge probe was manufactured and
calibrated together with all other probes. Then a new reference station
was selected by placing three static pressure taps symmetrically in the
plane of the upstream measuring station. It was learned from the first

measurements that a boundary-layer blockage of about five percent occurs

at the upstream station. Therefore, only the two flow rates are
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measured again whose average value represents the design flow rate
'73 = 0.315. The two flow rates are indicated by the venturi meter to be
%i = 0.290 and V¥ = 6.300.

Figure 6 shows the upstream velocity profile for ;T 0.300 with
about five percent higher velocities at the middle passage than indicated
by the venturi meter. Two measurements are carried out for = 0.300,
one without blades and zero speed of the impeller., Little difference is
shown by the two respective curves of Fig, 6. The boundary blockage
seems to be reduced to a small amount at casing and hub, when the
blades are rotating. Generally the highest velocity defect remains the
same at the casing in both cases. The same effect is already reported
in (1). The velocity distribution is checked by the flow rate Y. = 0.290
and a linear relationship is found, which is to be expected. The accuracy
of the inlet measurements is in the range of 0,60 percent, obtained by
comparison of the mass-averaged and the indicated flow rate. This ex-
cellent result is valid for both cases, with and without blades. It can be
concluded that the static pressure probe and the wedge probe are per-
forming well and are able to investigate the actual flow pattern,

Figures 7 and 8 show the velocity profiles downstream for the
indicated flow rates . = 0.290 and ¥ = 0.300. The velocity of the
middle passage is higher than the respective inlet velocity. This is
apparently due to increased boundary-layer blockage at casing and hub.
The velocity increase amounts to about two percent referring to the inlet
profile of both flow rates. Both downstream profiles are nearly

symmetrical with respect to the middle passage, only the velocity defect



is somewhat higher at the casing. The measured angles of the absolute
flow are also shown in these diagrams. The angles are checked several
times and repeat fairly well with deviations of about 1/4 degree. The
measured mass-flow rate of ¥ = 0.300 deviates by about one percent
and that of \¥. = 0.290 by about 0,42 percent from the mass flow indicated
by the venturi meter,

The static pressure distribution agrees perfectly with theoretical

predictions, calculated from the following equation

y, - é[(fz%iﬁz)Jf(_LZ;_”d/_‘i)](g—@)vb (gi) (2)
hub 9

which is derived from the simple equilibrium condition

/ dp Cf (3)

£ dr r

as shown in Appendix II. Equation (2) is evaluated by taking small
intervals from hub to tip. Since the static pressure is measured several
times near the hub and is consistent, its value is used as the reference
pressure in the above equation. Figures 9 and 10 show the theoretical
and measured pressure distributions. Small deviations occur near the
boundaries, while the middle passage performs exactly in accordance

with the simple, two-dimensional theory.

Z. Streamline Shift between Inlet and Discharge Station.
The streamline shift is calculated between the measuring stations

upstream and downstream by satisfying the continuity equation graphically.
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A dimensionless flow-parameter

43 = R pp - dy (4)
u}

is plotted versus the radius ratios 7§ 1 and & 2 The difference of the
7 ordinates indicates immediately the streamline shift for a given
capacity, Finally the percentage streamline shift is plotted in Fig. 11
for f. = 0.290 and ¥ = 0.300. The highest shift of about 1.8 percent
occurs near the hub section for the flow rate V¥ = 0.300. For the other
flow rate, ¥, = 0.290, the largest displacement of about 1.3 percent is
again near the hub. The trend of both curves seems to be similar, in-
dicating a positive shift at the hub and very small negative shift at the
tip. 4Near1y two-dimensional flow exists at the middle passage 7 = 0.80

to 7 = 0,95, where it is expected that the experimental data will be best.

3. Total Pressure Loss of Each Streamline.
The total pressure loss associated with each streamline is derived

from the Bernoulli equation of the relative flow.

2
P/ , W,a _ u,a ) ’32 . Nz _ u: - A P}g (5 )
J 23 29 ¥ 29 23 '8

The total-pressure loss is presented in dimensionless form by the follow-

ing equation

(A(;’m) 4 hy

(“/5) (4/3)

z 2z 22
-, é[()‘,’-%}-ﬁé?}ﬂ -/qhd;h—g-/qu:h] (6)

which uses only measured quantities, Equation (6) is derived in

Appendix II. The streamline shift is considered by selecting the actual
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values VY 1 b4 29 D 5 Ahst for each streamline, Figure 12 illustrates
the total pressure loss of both flow rates. The loss coefficient is plotted
versus the radius ratio of the downstream station. Both curves have a
parabolic shape with minimum loss from w = 0,005 to w = 0,007 at the

flow passage # = 0.80to # = 0.816. Near the hub and casing the losses
are of the same order with about w = 0.04 to w = 0,06 for both measure-
ments, The total pressure loss of the smaller flow rate is slightly higher
at the middle passage. This is due to higher head generation. The drag
coefficients of the design-flow rate are also shown in this diagram,
demonstrating again the hgihest losses near the hub. A detailed discussion

of lift and drag coefficients follows in the next section,

4, Lift, Drag, and Lift Slope (dCL/dq) of Each Stream-~line,

Lift and drag coefficients of two-dimensional cascades are only
defined for velocity triangles of constant meridional components. The
meridional velocity is expressed by the dimensionless velocity co-
efficient Y . In the case being investigated it is found that the axial
velocity is not constant along each stream-line. This is due to some
average stream-line shift, The amount of the shift is shown in Fig. ll.
However, the measurements upstream and downstream of the impeller
do not explain the source of the observed shift, which might be caused
by the impeller alone, by non-uniform blockage of the boundary-layers
on hub and casing downstream of the impeller, or by both effects to-
gether. A possible interference of the boundary-layer blockage and the
stream-line shift caused by the impeller alone cannot be determined by

simple methods. Therefore, it is assumed that the performance may be
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approximated by using mean values of the up and downstream meridional
velocities and their radial positions. In other words a fictitious or com-

parative cascade is thought of as being at the average radial position

s e o

with the constant meridional velocity

~ AR A 8
Yo s (®)

The performance of that two-dimensional cascade is defined by the
average lift and drag coefficients, which are calculated in the usual
manner as shown below., The lift coefficient is obtained from the well

known equation: {10)

/ li ! /
Cow Bl [ - tonfl T~ Gy danfl )

The above equation is evaluated by calculating first the inlet and discharge
angles of the fictiticus cascade. To distinguish the measured from the
averaged values, primed letters or numbers are assigned to the fictitious
cascade plane., The discharge angle ,[32‘ is found from the measured

quantities by using the conservation of momentun&?cuu)zz

/ A
#anﬁz = ] - 5 : #ahJ«‘“ (10)

The inlet angle is defined by:

7Lﬁvv /3,/

Then the mean angle ﬁo:) is found from the condition of the mean relative

(11)

“Ql,&p

velocity:
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! !
%ah/‘;& = -Z.l— ( '/'amﬂll + Jﬂlﬂﬂz ) (12)

The drag coefficients are derived from the total pressure-loss co-
efficients. The latter are related to the cascade plane by the following

equation
/ 2
2 £ojﬁ-o ! "
€2 7 @ (_7—) ol (13)

which is also derived in Appendix II. Finally, the lift and drag co-
efficients of the design flow rate f/- = 0,295 are presented in Fig. 13 as

average values of the measured flow rates ‘,9, = 0,290 and ¥, = 0.300.

The efficiency e of a cascade can be shown to be (17)

(2) =
e = / - <y Jl‘hﬂ,,’g “‘ﬁ.a/ (14)

and is plotted for each radius ratio in Fig. 13 for the design flow rate
also. The highest efficiency occurs at the radius ratio = 0.800 with a
value of e = 0.94. This efficiency corresponds to a lift coefficient of
CL = 0,525 and a drag coefficient CD

lift data of Ref. (11) and isolated lift coefficients are compared with the

= 0,006, Theoretical lift coefficients,

measured, averaged lift coefficients in Fig. 13 also,
Finally, the lift slope (dCL/da) is obtained from finite differences
of the respective lift coefficients and mean angles of the two measured

flow rates according to the equation:

dC‘_ o ACL. !
T =~ AR (15)

The result is plotted versus the radius ratio in Fig. 14, and is compared

with theoretical predictions. In Fig. 14 the lift slope is presented in
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terms of the cascade coefficient k, defined by Weinig as:

Koos (5%)/%);“@&4 (el

Due to the very small angles of attack and small differences in CL’ only
approximate, graphically averaged results can be presented, which seem
to deviate unexpectedly from theoretical predictions at hub and tip
section. Comparison with values of the first set of measurements
reveals the same trend for the cascade factor. In that case differences
are obtained between the following flow rates: .= 0.2835, 0.290, 0.300,
Therefore it can be concluded that accurate measurements of the lift
slope or cascade factor k are beyond the accuracy of the performed
calculations and measuring instruments. But the trend of the cascade
factor seems to be valid for the mean passage, where three-dimensional

effects and total pressure losses are found to be negligible.

5. Torque and Performance Measurements.
The measured torque values are presented by the dimensionless
torque coefficient, T , which relates head and flow coefficients to the

efficiency by the following equation:

e - P (17)

The torque of the impeller was measured at the beginning of the test
program. The performance curve of the middle passage was established
at the same time and compared with the results reported by Ref, (11).
Efficiencies, head and torque coefficients of both tests are plotted versus
the flow rate in Fig. 15. It is noted that the measured torque coefficients

agree exactly with those given in Ref. (11), only the head coefficients are
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about ten percent lower. This reduces the efficiency by ten percent. For
example, the efficiency for ¥ = 0.300 is calculated to be e = 0,80 instead
of e = §.90. Since the difference of both independent measurements

could not be explained, the test facilities were checked carefully to
assure the same conditions. It was found that the radial clearance of the
impeller was not uniform and amounted to a mean value of 0,027 in.

Since such a large clearance was not anticipated, the impeller was re-
paired and a uniform clearance of 0,005 in, was obtained. New torque
and performance measurements were then conducted. Their result is
plotted in Fig, 15, Comparison with the previous result shows that the
head and torque increased atout ten percent, while the efficiency remains
the same.

Larger deviations of both head distributions are noticed in the
range of smaller flow rates. This is mainly due to different instrumen-
tations and measuring technigues. The old data are ob'%:ained with a
water manometer, while the new measurements are conducted by employ-
ing a high precision strain gage in connection with a Baldwin bridge
circuit and amplifier., It is believed that the last method gives more
accurate results, For example, the shut-off head could not be measured
with the water manometer, but is determined by the strain gage to be
¥ = 0,40, The performance curve is completed in the range of small
flow rates by the last technique and shows nearly a straight line for
versus ¥ . An unstable point is indicated for the flow rate ¥. = 0,110,
as expected for an axial flow pump of this geometry.

The accuracy of the presented test data is checked finally by

comparing the overall performance, which is predicted independently by
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torque, total-pressure loss and cascade-loss measurements., The torque
measurements indicate an overall efficiency of e = 0,804 for the design
flow rate 504 = 0.315. The overall efficiency based on mass-averaged

total-pressure loss

/,,:'sz-a/?

w = < (18)
d
[ 2w
and mass-averaged total head
N
;. hrrvd (19)
J
JETEL
A
is calculated according to the relation
e = —“:—L]U-—::‘— (ZO)
Yo+ w

and amounts to e = 0,82, The mass-averaged cascade efficiency is

obtained from the following equation

s . /hfi%ec-a’z (21)
[?»ﬂ dyp

14
and can be shown to be in the neighborhood of e = 0.80to e = 0.83. As

a last check on the consistency of the experimental data the torque is
calculated from the downstream measured angles and velocities, The
torque coefficient is found by numerical integration of the following

eguation -
— 2 2
7 = e é(“ * al 22
- (1~ 77) /h PR @2)

which is derived in Appendix II. The calculated value of T = 0,041

deviates only 1.6 percent from the actual torque coefficient. A com-
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parison of all efficiencies quoted demonstrates an excellent agreement

of all measurements and calculations. In particular the error in C nd

L2
CD is smaller than * 2 percent. The head and flow coefficients are

measured within 0,50 percent as reported earlier., Therefore, it can
be concluded that very consistent and reliable results are obtained. The

possibility of predicting these results by various cascade theories is

next examined.

VI. THEORETICAL PERFORMANCE CALCULATIONS

The theoretical performance is calculated for the design flow rate
with zero angle of attack by following several methods, which account
for the effect of the blade thickness on CL and lift slope. In all cases
the two-dimensional, incompressible inviscid and irrotational flow is
assumed., The cascade calculations are presented here and are later
compared with the experimental results. Deviations between theoretical
and experimental results are anticipated in view of the viscous losses.
Therefore, an attempt is made to estimate the viscous effect on the

cascade performance as shown in the last section of chapter VII.

1. Schlichting's Method of Singularities,

The two~-dimensional performance of each cascade section is
calculated by the method outlined by Schlichting in (17). Schlichting
shows in this paper, that the aerodynamic parameters can be found for
any cascade geometry by the method of singularities. This method was
first developed by Birnbaum (18) and Glauert {19) for the isolated airfoil.
Schilhansl (20), Betz (21) and many others have extended the singularity

method to particular cascades of thin airfoils. The general solution for
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any blade shape is presented by Schlichting., He also includes the
thickness of the profile, It is the basic idea of this method, that any
airfoil may be decomposed into a camber line and associated thickness
profile. As an approximation, the latter is distributed on the chord
rather than on the camber line. The flow field around the cascade can
now be described by superposition of the flow field around the thickness
profile and the flow with angle of attack around the camber line without
thickness. The singularity method replaces the camber by a continuous
vortex distribution and the thickness profile by a continuous sink-source
distribution. The effect of the cascade can be calculated by superposition
of the singularities of all blades. The magnitude of the singularities has
to be determined by satisfying the cinematic boundary conditions due to
the given camber and thickness profile. Schlichting uses the exact
boundary conditions, including all induced velocities. Because the exist-
ing thin airfoil theories partly neglect the induced velocities, Schlichting
claims a better result. The aerodynamic parameters are given in closed
integral form in the case of the isolated airfoil but are necessary to be
presented by series expansions for the cascade. This is mainly due to
the complex mathematics involved for calculating the induced velocities
according to the Biot-Savart law. The coefficients of the series are
determined by satisfying the boundary conditions due to thickness and
camber, Since Schlichting distributes the singularities on the chord
instead of on the camber, the boundary conditions can be satisfied approxi-
mately on the chord as done by all thin airfoil theories. Generally the

boundary conditions have to be satisfied at infinite many points on the chord.



-23-

However, a '"three-point method' may be adopted for practical appli-
cations {(22). The three-point method satisfies the boundary conditions
on the 3/12, 7/12, and 11/12 points of the chord. This reduces the infinite
number of equations to a system of only six linear equations. RKach
equation has six unknowns and can be solved by the method of determi-
nates. Scholz (22) and Wieghardt (23) have demonstrated that the three-
point method gives nearly exact solutions for isolated airfoils. |
Schlichting uses the same principle for the cascade and finds close
agreement of this method with exact solutions and actual test results as
outline in his paper (17). Schlichting's three-point method is applied in
this investigation., The aerodynamic parameters are then found by
solving the system of six linear equations, each with six unknowns as
mentioned above., An accurate, converging solution is determined by
three successive approximations as suggested by Schlichting. The
solution is somewhat simplified because certain coefficients are presented
by Schlichting in tables for various cascade configurations. However,
more time was necessary than reported by Schlichting for determination
of 1ift, lift slope and pressure distributions at three radial positions.,
Instead of 27 hours as he reports for a typical cascade, about two months
of continuous work were taken up for completion of the calculations. In
view of the time involved it seems desirable to work out general solutions
for most common compressor and turbine cascades of NACA 65 camber
lines and several thickness distributions, Meller has recently published
such solutions for the symmetrical cambered airfoil families {25), The

result is presented in several design charts, not available at the time
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when this progfam was started. A comparison between the predicted
performance obtained by Schlichting's method with Bowerman's three-
dimensional theory and other thin airfoil theories is shown in Fig, 16,

In the case of zero thickness, Schlichting's theory shows about 5 percent
lower values than Hlawka's two-dimensional theory {25), and deviates
about 8 percent from Rannie's approximate solutions as reported in Ref,
{11). The result is presented as percent difference from the isolated lift
coefficient as given in Ref., (11). From Fig, 16 it can be seen that all
cascade theories without thickness deviate about 15 to 20 percent from
the three-dimensional prediction of Ref. (11), Schlichting's two-
dimensional theory predicts nearly the same lift coefficients as Bowerman's
three-dimensional theory., Both curves of lift versus radius ratio are
congruent and deviate negligibly at the hub. This result illustrates the
general validity of two-dimensional cascade theories including blade
thickness.,

The cascade factor k is predicted for the case with and without
thickness, Figure 14 presents these results for different radius ratios.
Schlichting's theory shows negligible deviations in both cases. Rannie's
result, however, deviates about two percent from Schlichting's theory.
It may be recalled that Rannie's theory does not include blade thickness
(9).

Figure 19 illustrates the theoretical pressure distributions in terms
of a static pressure differential coefficient cpu The experimental
pressure distributions of Ref. (11} are also shown for comparison.
Finally, the results obtained by Schlichting's exact theory are compared

with Meller's charts for the NACA 65 airfoil families of 9 percent
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thickness. Good agreement is found in the range where his curves could

be interpolated for the given cascade.

2. Simple Approximation of Thickness Effect in the Cascade by a Two
Point Method.

Schlichting's exact theory is still complicated and consumes too
much time for practical applications. Meller's charts, however, do not
permit a basic understanding as to how thickness affects the lift of an
isolated or staggered airfoil. Therefore, a simple theory is developed
which gives a better understanding of the thickness effect in the cascade.
This method is outlined below and derived in Appendix III,

To study the effect of thickness the profile is approximated by an
ellipse. The major axis is the chord and the minor axis represents
the maximum thickness. Schlichting has shown that the profile itself
does not induce lift, Therefore its effect on the flow is similar to a
uniform flow passing a body without circulation. Since the effect of a
circle is known in a uniform flow without circulation, we map the ellipse
to a circle in the complex plane. A uniform flow passing the circle
without circulation can now be established by the method of complex
potentials (26). The flow of the complex plane and the flow of the physical
plane are connected by the transformation function. Therefore the thick-
ness effect of the profile can be established in the physical plane.

After some mathematical operations it becomes evident that the
effect of thickness is described in our case by a doublet at the one-half
point on the chord. The lifting effect of the camber can be described by
the effect of a single vortex in the flow with angle of attack. Thin-airfoil

theories have shown that accurate results are obtained by placing the
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vortex at the one-quarter point of the chord. The boundary conditions
have to be satisfied at the three-quarter point as outlined in Ref. 2mn.

A simplified method of singularities can now be applied to the cascade.
Instead of continuous vortex and sink-source distributions we use only
one vortex at the one-quarter point and one doublet at the one-half point
as shown in Fig. 21. The boundary conditions are satisfied at the three-
quarter point, After this the lift coefficient is obtained by the method of
complex potentials. The result can be expressed in closed form. This
is due to the simplicity of the singularities used here. The lift coeffi-

cient is given by the following equation derived in Appendix IIL

/
c, = 2 o £G w) N 23
L e { Jinol + [J’, F[J’,C'J ( )

G and F are functions of solidity and stagger angle alone and are derived
in Appendix III, One of the first findings is, that the thickness does not
affect the lift slope. However, the lift itself changes proportionally to
the thickness. For zero thickness eq. (23) yields the same result as
reported by McCormick in Ref.(27), McCormick also shows in his paper
that the two point method described, gives good results for flat plates.
He concluded that the method may only be applied to cascades of solidity
smaller than G < 0. 75.

Equation (23) is evaluated for the middle section, hub, and tin of
the present test impeller., The lift coefficient of the middle section agrees
exactly with Schlichting's result, The largest deviation is found at the tip
section, where the highest stagger angle occurs. In summary it can be
concluded that the approximate theory illustrates quite simply the thick-
ness effect in the cascade. The theory is believed to be applicable for

all stagger angles smaller than 60° and solidities ¢ < 0.75. A com-
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parison with other test data should define the applicable range in greater
detail.

In view of Schlichting's, Meller's, and the results of the present
simple theory, it can be seen that the thickness effect is the most
important parameter which causes appreciable deviations of thin-airfoil
cascade theories from test results and three-dimensional approximations,

In the next chapter we compare the above results with the actual test data.,

VI, COMPARISON OF EXPERIMENTAL RESULTS WITH PREDICTIONS
OF CASCADE THEORIES

1. Lift Coefficient and Lift Slope.

Figure 13 compares the measured lift coefficients with the
theoretical lift coefficients, The latter are obtained from Schlichting's
two-dimensional cascade theory as outlined in the foregoing chapter.

The theoretical and measured lift coefficients are presented for the design
flow rate, ¥ = 0,295, with theoretical zero angle of attack. The measured
cascade efficiency and the corresponding drag coefficients are included in
Fig. 13, In addition, the measured lift coefficients of (14) and the isolated
design lift coefficients are compared with our experimental result.

In general, very close agreement is indicated between the two-
dimensional cascade theory and the experiment. The experiment demon-
strates about four to five percent smaller 1lift coefficients than predicted
at the middle passage, and excellent agreement at the tip and near the hub.
At the hub itself higher lift coefficients are measured than calculated.

This indicates some angle of attack due to the displacement of the wall

boundary-layers. In Fig. 17 the theoretical lift coefficients are corrected
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according to measured angles of attack. It is found that small negative
angles of attack occur at the middle passage and relative large positive
angles of attack at hub and tip due to boundary-layer defect. The
corrections are obtained from the theoretical lift slope values of each
radial section as given in Fig. 14, The test data are compared with the
corrected theoretical lift coefficients in Fig. 17. A surprising close
agreement is shown between the theoretical and actual lift coefficients.
This holds true over the largest part of the flow passage. Deviations
happen mainly at the tip section from 2 = 0.90to % = 1.00. This may
be explained by appreciable boundary layer velocity defects on the casing
in connection with some three-dimensional tip clearance flow, Since
large losses are indicated at these stations, the two-dimensional cascade
theory can hardly predict the correct angle of attack or performance.
Besides this the overall prediction of the two-dimensional theory is
excellent and far better than the result of (14) as illustrated in Fig. 13.
The measured values of (11) indicate about ten percent higher lift
coefficients at the middle passage, seven percent higher values at the
tip and nearly the same amount as obtained by our measurements. The
isolated lift coefficients deviate about 16 percent from the measured
values, but follow nearly a similar distribution over the radius as the
above wake measurements show.

The theoretical and actual lift slope values are compared in Fig.,
14, Lift slope data are obtained from the two measured flow rates
¥= 0,290 and Y.= 0,300 and are presented by the cascade factor k.

Nearly the same trend is indicated for slope factors which are reduced
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from the first set of measurements with ; = 0.2835, 0.290 and 0,300,
Excellent agreement between theoretical prediction and actual values is
demonstrated at the middle flow passage from # = 0.80to » = 0.90.
Rather severe deviations, however, are found at hub and tip. This is not
surprising, because the total-pressure loss and the streamline shift
reach maximum values at those stations, It is also understood that the
data at the hub and tip section represent only an approximate result,

This is due to the fact that those values could be obtained only from
averaged and interpolated test curves. Averaged values are used since
the lift slope cannot be reduced accurately enough from the difference,
eq, (15), when the difference in a is much smaller than any accuracy of the
flow-angle measurement. Therefore it can be concluded that an exact
determination of the actual lift slope is beyond the accuracy of our in-
strumentation and method of data reduction.

In view of the excellent agreement of the predicted and actual lift
coefficients, the negligible stream-line shift and the high efficiency of
the mean passage flow, it can be argued that the measured slope values
may interpret the actual performance most precisely and should be
correct. To show this point, the theoretical and actual performance

curve of the mean stream section is compared in the next section.

2, Theoretical and Actual Performance of Mean Stream Passage.

The theoretical performance curve Y versus Y is calculated for
the mean stream line by means of the theoretical lift slope and the
theoretical lift coefficient at zero angle of attack as shown in Appendix
IV. Hereby the flow rates are corrected according to the actual boundary-

layer blockage of about ten percent at the inlet station. This effect is
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found to be nearly the same for all measured flow rates, In Fig. 18

the theoretical head coefficients are plotted versus the indicated
theoretical flow rates, and compared with the actual performance curve.
Excellent agreement is found in the range of small angles of attack.
Because the theoretical head coefficients do not include viscous losses,
corrections are made according to an average drag coefficient of CD =
0.0l. This drag coefficient corresponds closely to the measured
coefficient. From inspeé‘tion of both curves it can now be seen that the
corrected head coefficients meet perfectly the actual performance curve
for small angles of attack between 70 = 0,20 and ¥ = 0.35, Therefore
it can be concluded that the measured lift slope of the mean section is
correct for the design flow rate, as mentioned in the previous section.
This result shows again the validity of the two-dimensional cascade
theory. Another check is presented in the next section, where the
theoretical and measured pressure distributions of (11} are compared at

7 = 0.80.

3, Theoretical and Actual Pressure Distributions.

The measured pressure distributions of the mean blade section
are presented for the design flow rate in Fig. 19. These data are taken
from Ref. (11)., The theoretical prediction of (l1) is shown as a dashed
curve in this diagram. Since Schlichting's theory is only evaluated by a
three point method, only three pressure differentials can be calculated.
These three values are plotted in Fig. 19 for comparison. However, the
result is sufficient to indicate the treﬁd of the pressure distribution pre-

dicted by the two-~dimensional cascade theory including blade thickness.
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It is noted in Fig. 19 that the two-dimensional prediction seems to agree
perfectly with the actual measured value at the leading-edge section. At
the middle section and towards the trailing edge somewhat higher values
are indicated by our theory, which does not include viscous losses.
However, the three-dimensional theory of Ref,(ll) predicts lower
pressure differentials than measured. The theory of (11} also does not
include the viscous losses. This finding demonstrates again the general
accuracy and usefulness of the two-dimensional cascade theory. Finally
in the next section the possibility of secondary effects of the blade-
surface boundary layers on CL is investigated.
4, Effect of Boundary-Displacement Thickness on the Cascade-Lift
Coefficient CL"

The viscous losses encountered in the flow over the blade profiles
of the two-dimensional cascade sectio;f.ls of the impeller are considered
in the foregoing analysis by the measured drag coefficients, which reduce
the lift coefficients according to eq. {9). However, the lift might also be
reduced by alteration of the profile shape due to the displacement effect
of the blade-surface boundary layers. This would cause further deviations
between experiment and theory and it is therefore desirable to determine
the effect of the boundary-layer displacement on CL of the mean blade
section. The mean blade section is chosen for the analysis, since two-
dimensional flow and high efficiency found at this section allow the appli-
cation of simplified boundary-layer concepts for calculating the boundary-
layer displacement, as outlined in (2) and (3). In particular, the boundary-
layer theory is able to determine the displacement effect by the total

displacement thickness of the blade surface boundary layers and their
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wake (28), as shown in Fig. 20. This figure is taken from (2). The
problem consists therefore of the two steps of calculating first the
displacement thickness in the cascade plane from the measurements
and investigating secondly the effect of the displacemént thickness on
the cascade flow.

The first step is done by application of Lieblein's method outlined
in {2) and (3) and reported in Appendix IV, which reduces the boundary-
displacement thickness of the trailing edge station {(as ratio of the chord)
to be d*’/c)te = 0.0148, This value is then used in the second step to
determine approximately the effect of the boundary layer displacement on
the cascade flow, For this purpose the cascade of the mean section is
approximated by a flat plate cascade of the same solidity and stagger
angle. The effect of the displacement thickness on CL is then investi-
gated for the particular case of zero angle of attack. The displacement
thickness itself is distributed linearly on both sides of the chord. In
particular it is assumed that the displacement thickness is equal on the
upper and lower side as shown in Fig. 22. The cascade flow can now be
calculated in the presence of the boundary layer displacement by the
method of conformal mapping, as outlined below and in Appendix IV. The

well known transformation (9)

N . _!_ P
Z = ;d/ /h(i__:fi_.) + ed, [ ( 'j _f’/ (24)
it s 7ot

maps the flat plate cascade to the circle plane. The complex velocity

function of this plane can be established by the following relation:
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Fzuy-ir= A+/8 + ' < + D [ (f+/ ) (25)

o) () §-
Since the velocities have to be the same at corresponding points of both
planes, the coefficients of the above equation can be determined from
the boundary conditions in the cascade plane. The respective points of
both planes are correlated by the transformation given in eq. (24). The
boundary conditions are discussed in Appendix IV. After the coefficients
of eq. (25) are established, we write eq. (25) again for the downstream
station., This determines the turning effect of the cascade in the presence
of a given, symmetrical, displacement function. In our case it is found
that the turning decreases due to the boundary displacement. The turn-
ing angle amounts to o = -0.124° for the assumed zero angle of attack.
This corresponds to a reduction in the lift coefficient, which amounts to
ACL = -0,0133. The final result is plotted in Fig. 23 for the cascade of
flat plates. Due to lack of more detailed information, it is assumed that
the lift slope remains the same in the presence of the boundary layer.
This seems to be justified, because the blade thickness also does not
influence the lift slope curve., Therefore, the new lift slope curve is
shown parallel to the curve without displacement effect. The above
result is now applied to the mean section of our impeller. From Fig. 13
it can be seen that the measured and the theoretically predicted lift
coefficients deviate about two to three percent. This difference is exactly
the amount which is indicated by the above calculations. Therefore it
can be concluded that additional effects on CL are relatively small, but
explain the last deviation of theory and experiment., This is the final

proof for the validity of the present work,
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VIII, SUMMARY AND CONCLUSIONS

To determine the effect of blade thickness, low aspect ratio,
high stagger angle, and modest solidity on the performance of an axial
flow pump, ‘performance tests and theoretical investigations were con-
ducted using the impeller designed by Bowerman (11}, Four independent
methods employed to check the internal consistency and accuracy of all
measurements revealed that reliable and accurate values of lift and drag
coefficients were obtained at each radial blade section. Although the
lift slope is found only approximately due to basic limitations of available
instruments, the general trend is substantiated by the internal consistency
of all measurements. The overall efficiency of the impeller is measured
and found to be 82 percent instead of 92 percent as reported in the
original investigation by Bowerman. The discrepancy is caused by
less accurate instrumentation and measuring techniques of (11) and the
small additional mixing losses between the trailing edge and the measur-
ing station downstream used in the present work.

The blade section or cascade performance of each radial position
is analyzed in the light of "'thin airfoil theories'' and modern two-
dimensional cascade theories including the effect blade thickness., The
viscous loss of each stream-line was determined from total pressure
measurements. The lift coefficient was then calculated taking into
account the measured stream-line shift and total pressure loss. These
calculated values were compared to the predictions of cascade theories
with excellent correlation. Deviations of two to three percent on the lift
coefficient were observed, however, and they are attributed to the

boundary-layer displacement effect on the blade surface. A
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simple theory was developed to account for the boundary-layer displace-
ment effect in a cascade of flat plates. The result of this analysis was
to cause a change of the lift coefficient of the direction and amount
reguired,

It is concluded that the blade thickness is mainly responsible for
the discrepancies between predictions of thin airfoil theories and the
actual performance of the axial flow pump observed by Bowerman.
Schlichting's two-dimensional cascade theory describes the effect of
the blade thickness on the cascade flow very precisely. Not only was the
lift coefficient predicted well by this theory but predictions of the lift
slope agreed well with the measurements where the latter were available.
These results were used to calculate the off-design performance of the
mean radial section, The agreement was excellent., The displacement
effect of the blade surface boundary-layer is found to be essentially
negligible for the Reynolds numbers of these tests. It is also indicated
that the displacement thickness does not affect the lift slope curve to
any degree. The agreement of Bowerman's theory with the experiments
is therefore thought to be largely fortuitous.

In the case of the present machine, the performance of the unit
could have been determined with an error of less than ten percent by
using isolated airfoil results (at zero angle of attack). The slope of the
lift curve should still be determined from the ''thin airfoil’' cascade
theory such as that due to Rannie. As an aid for rapid engineering
calculations a simple ""two point'' method was developed to account for
thickness and solidity. It is limited to values of the stagger angle less

than about 60° and solidities of about 0. 75,
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APPENDIX I

NOTATIONS AND SYMBOLS

C Absolute velocity

C Chord length

CD Drag coefficient

CL Lift coefficient

b Diameter

e Efficiency

F Force

FD Drag force

FL Lift force

g Gravity

H Total head or form factor (5*/9)

hst Static head

h Blade height

k Cascade factor

Kc Dimensionless velocity component in tangential direction
u

N Speed of impeller

P Total pressure

Q Capacity

q Source strength of unit length

paXe] Capacity factor
r Radius
s Spacing

T Torque



® 0~

D>

QU

o~

-4

Peripheral velocity or induced velocity

Velocity along real axia

Absolute velocity in complex plane

Induced velocity in direction of the imaginary axis

Relative velocity

Coordinate of real axis

Coordinate of imaginary axis or coordinate normal to blade surface

Complex coordinates of physical plane

Circulation

Total camber angle

Angle of attack

Flow angle measured between axial direction
Stagger angle

Absolute flow angle

Boundary layer displacement thickness
Complex coordinates of circle plane

Radius ratio (r /r )

"Momentum thickness

Momentum thickness parameter (Q/C)X/( ¢ /cos ﬁx)
Angle of radius vector in circle plane

T = 3.1415

Density

Solidity ¢/s

.. 3 2 2
Torque coefficient T%f Ty Ugp (1— ’?h )]



-4 7 -

Y Flow coefficient or {low rate (cm/uT)
W Head coefficient I—I/(uTZ/g)

w Total pressure loss coefficient APm/ /(uTZ/g)
Subscripts:

D Drag

L Lift

T Tip

h Hub

i Indicated

1 Lower surface of blade

jos! Meridional

tot Total

te Trailing edge

u Tangential or upper surface of blade
o’ Mean values of cascade

G Free stream values

o Conditions of zero angle of attack

1 Upstream measuring station

2 Downstream measuring station

Other Notations:

/
Ideal cascade plane

Mean, averaged values
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APPENDIX II

DATA REDUCTION

1. Calculation of Mass Averaged Flow Rate,
The data are reduced by using dimensionless parameters. The
through flow or meridional velocity component c is determined by

the dimensionless flow coefficient

A W
Urp is the tip speed of the impeller at the radius T Each radial
position is described by the dimensionless radius ratio » .
(2)
? = I‘/ I';,
The mass averaged flow rate ¥ is obtained from the definition
T
— 2% Z 7 Com df
i
Crn = A (3)
27 2 rdr

which can be written in dimensionless form by using the above relations

and the actual dimensions of the impeller:

v =

4

d /
/h-w 2 /w,?,d? (4)
/A fde h

The above equation is evaluated by numerical integration. Then the

mass averaged flow rate ¥ is compared with the flow rate ¥ i indicated

by the venturi meter,
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2, Theoretical Prediction of the Static Pressure Distribution at the

Measuring Station.
The static pressure or static head distribution h{r) is derived
from the simple radial equilibrium equation of two-dimensional flow:

2

dh Cu

Ar g.r J5)

. . 2 . .
Using a small interval Ar, (cu /r) can be assumed to be linear with
respect to r. Then the above equation can be integrated if all values are
known at one position. This position is taken at the hub at the radius Ty

and the static head h, . The integrated equation is

h
[ed) s ()] (r-n) vk (6)
h = '2’? r /u + - & ]
which may be rewritten by using the dimensionless parameters s

and the relation
Cu = Cuy %ahd,aé;

to present finally the theoretical prediction of h{r) at the measuring

station:

TR D B e o R s T R A

The angle ) is the absolute flow angle as shown in Fig. 1,

abs

3, Total Pressure Loss of Each Streamline.
The total pressure loss is presented by the dimensionless coefficient

w which is defined:

Y. 2
wo= s
(475 ) (“/g )

(8)
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The total pressure loss coefficient is obtained from the Bernoulli

equation of the relative flow:

2 2 2 2

W, u, W, 73 A%
g 23 2y T T . ©

Inspection of the velocity triangles gives the relations

2 2 2

W, —u, = Cm (10)

’

2 2

2
W, - u, = Cy

2
, c,,,z - 2"’15‘4;

{11)

which define the total pressure loss coefficient by inserting them in the

above equation and using dimensionless parameters as follows:

A"/—a / 2 2 2
w = (u,-z/g) t 3 [(‘ﬁ‘ﬁz) + 272~f2 #mhd;h - )‘i-/qhﬁ‘;] £12)

4, Calculation of Drag Coefficient CD from Total Pressure Loss

Coefficient w.
The drag force is given for uniform outlet conditions according
to Fig. L

/L:D = 7L:' J:'mﬂ,o - 1%; ‘/"”/;e.o (13)

Since two-dimensional flow is assumed, the axial force Fm results only
from the change in static pressure across the blades. The pressure
change is known from the Bernoulli equation of the relative flow. This

defines the axial force Fm

o = slp-p) = s[#s(w~w) - aka] (14)



45

The force in the tangential direction Fu is determined by the momentum
equation:

Fo = $§ Coy (Wa, =~ 1) (15)
Equation (13) becomes, with equations (14) and \(15):

J—Z@——: me (Wul‘wm))#ah/jeo_ [')-,.'f(‘“’lz_ %2)" A&ﬂ-j . (16)

With substitution of the following relations of the velocity triangles

Wi, + Wa,

+ = D T Wiz
anfBu . (17
2z 2 z 2
A// W, = W“I - W"A (i‘8)
into eq. {16) the drag force FD is obtained as follows:
Fo = S osfe ~ A HRyg (19)

The drag coefficient is defined by:

—

Cy o —2 (20)
D = 2
I/Z-f C We
Then we finally obtain from
Weo = W, cot8) (21)
COS/gao
and
W, = 2 Y7 (22)

Codfs,

the relation between CD and the total pressure loss coefficient:
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(23)

5. Calculation of Torque Coefficient T from Downstream Measurements.
The torque input to each streamline is found by using the torque
definition:

AT = ¢-rc, d@Q (24)

With o/Q = 27/ ¢p, - dr
(25)

and using the dimensionless flow coefficient ¥, the radius ratio § ,

and the (tangential) velocity coefficient kcu

%Cn = C“/MT (26)

equation (24) can be integrated from hub to tip.

7
_ 3 2 2 (27)
7= 20 hu /%’ﬁcu'?'dz
b
The torque is now presented by the dimensionless torque coefficient

according to the definition:

n 128)

C = 2

R4 rr“rz(/’7:>

By inserting eq. (28) in (27) the final torque equation is found in

dimensionless form and applied to the geometry of our impeller.

o

= 3.2 /70‘%5,,.22.0/? (29)
h
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6., Theoretical Performance Prediction of Mean Streamline at p = .80,
The theoretical performance curve % versus 50 is obtained at
? = 0.80 by selecting several values of angle of attack and then calculating

the respective lift coefficients from the known relation:

de ;
CL. = 0(00(0/0:‘) + CLu (30)

The lift slope and the theoretical lift coefficient CLo of zero angle of
attack are calculated from the two-dimensional cascade theory including
thickness as outlined before (see Fig. 13 and Fig, 14). The head

coefficient
H _ Cu
Y = (4/q) =7 (31)

is determined from the well known relation

2

/1 [ ¥
ta = 1 (5)0 g (32)

where ¢ is found for given angle of attack from

. 2 (33)
f '/'61”/5’4

and

Ce

anf = ————— faun 34
ol ) e feo (34)

%0 and ﬁoo are related according to Fig., 1 as follows:

ﬂoo = 0(c°+d’ ) (35)

The above equation for y{ddoes not consider losses. In the case of total
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pressure losses eq. (32) is corrected by the total efficiency according
to the definition:

_i‘}_"i___u_)_ = _i_ (3 6)
Lf/'of ¥id

€ =

The efficiency is established by inserting eq. {32) and eq. (23) of section
4 of this appendix in the efficiency relation. This gives the following

eguation:

ey = | - (ff) ?_i% (37)

After that, the actual head coefficient is calculated according to eq. {36)

when viscous losses are to be considered.

v -t - (?)7%:] (8)

The final result is presented in Fig. 18 .
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APPENDIX III

A SIMPLE APPROXIMATION TO THE LIFT IN A TWO-DIMENSIONAL
CASCADE OF THICK AIRFOILS

1. Method.
Replace effect of airfoil due to lift by vortex at the 1/4 chord
point. Approximate effect of thickness by appropriate doublet at the

1/2 chord point. Then satisfy boundary conditions at the 3/4 chord point.

2. Equivalent Doublet to Replace Thickness.
The ellipse of length ¢ and maximum thickness d is mapped into

a circle of radius a in the t plane by

3 - ——C——(++§Z—) (1)

2(a+1i)

The ratic of maximum thickness to chord is

(). 6o 2 o . rf

g+ 1 /..f

In the t plane the potential for a uniform flow past the ellipse without

circulation is

£z

fl
~5
+
-
t
]
I
—~
!
‘4\
e
LI
*,Q
*
2
*n
—y

(2)

where o is angle of attack to the ellipse. Inverting equation (1):

te / L +l/i§;——(/—f2)’}

Hence the potential becomes in the z plane:
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¥ (1-F)c —"°< ‘/_ /- £2 7]
Ty { € c (/—f)[ ! ‘Igz/cz *

/C = &
. (3)
1Y 2 sl
e (1+f) 27 ]
2 C I~ l»‘ 2/:
(=) (1-7) 4
We now gather up terms, expand the radial for the case f/c > 1 and
neglect fz compared to f to get:
/
(4)

- ot 2 R 1o
F o= U‘.evg-i- L;Z [ 2/ vinag + 27¢ ]T

Hence the sole effect of thickness is to add a doublet

2 )
uc 2f '«
D eme——— . €

Jé 7

We will neglect the small product a. { and write the doublet

to the flow,

potential that accounts for thickness as
2
‘ (5)

3, Solution in Cascade.
Consider a cascade of stagger angle with spacing and the array of
singularities as shown in Fig. 21. The vortices are located along the line

7 - ei(s -4 )

and the doublets along the ray
Sy t+ e : —oL)

g =

The potential is-
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+ oo

= — . In{z-~2ine ) + . /
F e n%oo " 7 £ nz:'—en Zz- C/?“Zin-e,z%-dj (6)
These series have well known sums:
. 2 ~ .
ek 4 P uct T " z- <l (7)
Foo Al in [ea(2)]+ ALt )]
Hence u-iv = d¥/dz is
. N s fh(gf”) uf/-;Q' /
U~ o= oy e <o > - 35 thl,[’/z e"f(zw/,,)] {8)

We are interested in the vertical component of velocity and this is:

cosy wnh (% cosa) + iy din (‘/2 J/‘nd«)
4 i cDJ;,(‘/zcosdz)— Cn\s(c/ZJ;hJ')

i ( et ) Jin2y [JinAz( G/fzud«) coxz(‘/ew'hd—)— CwAz(%oa;¢) J,'nz( % ving) ]

32 [ Jian( %’“‘rd’) cof (‘/o’a‘,,'nd,)f- co,[,z( ‘/<F(°-‘J’) \/,-,,2(‘/47 /,*,,,J) 7 Z (9)
_ E/' Caszd; Jinh ([/t/ co.rdr) i (% Jimd-)
2 . 2
[ N (% Co.{df) £DJ2( %’J,‘udr) + coJl.,Z( f{f “”a”) Jlnz(c/fJiy-d)]
To eq. (8) we must add the component parallel to the cascade axis
q P b )
~ia

v _ . sin(a, +a ) to make the upstream flow have the velocity V. e .

w0 o0 1

The boundary conditions on the foil are then that v = 0 or that the {(-v)

of eq. (9) be equal to Voo . 8in SIS We then solve for /7 to get the result:
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o Yo (i, v £ Gy 0)

F g c) (10)

where

‘ / Jin i e - ‘0 7 s 7
Flyo) - (o) —2 h(70coty) = wing win(7Geiny)

costh (/I’O’eo.rdr) - Cos (o ving ) (11a)
2 PG 2 ~
6 0) - (B0) { _snze Lotk (o) 0¥ mg) ]
¢ Loian (Feosg )by (Faing) + cos (Feoy) i (Fump) 7>

. 2 ne W ~ -
i Zd/ [ cosh (% “’"3’) J/nz(/; Jl'h(f)] * //z Cods Zd- Jinh (g—rw:dr) Jiw(::(r.l?h[)
[ Jil—,[)z( %c\-éo.{d/) (on()r (!;_CNJIVM/) + CDJAL(%FCDJJ )«//'hz ( (;:/r\/[m/) ] 2

(11b)
Now with the result
_ar 2 [ . ! (12)
C. = c Yy, = 2re et f G(d"?)J Fly,0)

we have one of the first findings: namely, that thickness does not affect
the lift slope curve and that its effect is proportional to the thickness.
When f = 0; we get in simpler form and different notation McCormick's
result in Ref, (26}, There he shows that the two point method gives

satisfactory results for lift for ¢ < 0.75.
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4., Camber.

We take the angle of attack for zero lift to be -2 /4 where d) is
the total camber. The effective stagger angle is now [ -2 /4, where
the y refers to the stagger angle measured from the chord line.
Retaining the notation o to represent angle to the chord line, the lift

coefficient becomes

c, - c% [a¢+(ﬂ/v)+ fé(d;o‘)/[udq (e cos(yp-£)) - cw[;(m;n(d--qé))] (13)

Cos ( -'7{;2)./th| [FF(oJ(Jr-l{lz)j + J/'n(a——‘;@) \//'m[//—c"w'm/dr—%-z)]

where G is defined by eq, (l1b) with § to be replaced by ¢ -d2 /4 in

the case of camber.
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APPENDIX IV

EFFECT OF BOUNDARY LAYER DISPLACEMENT THICKNESS ON
THE CASCADE FLOW

1. Calculation of Displacement Thickness and Momentum Thickness

at Downstream Station,
The total displacement due to the boundary layer thickness § is

defined by the displacement thickness Ref, {26)

.

fo = [0-5) 4 w
£

The momentum loss is given by the momentum thickness

§.
B - ff (- %)) dy (2)

£
VO is the free stream velocity and V the velocity in the boundary layer
profile. The form of the wake or total boundary layer of upper and lower

blade surface is also characterized by the form factor H.

. 5”/@ -6

When a power velocity profile is assumed for approximation of the
boundary layer profile, the displacement and momentum thickness can
be calculated at the measuring station according to Ref. (2). The
momentum thickness as ratio of the chord length ¢ is determined by

using equation (B18) of Ref.(4).
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L3
[f—)

Q) ) €
(Cz_ B [+ b+ JI+ b(H+2) (4)

where CD is the measured drag coefficient and b is given by

b o et Jlen ) )

The form factor can be estimated from Ref. (3) and is about H=1,1
for our case. The displacement thickness is now determined by eq. (4).
2, Calculation of Displacement Thickness of Trailing Edge from
Downstream Measurements,
The form factor of the trailing edge is obtained by the empirical
equation of Ref. (3), which relates the downstream values to the trailing

edge as follows.

/ (6)
H
~ 1~ 1= ;,';)( (%) w;(ooz-gzs‘ )’/z

By using the definition

é‘k - (CQ)k ( ‘(::/h« )

the momentum thickness parameter can be calculated according to

Ref, (3) by an iteration method for solving the equation

2 - b1+ ”k)]/[/’ O 1+ )1 —Kl(’”ak//k)zf =

Ky (1= ’é,mc)‘/f [~ Or (1+ he)7” )



.

The constants Kl and KZ are determined by the parameters of the down-

stream station: st 929 ﬁz'o

.\ /
K - —L-2lrh) - soup

(/“ 52/‘/2)2 (8)

( J/hﬂz/ [~ éz (i ”2)])1
Ky =

(DJﬁZI [/ - éz Hz]l (9)

After Gte is calculated the flow angle ﬁte is found from the relation

/ / I~ b M Z( I~ 6 (1+4) ]
tanfl, = Fauf / (/—éz yz) =8, Grte) (10)

which is taken from {3 ). The trailing-edge parameters (Q/c)z, (g*/c)z
are now given according to the previously mentioned definitions:

(8), - b, (<)

fe

n

(11)

He - (,C@_)k (12)

(£).

3. Effect of Boundary Displacement Thickness on the Cascade Flow.
The effect of the total boundary-displacement thickness on the

cascade flow is investigated for the case of the flat-plate cascade as
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shown in Fig. 22, The cascade is described by the solidity {c/27) and

the stagger angle y . For our special case of zero angle of attack it

is assumed that the displacement thickness of the boundary layer is

distributed symmetrically and linearly on the upper and lower blade

side,

Hence the displacement thickness is zero at the leading edge and

half the total value of { g*/c)‘te on each blade surface at the trailing edge.

In this case the following boundary conditions are valid in the cascade

plane:

Velocities induced due to an angle of attack a do not exist:

ly = Ve =0 (13)

The only induced velocities are due to the displacement thickness,

and are given by the relation:

v, - + M-Vw = 4 (S‘;)Vw (14)

2¢

Voo is the mean velocity of the up and downstream components.

The up and downstream velocities determine the boundary con-

ditions at z= -co
\.I.W
u-ir = Y .e Ce Y (15)
and z = +o00
\I‘DQ
U-ro = K-e (16)

The problem is now to find the down-stream values a5, VZ for given
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up-stream conditions of the cascade. For this purpose the cascade

plane is mapped to the circle plane by the well known mapping function

(9):
e -5 s (j) ¢
2= e /(f+f) + e /m( )+f) (17)

This transformation maps the leading edge to the -1 point and the
trailing edge to the +1 point on the circle as shown in Fig. 25. The
point z = -00 corresponds to the point 5 1 and the point z = +oo to - § 1
in the j plane., The absolute value of j 1 is found from the given
cascade parameters (c/s) and (J according to Ref.(9). This value is

determined by the value of \]0 as seen from the relation:

5 = e (18)

The exponent y is given by evaluating the following equation derived

by Ref. (9):

CE) - oy o[ T e )
VCOJL;Z}U-I— Ca_rzd,’ - VZ Cony

- 710:,/( V2 ding )
l’ coshow 4 cos2y
(19)

The angle & of eq. (6) is the angle of the vector with the real axis as
shown in Fig. 25 and is obtained for given values of dll Y from the

relation:
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- ./a;/(qumd/xmmAy/)

e = (20)

The flow of the f plane is now calculated by using the complex velocity
function F' = u-iv which is the same at corresponding points of both
planes, The flow in the cascade plane is similar to a uniform flow in
the presence of a constant source distribution along the chord and a
single vortex at the leading edge. The single vortex describes the
effect of angle of attack and the source distribution in connection with
the uniform flow field the effect of the boundary-displacement thickness.,
The source strength per unit length is given on each side of the chord

according to

)' £ {21}

The complex velocity function is therefore

q:(zt

i < 2 Fr/
T - ¥ = ; po——— b e I [T 22
F PENEN A'f’ B j""/ (/1/2) f_/ ) ( )
The constant D is equal to the source strength per unit length. The
constants A, B, and C are evaluated by satisfying the boundary con-
ditions in the flow field far up-stream. Equation {22) gives the relation

for z = -0

o ;1 < d §
‘ y ! 23
Ve = Y = A+/E + e + ) /i i ) (23)

A relation between B and C is found from the case of zero displacement
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thickness, where the part due to angle of attack is given by the complex

velocity ~iv

. . / C
— ¥ = +:8 + T:— (24)
Noting for a stream line on the circle
fee®
we obtain:
e = wig o i E(1=dau(8)) (25)
By use of the boundary condition (1) eq. (25) reduces to
no-0= 3+ %
Therefore .
B =~ % 26)

The constants A and C are now obtained from eq. (23) for the case of

a:OandV1=U

(;%,) - (’2) v i) i) :I(;ﬂ)/”(%://—) (27)

3
Y

by separating real

&) - '3:) o) [ g 1T ¢ () R (;w/) (28)

and imaginary part

v
D = (;i) Rest [ j,:, L]+ é(#}vm In (%) (29)

The constant C then is found immediately from eq. (29).
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£ () 3 in (327)

< o '
) - - A

The imaginary and real part of the above relation is calculated by
inspection of Fig. 22 where the vector (jl + 1} includes the angle @ >
—

and the vector (§ 1 - 1) the angle O, , with the real axis. Hence the

imaginary part is given

Jm /*‘r (—f-’:i..) = @a‘ Q/ ((31)
/‘/
where
! / e‘* B
- - (oJy
91 = Cod ( = (32)
y/+ e "‘-2:"%;9
and

RO
U

- ~1 ( )+ e (o P
[/ 4 X
2
Ji#¥iacteast (33)

—

The angle © is determined by equation (20). The real part is found

to be

/ /

Reo ( ) . i , (34)
f/""/ V/.,L»Q_V:-Ze‘/)CoJ@

With C known A is calculated according to equation (28). Now all

‘constants are determined and the problem is solved by satisfying the

boundary conditions down-stream. This leads to the relation between
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up-stream and down-stream conditions:

5 -

e_/dz= A+/B =+ S S + D /V;(I-‘?; )

(-3) ) (35)

The unknowns a, and V2 are obtained by separating again real and

imaginary part and determining the absolute values and angles of the

—_—

vectors (- jl +1) and (- f 1" 1). In particular, the angle a, is found

from the relation

o = 7L&1:/ 8+ Pea/( Y ) (7723) Ira /h( j+//)

- C
At 1 (“f,f«/ ) + _/)E-{a/ /,,, f:—l/) (36)

which enables us to calculate VZ from the real or imaginary part of
equation (35), The imaginary and real part of equation (36) is cal-

R
culated in a similar manner as shown before for the vectors {/j 1 + 1)

—_—
and (51 - 13
¥
To determine the effect of { XJojf/C)te on the lift coefficient CL
the values V2 and a, are referred to the cascade plane by use of the

continuity equation

/

4 / (V,
) e - (2]
and by conserving the momentum in tangential direction:

(ﬁ),;”"(ww’) = (’5‘)“ (r* o) | (38)
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This gives the cascade values az‘ and VZ‘ as shown in Fig. 25. The

cascade angle az‘ is obtained from combining equations{37) and (38):

v - ¢ - fai! (V:)J’”(woa)
| L) ot -

After that VZ‘ is found from equation 538) and the corresponding lift

coefficient is evaluated from the usual relation:
{
i
- 2 o (grE) [eng - A lped) ] (40)

This method is applied to the mean section of our impeller. The

final result is shown in Fig. 23,
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Fig. 1. Definition of cascade geometry.
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Figure 2. Test - Impeller
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Fig., 21. Two-point method describing thickness effect on
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