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ABSTRACT

The behavior of a permanent gas bubble in liquids under
oscillating pressure fields is studied by a linearized theory. The
derived thermodynamic relation tends to indicate average iso-
thermality for high frequency limit, contrary to the usual intui-
tive reasonings. The growth of the gas bubble under the oscil-
lating pressure fields due to the effect of rectification of mass
is also investigated. The effect is small, being of second order,
but accumulating. The absence of resulting large bubbles is ex-
plained briefly by the considerations on the stability of spherical

shape of the bubbles.
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INTRODUCTION

In the absence of an external force field, a spherical gas
bubble in a liquid of infinite extent will stay at rest if the internal
pressure is in equilibrium with the ambient pressure. Any disturb-
ance from the equilibrium conditions will result in a complicated
motion of the gas bubble. It may undergo oscillating expansion and
contraction, and cause diffusion of gas to and from the surrounding
medium due to the inbalance of the pressure; or it may undergo
translational or rotational motion and distortion of the shape due
to the asymmetry of the disturbance. Moreover, as the bubble
usually contains some vapor of the surrounding fluid, evaporation
and condensation will occur due to the disturbance.

A complete, quantitative analysis of the problem is very
difficult. However, it is hoped that partial understanding of a
simplified problem would eventually lead to the full understanding
of the underlying mechanism of the complete problem. In this sense,
the simplification is not so much based on approximation to the phys-
ical situation as on the simplicity of the model for theoretical con-
siderafions.

Now let us take the case in which the disturbance is spher-
ically symmetric, and the temperature is low enough so that prac-
tically no vapor of the surrounding liquid is present inside the gas
bubble. As the initiai geometrical conditions and the disturbances
are all spherically symmetric, it is to be expected that the subsequent
changes would show the same symmetry. In general, the resulting

motion will be different according to the duration of the disturbance.
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If the duration of the disturbance is a finite interval of time, we
expect that the system will be in a new equilibrium state after some
kind of oscillations damped out by the effects of viscosity, heat con-~
duction, surface tension and perhaps also the non-linearity of the
problem. On the other hand, if the external disturbance persists
for a long time, its effects would also vary according to whether
the disturbance is oscillatory or monotonic. For the latter case,
the bubble may collapse or grow indefinitely until the stability of
the system is of significance. For the former case, we may expect
that a final steady-state oscillatory motion will be attained after
the transients die out.

For the case of a disturbance of finite duration, an under-
water explosion seems to be a good example. This phenomenon,
however, is not only violent but has important asymmetries so that
it hardly fits into the category of our simplified models. It is not
likely that some time after the explosion we can actually find the
''stationary gas bubble'' in equilibrium with the water. In one of
the earliest papers dealing with gas bubble dynamics,, Rayleigh 1]
has deduced how the gas bubble would perform free oscillations.
This free oscillation would not persist in a model permitting heat
conduction and viscous effects. On the other hand, the treatment of
the growth of a bubble in super-heated [2] or super-saturated | 3]
medium could be taken as the case of the disturbance of long dura-
tioﬁ with monotonic nature at least before the very final equilibrium

state is reached.
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For the case of an oscillatory disturbance, the existence of
a steady-state motion is actually only a conjecture even for this
simplified model. In the first place, it may not be true for certain
non-linear cases. Secondly, evenif the dynamical problem has a
steady—s‘tate solution, other factors such as mass diffusidfl and heat
conduction may produce some one-sided effects which could cause a
steady growth of the bubble. However if the disturbance is small
enough so that the problem can be linearized, we shall see that the
steady-state is actually attained, and the one-sided effects are of
the second order.

The problem with oscillating disturbance is closely related
to the problem of wave propagation in a medium containing gas bub-
bles. Both problems of scattering of sound waves by a gas bubble
and the propagation of shock waves through a gassy medium have
been treated before [4, 5]. The thermodynamic behavior of the bub-
ble under the influence of the wave, which was not considered in
those investigations, will be examined here. Furthermore, in the
limit of very long wave-lengths, this spherically symmetric problem
is a kind of ""dipole approximation'' for the study of the behavior of
the gas bubble when the sound waves pass by.

The present paper contains two main parts. The first part
deals with the dynamics of the gas bubble under oscillating pressure
fields. The second part deals with the above mentioned one-sided
effect, which is sometimes called ''rectification''.

The thermodynamic behavior of the bubble which is of main
interest in the first part of this analysis may also be considered by

the following qualitative arguments.
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Let D, be the thermal diffusivity of the liquid; then we may

[ D

define the diffusion length as RD —wi— , which should character-
1

ize the situation in conduction of heat for the system under oscillatory

disturbance with frequency w . Now for any increment of tempera-

ture AT in the bubble, the increase in internal energy is

. _ 4 3

bh, = FTRLC AT
where RO is the radius of the bubble, fZ is the density of the gas
and CZ is the specific heat at constant volume of the gas. On the

other hand, the flow of heat from the bubble during a half-cycle is

approximately

R, w
where ki is the coefficient of thermal conductivity for the liquid.
K ‘
Since D, = 1 , where f is the density of the liquid and C, is
1 piC:1 i 1

the specific heat of the liquid, thus

ah = 4m'RZp ¢ D, —2L

i ; ::'—;_/i—’;
—_— 2 42 [
——47TR,ﬂC,/:—dJ-AT

Hence
| D
A'H' fe 3Tr FICI W
A h, f, G, R,
If Ah2<<Ah1, i.e. 3 ——F-'-g—’— D s 1, then only an insig-
2 ~2

nificant part of the transferred energy is available for the increase
of internal energy, or equivalently, for raising the temperature of
the bubble. Hence, it is legitimate to say that as far as the gas bub-

ble is concerned, the entire thermodynamic process is essentially
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isothermal. On the other hand, if Ah g << Ahz, adiabatic behavior may
be expected from corresponding arguments.

It will be shown below that quite similar results can be derived
from a detailed analysis if the condition of uniformity inside the bubble
is imposed on our properly chosen model. The condition of uniform
interior is equivalent to the assumption of an infinite value for the co-
efficient of heat conductivity of the gas, which is far from the case.
After taking care of the finiteness of this coefficient of heat conductivity,
we no longer get the adiabatic limit. In a way, this result is quite puz-
zling because it is contrary to usual belief that adiabaticity should be
a natural result in the high frequency limit, based on the traditional
physical argument made by Laplace to account for the correct velocity
of sound in air. But no matter how successful Laplace's theory is, we
still do not know the details of the thermodynamic process involved in
the propagation of sound waves.

In the following analysis, we shall consider the model that
consists of a spherical bubble of perfect gas in an incompressible,
inviscid liquid of infinite extent. In the first part, we shall first deal
with the case of uniform interior; then the more realistic case without
this requirement will be considered. With this model it can be seen
that potential flow may be assumed as far as the liquid is concerned.

It may be remarked that for this spherically symmetric problem, the
irrotationality will not be destroyed by the introduction of viscous
effects. Moreover, in the linearized anélysis, the inclusion of the
viscous term will not change the essential features of the problem,
except for a slight modification if the liquid is not very viscous. This

is partly due to the fact that the effect of heat conduction has already
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played the role of a damping factor in the system.

For the second part on the phenomenon of rectification, the
underlying physical picture may be seen as follows. When the gas
bubble is compressed, due to the increase in internal pressure, the
gas concentration at the bubble wall will rise above the equilibrium
value, and thus results in the outflow of gas. On the other hand, gas
will flow into the bubble during expansion. But owing to the difference
in surface area of the bubble wall between the half-cycles of com-~
pression and expansion, there is a net inflow of gas over a complete
cycle. A quasi-static approach has been adopted by Blake [6]to ac-
count for this phenomenon. The present paper gives a more complete
analysis based on a linearization procedure.

As already remarked, the net inflow obtained in rectification
is a small quantity of the second order if we consider the disturbance
introduced in the analysis of part I as a first order small quantity.
Thus, there is no inconsistency in neglecting this effect when we deal
with the problem of part I. The effect of convection, which is neglected
by Blake, being also of second order, is properly included in our
treatment to give a complete consistent analysis.

An analogous phenomenon of rectification of heat may be ex-
pected to occur also. After knowing the exact, detailed thermody-
namic behavior of the oscillating gas bubble, the analysis can be car-

ried out in a similar fashion.
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I. LINEARIZED THEORY OF PERMANENT GAS BUBBLE IN
LIQUIDS UNDER OSCILLATING PRESSURE FIELDS.

A. Bubble with Uniform Interior
1. Linearized Formulation
The Bernoulli equation for the potential flow of an incompres-

sible, inviscid fluid with spherical symmetry is

P , 2 ¢

= + (v - = = t
where Py is the density of the fluid, P1 denotes the pressure, ¢ is
the velocity potential such that the velocity of the fluid particle at any
point 31 = ~ 7¢, and K(t) is some function of time only. For the

spherically symmetric case, ¢ can be expressed up to some additive

function of time only, as

2

CF: R’R

Y

where R is dR /dt, and where y = R describes the location of the bubble
wall. Thus, with Poo(t) as the pressure at infinity, the Bernoulli equa-

tion can be re-expressed as

452
3 (BE) - ¢ (2rRPemR) = —L’}fﬂ .M

In particular, at the bubble wall where y = R, we have

- 3 52 P Poo
RR + —Z-R == F,e - F’ Y (2)

where Pe is the pressure of the liquid, or external pressure at r = R

(cf. [7]). Let P, be the pressure of the gas inside the bubble, which
is assumed here to be uniférm, and let o be the surface tension con-~
stant. Then, due to the effect of surface tension, the balance of

external and internal pressure is



|#

I
PRV
+

Hence the dynamic equation (2) becomes

RR+»§—RZ=—%~[R—%—PM(U] ‘ (2')

Let T1 be the temperature at any point in the liquid; then the heat

equation, which expresses the conservation of energy, assumes the

following form:

2 ___ l )T,
viT o= D \ Ot C} VT> (3)

ki ~
Py &4
are coefficients of thermal conductivity and specific heat of the liquid

where D{l = is the thermal diffusivity of the liquid, k, and C1

1
respectively. The gas inside the bubble is assumed to be perfect and

the temperature is uniform throughout the gas bubble. Thus we have
3
PRR = NT, , (4)

where N is a constant and is actually equal to 712)7? nR, R is the univer-
sal gas constant, and n is the number of mols of gas inside the bubble.
Also we note that by the requirement of continuity of temperature, we

have T r=R).

2= Ty
Because of the assumed uniformity inside the gas bubble, the
problem of the entire gas-liquid sSrstem is equivalent to the problem
of liquid only, with the state of the gas serving as boundary condition
at the bubble wall the equation of motion of which is defined by equa-
tion(Z). In this sense, the boundary condition of the heat equation (3)

at the bubble wall can be formulated on the basis of energy considera-

tion for the gas bubble, as follows:
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dR 2797,
M G, j’%‘ = -4nRBwTe * kATR () . 15

where M is the total mass of the gas which is assumed to be constant,
and C2 is the specific heat at constant volume of the gas. The left
hand side of equation(5)represents the increase of internal energy of
the gas bubble, while the terms on the right hand side represent the
work done on the bubble and the heat flow into the bubble. Since the

temperature at infinity is assumed to be constant at all times, we have

T (oo t) = T (6)

where TOO is constant.

We also assume that the disturbance begins at a certain instant
which we call t = 0. Thus everything is in equilibrium for t <0. In

other words, we have, for t < 0:

Rey = R, ) (7)
Rty = o ) (8)
ﬁ&) = 0 (8')

P

I
-~

and

Tty = L = e (10)
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where RO is the equilibrium radius of the bubble and PO is the equilib-
rium pressure in the liquid.

The disturbance is introduced by a perturbing oscillating pres-

sure field at infinity which can be expressed as

{wt
Pwr=Pli+ews] = Plirge ] for t>o, (11)

It should be remarked that the complex quantity is introduced solely
for simplification of computations, and only the real part has physical
significance. Since all the subsequent operations are linear, the phys-
ically significant solution is just the real part of the solution of the
same problem with complex quantities.

The linearization procedure is carried out with respect to the
equilibrium configuration and is based on the smallness of €, in com-
parison with unity. It is conceivable that as € gets smaller and
smaller, the system will approach the equilibrium configuration un-
less the equilibrium is an instable one. That such instability does
not appear is confirmed by our results.

Since the system is in equilibrium for t < 0, we immediately

have the following relations, namely,

Fw)y-F = *-% ; (12)
L) = Tua | | (13)

and
P R = NTw . (14)

Now let
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=~
fl

Ro(l‘f'x) ; (15)
R=R(a+f>)=2m,>(:+f—>; (16)

T =T.(i+6), T, =T,01+8); (17)

where x, p, O 62 as well as € are small quantities in comparison

1’
with unity. The linearized equations are obtained by inserting(15), (16},
and(17)into the governing equations and boundary conditions and ne-

glecting those terms of second order.

Thus equation(2)becomes
R, ¥ = -’5'—[ Pola+p) - =5 (1-x) ~Ea+e) ] g
i a

IL.et us now write

o = L
f R,
and
20
Wv = PR, . (19)

Wr is sometimes called the Weber's number; it measures the relative
importance of the surface tension effect relative to the inertia effects.

Using equations(l6)and(l 2)we obtain

a= |+W . (20)

and by equation(l 2)J equation(l 8)becomes

X = dW,x = & (p =€) . (21)
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Inserting equations(lS) -(17) into (4), using (14)and linearizing, we have
4 = ag, - 3ax . (22)

The heat equation (3), after linearization, becomes the ordinary dif-

fusion equation without convection:

2 b 20,
Ve =73 e (23)

while the boundary condition becomes

d.6. dx _‘2@_)
‘Z‘E”;—QRR°’Z? + k’-l;(aY y=R, (24)
where
4 RS
Similarly:
for t < O X =X =X =6 =6 =0 (25)
while
B, (o0, t) = 0 for allt (26)
2. Formal Solutions.
The problem is now reduced to the solution of the following
equation

with the boundary conditions:

G, (oo, t) =0 ) (28)
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and

B4E = -RR(1+w) a5 + kT.(32)

where 62(1:) = 0 Ro,t). The motion of the bubble wall is determined by

¢

X + L(3+2zWx= <[ (1+W)g -¢] (39
The initial conditions are
X=A=X=6=6,=20 for ¢ <0 . (31)
With spherical symmetry, we can rewrite equation (Z?)as
.513;(\(9,) = —1—7’7 -a—i—(ve,) : (32)

Now let.us define the Liaplace transform of 91 as

* - st
..—-——~:,z’{e,}:=_-f 6, e dt
and, similarly, w, = 1{6} , zZ = ‘Zf"} , M= .Z’[é'} .

With initial conditions (31), equations (27)- (SO)now become

0‘2, (vw,) = ~§-— (vawr,) (33)
MWy () = 0 (34)
BSU = ~BR(nW)SZ +KT () o dith 4=lar) o 139)

and

[ 57+ «(3¢2W)]z = & [(G+W)a - pm] (36)
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Solving equations(33)-(36)we obtain

S
W = _XESM R “("'R")/T;:: (37)
P Tpsy . Ty G '

where P is a polynomial defined by

Peu) = (/6u +/4u+5)(u + @)t E(hw)u’ (38)

and where

K Tos
Wt = «L(3+2W,) A= f’; ;
K To
5 = R ; E = ER,(/-)‘W,») . (39)
When € = Eoeiwt, then/A=-Zf((€} = 5—6:1.4) .
Thus
S
4 — _ KE&S K e'(Y‘R") 2 (40)
! (5-<w) PUs) Y
From equations (36), (35)and (40), we have
4
7 = é (B5+AS*+B) (41)

(5-iw) P(s%)
The formal solutions are obtained by the inversion of (40)and(4l). Let
the roots of ?E:T}u) = 0 be -2, —az‘,y/—aS, —aﬁ, -ag and 2. Also let

Ty ¢ -~ 37
a, = Jw € , g =-fwe t=foe7* . Then by partial fractions

we can, in principle, express(40)and(4l)as:

R, “(V R)./-— Z b,

w, (v;5) = > Siia (42)

and

Z(s) =) — L (43)

5 s*t+a
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Since Z b, =0 , Z C; =0 , we thus obtain [8]

),
GilroRed ) gy
6,(nt)=—~§-°-Za‘./a.e 2 [r/c//.__%af)

consequently

8 2
a:’t
0,(t) = -2 a.b. e

4
Erfe /0.-2‘ ) , (45)
and

a:'t
X (t) = —Z a.c.e Lt (a;fg) , (46)

=

Hence

p(+)

Il

(l‘f’l’\/v)(@z—gx)
it ,
(+w,) 2 0:(3c-bYe  Ekelat®) )

I

Here we have used the notation:

Erfe (x) == 27T /8 dt

3. Asymptotic Behavior of the Solutions for Large t and
Thermodynamic Relations

The above formal solutions have little practical significance
since first of all it is hard to find the roots a; except by numerical
methods when the proper physical constants are furnished. Secondly,
even if the roots are found, it is not a very simple matter to visualize
the behavior of the error functions with complex arguments. How-
ever, the search for asymptotic expressions for the solutions is not
only dictated by practical considerations, but also because it yields

the steady-state solution which is actually of most physical significance.
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As a preliminary step, we have to invesfigate the location
of the roots of P(u) = 0. Since all the coefficients in the polynomial
P(u) are real and positive, it is possible to show that for this special

form of P(u), all the roots =ay, =25, -ag3, -3y, -ag and -ag lie in the

sector:
T 31T
/arg (—a;)/>2— or /arg (CIc)/ <“Z_— , (48)

by principle of argument in theory of functions, (cf. Appendix1). This
result is essential for the boundedness of the asymptotic expressions.

To obtain the asymptotic expressions we may proceed by two
different approaches. Either we may start from the formal solutions,
using the equivalent relation between error functions and confluent
hypergeometric functions, and then from the known asymptotic expan-
sions of the confluent hypergeometric functions obtain the asymptotic
expressions of our solutions (cf. Appendix 2) or we may work directly
with the inversion integral of our transformed solutions, change the
contour of integration by use of Cauchy's residue theorem, and then
obtain the asymptotic expressions of our solutions by applying the
method of steepest descent. (cf. Appendix 3).

Both approaches, after making use of the relation 48, arrive

at the same result which is as t — oo:

- (r-R,)f-E i(wt+Z)
e

A6 Ew R K1
6int) = S e + 00t "), (49)
. [}
e rw i(wt+ %) 54
o,t) = o ) + Ot ) ; (50)
-t‘% - { é-f- y) 3
X (E) = « €, (ﬂaﬁ/l/ﬁe —cB) c w . ol /;) (51)

Plime'™)
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and

i ks T
(138w + 3 -3¢ futty) *
4D(e)=46,(:+w)[}(j(f'z:l;%jﬁ€ s8] e ¢ o) (52

The forms of these steady-state solutions are typical for the problem
of linear forced oscillation with damping. In this case the damping is
indirectly introduced by the effect of heat conduction through the
energy equation (29). In considering the thermodynamic behavior of

the bubble, we notice that the energy equation (29):

d6, d
(ay)r =7, =ﬁ—;ﬂ:— * P’R"(HW’)—Z% (53)

can be recognized as expressing the first law of thermodynamics,

namely,

dqg = (dT, + PdVv ) (54)

and the relative magnitudes of CZdT and dQ will indicate the ten-
dency of the system to be isothermal or adiabatic.

Now, using the asymptotic expressions, we have

clwt+ L)
0. _ 4 KRG =0
At T3 po, [ R ] e ; (55)
while
c)er Jw ‘ “jt*I”-)
= (37 = g/ R/Z]e 5 (36)
where

g_z 0(560/(17;0&‘) .
Ro Plrme ™) g
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and we have also used the relation
J
ﬁ — g ,02 Cz Rﬁ Tw

Comparing the expressions (55) and (56), we are led to the
following conclusion regarding the average behavior of the thermo-

dynamic process of the oscillating bubble, namely: The thermodynamic

SRy

process may be said to be isothermal if
and adiabatic if ?f%-%'- R, /5”:’7_ >> |

We have intentionally stated that the above conclusion can only
be applied to '"average'' behavior, since nothing can be said about
instantaneous behaviors for any finite non-vanishing frequencies, due
to the phase differences between 82 and x. Frém the basic equation
of state satisfied by any perfect gas, it seems certain that the phase
difference between these state variables is inevitable for any general
thermodynamic processes.

B. Bubble with Non-uniform Interior

1. Linearized Formulation

When we relax the requirement that conditions inside the bubble
are uniform throughout the bubble, the situation is much more complex
than the previous case although nothing is changed in the formulation
of the problem in the surrounding liquid. Thus we have the same set

of equations for the motion of the bubble wall and heat transfer in the

liquid as before, namely,

RE + 2R =+ [ARO -5 - Put] )

and

_T; ~3
Vzﬂzﬁ(_()é{—+%"77—'> for ¥ 2R . (2)
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The gas inside the bubble is assumed to be a perfect gas. Now due
to the non-uniformity of the interior of the bubble, the equation of

state can only be satisfied locally and we have therefore
Pot)y = BRhot) Loty , fr v<R, (3)

where B is a constant which is equal to % , where R is the universal
gas constant and m is the molecular weight of the gas. The conserva-

tion of mass is expressed by the following equation of continuity:

%_f_ﬁv.‘%_*_%VFz =0 | y 2K . (4)

If we neglect viscous effects and assume that there is no external force
field, then the equation of motion is

-\

Z

p) __\‘ A
ﬁf% + /%V)?;]:—VFZ . YSR, (5)
while the energy equation takes the following form:
2 [ 2k, 2 / 7]
VTZ=E[E—+ 9.-VT, | + % FE(74) v<R (6

where the last term represents the increment in internal energy due to

compressibility; kZ is the coefficient of heat conduction in the gas, and

K.
D. =
2 [, ¢

With Poo(t) prescribed at a great distance from the bubble,

is the coefficient of thermal diffusivity for the gas.

the boundary conditions are such that all the physical quantities must
remain finite at vy = 0 and as y — oo; further, the pressure, particle
velocity, temperature and flux of heat must be continuous at the bubble
wall, r = R. The continuity of pressure is actually a restatement of
Newton's Third law, while the continuity of fluid particle velocity is

a consequence of the requirement that we allow no gap to arise in this
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continuum system. The continuity of temperature and heat flux follows
from the arguments that the heat flux across the boundary is finite
and that no heat can be accumulated on the boundary. These contin-

uity conditions are expressed mathematically as follows:

P(Rt) = P (-t - —% , (7)

3 Rty = Rty = % (rt) | (8)

T (rRt) =T, () (9)
and

Kl‘g‘;—(n,t) = K, —g—g‘-m,t) , (10)

The initial conditions are the same as before in that equilibrium is
not disturbed until t = 0 at which time some perturbation in Poo(t)
starts the entire system in motion.

We shall linearize the problem in the same way as before. Let

K =R, (i+x) (11)
T, = T (1+8,) (12)
T, = Tw (1+6,), (13)
P, = P, (1+¢), (14)

P. =P (a+p), (15)
P =Ff (+n), (16)
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where x, 61, 92, P, Y] are all small quantities in comparison with
unity and are in the same order as the term in the perturbing pres-
sure, €.

Neglecting all the second order effects, we obtain the linear-
ized equations by inserting the expressions (11) - (16) in equations

(1)- (6) Thus, equation(l)becomes

i"“O(Wyx - D([ﬁ(ﬁo/t)ué]) (17)
where as before o« = "7,%;;- and Wy:'}f—;’:.
Using the equilibrium condition aPO = PZ(RO,t) = —é—z + PO, we get
a=|+w, . (18)

Equation(2)now becomes

Qs

|

—

2} |2 /.. )8
= v’ ~~"‘(Y—§-§) (19)

L
D, 2

o

Here we have used the spherical symmetry of the problem. With
the equilibrium condition Poa = Bp oToo’ the linearized local equation

of state is now

Since for this problem with spherical symmetry

-

-3
Ci'z = & % (Yﬂl:) ;
the equation of continuity becomes, after linearization:

2 )
el =0, (21)
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while the equation of motion becomes

)‘i,—ai P-i . (22)

ot
In a similar manner we obtain the linearized energy equation, namely,
L2028 Ragy] _ L 26
r? av[Y 27 | KT %) = D, 2t - | (23)

For boundary conditions at the bubble wall, we have now

%(r,t) = Rox = %R, t) ., (24)

6, (R, t) = 6 (R,t) » (25)
and

K, 56' Sy (Ret) = gf (Rot) . (26)

It should‘ be remarked here that, in carrying out the linearization pro-
cess, we have already treated the quantities 9;» 4, as being of the same
order of magnitude as Rox. There may be some questions raised con-
cerning the validity of this linearization process for high frequency
cscillations. However, there should be no difficulty in this respect

so long as we are free to set the amplitude of perturbation as small

as we please. As the frequency gets higher and higher, deviations

may appear for other reasons, such as departures from instantaneous
validity of the equation of state, or a lack of constancy of the physical

coefficients.

2. The Asymptotic Solutions

As before, we define the Laplace transform of u(t) as

-]
I{u} = j €—Stu. dt , and let
a

DZ:{X}=Z, ,Z{Q,}:’id’,/‘ [[91]=‘Wz,

iy =+, int=9, 2{%}= v,
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and z{é.} = M .
Also we note that I[ﬁ’,i} = RSZ = Vir) = jlr?;mo,t’} .

Thus using the initial conditions, we have
X tr,0) =5((r,o) = G (r,0) = g,(v0) = %(Y.v) = )7 (v,0) = f(r,o) =0 . (28)

We obtain the following transformed equations:

(s*- W)z = & [Fery-p] ; (29)
A‘( S
1 vn) = E) (var) : for rzR., ; (30)
-)C:a(?-r'w;) , for Y <R, ; (31)
i __2(__ T — <
$4 + [y (vv) =0, for Y <R . (32)
df
fsv=-R—y (33)
and
2 _ Pa L Aoy = S o4 .
Y Y (Y-UJ;_) Kle Yz d—Y (Y ’U'> - Dz 4’0:1 (347)

From equations (33)and (SZ)We have

P L _d
¢ =7 7 () (35)

Then from(3l), we obtain

P d
w=§ﬁ_i-?ﬁm4w. (36)

2
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Application of equations (33)and(36)gives for(34>

Y 2 3
aét?q’(hc)“[gj "‘( E? /)5] - (rf)+ /”:ipz /)’7[)=0}(37)

tf

or

(ff - o )( P zl>(YJ() =0 (38)

where

, L5 4£5°
D)S /[/KT p Fﬂ .‘m}. (39)

2
4, (5) =z’{(

Thus the general solution of f can be written as
]
f =7 [ A, coshoty + Az Sinhl v + ,43 cosh o, ¥ + /L, an/;o(lr]. (40)

At this stage, it is obvious that it is immaterial whether we take the
positive or the negative part of the square root in the expressions of

o and ¢ What is essential is that we have to adopt a consistent defi-

>
nition for further calculations.

From equation(35)we then obtain

9= ?%'z 7‘: [o(.zx‘h Coshol v + o Ay Skl ¥ + o A, Coshd,¥ + oA, 5"”4"“]- (41)

As f is finite at v = 0, Al = -A,; as g is also finite at y= 0, and

3’
o # a, in general, we find that Al = A3 = 0. Thus

—F = —:— [ /)2 50'14/1 XY A+ /44,. Sinh oL ¥ .7 J (42)

? )05 [/4 20 .S'mf[)o(Y + /} «, 2 sinh oy )’] (43)
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Now from equation{(33) we have

4’=‘EP;—[A2( o(.Ca;hO(nY _ Sl«‘n:l:(:r ) 4_4 l/,(,w;lm(kr _ 5m/ro(r)] (44)

It is easily verified that as y— 0, v — 0, which is a satisfactory re-

sult. Also from (36) we have
! E"(IZ . A
="§[/L/Z‘Z?)5h~/w“ +f74(a’ ‘)5’*""”] (45)

For the problem in the liquid, the solution of equation(27), after re-

quiring that Wy be finite as y—o0, is
3
A o SE Y
w, = e . (46)
The constants AO, A2 and A4 which are all functions of the parameter

s can be determined by making use of the boundary conditions at the

bubble wall r = R , namely,

Ay (k) = W (R) (47)
Al
“é"@‘(ﬂa) = K -7y J (R) (48)
and
ARy = SZR. (49)

together with the equation of motion of the bubble wall (equation 29).

Thus: )
A = I LM S K, (.L - ______720(1 ) X
27 Als)  st-olW, & £s

[ (hosheif, - Z2EE) 1 ([ 45 ) smh iR ]
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and
| o(/uSR ! .
A4, = - ( - 1) X
A F ’ | (51)
inko(,ﬂ., s s .
[Kz ("(; cshd Ry - L"k’;“ )”" kl(/j;": + ﬁ,u)f'"A "/;Ro])
where
Als) = 4, () = 4, (4,5 )
and

o) = fRS CoshodR, = Sinhel, /fsz?* ~s o/wy ][J ]

[K (s, Goshols i - M” )tk (/1: SWK ] (52)

Having found £ Wi Wos z, v, g, we may in principle obtain p, 91,

GZ, q5 7{ by inverse transform. However, we shall be content with

the asymptotic expressions for large t.

Let us try to find the asymptotic expression of p. Now
‘ C4e 00
| f st
xf:(r,t) = ;ﬁ; g ftv;s)ye ds |

(53)

i

Ctepo . j'l:
‘z""f L L [A@smhar + A@simhdr [ € ds
c~

where the path of 1ntegration is to the right of all the singularities of

the integrand.
From the expressions of AZ and A4 in equations(50)and(5l), we

see that the expression in the square bracket in(53)is of the form

! [ 4@ey- 4640 ]

B, (ol o, ) = B, (ol 2l,)

which is equivalent to the form

K (el oty) + J(et,e)
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In other words the integrand is not to be changed with the interchange

of its dependence on @ and @,.

Now, from the expressions for Oél, az, AZ and A4, it appears

that there are three branch points in the integrand of equation(53),

namely s = 0, and the two roots 51 2 given by
2 ! 4fs
[(-——-.R +-—'-)+~—-ﬁ’5_]*——~=0 ,
K Too D, Pea E’aD‘z

as seen from the expression for 05122 in equation (39).

2

Now, due to the symmetric form of the integrand with respect

to the interchange of ¢, and a,, and also the interchange of values

1

of ay and a, when we complete a circle surrounding any of the branch

points a5, it is not difficult to see that s are just apparent branch

1,2
points. Now let us specify € = €, eMt. (55)

Then

M= «Z{é} = 5'-62)0) ) (56)

It is obvious that iw 1is a pole inside the contour

,“l

[ shown in the figure. It is not easy to see @

whether there are any other poles of the inte-

N/

grand inside r . Nevertheless, from the

physical argument that for the steady state

case the only mode of oscillation that can pos- -

sibly persist is one with the forcing frequency, we may expect that
the only other poles, if there are any, must lie in the left half plane
so as to vield exponentially decaying terms.

As the branch integral from the branch point s = 0 is of the

order (%—) as t — oo, by Cauchy's Theorem, we obtain
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cwt
47(Y,{) = -}’:[Bz(cw) Swmhd oy + &(cw)SJnho(ztcw)Y](_: “ 4 0/;’)/

(57)
as t—» oo,
where 1
B = - gl gt (0 —%f,‘fﬂ) X
f K [ G, ~ cheltwl ]
+ k(5w sehl ookl f (58)
and

B, e} = Ro _oléiw /_L Eo(aw) v
glow) = Actiw) w?+ ol Wy a Lw

{Kz[o/,(c‘w) Gn/nc/,tiw)Rp - ’&%“f"{ﬁ&]

+ [(, (/—3——)»‘;7 + -'-l';) 5:’n/104[£w)}?°} ; (59)

and A(iw), ozl(iw) and Otz(iw) are obtained from equations(52yand(39)
upon replacing s by iw. Similarly we have for large t

Pc(lh'w) .
,‘t) Ar -—L cw -—I— + ._._0_._1_.:._ j,n},o/{‘.‘d r
O, (v : /Bzz y [ 4 > ] o | o

73«32!0 . i “’f
+ B,{,[CW)[ZL + —TLT?)]‘Y'"}"’(’(W)Y‘] e

and

I(f) ~ /8 (tw) [ o(l““’) Qs/;o/,(cw)l?‘,_ Sink Q/[tw)r? ]

Ko

[ b/Z(l'u) asbo/l[l_'u)kg _ j-/'nl;‘o(zl"“’)/?v ‘U e (wt (61)
K. R’ :

Pe
LR,w

+ E,'(c'w)
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Thus even for these asymptotic expressions, the results are
of such complexity that very little can be seen from them. Even nu-
merical expressions would require laborious computations.

In consideration of thermodynamic behavior, we see the equiv-

alent form of the first law of thermodynamics

dQ - Pdv = (, dT

is

26,

# br [ ( 4 )] i%d —?;
In order to be able to compare the results with what is concluded
from the previous problem, the average behavior rather than the
instantaneous, local behavior is to be considered. Thus the above
relation is to be integrated over the entire volume occupied by the
gas. And for the limiting cases w—0 and w-+o0o, the order of magni-
tude of dQ and CVdT can be compared. The results obtained after

lengthy algebraic manipulation can be stated briefly as follows:

C, dT
4

and "%‘%[‘ ~ /"‘7’%‘%’%" as w —> 00

Thus for very low frequency it appears that the relation is isothermal

~ Otw as w— o

in agreement with the result of the previous analysis. For very high

frequency, no adiabatic limit is indicated. Adiabatic behavior would

have to be found for —:%- — oo, which is actually implied in the as-

1
sumption of uniformity of the interior of the gas bubble. However,

for actual physical situations kz is of the same order as kl, or even

smaller. (For instance, for air kz =2.5x% 103 erg/cm secOC;
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. _ 4 o K, f G
while for water k; = 6 x 10" erg/cm. sec. C). Hence /W
is usually a small number. This result tends to indicate that even
at very high frequency isothermality rather than adiabaticity is to
be expected for the average thermodynamic behavior of a gas bubble

in an oscillating pressure field.
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II. RECTIFICATION OF MASS
A. Formulation of the Problem

When a gas bubble is subject to an oscillating pressure field
in a liquid saturated with the dissolved gas, it is to be expected that
there is net flow of gas into the bubble over any complete cycle of
oscillation. An intuitive physical explanation is as follows: When
the gas bubble is compressed, the increase of pressure at bubble
wall will cause the rise of gas concentration above the equilibrium
value, and results in the outflow of gas. On the other hand, by simi-
lar arguments, gas will flow into the bubble during the expansion
half-cycle of the gas bubble. Owing to the difference in surface areas
of the bubble walls between these two half-cycles, there will be net
flow gas into the bubble over a complete cycle. Obvious as it appears
from this intuitive argument, the quantitative analysis is not quite
simple. First of all, it is closely associated with the complicated
dynamic problem which determines the motion of bubble wall in terms
of the applied pressure field and other relevant parameters. Secondly,
even after knowing the motion of the bubble wall, we are still left
with a non-linear diffusion problem which involves conditions speci-
fied on some moving boundary. In general, the dynamic problem and
the diffusion problem are unseparably coupled; and this leads to even
greater complexity. The purpose of the present analysis is mainly
to study the mechanism involved in the above mentioned phenomenon
of one-sided diffusion, which is often termed as "rectification of
mass’. Therefore some simplifying assumptions are to be made on

other aspects of the entire problem, and a linearization procedure
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is to be applied to the study of the diffusion problem itself.

Actually the dynamic problem can be by-passed if we prescribe
the oscillating pressure inside the gas bubble rather than with the
pressure at infinity. This procedure indeed is not so arbitrary as
might appear, for when the steady state is attained, except for a
definite phase difference and some modification of amplitude, the
pressure inside the bubble behaves essentially in the same manner
as the applied pressure field so far as the linearized theory is con-
cerned.

We shall denote the internal pressure of the gas bubble, which
is assumed to be uniform throughout the bubble, as P(t). P(t) is

prescribed in the following manner:

Pty =P (1 + € Snwt) | (1)
We assume € to be much smaller than unity in order to be able to
carry out the linearization procedure.
Now we again assume that the gas inside the bubble behaves
isothermally while it undergoes expansion and compression. Then

this will lead to the following result:

Ry = R, (1+8sinwt) + 0(5%) (2)

where 3§=-¢ | R isradius of the bubble, and R_ is the
equilibrium radius corresponding to Po"

For a more general thermodynamic behavior, there will be a
phase difference between P - Po and R - RO., This is ignored since
no essentially new feature can be learned from those complications.

Now the amount of gas flowing into the bubble during a time
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interval A T is just
T, +4T

/ dfs Dyvc-ds

To
where C 1is the gas concentration in the liquid, D is the coefficient
of diffusion, and the integration is taken over the surface S of the
entire bubble wall.
When the problem possesses spherical symmetry, as in the

present case, the above expression can be simplified to

jTomaLt .47DR’ a_aé)nx

]

Since C 1is determined by the diffusion equation, the problem

is equivalent to finding C from the equation

26 4, B.pc =DV
bt-&qvc Dve | (3)

with suitable initial and boundary conditions. In the above expression
—q> is the particle velocity of the fluid. When the flow field in the

liquid is irrotational, it is known that

3 - ER g

4
vl (4)

The boundary conditions will be as follows: C = Coo’ which is a con-
stant as vy —- oo; while at y =R, C =aP(R) in accordance with

Henry's Law. As C = Coo everywhere when there is no disturbance,
we have aPO = Coo' We may now formulate the boundary conditions

for the solution of Eq. (1) as follows:
C = Co as Y — oo, (5)

C:Cw(wré'&}nwt)/ at yY=RK. (6)

The initial condition is set as follows:
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C= Co , for t< 0, andall y (7)

As we are only interested in the steady state solution, only

the asymptotic solution for large t is sought.

B. Solution of the Problem

Let B(v:t) = C(w t) - C Then the problem is reduced to

the solution of the equation

1 e _ RR 20
2T Dt rD ar

z—g(v,f) =g(9) . (8)
with the conditions

O(ro) = B (o, t) = 0 , (9)
and

G(R(f),t) = (u éSl‘nWLL ;
= -38CoSinwt . (10)

A scheme of successive approximations in powers of the small
parameter € can be developed, and we shall evaluate the leading
term that contributes to the rectification of mass. This leading term
is of the order of € . The successive approximations, in general,

will be carried out in two steps. First we solve the following problem,

namely,

Lce,) =0 (11)
with

B,(xv,0) = 6 (0, t) =0 | (12)
and

B,(Rs,t) = ~36C, Smwt . (13)



-35-
Since Ri) = Ro(l-l-SSinOJ'(:)#-O(SL) Y

successive approximations have to be carried out to the desired order
of accuracy due to the boundary condition (13).
Using this solution as the first approximation in ?(B),. we then

carry out the next step of successive approximations by solving the

equation

U60==g(a+90, (14)
with

6,(r,0) = O,(s2t) =0 , (15)
and

0, (R, t) = 0 . (16)

After both €, and 6, have been obtained in this way, then
O=6+ ©, will be the final solution to the desired order of accuracy.
It may be pointed out that to obtain solutions to the orders higher than
€*, the expression for R(t) should also be corrected to the appro-
priate degree of accuracy. It is easy to see that this scheme, although
workable in principle to obtain higher order solutions, becomes quite
complicated.

The asymptotic solution of Egs. (11), (12) and (13) for large t,

to the order of €° , is (cf. Appendix 4)

~(r-RY
0,(r,t) =~ "iﬁﬁ&i{ e s sin [ wt '(Y—Ra)/g]

_ R
+ 5 [(08,/B ) Erke (g) - (nRfis)e , /ans/zwt-(r-ﬁ.J/J?)

17)

)/ 3 {
+R,[2“55 e—ﬁ ﬁ)/;ﬂn(-?wf—(r—/\",)/'?)]] + 0t /{) .
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For the purpose of studying the effect of rectification of mass,
it is not necessary to evaluate 0, explicitly. The relevant quantity
is just ("S‘f y=R » Since the amount of gas flowing into the bubble

T, 14T
during any time interval AT is j at 4TTD/?/
Thus using (17), we obtain, for large t, up to the order of €*,

the following result (cf. Appendix 5):
oo
28, - _> L
($)res —~-R,£ gmdr + )+ s, (18)

where S is some sinusoidal terms which would not contribute to the
net flow of gas into the bubble over a complete cycle up to the order

of €° ., and

2 -(rR)fi @ w
g,(v) = 3RQ4C,,,(;‘§)5 e’ s {-(—r% * ;ng) Sim[(r-RYZ ]
+ -,L/% cOs[(r—ﬁ.,)/‘;%]] : (19)

The integral in Eq. (18) may not be easy to evaluate. However,
w
for the case that RJz:j >> |, i.e. when the diffusion length /.,%
small in comparison with the radius of the bubble, we can obtain an

asymptotic expression. In this way we find (cf. Appendices 5, 6)

?))—%r- “Cf[( ZZI> *0/}}/:@)7“0/}‘7{:)*5]*0/:{3). (20)

Now from Eq. (17), we obtain (cf. Appendix 4)

—g—%)r=R = 3}?0(“5[(‘5‘,';; +"R;):[z—§-)5fnwf +~A-;,:/% COSw‘£]
13R, (0 d [ZR‘(I+R )- (Rz 2/;)&:“\:%
+0[_t_17_4)+51] +O(J3)I (21)



~37-
when S' also contains only sinusoidal terms that will not contribute
to rectification up to the order of €’

Now the rate of flow of gas into the bubble is

T = 410 (32),q = 4DR! (1% 28simwt 10(5Y) /%@rﬁg)r’ﬁ

Using (20) and (21), we obtain, up to order of ¢ R

T= 247TDCuR § [ /+‘0/}?}/_@_)+ 0/;44)] + 5 +0057) (22
ﬂz‘D

Thus, taking only the leading term, we have the average rate of flow

of gas into the. bubble

T = 247TDCR S . (23)
Or, since
(__& . _1PuwcP _ _1 4P
= 3 = 3 'Po _— 3 P° 7
we have alternatively,
— 4P\
\T=«-§WDCMR°(";B , (24)

When ( —";—,f-) is sufficiently small, the effect on the growth of the bubble
[}

due to rectification comes from this leading term only. The rate of

growth due to the effect of rectification is indeed slow.

The mass inside the gas bubble is

= 4 3 25
*m—~37r,;R : (25)

The density of gas f%_ s, remains practically unchanged during

this slow growth, so that

dm : dR
iz = TTRR e (26)

On the other hand, the rate of increase of mass in the bubble due to
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rectification is essentially

————j’;‘ =7 = -jg-TTDCMézR : (27)

Equating (26) and (27), we obtain

AR 2 DG 2 L

at =3 R € R (28)
Therefore

R'= R + & D;w €t (29)

if we set R = R when t = 0. Or
DCoo 2
/3Jc 2¢ (¢+T,) (30)

when

35 7/ _Rey?
Ta = ,Dcoo (T)

Summing up the above results, we conclude that within the range
of small oscillations, the greater the relative amplitude of oscillation,
the greater the parameter (—%3) , and the greater the coefficient of
diffusivity of gas in the liquid D, the faster will be the growth of
bubble; and also the growth behaves like R ~ tl/z for large enough t.

let us denote T as the time required for the bubble to double

its size. From E‘q, (29), we obtain

— __9R. 5y
T 4 G D &

(31)

Take the case of air in water, at ZOOC, and 1 atm of pressure,

we obtain the results as shown in Table I
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TABLE 1

TIME REQUIRED TO DOUBLE THE SIZE OF GAS BUBBLES
BY THE EFFECT OF MASS RECTIFICATION

RO (cm) -——E—n—%}—:—t———g T (sec)
107 107! 6.7 x 10°
107! 1072 6.7 x 108
10”3 107 6.7 x 10°
1073 1072 6.7 x 10*
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I11I. THE STABILITY OF A SPHERICAL GAS BUBBLE IN
OSCILLATING PRESSURE FIELDS

It is known that a spherical gas bubble in liquid under oscil-
lating pressure fields would grow indefinitely due to the effect of
rectification of mass (cf. Part II}o The fact that we do not observe
large bubbles under these conditions might be explained by the con-
sideration of stability of the spherical shape of the bubble under
oscillating pressure fields.

The stability of the flow with spherical symmetry has been
discussed by Plesset [ 9] and applied to the cases of growth and
collapse of vapor bubble by Plesset and Mitchell [ 10]. The following
investigation will make use of the basic relations derived in the papers
just mentioned.

So far as the effect of rectification of mass is concerned, the
growth of gas bubble is indeed very slow. Therefore, the stability
considerations may just be applied to the case where the mean radius
of the gas bubble remains essentially constant all the time.

Let the bubble wall be distorted from the surface of a sphere

of radius R to a surface with radius vector Y then one may write

T =K+ XaYa | (1)
where Yn is a spherical harmonic of degree n and the an‘s are
functions of time to be determined. The growth or decay of an(t)
from a small initial value would determine whether the spherical
shape is stable or not. When a linearized perturbation procedure

under the assumption that
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| a.)] << Ry

is applied to the case of two immiscible, incompressible, inviscid
fluids separated by a spherical interface, it is found [8] that the
an's are independent of each other, and they satisfy the following

differential equation:

‘., 3 dR da. ,
.ﬁ;%_t.l_drﬁ—z——a—;——/la,,:o. (2)

The function A of Eq. (2) is given by

A = [«n(n—»)f; -(n+:)(n+2)ﬁ]§‘; “(n-l)n(nﬂ)/mz)*gr
[nﬁ + (n+1)f, 1R

L (3)

where Py is the density of the fluid inside the sphere, P is the
density of the fluid occupying the region exterior to the sphere, and
o is the surface tension constant. Although the stability of spherical
shape from small distortion may be inferred from the decay of an(t)
with time, strictly speaking because of the linearization process the
instability as derived from the growth of an(t) with time is rather a
reasonable conjecture than a necessary consequence,

For the case of gas bubble, the gas density py may be neglected

in comparison with the liquid density Py Then A becomes

A= ) ARy (nrz) 22

R dt* R (4)
where p =p, is the liquid density.
Let
%
b= R*a. > (5)

Then equation (2) is transformed into



+ Gb, = o0 , (6)

where

2 i 2
o= Gedtm) Gor) o - - LR

Now the radius of the undisturbed bubble R is governed by

the equation

N,w

2 2 |
R‘ﬁ{? * (%) =7 (P -P. -?—) : (8)

where Pi is the pressure inside the bubble, while POo is the pres-

sure at distance from the bubble which in the present case may be

represented by

Po=PF (1+esinwt ) . (9)

When € is small in comparison with unity, it may be shown from a

linearized theory that R can be represented in the form

R=R[1+§sin(wt+¢)] (10)

where S is of the same order of magnitude as € and ¢ denotes
a constant phase shift, which for convenience may be put equal to

zero. Then G(t) may be expressed as

é,—(f) = (n-z)(nﬂ) (n+z))—,%;[/+—3a’sfnw£ + 0/5‘)]- f ;;z[/—zgs,'nut 40{51)]

b (e k) fwisinod [ - Ssmut + 008 ] (11)

With G(t) so expressed, the differential equation (6) can be recog-

nized as belonging to the kind of equations known as Hill's equation.
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When §<¢<I by retaining only those leading terms in the expression

of G(t), we may write (11) as:

Gty = L+ fSsmwt (12)
where
o = (n—l)(n+|)(n+z> fOR;: - sz (n+.i.—>gzwz ) (13)
and

3;;3 1. (14)

B = §[in+dyw’ = (n-1)(n1)(n+2) 7
Equation (6) is then just the Mathieu Equation.

The stability theory of solutions of Mathieu equation is well
known [11] . Relations between parameters n, o, p, 6§, W and Ro
may be obtained to determine the region of stability or instability of
the solutions. Or to be more specific, with known values of o, p, 6
and W , we may determine the critical value of Ro which is the
transition value between stability and instability.

Without going into details of determining the exact stability
conditions, the critical radius may be roughly evaluated by the follow-
ing considerations, with the aid of the stability chart for the Mathieu
equation [ 11]. First of all, the solution is essentially unstable if
A < 0. From (13), it may be concluded that the solution is alwavys
unstable for the case n = 1. But this case corresponds to the displace-
ment of the entire bubble in the fluid, and therefore is not significant
for the consideration of the stability of the spherical shape of the bubble.

For n 2 2, the condition &« < 0 requires that

RS> ( 2(n-t)(n+1)(nt2) o \%
° : ('h.-f— 2’—5‘“) sz‘{z
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Or, in an equivalent way of speaking, it is necessary, to insure

stability, that

)

oA
2(n-{(nt)(n2)a |3
R < ( (n+$)fw‘é’ )

(15)

Now, either from the preceding discussion or by comparing
the coefficients o and /‘3 in (12), it is evident from the stability
chart that for n 2 2, the higher the mode of distortion, the more
stable is the solution. Therefore, for the determination of the critical
radius, it is sufficient to consider the case n = 2 only.

For n =2, equation (12) becomes

1(? 2 A \
Gt) = ﬁ?-é{““{)*z{(f“';;‘;)“"“v (16)

An order of magnitude criterion of stability is thus

(20 o ERr : (17)
f Rf = 2 5(‘0 .
Notice that the condition (15) is implied in the above condition. From

equation (17), we obtain the critical radius of stability as

_A4T

Tera (18)

The solution is stable only if the mean radius RO is less than this
critical radius R
cr
To illustrate this general result, let us consider the case of

an air bubble in water. For this case we have
0 = 73.5 dyne/om , and =1 gn/ecw

Now take 6§ :_lTlTO- and w = 104' rad/sec. Then
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RC,‘ ~ |0 cm.

This value is not inconsistent with the experimental observations with
sonic and ultrasonic pressure oscillations in water. However, whether
the absence of large air bubbles is due solely to the instability just

discussed, still awaits the exact experimental verifications.
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Appendix 1

Consider the polynomial

Py = (/3w’+Ab(, + 5)(u“+ w?)+ LE(1HW,) 0,
where B, A, B, w , a, E, W, are all positive real constants. Let

us denote G =aE(l + W, ) > 0, then
Py = (ﬁu‘+Au+5)(u4+ w,?) + Gu

Since B, A, B, w and G are all positive ;‘éa‘l constants, it is clear

that P(u) = 0 has no positive real root. Let

7/
u= ve 4=-l—(/+»')1f

Jz
Thus )
Pove' ) = [fv+ “f‘f(/+i)1/+5](*v9+ W) iGv',
= Mcv)y+ i Ncv) ,
where
A 4 2
M(v) = -(—j—z—V-*B)(V -w?')
and

Nv) = (/3v‘+ -Jé:v) (v w?) +6v*

%

Now if P(Veb ) = 0 has any real root, for this real V, M(V) and

N(V) must vanish separately. Now the only real roots of M(V) = 0

are V = tjw,, -Jw, and - \EAB . Since N(+J@, ) = 0. Therefore
we may conclude in particular that P(Vec%) = 0 has no positive real
root. In other words, P(u) has no zero @ %
along the line OO, shown in the figure, %

o} o,

Now the principle of the argument

[ 12] says that, if £(Z) is regular inside a
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closed contour and is not zero at any point on the contour, then
N = 3= 4, argfra)

where N is the number of zeros of f(Z) inside C and Acarg £(2)
is the variation of the argument of f(Z) round the contour C.

Now consider the contour 001020 which consists of the
positive real axis OOl, the infinite arc 0102 and the line OO2 which.
is obtained from rotating OO1 by an angle TT/4.

Now since P(u) is real and positive along OOl, then

Aao, g Pew) = 0

.6
We express u by its absolute value and argument, i.e. u = Re
Then
L 166
F(u)—_:ﬁR e [}+O/—-F:—)] , 05 R —o00.
Hence
— r _ 3n
Aoo, 029 Pary = 6x 3 = St
Along OO2
= fan N
ong Py = tan oo
For V =0:
2
Moy = Bw, ;
N (o) = o ;
and let us take arg P(0) = 0.
For V — oo:
My ~ - 87
J'z J
6

Therefore



..4.9_
ong P(ve™) =tan™ v , as VvV —> too

and

ang P(ve™)

— .
p— _Z--n‘ y a5 VYV — 400
where n may take any positive or negative integral value, and n is

. AT N(V) .
determined by the number of infinities of (V) * and the way it

jumps.

. NPT N(V)
In our case, along OOZ’ there is only one infinity of VT

N(V)

=+J . -

namely, V Ww, ., and MV changes from 400 to -oo, as V
passes V = +fw, , in the direction of increasing V. Therefore we

conclude that

T
MP(V6L4)=%W , as V—> +00
Hence
3 3
AO,O M9 P(UL) = O0- 3W = —-E'Tl'
Thus

A, ong Pewy = Aoo,o,o arg Peuy

= 0.
. T
Therefore there is no zero of P(u) for 0 € argu £ =z

Since the complex roots of a polynomial equation with real coefficients
appear in pairs of complex conjugates, it thus follows that there is no
zero of P(u) for ‘gs argu £ 0.

T
Thus P(u) = 0 has no root for which larg ul] € % .
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Appendix 2
From the correlation between the error function and the con-

fluent hypergeometric functions (cf. [13]) we obtain

-2 ;
e _ 2. 4! _ 6!
Erfe(z) = 7 7 I= Tzzy 7 Ziaz® 71 (22)° ) ’
2
4 /
for large |zl and Jarg z| < %’-’r Thus e Erfclz) = 0(2) s

for large |z], |argz] < %_I : we have
T4
| - Erde (/é—rx e 4) = (I-h‘)[C(x)—L'S(x)] ,

where x is real, and also

X X
C () ;—_f Cos(%rt‘)ocﬁ and Sex) = f sin(Te?)dt

@

so that
(T
| - Evbc(-[Txe 4) = (1+¢) [ctv-iSC-0]
= - (1+:) [ ¢lx) -c S(x)] .
Now for large x, (cf. [14])
Cix) = .:ZL + -#51'11 %szwt O(}La) ;
]
gy = Z - #;c::s{[xlv* 0(“;([2) .
Thus
‘% (L) o0
Er}c(—j———er )=Z+01 ) as X —» ,
while

Evvcc(f—zixei%):—'a(’;’?), as X —> o9

Thus Eq. (45) Part IA and Eq. (46) Part IA yield for large t:

Clwtt 4
0, (t) = 2fwhy e 0(1) ;

and /
| ((wt+ 74)
X(t) = 2[5 € + 0(F)
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Now from (I, A-40, 42) we have

g b. AEES
Z sh+a;  (s-iw)psh)
Thus
b= (s4+ag)df-‘;5 ): LEE (-a5)
§ ($-iw) P(5%) g (-a,+a,) P(-g,)>
Or
b = AEE tw

87 2/me™ Plse%)

Again from (I, A-41, 43) we have

{
f . _ X (BstAs®+8)
& skEra (s-iw) P(s%)
Thus
- o(é[,@wv‘/?f‘e %, 5)
e

2Jw e7* PrmetV4)

Therefore, for large t, we have

-
L Eéw L[wt‘f‘;)
6, ) ~ AUy ;
_L'ﬂ4 {t_,___
2 () ~ - At (porpme o) | cletrE)
p(f?‘%) )

: )
b (t) ~ oL, (1t W) [(E+38)ui+ 3he /4‘/— ~3.8] el[whz)
F(r'e”%r)
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Appendix 3

From (I, A, 40) and (I, A, 41), we have

Yoo st
! ¢,
6,4) = 77 2GEs€ 45, (1) ®
fis (S-iw) P(s*)
Y
and 0
A ) st
x(-t)—_.i_f - &, (Igs_’,/}s/z/_rg)e As (2)
2T am . ($-cw) P(s%) P
¥-reo

where the path of integration is to the right of all the singularities of
the integrands concerned. 1 7

Let szuzand u=§+e7. @ 7
Then in the u-plane, the integral (1) ’\j?r Jr

oL
“&
becomes N
Ry N c
4y = I J 2006 Eu’ e du \\\
92( ) — . (U.,I-L‘U.J) P(“) J N

FAIN
c

2 2
where c 1is the branch of the hyperbola § -7 =Y that lies in the

right half plane. This hyperbola has asymptotes
=4y

Consider the closed contour

5

r

2
[ ; due to the factor e" t, the pre-

vious integral becomes, after

applying Cauchy's theorem:
(oo 3 2
| [ 2d&Eue *

62“:) = '—""2’_“: o (Ml— I;M)) P(U‘)

du + ZR )

O

where 2K denotes the sum of residues of the integrand at its poles

in I. As mentioned before, all the roots of P(u),

arguments of absolute magnitude greater than WA_

i. e.

-a

. have
i

t . . e . .
to see that, due to the factor e , no significant contribution can

; thus it is easy
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My

result from them for large t. The residue due to the pole u = Jw €

however, is equal to

cwt
o(é,,Eiuo{-:f
P (@ e‘™4)

Finally - y
| j 206, Eul et du " O(i—!;/l)
i oo (u'~iw) Peu) ’

for large t, either by the method of steepest descent or Watson's

Lemma - .. Thus /
L'/wf’fv.z) £
B = LEGEw e + Ot 4) as t — oo
: Plime'™) ’

Similarly

_g% . 7
3 tw'f 2) -
) = — L& (ButAme -i8) . (wt+% L 0(t 74

F(Ja_’.et'n‘él_) )l

as t+ — s
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Appendix 4
To solve
2(re) =1 & (v8) @
with
ep(Y,O) = 91 [DO,‘E) = 0 ) (Z)
and
6, (Ret),t) = - 3C.5 sinwt (3)

up to 0(62), we note that

36,
6, (K(f),'l:) = 6,(&,,(2) + (R-R,) (W)Y=R° Foee
or
8, (Rot) = -3C,8 simuwt - R, § sinwt (‘Sl'r@")r%' ..... “

We may ignore the remaining terms, since they are of the order of 63.

Now let us solve first the equation

) =pk (el (5)
with

O.(v0) = B, (w,t) =0 , (6)
and

0,(R,t) = -3Cob Sinwt . (7)
Denote

00 -st
W, (vs) = I{y@,} = f Y6, (vt)e ! at . (8)
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Then the transformed equation and conditions become

d'v, S

iv "% =0
with

. v

/ﬂ/‘ﬂ"\a -——Yc— franed O ,

Y ~> 00
and

w

’U:,(R,;S) = ‘3&&»5 W

Thus

k)
wrsy = — 3B Cowd R")/;.

sttw?

Using the inversion formula, we obtain

T
Loo - 'Ra) 57
@ 3 Ra Coow(g e (Y jl? Sf

sttw®

|
Yea(f,'t) = - —ZT-T‘: f

(-t

Thus for large t, we have

~{r-R.) = 17 -%
eo(Yit) _ - ___3__R$_C££_ e {r 2D5in[w1‘—(r—l(.,)/2:,;] + 0(‘[ /) .

and

%gg = 3RGS e—(y-m”/;p { (%*ffg)sf'n[ué-(y-mfg]

3
+—,’-/§, Cos[wf—(r-ﬁ’.,)/z’_‘i]j t ot 4) .
-3/2

Neglecting terms of the order of 1 . we thus have

26,
Now O, will be solved by putting in (4) (WY=R in place of

6,
(5% ),

e ds .

(10)

(11)

(12)

——

13)

(14)

(15)
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Then
RORE) = ~3R,C8 { simt + [ (11 R, [2 Yo't + 22 [ S"nzwt]} ()
Now let vi(v;s)=L{r6} ; itis easyto see that
A (v;8) = V(R.;$) e_h-&)fg: , (17)

where

v, (R.,;$) = -3R,C. S{ T % [(I+F,/}§)/}L‘51f4u,)

T Rof2> 75 +4w‘ ]} (18)

Thus we obtain from the inversion formula asymptotically for large t:

- 'Ro) =
Bty = - ek [ 7O /;s»»[wt—(r—mﬂ%]

+—g[(HR°]%)E”( jZJT) *Rﬁ)f-(ﬁmw&s 2wt (r-l?,/w)
z _
+R 2 e—/"ﬁ")/l’gfn{é,t-/y-m )E)] f Y )

Now

(B = (Rt 030, v oy o

©

From (19), we have

. = ~(rk.)
%% =3R,Cw5{('y}? f‘r’“]%)ffn[wt ~(v-r) 52 ]‘*F' 55 s [0t - °/;],( s

(r—?)

ffr?,c,.ﬁl{(z+ﬁ,j,-";‘,’:, T (= ) e Pt fj (21)
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where S denotes those sinusoidal terms which will not contribute to

the rectification up to the second order.

Also

3?; =-3RCu§{ (54 yz_/:n)sm[wi-—(r Ve

_ ~ —(r-l?.,)_/;-b-T ,
SR 2By u[wt-(R)E]] e P00 22

Thus from (20), since R - Ro = R06 sinwt, we have

(—i’?—')y_R = 3R Coo S{ /——>Smw{' + ’0/2% [ogwf}

/
+3R, { I?j ZR 2.?,\/;}3% "’E-lgn-wt)+5}
; (23)
co(e ) 4 o)
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Appendix 5

We want to solve the following equation

L(v6,) - L 2,) = g0ty )
2
where ?(Ylﬂz E‘;&’Q”g' to the order of 62.

3 From the result in
Appendix 4, since R=24§R, weoswt, we have

4 2 v
glit) = 3R,p€wwa/ (R#;{(y,,i ) sinfut -7 )% ]

w w 3
+-yl/;—£ Cos[wf-(v-f\’o)/jj ]j Coswt 4 0((57) . (2)
The initial and boundary conditions, up to the same order, are

62<V,°) = 9,_ (o0, +) = o

y (3)

and

6, (R, t) = o

Apply Laplace Transformation, and let

‘f"‘f{%}, also put
hevs) = £ {;{nt)}

then it may be verified that:

g Y _0_5_ (-K,)Spo Y
90()';5) = ‘EIF/E'E [e'("”'?a)/;-g /;(X)s)e(x '?2/1:0(1 ‘e Y ﬁjh{x;j)e (x K)/D;x
’ 4
(R [E (T - (xRe)
- e (r-& )jj’ f * f

J ngods |

14

(5)

(6)

Hence
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8 [t [ R R
+[—-&t1——yl—\/_§)e[y-&2/§j e_[x’ﬁ")/’;h[x;s) dx

(hr3f5)e Rl " -{”)fhf“)dd. (7)

4

Thus

(%)\r:n %g ”("R’/_},(x D (8)

Now let us rewrite the expression of ?z’r,{:) in (2). Then we have

602'(“) 3R, G w(.‘ {rJ r’f)@‘(y'z)j’jb Y‘be’"('R)EFJSJ‘nZuf
+[(__L J. _,)5,,,(, Ry: Y{Eas(ﬂ&ﬁ]

x fn cos.uot]} ew("mg + 0o(§) | (9)

From (8) it is fairly obvious that excluding those terms which
. e 3 ¥
at most contribute to the rectification of the order of O(&~) and O(t )

the relevant term in ?(Y,Jc) is just

g0 = 3R (2)5'e R (-4 - BB si [0y ]
LB ce[0-R)fF 1t (10)

As h (Vi) = Ifj,fr)} = 31;,/0 , it follows that

ctipe -(R
Pho, e[l [ gl T

where T denotes irrelevant terms. As we are only interested in the

behavior of the solution for large t, we thus expand e in
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Y .
ascending powers of S°' , and obtain:

-g—;‘—y_R—.:—‘RL[/g(X)dX - —-—-——j (x- )?)5(1)0{1] + 0t ) . (12)

Since

'—L‘l et
Y4 = srRIG(5)8 f% [+ e'(r"?")j; Sin (202 | ,

therefore
80

J

’ "oa';("”(" = 0

J

and this leads to the resulf that

06, !
= -1 (odx + O(t 13
(= %0 Jﬁrfoa’ R (a2
RIA
We may observe that Y. Y= R (S) . Hence, up to this

order we have

g
(gez)r_ avl)r- B i( Jwr%i)gz. fioodr JOU

-3R, C( )S(H K")I t Ot ) (14)
where

I, = gwe’”'“”jg [ 5Ly smtmr)f5
rlj— Cos (1- IE..)/ZT ]dr , (15)
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Appendix 6

To evaluate the integral

= gx[(_;g ~—Lj;£)51'n (v-R, )F
2 E oenf 1 »

let us note that

=
_,i N e-(v—Ro3.zJ> Sin (r—R.,l/g ]

ay Ly
2 ~(v-R.)
-3 - LB enger B YJ; s lot)E [ RUS
~(r-R) & .
=—;’; 2P Sin (r-R, S (2)
where il is the integrand in Il' From (2), we may thus write
0 T
1 —(Y"Ra)’
I = {2 e e 2DS|‘“(Y'RO)§D dv . (3)
14

After changing variables, we have

Lad -
1 = g (x+na>3 f;j'" X dx
® -f (=)
= Im [{ (x+R,)° e ™ di] . (4)
,;%

Now let y =fze z=(1-Jx s then apply Cauchy's Theorem to
transform the integral along the real axis of the new coordinate system,

and we then obtain

% /J;" 4
I = Inm [ & f I
y = Im. - mf ;« (15)
For the case that K:/:; 5 l , we may apply Watson's

Lemma, and get



A
I. =Im.[ e

g -

7R}

I

/%

lﬁz

Ro P3))

62

)+ 0=

(R3]

)]

O/Rj?(jz,;?/?),



