The Development of Organocatalytic Reactions Pertaining to Indoles

Thesis by

Joel Francis Austin

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended 9 June 2005)

© 2006

Joel Francis Austin

All Rights Reserved

Acknowledgements

Intensity, endurance, and scientific excellence have been the primary lessons learned during my time in the MacMillan Group. First and foremost, I would like to thank my advisor David MacMillan for instilling and demanding those values. I will always be grateful for being given the opportunity to work in his laboratory.

I was fortunate to have received a graduate research fellowship from the John and Fanny Hertz Foundation. This organization has been wonderfully supportive throughout my graduate career. Being a Hertz fellow has given me significant freedom to pursue the research disclosed in this thesis.

I am deeply indebted to the Berkeley students in our group from whom I have learned so much—Drs. Tehshik Yoon, Jake Wiener, Vy Dong, Wendy Jen, Nick Paras, Tristan Lambert and Chris Borths. As they would surely attest to, the unbridled enthusiasm that I entered the lab with in 2000 was greatly overshadowed by my intense lack of knowledge. I owe them everything, they showed me how to do synthetic organic chemistry and deserve credit for what I have accomplished. Dr. Tehshik Yoon was an inspiration and I thank him for his patience when explaining chemistry concepts to me. Dr. Jake Wiener is one of the favorite people that I have met at Caltech. His enthusiasm for life, amazing athletic ability and kindness deeply affected me (Jake if you are reading this and wonder how your amazing athletic ability affected me... I am referring to my broken leg). Dr. Vy Dong is a wonderful friend who would lift me up whenever I got down. I learned a lot about the irrelevance of worrying from Dr. Wendy Jen on our many sushi dinners. She was and is a great person to talk to. Dr. Nick Paras took me under his wing and greatly affected the way I think about chemistry. I owe so much to Nick that if I wrote it down he would become even more cocky. Dr. Tristan Hayes is one of those extremely quiet guys who every once is a while makes you laugh like crazy. And what to say about Dr. Chris Borths? He worked next to me and was instrumental to the development of my graduate career. Additionally he was an extremely helpful and nice guy who never shied away from a challenging game of "do I have to fart?"

And to all of my fallen classmates—Brian Kwan, Jim Falsey, Julie Park, Rebecca Wilson and the late Ben Edelson. Selfishly, I wish that each of you were still in our group so that I could continue to enjoy our time together, although I know that you are all in a better place now. The next person I think about is Alan Northrup. Probably one of the smartest people I have ever met, keep on burning the midnight oil A-train... if anyone from our class will discover a drug it will probably be you. Big bad Sean Brown worked within 10 feet of me for 5 years. One of my best friends Sean was my partner in crime for many adventures. As the other "mis-educated hoodlum," Sean and I had a hell of a time working together. Finally, Catherine Larsen is an amazing woman... how many times did we dance to Billy Idol together?

The next two individuals that joined our lab were Ian Mangion and Nicole Goodwin. Ian is an amazingly smart person who is also very funny, cultured and adventuresome (third floor of the parking structure at midnight). Nikki is such a nice and generous person, I hope that our paths cross again but if my kids have an accent remotely like yours I will go crazy.

Who else is there? Mike Brochu is an amazing soccer player and chemist. Hanging out with little-T produced some of my best memories from graduate school. I'd like to

thank Sandra Lee for introducing me to Yoga. I would like to thank Robinson Moncure and Katie Saliba for their mystifying optimism.

The last graduate students in the MacMillan lab that I will ever have had the privilege of overlapping with are Teresa Beason, Crystal Shih, David Chenowith, Jamison Tuttle and Robert Knowles. Jamison is very good at making me keep my eye on the prize, as a valuable confidant and good friend I have had the pleasure of knowing him. Knowles is an amazingly nice guy who put up with a lot of my crap, if he doesn't go insane I'm sure he'll be a great professor (or rodeo clown) someday. Like Jamison, Knowles is one of my most trusted confidants and it has been a pleasure knowing him. And what could I possibly say about Nabo that he doesn't already know?

I would like to single out some specific MacMillan group postdoctoral scholars. Dr. Wen-Jing Xiao is a wonderful friend and I enjoyed all of our time together, I am happy that you are being successful. Dr. Sun-Gon Kim is an amazingly hard worker and loyal friend. I spent quite a bit of time with Sun-Gon, his wife Una and children Joonha and Gunha. I consider his family to be part of my own. I consider Dr. Christopher Sinz and Dr. Claudia Roberson as a surrogate older brother and sister (who happen to be married). I love you both and I have learned an immense amount from the two of you about life, science, and me. Dr. Simon Blakey has been a great friend and I have enjoyed having numerous beers with him. It has been a pleasure to work with Drs. Stephane Oullett, Young Chen, and Robert Storer, I expect that you continue to be great scientists and, more importantly, great people. Finally, I cannot thank Dr. Gérald Lélias enough. Whenever I faultered in the last year of my Ph.D. you were there to pick up the slack. Gérald's enthusiasm and determination have been inspiring. I don't know if I would be graduating without your support, you're a good man Dr. Lélais.

I have particularly drawn on the knowledge, kindness and friendship of the following people in other labs: Neil Garg, Uttam Tambar, Eric Ferriera, Jeff Bagdanoff, Dr. Richmond Sarpong and the wonderful Raissa Trend of the Stoltz lab. Similarly I have drawn on support from Andrew Waltman and Drs. Stephen Goldberg, Dean Toste, and Justin Gallivan of the Grubbs lab. Last but not least, Dr. Cora MacBeth of the Peters lab is a wonderfully intelligent and brilliant woman who has been enormously helpful.

I would especially like to thank the fine doctors at Huntington Memorial Hospital. In particular Dr. Ackerson for his careful attention to my badly injured tibia. Dr. Edward Helfand for his careful attention to my badly injured toe. And Dr. Lee Coleman for his careful attention to my badly injured psyche.

I would also like to thank my thesis committee, Profs. John Bercaw, Nelson Leonard, Robert Grubbs, and Brian Stoltz, for their suggestions and service. I'd especially like to thank Prof. Robert Grubbs for serving as the chairman of my thesis committee.

David MacMillan, Dr. Gérald Lélias, Simon Blakey, Ian Mangion, Nicole Goodwin and Robert Knowles are gratefully acknowledged for proofreading this manuscript.

Beer, whiskey, rum, and gin are all acknowledged for their assistance in delaying the preparation of this manuscript and for being the source and solution of almost all of my problems.

I would like to thank my parents, my brothers and sisters and my wonderful nieces and nephews. You have all been amazingly supportive of me and I thank you from the bottom of my heart for giving me reasons to smile. Having my sister Saraphoena and nephew Blue live with me during my first year was incalculably helpful to my getting adjusted to the rigors of Caltech. Although you didn't understand a word of my insane ramblings about chemistry, you listened. I cannot thank you enough for all of the care and support you have given me over the years.

Over the last year, I have fallen in love with a wonderful girl named Erin Daida. From late nights and weekends alone at home to the uncertainty of our future life, graduate school has been difficult for her too. I am excited about our future life together. That is why this thesis is dedicated in her honor.

Abstract

An improved imidazolidinone catalyst for the LUMO-lowering activation of α , β unsaturated aldehydes has been designed, synthesized and evaluated. This new catalyst allows hitherto infeasible reactions to proceed with high fidelity.

A new strategy for the synthesis of C-3 chiral indoles has been developed. This strategy employs the use of the aforementioned imidazolidinone catalyst to activate α , β -unsaturated aldehydes toward a Friedel-Crafts reaction with a variety of indoles. This is the first and only example in the literature were an indole is alkylated by an α , β -unsaturated aldehyde enantioselectively and catalytically. This methodology allows for the rapid synthesis of this priviledged pharmacophore.

By exploiting the indolium ion intermediate produced during the asymmetric Friedel-Crafts alkylation of indoles, a cascade cyclization was found to occur in the first enantioselectivive catalytic construction of the pyrroloindoline architecture. This direct route provides rapid access to this valuable core motif. This research has led to interesting observances in terms of indole facial selectivity that can be rationalized by an understanding of the cation- π interaction.

After numerous unsuccessful attempts to apply the direct pyrroloindoline construction to the synthesis of vicinally quaternary adducts, exploration of the higher reactivity of oxindoles was undertaken. This study has led to the first construction of vicinally quaternary stereogenic carbons via an organocatalyzed protocol.

Table of Contents

Acknowledgements	iii
Abstract	viii
Table of Contents	ix
List of Schemes	xi
List of Figures	
List of Tables	xiv
List of Abbreviations	xvi

Chapter 1. The Enantioselective Organocatalytic Indole Alkylation

Introduction	1
Initial Investigation of Indole Friedel-Crafts Alkylation	3
Catalyst Development	5
Enantioselective N-methylindole Alkylation with (E)-Crotonaldehyde Using 13	10
Substrate Scope	11
Stereochemical Rationale	13
Limitations and Considerations.	13
Extensions of This Chemistry	14
Conclusions	14
Supporting Information	15
References	35

Introduction	
Reaction Design	43
Results with Acrolein	
Results of Various Protecting Groups with Acrolein	46
Results with Substituted Acroleins	46
Stereochemical Rationale for Acrolein	48
Stereochemical Rationale for β-Substituted Acroleins	53
Limitations and Considerations	54
Extensions of This Chemistry	55
Conclusions and Future Directions	59
Supporting Information	60
References	78
X-Ray Crystallographic Data for JFA01	85
X-Ray Crsytallographic Date for JFA03	105

Chapter 3. Synthetic Studies Towards Bis-Quaternary Carbon Containing Pyrroloindolines

Introduction	
Direct Pyrroloindoline Formation Route	
Examination of Isatin Derived Aldehyde 40	
Initial Investigations of Oxindole Alkylation	
Path to Bis-Oxindole Diethylamine	
Limitations and Considerations	
Conclusions	
Supporting Information	
References	

List of Schemes

Chapter 1. The Enantioselective Organocatalytic Indole Alkylation

Number	Page
1. Modular Reasoning for Catalyst Evolution	. 6

Numl	per	Page
1.	Overman's bis-alkylation and bis-Heck technologies for (-)-chimonanthine	41
2.	Overman's bis-alkylation and bis-Heck technologies for meso-chimonanthine	41
3.	Organocatalytic Pyrroloindoline Construction	44

List of Figures

Chapter 1. The Enantioselective Organocatalytic Indole Alkylation

Numbe	Number	
1.	Importance of Iminium Ion Geometry	3
2.	Importance of selective iminium facial coverage	3
3.	Proposed interaction between N-methylindole and iminium ion	6
4.	Computational models of 1 and 13	8
5.	Calculated models of iminium derived from 1 and 13	9
6.	Newly commercialized adducts derived from this work	14
7.	Derivatization of (R)-3-(1H-indol-3-yl)-butanal to known ester	30
8.	Derivatization of (R)-3-(1H-indol-3-yl)-butanal to benzyl analog	31
9.	Derivatization of (R)-3-(1H-indol-3-yl)-butanal to methyl analog	32
10.	Deoxygenation of (R)-4-benzyloxy-3-(1-methyl-1H indole-3-yl)-butanal	33

Numbe	Number	
1.	Some 3, 3, 2-indoline containing natural isolates	. 37
2.	Representative pyrroloindoline natural isolates	. 38
3.	Danishefsky's oxo-selenation technology for amauromine	. 42
4.	Stereochemical rationale for Equation 1	. 49
5.	Stereochemical rationale for Equation 2	. 50
6.	Frontier Molecular Orbital Explanation of Equation 2	. 51
7.	Tryptamine facial selectivity due to secondary orbital overlap	. 52
8.	Stereochemical rationale for Equation 3	. 54
9.	Furoindoline versus pyrroloindoline construction	. 55
10.	Extensions to (-)-flustramine B and (-)-debromoflustramine B	. 58
11.	Extensions to (-)-pseudophrynaminol and pseudophrynamine-A	. 59
12.	Molecule A of JFA01 with labels. Nonhydrogen atoms are shown with 50% probability	
	ellipsoids	. 88
13.	Molecule B of JFA01 with labels. Nonhydrogen atoms are shown with 50% probability	
	ellipsoids	. 89

14.	Molecule A and Molecule B of JFA01 superimposed on each other	90
15.	Unit cell contents of JFA01.	91
16.	Stereo view of unit cell contents of JFA01.	92
17.	Molecule A of JFA03 with labels	108
18.	Molecule B of JFA03 with labels.	109
19.	Superposition of molecules A and B of JFA03	110
20.	Unit cell contents of JFA03.	111
21.	Stereo view of unit cell contents of JFA03.	112

Chapter 3. Synthetic Studies Towards Bis-Quaternary Containing Pyrroloindolines

Number

Page

1.	Structurally related cyclotryptamine alkaloids natural isolates	113
2.	Hendrickson oxidative dimerization of oxotryptamine 4	114
3.	Scott's oxidative dimerization of tryptamine 10	114
4.	Kirby's feeding experiment establishes pathway	115
5.	Reductive cyclizations onto oxindoles produce pyrroloindolines	116
6.	Hino has trouble closing rings	117
7.	Rodrigo also has issues with reduction	118
8.	Overman's bis-alkylation and bis-Heck technologies for (-)-chimonanthine	119
9.	Overman observes fragmentation to 30 and 31	120
10.	Later Overman work circumvents fragmentation	121
11.	Desired synthesis to mimic biomimetic pathway	122
12.	Literature precedent for Michael addition pathway	122
13.	Proposed mechanism for the formation of catalyst incorporated adduct 45	124
14.	Other catalysts likewise do not produce desired conjugate addition adduct 46	126
15.	Proposed bis-oxindole construction	129
16.	Synthesis of siloxytryptamine prescursor	129

xiii

List of Tables

Chapter 1. The Enantioselective Organocatalytic Indole Alkylation

Number		Page
1.	Effect of Cocatalyst and Temperature on the Alkylation of N-methylindole with	
	(E)-crotonaldehyde with Catalyst 13	10
2.	Organocatalyzed Alkylation of N-methylindole with Representative	
	α , β -usaturated Aldehydes	11
3.	Enantioselective Organocatalyzed Alkylation of Representative Indoles with	
	(E)-crotonaldehyde	12

Numbe	Number	
1.	Effect of Cocatalyst and Solvent on the Organocatalytic Pyrroloindoline Construction	. 45
2.	Enantioselective Pyrroloindoline Formation with Representative N_1 and N_{10}	
	Substituted Tryptamines	. 46
3.	Enantioselective Pyrroloindoline Formation with Representative Unsaturated	
	Aldehydes and Tryptamines	. 47
4.	Crystal Data and Structure Refinement for JFA01 (CCDC 197024)	. 86
5.	Atomic Coordinates (x 10 ⁴) and Equivalent Isotropic Displacement Parameters	
	(Å ² x 10 ³) for JFA01 (CCDC 197024)	. 93
6.	Bond Lengths [Å] and Angles [°] for JFA01 (CCDC 197024)	. 95
7.	Anisotropic Displacement Parameters $(Å^2 \times 10^4)$ for JFA01 (CCDC 197024).	
	The Anisotropic Displacement Factor Exponent Takes the Form:	
	$-2\pi^2 \left[h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12} \right]$. 99
8.	Hydrogen Coordinates (x 10^4) and Isotropic Displacement Parameters (Å ² x 10^3)	
	for JFA01 (CCDC 197024).	. 101
9.	Selected Torsion Angles [°] for JFA01 (CCDC 197024)	. 103
10.	Hydrogen Bonds for JFA01 (CCDC 197024) [Å and °].	. 104
11.	Crystal Data and Structure Refinement for JFA03 (CCDC 234570).	. 106

Chapter 3. Synthetic Studies Towards Bis-Quaternary Containing Pyrroloindolines

Numbe	er I	Page
1.	Isatin Enal can be Utilized Successfully for a More Reactive System	127

Abbreviations

Ac ₂ O	acetic anhydride
АсОН	acetic acid
Boc	tert-butyl carbamate
Cbz	carbobenzyloxy
COSY	correlation spectroscopy
Ср	cyclopentadienyl
DERA	2-deoxyribose-5-phosphate aldolase
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DIBAL-H	diisobutylaluminum hydride
DIPT	diisopropyltartrate
DMF	dimethylformamide
DMPU	1,3-dimethyltetrahydro-2(1H)-pyrimidinone
DMSO	methylsulfoxide
DTBMP	2,6-di-tert-butyl-4-methylpyridine
EtOAc	ethyl acetate
GLC	gas liquid chromatography
h	hours
НОМО	highest occupied molecular orbital
HMQC	heteronuclear multiple quantum coherence
HPLC	high pressure liquid chromatography
HWE	Horner-Wadsworth-Emmons reaction
IC ₅₀	concentration necessary for 50% inhibition
LA	Lewis acid
LiHMDS	lithium hexamethyldisilamide
LiTMP	lithium 2,2,6,6,-tetramethylpiperidine amide
LnLB	lanthanum (III) tris-lithium tris-binolate

	xvii
LUMO	lowest unoccupied molecular orbital
MCA	monochloroacetic acid
MeOH	methanol
min	minutes
MOM	methoxymethyl
Ms	methanesulfonyl
МТРА	α -methoxy- α -(trifluoromethyl)phenyl acetyl
NHK	Nozaki-Hiyama-Kishi reaction
NMO	N-methylmorpholine-4-oxide
NMP	1-methyl pyrrolidin-2-one
NMR	nuclear magnetic resonance
NOE	Nuclear Overhauser effect
Nu	nucleophile
Phth	phthalimido
Piv	trimethylacetyl
PMB	para-methoxybenzyl
PMP	para-methoxyphenyl
<i>p</i> -TSA	para-toluenesulfonic acid
Pyr	pyridine
TBDPS	tert-butyldiphenylsilyl
TBDPSCI	tert-butylchlorodiphenylsilane
ТВНР	tert-butylhydroperoxide
TBS	tert-butyldimethylsilyl
TBSCI	tert-butylchlorodimethylsilane
TBSOTf	tert-butyldimethylsilyl trifluoromethanesulfonate
TCA	trichloroacetic acid
TES	triethylsilyl
TESCI	chlorotriethylsilane

TFA	trifluoroacetic acid
TfOH	trifluoromethanesulfonic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMS	trimethylsilyl
TMSCI	chlorotrimethylsilane
TPAP	tetrapropylammonium perruthenate
TROC	carbo-2,2,2-trichloroethoxy

To Erin