Chapter 3

Synthetic Studies Towards Bis-Quaternary Carbon Containing Pyrroloindolines

Introduction

The Calycanthaceous alkaloids contain a challenging bis-quaternary carbon stereogenic architectural motif that has been the inspiration for numerous elegant synthetic studies. The structural elucidation of the parent compounds, chimonanthine and calycanthine represent a hallmark in structural elucidation by degradation. ${ }^{1-4}$

Figure 1. Structurally Related Cyclotryptamine Alkaloids Natural Isolates

(-)-Chimonanthine
1

meso-Chimonanthine
2

(+)-Calycanthine
3

These structurally related natural isolates (Figure 1) are all thought to be biosynthetically related to tryptamine via an oxidative dimerization. The groups of Hendrickson ${ }^{5,6}$ and Scott 7 employed two notable dimerization strategies in their syntheses. Hendrickson, as shown in Figure 2, dimerized the sodium salt of oxotryptamine 4 in the presence of iodine to produce a racemic and diastereotopic mixture of bis-oxindoles 5 and $\mathbf{6}$. Reduction of the C_{2} symmetric diastereomer with lithium aluminum hydride produced racemic chimonanthine 7. Interestingly, reduction of the meso-diastereomer produced geometrically rearranged product $\mathbf{8}$.

Figure 2. Hendrickson Oxidative Dimerization of Oxotryptamine 4

As shown in Figure 3, Scott found that the Grignard derivative of N methyltryptamine $\mathbf{1 0}$ was oxidized by ferric chloride to directly produce racemic chimonanthine in 20% yield. A small amount of meso-chimonanthine was also observed.

From this work the presence of intermediate bis-indolenine 11 was postulated.

Figure 3. Scott's Oxidative Dimerization of Tryptamine 10

Though these two complementary approaches both provide the desired hexacyclic natural products, they proceed in low yields and are not diastereoselective. With respect to the biosynthesis of the Calycanthaceous alkaloids, it was unclear as to whether an oxindole (such as 5 or $\mathbf{6}$) or bis-indolenine intermediate (such as 11) was present. To
answer this question, Kirby converted doubly labeled tryptamine and tryptophan to chimonanthine by feeding the precursors to leaf bearing shoots of Chimonanthus fragrans. ${ }^{8}$ As shown in Figure 4, good incorporation of $\left[\beta-{ }^{14} \mathrm{C}, 2-{ }^{3} \mathrm{H}\right]$-tryptamine (11.1%) and $(\pm)-\left[\beta-{ }^{14} \mathrm{C}, 2-{ }^{3} \mathrm{H}\right]$-tryptophan (3.6%) into chimonanthine was observed. These labeling experiments demonstrated that the biosynthetic pathway does not involve the oxidative coupling of an oxindole intermediate. Due to the incorporation of the radiolabels, a bis-indolenine intermediate (such as 11) has become the accepted core structure for the biosynthesis of this architecture.

Figure 4. Kirby's Feeding Experiment Establishes Pathway

Shoots grown for 7 days in aqueous solution of 12 or 13 . Then extracted.

Labelled (\pm)- ${ }^{7}$ himonanthene
Kirby thus established that there is not an oxindole intermediate in the biosynthesis of the Calycanthaceous alkaloids. Though oxindoles are not intermediates in the synthesis of the Calycanthaceous alkaloids, these structures have been widely studied as precursors for pyrroloindolines. ${ }^{9}$

Julian first succeeded in synthesizing the pyrroloindoline core $\mathbf{1 4}$ by using the Ladenburg reduction on a 3,3-disubstituted oxindole ethylamine 15 (Figure 5). ${ }^{10}$ Since Julian's work, many synthetic efforts on the pyrroloindoline architecture have focused on oxindole intermediates. ${ }^{9}$

Figure 5. Julian's Reductive Cyclizations onto Oxindoles Produced Pyrroloindolines

In a series of monographs, ${ }^{11-13}$ Hino demonstrated in 1961 and 1963 that bisoxindole ethylamine $\mathbf{1 7}$ could be synthesized from bis-oxindole 16 via successive alkylations with chloroacrylonitrile (Figure 6). Hino also disclosed that the Ladenburg reduction causes cleavage of the corresponding bis-quaternary system $\mathbf{1 7}$ to N methyltryptamine $\mathbf{1 8}$ (Figure 6) whereas the lithium aluminum hydride reduction of $\mathbf{1 7}$ provided only starting material. Shortly after Hendrickson disclosed his synthesis of chimonanthine in 1962, Hino demonstrated that the lithium aluminum hydride reduction of $\mathbf{1 9}$ proceeds to racemic folicanthine $\mathbf{2 0}$ (yield not given, Figure 6). ${ }^{14}$

Figure 6. Hino Prepares bis-quaternary Carbons via Alkylation of Indigo Derivative 16

Rodrigo has also synthesized racemic folicanthine through an oxindole intermediate (Figure 7). ${ }^{15}$ Though longer in chemical steps, Rodrigo's radical anion chain dimerization of 21 proceeds with much higher chemical efficiency than the previously mentioned dimerizations to produce the bis-quaternary oxindole 22. Bisamide 23, prepared from 22, was reduced to 24 by a process in which the lithium salt of the secondary amide was preformed with lithium diisopropylamide in THF followed by reduction with DIBAL-H. Reduced compound 24 could be converted to (\pm)-folicanthine by the action of Red-Al.

Figure 7. Rodrigo Finds Improved Reaction Conditions for Dimerization

As mentioned in Chapter 2, elegant work by the Overman group has produced concise syntheses of (+), (-), and meso-chimonanthine, (+), (-), and mesocalycanthine, ${ }^{16-18}$ idiospermuline, ${ }^{19}$ quadrigemine C , psycholeine, ${ }^{20}$ hodgkinsine, hodgkinsine $\mathrm{B},{ }^{21}$ ditryptophenaline and ent-WIN 64821. ${ }^{22}$ Like the previous synthetic efforts of Hendrickson, Hino, and Rodrigo, Overman proceeds through oxindole intermediates. Since Overman's synthetic sequence to produce the bis-quaternary structure has been dealt with in Chapter 2 of this thesis, only the key NCN bond forming steps will be discussed in more detail here. In the stereocontrolled synthesis of mesochimonanthine 2, cyclohexene 25 was converted to hexacycle 26 by the action of Red-Al (Figure 8). Elaboration to bis-ethylamine intermediate 27 is followed by reductive cyclization to forge the desired hexacycle 28. Subsequent elaboration of $\mathbf{2 8}$ provided $\mathbf{2}$.

Figure 8. Overman Utilizes a di-aminol as a Synthetic Intermediate

Direct Pyrroloindoline Formation Route

With the exception of Scott's synthesis, all of the syntheses discussed to this point have utilized bis-oxindole intermediates. As discussed above, Hendrickson and Hino both found interesting behavior associated with bis-oxindole intermediates. In particular, Hino notes that they have a propensity to fragment about the 3-3a quaternary carbon juncture. There is also evidence that this fragmentation occurs in the syntheses from the Rodrigo and Overman groups.

Rodrigo found it difficult to transform bis-amide 23 (from figure 7) to folicanthine and states (numbering changed for consistency and clarity) that...
"Treatment with various reducing agents (lithium aluminum hydride, lithium triethyl borohydride, various borane derivatives, sodium borohydride with methanesulfonic acid in DMSO) under many conditions in different solvents resulted in complex mixtures of products or no reaction at all; borane reduction of $\mathbf{2 3}$ produced a low yield of $\mathrm{N} 1, \mathrm{~N}$-dimethyltryptamine resulting from cleavage of the long ($1.58 \AA$ in $\mathbf{2 2}$) C3-C3' bond of 23."

This is consistent with Hino's observations concerning bis-reductions of diamines onto bis-oxindoles.

Interestingly, as shown in Figure 9, Link and Overman ${ }^{18}$ state that mesosymmetric compound 29 can be synthesized from 25 but that treatment with reducing agents typically lead to a $\sim 1: 1$ mixture of oxindole and indole fragments $\mathbf{3 0}$ and $\mathbf{3 1}$. This result is in keeping with the known propensity of these compounds to fragment that has been observed by Hino and Rodrigo.

Figure 9. Overman Observes Fragmentation to 30 and 31

29

30

31
$\mathrm{R}=$ alkyl or H and $\mathrm{CO}_{2} \mathrm{R}^{\prime}$
Later work by Overman ${ }^{17}$ showed that both the acyclic meso and D/L diastereomers of diols $\mathbf{3 2}$ and $\mathbf{3 3}$ can be converted to pentacycles $\mathbf{3 4}$ and $\mathbf{3 5}$ respectively (Figure 10). These diol pentacycles were then converted the desired hexacyclic alkaloids. Subsequently the Overman group has disclosed numerous elegant syntheses of pyrroloindoline containing alkaloids. ${ }^{23-25}$

Mindful of the elegant work on this class of natural products, we sought to extend our direct pyrroloindoline construction to molecules bearing vicinal quaternary stereogenicity. We anticipated that if successful, this technique may serve as a complementary approach to the work of Overman and others.

Figure 10. Later Overman Work Circumvents Fragmentation

With the desire to access the bis-quaternary carbon architecture of the Calycanthaceous alkaloids we sought to extend the direct pyrroloindoline construction reaction to an appropriate β, β-disubstituted enal (Figure 11, union of $\mathbf{3 6}$ and $\mathbf{3 7}$ to produce 38). ${ }^{26}$ It was anticipated that if the direct pyrroloindoline construction were feasible and stereoselective that our synthesis would more closely model the biomimetic synthesis than previous syntheses have. We further anticipated that avoiding a bisoxindole intermediate would obviate some of the known issues associated with the synthesis of these molecules. In close collaboration with Dr. Gérald Lélais, synthetic studies to achieve this objective were undertaken.

Figure 11. Desired Synthesis to Mimic Biomimetic Pathway

In Rodrigo's synthesis of folicanthine, an interesting, yet unsuccessful, approach to the bis-quaternary architecture was noted (figure 12). Rodrigo states (numbering changed for consistency and clarity) that "A Michael addition of the oxindole enolate generated from 39 with sodium hydride, to the unsaturated ester only gave 41, the dimmer formed by addition of the enolate oxygen to the double bond of 40." It was speculated that a structure similar to $\mathbf{4 0}$ could be utilized as our enal in conjunction with out direct pyrroloindoline formation reaction.

Figure 12. Literature Precedent for Michael Addition Approach

The organocatalytic union of tryptamine 42 with known conjugated isatin 43 in the presence of catalyst 44 (Equation 1) was attempted. The product formed from this
reaction, as well as the reaction with other tryptamines, is catalyst incorporated adduct 45. None of the desired conjugate addition adduct 46 could be identified from any of the reactions attempted. The relative stereochemistry of structure 45 was assigned by correlations in the HMBC as well as ROESY spectra

Equation 1. Undesired Formation of Catalyst Incorporated Product

Catalyst incorporated adduct 45 is thought to arise from deprotonation of the catalyst iminium species 47 to produce dipolarophile 48 which equilibrates to dipolarophile 49. Cycloaddition of dipolarophile 49 with another equivalent of 43 produces the catalyst-bound adduct (Figure 13).

Figure 13. Proposed Mechanism for the Formation of Catalyst Incorporated Adduct 45

Exploration of this reaction with the tryptophan-derived catalyst 50 (Equation 2) was found to cleanly produce Pictet-Spengler adduct 51 in quantitative yield when the TFA salt of the catalyst is used. It has also been found that $\mathbf{5 1}$ can be synthesized by the action of TFA in the absence of amine catalyst. None of the desired conjugate addition adduct 46 could be identified from any of the reactions attempted.

Equation 2. Pictet-Spengler by-product 51 Formed in Preference to 46

Due to the nature of the catalyst-incorporated adduct 45 as well as the rapid synthesis of Pictet-Spengler adduct 51, it was hypothesized that alternate catalyst structures, as well as alternate acidities of counter ion may affect the formation of desired adduct in preference to these byproducts. As shown in Figure 14 other reaction conditions failed to yield the desired bis-quaternary adduct. The only products that were formed were a mixture of the analogous catalyst-incorporated adducts and the PictetSpengler product 51. Reaction with catalysts $\mathbf{5 2}$ and $\mathbf{5 3}$ were meant to test the hypothesis that modulation of the cocatalyst acidity would bias the reaction toward conjugate addition. Unfortunately that outcome did not occur. Reaction with catalysts 54, 55 and 56 were meant to test the hypothesis that the catalyst-iminium complex would react with tryptamine 42 instead of isatin 43 if the steric environment was modulated to hinder formation of dipolarophiles such as 49. Unfortunately that outcome did not occur. Reaction with catalysts $\mathbf{5 7}$ and $\mathbf{5 8}$ were meant to test the hypothesis that an indoline catalyst (as opposed to an imidazolidinone) may bias the reaction toward conjugate addition. ${ }^{27}$ Of note is the reaction catalyzed by indoline catalyst 58. In this reaction a third by-product, that of the decarboxylated catalyst incorporated adduct 59, was formed. Again, none of the desired conjugate addition adduct 46 could be identified from any of these reactions.

Figure 14. Other Catalysts Likewise do not Produce Desired Conjugate Addition Adduct 46

57

Examination of Isatin Derived Aldehyde 43

It is well precedented that β, β-disubstituted enals are significantly less reactive in organocatalyzed processes than the corresponding mono-substituted analogues. ${ }^{28}$ To understand the issues associated with the failure to produce 46, investigation of isatinderived enal 43 was begun. To assay the viability of utilizing 43 as a substrate for the direct construction of vicinal quaternary stereocenters, a model study with N methylindole 60 was undertaken. It was found that this alkylation, Equation 3, progressed to afford two different compounds in variable yields. Compound $\mathbf{6 1}$ is the product of N -methylindole undergoing a Friedel-Crafts alkylation at the β position of the enal whereas $\mathbf{6 2}$ is the product of N -methylindole undergoing successive Friedel-Crafts
alkylations at the α position of the enal. Though undesirable, it was found that the amount of $\mathbf{6 2}$ produced was dependent on the temperature of the reaction and that cold temperatures $\left(-65^{\circ} \mathrm{C}\right)$ eliminated its production.

Equation 3. Isatin Model Study with N-methylindole

A preliminary survey of reaction conditions showed that production of $\mathbf{6 1}$ could be made moderately enantioselective. Additionally, it was shown that the olefin geometry of enal $\mathbf{4 3}$ is important. Reaction of $\mathbf{6 0}$ with the $\boldsymbol{Z} \mathbf{- 4 3}$ geometry produced a facile reaction whereas reaction with the $\boldsymbol{E} \mathbf{- 4 3}$ was sluggish and proceeded with the same sense of enantioinduction. This indicated to us that the E-isomer slowly equilibrates to the Z under reaction conditions as shown in Table 1. At this point we decided to not pursue the optimization of the enantioselectivity of $\mathbf{6 1}$ further.

Table 1. Isatin Enal can be Utilized Successfully for a More Reactive System

Interest in Friedel-crafts adduct $\mathbf{6 1}$ led us to believe that a viable route could still be found for the organocatalytic construction of a desired bis-quaternary adduct. Since it was apparent that the tryptamines (such as $\mathbf{4 2}$) would not react with $\mathbf{4 3}$ to provide the desired bis-quaternary adduct this route was abandoned. As such, the identification of a more reactive tryptamine that would produce the requisite bis-quaternary architecture was sought.

Initial Investigation of Oxindole Alkylation

As part of his studies on the direct furanoindoline construction, Dr. Christopher Sinz determined that methoxyindole 63 reacted with conjugated glyoxal 64 to form methoxyl furanoindoline 65 (Equation 4).

Equation 4. Oxindole Alkylation by Dr. Christopher Sinz

CJS-3-008
Having noted the preponderance of bis-oxindoles as intermediates in the previous syntheses of the Calycanthaceous alkaloids, and the higher nucleophilicity of oxindoles than indoles, we sought to extend this reaction to prepare 3,3a-bis-oxindoles. It was anticipated that an oxindole alkylation with 43 could provide a framework for elaboration to the hexacyclic core of the Calycanthaceous alkaloids. With this in mind we anticipated that reaction of protected oxotryptamine 66 with 43 would furnish a bis-
oxindole adduct 67 (Figure 15). It was further anticipated that 67 may serve as a valuable structure for the synthesis of bis-quaternary oxindole compounds

Figure 15. Proposed bis-oxindole Construction

66

43

Path to Bis-Oxindole Diethylamine

Tryptamine (68) was subjected to sodium hydride in dimethylformamide and tribenzylated with three equivalents of benzyl bromide to provide 69 in good yield (Figure 16). Dissolving 69 in DMSO and exposing this solution to concentrated hydrochloric acid achieved its conversion to 70. This reaction proceeds with the loss of dimethyl sulfide as a byproduct in a presumed Swern-like mechanism. The yields of this reaction are variable depending on the vigor with which the DMSO solution is stirred. Caking of crude product on the side of the flask can occur which results in non-specific product degradation. Upon purification, $\mathbf{7 0}$ can be converted to siloxytryptamine 71 in near quantitative yield.

Figure 16. Synthesis of Siloxytryptamine Precursor

After much work, it was found that the reaction of $\mathbf{7 1}$ with 43 (Equation 5) was greatly affected by the quantity of water and the strength of the acid cocatalyst in the
reaction. Notably, the reaction does not proceed in the absence of water and facile hydrolysis of $\mathbf{7 1}$ to oxindole 70 is observed when large ($>15 \%$ by volume) quantities of water are used. Likewise, it was found that in order for the reaction to proceed an extra equivalent of acid is required to protonate the ethylamine moiety of 71. Strong acids such as TFA though were found to facilitate rapid hydrolysis of $\mathbf{7 1}$ to $\mathbf{7 0}$. Weak acids such as 2,4-dinitrobenzoic acid, though, were found to promote the union of the reactive partners. Surprisingly, reaction of $\mathbf{7 1}$ with $\mathbf{4 3}$ in the presence of catalyst $\mathbf{5 0}$ produces a small quantity of the aforementioned catalyst incorporated product along with a $\sim 1: 1$ diastereomeric mixture of fragile aldehydes 72a and 72b. Utilization of salts of catalyst 44 provided significantly lower amounts of $\mathbf{7 2 a}, \mathbf{7 2 b}$, catalyst incorporated adduct $\mathbf{4 5}$ and two inseparable compounds whose identity remains a mystery. ${ }^{29}$ Supercritical fluid chromatography was utilized to separate 72a and 72b into their enantiomeric pairs. It was found that this reaction is poorly enantioselective providing 72a in 33% ee and $\mathbf{7 2 b}$ in 40% ee. The low observed diastereo- and enantiocontrol in this reaction is in stark contrast with that observed for the direct pyrroloindoline construction. This perhaps lends credence to the stereochemical models given in chapter 2. Namely, a β, β disubstituted enal would contain three more or less equally encumbered quadrants and a 2-substituted tryptamine would change the S group to roughly the same size as the M group. These occurrences would perhaps combine to provide a reaction environment less amenable to high selectivity.

Equation 5. Successful Union to Synthesize bis-quaternary Dioxindole

Good yield can be attained for bis-oxindole ethylamines 73 and 74 (Equations 6 and 7) under reductive amination conditions. Compound 73 was found to be the C_{2} symmetric diastereomer via correlation to intermediates from Overman's work. Likewise, 74 was found to be the meso-diastereomer.

Equation 6: Reductive amination of 72 a provides C_{2} symmetric core

Equation 7: Reductive amination of 72 b provides meso symmetric core

Optimization of the enantioselectivity of this organocatalyzed construction of bisquaternary dioxindoles is currently an ongoing project in the MacMillan lab and the results of these studies will be reported elsewhere.

Limitations And Considerations

The lack of reactivity of tryptamines such as $\mathbf{4 2}$ with $\mathbf{4 3}$ prohibits the direct construction of bis-quaternary pyrroloindolines via the method described in Chapter 2 of this thesis. It is conceivable that alternate α, β-unsaturated aldehydes can be discovered that will circumvent this problem. Currently, the oxindole alkylation of $\mathbf{7 1}$ with $\mathbf{4 3}$ is not selective. Further work exploring the isatin and oxotryptamine protecting groups may circumvent this problem.

Conclusions

We have successfully devised a system for the direct construction of vicinal quaternary stereocenters using organocatalysis. Though poorly selective, equation 5 is the first example of this construction using our iminium catalysis concept. Future extension of this work will focus improving the selectivity of this new process.

Supporting Information

General Information. Commercial reagents were purified prior to use following the guidelines of Perrin and Armarego. ${ }^{1}$ Non-aqueous reagents were transferred under nitrogen via syringe or cannula. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Chromatographic purification of products was accomplished using forced-flow chromatography on ICN 60 32-64 mesh silica gel 63 according to the method of Still. ${ }^{2}$ Thin-layer chromatography (TLC) was performed on EM Reagents 0.25 mm silica gel 60-F plates. Visualization of the developed chromatogram was performed by fluorescence quenching or by KMnO_{4} stain.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Mercury $300(300 \mathrm{MHz}$ and 75 MHz) as noted, and are internally referenced to residual protio solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift $(\delta \mathrm{ppm})$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, integration, coupling constant (Hz) and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Mass spectra were obtained from the UC Irvine Mass Spectral facility. Gas liquid chromatography (GLC) was performed on Hewlett-Packard 6850 and 6890 Series gas chromatographs equipped with a split-mode capillary injection system and flame ionization detectors using a Bodman Chiraldex β-DM ($30 \mathrm{~m} \times 0.25$ mm) column. High performance liquid chromatography (HPLC) was performed on Hewlett-Packard 1100 Series chromatographs using either a Chiralcel ODH column (25

[^0]cm) and OD guard (5 cm) or a Chiralcel AD column (25 cm) and AD guard $(5 \mathrm{~cm})$ as noted.

Catalyst incorporated adduct (45). General procedure for generating catalyst
 incorporated isatin adducts: A 2-dram vial equipped with a magnetic stir bar and containing the Triflouroacetic acid salt of $(2 S, 5 S)$-5-benzyl-2-tert-butyl-3-methyl-imidazolidin-4-one
mmol) was charged with methylene chloride (2.75 $\mathrm{mL})$, water $(35 \mu \mathrm{~L})$ and placed in a bath at $-20^{\circ} \mathrm{C}$. The solution was stirred for 5 min before addition of isatin derived aldehyde $\boldsymbol{E}-\mathbf{4 3}$ ($765 \mathrm{mg}, 2.91 \mathrm{mmol}$). The resulting suspension was stirred at constant temperature for 4 days. The reaction mixture was exposed to pH 7.0 buffer (2 mL) and extracted with methylene chloride. The organic solution was then transferred through a silica gel plug into a flask and concentrated in vacuo. The resulting residue was purified by silica gel chromatography in a gradient from $10-60 \%$ EtOAc / Hexanes to afford the title compound as an orange solid. IR (film) 3064, 3030, 2958, 2923, 2863, 1707, 1611, 1482, 1468, 1454, 1390, 1362, 1345, 1297, 1250, 1175, 1101, 749, 697, $553 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ao}), 7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ae}), 7.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{ab}), 7.51(\mathrm{t}, \mathrm{H}, \mathrm{x})$, $7.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{n}, \mathrm{w}, \mathrm{z}), 7.18(\mathrm{~m}, 6 \mathrm{H}, \mathrm{s}, \mathrm{v}, \mathrm{aa}, \mathrm{ad}), 7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{u}), 6.95(\mathrm{q}, 2 \mathrm{H}, \mathrm{p}, \mathrm{y}), 6.80$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{ac}), 6.74(\mathrm{t}, 1 \mathrm{H}, \mathrm{r}), 6.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{m}), 6.39(\mathrm{~d}, 1 \mathrm{H}, 1), 6.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{q}), 6.04(\mathrm{~d}, 1 \mathrm{H}$, h), $5.2(\mathrm{~d}, 1 \mathrm{H}, \mathrm{e}), 4.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{k}), 4.8(\mathrm{~s}, 2 \mathrm{H}, \mathrm{d}), 4.7(\mathrm{~d}, 1 \mathrm{H}, \mathrm{e}), 3.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{i}), 3.6(\mathrm{~d}, 1 \mathrm{H}, \mathrm{f})$, $3.4(\mathrm{~d}, 1 \mathrm{H}, \mathrm{f}), 3.2(\mathrm{~s}, 3 \mathrm{H}, \mathrm{b}), 1.1(\mathrm{~s}, 9 \mathrm{H}, \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.19$ (ao),
176.82 (an), 175.09 (am), 165.61 (al), 143.28 (ak), 142.17 (aj), 136.53 (ai), 136.12 (ah), $135.90(\mathrm{ag}), 132.82$ (af), 131.33 (ae), 130.54 (ad), 129.71 (ac), 129.46 (ab), 129.06 (aa), 128.93 (z), 128.38 (y), 127.99 (x), 127.73 (w), 127.42 (v), 127.14 (u), 126.87 (t), 126.82 (s), 122.66 (r), $122.60(\mathrm{q}), 122.26$ (p), 121.92 (o), 120.18 (n), 109.32 (m), 109.25 (l), 84.6 (k), 77.8 (j), 66.9 (i), (64.37 (h), 59.9 (g), 43.97 (f), 43.91 (e), 43.26 (d) 38.15 (c), 33.02 (b), 27.06 (a); HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{49} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}\right)$ requires m / z 755.3597, found $m / z 755.3629$.

Pictet-Spengler adduct (51). A 2-dram vial equipped with a magnetic stir bar and containing the Triflouroacetic acid salt of (2S, 5S)-5-benzyl-2-tert-butyl-3-methyl-imidazolidin-4-one (0.0571 mmol) was charged with methylene chloride (0.300 mL), water ($25 \mu \mathrm{~L}$) and stirred at room temperature. To this solution was added N -10-methylcarbamate-1-benzyltryptamine $(50 \mathrm{mg}, 0.162$
 mmol), the solution was stirred for 5 min before addition of isatin derived aldehyde $\boldsymbol{E}-\mathbf{4 3}$ ($128 \mathrm{mg}, 0.487 \mathrm{mmol}$). The resulting suspension was stirred at constant temperature for 8 h . The reaction mixture was exposed to pH 7.0 buffer (2 mL) and extracted with methylene chloride. The organic solution was then transferred through a silica gel plug into a flask and concentrated in vacuo. The resulting residue was purified by silica gel chromatography in 15\% EtOAc / Hexanes to afford the title compound as an off yellow solid ($85 \mathrm{mg}, 0.153 \mathrm{mmol}$). IR (film) 3029, 2921, 1698, 1650, 1611, 1495, 1483, 1468, 1444, 1403, 1385, 1361, 1249, 1307, 1269, $1256,1240,1196,1170,1113,1029,1001,912,862,788,767,732,696,656,617,662$
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, 80^{\circ} \mathrm{C}, \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) \delta 7.7(\mathrm{~d}, 1 \mathrm{H}, \mathrm{g}), 7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.40$ (d, 1H, Ar-H), 7.2-7.3 (m, 6H, Ar-H), 7.15-7 (m, 4H, n, Ar-H), 6.96 (d, 1H, h) 6.9-6.7 $(\mathrm{m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.40(\mathrm{dd}, 2 \mathrm{H}, 1), 4.90(\mathrm{~s}, 2 \mathrm{H}, \mathrm{k}), 4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{c}), 3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{c}), 3.61(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{a}), 2.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{d}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.95$, (j), 156.19 (b), 142.27, 138.51 (f), $138.17,137.13,134.07$ (h), 133.50, 130.07, 129.20, 128.56, 128.01, 127.97, $127.62,127.40,126.92,126.26,122.84,122.53,122.38,121.05,119.99,118.92,110.80$, 109.74 (e), 109.46, 53.09 (a), 46.90 (l), 46.43 (g), 43.49 (k), 38.50 (c) 21.44 (d); HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ requires m / z 554.2444, found m / z 554.2436.

Descarboxyl catalyst incorporated adduct (59) A 2-dram vial equipped with a magnetic stir bar and containing the indoline-2-carboxylic acid (7
 $\mathrm{mg}, 0.0433 \mathrm{mmol}$) was charged with methylene chloride $(0.260 \mathrm{~mL})$, water $(20 \mu \mathrm{~L})$ and stirred at $-4^{\circ} \mathrm{C}$. To this solution was added N -10-methylcarbamate-1benzyltryptamine ($40 \mathrm{mg}, 0.130 \mathrm{mmol}$), the solution was stirred for 5 min before addition of isatin derived aldehyde $\boldsymbol{E}-\mathbf{4 3}$ ($68 \mathrm{mg}, 0.260$ mmol). The resulting suspension was stirred at constant temperature for 24 h . The reaction mixture was exposed to pH 7.0 buffer $(1 \mathrm{~mL})$ and extracted with methylene chloride. The organic solution was then transferred through a silica gel plug into a flask and concentrated in vacuo. The resulting residue was purified by silica gel chromatography in 15% EtOAc / hexanes to afford the title compound as an off-yellow solid (10 mg) as well as the corresponding non-decarboxylated catalyst incorporated adduct (9 mg). IR (film) 3421, 3059, 3030, 2923, 2852, 1718, 1653, 1610, 1481, 1467,

1437, 1383, 1363, 1264, 1227, 1175, 1133, 1102, 1028, 1006, 946, 906, 860, 789, 748, 697, 668, 638, $552 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{l}), 7.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.0-7.2(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.9(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.72(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{f}, \mathrm{Ar}-\mathrm{H})$, 6.6-6.66 (2d, 2H, Ar-H), 6.3 (d, 1H, e), 5.08 (td, 2H, b), $4.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{k}), 4.87(\mathrm{~s}, 2 \mathrm{H}, \mathrm{i})$, $4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{k}), 3.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{i}), 3.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{c}), 3.5(\mathrm{dd}, 1 \mathrm{H}, \mathrm{a}), 3.28(\mathrm{dd}, 1 \mathrm{H}, \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 197.998$ (l), 176.308 (j), 166.246 (h), 152.674, 143.202, 142.332, 138.734 (f), $136.308,135.671,129.801,129.517,129.295$ (g), 128.927, 128.865, 128.457, 127.940, 127.765, 127.725, 127.572, 127.237, 125.766, 125.708, 125.409, 122.732, 122.241, 121.713, 119.972, 112.401, 110.205, 109.109, 67.321 (e), 65.792 (b), 64.685 (c), 61.866 (d), 46.659 (k), 43.541 (i), 34.601 (a); HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ requires $m / z 628.2600$, found $m / z 628.2610$.

2-((R)-1-benzyl-3-(1-methyl-1H-indol-3-yl)-2-oxoindolin-3-yl)acetaldehyde. (61). A 2dram vial equipped with a magnetic stir bar and containing the
 Triflouroacetic acid salt of (2S, 5S)-5-benzyl-2-tert-butyl-3-methyl-imidazolidin-4-one ($8 \mathrm{mg}, 0.0234 \mathrm{mmol}$) was charged with methylene chloride (0.250 mL), and stirred at $-70^{\circ} \mathrm{C}$. To this solution was added N -methylindole ($16 \mu \mathrm{~L} \mathrm{mg}, 0.123 \mathrm{mmol}$), the solution was stirred for 5 min before addition of isatin derived aldehyde $\boldsymbol{E}-\mathbf{4 3}$ ($29.4 \mathrm{mg}, 0.112 \mathrm{mmol}$). The resulting suspension was stirred at constant temperature for 24 h . The reaction mixture was exposed to pH 7.0 buffer (1 mL) and extracted with methylene chloride. The organic solution was then transferred through a silica gel plug into a flask and concentrated in vacuo. The resulting residue was purified by silica gel chromatography in $25 \% \mathrm{EtOAc} /$

Hexanes to afford the title compound as a white solid ($24.7 \mathrm{mg}, 0.0627 \mathrm{mmol}, 56 \%$ yield, 70% ee). IR (film) 3056, 2930, 2826, 2736, 1713, 1610, 1487, 1466, 1349, 1172, 910, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{a}), 7.2-7.4(\mathrm{~d}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.08(\mathrm{td}$, 1H, Ar-H), 7.00 (td, 1H, Ar-H), 6.95 (s, 1H, g), 5.05 (d, 2H, e), 3.76 (s, 3H, h), 3.68 (dd, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$); 3.52 (dd, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.34$ (a), 177.82 (d), 142.987, 137.82, 135.852, 131.639, 128.811, 128.696, 127.715, 127.621, 125.518, $124.289,122.905,122.132,120.715,119.959,112.424,109.669,109.642,49.456$ (c), 49.167 (b), 44.350 (e), 32.908 (h); HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $m / z 395.1760$, found m / z 395.1775. $[\alpha]_{D}=-47.1\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC analysis of the alcohol, obtained by NaBH_{4} reduction of the aldehyde, using a Chiracel ODH and OD guard column (15\% Ethanol / hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=17.11 \mathrm{~min}$ and R isomer $\mathrm{t}_{\mathrm{r}}=24 \mathrm{~min}$.
(Z)-3-(2,2-bis(1-methyl-1H-indol-3-yl)ethylidene)-1-benzylindolin-2-one (62). A 2dram vial equipped with a magnetic stir bar and containing the
 Triflouroacetic acid salt of (2S, 5S)-5-benzyl-2-tert-butyl-3-methyl-imidazolidin-4-one ($27 \mathrm{mg}, 0.076 \mathrm{mmol}$) was charged with methylene chloride $(0.760 \mathrm{~mL})$, and stirred at $-40^{\circ} \mathrm{C}$. To this solution was added N -methylindole ($50 \mu \mathrm{~L} \mathrm{mg}, 0.380 \mathrm{mmol}$), the solution was stirred for 5 min before addition of isatin derived aldehyde $\boldsymbol{E}-\mathbf{4 3}(130.2 \mathrm{mg}$, $0.495 \mathrm{mmol})$. The resulting suspension was stirred at constant temperature for 24 h . The reaction mixture was exposed to pH 7.0 buffer (1 mL) and extracted with methylene chloride. The organic solution was then transferred through a silica gel plug into a flask
and concentrated in vacuo. The resulting residue was purified by silica gel chromatography in $20 \% \mathrm{EtOAc} /$ Hexanes to afford the title compound as a yellow solid ($64.6 \mathrm{mg}, 0.127 \mathrm{mmol}, 33 \%$ yield) as well as conjugate addition adduct $\mathbf{6 1}$ as a white solid (54.1 mg). IR (film) 3056, 2929, 1737, 1694, 1644, 1612, 1484, 1469, 1360, 1330, 1172, 909, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.3-7.5(\mathrm{~m}$, 12H, Ar-H), 7.17 (m, 3H, Ar-H), 7.101 (s, sH, b), 7.0 (t, 1H, Ar-H), 6.7 (d, 1H, Ar-H), $5.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{g}), 3.80(\mathrm{~s}, 6 \mathrm{H}, \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.604$ (f), 143.041, $141.395,137.471,136.403,129.120,128.837,128.609,127.561,127.507,127.427$, $127.185,124,336,123.336,123.489,121.857,121.722,120.607,119.425,119.055$, 115.870, 109.313, 108.876, 43.449 (g), 32.820 (a), 31.557 (c); HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}\right)$ requires $m / z 507.2311$, found m / z 507.2303.
$\boldsymbol{N}, \mathbf{N}$-dibenzyl-2-(1-benzyl-1H-indol-3-yl)ethanamine (69). Tryptamine ($10 \mathrm{~g}, 62.5$ mmol) was dissolved in 500 ml of DMF. To this solution was added NaH (40% dispersion in mineral oil, $8.0 \mathrm{~g}, 200 \mathrm{mmol}$ of NaH). After stirring for 30 minutes, the system was charged with Benzyl Bromide ($24 \mathrm{ml}, 200 \mathrm{mmol}$) and allowed to stir until judged complete by TLC (12 h). This reaction was then quenched by the following method: Addition to a separatory funnel containing $1 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$ and $1 / 2 \mathrm{~L}$ of EtOAc. The system was extracted 3 X with EtOAc. The combined organic layers were washed with 0.5 L charges of $\mathrm{H}_{2} \mathrm{O} 3 \mathrm{X}$. Removal of solvent in vacou, followed by silica gel chromatography in 15% EA/Hex provided the title compound as an oily yellow solid ($26.47 \mathrm{~g}, 98 \%$ yield, r.f. 0.5 on TLC plate in 15\% EA/Hex). IR (film) 3060, 3027, 2923, 2796, 1737, 1603, 1494, 1466, 1453, 1358, 1331, 1246, 1175, 1129, 1074, 1027, 970, 913, 738, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ (m, $5 \mathrm{Ar}-\mathrm{H}$), 7.30 (m, $10 \mathrm{Ar}-\mathrm{H}$), 7.18 (t, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.2(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.87(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NCHC}), 5.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.83\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 3.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NBn}_{2}$), $2.98\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 140.4$,
$138.2,136.9,129.2,129.1,128.7,128.6,127.9,127.2,127.1,126.1,121.9,119.5,119.2$, $114.1,109.9,58.8,54.4,50.1,23.5$; HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2}\right)$ requires $m / z 431.2487$, found $m / z 431.2467$.

1-Benzyl-3-(2-(dibenzylamino)ethyl)indolin-2-one (70). N, N-dibenzyl-2-(1-benzyl-1H-indol-3-yl)ethanamine ($18.93 \mathrm{~g}, 44 \mathrm{mmol}$) was dissolved in DMSO (108 ml) and brought to a vigorous stir. Concentrated $\mathrm{HCl}(216 \mathrm{ml})$ was added dropwise to this solution via a buret. Upon final addition of the HCl , the solution was allowed to stir for 10 minutes, after which the system was added to a solution of 1 L EtOAc, 500 ml EtOH , and 1 L of 1 N Aqueous NaOH . The aqueous layer was further basified until a neutral pH was attained. The system was cooled to $0^{\circ} \mathrm{C}$ via an ice bath. This solution was then extracted 3X with EtOAc. The combined organics were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. IR (film) 3454, 3085, 3061, 3029, 2928, 2801, 1950, 1887, 1809, 1710, 1613, 1488, 1456, 1453, 1360, 1196, 1168, 1129, 1077, 1013, $910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.38(\mathrm{~m}, 5 \mathrm{Ar}-\mathrm{H}), 7.36-7.25(\mathrm{~m}, 10 \mathrm{Ar}-\mathrm{H}), 7.13(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $6.85(\mathrm{td}, J=0.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.67(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC}), 4.92\left(\mathrm{abq}, J=15.7,8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.83(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 3.71\left(\mathrm{dd}, J=4.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.54(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right), 2.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NBn}_{2}\right), 2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.98(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2}$) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.20,143.25,139.45,136.11,129.34$, 129.16, 128.78, 128.56, 128.32, 127.58, 127.37, 126.99, 124.06, 122.22, 108.84, 65.28, $58.28,50.08,43.70,43.13,29.04$; HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}\right)$ requires m / z 447.2436, found $m / z 447.2431$.

N, N-dibenzyl-[2-(1-benzyl-20-triisopropylsilanyloxy-1H-indol-3-yl)ethyl]-

amine (71). 1-Benzyl-3-(2-(dibenzylamino)ethyl)indolin-2-one ($1 \mathrm{~g}, 2.2 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{ml})$. To this was added $\mathrm{Et}_{3} \mathrm{~N}(0.936 \mathrm{ml}, 0.68 \mathrm{mmol})$ and TIPSOTf ($1.2 \mathrm{ml}, 4.4 \mathrm{mmol}$). The reaction was stirred for 2 h . At completion, a saturated solution of aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ was added and the system was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} 3 \mathrm{X}$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude compound was passed through a plug of Davisil silica with 10%

EA / Hex. The compound was attained as an off yellow viscous liquid (1.295g, 97\% yield). IR (film) 3464, 3062, 3029, 2945, 2867, 1721, 1701, 1620, 1583, 1475, 1413, $1369,1261,1009,883,737,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.5-7.56(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.4(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.26-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}$, Ar-H), 7.14-7.10 (m, 2H, Ar-H), 7.08-7.00 (m, 3H, Ar-H), 5.28 (s, 2H, ArNCH ${ }_{2} \mathrm{Ph}$), 3.80 (s, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 3.02 (ddd, $J=1.9,6.6,13.0, \mathrm{CH}_{2} \mathrm{NBn}_{2}$), 2.92 (ddd, $J=1.9,6.6,13.0$, $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) ; 1.43-1.28\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.16\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ;{ }^{13} \mathrm{C}\right.$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.48,145.07,140.26,137.94,131.59,128.85,128.55,128.27$, $127.62,127.05,126.85,126.35,119.46,119.18,117.75,108.95,91.65,58.72,54.06$, 45.08, 22.68, 18.17, 18.01, 17.87, 13.90, 12.41; HRMS (CI) exact mass calcd for M + H $\left(\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{OSi}\right)$ requires $m / z 603.3771$, found $\mathrm{m} / \mathrm{z} 603.3744$.

Method for generation of $72 a$ and 72 b: A 2-dram vial equipped with a magnetic stir bar and containing isatin derived aldehyde $\boldsymbol{E}-\mathbf{4 3}(500 \mathrm{mg}, 1.90 \mathrm{mmol})$ was charged with methylene chloride $(0.90 \mathrm{~mL})$, water $(23 \mu \mathrm{~L})$, and stirred at $-20^{\circ} \mathrm{C}$. To this solution, N, N-dibenzyl-[2-(1-benzyl-20-triisopropylsilanyloxy-1H-indol-3-yl)ethyl]-amine (381 $\mathrm{mg}, 0.634 \mathrm{mmol}$) was added as a solution in 0.9 mL of methylene chloride $(0.5 \mathrm{~mL}$ solution followed by 0.4 mL of methylene chloride as a rinse of vial and needle). To this solution was added the free base of (2S, 5S)- 2-tert-butyl-5-(1H-indol-3-ylmethyl)3-methyl-imidazolidin-4-one $(60.2 \mathrm{mg}, 0.211 \mathrm{mmol})$ and 2,4 -dinitrobenzoic acid $(179 \mathrm{mg}$, $0.845 \mathrm{mmol})$. The resulting suspension was stirred at constant temperature for 10 days. The reaction mixture was exposed to pH 7.0 buffer $(2 \mathrm{~mL})$ and extracted with methylene chloride. The organic solution was then transferred into a flask to which 1 spoonful of celite had been added, and concentrated in vacuo. The resulting slurry was purified by silica gel chromatography in a series of columns: Column \#1 eluent 10\% EtOAc / Toluene. This cleans most of the $\boldsymbol{E} \mathbf{- 4 3}$ from the desired products. On the lower collection of spots, run column \#2. Column \#2: Gradient from 10-100\% EtOAc / Hexanes. Compounds 72a ($64 \mathrm{mg}, 0.0902 \mathrm{mmol}, 14.2 \%$ yield) and 72b ($110 \mathrm{mg}, 0.155$ $\mathrm{mmol}, 24.1 \%$ yield) can be isolated with the additional compound being located with an Rf on the TLC plate of 0.235 in $25 \% \mathrm{EtOAc} /$ hexanes.

Bis-oxindole aldehyde (72a) Following the above method, compound 72a has an Rf on the TLC plate of 0.32 in 25% EtOAc / hexanes ($64 \mathrm{mg}, 0.0902 \mathrm{mmol}, 14.2 \%$ yield). IR
 (film) 3053, 3025, 2924, 2813, 1710, 1608, 1488, 1465, 1364, 1174, 1078, 1027, 736, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{a}), 7.35$ (m, 4, Ar-H), 7.29 (m, 10H, Ar-H and m), 7.25 (m, 4H, n), 7.08 (dd, 2H, l), $6.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{i}), 6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{y}), 6.60(\mathrm{t}, 1 \mathrm{H}, \mathrm{j}), 6.58(\mathrm{t}, 1 \mathrm{H}$, z), $6.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{k}), 6.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{aa}), 5.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{g}), 4.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{w}), 4.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{g}), 4.35$ (dd, 1H, b), 4.33 (d, 1H, w), 3.59 (s, 1H, b), 3.54 (s, 4H, p), 3.16 (td, 1H, r), 2.55 (td, 1H, r), $1.98(\mathrm{td}, 1 \mathrm{H}, \mathrm{q}), 1.82(\mathrm{td}, 1 \mathrm{H}, \mathrm{q}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.340$ (a), 177.012 (f), 176.755 (v), 143.063 (u), 142.499 (e), 139.202 (o), 135.410 (h), 135.359 (x), 128.776, $128.673,128.640,128.402,128.223,128.098,127.662,127.582,127.534,127.475$, 126.746 (n), 126.629, 123.783, 122.819, 121.947 (j), 121.830, 108.668 (k), 108.451 (aa), 57.732 (p), 54.460 (s), 51.640 (c), 48.218 (q), $44.218(\mathrm{~g}), 43.884$ (w,b), 25.443 (r); HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ requires $m / z 710.3383$, found $m / z 710.3375$.

Bis-oxindole aldehyde (72b) Following the above method, compound 72b has an Rf on the TLC plate of 0.147 in 25% EtOAc / hexanes (110 mg ,
 $0.155 \mathrm{mmol}, 24.1 \%$ yield). IR (film) 3404, 3059, 3029 , 2955, 2926, 2868, 1794, 1710, 1609, 1487, 1466, 1454, $1435,1381,1362,1298,1266,1203,1175,1123,1078$, 1028, 917, 853, 789, 748, 735, 698, $552 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
(500 MHz, CDCl_{3}) $\delta 9.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{a}), 7.1-7.3(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.96(\mathrm{t}$, 1H, Ar-H), 6.7-6.9 (m, 2H, Ar-H), 6.52 (d, 2H, Ar-H), 4.9 (d, 1H, g), 4.80 (dd, 2H, w), $4.5(\mathrm{~d}, 1 \mathrm{H}, \mathrm{b}), 4.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{g}), 3,55(\mathrm{~d}, 2 \mathrm{H}, \mathrm{p}), 3.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{p}), 3.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{b}), 2.7(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{r}), 2.2(\mathrm{~m}, 2 \mathrm{H}, \mathrm{r}$ and q$), 1.7(\mathrm{~m}, 1 \mathrm{H}, \mathrm{q}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.283$ (a), 176.482 (v), 176.391 (f), 144.706, 143.664, 139.682 (o), 136.119, 135.795, 129.302, 128.943, 128.848, 128.772, 128.406, 127.681, 127.589, 127.326, 127.173, 127.089, $124.312,123.881,122.161,109.637,109.366,59.161$ (p), 54.019 (c), 53.344 (s), 49.651 (q), $45.062(\mathrm{~b}), 44.444(\mathrm{w}, \mathrm{g}), 25.443(\mathrm{r}) ;$ HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ requires $m / z 710.3383$, found $m / z 710.3410$.

C2-symmetric bis-oxindole diethylamine (73) A 2-dram vial equipped with a magnetic
 stir bar and compound 72a ($9.4 \mathrm{mg}, 0.0133 \mathrm{mmol}$) was charged with freshly distilled Dichloroethene (53 $\mu \mathrm{L}$). To this solution was added freshly distilled dibenzylamine (19.1 $\mu \mathrm{L})$. The solution was allowed to stir for 5 minutes at which time $\mathrm{Na}(\mathrm{AcO})_{3} \mathrm{BH}(8.9 \mathrm{mg})$ was added and the slurry was allowed to stir for 24 h and monitored by TLC. Upon completion, the reaction was quenched with water and extracted with dichloromethane twice. The organic solution was then transferred through a silica gel plug into a flask and concentrated in vacuo. The resulting residue was purified by silica gel chromatography in 25% EtOAc / Hexanes to afford the title compound as a white solid $(10.5 \mathrm{mg}, 0.0118 \mathrm{mmol}, 89 \%$ yield). IR (film) $3060,3027,2923,2802,1703,1609,1487,1465,1453,1363,1219,1177,1155,1117$, 1077, 1028, 981, 910, 748, 734, 697, 668, $552 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.25-$
7.31 (m, 17H, Ar-H), 7.18-7.25 (m, 9H, Ar-H), 7.09 (d, $J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.8(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.95$ $(\mathrm{d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{f}), 4.32(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{f}), 3.55(\mathrm{~s}, 8 \mathrm{H}, \mathrm{a}), 3.16(\mathrm{td}, J=4.4,12.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{b}), 2.64(\mathrm{td}, J=4.4,12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}), 1.97(\mathrm{td}, J=3.9,12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}), 1.80(\mathrm{td}, J$ $=4.4,12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.455$ (e), 142.761, 139.684, $135.890,129.062,128.858,128.304,128.202,128.057,127.925,127.711,126.895$, $123.905,122.037,108.457,58.072$ (a), 55.060 (d), 49.004 (b), 44.062 (f), 25.767 (c); HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{62} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ requires m / z 891.4638, found m / z 891.4622.

Meso-symmetric bis-oxindole diethylamine (74) A 2-dram vial equipped with a magnetic
 stir bar and compound 72a ($10 \mathrm{mg}, 0.0141 \mathrm{mmol}$) was charged with freshly distilled Dichloroethene $(53 \mu \mathrm{~L})$. To this solution was added freshly distilled dibenzylamine (19.1 $\mu \mathrm{L})$. The solution was allowed to stir for 5 minutes at which time $\mathrm{Na}(\mathrm{AcO})_{3} \mathrm{BH}(8.9 \mathrm{mg})$ was added and the slurry was allowed to stir for 24 h and monitored by TLC. Upon completion, the reaction was quenched with water and extracted with dichloromethane twice. The organic solution was then transferred through a silica gel plug into a flask and concentrated in vacuo. The resulting residue was purified by silica gel chromatography in 25% EtOAc / Hexanes to afford the title compound as a white solid ($8 \mathrm{mg}, 0.00897 \mathrm{mmol}, 64 \%$ yield). IR (film) 3027, 2924, 1711, 1608, 1486, 1465, 1453, 1360, 1178, 1077, 1027, 982, 911, 734, 697 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.27(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$,
7.13-7.17 (m, 4H, Ar-H), 7.05 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.89 (mound, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.67 (mound, 2H, Ar-H), 6.44 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.25$ (mound, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.61 (mound, 4H, f), 3.57 (d, $J=13.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a}$), $3.79(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a}), 3.06$ (mound, $2 \mathrm{H}, \mathrm{b}), 2.22(\mathrm{td}, J=3.5,11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}), 2.13(\mathrm{td}, J=4.4,12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}), 1.74(\mathrm{td}, J=$ 3.5, $12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.610$ (e), 143.865, 139.779, 136.134, 129.018, 128.752, 128.694, 128.519, 128.311, 127.430, 127.357, 126.928, $124.306,122.070,109.054,58.629$ (a), 55.464 (d), 49.452 (b), 44.088 (f), 29.944 (c); HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{62} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ requires m / z 891.4638, found m / z 891.4668.

References

(1) Hodson, H. F.; Robinson, B.; Smith, G. F. Proc. Chem. Soc. London 1961, 465.
(2) Woodward, R. B.; Yang, N. C.; Katz, T. J. Proc. Chem. Soc. London 1960, 76-78.
(3) Harleymason, J.; Ingleby, R. F. J. J. Chem. Soc. 1958, 3639-3642.
(4) Robinson, R.; Teuber, H. J. Chemistry \& Industry 1954, 783-784.
(5) Hendrickson, J. B.; Goschke, R.; Rees, R. Tetrahedron 1964, 20, 565.
(6) Hendrickson, J. B.; Rees, R.; Goschke, R. Proc. Chem. Soc. London 1962, 383.
(7) Scott, A. I.; Hall, E. S.; McCapra, F. J. Am. Chem. Soc. 1964, 86, 302-\&.
(8) Kirby, G. W.; Shah, S. W.; Herbert, E. J. J. Chem. Soc. C. 1969, 1916-\&.
(9) Hino, T. N., M. The Alkaloids; The Academic Press, 1988; Vol. 34.
(10) Julian, P. L. P., J.; Boggess, D. J. Am. Chem. Soc. 1934, 56, 1797-1802.
(11) Hino, T. Chem. Pharm. Bull. 1961, 9, 979.
(12) Hino, T. Chem. Pharm. Bull. 1961, 9, 988.
(13) Yamada, S.; Ogawa, K.; Hino, T. Chem. Pharm. Bull. 1963, 11, 674.
(14) Hino, T.; Yamada, S. Tetrahedron Lett. 1963, 1757-1760.
(15) Fang, C. L.; Horne, S.; Taylor, N.; Rodrigo, R. J. Am. Chem. Soc. 1994, 116, 9480-9486.
(16) Overman, L. E.; Larrow, J. F.; Stearns, B. A.; Vance, J. M. Angew. Chem., Int. Ed. 2000, 39, 213.
(17) Overman, A. E.; Paone, D. V.; Stearns, B. A. J. Am. Chem. Soc. 1999, 121,7702-7703.
(18) Link, J. T.; Overman, L. E. J. Am. Chem. Soc. 1996, 118, 8166-8167.
(19) Overman, L. E.; Peterson, E. A. Tetrahedron 2003, 59, 6905-6919.
(20) Lebsack, A. D.; Link, J. T.; Overman, L. E.; Stearns, B. A. J. Am. Chem. Soc. 2002, 124, 9008-9009.
(21) Kodanko, J. J.; Overman, L. E. Angew. Chem., Int. Ed. 2003, 42, 25282531.
(22) Overman, L. E.; Paone, D. V. J. Am. Chem. Soc. 2001, 123, 9465-9467.
(23) Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043-14053.
(24) Hoyt, S. B.; Overman, L. E. Org. Lett. 2000, 2, 3241-3244.
(25) Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.; Weiss, M. M. J. Am. Chem. Soc. 2003, 125, 6261-6271.
(26) Austin, J. F.; Kim, S. G.; Sinz, C. J.; Xiao, W. J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482-5487.
(27) Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32403241.
(28) It is well precedented in the MacMillan lab that with the sole exception of conjugate hydride delivery, disubstituted enals do not readily participate in iminium catalysis.
(29) Mass spectral analysis of this mixture shows that both of these compounds have the same mass as the desired adducts 72a and 72b. The NMR spectra of this mixture bears a striking resemblance to the spectra of 72 a and 72 b with the exception that the aldehyde peak is not present in the H or C 13 spectra.

[^0]: ${ }^{1}$ Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; 3rd ed., Pergamon Press, Oxford, 1988. ${ }^{2}$ Still, W. C.; Kahn, M.; Mitra, A. J. J. Ory. Chem. 1978, 43, 2923.

