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Abstract

This thesis deals with two aspects of the mechanics of symmetry-breaking defects such

as phase boundaries, inclusions and free surfaces, and their role in the macroscopic

response of active materials. We first examine the problem of kinetics using a nonlocal

theory, and then study the role of geometry in active materials with fields that are

not confined to the material.

Classical PDE continuum models of active materials are not closed, and require

nucleation and kinetic information or regularization as additional constitutive in-

put. We examine this problem in the peridynamic formulation, a nonlocal continuum

model that uses integral equations to account for long-range forces that are important

at small scales, and allows resolution of the structure of interfaces. Our analysis shows

that kinetics is inherent to the theory. Viewing nucleation as a dynamic instability

at small times, we obtain interesting scaling results and insight into nucleation in

regularized theories. We also exploit the computational ease of this theory to study

an unusual mechanism that allows a phase boundary to bypass an inclusion.

Shifting focus to problems of an applied nature, we consider issues in the design of

ferroelectric optical/electronic circuit elements. Free surfaces and electrodes on these

devices generate electrical fields that must be resolved over all space, and not just

within the body. These fields greatly enhance the importance of geometry in under-

standing the electromechanical response of these materials, and give rise to strong

size and shape dependence. We describe a computational method that transforms

this problem into a local setting in an accurate and efficient manner. We apply it to

three examples: closure domains, a ferroelectric slab with segmented electrodes and

a notch subjected to electro-mechanical loading.
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Chapter 1

Introduction

Active materials display interesting and unusual couplings between mechanics, elec-

tromagnetics and temperature. They also often display highly nonlinear properties

such as hysteresis. Active behavior is often driven by a symmetry-changing phase

transformation that results in complex fine scale microstructure. The unusual proper-

ties are associated with the evolution of this microstructure under applied mechanical,

electromagnetic and thermal loads. The study of active materials is an active area of

research involving disciplines such as metallurgy, mechanics and applied mathemat-

ics (for example, the papers published in the journal Smart Materials and Structures,

or proceedings of the SPIE conferences on Smart Materials: Lagoudas, 2003; Lynch,

2001; Bar-Cohen, 2001; Banks, 1993).

Current devices that exploit active materials often involve macroscopic compo-

nents, in the range of hundreds of microns (for example Xu, 1991; Uchino, 1997, and

references there). At such scales, continuum constitutive models that capture the

average response of the material are sufficient, and it is possible to ignore the details

of the various processes occurring at smaller scales (Figure 1.1).

However, future devices that are of interest will involve making smaller compo-

nents that push closer to the nanometer. At these scales, microstructural details

that had been averaged away to build continuum models gain importance (see Bhat-

tacharya and James, 2005, for a perspective on these issues). It is necessary to under-

stand microstructure more fully and build models that capture enough information

to design devices at these scales, and at the same time average out atomic level pro-
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Figure 1.1: Lengthscales relevant to future device design require knowledge of the mi-
crostructural details

cesses that we are unnecessary and are significantly if not prohibitively expensive to

feasibly compute.

Continuum models that capture the mechanics of microstructure are attractive

due to the relative ease of solution and the availability of existing methods. In this

thesis, work on two distinct problems in the general area of understanding the re-

sponse of microstructure within a continuum framework is presented. We focus on

crystalline materials with the active behavior driven by a first-order solid-state phase

transformation that is purely displacive with no diffusion, i.e., the crystallographic

unit cell changes shape discontinuously at a critical temperature.

Conventional continuum models of microstructure that examine solid-state phase

transitions use non-convex strain energies to model the multiple equilibrium states

of the crystallographic unit cell, using the Cauchy-Born rule to connect crystal dis-

tortions to strains. This approach has proved successful in capturing the essential

physics required to understand equilibrium microstructure, and has provided insight

into phenomena such as shape-memory (Bhattacharya, 2003, and references there).

However, the physics contained in this model is insufficient to understand non-

equilibrium microstructural processes, i.e., the evolution of microstructure. Work by

Abeyaratne and Knowles (1990) showed that the inability of the continuum strain-

energy based approach to model evolution could be addressed by specifying certain
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extra material information: the nucleation criterion (when interfaces form) and the

kinetic relation (how fast interfaces move). Alternate approaches to this problem

consisted generally of adding the missing information through regularizing strain-

gradient terms. These strain-gradient methods are similar in some ways to phase-field

techniques (for example in Wang et al., 1994). Both approaches raise the question of

how information from processes at smaller scales can be used to extract the additional

continuum constitutive laws.

The first part of this thesis examines this question using the peridynamic theory of

continuum mechanics (developed independently by Kunin, 1982; Silling, 2000). The

peridynamic theory is a nonlocal theory of continuum mechanics that treats continua

as composed of elements that interact through long-range forces, rather than trac-

tions. This formulation leads to integral equations rather than differential equations

as the governing laws. The peridynamic model can be viewed as a heuristic contin-

uum analog of pair-potential atomistics, or a continuum model that has some features

of atomistic models, and the possibility of applying insights gained in peridynamics

to atomistics exists.

The integral equations that appear in the peridynamic equations of motion involve

the displacement field, but not its derivatives. This relaxes continuity and allows the

peridynamic model to function as an excellent phenomenological computational tool,

as defects do not require special treatment.

We present analysis and results in one dimension that suggest that nucleation in

the peridynamic theory can be viewed from the perspective of stability. Numerical

results suggest also that kinetics can be understood in terms of traveling waves, in the

computational setting. In a two dimensional setting, we exploit the computational

power of peridynamics to study an example of defect interactions.

In the second part of this thesis, we study the microstructure that forms in tetrag-

onal ferroelectric crystals and the effect of free surfaces.

The ferroelectric materials that we study in this thesis have a spontaneous po-

larization below the critical Curie temperature. This spontaneous polarization can

be switched between symmetry-related equilibrium states (Jona and Shirane, 1962;
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Damjanovic, 1998, and references there provide much detail on the physics of fer-

roelectrics). As in the purely mechanical case, a non-convex energy with minima

corresponding to these different equilibrium states can be used to model such a ma-

terial. In the case of ferroelectrics, the energy also involves contributions from the

electrostatic energy that is generated by the polarization.

Contributions to the free energy due to conventional fields, such as stress, are local

and may be written as an integral over a finite region. The electrostatic energy that

arises in the consideration of ferroelectrics however extends over all of space (Shu and

Bhattacharya, 2001).

Conventional techniques to account for the electrostatic energy have traditionally

involved periodic geometries. This allows for the use of efficient numerical techniques,

and these techniques have led to insights into electromechanics of microstructure in

ferroelectrics (for example, the results presented in Hu and Chen, 1998; Li et al.,

2002; Wang et al., 2004). However, as device scales approach microstructural scales,

there exists a need to extend these techniques to model realistic device geometries.

We present our calculations of complex geometries involving defects such as free

surfaces and notches in a non-periodic setting. These calculations were performed by

applying a boundary element technique to resolve the electrostatic fields, coupled to

a phase-field evolution model for the polarization and strain fields.

Examples that we present include the closure domain patterns that form at a free

surface, the response of a idealized device geometry to electrical forcing, and the effect

of a notch on the coupling between electrical and mechanical loads.

As the two problems that this thesis deals with are quite distinct, we have reviewed

the literature relevant to each problem in the corresponding chapter.
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Chapter 2

Kinetics of phase transformations
in the peridynamic formulation of
continuum mechanics

Abstract

We study the kinetics of phase transformations in solids using the peridynamic for-

mulation of continuum mechanics. The peridynamic theory is a nonlocal formulation

that does not involve spatial derivatives, and is a powerful tool to study defects such

as cracks and interfaces.

We apply the peridynamic formulation to the motion of phase boundaries in one

dimension. We show that unlike the classical continuum theory, the peridynamic

formulation does not require any extraneous constitutive laws such as the kinetic

relation (the relation between the velocity of the interface and the thermodynamic

driving force acting across it) or the nucleation criterion (the criterion that determines

whether a new phase arises from a single phase). Instead, this information is obtained

from inside the theory simply by specifying the inter-particle interaction. We derive

a nucleation criterion by examining nucleation as a dynamic instability. We find the

induced kinetic relation by analyzing the solutions of impact and release problems,

and also directly by viewing phase boundaries as traveling waves.

We also study the interaction of a phase boundary with an elastic non-transforming

inclusion in two dimensions. We find that phase boundaries remain essentially planar
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with little bowing. Further, we find a new mechanism whereby acoustic waves ahead

of the phase boundary nucleate new phase boundaries at the edges of the inclusion

while the original phase boundary slows down or stops. Transformation proceeds

as the freshly nucleated phase boundaries propagate, leaving behind some untrans-

formed martensite around the inclusion.

2.1 Introduction

The shape-memory effect consists of the recovery of apparently plastic deformations

of a specimen below a critical temperature, by heating the specimen above this crit-

ical temperature. A diffusionless solid-state or martensitic phase transformation is

responsible for this effect. The apparently plastic deformation does not come about

by lattice slip, but is instead caused by the motion of twin or phase boundaries. It is

the kinetics of this motion that is studied here.

In classical continuum theory, these phase transforming materials have been mod-

eled using an energy that has multiple minima, each minimum corresponding to a

particular phase or variant of martensite. In a dynamic, or even quasistatic, setting,

the usual constitutive information, strain energy density as a function of strain, is in-

sufficient to determine a unique solution. For example, even simple Riemann problems

with a single phase or twin boundary in the initial conditions allow a one-parameter

family of solutions. Therefore, we require further material information to pick the

physically correct solution. Abeyaratne and Knowles (1990, 1991b) have proposed

that this extra information may be specified in the form of a nucleation criterion and

a kinetic relation.

The nucleation criterion determines whether a new phase will nucleate from a

single phase. The kinetic relation determines the kinetics or the rules that govern the

evolution of the phase boundary. It relates the velocity to a thermodynamic driving

force, these being conjugate variables in the dissipation (or entropy) inequality. The

driving force is related to Eshelby’s idea of the force acting on a defect (Eshelby,

1956, 1975). The nucleation criterion and the kinetic relation provide uniqueness and
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well-posedness to initial-boundary value problems. Physically, they can be thought of

as a macroscopic remnant of the lattice level atomic motion from one energy well to

another that is lost in the continuum theory. However, a systematic derivation from

a microscopic theory as well as experimental confirmation remain a topic of active

research.

Another approach to overcome the inability of classical continuum mechanics to

model the kinetics of phase transformations is to regularize or augment the theory,

notably by adding a strain gradient (capillarity) and viscosity to the constitutive re-

lation. This augmented theory leads to a unique solution for the motion of phase

boundaries (Abeyaratne and Knowles, 1991a; Truskinovsky, 1993). Further, Abe-

yaratne and Knowles (1991a) have shown a correspondence between such methods

and the kinetic relation. However, nucleation is incompletely explored in this theory,

and computational evidence suggests that it is, in fact, quite difficult. Further, this

theory leads to fourth-order equations that are difficult to deal with computationally:

they are stiff and one needs smooth elements in the finite element method (see, for

example, Kloucek and Luskin, 1994; Dondl and Zimmer, 2004).

There is a closely-related phase-field approach (see, for example, Artemev et al.,

2001; Wang et al., 1994) in the infinitesimal strain setting. Here, one uses the trans-

formation strain as an internal variable or order parameter, considers the free energy

density as a function of this order parameter and uses linear elasticity to penalize

the incompatibility in this internal variable field. This leads to a second order equa-

tion that is computationally attractive. However, the equilibrium and the dynamics

can be different from that of the regularized theories described earlier (Bhattacharya,

2003). The connection between this theory and kinetic relations remains unexplored

(Killough, 1998, has some discussion on this question), nucleation remains difficult

and most studies are quasistatic.

The peridynamic formulation is a nonlocal continuum theory that does not use the

spatial derivatives of the displacement field (Silling, 2000; Silling et al., 2003; Kunin,

1982). Briefly, any two infinitesimal volume elements interact in this theory through

a spring whose force depends on their position in the reference configuration and
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relative displacement. The same equations of motion are applicable over the entire

body and no special treatment is required near or at defects. These properties make

it a powerful tool to model problems that involve cracks (Silling and Kahan, 2004),

interfaces, and other defects. This paper studies the kinetics of phase boundaries in

the peridynamic formulation of continuum mechanics.

We introduce the peridynamic equation in one dimension in Section 2.2. We pro-

vide a constitutive relation that is the analog of the widely-used trilinear material. We

also propose a means of introducing viscosity into the peridynamic equations with-

out introducing spatial gradients. We conduct quasistatic and dynamic numerical

experiments in Sections 2.3 and 2.4 respectively. The absence of any spatial deriva-

tives makes this relatively easy. Importantly, we find that phase boundaries nucleate

and propagate naturally and uniquely in this theory with no need for any additional

constitutive information like a kinetic relation or a nucleation criterion.

We examine nucleation in Section 2.5 by viewing it as a dynamic instability. This

is different from the classical treatment of nucleation (Olson and Roitburd, 1992; Ball

and James, 2005; Christian, 1975). In that treatment, one introduces perturbations

with strains in the other well or phase (i.e., beyond the energy peak) and examines

whether this perturbation lowers the total energy of the system. Our approach also

differs from that of Abeyaratne and Knowles (1990), where the criterion for nucleation

is based on the thermodynamic driving force.

In contrast, we examine conditions under which a single phase solution becomes

dynamically unstable. Therefore, it is not necessary to have perturbations that reach

into the other well (i.e., other stable phase). Instead, one can have nucleation when

the strains reach the stability (convexity) limit of one phase. We are unaware of any

other studies of nucleation from this viewpoint.

Our analysis introduces a notion of a defect size that has dimensions of length

and is a measure of how many springs are in a stable state and how many are not.

It depends on the physical region that is unstable, but also on how close the ambient

strain is to the critical strain. We propose, based on stability considerations, that

nucleation occurs when this defect size reaches a critical value, and show that this is
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consistent with our numerical simulations.

The kinetics of phase boundaries is examined in Section 2.6 by viewing the phase

boundaries as traveling waves motivated by our numerical studies and following

Abeyaratne and Knowles (1991a), Purohit (2001) and Truskinovsky and Vainchtein

(2005). We show that we can use these to derive a (viscosity-dependent) kinetic

relation, and that this is consistent with the results of our numerical simulations.

We turn to two dimensions in Section 2.7. We propose a two-well constitu-

tive relation that is appropriate for two variants generated by a square-to-rectangle

transformation. We study the problem of a phase boundary driven towards a non-

transforming elastic precipitate. Real materials often contain such defects. Indeed,

in NiTi which is the most widely use shape-memory alloy, nickel- or titanium-rich

precipitates are introduced to increase the plastic yield strength. We find that the

phase boundary does not deviate from its planar configuration of preferred normal

even when encountering the large residual strain field of the precipitate. Further, in

an intermediate range of driving force, we find that the phase transformation proceeds

by nucleating a new phase boundary ahead of the inclusion while the original phase

boundary stops behind it resulting in long slivers of untransformed material around

the inclusions.

We conclude in Section 2.8 with a short discussion of our results.

2.2 Formulation in one dimension

The peridynamic equation of motion at a point in a homogeneous body is postulated

to be (Silling, 2000)

ρ∂ttu(x, t) =

∫
R

f(u(x′, t)− u(x, t),x′ − x)dVx′ + b(x, t) (2.1)

where x is the reference configuration coordinates, u(x) is the displacement field,

f(δu, δx) is the force between two volume elements with separation in the reference

δx := x′ − x and relative displacement δu := u(x′, t) − u(x, t), b(x, t) is the body
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force per unit volume in the reference and ρ is the density in the reference. We also

refer to f(δu, δx) as the spring force. This spring force is the constitutive input in the

peridynamic formulation. See Silling (2000) for a discussion of the general properties

of this formulation.

We specialize to a one-dimensional setting of a slab of infinite lateral extent and of

length L undergoing uniaxial longitudinal deformations. The peridynamic equation

of motion may now be written as

ρ∂ttu(x, t) =

∫ L

0

f(u(x′, t)− u(x, t), x′ − x)dx′ + b(x, t). (2.2)

We have to specify the spring force f . We assume that this spring force is of the

form

f(δu, δx) = F

(
δu

δx

)
h(δx) (2.3)

with h decaying rapidly. It is easily shown that this form ensures the right scaling

for the energy in the large body limit. We may view δu/δx as a pairwise strain

measure, F as the strain dependent force and h as the range-dependent strength of

the interaction.

We model phase transforming materials by assuming that F has a trilinear form

with two stable branches of equal modulus and one unstable branch with modulus

equal in magnitude but negative. We assume that h decays with a length-scale l0.

Thus:

f(δu, δx) = E
δx

l30
e−(δx/l0)2 ×


4√
π

(
δu
δx

+ ε0

)
if δu

δx
≤ − ε0

2

4√
π

(
− δu

δx

)
if − ε0

2
< δu

δx
< ε0

2

4√
π

(
δu
δx
− ε0

)
if δu

δx
≥ ε0

2

(2.4)

An advantage of this trilinear form is that it allows one to focus on phase boundaries

which remain as the only nonlinearities. Note that F (δu/δx) is dimensionless.

To gain some insight into this relation, consider homogeneous deformations. It is

possible to define a stress for such deformations (Silling, 2000). In one dimension, it
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is

σ(x) =

∫ x

0

∫ L

x

f(u(x′)− u(x̂), x′ − x̂) dx′ dx̂ . (2.5)

We note for future use that in light of the decay, this formula may also be used

whenever the deformation is homogeneous on a length-scale larger than l0. The

macroscopic stress-strain curve for the microscopic force law in (2.4), calculated by

assuming a homogeneous deformation, is shown in Figure 2.1. We also define an

elastic modulus for this material1 using the expression dσ
dε

and, not surprisingly, it

is equal to the constant E in the stable low and high strain phases and −E in the

unstable phase.

While solving the initial-boundary value problem associated with the peridynamic

equation of motion, we found that it would be useful to have a dissipative mecha-

nism. The usual method of adding viscosity involves terms containing the strain rate

(Abeyaratne and Knowles, 1991a), but this goes against the goal of peridynamics of

eliminating spatial derivatives from the formulation. Hence, we add viscosity directly

to the interaction force by transforming it in the manner f 7→ f + ν l0
δx

∂t(δu/c)h(δx),

where ν is the dimensionless coefficient of viscous damping, and c =
√

E/ρ is the

acoustic velocity in the long wavelength limit (see Weckner and Abeyaratne (2005)

for a discussion of dispersion in peridynamic materials). Lei et al. (2006) have used

a similar formulation of damping in a different context.

We now non-dimensionalize the evolution equation and assign numerical values to

the parameters that define the material. Multiplying (2.2) by l0
E

, we obtain

l0
c2

∂ttu(x, t) =
l0
E

b(x, t) +
l20
E

∫ L
l0

0

F

(
u(x′, t)− u(x, t)

x′ − x

)
h(x′ − x)d

(
x′

l0

)
+

ν

c

l30
E

∫ L
l0

0

∂t (u(x′, t)− u(x, t))
h(x′ − x)

x′ − x
d

(
x′

l0

)
. (2.6)

We set ρ = 1, l0 = 1, ε0 = 0.1 and E =
√

π
4

for the the remainder of the paper. We

usually set the length of the slab L = 200, but for faster phase boundaries, we use

longer slabs to allow the acoustic wave and phase boundary to be sufficiently distant

1This definition makes it equivalent to the classical elastic modulus in uniaxial deformation.
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for our analysis. Our results (nucleation and kinetics) are independent of L as long

as L � l0.

In the next couple of sections, we conduct numerical experiments with this mate-

rial. We use a spatial discretization where we replace the integral over the body with

a sum,

∫ L

0

f(u(x′, t)− u(xj, t), x
′ − xj)dx′ ≈

N∑
i=1

f(ui(t)− uj(t), xi − xj)∆x, (2.7)

and march forward in time with an explicit linear acceleration scheme. We use ∆x =

0.1 for the spatial discretization, and the relation ∆x
∆t

= 20
√

E
ρ

for the time step so

that we satisfy the CFL criterion for a classical wave equation with a large margin.

We believe that since l0 � ∆x, this value of grid spacing is sufficient to approximate

the integrals to be evaluated, and numerical tests show sufficient convergence of the

results. A detailed numerical analysis would be interesting, but beyond the scope of

this paper.

2.3 Quasistatics in one dimension

We begin our numerical exploration of the peridynamic trilinear material by studying

the quasistatic response for both hard and soft loading. To obtain a quasistatic

response, we start with an equilibrium state, increment the load or end displacement

as appropriate, and solve (2.6) with a very large viscosity ν till such time that it

reaches equilibrium, and iterate. Peridynamics requires some care for the application

of the end conditions and their increment, and these are discussed below. The results

are shown in Figure 2.1 superposed over the stress response for uniform strain fields.

2.3.1 Hard loading

We start these calculations with an equilibrium state with average strain deep in the

low strain phase. We apply successive increments of displacement using the boundary

layers (rather than boundary points due to the nonlocal nature of peridynamics).
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Figure 2.1: The strain-stress curve for hard and soft loading, superposed over the homo-
geneous strain response.

Starting with the entire bar in the low strain phase as described above, the relative

displacement of the clamped ends is increased (equally but in opposite sense in the

two ends to keep the calculation symmetric) to provide a given net strain increment

to the bar. The strain in the clamped regions is also raised to correspond to this

new average strain. The bar is then equilibrated by evolving the displacement field

using the peridynamic equation of motion (2.6) with a large value of viscosity. The

stress is calculated by using the formula (2.5) at some point in the interior where

the deformation is homogeneous. This procedure is repeated by raising the strain

until the entire bar is completely in the high strain phase. The strain is subsequently

reduced in a similar manner till the bar returned to its original low strain state. The

results are shown in Figure 2.1 along with the strain (du
dx

) profiles at selected points.

We see that the material leaves the low-strain curve close to the so-called Maxwell

stress, suffers strain increments at constant stress till it reaches the high-strain curve

and then follows it. It behaves analogously as the strain is lowered. Recall that

the Maxwell stress is defined as the stress at which the net signed area between
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a horizontal line and the stress-strain curve is zero and corresponds to the value

of stress at which the exchange of absolute stability occurs between the low and

high strain phase. The strain field corresponding to the point (3), before nucleation,

shows uniform strain in the bar. The strain field corresponding to point (4), soon after

nucleation, shows that phase boundaries nucleate at the ends of the bar. There are two

pairs of phase boundaries, one at each end. The strain away from the phase boundary

is close to the equilibrium values of the two phases. The outer phase boundary at

each end remains fixed in position at the grips while the inner one migrates as the

applied displacement increases. The strain field corresponding to point (5), shows the

inner phase boundaries about to meet each other. The strain field point (6) shows

that the bar is entirely in the high strain phase. A similar process takes place on the

downward path.

Note from the insets that the strain fields show an overshoot and an undershoot

around the phase boundary as it transitions between the two states. This is a com-

mon feature of models of phase transitions; for example, see Purohit (2001) and

Zimmermann (2002). We shall study the detailed structure of the phase boundaries

in subsequent sections.

2.3.2 Soft loading

Soft loading calculations are performed by applying a uniform body force in the

boundary layers as described in Silling (2000). We start with a body force that

causes sufficient compression for the entire bar to be in the low strain phase. The

body force is increased incrementally, the bar is equilibrated after each increment by

solving (2.6) with large dissipation, and the procedure repeated till the entire bar is in

the high strain phase. Subsequently the stress is incrementally decreased in a similar

manner till the bar returns to its initial low strain state. The resulting stress-strain

curve as well as the strain field in the bar at the points marked (1) and (2) on the

stress-strain curve are shown in Figure 2.1.

The average strain is seen to follow the low strain phase until almost the peak
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stress. Phase boundaries nucleate at the ends of the bar, at the strain singularities,

and move at high velocity to meet at the center and transform the entire bar into the

high strain state. This nucleation and meeting of the phase boundaries occurs within

one load step (1% of the peak-to-valley stress difference). The material then follows

the stress response curve of the high strain phase. A similar sequence occurs on the

downward path.

We discuss the differences in the hard and soft loading response in Section 2.5

after we have looked at dynamic situations.

2.4 Dynamic phase boundaries in one dimension

We now study the initial-boundary value problem associated with (2.2) and solve by

marching forward in time. We consider two classes of problems, release (Riemann)

and impact. These classes of problems play an important role in the classical theory;

having solutions to them assures existence of solutions to all initial-boundary value

problems (Lefloch, 1993).

2.4.1 Release problems

In the release or Riemann problem, we seek to study the evolution of the displacement

from a piecewise affine initial condition. To set up the initial condition, we obtain an

equilibrium strain field with a phase boundary and then transform it using ε(x) 7→

Aε(x)+B so that we obtain a piecewise constant but unequilibrated strain field with

a non-zero driving force across the phase boundary. The boundary conditions are

applied through clamped regions with the strain held uniform and constant at the

initial value.

The calculations are performed for various initial driving forces across the inter-

face. Sequences of snapshots of the displacement fields for low, moderate and high

driving forces are shown in Figure 2.2 for both viscous (ν = 0.333) and inviscid mate-

rials. The overall structure of the solution is shown in Figure 2.3(a). The movement
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(a) Low driving force, inviscid (b) Low driving force, viscous

(c) Moderate driving force, inviscid (d) Moderate driving force, viscous

(e) High driving force, inviscid (f) High driving force, viscous

Figure 2.2: Snapshots of the displacement field in the release problem.



19

(a) Release problem (b) Impact problem

Figure 2.3: Schematic x− t plane diagram for the release and impact problems

of the phase boundary can be easily followed from the displacement field by noting

that the high strain phase has positive strain and thus positive slope, and the low

strain phase has negative strain and thus negative slope. A change in slope without

change in sign of the slope indicates an acoustic wave. All the calculations shown in-

volve the original phase boundary moving to the left and the displacement increasing

with time.

Since the initial phase boundary is not at equilibrium, it begins moving in the

direction of the driving force, sending out acoustic waves in both directions. The

phase boundary evolves to a steady profile quite rapidly. The acoustic waves that

are sent out by the phase boundary hit the clamped ends of the bar, and reflect back

into the domain. They may also nucleate phase boundaries at the ends of the bar.

These phase boundaries then move back into the interior of the bar. Depending on

the average strain in the bar (imposed through the initial conditions by the clamping

positions of the ends of the bar), the phase boundaries can merge and form an entirely

low or high strain bar, or equilibrate to some mixture of high and low strain phases.

One feature of the solution that can be seen in Figure 2.2 is that viscosity plays

an important role in removing the short wavelength oscillations behind the phase

boundary. As is expected in the peridynamic theory, these short waves have very

small velocity (Silling, 2000). Using dissipation to remove them helps clarify the

displacement field without changing the kinetics significantly. Viscosity also seems
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Figure 2.4: The kinetic relation induced by peridynamics. The points are results extracted
from the dynamic simulations, whereas the curves are the results of traveling wave calcula-
tions.

to encourage nucleation at the clamped boundaries of the bar, as can be seen by

comparing Figures 2.2(a) and 2.2(b).

We also observe from our solutions that the phase boundaries travel at constant

velocity (after an initial startup stage) and maintain their shape. We examine whether

the motion of these interfaces follow a kinetic relation as postulated by Abeyaratne

and Knowles (1991b). To this end, we calculate the driving force across the phase

boundary defined as (Abeyaratne and Knowles, 1991b):

F = JW (ε)K− 1

2
(σ(ε+) + σ(ε−)) JεK (2.8)

where JgK := g+−g− is the jump across the phase boundary of the quantity g, W is the

stored elastic energy, σ is the stress, and ε is the strain. Since the phase boundary

in the peridynamic formulation is not a sharp interface separating two regions of

uniform deformation as in the conventional continuum theory, we use the average
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of the strain fields on either side of the phase boundary (ensuring that there are no

other waves within the averaging window). We plot driving force F (normalized by

E) versus velocity v (normalized by c, M = v/c) in Figure 2.4. The results of various

release calculations appear to collapse onto a single curve. This suggests that the

peridynamic theory does in fact induce a kinetic relation. We shall return to study

this curve in Section 2.6.

2.4.2 Impact problem with initial phase boundary

We now turn to impact problems where an equilibrium strain field with a phase

boundary in the interior is used as initial condition. One end of the bar is clamped,

and the other end is pulled at a constant velocity for all t > 0. The clamped end has

uniform and constant strain equal to the equilibrium strain at t = 0, and this region

is not evolved in time. The pulled end is subjected to a constant and uniform velocity,

so that its strain remains constant and uniformly equal to the other equilibrium strain

at t = 0.

Snapshots of the displacement fields for low, moderate and high impact velocities

are shown in Figure 2.5 for both viscous (ν = 0.333) and inviscid materials. The

overall features of the solution are shown in Figure 2.3(b). The phase boundaries

and acoustic waves can be identified and followed as described in the release problem.

The ordering of the displacement fields in time can be seen by looking at the right

end of the bar, that is being pulled at a constant positive velocity. The greater the

displacement at the right end, the further in time the snapshot.

The initial impact sends an acoustic wave into the bar, which reaches the phase

boundary and sets it into motion. The acoustic wave then goes ahead of the phase

boundary and reaches the clamped end, where it reflects back into the bar, possibly

nucleating another phase boundary there. The second phase boundary, when it exists,

moves behind the acoustic wave and meets the original phase boundary and they

annihilate each other leaving the entire bar in a high strain state. If the second phase

boundary does not nucleate, the original phase boundary reaches the end of the bar,
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(a) Low velocity, inviscid (b) Low velocity, viscous

(c) Moderate velocity, inviscid (d) Moderate velocity, viscous

(e) High velocity, inviscid (f) High velocity, viscous

Figure 2.5: Snapshots of the displacement field in the impact problem with initial
phase boundary.
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(a) Stress control (b) Displacement control

Figure 2.6: Snapshots of the displacement field in the inviscid impact problem without
initial phase boundary.

again leaving the entire bar in the high strain state.

As in the release problem, viscosity plays a role in removing the short wavelength

oscillations without changing the kinetics greatly.

Finally, the phase boundaries propagate steadily with fixed structure after an

initial transient, and by plotting the driving force versus velocity in Figure 2.4, we

see that they follow the same kinetic relation as the release problems.

2.4.3 Impact problem without initial phase boundary

We finally turn to impact problems with initial conditions involving a uniform strain

field. We set the strain equal to the low-strain equilibrium value in the entire bar.

We find that weak impact results in just an acoustic wave traveling into the bar, but

a sufficiently strong impact causes the nucleation of a phase boundary at the im-

pacted end. The displacement fields for impact experiments with different boundary

conditions is shown in Figure 2.6.

Figure 2.6(a) shows an inviscid bar completely in the low strain phase, subjected

to a tensile stress (soft loading) at the right end and left free at the left end. The

tensile stress is applied as a step loading, and this causes an acoustic wave and a phase

boundary to nucleate at the shocked end. The acoustic wave travels faster than the

phase boundary till it reaches the far free end, and bounces off without nucleating
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any new phase boundary.

Figure 2.6(b) shows an inviscid bar completely in the low strain phase, subjected

to a displacement controlled extension with the far end clamped. We see, as before,

that an acoustic wave and a phase boundary are nucleated at the impact side of the

bar. The acoustic wave nucleates an additional phase boundary when it bounces off

the far end that is clamped, in contrast to the previous case where no nucleation

occurred at the free end.

We explain the reason for the different nucleation behavior under different clamp-

ing conditions in Section 2.5 after we formulate a nucleation criterion.

2.5 Nucleation as a dynamic instability

The numerical experiments in the previous sections show that nucleation occurs nat-

urally from within the peridynamic theory. Further, the nucleation behavior is varied

but very important in determining the overall behavior; recall the contrast between

the hard and soft loading or the difference between the clamped and free end. We

therefore seek to understand the conditions under which nucleation occurs by exam-

ining the point of view that nucleation occurs as a result of a dynamic instability.

We study the nucleation of the high strain phase from the low strain phase and

note that the reverse transformation is completely analogous. Further, we modify the

constitutive relation (2.4) slightly by translating the strain axis so that the boundary

between the low strain and unstable branches occurs at ε0
2

(instead of at − ε0
2
). We

note that this modification is simply a change of variables for convenience and does

not affect any results. Finally, we only consider the low strain and unstable branches,

because we are only interested in the rate of growth of a perturbation from the low

strain phase for small times.

While our numerical calculations involved finite slabs, the lengths of the slabs

were much larger than the intrinsic peridynamic interaction length. For the analysis

in this section, we treat the slabs as being of infinite length.

Consider a displacement field u(x, t) evolving according to the peridynamic equa-
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tion of motion. It is easy to verify that this solution remains linearly stable as long

as all springs remain in the low strain region. So, let us consider a time when most

springs are in the low strain region but some springs have reached beyond the limit

and into the unstable region. We call such a displacement field a defect, and examine

its linear stability. We call it a stable defect if it is linearly stable and an unstable

defect if it is linearly unstable. Note that all defects - stable and unstable - con-

tain some springs that are in the unstable region. However, stable defects are stable

despite that. We postulate that unstable defects lead to nucleation.

We perturb the displacement field u(x, t) 7→ u(x, t) + εv(x, t) and study the evo-

lution of this perturbed field. Substituting this in the governing equation (2.2) and

differentiating with respect to ε gives us the linearized equation in v(x, t)

∂ttv(x, t) =

∫
R

f,1(u(x′, t)− u(x, t), x′ − x) (v(x′, t)− v(x, t)) dx′ (2.9)

where f,1(u(x′, t) − u(x, t), x′ − x) is the derivative of f(·, ·) with respect to the first

argument and evaluated at (u(x′, t) − u(x, t), x′ − x). For conciseness, we denote

f,1(u(x′, t)−u(x, t), x′−x) by Cu(x, x′), and we note that Cu(x, x′) = ±e−(x′−x)2 with

the plus sign for stable springs and the minus sign for unstable springs.

By separation of variables we find that v(x, t) = v(x)eiωt where ω and v(x) are

given by the following eigenvalue problem:

ω2v(x) =

∫
R

Cu(x, x′) (v(x)− v(x′)) dx′ =: Lu[v(x)]. (2.10)

If ω is real or if it contains only positive imaginary part, then the solution u is stable.

The solution is unstable if it has a negative imaginary part.

It is easy to verify using standard methods in integral equations (see, for example,

Porter and Stirling, 1990) that the operator Lu is self-adjoint in the Hilbert space

of locally square integrable functions. It follows that all its eigenvalues ω2 are real.

Therefore, the stability of the solution u reduces to examining the smallest eigenvalue

of Lu: the solution u is unstable if the smallest eigenvalue is negative and stable
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otherwise. Further, the smallest eigenvalue can be posed as a variational problem of

finding the minimum of

I(v) =

∫
R2

Cu(x, x′)
(
v(x)2 − v(x′)v(x)

)
dx′ dx (2.11)

over all functions v with ∫
R

v2dx = 1. (2.12)

To evaluate the functional I above, it is important to identify which springs are

in the stable phase and which are not. This is not straightforward to identify for

an arbitrary displacement field u(x), since this depends on the displacement of two

distant points that are connected by the spring. So, it is natural to work in the two-

dimensional space x vs. x′ shown in Figure 2.7(b). We divide this space into stable and

unstable regions: a point (x, x′) is in the stable region if the spring connecting x and

x′ is stable, and in the unstable region otherwise. Assuming that the unstable regions

are localized, we have the picture shown in Figure 2.7(b) based on two lengthscales:

a lower lengthscale δl such that all springs with both |x| < δl, |x′| < δl are unstable

and Cu(x, x′) = −e−(x′−x)2 , and an upper lengthscale δu such that all springs with

either of |x|, |x′| > δu are stable and Cu(x, x′) = e−(x′−x)2 . The values of δl, δu and

hence the sizes of the different regions in the spring-space will depend on the shape

of the defect.

We begin our consideration with a special displacement field u(x) that we call the

ideal defect where δl = δu = δ. This displacement field is shown in Figure 2.7(a),

with slope u′(x) ≤ ε0
2

for |x| > δ, and a uniform slope u′(x) = ε0
2

for |x| < δ. In other

words, we are in the stable low strain phase except for an interval of length 2δ, where

we are at the limiting strain that separates the low strain from the unstable phase.

We examine the stability of the ideal defect and then use it to obtain bounds on the

the behavior of a general displacement field.
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(a)

(b) (c)

Figure 2.7: Defect geometries and spring space maps. (a) The displacement fields
of a typical and ideal defect, (b) The two-dimensional spring-space associated with
typical defects. The springs connecting (x, x′) in the shaded region are unstable and
the others are stable. (c) The two-dimensional space associated with a jump defect.
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The linear operator associated with the ideal defect is

Lδ[v(x)] :=

∫
R

e−(x′−x)2 (v(x)− v(x′)) dx′

+ 2H(δ − |x|)
(
−v(x)

∫
(−δ,δ)

e−(x′−x)2 dx′ +

∫
(−δ,δ)

e−(x′−x)2v(x′) dx′
)

where H(y) is the unit Heaviside step function that is 0 for y < 0 and 1 for y > 0

and the functional (2.11) becomes

Iδ(v) =

∫
R2

e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

− 2

∫
(−δ,δ)2

e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′ (2.13)

By setting δ = 0, we see that I0 > 0. Further, one can use Fourier analysis to show

that the minimum of Iδ is continuous with respect to δ at δ = 0. So, we expect the

ideal defect to be stable for small δ. Further, setting δ → ∞, we see that I∞ < 0.

Therefore, we anticipate that the ideal defect becomes unstable beyond some finite δ.

To understand this further, we examine (2.13) above for a finite δ. We expect the

minimum to be achieved for functions v that are strongly localized near the origin so

that the second term dominates. Physically, we are exciting primarily the unstable

springs near the origin while exciting as few stable springs as possible. For such a

function,

Iδ(v) = π
1
2 +

∫
(−δ,δ)2

e−(x′−x)2v(x)v(x′) dx dx′

−π
1
2

∫
(−δ,δ)

(erf(x + δ)− erf(x− δ)) v(x)2 dx

≈ π
1
2 +

∫
(−δ,δ)2

v(x)v(x′) dx dx′ − 2π
1
2 erf(δ)

∫
(−δ,δ)

v(x)2 dx

by approximating the values of the integrands near x = 0, x′ = 0. Using the fact that

the double integral above is now decoupled into 2 single integrals that are equal, we

can write the double integral as a square, and hence it is positive. Since v is localized,

we can extend the range of integration in the second integral to all space, and then
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use (2.12) to conclude that this second integral is equal to one. Therefore,

Iδ(v) ≥ π
1
2 (1− 2 erf(δ))

≥ 0 if erf(δ) ≤ 1

2
⇔ δ . 0.477 (2.14)

This provides an upper bound for the size of a stable ideal defect. Numerical compu-

tations below show that this bound is, in fact, attained. Thus, we conclude that the

ideal defect is stable if δ ≤ erf−1 1
2
≈ 0.477 and unstable for larger δ.

For the numerical computations, we consider an infinite bar and discretize the

operator Lδ as

(Lδ)ij = δijπ
1
2 (1 + H(δ − |xi|) (erf(xi − δ)− erf(xi + δ)))

− e−(xi−xj)
2

∆x + 2H(δ − |xi|)H(δ − |xj|)e−(xi−xj)
2

∆x (2.15)

and use standard numerical algorithms (Anderson et al., 1999) to find the small-

est eigenvalue. Notice that zero is always an eigenvalue for the original (continu-

ous) operator with rigid translation as the eigenmode. While rigid translation is not

square-integrable on infinite domains, it alerts us to the fact that the infimum of the

spectrum may in fact be zero. Therefore, we look for eigenmodes with finite support,

and the results are plotted in Figure 2.8 where the support of v is limited to the inter-

vals (−100, 100), (−10, 10), (−5, 5), (−3, 3), (−1, 1), (−0.5, 0.5) and (−0.1, 0.1). For

small defect size δ, the smallest eigenvalue is positive (with the value depending on the

support of v) and remains constant2 with δ. We have found that the eigenmode asso-

ciated with this eigenvalue is an approximation to the rigid translation mode of the

original (continuous) operator. This remains the smallest eigenvalue with increasing

defect size δ till a critical value where it crosses the eigenvalue associated with what

eventually becomes the localized unstable mode. The eigenvalue associated with this

mode is monotone decreasing with δ, insensitive to the constraint on the support of

v, follows closely the analytic predictions above and becomes negative at δ ≈ 0.477.

2The small oscillations are discretization artifacts and we have verified that they go away with
refinement.
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Figure 2.8: Numerical calculation of the lowest eigenvalue

We have obtained similar results with a second discretization based on a bar of finite

length; the lowest eigenvalue is zero with rigid body eigenmode until the localized

mode becomes unstable.

We now turn to the general defect. We show in Appendix 2.A that the results

above for the ideal defect can be used to obtain bounds on the stability of any general

defect with radii δl, δu. If follows that any defect is stable if erf(δu) < 1
2

and any defect

is unstable if erf(δl) > 1
2
.

Finally, we turn to a defect that consists of a displacement jump. The solutions

of the peridynamic equations may contain a displacement discontinuity, for example

when the initial displacement, initial velocity or applied body force contain such a

discontinuity (Weckner and Abeyaratne, 2005). In fact, we encountered such discon-

tinuities in our numerical experiments earlier.

Consider a displacement field with uniform strain ε̄(< ε0/2) with a jump discon-

tinuity at the origin. It is easy to find the stable and unstable springs, and this is
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shown in Figure 2.7(c) with

δu = δj =
JuK
∆ε

δl = 0. (2.16)

where ∆ε = ε0/2− ε̄. Since δl = 0, we can not directly apply the bounds in Appendix

2.A. We instead study it numerically to find the critical value of δj (≈ 0.75) below

which the jump defect is stable and beyond which it is unstable.

Equation (2.16) reveals an important scaling property of peridynamics. It shows

that the defect size depends on how far the ambient strain field is from the critical

strain (∆ε). We show in Appendix 2.B that this is not the case in the traditional

regularized theories.

With the stability results in hand, we consider a series of dynamic calculations

using the original constitutive relation (2.4) to probe the applicability of these sta-

bility considerations to nucleation in fully nonlinear calculations. The first set of

calculations consists of initial condition with a bar with uniform strain in the low

strain phase and with a single displacement continuity. We consider various initial

strains and jumps and catalog when they lead to nucleation and when they do not.

We find that there is no nucleation when the initial defect size JuK
∆ε

is smaller than 1.0,

but nucleation whenever it exceeds it. This confirms the scaling predicted by linear

stability considerations, though the critical value is larger than predicted. The second

set of calculations consist of initial conditions with uniform strain but discontinuous

velocity. Once again, we vary the initial strain and velocity jump and catalog when

they lead to nucleation and when they do not. These calculations again confirm the

scaling predicted by the stability criterion, though the critical defect size is 0.42.

The third and final set of calculations consists of initial conditions with uniform

strain but subjected to discontinuous body force. Repeating the calculations for

various initial strains and body force jumps, we again find that the scaling agrees

very well. We note that in this case, nucleation does not depend only on the size of

the discontinuity in the body force, but also the extent of the region over which the

body force is applied (as this is related to the total force applied on the body and
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strongly influences the evolution of the surrounding strain field). For a few different

sizes of region of application (with the body force being constant within these regions),

we obtain the same scaling with initial strain field, but of course the size of the critical

defect varies depending on the size of the application region.

In summary, we find that the stability calculations correctly identify the defect

size to be the entity which determines nucleation. However, the value of the critical

defect size may depend on the particular situation. One reason for this is that a

displacement discontinuity in a peridynamic theory is fixed in space but evolves with

time according to a simple second order equation (Weckner and Abeyaratne, 2005):

d2

dt2
JuK +

√
πJuK = JbK (2.17)

Thus, if we start with a displacement discontinuity but no velocity discontinuity

in the initial condition, the magnitude of the displacement discontinuity decreases

with time before the instability has time to develop. Hence, we expect the stability

criterion applied to the initial condition to over-predict nucleation as we find above.

In contrast, when one has an initial velocity but no displacement discontinuity, the

displacement discontinuity as well as the ambient strain grow with time and thus we

anticipate our stability condition to under-predict the instability as we find above.

We conclude this section by revisiting the numerical experiments in the previous

sections. In the quasistatic hard loading, each displacement increment gives rise to

a displacement jump of JuK = 0.200. We then expect nucleation to occur when the

difference between the unstable strain and the ambient strain ∆ε reaches 0.2/δcrit. On

the increasing half-cycle, this corresponds to a value of ambient strain smaller than

ε = −0.25, which is smaller than the smallest strain considered. So, we conclude

that nucleation occurs at each displacement increment in that calculation. However,

as long as we are below the Maxwell stress, we expect the newly nucleated phase

boundaries to be driven out of the bar during the subsequent equilibration. Thus, we

expect phase transformation to begin at the Maxwell stress, and this is exactly what

we see in Figure 2.1. We have verified our argument by examining the transients in
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our calculations. Further, these calculations show that we can control the point at

which phase transformation begins by taking smaller displacement increments so as

to create smaller displacement jumps; we have verified this numerically.

In the case of quasistatic soft loading, we note that nucleation occurs close to

the peak but not exactly at the peak. If we compare the defect radius at the load

step just before nucleation, and the point on the curve that the bar would reach had

nucleation not taken place, we see that we obtain a critical nucleation outer radius

between 0.505 and 0.530 in agreement with our earlier result.

In the impact problem without an existing phase boundary, recall that a new

phase boundary was nucleated at the far end by the acoustic wave when that end is

clamped but not when that end is free. With a clamped end, the impinging acoustic

wave creates a velocity discontinuity that in turn leads to a displacement discontinuity

and thus nucleation. In contrast, with a free end, there is no defect created and there

is no nucleation.

In summary, we find that linear instability of the dynamic solution is an accurate

predictor of nucleation.

2.6 Phase boundaries as traveling waves

A noticeable feature of the numerical solutions to dynamic problems that we obtain in

Section 2.4 is that the phase boundaries appear to have an invariant shape and move

at a constant velocity. Hence, we seek a solution to (2.2) in the form of a traveling

wave,

u(x, t) = u(x− vt) (2.18)

that connects the two phases. Substituting (2.18) in (2.2), the governing equation

becomes3

M2

(
d2u(y)

dy2

)
=

(
1

E

∫ L

0

f(u(y′)− u(y), y′ − y)dy′
)

(2.19)

3We have assumed that our computational window is translating with the phase boundary, and
the limits of the integral are correspondingly changed.
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where M = v
c

and y := x − vt is the coordinate in the translating frame that moves

with the phase boundary at a constant velocity v. The second derivative on the left

hand side would seem to impair the ability of peridynamics to be valid at all points

in the body, including at singularities. However, we note the result of Weckner and

Abeyaratne (2005) that a displacement or velocity discontinuity has a fixed position

at all time. As we are working in a translating frame that moves with a constant

velocity v, such discontinuities are not allowed to exist in u(y), and we can define a

weak second derivative.

The discretization in space is given by:

∫ L

0

f(u(x′, t)− u(xj, t), x
′ − xj)dx′ ≈

N∑
i=1

f(ui(t)− uj(t), xi − xj)∆x (2.20a)

d2u(y)

dy2
≈ uj+1 − 2uj + uj−1

(∆y)2
(2.20b)

and we have used ∆x = 0.1 as before.

We now attempt to solve the traveling wave problem by assuming a value for M

and finding the associated displacement field. From the displacement field, we can

find the strain field and hence the driving force associated with this M.

To find the displacement field, we divide the domain R := {y : y ∈ [0, L]} into an

interior I := {y : y ∈ [Lbc, L − Lbc]}, a left boundary layer B− := {y : y ∈ [0, Lbc]},

and a right boundary layer B+ := {y : y ∈ [L − Lbc, L]}. We define the residue

R(u(y)) :=
[
M2
(

d2u(y)
dy2

)
−
(

1
E

∫ L

0
f(u(y′)− u(y), y′ − y)dy′

)]
. We aim to minimize

the 2-norm of the residue over the interior I:

min

∫
I
R(u(y))2 dy ≈ min

∑
u(yi)∈I

R(u(yi))
2 (2.21)

Our initial approach was to minimize the norm of the residual (normalized with

respect to the height of the energy barrier and length of the computational domain)

on I over the set of displacements u(yi) where yi ∈ I and assuming constant strain

fields in B−,B+ by extrapolating. As M increases, the constant strain approximation
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does not work. Instead, we minimize the norm of the residual on I over the entire

set of displacements u(yi) where yi ∈ B− ∪ I ∪ B+. This allows us to capture the

oscillations around the phase boundary. A singularity is formed at the interface of the

boundary layer with the interior, and is analogous to the singularity expected when

the applied body force changes sharply in space (Silling et al., 2003), if we think of the

error minimization process in terms of a fictitious body force applied in the boundary

layers.

The minimization is performed using a standard conjugate gradient algorithm

(Anderson et al., 1999). We start with a static phase boundary (i.e., M = 0), and

use this as the initial guess for a phase boundary moving at a low M. Once we have

found this phase boundary, it is then used as an initial guess for a slightly faster phase

boundary. This procedure is repeated till we come as close to M = 1 as possible. For

phase boundaries that are very close to M = 1, the conjugate gradient solver is unable

to find a solution that connects the two phases and instead finds solutions that are

single-phase.

With viscosity (ν = 0.333), the traveling wave calculations yield the kinetic re-

lation shown as the dashed line in Figure 2.4. It coincides with that obtained from

dynamic calculations with the same value of viscosity in the previous section. A

typical traveling wave profile (at M = 0.33) is shown in Figure 2.9(a).

For the inviscid material, however, the situation is different. We still obtain

traveling waves, but the displacement field is quite different from those observed

in dynamic calculations. One has sinusoidal waves of a specific frequency that do

not die out but persist over all space with constant amplitude, as shown in Figure

2.9(b). Similar solutions have been found by Zimmermann (2002). Further, they are

symmetric, i.e., the strain fields on either side of the phase boundary are reflections

of each other around the zero-strain line. Consequently, it follows from (2.8) that

the driving force is zero. Thus, the kinetic relation is a horizontal line F = 0, again

differing from the dynamic calculations.

To explore this issue further, we break the symmetry of the displacement field

for an inviscid phase boundary by adding viscosity, and study the limiting kinetic
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(a) Viscous (ν = 0.333)

(b) Inviscid (c) Almost inviscid (ν = 0.005)

Figure 2.9: Strain fields from the traveling wave calculations at M = 0.33. Note the
different scales.
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relation as ν → 0. The entire calculation (going from M = 0 to M ' 1) is repeated for

different values of ν. A typical traveling wave profile (M = 0.33) for small viscosity

(ν = 0.005) is shown in Figure 2.9(c). The kinetic relation converges to the solid

line shown in Figure 2.4, which is identical to that derived from inviscid dynamics

simulations earlier. We speculate that the numerical damping inherent in our time

marching discretization picks the limiting (rather than the exact) inviscid solutions

in our dynamic simulations.

The numerical computations above suggest that the inviscid limit is discontinuous:

the limit of the viscous solutions as ν → 0 differs non-trivially from the solution

obtained by setting ν = 0. We speculate briefly on the physical origins of this

difference. Recall that when the viscosity is zero, the traveling wave consists of strain

oscillations in all space in the traveling frame. These oscillations imply a velocity

difference between every pair of points. Thus, the addition of even a small ν would

lead to infinitely large dissipation and consequently an infinitely large driving force

to sustain this structure. Therefore, one would expect that the oscillations to decay

with the slightest addition of viscosity thereby leading to a very different solution.

We now examine this discontinuous limit mathematically. Let u0(y) be the inviscid

solution, and u(y) be the solution with viscosity. These solutions satisfy the equations

F (u0)−M2

(
d2u0(y)

dy2

)
= 0, (2.22a)

F (u)− νM

∫ (
du(y′)

dy′
− du(y)

dy

)
e−(y′−y)2dy′ −M2

(
d2u(y)

dy2

)
= 0 (2.22b)

where F (·) represents the nonlinear functional containing the elastic peridynamic

interactions. We subtract the equations and linearize F (u) about the inviscid solution

to obtain:

Tu0U(y) = νM

∫ (
du(y′)

dy′
− du(y)

dy

)
e−(y′−y)2dy′ (2.23)
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where U(y) := u(y)− u0(y) and

Tu0U(y) :=

∫
R

K(y, y′) (U(y′)− U(y)) e−(y′−y)2dy′ −M2

(
d2U(y)

dy2

)
(2.24)

and K(y, y′) is the indicator function that is +1 when it connects a stable spring, and

−1 when it connects an unstable spring.

As ν → 0, the right-hand-side of (2.23) approaches zero. This would imply that U

approaches zero if the spectrum of Tu0 is bounded away from zero. If, however, zero

is either in the spectrum or an accumulation point of the spectrum of Tu0 , then (2.23)

is ill-posed and one can have non-trivial solutions solutions for U (see, for example,

Engl et al., 2000). We shall now show that we are in this latter situation.

To understand the spectrum of Tu0 , we have to first characterize K(y, y′). This can

be quite complicated as we discussed in the previous section depending on the state

about which we linearize. Note that if K(y, y′) = −1 (respectively K(y, y′) = +1)

everywhere, then the spectrum is given by −π
1
2

(
1− e−k2/4

)
+ M2k2 (respectively

π
1
2

(
1− e−k2/4

)
+M2k2). Clearly, 0 is an accumulation point of the spectrum in both

these cases.

To study the general case, we verify that the operator Tu0 is self-adjoint and thus

the spectrum is bounded from above and below by the minimum and maximum values

of

〈U(y), Tu0U(y)〉

=
1

2

∫
R2

K(y, y′) (U(y′)− U(y))
2
e−(y′−y)2dy′dy −M2

∫
R

(
d2U(y)

dy2

)
U(y)dy

=
1

2

∫
R2

(U(y′)− U(y))
2
e−(y′−y)2dy′dy −M2

∫
R

(
d2U(y)

dy2

)
U(y)dy

−1

2

∫
R2

(1−K(y, y′)) (U(y′)− U(y))
2
e−(y′−y)2dy′dy

= −1

2

∫
R2

(U(y′)− U(y))
2
e−(y′−y)2dy′dy −M2

∫
R

(
d2U(y)

dy2

)
U(y)dy

+
1

2

∫
R2

(1 + K(y, y′)) (U(y′)− U(y))
2
e−(y′−y)2dy′dy (2.25)
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over all appropriately normalized U where 〈·, ·〉 denotes the inner product and we have

used (2.32). The integrals above containing the terms 1 −K(y, y′) and 1 + K(y, y′)

are always positive. The remaining terms correspond to the cases considered above

where K = 1 or K = −1 everywhere. It follows then that 0 is either an accumulation

point of the spectrum or is contained in the spectrum for any spatial variation of

K(y, y′).

2.7 Interaction of a phase boundary with an inclu-

sion in two dimensions

In this section, we study the problem of a phase boundary, separating two variants of

martensite, impinging on an isolated elastic (non-transforming) defect in two dimen-

sions.

We model a material undergoing a square to rectangle phase transformation in

two dimensions by using an energy that has two minima that are related by square

symmetry. As shown schematically in Figure 2.10(a), we use trilinear springs in the

e1 =

 1

0

 and e2 =

 0

1

 directions and we add linear springs in the e1+e2√
2

direction to prevent both springs simultaneously being in the low- or high-strain

phase. We smooth the angular dependence by multiplying by a sinusoidal function.

Putting all these together, we arrive at the following constitutive relation:

f(δu, δx) =
(
f2(λ) cos2(2φ) + f1(λ) sin2(2φ)

) δx + δu

|δx + δu|
e−|δx|

2

(2.26)

where λ := |δx+δu|
|δx| − 1, tan φ := δx2

δx1
and the functions f1, f2 are the 1-well and 2-well

springs:

f1 = 2λ (2.27a)
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(a) Unit cell (b) Energy density

Figure 2.10: Model of a two-well material in peridynamics. (a) The unit cell consists of
one and two-well springs. (b) The level sets of the energy density show two wells.

f2 =


λ− 0.1 if λ > 0.05

−λ if −0.05 < λ < 0.05

λ + 0.1 if λ < −0.05

. (2.27b)

Figure 2.10(b) shows the level sets of the macroscopic energy density when the ma-

terial is subjected to a homogeneous deformation y = Fx. It is plotted as a function

of C11−C22 and C12 with C11 +C22 held fixed, where C = FTF. The energy has two

wells at

U1 =

 α 0

0 β

 U2 =

 β 0

0 α

 (2.28)

where α = 1 + 0.0645, β = 1− 0.0730 for the particular choice of parameters.

The inclusion is modeled after a non-transforming elastic material. Therefore, the

constitutive relation in this region is chosen to be

f(δu, δx) =
(
λ cos2(2φ) + 2λ sin2(2φ)

) δx + δu

|δx + δu|
e−|δx|

2

(2.29)

where φ, λ are as defined earlier. The macroscopic energy density of this material has

a single well at the identity. We also choose this same constitutive relation for springs
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Figure 2.11: Initial and boundary conditions for the 2 dimensional dynamic calculation

connecting pairs of points that have one point in the inclusion and the other in the

martensite.

We recall from the classical theory of martensites (see, for example, Bhattacharya,

2003) that two wells with transformation matrices given by (2.28) are in fact com-

patible, i.e., we can find a rotation matrix Q and vectors a, n̂ such that

QU2 −U1 = a⊗ n̂, (2.30)

and thus, a material with these wells can form phase (or twin) boundaries with normal

n̂ in the reference configuration. For the matrices given by (2.28), n̂ = e1±e2√
2

. For this

reason, it is convenient to work in an orthonormal coordinate system aligned with

the twin boundaries, ex = e1+e2√
2

, ey = e1−e2√
2

.

We seek to study the propagation of a phase boundary and its interaction with a

non-transforming precipitate. Therefore, we consider a rectangular region marked in

Figure 2.11 with a dashed line as the domain of interest. We use periodic boundary

conditions in the y direction. We seek to simulate infinite length in the x direction

with fixed far field strain. Therefore, we pad the domain of interest with dissipative

buffer regions to prevent reflection of acoustic waves and clamp the far ends. Pre-

venting reflection through the use of dissipative boundary layers increases the length

of time that the system can be evolved to get usable results. The dissipation is linear

in the velocity difference as in the one-dimensional calculation, and the coefficient of
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viscous damping is gradually increased in the dissipative regions, as a sudden change

in material properties would cause reflections at the interface of the damped and

undamped regions.

We study a problem similar to the release problem in Section 2.4. We place a single

phase boundary as shown in Figure 2.11 and equilibrate the system. The equilibrium

state has significant residual stress because of the non-transforming inclusion, since

its energy well is different from either of the phases and the circular boundary has

both compatible and incompatible directions. The residual stress dies out quickly

away from the inclusion and is not significant at the initial phase boundary. We

now perturb the martensite on the right side of the phase boundary, by changing the

displacement gradient Fi1 7→ (1+ε)Fi1. This perturbation maintains the continuity of

the displacement field in the y-direction. Also, as the perturbation is uniform in the y-

direction, the driving force is constant at all points along the phase boundary and the

phase boundary remains straight until it interacts with the stress field caused by the

inclusion. With these initial and boundary conditions, we integrate the peridynamic

equation of motion (2.1) in time and examine the evolution of the displacement fields.

The mechanism that the phase boundary uses to move past the inclusion is inter-

esting. Figure 2.12 shows snapshots of the deformation field4 C22 at different times.

The phases can be easily differentiated on the basis of high and low values of C22.

The inclusion is the prominent circular region in the center of the viewing area with a

moderate value of C22. As the phase boundary begins to move toward the inclusion,

it also sends off acoustic waves that go ahead of it. When these acoustic waves hit

the inclusion, they interact with the stress field and nucleate phase boundaries there

that lead to a region of the low strain phase in the neighborhood of the inclusion.

This low strain region near the inclusion then grows toward the left and consumes the

high strain region beyond. The original phase boundary stops some distance away,

leaving a remnant of untransformed high strain martensite partially surrounding the

inclusion.

4While all calculations in the peridynamic theory involve only the displacement field and not its
derivatives, we calculate C as a post-processing step to aid visualization of the results.
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(a) (b)

(c) (d)

Figure 2.12: Interaction of the phase boundary with the inclusion at moderate veloc-
ities visualized through a plot of C22. We have used PB to label phase boundaries,
and AW to label acoustic waves. (a) Phase boundary approaching the inclusion, (b)
Phase boundary hitting inclusion and acoustic wave reflected, (c) New phase bound-
ary nucleates and original phase boundary stops, while acoustic wave disperses and
(d) Nucleated phase boundary continues moving, leaving behind remnant of untrans-
formed martensite.
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(a) (b)

Figure 2.13: Interaction of the phase boundary with the inclusion at large velocities
visualized through a plot of C22. (a) Phase boundary moving over the inclusion and
(b) Phase boundary moving past the inclusion.

The mechanics of the two-dimensional problem involve a balance between the en-

ergy that the phase boundary would require to deviate from the compatible direction

imposed by the crystalline basis and the elastic energy that would be required for the

large distortions were the phase boundary to move past the inclusion while remaining

straight. The single variant of martensite is not compatible with the inclusion, and

the acoustic wave provides enough energy for microstructure to begin nucleating that

then grows and takes energy away from the original phase boundary.

There is experimental evidence of such a mechanism, in micrographs that show

the long slivers that are remnants of untransformed material near inclusions (James,

2005).

We have repeated these calculations with smaller and larger driving force. With

very small driving force, the acoustic wave passes through the inclusion with no

nucleation. The original phase boundary gradually slows down and eventually comes

to rest before reaching the inclusion. With a large driving force across the phase

boundary, we find that the motion of the phase boundary is relatively unaffected by

the presence of the inclusion in its movement across the domain, and it causes large

deformations in the inclusion as it sweeps over it (Figure 2.13). Some acoustic waves

are reflected back due to the presence of the inclusion, as can be seen in the figure.
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The results above do not depend strongly on the orientation of the anisotropy in

the inclusion. We have repeated the calculations with the anisotropy rotated by angles

of π
4

and π
8
, and we get similar results. The rotation of the anisotropy corresponds to

the inclusion having different orientations of the crystalline lattice.

2.8 Discussion

In this paper, we have examined the kinetics of phase transformations in the peridy-

namic formulation of continuum mechanics. We find that phase boundaries nucleate

and propagate naturally and uniquely in this theory. We only need to specify the inter-

particle interaction law and do not need to specify any additional conditions like the

nucleation criterion or the kinetic relation. Further, we characterize the conditions

under which nucleation occurs and the kinetic relations that govern the propagation

of a phase boundary. Furthermore, we find that topology transitions occur easily and

naturally. Finally, numerical simulations are easy to implement since they involve no

spatial derivatives. For all these reasons, we conclude that peridynamics is a very

attractive theory for computational studies of martensitic phase transformations.

It is common practice in the literature to study quasistatic hysteresis using a

sequence of incremental loading followed by equilibration as we did in Section 2.3.

Our results, in particular our analysis of nucleation, shows that this can depend very

much on the numerical method and the size of the incremental load step. Therefore,

one should be cautious in interpreting the results of such computations.

We have studied nucleation viewing it as a dynamic instability. It provides a

criterion that is consistent with our numerical studies. Our viewpoint is different

from the classical energetic view of nucleation. It also differs from the viewpoint

of Abeyaratne and Knowles (1991b) based on thermodynamic driving force. In the

latter two views, one examines whether a perturbation that introduces a second phase

grows, while we examine the dynamic stability of a slightly perturbed single phase

solution (it is not necessary for the perturbation to be large enough to include the

other stable phase). Therefore, a relation between our viewpoint and the others is
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unclear. As peridynamics is able to resolve the structure of the interface rather than

treating it as a sharp discontinuity, we speculate that our analysis may be considered

microscopic as opposed to the alternate viewpoints. This distinction places the usual

regularized theories on the microscopic side, and hence this criterion may hold in

those theories as well.

We have revisited the regularized continuum theory with strain gradients and

viscosity and studied nucleation from the viewpoint of dynamic stability in Appendix

2.B. We have found an important difference between that theory and peridynamics.

In the regularized continuum theory, the defect size depends only on the size of the

region in the unstable phase and not on the difference between the ambient strain

and the unstable strain. This reflects the local nature of this theory. In contrast, in

peridynamics, which is a nonlocal theory, the defect size depends on both the size of

the region in the unstable phase and on the difference between the ambient strain

and the unstable strain. This has important consequences. Suppose we introduce a

large perturbation in a small region of space. Whether this leads to a nucleation is

independent of ambient strain in the regularized theory, but significantly dependent

in the peridynamic theory. Consequently, if the spatial extent of this perturbation is

small enough, it will not lead to nucleation in the regularized theory no matter how

close the ambient strain is to the unstable phase, but will do so in the peridynamic

formulation. We believe that this is the reason why nucleation has been found to be

extremely difficult in computational studies of the regularized and phase-field theories

and various researchers have had to resort to noise, pre-nuclei and low-barrier regions.

In contrast, the calculations in this paper show that nucleation is relatively simple in

this formulation.

Our calculations show that phase boundaries may be viewed as traveling waves.

These traveling waves have leading and trailing oscillations that decay as we move

away from the phase boundary. The rate of decay depends on viscosity, but the

wavelength is relatively independent. The velocity of the traveling wave depends on

the average far field conditions only through a driving force, so that this analysis leads

to a kinetic relation. The kinetic relation with viscosity leads to large dissipation for
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small speeds, but curiously smaller dissipation for larger phase boundary velocities,

compared to the inviscid case. We do not understand this curious cross-over, but note

that a similar result has been found in regularized theories (Abeyaratne and Knowles,

1991a). The kinetic relation goes continuously through the origin (i.e., the velocity

and the driving force approach zero together). There is also a limiting velocity which

is the sound speed of both phases (these are assumed equal and constant in the

trilinear material). We have also carried out similar calculations for a material with

a cubic polynomial stress response function. The kinetic relation with viscosity does

not have a limiting velocity, and this is not surprising since the high strain phase has

unbounded sound speed.

While small amplitude waves in either of the stable phases of our peridynamic

material are dispersive, it is interesting that we find traveling wave structures that

involve all phases. Like other solitons, we believe that the nonlinearity and the

dispersion balance each other for special structures and allow them to be traveling

waves.

We close by pointing out two interesting and open problems. We have shown

that nucleation and kinetics arise from a specification of a force field in the peridy-

namic formulation. However, the range of nucleation conditions and kinetic relations

that can be obtained from within the peridynamic formulation remains unknown.

Similarly, it remains unclear whether one can alter the kinetic and static properties

independently. Finally, an examination of nucleation from the point of view of dy-

namic instability in higher dimensions and also in atomistic systems would be very

interesting.

2.A Bounds on the spectrum of a non-ideal defect

We derive here bounds on the spectrum of a non-ideal defect, using the results that

we have for an ideal defect. We recall that a non-ideal defect has a non-trivial mixed

region as described in Figure 2.7(b). For such a defect, with a given δu and δl, we

expect that an ideal defect of size δ will be more stable than a non-ideal defect when
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δl = δ, as the non-ideal defect would have as large an inner unstable region as the

ideal defect, as well as more unstable springs outside this inner region, while the ideal

defect would have no unstable springs outside the inner region. Similarly, we expect

that an ideal defect of size δ will be less stable than a non-ideal defect when δu = δ,

as the non-ideal defect would have some stable springs in the inner region while the

ideal defect would have only unstable springs in the inner region. We make these

bounds rigorous by means of standard inequalities that are well-known:

∫
Ω

f(x)g(x) dx ≤
(∫

Ω

f(x)2 dx

) 1
2
(∫

Ω

g(x)2 dx

) 1
2

(2.31a)

∫
Ω

|f(x) + g(x)|2 dx ≤

((∫
Ω

f(x)2 dx

) 1
2

+

(∫
Ω

g(x)2 dx

) 1
2

)2

(2.31b)

∫
Ω

|f(x)| |g(x)| dx ≤ |f(x)|max

∫
Ω

|g(x)| dx (2.31c)

for f(x), g(x) ∈ L2(Ω).

For a non-ideal defect with radii δu and δl, where δu = δ, we write the inner

product:

Iδu(v) =

∫
R2−(−δ,δ)2

e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

+

∫
(−δ,δ)2

K(x, x′)e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

=

∫
R2

e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

−2

∫
(−δ,δ)2

e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

+

∫
(−δ,δ)2

(1 + K(x, x′)) e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

= Iδ(v)

+

∫
(−δ,δ)2

(1 + K(x, x′)) e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

where K(x, x′) is an indicator function that is −1 when x, x′ are connected by an
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unstable spring, and +1 when they are connected by a stable spring. The second

term in the final form above indicates the difference between the inner product of a

non-ideal defect and that of an ideal defect.

We normalize v(x) by setting v(x) to have unit L2 norm over a finite region larger

than δu, while retaining the restriction that v(x) is such that the integrals appearing

in the inner product are bounded.

Since K(x, x′) is symmetric in its arguments, we can exchange x, x′ in the second

term and add the result to the original integral to arrive at:

∫
(−δ,δ)2

(1 + K(x, x′)) e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

=
1

2

∫
(−δ,δ)2

(1 + K(x, x′)) e−(x′−x)2 (v(x)− v(x′))
2

dx dx′ (2.32)

where the integrand is non-negative everywhere on the domain of integration and

hence this term is bounded below by 0. For an upper bound on this term:

1

2

∫
(−δ,δ)2

(1 + K(x, x′)) e−(x′−x)2 (v(x)− v(x′))
2

dx dx′

≤
∫

(−δ,δ)2
(v(x)− v(x′))

2
dx dx′

≤
∫

(−δ,δ)

((∫
(−δ,δ)

v(x)2 dx′
) 1

2

+

(∫
(−δ,δ)

v(x′)2 dx′
) 1

2

)2

dx

≤
∫

(−δ,δ)

(
v(x) (2δu)

1
2 + 1

)2

dx

≤
∫

(−δ,δ)

v(x)2 (2δu) dx +

∫
(−δ,δ)

1 dx + 2

∫
(−δ,δ)

v(x) (2δu)
1
2 dx

≤ 8δu

where we have used inequality (2.31c) to go to the second step, inequality (2.31b) to

go to the third step, the normalization of v(x) to bound the second term and go the

fourth step, expanded the square to reach the fifth step, used again the normalization

of v(x) to bound the first term and inequality (2.31a) to bound the third term as
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follows:

∫
(−δ,δ)

v(x) (2δu)
1
2 dx ≤

(∫
(−δ,δ)

v(x)2 dx

) 1
2
(∫

(−δ,δ)

(2δu) dx

) 1
2

and using again the normalization of v(x).

We also see that the integrand in the above expression is 0 in the interior of the

square (−δl, δl)2 and hence has no contribution, and the integral in this region can be

bounded above by 8δl in the same manner as for the integral over the square (−δ, δ)2.

So, we can now write the upper and lower bounds as:

0 ≤ 1

2

∫
(−δ,δ)2

(1 + K(x, x′)) e−(x′−x)2 (v(x)− v(x′))
2

dx dx′ ≤ 8
(
δu − δl

)
We now turn to the case when the non-ideal defect has δl = δ. Writing the inner

product:

Iδl(v)

=

∫
R2−(−δu,δu)2

e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

−
∫

(−δ,δ)2
e−(x′−x)2

(
v(x)2 − v(x)v(x′)

)
dx dx′

+

∫
(−δu,δu)2−(−δ,δ)2

K(x, x′)e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

=

∫
R2

e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

−2

∫
(−δ,δ)2

e−(x′−x)2
(
v(x)2 − v(x)v(x′)

)
dx dx′

−
∫

(−δu,δu)2−(−δ,δ)2
(1−K(x, x′)) e−(x′−x)2

(
v(x)2 − v(x)v(x′)

)
dx dx′

= Iδ(v)

−
∫

(−δu,δu)2−(−δ,δ)2
(1−K(x, x′)) e−(x′−x)2

(
v(x)2 − v(x)v(x′)

)
dx dx′

We can bound the difference between inner products following the same steps as for

the previous bound with the appropriate modifications to arrive at the analogous

bounds.



51

We summarize the results of these bounds:

Iδ(v) ≤ Iδu(v) ≤ Iδ(v) + 8
(
δu − δl

)
when δu = δ (2.33a)

Iδ(v)− 8
(
δu − δl

)
≤ Iδl(v) ≤ Iδ(v) when δl = δ (2.33b)

for a given v(x). We can immediately see from these bounds that if erf(δu) < 1
2
,

the non-ideal defect must be stable, and if erf(δl) > 1
2
, the non-ideal defect must be

unstable.

2.B Nucleation in a regularized theory

We study nucleation in a classical continuum theory augmented with viscosity and

strain gradient (Abeyaratne and Knowles, 1991a). We use their model here without

the viscous dissipation:

ρ∂ttu(x, t) = ∂x(σ̂(∂xu(x, t)))− ρλ∂xxxxu(x, t) (2.34)

where λ is the coefficient of surface energy and σ̂(·) is the non-monotone stress re-

sponse function.

Following the procedure that we used to study the peridynamic theory, we assume

that a low strain field evolves and leads to a region of unstable strain. We then

linearize the equations around this state and test the stability as a function of the

defect size. For simplicity, we use a stress-response function that is bilinear and with

equal and opposite slopes ±E0(E0 > 0) on the branches. Adding a small perturbation

εv(x, t) to the displacement field u(x, t) and differentiating the resulting equation with

respect to ε leads to the linearized equation in v(x, t):

ρ∂ttv(x, t) = ∂x(E(x)∂xv(x, t))− ρλ∂xxxxv(x, t) (2.35)
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where E(x) = σ̂′(u(x, t)) = ±E0 is the slope of the stress response and switches

between stable and unstable as a function of position, E(x) = −E0 for |x| < δ and

E(x) = E0 elsewhere.

Decomposing v(x, t) = v(x)eiωt into sinusoidal modes and taking the inner product

I
sg
δ = 〈v(x), L

sg
δ v(x)〉 gives

I
sg
δ (v) =

∫
R

ρλv(x)v(4)(x) dx−
∫

R
E0v(x)v(2)(x) dx +

∫
(−δ,δ)

2E0v(x)v(2)(x) dx

where the inner product is defined as in peridynamics.

Taking the limit of δ = 0 and using the decomposition vk(x) = eikx allows us to

calculate the spectrum ρλk4 + E0k
2 which is stable for k > 0.

Taking the limit of δ → ∞ and using the decomposition vk(x) = eikx, we find

the spectrum is ρλk4 − E0k
2, which is unstable for k < 1

γ
where γ :=

√
ρλ/E0 is

the lengthscale associated with the strain gradient model. The strain gradient theory

differs from the peridynamic theory in that the surface energy contribution has a

stabilizing effect in both the stable and unstable regions, whereas in peridynamics

the entire energy changes sign in the unstable regions.

It is straightforward to show that the operator is unstable at finite δ by using a

test function that is localized within the defect. To show that the operator is stable

for finite δ, we use integration by parts to rewrite the surface energy contribution,

and rescale v(x) = ṽ(x/δ) = ṽ(y). This gives

I
sg
δ (v) =

1

δ2E

((γ

δ

)2
∫

R

(
ṽ(2)(y)

)2
dy −

∫
R

ṽ(y)ṽ(2)(y) dy +

∫
(−1,1)

2ṽ(y)ṽ(2)(y) dy

)

From the continuity and jump requirements on v(x, t) and its derivatives (Abeyaratne

and Knowles, 1991a), the first integral in the expression above is positive and finite,

and the remaining integrals are finite. So, for any ṽ(y), we can always find a value of

δ > 0 that makes the first positive integral sufficiently large that the entire expression

is positive. The form of the expression above also shows that the critical defect size
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scales with the internal length scale of the material γ prescribed by the choice of

surface energy coefficient.

This calculation highlights an important difference between the non-local peridy-

namic theory and strain gradient theories. In the peridynamic theory, the formation

of a small area of unstable phase that is surrounded by a stable region of low strain

phase that is close to the peak strain has a large effective defect size due to the fact

that many of the surrounding springs are easily stretched beyond the peak strain.

Similarly, a defect surrounded by low strain phase that is well below the peak strain

has a smaller effective size. This dependence of the effective defect size on the strain in

the neighborhood is unique to peridynamics. The ability of peridynamics to capture

the effect of the surroundings makes it very different from a strain gradient theory in

this respect.
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Chapter 3

A real-space non-local phase-field
model of ferroelectric domain
patterns in complex geometries

Abstract

Ferroelectric perovskites are used in various MEMS devices due to the strong cou-

pling between electric field and strain. They also have large nonlinear responses to

optical excitation for which they have been proposed as elements of photonics de-

vices. In these applications, ferroelectrics are machined to have complex geometries

with complex arrangements of electrodes. It is therefore important to understand

the domain patterns that form in these complicated geometries. However, available

models assume unrealistic boundary conditions to be useful in these contexts.

We develop a real-space, non-local phase-field model to address this issue. The

model is constructed for barium titanate, a tetragonal perovskite, by identifying the

total energy consisting of Landau, domain wall and electrostatic contributions. The

key issue is to resolve the electrostatic fields within the ferroelectric, as well as the

stray or induced fields in the surroundings in a computationally efficient manner. We

do so by using a boundary element method to account for the non-local electrostatic

contributions, and this makes the modeling of free surfaces computationally tractable.

We use the method to study the behavior of a ferroelectric crystal with patterned

electrodes, a geometry that is of interest in the design of electronic and photonic
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devices with ferroelectrics. The mechanical and electrical effects of a notch in such

a device are also examined as a first step towards a consistent study of the role of

microstructure formation in the fracture process of ferroelectric materials.

3.1 Introduction

Ferroelectric materials are currently used for actuation and in high-speed memories.

They have also been proposed as elements of microwave circuits and as photonic

switches at small lengthscales. Modern devices are shrinking to the scale of the

domain microstructures, and proposed designs exploit microstructure evolution as

device elements (Bhattacharya and James, 2005; Dayal and Bhattacharya, 2006b).

Further, fracture processes in ferroelectrics are strongly coupled to microstructure

evolution. Design and manufacture of new devices and predicting failure requires an

understanding of the detailed microstructure in realistic geometries.

Understanding domain patterns in ferroelectrics and their evolution in response to

applied loads has motivated much recent research. The time-dependent Devonshire-

Landau-Ginzburg (TDGL) framework has been applied using phase-field techniques

and has led to important insights into the overall behavior, examples being the for-

mation of microstructure in barium titanate (Hu and Chen, 1998), lead titanate (Li

et al., 2002) and the mechanics of domain switching (Wang et al., 2004). The ability

of TDGL phase-field methods to model these microstructural phenomena makes them

good candidates for further efforts in this direction.

However, electrostatic fields generated by devices are nonlocal. Stray fields extend

not only within the material but over all of space. Current numerical methods to

evaluate electrostatic contributions to the free energy rely on the FFT technique for

efficient computation. This restricts analysis to periodic domains. Other approaches

focus on completely shielded systems that are completely covered by electrodes and

hence do not allow stray fields outside the body. As devices of interest grow smaller

and are micromachined to have complex features, there is a need to extend the frame-

work to deal with the complex geometries that can not be adequately understood with
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current techniques.

We present here our implementation of a boundary element technique that allows

for the accurate and efficient resolution of electrostatic fields over all space, without

the assumptions of periodicity or shielding, and allows us to deal with complex geome-

tries. Boundary element techniques have been developed and are standard techniques

in the context of electromagnetism, acoustics and other areas that require the reso-

lution of fields over finite regions but with the boundary conditions specified over an

infinite domain. Examples of implementations of boundary element techniques can

be found in (Wrobel, 2002), (Kane, 1994) and references contained there.

We couple our boundary element implementation to a recently-developed phase-

field model (Zhang and Bhattacharya, 2005) for the evolution of domain patterns in

ferroelectrics, and present examples of computations and geometries that are possible

with this technique. This phase field model has been used to characterize domain pat-

terns that are formed in barium titanate under different electromechanical loadings

and captures the essential features. In this model, the electric field is formulated ex-

plicitly in real-space rather than in a periodic geometry, as is typical in previous work

involving phase-field models. We exploit the real-space formulation to implement the

boundary element technique.

The magnetostatic equation that arises in the study of microstructure in ferro-

magnetics, i.e., micromagnetism, is similar in form to the electrostatics equation and

can be coupled to a phase field model of the sort we describe in this paper, or to

other micromechanical models. An important difference is that there are no free

charges in ferromagnetism; in contrast, charged defects exist in ferroelectrics though

we neglect their consideration here. Another difference is that the magnitude of the

magnetization is a constant in ferromagnets and only orientational change is allowed

by paying an energy penalty; in contrast, the analogous polarization can change both

magnitude and orientation by paying an energy penalty. While these differences lead

to important contrasts in the behavior of ferroelectrics and ferromagnets, the imple-

mentation of the boundary element method in micromagnetism is an area of active

research (see Fidler and Schrefl, 2000, and references there).
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We begin by presenting the phase-field equations and the associated gradient flow

evolution equations in Section 3.2. In Section 3.3, we present the techniques we use

to solve the evolution equations, emphasizing the details of the boundary element

technique. We present examples to test the technique in Sections 3.4, 3.5, and 3.6.

We conclude with a discussion of our results in Section 3.7.

3.2 The phase-field formulation

From Shu and Bhattacharya (2001), we have that the potential energy E of a ferro-

electric body Ω can be written:

E(ε,p) =

∫
Ω

[U(∇p) + W (ε,p)] dΩ +
ε0

2

∫
R3

|∇φ|2dV (3.1)

and is a function of the elastic strain field ε and the polarization field p. The con-

tributions to the energy come from a surface energy U that penalizes gradients in p

and models the energy contributions from domain walls, an anisotropy energy W that

penalizes p not being aligned with the local crystallographic basis, and the final term

represents the electrostatic energy contained in the electric fields E = −∇φ, where φ

is obtained by solving Maxwells equation:

∇ · (p− ε0∇φ) = 0 over R3 (3.2)

The first 2 terms in the energy are local to the body being considered, while the

electrostatic contribution requires evaluation over all space.

Following Zhang and Bhattacharya (2005), we model the evolution of the system

through gradient flow of the potential energy. The evolution equations are obtained

by taking the first variation:

µ
dpi

dt
=

(
∂U

∂pi,j

)
,j

− ∂W

∂pi

− φ,i over Ω (3.3a)
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(
∂W

∂εij

)
,j

= 0 over Ω (3.3b)

pi,i − ε0φ,ii = 0 over R3 (3.3c)

The boundary conditions for the gradient flow equations arise from the variational

procedure. We require that∇p·n = 0 associated with the evolution of p, conventional

elasticity boundary conditions for the elastic equilibrium equation, and voltage spec-

ified at certain points (i.e., on the electrodes) and field decaying at infinity associated

with the electrostatic field.

In this paper, we work with barium titanate, and specialize the constitutive models

for U and W for this material. Further, we restrict ourselves to a two-dimensional

plane strain system for the computational implementation, but our formulation is

general and can be easily extended to a fully three-dimensional calculation.

We use the same material model that was tested in Zhang and Bhattacharya (2005)

and found to be satisfactory for understanding the evolution of domain structures in

barium titanate. We use a simple form for the surface energy that regularizes the

system and prevents the formation of sharp domain walls:

U(∇p) =
a0

2

(
p2

1,1 + p2
1,2 + p2

2,1 + p2
2,2

)
(3.4)

We model the anisotropy energy using a Landau polynomial approach:

W (ε,p) =
a1

2

(
p2

1 + p2
2

)
+

a2

4

(
p4

1 + p4
2

)
+

a3

2
p2

1p
2
2 +

a4

6

(
p6

1 + p6
2

)
+

a5

4
p4

1p
4
2

+ (ε− εT (p)) · C · (ε− εT (p)) (3.5)

where we have assumed that the energy due to misfit strain is quadratic, i.e., linear

elasticity, and the stress-free strain is coupled to the local polarization.

We use the material constants a0, a1, a2, a3, a4, a5, C and the expression for εT (p)

chosen by Zhang and Bhattacharya (2005), as these have been shown to adequately
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reproduce the response of barium titanate.

3.3 Solving the phase-field evolution equations

Having specified the governing equations and chosen an appropriate material model,

we now have sufficient equations to solve boundary value problems. In this section,

we detail the numerical method that we will use. For simplicity, we have used a

square finite-difference grid, and confine ourselves to two dimensions. Further, we

have assumed that the strains are small, and hence there is no difference between

current and reference configurations when solving the electrostatic equations.

Our strategy is to begin with an initial guess for the strain and polarization fields

in the interior of the ferroelectric, and evolve in the direction of the gradient flow

until we reach an equilibrium state. At each time step of the gradient flow, as we

update the polarization, we solve the electrostatic and elastostatic equations to find

the strain and electric potential caused by the updated polarization field. These new

fields are then used to again update the polarization, and the process is repeated until

we are sufficiently close to equilibrium.

The polarization update is achieved using a simple explicit time marching scheme,

with conventional finite differences to model spatial derivatives. Similarly, the elas-

ticity equations are solved by writing the equations in terms of the displacement and

then discretizing the displacement equations in space with the appropriate boundary

conditions.

As we have seen in the previous section, the electrostatic potential is obtained

from the solution of Maxwell’s equation over all space. However, we have from the

equation for the polarization update that we only require the potential field at every

point in the body. This leads to the boundary element technique as a means of

transforming the nonlocal problem of obtaining the electrostatic potential by solving

over all space, to a local problem that provides the solution only over the body of

interest. This transformation provides us with a means of efficiently solving the

electrostatic equations. However, at the same time, we need to ensure that the
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boundary conditions are accurately satisfied.

The key idea behind the boundary element method is the Dirichlet to Neumann

map, i.e., we transform our boundary conditions from being partially specified on

the boundary (through a given voltage at the electrodes) and partially specified at

infinity (through the requirement that the field decays far away) to simpler boundary

conditions: that the surface charge is specified everywhere on the boundary, including

at the electrodes.

We are given the charge density in the interior due to the imbalance of the polar-

ization pointwise, and further, we are given the surface charge density by the change

in polarization at the exposed surfaces. However, we are not given the charge at

regions covered by electrodes; instead, we are given the voltages there. We begin by

replacing the electrodes by surface charge distributions; however, these surface charge

distributions are unknown. They are not arbitrary, however, as they are required to

satisfy that the potential due to the charges (combined from the known and unknown)

matches that specified at the electrodes. This matching condition provides us with

the ability to solve for the unknown surface charge distributions.

Once we have solved for them, the charge distribution everywhere in the body is

known to us. We can then superpose the potential due to each of these charges to

obtain the potential at any point we desire. We use this ability to find the potential

over the entire boundary, leaving us with the simple task of obtaining the potential

in the interior of a domain with potential specified on the entire boundary. We can

see that we have gone from a mixture of charge and potential boundary conditions

(Dirichlet and Neumann) to a purely boundary potential problem (Dirichlet).

We now provide some details on the electrostatics solution technique. In what

follows, we note that we are solving the electrostatics problem at a given instant in

time, and hence, the polarization is treated as a fixed quantity that is specified for

the purposes of solving for the electric field.

Writing out the electrostatics equation and its boundary conditions:

ε0∇ · ∇φ(x) = ∇ · p(x) =: ρ(x) over R3 (3.6a)
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Figure 3.1: Boundary conditions for the electrostatics problem.

φ(x) = V0(x) on ∂Ωφ (3.6b)

ε0J∇φ(x)K · n̂ = p(x) · n̂ =: σ(x) on ∂Ωσ (3.6c)

∇φ(x) → 0 as (x) →∞ (3.6d)

The notation: ∂Ωφ, ∂Ωσ are the portions of the boundary with electrodes, free surfaces

respectively. As can be seen above, electrode boundaries have potential (voltage) spec-

ified and free surfaces have surface charge density (from discontinuous polarization)

specified (Figure 3.1). We do not consider any other electrical boundary conditions

in this work, and hence ∂Ωφ ∪ ∂Ωσ = ∂Ω covers the entire ferroelectric Ω. 1

We begin by replacing the voltage boundary conditions over ∂Ωφ by surface charge

1The surface charge balance is not a boundary condition for the electrostatic equation, but comes
from the weak form of the electrostatics equation at a discontinuity that is in this case the body
surface. In our case, this discontinuity coincides with the boundary of the region of interest. This
may not always be the case, as, for example, in a model of a PFM probe.
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boundary conditions. These surface charges σ∗ are unknown:

ε0∇ · ∇φ(x) = ρ(x) over R3 (3.7a)

ε0J∇φ(x)K · n̂ =

 σ(x) on ∂Ωσ

σ∗(x) on ∂Ωφ

(3.7b)

∇φ(x) → 0 as (x) →∞ (3.7c)

Let G(x,x′) be the fundamental (Greens) solution to this equation that satisfies

G(x,x′) → 0 as |x− x′| → ∞. We can then write the solution for the potential

as

φ(x) =

∫
Ω

G(x,x′)ρ(x′)dx′ +

∫
∂Ωσ

G(x,x′)σ(x′)dx′ +

∫
∂Ωφ

G(x,x′)σ∗(x′)dx′ (3.8)

Applying this relation to the boundary region ∂Ωφ where we know that φ(x) = V0(x):

V0(x) =

∫
Ω

G(x,x′)ρ(x′)dx′ +

∫
∂Ωσ

G(x,x′)σ(x′)dx′ +

∫
∂Ωφ

G(x,x′)σ∗(x′)dx′ (3.9)

This equation can now be solved for the unknown function σ∗(x′). We do this on

the finite difference grid by assuming that σ∗(x′) is piecewise-constant, i.e., it has a

specific constant value over the region associated with the corresponding grid point.

Applying the equation above at each grid point in ∂Ωφ gives us a system of linear

equations that are to be solved for the σ∗m at each grid point:

V0l
=

∑
{m:xm∈Ω}

G(xl,xm)ρm∆x2 +
∑

{m:xm∈∂Ωσ}

G(xl,xm)σm∆x

+
∑

{m:xm∈∂Ωφ}

G(xl,xm)σ∗m∆x (3.10)

This system of linear equations can be solved to find the unknown σ∗m.



66

Now, we have available to us the surface charge density on the entire boundary

as well as the charge density in the interior. This enables us to find φ at any point

in space by using the fundamental solution (3.8), and in particular, we evaluate φ

over the entire boundary ∂Ω, and we denote this φ∗(x). The problem has now been

reduced to finding the potential within a finite domain, given the charge density in

the interior and the potential on the entire boundary. We have thus decoupled the

electrical field problem in the interior from the exterior:

ε0∇ · ∇φ(x) = ρ(x) in Ω (3.11a)

φ(x) = φ∗(x) on ∂Ω (3.11b)

and this can be solved using conventional and efficient techniques.

3.4 Closure domain microstructure at a free sur-

face

The electrostatic equation and its associated boundary conditions (3.6) show that free

surfaces can have associated with them concentrated electrostatic surface charges on

the order of the polarization. The large electrostatic fields associated with the con-

centrated charge at free surfaces lead to significant contributions to the electrostatic

portion of the potential energy. An attempt to reduce this electrostatic energy leads

to the formation of microstructure in the vicinity of the free surface. However, this

microstructure leads to an increase in the interfacial energy U , and possibly also

stresses and an increase in the elastic energy. Thus, there is a complex competition

between the electrostatic energy, the interfacial energy and elastic energy.

The general problem we are describing is in some ways similar to the problem of

closure domains that has been examined in ferromagnetism2. This area is relatively

2We recall that as mentioned in Section 3.1, ferromagnetism differs from ferroelectricity in two
important respects. Firstly, there are no free charges in ferromagnetism. Secondly, the magnitude of
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much better studied in the context of ferromagnets compared to ferroelectrics. There

exists a large literature considering theoretical aspects and coupled with considerable

experimental efforts (see Hubert and Schafer, 1998, and references there). There

has also been theoretical work on classifying the various closure domain structures

expected in different limits of geometric aspect ratio as well as energetic contributions

(reviewed in DeSimone et al., 2005). Such a comprehensive classification is as yet

unavailable for ferroelectrics. The application of the boundary element technique

may aid theoretical efforts by providing numerical clues to this problem.

In this section, we use the boundary element technique to numerically study a

simple example of these closure domains. In particular, for a simple geometry and

orientation of the free surface with respect to the crystal basis, we examine the effect

of mechanical boundary conditions on the electric field that is generated outside the

body.

We use a rectangular computational domain, and we use as starting point for

the polarization field a domain pattern that consists of alternate vertical bands of

upward (c+) and downward (c−) pointing domains. We use a grounded electrode on

the bottom surface to approximate an infinite body, in the electrical sense. We also

use periodicity in the horizontal direction. However, we assume that top surface has

no electrodes. This leads to the formation of alternate regions of positive (negative)

surface charges associated with the c+ (c−) polarizations ending on the free surface.

To prevent long-range effects that would require us to model the entire body, we use

equal volume fractions of the c+ and c− domains to achieve local charge balance.

Further, the crystallographic basis is oriented along the rectangular directions for

simplicity.

We have examined the closure patterns for two different sets of mechanical bound-

ary conditions.

1. Mechanically constrained: This is an approximation to the closure mi-

crostructure on the surface of a large ferroelectric body. Boundary conditions

the magnetization (analogous to the polarization) is fixed. These differences could potentially lead
to very different closure domain microstructures.
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Figure 3.2: Boundary conditions and initial polarization field

consist of clamping the bottom face of the computational domain with zero ver-

tical displacement and horizontal displacement to satisfy the stress-free strain

value, and clamping the vertical faces in the horizontal direction at the value

of the stress-free strain while keeping them shear traction free, and finally com-

pletely traction free on the vertical face (Figure 3.2).

2. Mechanically unconstrained: This is an approximation to the closure mi-

crostructure in a thin film, with the thickness of the computational domain on

the order of the closure domains. We use an entirely traction-free boundary.

As mentioned above, this starting guess for the polarization has large electrostatic

energy, and the polarization is evolved with a gradient flow scheme to minimize the

total energy. This leads to the formation of closure domains as in Figure 3.3, where

we have shown the second component of the polarization vector field. Except at the

domain walls, the magnitude of the polarization is approximately constant (and has

been normalized to 1). The polarization field for both sets of boundary conditions is

similar.
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Figure 3.3: Equilibrium closure domain structure (p2 field). The arrows are only to guide
the reader.

However, the electrostatic potential that is built up outside the body is quite

different in the two cases considered. From Figure 3.4, we see that the potential

outside the body in the constrained case is considerably higher than in the thin

film. This may be of relevance to current efforts to use such domain patterns for self

assembly (Kalinin et al., 2002).

The closure domains that form are similar to those seen in tetragonal ferromag-

netic materials and can be understood in terms of the same balance of energies (see

Hubert and Schafer, 1998, and references there for details on the ferromagnetic case).

The triangular closure domains that form allow for a large reduction in electrostatic

energy, as there is now no polarization ending on the free surface, and the polarization

is also fairly divergence-free in the interior. However, the usual 90◦ stress-free domain

structures that are seen in bulk tetragonal ferroelectrics are not compatible in this

geometry, i.e., the triangular closure domain does not have an angle of exactly 90◦ in

the stress-free state and hence cannot form stress-free compatible interfaces with both

the c+ and c− domains together. This leads to an angular defect or disclination and

costs elastic energy. In the case of thin films, this elastic energy can be relaxed due to

the traction free boundaries and leads to bending of the entire film (Figure 3.5). In

the constrained case, the elastic energy cannot relax and there is larger electrostatic

energy to compensate. In fact, this can be seen in the larger electrostatic potential

outside the body in the constrained case.
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Figure 3.4: Electrostatic potential field caused by closure domains (note the different mag-
nitudes.)

Figure 3.5: Bending of the film caused by incompatibility disclinations of the closure
domains (vertical displacements magnified by a factor of 100).
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Figure 3.6: Schematic of an IDE device and the idealized two-dimensional calculation.

Understanding the electromechanics of closure domains is necessary to be able to

understand the more complex mechanics that occurs at cracks, voids and other free

surfaces. While this simple example demonstrates the capability of the boundary

element technique, a systematic study is required, in particular with different volume

fractions and different orientations of the free surface with respect to the crystal basis.

Another important effect that is not considered here is the motion of charged defects

due to the large electrostatic fields, which could change the final domain pattern.

3.5 Interdigitated electrode device

As a second example, we study the domain patterns that are formed in a device

with interdigitated electrodes (IDE) when a constant DC bias is applied to one elec-

trode and an AC voltage of the same magnitude is applied to the other electrode.

Such a configuration of electrodes is of interest to produce periodically-poled lithium

niobate (PPLN) ferroelectric crystals for use in optical second-harmonic generation

(Nakamura et al., 2002), and has been proposed for tunable optical second-harmonic

generation devices (Dayal and Bhattacharya, 2006b).

We consider a cross-section as marked on the schematic in Figure 3.6. We ap-

proximate the problem as being two-dimensional in this cross-section, and we use a

rectangular computational domain that is periodic in the horizontal direction. We

ground the entire bottom face and apply the DC bias to the left electrode and the

AC forcing to the right electrode, with free surfaces between the electrodes. We leave

all the faces traction-free.
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Since nucleation of new domains plays an important role in this example, we use

the method of soft spots as nuclei, following Zhang and Bhattacharya (2005). The

soft spots are small regions that have the Landau expansion parameters changed in

such a manner that the energy barrier for switching is much lower. In our system,

we have positioned them just below the center of each electrode. For a discussion on

why nucleation in phase-field models may be difficult and why soft spots and other

techniques are required to induce switching, see Dayal and Bhattacharya (2006a).

We begin with a crystal that is entirely poled along the a-axis, with the polariza-

tion pointing towards the right. As we begin cycling, we find that the crystal forms

complex domain patterns that evolve cyclically after an initial transient. Figure 3.7

shows snapshots from an entire cycle, represented by plots of both components of the

polarization vector field at different times.

In the first snapshot at time t, Figure 3.7(a), the left electrode (running over

the top surface for the first quarter) has constant positive DC bias and the right

electrode (running over the top surface for the third quarter) is at the zero and

climbing upwards on the AC cycle. The left (DC) electrode with a positive bias has

a c− domain structure beneath it, and the right (AC) electrode with zero voltage has

a c+ domain structure beneath it from the end of the previous cycle. There are also

a-axis closure domains on the exposed regions of the surface with no electrode cover

and some in the interior to satisfy compatibility approximately. As in the case of

the closure domains, this domain pattern is not exactly compatible and we expect

stresses or bending to occur.

In the second snapshot a quarter cycle beyond t, Figure 3.7(b), the right (AC)

electrode is at the positive peak of the AC cycle and the domain has switched to c−.

Due to this switching, the right closure domain on the surface has also switched to

maintain the polarization approximately divergence-free. The other domains change

shape and size slightly to accommodate the new domain patterns.

In the third snapshot a half cycle beyond t, Figure 3.7(c), the right (AC) electrode

is again at zero and falling. The domain patterns do not show much change, though

the magnitude of the polarization in the c− domain beneath the AC electrode has
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(a) Domain patterns at time t (b) Domain patterns at quarter cycle
beyond t

(c) Domain patterns at half cycle be-
yond t

(d) Domain patterns at three quarter
cycle beyond t

Figure 3.7: Snapshots of the polarization field. In each subfigure, the upper plot
represents the horizontal component of p and the lower plot represents the vertical
component of p. The arrows are only to guide the reader. The entire movie is
available from the authors.
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reduced. Also, the c+ has grown slightly.

In the fourth snapshot three quarters of a cycle beyond t, Figure 3.7(d), the

right (AC) electrode is at the lowest point of the AC cycle. The c− domain beneath

the AC electrode has switched to c+. The domain geometry looks very similar to

that in the first snapshot at the beginning of the cycle. However, the magnitudes

of the polarization are higher. This suggests to us that the domain geometry itself

is somewhat independent of the magnitudes of the applied voltages and most of

the domain motion occurs in short intervals after nucleation and switching. Hence,

nucleation seems to control the kinetics of the process.

We see large polarizations building up at the edges of the electrodes due to the

high electric fields in that region. More sophisticated models of ferroelectrics that

incorporate fracture, breakdown and the motion of charged defects are required to

understand the details of the crack formation process that often occurs at the edges of

electrodes in ferroelectric and piezoelectric devices, and in those models the magnitude

of the applied voltages will likely play a more important role.

3.6 Effect of a notch

Crack formation and growth due to combined electrical and mechanical loading is an

important failure mechanism in ferroelectrics. The fracture process is more complex

than in a purely mechanical setting due to the interaction between electrical and

mechanical processes. The air gap caused by the opening of a crack can lead to the

formation of closure domains, that in turn change the stress state in the body and

in particular around the crack, leading to complex interactions. The large electric

fields due to the free surfaces could also lead to the movement of charged defects that

further complicate matters.

Crack growth in ferroelectrics under both cyclic and constant loading has been

studied experimentally, with PZT/PLZT receiving much attention (see, for example,

Lynch et al., 1995; Lupascu et al., 2003; Lynch, 1998; Oates et al., 2005). Experimen-

tal work in tetragonal ferroelectrics examining the 90◦ switching at the crack tip has
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been studied by Fang et al. (2005, 1999) and Tan et al. (2000). Theoretical under-

standing of the crack growth phenomenon is difficult due to the need to incorporate

local domain switching and formation of microstructure caused by the air gap. Efforts

at understanding this process by making simplifying assumptions on the nature of

the electrostatics, microstructure and surface structure are described in Wang and

Landis (2004); Suo et al. (1992); Park and C.-T. Sun (1995); Hao et al. (1996); Zhu

and Yang (1997, 1999); Rajapakse and Zeng (2001) and references there.

Resolving the role of domain switching at the crack tip is essential to be able to

understand the crack growth process in ferroelectrics. This requires the ability to

calculate the electric fields that arise at the free surfaces on the crack face, and is

possible by using the boundary element technique. However, an accurate model of

crack electromechanics would require a better representation of the geometry than is

possible with the finite difference method. Further, electrostatics would have to be

solved in the current configuration to model the air gap change due to opening of the

crack.

We use an extremely simplified geometry as a first approximation to a crack to

understand some of the issues that will arise in domain switching by exploiting the

ability of the boundary element method. We use a rectangular computational domain

with a thin rectangular notch removed. We ground the entire bottom face, and apply

electrodes on either side of the notch. We use traction free boundary conditions over

the entire boundary.

We point out that the notch is aligned with the direction of the crystallographic

basis. As in the case of closure domains, we expect that the mechanics will be even

more complex in the case of real cracks and notches that may not be aligned with

this specific direction.

We do not use any nuclei in the calculations with the notch geometry, as the elastic

fields were quite heterogeneous and did not seem to require any additional persuasion

to nucleate domain structures.

We begin our computations with the polarization oriented along the horizontal

direction to the right, with no applied loads or voltages. The large electric fields



76

Figure 3.8: Equilibrium domain pattern that develops from an initially a-axis crystal. The
gray blocks mark the electrodes that are grounded during equilibration.

caused by the polarization ending on the notch faces with this domain pattern lead

to the formation of closure domains as we evolve the polarization. Figure 3.8 shows

the equilibrated domain pattern that is obtained. As we discussed in Section 3.4, the

domain pattern that we see is not compatible in a stress-free state. Thus, the mere

presence of a notch causes stresses to develop even when no mechanical loads are

applied. The polarization on the other hand closely approximates a divergence-free

field and the crystal takes advantage of the presence of the electrodes in the formation

of the closure microstructure on the surface.

Once the field has settled into an equilibrium state, we apply the same boundary

conditions that were used to cycle the IDE device, i.e., a DC bias on the left electrode

and AC forcing on the right electrode3 as in Figure 3.9(a). After an initial transient,

the domain patterns settle into a cyclic evolution pattern. Figure 3.10 shows some

snapshots in the cycle, represented by plots of the individual components of the

polarization vector field at different times.

The presence of the notch leads to interesting contrasts with the IDE geometry.

The DC bias at the left electrode causes a c− domain to form beneath it. As we can

see from snapshots of the entire cycle, this domain hardly changes over the cycle. We

also see that the presence of the notch has caused the entire upper half of the crystal

to switch to a-axis oriented to the left. While this domain changes shape slightly in

the vicinity of the AC electrode, it retains its structure over the rest of the crystal

3Though the electrodes seem to be positioned differently, the situations are equivalent due to the
periodicity of the calculations in the horizontal direction.
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(a) Electrical boundary conditions
during AC cycling

(b) Electromechanical boundary con-
ditions during bending

Figure 3.9: Schematic of the different load cases on the notched specimen

(a) Domain patterns at time t (b) Domain patterns at quarter cycle
beyond t

(c) Domain patterns at half cycle be-
yond t

(d) Domain patterns at three quarter
cycle beyond t

Figure 3.10: Snapshots of the polarization field. In each subfigure, the upper plot
represents the horizontal component of p and the lower plot represents the vertical
component of p. The arrows are only to guide the reader. The entire movie is
available from the authors.
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over the entire cycle.

In fact, the domain pattern in the entire crystal to the left of the notch does not

change much at all under cycling and seems decoupled from the changes that occur

due to the AC electrode. The domain pattern in the crystal to the right of the notch

also does not change much except for some switching near the edge of the electrode

close to the notch and the rearrangement of adjacent domains to maintain electrical

compatibility.

The region between the notch and the right (AC) electrode is the only portion of

the crystal that has large response to the AC forcing. In Figure 3.10(a), with zero

AC voltage and climbing, the domain between the notch and the right electrode is c+

from the previous cycle. As the voltage is increased, the domain switches to a-axis

and the snapshot at the positive peak AC voltage, Figure 3.10(b), shows that the

c+ domain has almost completely switched to a-axis. In Figure 3.10(c), at zero AC

voltage and dropping, the switching is complete and there is no c+ remaining. Figure

3.10(d) at the lowest point of the AC cycle shows that the negative voltage has caused

switching and the c+ domain has reappeared.

As discussed in Shu and Bhattacharya (2001) for a simple flat-plate geometry,

180◦ switching is expected if purely electrical loads are applied and 90◦ switching is

easier if mechanical and electrical loads are applied together. In the case of the IDE

where purely electrical loads were applied, we see only 90◦ switching beneath the

AC electrode. Here, in the presence of the notch, we see that the same magnitude

of AC causes 90◦ switching and we do not observe 180◦ switching. We expect that

the presence of the notch caused this change in behavior by raising stresses in the

crystal due to closure domains formed on the notch faces. Also, the presence of the

notch caused large regions of the crystal near the electrode to be dominated by a-axis

domains that might also be a factor in this different behavior.

While this single case does not provide sufficient information for a general state-

ment, we see that the notch caused the domain patterns to be much less responsive

to AC forcing than in the case of the IDE geometry. In the design of ferroelectric

devices, the possibility of degradation of performance due to geometric features and
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defects needs consideration.

We now consider a calculation with a combination of mechanical and electrical

loads that may provide insight into local domain switching of at crack tips. We begin

with a notched crystal that is equilibrated from an a-axis poling as described above

in Figure 3.8. We now apply a point mechanical load, i.e., at a single grid point, while

keeping one corner of the crystal pinned (both displacements fixed) and another corner

allowed only to translate horizontally, as shown in Figure 3.9(b). While applying this

mechanical load, we ground both the electrodes at the surface and also keep the the

entire bottom surface grounded as in the previous calculations. We apply sufficient

load to cause domain switching at the tip. Once the specimen has been equilibrated,

we superpose DC voltages applied at the electrodes on the surface and examine the

domain switching at the notch tip.

Figure 3.11 shows the domain patterns that form when the mechanical load is

applied without electrical loading. By comparing the domain patterns just below the

tip of the notch in Figures 3.8 and 3.11, we see that local switching has occurred.

The domain patterns elsewhere in the specimen have shifted slightly, but no major

rearrangements have occurred at this magnitude of loading. For larger loads, we find

changes in the domain pattern over much of the specimen. Smaller loads do not

unambiguously cause switching.

It would seem that the mechanics in this simple case can be understood through

ideas from beam theory. When we apply the load, it causes the specimen to bend.

The region of the specimen above the middle, i.e., above the tip of the notch, cannot

bear much load, and the load is mostly taken by the lower half. The lower portion

of the specimen below the notch acts as a beam, and the region near the bottom has

σ11 > 0 and the region just below the notch has σ11 < 0. This stress below the notch

tip favors c-axis strains and causes some of the a-axis domain to switch.

This idea is confirmed by applying the a load of opposite sense at the same point

to cause the notch to open. We find switching from a-axis to c-axis in the lowermost

region of the specimen and the strain just below the notch tip goes further away from

c-axis.
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Figure 3.11: Domain pattern that develops when a point mechanical load is applied while
keeping the electrodes grounded. Note that the displacements are not magnified.

By examining the distorted specimen in Figure 3.11, we see that the crystal has

undergone large bending. As ferroelectric materials are quite brittle, we do not expect

such large distortions to occur and it is likely that the specimen will mechanically fail

before we see domain switching at the notch tip.

We now superpose different DC bias voltages to both of the electrodes in an at-

tempt to reverse the switching. It is unlikely that it is possible to reverse the domain

patterns to the mechanically unloaded state in the entire specimen by applying the

voltages at the specific positions that we have chosen for the electrodes in this exam-

ple. Instead, we examine the switching at the notch tip only.

For moderate voltage (compared to the applied voltage in the cycling) applied at

the electrodes, we are able to reverse the mechanically induced switching at the notch

tip. Figure 3.12 shows the complex domain patterns that develop elsewhere in the

specimen as a result of applied voltages superposed over the large mechanical load.

The distortion of the specimen induced by the mechanical loading does not show any

significant reversal due to the application of voltage.

Domain switching at a notch tip geometry requires small electric fields that do not

generate much stress. Stress-induced switching requires unrealistically high stresses.

Hence domain switching at a notch tip is likely to be dominated by the local geometry

(that influence surface charges) and will be less affected by far field stresses.

While local switching at a crack tip in a ferroelectric material is a complex process,
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Figure 3.12: Domain pattern after back-switching the domain at the notch tip using DC
bias at both electrodes. Note that the displacements are not magnified.

this calculation regarding the balance of different electrical and mechanical loads

shows that it may not be sufficient to consider the mechanics as dominating the

fracture process, but other factors that influence the electrostatics also play a role.

In a real crack, the domain switching leads to local stresses due to closure domain

disclinations and the associated rearrangements. This microstructure is influenced

by the electrostatics and the crystallographic surface structure, that in turn depend

strongly on local crack geometry and orientation with respect to the crystal basis.

3.7 Discussion

We have formulated a boundary element technique to understand the effect of free

surfaces in ferroelectric crystals. We find that the ability to solve electrostatics us-

ing this technique raises many interesting questions regarding the interplay between

mechanics and electrostatics at defects.

We have solved some simple examples to illustrate this method and also provide

insight into the electromechanics in ferroelectrics. We find that closure domains form

even in the simple geometry where the volume fractions of c+ and c− are equal,

and the free surface is aligned with the crystallographic basis. More complex domain

patterns and orientations will likely lead to more complexity. As closure domains form

the basis for understanding the electromechanical behavior of free surfaces in various
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settings including cracks, electrode edges, and micromachined features, a fundamental

understanding is necessary.

A second example that we calculated illustrated the complex domain patterns

that form even in simple geometries with straightforward boundary conditions. We

see that design of IDE devices with optimal behavior may not be straightforward.

We also examined the effect of a notched geometric defect. We see that the

behavior of the domain patterns is quite rich even with the various simplifications

required. More sophisticated techniques such as the finite element that can provide

more realistic models of cracks seem justified in light of the complex behavior that

can not be predicted using ideas from conventional fracture mechanics.

A major simplification that we have made are neglecting the role of charged de-

fects. These defects play a significant role in the electromechanics of ferroelectric

materials, and their role is further enhanced in the presence of large electric fields

as were seen in the geometries considered. Exploratory calculations of modeling the

piezo-force microscope (PFM) response of ferroelectrics and comparison with experi-

ments indicate that charged defects play an important role in understanding closure

domains. It seems to be possible to incorporate ideas from Xiao et al. (2005) con-

cerning charged defects in ferroelectrics within the boundary element framework.

However, this will make the problem nonlinear and poses interesting challenges.

A second major simplification that we have made is assuming that the current and

reference configurations can be described within the framework of linear elasticity.

This led to simplifying the formulation of the electrostatics problem. In situations

of interest, for example crack opening and growth, this approximation may need to

be removed. This would require solution of the electrostatics problem in the current

configuration. This may require remeshing at each time step. Work by Li and Aluru

(2002) and others in the context of MEMS shows that it may be more efficient to

formulate the problem in the reference.



83

Bibliography

Bhattacharya, K., James, R. D., 2005. The material is the machine. Science

307 (5706), 53–54.

Dayal, K., Bhattacharya, K., 2006a. Kinetics of phase transformations in peridynamic

formulation of continuum mechanics. J. Mech. Phys. Solids (in press).

Dayal, K., Bhattacharya, K., 2006b. Tunable quasi-phase-matching through ferro-

electric domain switching, in preparation.

DeSimone, A., Kohn, R. V., Muller, S., Otto, F., 2005. Recent analytical devel-

opments in micromagnetics. In: Bertotti, G., Magyergyoz, I. (Eds.), Science of

Hysteresis. Elsevier.

Fang, F., Yang, W., Zhang, F. C., Luo, H. S., 2005. Fatigue crack growth for BaTiO3

ferroelectric single crystals under cyclic electric loading. J. Am. Ceram. Soc. 88 (9),

2491–2497.

Fang, F., Yang, W., Zhu, T., 1999. Crack tip 90◦ domain switching in tetragonal

lanthanum-modified lead zirconate titanate under an electric field. J. Mater. Res.

14 (7), 2940–2944.

Fidler, J., Schrefl, T., 2000. Micromagnetic modelling - the current state of the art.

J. Phys. D Appl. Phys. 33 (15), R135–R156.

Hao, T. H., Gong, X., Suo, Z., 1996. Fracture mechanics for the design of ceramic

multilayer actuators. J. Mech. Phys. Solids 44 (1), 23–48.



84

Hu, H. L., Chen, L. Q., 1998. Three-dimensional computer simulation of ferroelectric

domain formation. J. Am. Ceram. Soc. 81 (3), 492–500.

Hubert, A., Schafer, R., 1998. Magnetic Domains. Springer.

Kalinin, S., Bonnell, D., Alvarez, T., Lei, X., Hu, Z., Ferris, J., Zhang, Q., Dunn, S.,

2002. Atomic polarization, charge compensation, and local reactivity on ferroelec-

tric surfaces: a new route toward complex nanostructures. Nano Lett. 2, 589–594.

Kane, J. H., 1994. Boundary element analysis in engineering continuum mechanics.

Prentice-Hall.

Li, G., Aluru, N. R., 2002. A lagrangian approach for electrostatic analysis of de-

formable conductors. J. Microelectromech. S. 11 (3), 245–254.

Li, Y. L., Hu, S. Y., Liu, Z. K., Chen, L. Q., 2002. Effect of substrate constraint

on the stability and evolution of ferroelectric domain structures in thin films. Acta

Mater. 50 (2), 395–411.

Lupascu, D., Aulbach, E., Rodel, J., 2003. Mixed electromechanical fatigue in lead

zirconate titanate. J. Appl. Phys. 93 (9), 5551–5556.

Lynch, C. S., 1998. Fracture of ferroelectric and relaxor electro-ceramics: influence of

electric field. Acta Mater. 46 (2), 599–608.

Lynch, C. S., Chen, L., Suo, Z., McMeeking, R. M., Yang, W., 1995. Crack growth in

ferroelectric ceramics driven by cyclic polarization switching. J. Intel. Mat. Syst.

Str. 6 (2), 191–198.

Nakamura, K., Kurz, J., Parameswaran, K., Fejer, M. M., 2002. Periodic poling of

magnesium-oxide-doped lithium niobate. J. Appl. Phys. 91 (7), 4528–4534.

Oates, W. S., Lynch, C. S., Kounga Njiwa, A. B., Lupascu, D. C., 2005. Anisotropic

fracture behavior in ferroelectric relaxor PZN-4.5%PT single crystals. J. Am. Ce-

ram. Soc. 88 (7), 1838–1844.



85

Park, S., C.-T. Sun, 1995. Fracture criteria for piezoelectric ceramics. J. Am. Ceram.

Soc. 78 (6), 1475–1480.

Rajapakse, R. K. N. D., Zeng, X., 2001. Toughening of conducting cracks due to

domain switching. Acta Mater. 49 (5), 877–885.

Shu, Y. C., Bhattacharya, K., 2001. Domain patterns and macroscopic behavior of

ferroelectric materials. Philos. Mag. B 81 (12), 2021–2054.

Suo, Z., C.-M. Kuo, Barnett, D. M., Willis, J. R., 1992. Fracture mechanics for

piezoelectric ceramics. J. Mech. Phys. Solids 40 (4), 739–765.

Tan, X., Xu, Z., Shang, J., Han, P., 2000. Direct observations of electric field-induced

domain boundary cracking in 〈001〉 oriented piezoelectric Pb(Mg1/3Nb2/3)O3-

PbTiO3 single crystal. Appl. Phys. Lett. 77 (10), 1529–1531.

Wang, J., Landis, C., 2004. Fracture of ferroelectric and relaxor electro-ceramics:

influence of electric field. Acta Mater. 52, 3435–3446.

Wang, J., S.-Q. Shi, L.-Q. Chen, Li, Y., T.-Y. Zhang, 2004. Phase-field simulations

of ferroelectric/ferroelastic polarization switching. Acta Mater. 52 (3), 749–764.

Wrobel, L. C., 2002. The Boundary Element Method: Applications in Thermo-Fluids

and Acoustics. Vol. 1. John Wiley & Sons.

Xiao, Y., Shenoy, V. B., Bhattacharya, K., 2005. Depletion layers and domain walls

in semiconducting ferroelectric thin films. Phys. Rev. Lett. 95, 247603.

Zhang, W., Bhattacharya, K., 2005. A computational model for ferroelectric domains.

Part I: model formulation and domain switching. Acta Mater. 53, 185–198.

Zhu, T., Yang, W., 1997. Toughness variation of ferroelectrics by polarization switch

under non-uniform electric field. Acta Mater. 45 (11), 4695–4702.

Zhu, T., Yang, W., 1999. Fatigue crack growth in ferroelectrics driven by cyclic electric

loading. J. Mech. Phys. Solids 47 (1), 81–97.



86

Chapter 4

Conclusions

The ability to manipulate the microstructure of active materials can open the way

to the design of new devices at smaller lengthscales (Bhattacharya and James, 2005).

This will require the development of models that capture the essential physics at the

lengthscales of relevance. In this thesis, we have examined two problems that arise

in this general area.

We have examined the evolution of microstructure in a dynamic setting using the

peridynamic theory of continuum mechanics. We have confined ourselves to one di-

mension for simplicity, to obtain insights into the nature of phase transformations and

microstructure evolution in this theory. We find that the evolution of microstructure

can be understood in the framework of a kinetic relation and a nucleation criterion.

In particular, the propagation of phase boundaries in dynamic calculations can

be directly calculated using a traveling wave ansatz, and the kinetics that result

from both approaches match. However, both techniques rely on a discretization of a

continuum equation, and are both subject to the numerical artifacts that can arise in

such a setting.

A more conclusive result on the ability of peridynamics to support kinetic relations

through a traveling wave framework will require existence proofs of such waves, and

this is a major problem that is outside the scope of this thesis.

Another open question relates to how much information regarding the movement

of phase boundaries is contained in a kinetic relation calculated in a traveling wave

framework. The traveling wave framework has built into it the assumption that the
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phase boundary is propagating at a steady velocity and that the strain fields on either

side tend to a constant value (with some oscillations about the mean). It is not clear

how to apply the classical continuum idea of a driving force to a transient setting in

a nonlocal theory such as peridynamics. The classical definition of a driving force

depends on the fact that interfaces in that theory are sharp. In theories such as

peridynamics or a regularized model where the structure of the interface is modeled,

the traveling wave ansatz has the assumption that strain fields tend to a constant

value far away, and that allows us to generalize the idea of the driving force slightly.

However, in a truly transient setting, the strain fields may not have this nice structure

and that leads to fundamental difficulties. In particular, the relation between the

stress as the derivative of the strain energy density with strain that is available in

classical continuum mechanics no longer holds in peridynamics when the strain field

has variations over relatively short lengthscales (see Silling, 2000).

This question may be related to the fact that the kinetic relation (representing

finite dissipation at macroscopic scales) comes from the averaging away of the mi-

croscopic oscillations about the mean strain field. In transient settings where the

strain field does not tend to a mean, it is difficult to make the distinction between

macroscopic averages and microscopic oscillations.

Experimental observations of phase boundary movement suggest that there is

a critical nonzero driving force required to initiate motion in a stationary phase

boundary. We recall that the kinetic relation calculated in peridynamics did not

show this “stickiness”, even with the viscous damping mechanism. To the best of

our knowledge, available microscopic theories that consider phase boundary motion

in an isolated system, i.e, with no other defects, are inadequate to understand this.

A possible microscopic understanding of this effect involves the interaction of phase

boundaries with pinning defects (for example see Bhattacharya, 1999).

The nucleation of phase boundaries is understood in terms of the linear stability of

displacement fields. We find that analytical scaling results that we have derived from

linear stability arguments match well the numerical predictions from dynamics. We

find that nucleation can be described in terms of a defect size, and in peridynamics
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this defect size depends on the ambient displacement field in the neighborhood of the

defect in contrast to PDE models of continuum mechanics. This provides a different

perspective on nucleation in terms of linear stability, in contrast to conventional

methods.

In future work, it may be useful to apply this idea to a multi-dimensional setting in

an attempt to derive nucleation criteria for more realistic systems. Multi-dimensional

settings would require accounting for anisotropy among the many other complications

that arise in higher dimensions, and the characterization of nucleation in terms of a

single scalar defect size may not be possible.

There is little description regarding the connection between the work on kinetics

and nucleation and experiments in this area. The reasons for this lack include the

non-availability of experimental data to compare with due to the many experimental

challenges that arise in a study in this area. Further, the peridynamic theory itself

is not yet well understood and characterized theoretically. Further activity in both

these directions is required before the possibility of making fruitful comparisons arises.

However, both directions are areas of active research and the outlook is optimistic.

It may also be possible to apply the idea of linear stability to understand the

kinetics of steadily propagating phase boundaries as traveling waves. As in nucleation,

phase boundaries contain a region in the spring-space that is unstable. The size of

the unstable region depends on the end states of the phase boundary. However, as

in nucleation again, the phase boundary structure as a whole is still stable in the

traveling wave frame, despite the unstable springs. By testing the linear stability of a

phase boundary against the appropriate perturbations, it may be possible to obtain

the allowed range of end states of the phase boundary. This would provide allowed

regions (and possibly bounds) for the kinetic relation.

Our primary motivation to study the peridynamic system was the possibility of

making connections to atomistics. While it is not clear if there is indeed a strong

connection, both peridynamics and atomistics share some important features, in par-

ticular nonlocal interactions. It may be possible to apply some of the techniques

developed here in the context of peridynamics to atomistic systems. One particu-
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lar difficulty that would arise is the accounting of temperature in atomistic systems.

The Nose-Hoover method (described in Frenkel and Smit, 1996, and elsewhere) of

modeling thermal interactions between the atomistic system of interest and the sur-

roundings poses interesting challenges.

A second problem that we have examined in the this thesis concerns the domain

patterns that form in ferroelectrics at geometric defects. Previous work in studying

microstructure has focused on periodic systems to enable efficient computation. As

the need for understanding microstructure in more complex geometries arises, it is

necessary to extend this work. We have applied a boundary element electrostatic

solver that allows the modeling of free surface microstructure in ferroelectrics.

We have presented examples of calculations that are possible using this technique.

In particular, an example of closure domain formation at a free surface, the electrical

cycling of a patterned electrode device and the effect of a notch have been presented.

We see that geometric defects can lead to complex microstructure and evolution.

While these examples show the interesting electromechanical response that occurs

at free surfaces, and the computational ability that comes of applying the boundary

element method, there is much progress that needs to made in terms of incorporating

physics and implementing solution techniques.

An important physical effect that we have not considered in this thesis is the

movement of charged defects. Many ferroelectrics are wide bandgap semiconductors

and contain oxygen vacancies. Large electric fields cause these effects to gain im-

portance. Geometric defects such as electrode edges and notch tips usually imply

large electric fields. Understanding real devices and their electrical and mechanical

reliability will require combining this physics, possibly through continuum models of

the kind formulated by Xiao (2004).

A second physical effect that needs to be accounted for is the interaction of light

with ferroelectrics or photorefractivity. Light passing through a ferroelectric can

cause charged defects to diffuse and modify the optical properties as well as the

microstructure. Applying ferroelectrics to optical devices that have been proposed (for

example Dayal and Bhattacharya, 2006) require the ability to model photorefractivity.
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The use of the finite difference method to solve the elasticity equations imposed

restrictions on the geometries that could be studied. Models of cracks that incorporate

realistic fracture mechanics will require the ability to model arbitrary geometries as

is possible with the finite element method. Coupling the phase field and boundary

element implementations to a finite element solution of elasticity can open the way to a

comprehensive understanding of the electromechanics of cracks in different geometries

and orientations.
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