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Abstract

Historically speaking, the world of extremely low-noise solid-state amplification has been domi-

nated by exotic technologies such as InP and GaAs HEMTs. By cryogenically cooling these devices,

it is possible to realize microwave amplifiers with noise temperatures as low as 5K over decades of

bandwidth. Although HEMTs can provide very low-noise amplification when cooled to cryogenic

temperatures, their radiometer performance is limited by intrinsic transconductance fluctuations.

It is believed that bipolar devices do not suffer from this problem. As industry has invested more

and more money into silicon based technologies, silicon-germanium (SiGe) heterojunction bipolar

transistors (HBTs) have continued to improve and are now at the point where they are beginning

to become competitive with InP HEMTs for microwave cryogenic low-noise amplifiers. Although

extremely high frequency device operation has been observed at cryogenic temperatures, little work

has been done on modeling the noise of cooled SiGe HBTs.

In this report, a thorough investigation into the theoretical and practical aspects of using silicon-

germanium (SiGe) heterojunction bipolar transistors (HBTs) for extremely low-noise applications

is presented. The dissertation is broken up into three sections:

1) Background information: The fundamentals of SiGe HBTs are presented along with a discus-

sion of how the properties of semiconductors change at cryogenic temperatures, as well the

impact that these changes have on the performance of the devices.

2) Modeling: A comprehensive study of seven state-of-the-art HBTs at temperatures ranging

from 18 K to 300 K is presented. The devices are compared in terms of dc, small-signal, and

noise performance, and small-signal noise models are extracted. The section concludes with

a brief summary of the important conclusions regarding the performance of SiGe devices at
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cryogenic temperatures.

3) Applications: The models developed previously are applied to the design of several state-of-

the-art LNAs in both MMIC and discrete form. Noise performance better than 2 K is achieved

in the low-GHz range, which is comparable to the best InP results. The section concludes with

a discussion of some high-impedance differential amplifiers which have recently been fabricated.
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Chapter 1

Introduction and Background

Material

This dissertation is about the broad-band noise, dc, and RF performance of state-of-the-art

silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) operating at cryogenic temper-

atures and their use in extremely low-noise applications. It is divided into three parts:

1) Theory (Chapters 2–3). The framework necessary to understand the rest of the thesis is

presented. This includes an overview of silicon germanium transistors and a review of the

properties of semiconductors at cryogenic temperatures. Finally, this part of the thesis con-

cludes with a theoretical investigation as to what one would expect to happen to the operating

characteristics of SiGe devices at cryogenic temperatures.

2) Modeling (Chapters 4–8). The temperature dependent properties of a wide variety of state-

of-the-art SiGe transistors have been investigated and are reported in terms of dc, microwave,

and noise-performance. The results are presented in a manner so as to highlight the differences

between the various devices, while also pointing out general trends that are believed to apply to

all modern SiGe HBTs. In Chapter 4, the devices under study are described and an explanation

of the cryogenic test-setup used for device characterization is given. The experimental results

of this comparative study are presented in Chapters 5–7. Finally, this section of the thesis is

drawn to a close in Chapter 8, in which a concise summary of how SiGe devices change as a

function of ambient temperature is provided.

3) Applications (Chapter 9). Several applications of SiGe HBTs at cryogenic temperatures

are presented. In Chapter 9, the design and measurement of a variety of low-noise amplifiers

is reported. Through these “proof-of-concept” amplifiers, it is shown that the performance

predicted in Part II of the dissertation can be realized, thereby verifying the theory on which
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the modeling was based. Furthermore, the excellent results which are achieved show that SiGe

devices are well suited for low-noise cyrogenically cooled applications. The chapter concludes

with a discussion of some differential amplifiers which have been developed for integration with

high impedance feeds.

The remainder of this chapter is devoted to the motivation for this work, a brief history of the field,

and fundamental background material.

1.1 Solid-State Technology for Extremely Low-Noise Ampli-

fiers

The sensitivity of a receiving system is limited by its system noise temperature, which is a

combination of the input-referred receiver noise and the background noise. For terrestrial communi-

cation systems, where the background noise is on the order of 300 K, reducing the noise of the LNA

below 77 K, or a 1dB noise figure, provides diminishing returns as the dominant source of noise is

actually the background noise. However, for some applications, such as radio astronomy, deep-space

communications, and low-temperature physics research, the background noise is just a few Kelvin1.

For example, in the case of radio astronomy, the background noise is comprised of 2.7 K that is

attributed to the big bang and an additional few Kelvin due to atmospheric attenuation. For ap-

plications such as this, the noise requirement is quite stringent and it has become common practice

to cryogenically cool the receiver front-end in order to reduce the system noise to within a factor of

two of the background noise.

Since the early 1980s, the vast majority of solid-state amplifiers used in extremely low-noise

applications have relied upon III-V technologies, with the pioneering work in the field spear-headed

by Weinreb in his ground-breaking paper entitled “Low-noise Cooled GASFET Amplifiers” [1]. To

understand why III-V devices have dominated the field of extremely low-noise amplifiers, it is useful

to consider the RF performance of different solid-state technologies over the years. A plot comparing

the maximum frequency of oscillation (fmax) as a function of year for state-of-the-art devices across

various technologies is shown in Fig. 1.1. The data clearly shows that prior to 1994, the III-V

devices were an order of magnitude better than their silicon counterparts in terms of high-frequency

operation2. While these data are not directly applicable to the cryogenic noise performance, the high-

frequency operating characteristics would certainly limit the room temperature noise performance

1Several applications are detailed in Table 1.1.
2The superior RF performance is largely due to the higher mobility afforded by the use of exotic III-V compounds
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Table 1.1: Summary of key applications requiring very low-noise amplifiers

Application Freq. Range Comments

Radio Astronomy 0.1-100GHz Microwave Telescopes. 1-100,000,000 ele-
ments. Cryogenic cooling not always eco-
nomic.

0-5GHz SIS mixer IF amplifiers
0-3GHz HEB mixer IF amplifiers. Requires very good

input match to achieve good HEB stability.
Bandwidth limited by thermal time constants.

Deep Space Comm. 8GHz,32GHz Current DSN link. Lower ground terminal
system noise can be leveraged into either
higher data rates or lower power transmit-
ters/smaller transmit antennas

0-10GHz For use with optical communications system.
Large signals. Jitter is critical.

RFSQ Logic Superconducting computers. Interfacing
circuitry to transition from low voltage
Josephson-junction logic to CMOS memory.

Low Temp. Phys. Varies Sensor readout. Required sensitivity can be
on the order of the quantum limit.

Year

f m
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x
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z
]

CMOS
SiGe
III-V FET
III-V HBT

’85 ’90 ’95 ’00 ’05 ’10

102

103

104

Figure 1.1: Historical fmax for different technologies. Data taken from [2, 3, 4, 5].

of the silicon devices and are indicative of inferior cryogenic performance as compared to the III-V

devices.

Much of the research in cryogenic LNA development has been geared towards radio astronomy

applications, where the systems have typically been centered around large single-pixel3 antennas.

Thus, capital investment in steel has often been the major force in determining the overall system

cost, and the extra investment required to use the absolute best available devices has easily paid for

3i.e., one receiver per dish
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Figure 1.2: Examples of state-of-the-art cryogenic noise performance achieved using III-V HEMTs
at 15 K physical temperature

itself in terms of an improvement in system sensitivity4. Since achieving the state-of-the-art in noise

performance meant a reduction in steel and ultimately cost, III-V HEMTs have dominated the world

of extremely low-noise amplification since the early 1980s with the first-generation devices using

AlGaAs/GaAs materials, the second generation devices using AlGaAs/InGaAs/GaAs materials,

and the third generation devices using AlInAs/InGaAs/InP materials [6]. Using these technologies,

truly phenomenal noise performance has been obtained at cryogenic temperatures. For reference

some of the better published cryogenic noise results for III-V HEMT base amplifiers have been

plotted in Fig. 1.2.

Although their broadband noise performance is excellent, a limiting problem with HEMT devices

is inherent gain fluctuations that are linked to trapping phenomena associated with surface states [7].

These gain instabilities ultimately limit the radiometer performance of III-V HEMT LNAs. As it

is assumed that this problem does not exist in SiGe devices, which are vertical devices and buried

in the substrate, SiGe heterojunction bipolar transistors (HBTs) would be preferential if their noise

performance were on par with III-V HEMTs [8]. In addition to the lack of gain fluctuation issues,

SiGe HBTs are usually fabricated as an extra step in a standard CMOS processes, meaning that

they have the added advantages of eight-inch wafers, high yield, and full CMOS digital capabilities.

Thus, if the cryogenic noise performance of SiGe devices were comparable to that of III-V HEMTs,

it would open a whole new application space.

4Sensitivity is defined as Ae/TSY S , where Ae is the effective aperture and TSY S is the system temperature including
the background noise. Thus, sensitivity can be improved by increasing the effective collecting area or decreasing the
system noise temperature.
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Referring back to Fig. 1.1, it is apparent that the advantage in high-frequency performance that

the III-V devices held over silicon devices in 1995 has grown considerably smaller in the past ten

years. For reasons explained in Chapters 2 and 3, the noise performance of SiGe devices is expected

to improve substantially as these devices are cooled. Therefore, a proper understanding of their

cryogenic performance is extremely important in terms of enabling future breakthroughs in the

implementation of very sensitive cryogenic systems. Prior to moving on to the study of SiGe devices

for this application, a brief introduction to the dominant sources of noise in bipolar devices, as well

as an introduction to noise measurement techniques at cryogenic temperatures, is presented.

1.1.1 Physical Sources of Noise in BJTs

The broadband noise performance that can be achieved using a given transistor is determined

by the noise sources internal to the device as well as its RF terminal characteristics. Thus, a clear

understanding of the physical sources of noise in bipolar devices as well as the assumptions made

regarding their associated noise spectra is very important in developing an understanding of the

noise properties of SiGe HBTs. The two dominant broadband noise sources in microwave BJTs

are Johnson and shot noise. Johnson noise is the by-product of the random motion of carriers

in a conductor due to thermal excitation [13, 14]. It can be shown that the available power in a

bandwidth ∆f due to this random thermal agitation is given as [15]

Pav =
hf

ehf/kTa − 1
∆f =

kTa

1 + 1
2!

hf
kTa

+ 1
3!

(
hf
kTa

)2

+ 1
4!

(
hf
kTa

)3

+ . . .

∆f, (1.1)

where h is Plank’s constant, k is Boltzmann’s constant, f is center frequency, ∆f is the bandwidth,

and Ta is the ambient temperature. Thus, the power spectral density is white at low frequencies

and rolls off at higher frequencies with a knee frequency of f3dB ≈ Ta · 26.2 GHz. Furthermore, the

frequency at which the available noise power has dropped by 10% is given as f0.5dB ≈ Ta · 4.3 GHz.

Thus, at temperatures above 10 K and for frequencies below 40 GHz, it is reasonable to treat

Johnson noise sources as ideal white noise generators5 with available power of kTa. Therefore,

physical resistances can be modeled in Thevenin or Norton form as shown in Fig. 1.3.

The second important noise mechanism in bipolar devices is shot noise and occurs whenever

charge carriers cross a potential barrier6 due to the discrete nature of current flow. At frequencies

5In this work this assumption will be made, however it is important to realize that the assumptions break down
under extreme operating conditions (e.g., operation in the hundred GHz range at very low temperatures).

6e.g., diffusion current in a pn junction
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Figure 1.3: Circuit representations of Johnson noise in (a) the Thevenin representation and (b) the
Norton representation. (c) Circuit representation of the shot noise associated with a forward biased
diode

less than 1/πτb, where τb is the time over which the carriers transit across the barrier, the spectral

density of the shot-noise current is given as |in|2 = 2qId, where Id is the dc current flowing across the

barrier. At higher frequencies, the spectrum rolls off as 1/f2 [16]. In this work, it is assumed that

transit time across the regions in which shot noise is generated7 only makes up a small component of

the total transit time of the device, and thus the spectral densities of the shot noise can be considered

to be white.

Thus far, the dominant physical sources of noise in microwave bipolar-junction transistors have

been presented. It is important to note that these noise sources are associated with specific phys-

ical processes which are localized to well defined regions internal to the device. Therefore, the

actual physical noise sources are uncorrelated with one another. Furthermore, under the constraints

discussed above, the power spectral density associated with each of the intrinsic broadband noise

mechanisms can be considered frequency independent. In later sections, we will see that the noise

parameters of the device have frequency dependence due to the fact that the intrinsic noise sources

are imbedded in a frequency dependent network. Nonetheless, the fact that the physical intrinsic

noise sources are uncorrelated and frequency independent under the assumptions stated above is

important to keep in mind as the specifics of the noise performance of SiGe HBTs are discussed in

the coming chapters.

1.2 Characterization of Noise at Cryogenic Temperatures

In order to specify the microwave small-signal performance of any two-port at a single frequency,

twelve numbers are required; eight numbers are required to define the terminal current-voltage char-

acteristics and four noise parameters are needed to determine the noise performance. Standard

7i.e., depletion regions
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equivalent network representations used to describe the terminal characteristics include admittance-

(Y-), impedance- (Z-), scattering- (S-), and chain-parameter (ABCD-parameter) formulations. The

conversion between sets of network parameters is trivial and each particular representation proves

advantageous in the analysis of a certain class of problems. However, in the measurement of net-

work parameters, it has become standard practice to measure S-parameters using a vector network

analyzer (VNA). Using a VNA, it is possible to accurately determine the S-parameters of a network

from low-frequencies all the way up to the sub-millimeter wave regime. Furthermore, accurate cal-

ibration and de-embedding routines have been developed, allowing one to measure devices directly

on-wafer as well as in coaxial and waveguide fixtures. Thus, S-parameter measurement techniques

are easily applied in on-wafer cryogenic test setups.

As a major focus of this work is the noise performance of transistors at cryogenic temperatures,

it may seem logical that a good portion of the work would be in measuring on wafer noise pa-

rameters at cryogenic temperatures. However, in this work, the measurement of noise parameters

has been explicitly avoided for reasons explained in the following review of common noise parameter

measurements techniques.

1.2.1 Noise Parameter Measurements

Unlike the measurement of S-parameters, which, in theory, is a rather straightforward pro-

cedure, the measurement of noise parameters is quite involved. Along with each of the network

representations, there is an accompanying equivalent noise representation. For instance, to account

for noise in the admittance representation, equivalent shunt noise-current sources across the input

and output of the two-port are required along with knowledge of the complex correlation coefficient

between the noise sources. These current-noise sources are not physical sources, but mathematical

constructs defined in order to push the internal noise sources to the terminals of the two-port without

changing its terminal noise characteristics. Thus, as the equivalent sources are not physical, they

cannot be measured directly. The same is true for each of the noise representations8 , and an indi-

rect measurement method has become the standard technique for determining the noise parameters.

This technique relies on the fact that the input-referred noise temperature depends on the source

8An exception to this statement is the case in which the noise waves, which actually emanate from the ports, are
measured [17]. However, despite its conception nearly 20 years ago, this technique is still not used in commercial
systems.
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Figure 1.4: Typical noise-parameter test set

reflection coefficient (Γs) as [18]

Te = Tmin + 4T0
Rn

Z0

|Γs − Γopt|2

|1 + Γopt|2
(
1− |Γs|2

) , (1.2)

where Tmin is the minimum noise temperature of the two-port taken over all source impedances,

Γopt is the complex generator reflection coefficient required to achieve Tmin, and Rn is known as the

noise resistance and determines the sensitivity of Te to Γs.

As Tmin, Rn, and Γopt constitute a set of noise parameters that can easily be transformed to

any of the other sets of noise parameters, the determination of these four numbers is sufficient to

completely specify the noise properties of the network. Thus, the standard method for measuring

noise parameters at ambient temperatures is to measure the noise temperature of the device under

test (DUT) while varying the generator impedance using a tuner. A typical setup that would be

used to perform this task appears in Fig. 1.4. By measuring the generator impedance presented

to the DUT and knowing the exchangeable noise power at the input of the DUT9 for each tuner

position, it is possible to determine several values of Te as a function of Γs. Once at least four of

the values are known, the noise parameters can be determined using methods provided by Lane,

Mitama, or others [19, 20].

In order for the tuner noise parameter measurement to work, it is usually assumed that all passive

losses are isothermal, meaning that the noise parameters of the lossy component can be obtained

9i.e., knowing the loss in the mechanical tuner very accurately in order to account for its noise contribution
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from Bosma’s theorem as C = kTa

(
1− SS

†
)
, where C is the noise parameter matrix in noise wave

format and the † symbol is the hermitian transpose operator [21, 22]. Thus, the noise parameters

of the input network, including the tuner, as well as the output network can be determined directly

through S-parameter measurements and the noise presented to the DUT at reference plane B can

determined accurately from knowledge of the noise at reference plane A. Similarly, the noise at

reference plane C can be determined from a noise measurement made at reference plane D.

While this procedure works well at 300 K, the assumption that all passive losses are isothermal is

clearly violated when the measurements are made at cryogenic temperatures due to a temperature

gradient along the coaxial cables connecting the cooled DUT to the outside world. To complicate

matters, in order to reduce the heat load on the cooler, these coaxial cable are usually of the stainless-

steel variety and tend to be lossier than standard copper coaxial cables. Furthermore, the center

conductor of each cable, where most of the loss occurs, is heatsunk though the dielectric of the

coaxial cable and the DUT, making its physical temperature profile impossible to measure. While

there has been some work done on the computer aided modeling of the temperature distribution

along the input line [23], it is believed that the level of uncertainty in this type of measurement is still

prohibitively high to allow for the accurate measurement of state-of-the-art devices with minimum

noise temperatures in the low K range.

1.2.2 Noise Figure Measurements

To avoid the measurement of noise parameters, Dambrine has proposed the 50 Ω noise measure-

ment method, which is applicable to the class of devices in which a general small-signal equivalent

circuit noise model exists and contains only one parameter that cannot be measured directly [24].

In this technique, a small-signal model is extracted and then a single 50 Ω noise measurement is

made using a noise figure meter. Using the frequency dependence of the noise figure data in con-

junction with the small-signal model, the unknown parameter can then be determined. For example,

in the FET noise model proposed by Pospieszalski, all component values can be extracted through

S-parameter and dc measurements with the exception of Td, which is the effective temperature of the

drain-source conductance and plays a major role in the noise properties [25]. Thus, the noise model

can be determined after extracting the small-signal model by minimizing the difference between

simulated and measured 50 Ω noise as a function of the unknown parameter, Td.

While the 50 Ω noise measurement method is more suitable for determining noise parameters at

cryogenic temperatures, there are still technical difficulties which arise due to the unknown noise
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Figure 1.5: Typical 50 Ω noise figure test setup

contribution on the lines connecting to the DUT as well as the uncertainty in the calibration of

the noise diode, both of which make the noise power at the reference plane of the DUT difficult

to ascertain. To understand this issue, it is helpful to review the details of a noise temperature

measurement. The noise temperature is usually measured using the Y-factor method in which “hot”

and “cold” source termination are presented sequentially to the DUT and the total output power is

measured in each state. If we denote the total measured output power under hot and cold excitation

as Phot,m and Pcold,m, then the measured Y-factor is given by

Y =
Phot,m

Pcold,m
=

Thot + Te

Tcold + Te
, (1.3)

where Thot and Tcold are the effective noise temperature of the noise reference in the on and off

state as referenced to the plane of the DUT. Thus, the effective noise temperature of the DUT is

calculated as

Te =
Thot − Y Tcold

Y − 1
. (1.4)

In the derivation of equations (1.3) and (1.4), it is implicitly assumed that the exact value of the

noise source ENR is known. However, typical state-of-the-art noise diodes have specified ENR

uncertainties of greater than 0.1 dB [26]. In the case of an ENR uncertainty, it can be shown that

the resulting uncertainty in the noise temperature measurement result is equal to

∆Te = ±(Thot − Tcold) (Te + Tcold)

Thot + ∆Thot − Tcold

(
10∆ENR/10 − 1

)
≈ ± Tcold

(
10∆ENR/10 − 1

)
, (1.5)

where ∆ENR is the uncertainty of the noise source in dB. Evaluating equation (1.5) for the opti-
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Figure 1.6: 50 Ω noise figure test setup employing a cooled attenuator

mistic case in which ∆ENR = ±0.1 dB, we find that the uncertainty arising from the noise diode

in the measured value of Te is ±6.8 K. Clearly this is unacceptable, as the devices we would like

to measure have several times less noise. Fortunately, a method has been developed to accurately

measure the noise temperature of extremely low-noise devices in the presence of noise diode ENR

uncertainties. This method is the topic of the following section.

1.2.3 Cryogenic Noise Temperature Measurement: The Cooled Attenu-

ator Method

While the issue of noise diode ENR uncertainty may seem like an insurmountable problem, or

at least one in which any tractable solution must be extremely complex, the reality of the issue is

that a very elegant solution to this problem exists; putting a cooled 20 dB attenuator10 at the input

of the amplifier is all that is needed to solve the problem. A block diagram of such a setup appears

in Fig. 1.6. In addition to solving the ENR uncertainty issue, placing an attenuator in series just

before the DUT has the additional benefit that it helps ensure that the source impedance remains

50 Ω. To understand why the cooled attenuator helps, we can begin by writing the new measured

Y-factor as

Y =
Thot/L + Tl(L − 1)/L + Te

Tcold/L + Tl(L− 1)/L + Te
, (1.6)

where L is the linear value of the attenuator and Tl is the physical temperature of the attenuator.

Using equations (1.4) and (1.6), the uncertainty that results from the noise diode specification when

10The value of attenuation can be changed based upon the application.
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Table 1.2: Noise temperature uncertainty as a function of ENR uncertainty

Setup ∆ENR
0.001dB 0.003dB 0.01dB 0.03dB 0.10dB 0.15dB 0.20dB

Standard method 0.068 K 0.200 K 0.70 K 2.0 K 7.0 K 10.2 K 13.7 K
Cooled 20dB attenuator 0.005 K 0.014 K 0.048 K 0.14 K 0.48 K 0.73 K 0.98 K

using the cold attenuator method can be derived and is given as

∆Te,attn =
(Thot/L− Tcold/L) (Tcold + TlL/(L− 1) + Te)

Thot/L + ∆Thot/L− Tcold/L

(
10∆ENR/10 − 1

)

≈
(

Tcold
1

L
+ Tl

L

L− 1

)(
10∆ENR/10 − 1

)
. (1.7)

While the cooled attenuator method can give excellent results, there is one major caveat; in order

for the results to be accurate and reproducible, the loss before the attenuator must be time invariant

and the aggregate loss prior to the DUT must be known very accurately. If this is the case, the

system can be calibrated by comparing results with national laboratories such as NIST. Generally,

the calibration required is related to temperature loss along the input line and constitutes a 1–2 K

offset in the effective temperature of the cooled attenuator11.

1.3 Current Status of Research in the RF and Noise Perfor-

mance SiGe HBTs at Cryogenic Temperatures

In this work, we are interested in understanding the cryogenic performance of SiGe HBTs both

in order to determine their ultimate performance limitations, and to apply them to extremely low-

noise cryogenically cooled amplifiers. Thus we are interested not only in how the dc and RF terminal

characteristics of the devices change as a function of temperature, but also in how the small-signal

parameters and noise characteristics of the device change with cooling.

While there is quite an active community engaged in the study and optimization of silicon-

germanium HBT technology, the body of research on the properties of these devices at cryogenic

temperatures is quite small, with interested parties for the most part focusing of operation at 77 K.

Cressler and his colleagues are responsible for much of the pioneering work in the field including the

design of a SiGe HBT designed especially for operation at 77 K [27]. In addition, his research group

11The correction is usually made as a correction due to a loss at a given physical temperature. Explicitly, the
correction is given as −TlL/L − 1.
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has made significant contributions in the area of device modeling and circuit design at cryogenic

temperatures [28, 29, 30]. In this work, Cressler has shown that the transport properties of SiGe

HBTs are enhanced at cryogenic temperatures, thereby making them extremely promising in terms

of cryogenic applications.

Despite their potential for cryogenic applications, the extent to which the cryogenic RF and

noise properties of SiGe HBTs have been investigated is quite limited. The majority of the reported

cryogenic RF measurements are in terms of ft and fmax, rather than the intrinsic small-signal

parameters [31, 32, 33, 34, 35]. Furthermore, in the cases in which small-signal model parameters

were extracted at cryogenic temperatures, in one case data were only provided at 77 K and in

another case, data were only provided at a single bias point at 78, 123, and 300 K [36, 37]. Thus,

the information needed to understand how the small-signal behavior of a SiGe HBT changes as the

device is cooled does not exist in the literature, making such a study quite valuable.

The amount of research on the noise performance of SiGe HBTs at cryogenic temperatures is even

more limited. The noise parameters of single devices have been measured by Provost et al. at 78 K

using the 50 Ω method and at 85 K by Banerjee et al. using a source pull method [37, 38]. In both

cases, the noise performance of the device is not studied as a function of bias and no fundamental

limits are placed upon the noise performance.

The major contributions presented in this thesis are 1) a thorough study of the dc and RF

characteristics of SiGe transistors at cryogenic temperatures in terms of equivalent circuit models,

2) a study of the ultimate cryogenic noise performance limitations of SiGe HBTs in terms of a figure

of merit which takes gain into account, and can therefore be used to accurately predict achievable

system performance, 3) the development of accurate cryogenic noise models for SiGe devices, and

4) the demonstration of state-of-the-art SiGe low-noise amplifiers in both discrete and MMIC form.

The results described in this dissertation have been presented in the 2007 IEEE Transactions on

Microwave Theory and Techniques [39], in the Proceedings of the 2008 IEEE International Microwave

Symposium [8], at the 2008 URSI General Assembly [40], in the Proceedings of the 2008 IEEE Bipolar

Circuits Technology Meeting [41], in the 2009 IEEE Microwave and Wireless Component Letters [42],

in the 2009 Review of Scientific Instrumentation [43], and in the Proceedings of 20th International

Symposium on Space Terahertz Technology [44]. Additional publications are in preparation [45, 46].
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Chapter 2

A Primer on SiGe Transistors

This chapter is dedicated to the operating principles and performance of bipolar transistors and

to the features that make SiGe heterojunction bipolar transistors special. The discussion begins with

an analysis of bipolar devices in terms of energy band diagrams; an exercise that leads to a physical

understanding of the terminal currents, high-frequency performance, and fundamental limitations

of these devices. This is followed by a similar discussion of the physics of SiGe HBTs in which it is

shown that the bandgap engineering in SiGe transistors is responsible for considerable performance

enhancements. Next, the equivalent small-signal circuit model of a bipolar transistor is presented

and explained. With the small-signal model and a basic understanding of the device physics in place,

the noise performance of bipolar transistors is discussed and limitations are presented. Finally, the

chapter ends with a discussion of higher-order effects that are typically neglected in the analysis

of bipolar devices, but nonetheless prove to be critical in the actual operation of state-of-the-art

devices. In this chapter, it will be assumed that the devices are operating at room temperature.

Cryogenic operation will be discussed in Chapter 3.

2.1 The Difference Between Si and SiGe Transistors:

Device Physics

In 1948, William Shockley filed the initial patent for the bipolar junction transistor (BJT) [47]

and nine years later, Herbert Kroemer introduced the idea of a heterojunction bipolar transistor

(HBT) in his seminal paper, “Theory of a Wide-Gap Emitter for Transistors” [48]. Kroemer’s work

was motivated by his desire to identify a way to decouple a bipolar transistor’s dc current gain

(βDC ) from the ratio of doping in its base to that of its emitter, and it earned him the 2000 Nobel
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Prize in Physics1 [50]. During his Nobel lecture, Kroemer emphasized the significance of the unique

bandgap engineered nature of heterojunction based devices [51]:

Whenever I teach my semiconductor device physics course, one of the central messages

I try to get across early is the importance of energy-band diagrams. I often put this in

the form of “Kroemer’s Lemma of Proven Ignorance”:

If, in discussing a semiconductor problem, you cannot draw an Energy-Band-Diagram,

this shows that you don’t know what you are talking about,

with the corollary:

If you can draw one, but don’t, then your audience won’t know what you are talking about.

Nowhere is this more true than in the discussion of heterostructures, and much of the

understanding of the latter is based on one’s ability to draw their band diagrams—and

knowing what they mean.

As Kroemer implies, a strong grasp of the band diagrams of SiGe HBTs and how they differ from

those of Si devices is critical in understanding the operation of SiGe devices. Thus, the discussion

of SiGe devices will begin with a comparison of Si and SiGe band diagrams.

2.1.1 Fundamentals of Bipolar Transistor Physics

In this section, an introduction to the basic operating principle of the bipolar transistor is given2.

A schematic representation of a typical silicon npn BJT appears in Fig. 2.1(a). The device consists

of a pair of pn junctions that have been butted together such that they are sharing a single p-

doped region. The doping of the devices is such that one of the n-doped regions, called the emitter,

is very heavily doped whereas the other n-doped region, called the collector, is only moderately

doped. Finally, the p-doped region in the center of the device is called the base, and is doped at an

intermediate level. In Fig. 2.1(a), the voltages have also been drawn as required to bias the device

in the forward active region3.

1Although the prize was awarded 43 years after Kroemer published the basis for HBTs, it only 4 years earlier that
these devices had been first commercially produced in silicon. [49]!

2In this section, only final results will be given. For derivations of key results, see Appendix A
3The base voltage must be positive with respect to the emitter. However, it is acceptable for the collector voltage

to be slightly below that of the base for some devices.
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2.1.1.1 Terminal Currents

The operation of a bipolar device under forward active operation can be understood conceptually

by studying the energy band diagram shown in Fig. 2.1(b). The emitter region is heavily doped

meaning that there are a large number of ionized impurities, leading to a large number of electrons

in the conduction band. Thus, there will be a diffusion current of electrons injected from the emitter

to the base with magnitude equal to the number of electrons that have enough thermal energy to

overcome the base–emitter electrostatic-potential-barrier, which has height equal to q (V0,BE − VBE),

where V0,BE = kTa/q · ln
(
N−

ABN+
DE/n2

io

)
, N−

AB is the ionized acceptor concentration4 in the base,

N+
DE is the ionized donor concentration in the emitter, q is the charge of an electron, and nio is the

intrinsic carrier concentration [52, 53]. If the base is sufficiently short5, we can neglect recombination

in the base and assume that all of the electrons that diffuse into the base are swept into the collector

via the electric field across the collector-base junction. Thus, as the distribution of thermal energy

among the electrons in the conduction band is approximately Boltzmann distributed, the collector

current density is exponentially dependent on the barrier height [30, 52]:

JC ≈
kTaµnbn

2
io

WBN−
AB

eqVBE/kTa = N+
DE

kTaµnb

WB
e−q(V0,BE−VBE)/kTa, (2.1)

where µnb is the minority carrier mobility in the base. Similarly, due to the base doping level, there

will be a large number of ionized acceptor impurities in the base valence band leading to a diffusion

current of holes from the base to the emitter. Once again ignoring recombination current in the

4In this work, the dopant concentration in a region Y is assigned the variable NXY , where X is an indicator as to
the type of dopant (i.e., acceptor or donor). Furthermore, if we are discussing the ionized impurity concentration as
opposed to the net impurity concentration, a superscript is used to indicate the charge of the ionized dopants.

5i.e., much shorter than a diffusion length
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Figure 2.1: (a) Basic BJT structure. The white areas indicate the base–emitter and base–collector
depletion regions. (b) Energy-band-diagram for a standard bipolar transistor under forward active
bias. The Fermi levels are indicated by dotted lines in each region and would line up under zero
bias. Note that the bandgap, Eg, is the same in all regions of the device.
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base6, the base current density can be written [30, 52]:

JB ≈
kTaµpen

2
io

LPEN+
DE

eqVBE/kTa = N−
AB

kTaµpe

LPE
e−q(V0,BE−VBE)/kTa, (2.2)

where µpe and LPE are the hole mobility and diffusion length in the emitter. Thus, for a standard

npn bipolar transistor, the dc current gain is approximated as:

βDC ≡
JC

JB
≈ µnb

µpe

LPE

WB

N+
DE

N−
AB

, (2.3)

where WB is the base width and LPE is the diffusion length for holes injected into the emitter7. As

explained in Section 2.2, the RF noise properties of SiGe bipolar devices in the low-GHz frequency

range are largely determined by βDC , with higher dc current gain corresponding to lower noise. Thus,

it makes sense to investigate what parameters can be used in order to optimize βDC . Referring to

equation (2.3), βDC is determined by three ratios:

1) µn/µp. As mobility is a material property, it is assumed that this is not a tunable parameter

for standard bipolar devices. From Table 2.1, µn/µp ≈ 2.8, in the low-doping limit.

2) LPE/WB. This ratio tends to increase with technology node, but otherwise cannot be easily

engineered.

3) NDE/NAB . The emitters of modern silicon bipolar transistors are formed by depositing a layer

of n-doped polysilicon layer on top of the base layer and then performing diffusion through an

annealing step to form an n-doped single crystal layer between the deposited polysilicon layer

and the base [54]. Thus, the doping level in the emitter is not easily tuned. On the other

hand, controlling the base doping is possible. Therefore, this ratio can be controlled.

Clearly, the strongest knob we have to adjust βDC is the ratio of doping in the emitter to that in

the collector. However, there are serious physical limitations as to how large this ratio can be made

as the base sheet resistance8 ,

RB,sheet =
1

qµpbN
−
ABWB

(Ω/�) , (2.4)

6i.e., attributing all of the base current to back injected holes from the base to the emitter
7For a short emitter, LPE should be replaced by WE .
8This is the sheet resistance seen flowing into the base from the base terminal, not the sheet resistance seen flowing

across the base from the emitter to the collector.
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Table 2.1: Properties of semiconductor materials at 300K [52]

Eg µn µp m∗
n/m0 m∗

p/m0 a εr Density Melting Pt.

(eV) (cm2/V·s) (cm2/V·s) (ml, mt) (mlh , mhh) Å - (g/cm3) ◦C

Si 1.11 1350 480 0.98,0.190 0.160,0.49 5.43 11.8 2.33 1415
Ge 0.67 3900 1900 1.64,0.082 0.040,0.28 5.65 16.0 5.32 936
GaAs 1.43 8500 400 0.067 0.074,0.50 5.65 13.2 5.31 1238
InP 1.35 4000 100 0.077 0.089,0.85 5.87 12.4 4.79 1070
InSb 0.18 100000 1700 0.014 0.015,0.40 6.48 17.7 5.78 525

is inversely proportional to the base doping [55, 56]. Thus, there is a direct trade-off between base

resistance and βDC due to the fact that both of these parameters are highly dependent on NAB .

2.1.1.2 Transit Times

Bipolar junction transistors are often referred to as charge control devices. This is due to the

fact that internal to the device, the transfer current is being controlled by the minority carrier charge

distribution in the neutral base region. In the dc limit, the collector current is determined by the

static minority carrier charge in the base. However as the frequency deviates from dc, a majority

carrier must be supplied to the base for every minority carrier stored in order to maintain charge

neutrality in the base. The ratio of base charge modulation to collector current modulation will

increase with frequency, and is an important parameter in evaluating the high-frequency limitations

of the device. The total forward transit time, that is the delay from when a voltage change occurs

at the base terminal to when an electron emerges from the collector terminal, is given as [30, 54]

τec ≈
∂IC

∂Qn
= τe + τb + τcbd +

kTa

qIC
(Cjbe + Cjcb) + rcCjcb, (2.5)

where τe is the emitter charge storage time, τb is the base transit time, τcbd is the base–collector

depletion region transit time, Cjbe and Cjcb are junction capacitances associated with the base–

emitter and base–collector space charge regions, and rc is the collector resistance. For a silicon BJT

with a short emitter, the time constants are given as [30, 54],

τe ≈
q

2kTa

W 2
E

µpeβDC
(2.6)

τb ≈
qW 2

B

2µnbkTa
, (2.7)
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and

τcbd ≈
WCBD

2vsat
, (2.8)

where WCBD is the width of the depletion region and vsat is the electron saturation velocity.

A very common figure of merit for a bipolar device is the unity-current-gain cut-off frequency,

ft = 1/τec, which is the frequency at which the short circuit ac-current gain is equal to one. Gener-

ally, foundries try to maximize ft while maintaining reasonable breakdown voltages9. Referring to

equations (2.5)-(2.8), it is apparent that minimization of τec requires that 1) βDC be maximized, 2)

WE and WB be minimized, 3) WCBD be minimized, 4) Cjbe and Cjcb be minimized, and 5) rc be

minimized. Thus, minimization of τec requires a careful tradeoff between the dopant concentration

in each region of the device.

2.1.2 SiGe Heterojunction Bipolar Transistors

As discussed above, a fundamental shortcoming of Si bipolar transistors is the inherent tradeoff

that must be made between the dc current gain and the base resistance. This tradeoff comes about

primarily because the holes being back injected into the emitter and the electrons being injected into

the base each see a potential barrier of the same height. Therefore, for a given thermal excitation,

the electron and hole currents both feel the same thermal push (i.e., exp {(VBE − V0) /VT }) and

βDC has to be optimized by making the supply of mobile electrons in the emitter higher than that

of mobile holes in the base. Hence, increasing βDC requires reducing NAB, which in turn increases

the base resistance. As it turns out, one can circumvent this limitation by introducing Ge into the

base material.

In his seminal 1957 paper, “Theory of a Wide-Gap Emitter” Herbert Kroemer showed that if

the emitter material were to have a wider bandgap than the base material, the result would be that

minority carriers injected from the emitter to the base would see a smaller barrier than the minority

carriers back injected from the base to the emitter, resulting in an exponential increase in βDC [48].

For instance, if the difference in the emitter and base bandgaps is ∆Eg eV, then the value of βDC

for a device with a wide-bandgap emitter will be a factor of e∆Eg /kTa times larger than that of a

identically doped device without a wide-bandgap emitter. Furthermore in a second paper published

in 1957, Kroemer postulated that, by engineering a decreasing bandgap across the base with the

maxima on the emitter side, it would be possible to set up a quasi electric field, thereby reducing

the base transit time significantly [58].

9According to the Johnson limit, the ft-breakdown voltage product is a constant related to material properties [57].
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Figure 2.2: (a) A typical doping and Ge profile for a state-of-the-art SiGe HBT [59]. (b) Band
Diagram for a SiGe HBT indicating deviation from that of a pure silicon transistor. Apparent
bandgap narrowing effects that are discussed below have not been included in the band diagram.

Although it took thirty years for the materials processing technology to progress to the point

at which Kroemer’s ideas could be applied to transistors fabricated in silicon materials systems,

his work has been well rewarded, as the field of SiGe HBTs would be non-existent without his

theory [49]. A doping profile and band diagram for a typical state-of-the-art SiGe HBT appears in

Fig. 2.2. Referring to the doping profile, we see that there is a position dependent Ge content in the

base. From Table 2.1 it can be seen that the bandgap of Ge is 0.67 eV, which is significantly less

than 1.11 eV (the bandgap of silicon). Thus, by introducing a small amount of Ge to the base, it is

possible to reduce the bandgap in the alloy considerably from that of pure silicon. Furthermore, by

grating the Ge content as a function of depth into the base, the bandgap can be reduced along the

base, resulting in the reduction of transit time that was predicted by Kroemer. The resulting band

structure appears in Fig. 2.2(b) along with the band structure of an identically doped Si device. In

the following section, the benefits of introducing the Ge in the base will be looked at quantitatively.

2.1.3 Terminal Currents

The collector current density of a SiGe HBT is derived in Appendix A.3 and is given as

JC ≈ n2
io,Siγ̃η̃

µnb,Si

N−
ABWb

∆Eg (grade)e∆Eapp
g /kTae∆Eg,Ge(0)/kTa

(
eqVBE/kTa − 1

)
(2.9)

where η̃ = (µnb)SiGe / (µnb)Si > 1, γ̃ = (NCNV )SiGe / (NCNV )Si < 1, µnb,Si and nio,Si are the

electron mobility and intrinsic carrier concentration in silicon, and ∆Eg,app is an apparent bandgap
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reduction related to heavy doping effects. To gain insight, equation (2.9) can be simplified into the

standard form,

JC ≈ JC0

(
eVBE/VT − 1

)
, (2.10)

where

JC0 = n2
io,Siγ̃η̃

µnb,Si

N−
ABWb

∆Eg (grade)e∆Eapp
g /kTae∆Eg,Ge(0)/kTa (2.11)

is the collector-current saturation current and is exponentially enhanced due to germanium induced

bandgap reduction. The base current of a SiGe HBT is the same as that of an identically doped

silicon BJT and can be written as

JB ≈
kTaµpen

2
io

LPEN+
DE

eqVBE/kTa =
q

Ge
eqVBE/kTa , (2.12)

where Ge = N+
DELPE/DPEn2

io,e is the emitter Gummel number [60]. Thus, the dc current gain of

a SiGe HBT can be written as

βDC ≈
µnb,SiLpeN

+
DE

µpeWBN−
AB

γ̃η̃
∆Eg, Ge (grade)

kTa
e∆Eg,app/kTae∆Eg(0)/kTa

= βDC,Si

(
γ̃η̃

∆Eg, Ge (grade)

kTa
e∆Eg,app/kTae∆Eg(0)/kTa

)
. (2.13)

In order to evaluate equation (2.13), it is necessary to know the appropriate expressions for the

apparent- and Ge-induced bandgap narrowing. The Ge induced bandgap reduction for a compres-

sively strained SiGe film at room temperature can be estimated as a function of the Ge content, x,

as [54]

∆Eg,Ge ≈ 0.96x− 0.43x2 + 0.17x3, (2.14)

and the room temperature value of ∆Eg,app can be estimated as a function of dopant concentration

as [61]

∆Eg,app ≈ 18× 10−3 ln

{
N−

AB

N+
DE

}
. (2.15)

Equation (2.15) is valid for the case in which both the emitter and base dopant concentrations are

greater than 7 × 1017 cm−3. For the case in which the base is doped below this level, the doping

induced apparent bandgap narrowing in the base is negligible and the expression for ∆Eg,app must

be written as

∆Eg,app ≈ −18× 10−3 ln

{
N+

DE

7× 1017 cm−3

300 K

Ta

}
(2.16)
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Using equations (2.13)–(2.15) and assuming that γ̃ and η̃ are close to unity, we can quickly estimate

the effect of the Ge content on β. For instance, for the case in which N−
AB = 5 × 1018 cm−3,

N+
DE = 1020 cm−3, the Ge content is 20% at the emitter side of the base, and there is a 10%

Ge grating, then an improvement of over 400 in the dc current gain is obtained. It is clear that

introduction of Ge into the base of a bipolar transistor affects the dc current gain quite favorably.

In the next section, the effect that the Ge content has on ac performance will be discussed.

2.1.3.1 Transit-Times for SiGe HBTs

As a result of the quasi-electric field due to the grated Ge content in the base, it is expected

that the forward transit time will be greatly reduced. For instance, a modest Ge ramp of 5% across

a 30nm SiGe base results in an effective electric field of over 15 kV/cm, which is enough to cause the

minority carriers to reach close to the saturation velocity. In addition, we expect that the emitter

charging time constant should be reduced drastically due to the lower barrier which carriers must

overcome before being injected into the base. On the other hand, we expect little change in the

collector-base SCR transit time. Expressions for each of the time constants have been derived and

the resulting time constants are expressed as

τe,SiGe ≈
q

2kTa

W 2
E

µpe,Si · βDC,SiGe
= τe,Si

βDC,Si

βDC,SiGe
, (2.17)

τb,SiGe ≈
qW 2

b

η̃µnb,Si

1

∆Eg,Ge (grade)
=

τb,Si

η̃

kTa

∆Eg,Ge (grade)
, (2.18)

and

τcbd,SiGe =
WCBD

2vsat
= τcbd,Si. (2.19)

As expected, both the emitter charging time constant and the base transit time are greatly reduced

due to the addition of a Ge grating to the base layer.

2.1.4 BJT Small Signal Model

In order to determine the noise performance of a BJT, one needs information about the noise

sources as well as the small-signal equivalent circuit. In this section, the small-signal model is

developed. A drawing of a typical SiGe HBT structure appears in Fig. 2.3. The device is a vertical

structure with the collector being closest to the back side of substrate and the emitter closest to

the surface. The fabrication process begins with a p-doped substrate. A low resistance (5–10Ω/�)
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Figure 2.3: Typical state-of-the-art HBT structure

sub-collector is then formed on the surface of the wafer. Next, a lightly doped n-region is epitaxially

grown providing the surface to grow the rest of the HBT. However, before continuing with the

growth, deep and shallow trench isolation structures (DTI and STI) are formed, collector reach

through sinkers (5–10Ω each) are implanted to allow for a metallurgical contact to the sub-collector,

and a selectively implanted collector is formed by a high energy implant implantation [54, 62]. Once

the collector and isolation structures are defined, the Si1−xGex base is grown and contacted via a

polysilicon extrinsic base. Finally, an in-situ doped poly-emitter is formed.

Equipped with an understanding of the physical structure of a SiGe HBT, it is a rather straight-

forward task to devise an equivalent circuit model for the device. The equivalent circuit model of the

device is given in Fig. 2.4. The intrinsic transistor is represented in terms of the standard hybrid-π

model and, as will become apparent shortly, the component values can be modeled using the infor-

mation described above. In addition to the intrinsic HBT, there are four additional components: 1)

rb, which is required to model the resistance of the polysilicon extrinsic base as well as that of the

SiGe intrinsic base, 2) re, which is needed to model the polysilicon emitter, 3) rc which is needed to

model the parasitic collector resistances, and 4) CCS which is a depletion capacitance between the

collector and ground that arises due to the fact that the collector was deposited on a semiconducting

substrate.

We will begin the discussion with the intrinsic circuit, ignoring the delay term τd. Referring to

equation 2.9, it can be shown that the transconductance, gm, is given as:

gm ≡
∂IC

∂VBE
=

IC

VT
, (2.20)
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Figure 2.4: Small-signal equivalent circuit for SiGe HBT

where the thermal voltage is defined as VT ≡ kTa/q. Similarly, through inspection of equation (2.12)

is can be seen that the small-signal conductance between the base and emitter is given as:

gbe ≡
∂IB

∂VBE
=

∂IB

∂IC

∂IC

∂VBE
=

gm

βAC
, (2.21)

where βAC is the ac current gain of the device. The intrinsic capacitances were indirectly discussed

in Section 2.1.3.1 and are repeated here for completeness:

CBE = gm (τb,SiGe + τe,SiGe + τcbd,SiGe) + Cjb

≈ gm

(
qW 2

b

η̃µnb,Si

1

∆Eg,Ge (grade)
+

WCBD

2vsat

)
+ Cjb (2.22)

and

CCB ≈ Cjc. (2.23)

It is possible to write equations for the extrinsic components based on materials properties

and device structure [54]. However, as these components are highly dependent on geometry and

composition, this will not be attempted here. Prior to continuing on to the noise performance of

bipolar devices, we will mention that simple expressions for the ft and fmax of the device can be

written in terms of the small-signal model parameters as [63]

ft =

(
gm

2π (CBE + CCB)

)
||
(

1

CCB (re + rc)

)
≈ gm

2π (CBE + CCB)
(2.24)
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Figure 2.5: Energy and schematic diagrams for a bipolar transistor in the common-base configura-
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and

fmax ≈
√

ft

8πrbCCB
. (2.25)

2.2 Noise Performance of Bipolar Devices

The physical sources of noise in a bipolar device are the parasitic resistances and the diffusion

currents. Modeling of the Johnson noise due to the resistances is straightforward. However, modeling

the shot-noise sources resulting from the diffusion currents requires some thought. Shot noise occurs

whenever dc current flows across a potential barrier as the result of the random distribution of

electrons having enough energy to cross [64]. Thus shot noise is present in all forward biased

diode structures as well as in any thermionic emission device, such as a vacuum tube. For noise

modeling, it is helpful if we first ignore the parasitics and develop a noise model in the admittance

representation. Although the model is desired for the common emitter configuration, the analysis is

simplified by beginning with a representation in the common base configuration and then performing

a transformation to end up with the common emitter representation.

In Fig. 2.5, the energy band diagram and schematic drawing of a npn BJT in the common

base configuration are shown. Inspection shows that there are two places where diffusion current is

occurring (i.e., where carriers must overcome a potential barrier): when holes are injected from the
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base to the emitter, and when electrons are injected from the emitter to the base. Thus, there is an

independent shot-noise source associated with both the hole and electron components of the emitter

currents, and the total emitter noise current PSD can be written as [65]

|ie|2 = 2qIEp + 2qIEn. (2.26)

Now, IC is simply a delayed version of IEn; IC = IEnejωτn , where τn is the transit time corresponding

to the transport of the emitter-base electron shot noise to the collector [66]. Thus, the collector

current noise is fully correlated with the emitter electron shot-noise source and can be expressed

as [66]

in,c = in,ee
−jωτn , (2.27)

where τn is a delay term associated with the transport of the shot noise from the emitter to the

collector. It should be noted that τn is not the same as τec; shot noise is coupled to dc currents,

so the delay term does not include the time constant associated with the ac modulation of the base

charge.

With the noise model in place, it is trivial to convert to the common emitter representation [66]:

|in,b|2 = |in,c|2 + |in,e|2 − 2<
{
i∗n,cin,e

}
, (2.28)

|in,c|2 = 2qIC , (2.29)

and

i∗n,bin,c =
(
i∗n,cin,e

)∗ − |in,c|2 = 2qIC

(
e−jωτn − 1

)
(2.30)

Finally to complete the model, thermal noise sources should be embedded to account for the resistive

losses due to rc, rb, and re.

This model is interesting for several reasons. First of all, it belongs to the class of two-ports to

which the 50 Ω noise characterization method can be applied as there is only one noise parameter

that cannot be directly measured through dc or RF measurements. Furthermore, the unknown

parameter, τn, only describes a correlation term and therefore cannot degrade the fundamental

noise performance of the device. In other words, it is possible to ignore the correlation term, τn,

and put an upper boundary on what is achievable in terms of low-noise performance. Under this

condition, the noise is completely determined by the dc currents, which set the magnitude of the

shot-noise sources, and the physical temperature, which sets the thermal sources. This is a very
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important as it makes it possible to estimate of the obtainable cryogenic noise performance of the

devices without having to rely on error-prone on-wafer cryogenic noise measurements. In this work,

τn is assumed to be zero in the frequencies of interest, resulting in a potential over-estimation of the

noise10.

Now that the noise model has been presented, we will proceed to discuss the noise parameters of

the device. Detailed derivations appear in Appendix E and only the final results will be presented

here. A schematic representation of the simplified11 noise model appears in Fig. 2.6. The noise

parameters are given as:

Tmin ≈ Tanc

√
1

βDC

(
1 + 2

gm (rb + re)

nc

)
+ 2

gm (rb + re)

nc

(
f

ft

)2

, (2.31)

GOPT ≈
gm

1 + 2gm (rb + re) /nc

√
1

βDC

(
1 + 2

gm (rb + re)

nc

)
+ 2

gm (rb + re)

nc

(
f

ft

)2

(2.32)

BOPT ≈ −
f

ft

gm

1 + 2gm (rb + re) /nc
, (2.33)

and

Rn ≈
nc

2gm

Ta

T0

[
1 + 2

gm (rb + re)

nc

]
, (2.34)

where nc = IC/gmVT is the collector current ideality factor. Analysis of equations (2.31)–(2.34)

10As a side note, compact models such as the VBIC model do not account for the correlation of shot-noise
sources [67].

11the collector resistance and collector–substrate capacitance have been neglected in the model
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reveals several interesting features:

1) The noise resistance Rn is frequency independent. It should be noted that this is true for

field-effect-transistors as well [24].

2) The frequency response of Tmin has an identical shape as that of GOPT . At low frequencies

the two noise parameters are constant, and at high frequencies, their values rise proportional

to f/ft. The knee frequency which marks onset of the frequency range in which their values

increase is given as fknee = ft/
√

βDC

√
1 + nc/2gm (rb + re).

3) The optimum susceptance, BOPT , is zero at dc and increases proportionally with frequency

with a slope determined by ft and gm/ (1 + 2gm (rb + re) /nc).

4) The minimum noise temperature is related to the optimum source conductance and the noise

resistance as Tmin = 2T0RnGopt = 2T0N . Thus, the sensitivity factor12 is given as N =

Tmin/2T0. This is quite interesting because it implies that for the case in which the shot-noise

sources are not correlated, to first order there are only three independent noise parameters.

Furthermore, Pospiezalski has shown that the sensitivity factor must fall into the range of

N ∈ [Tmin/4T0, Tmin/2T0], which means that the value of N is the maximum permissible [69].

As N describes the sensitivity of the device noise performance to deviations of the source

impedance away from YOPT , this can be interpreted to imply that correlation can only reduce

N (i.e. reduce the sensitivity of Te to YS).

In terms of circuit design, it is often useful to have knowledge of the optimum source impedance,

ZOPT = ROPT + jXOPT , which for a HBT can be written as

ROPT ≈
βDC

gm

(
1 + βDC (f/ft)

2
)
√

1

βDC

(
1 + 2

gm (rb + re)

nc

)
+ 2

gm (rb + re)

nc

(
f

ft

)2

, (2.35)

XOPT ≈
βDC

gm

f/ft

1 + βDC (f/ft)
2 . (2.36)

Thus, XOPT will increase from zero at low frequencies and drop at high frequencies with a maximum

value of
√

β/2gm at f = ft/
√

βDC . Furthermore, ROPT will be constant at low frequencies and roll-

off at higher frequencies with a knee frequency of f = ft

√
βDC . This information is important when

designing a broadband low-noise amplifier as will become apparent in Chapter 9.

12The sensitivity factor is an invariant parameter of device size and is therefore considered a more fundamental
parameter than Rn, as the noise resistance can always be reduced by putting devices in parallel [68]. Thus, when
reporting noise parameters in Chapter 7, N will be discussed as opposed to Rn
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At low-frequencies, where the parasitic capacitances have very large impedances, and under the

condition that gm (rb + re) /nc � 1/2, the noise parameters simplify drastically and can be written

as

TMIN,LF ≈ Ta
ncx√
βDC

, (2.37)

ROPT,LF ≈
√

βDC

Gm
, (2.38)

XOPT,LF ≈ 0 (2.39)

and

Rn,LF ≈
Ta

T0

ncx

2Gm
(2.40)

where Gm = gm/(1 + gmre) is the extrinsic transconductance and ncx = IC/GmVT is the extrinsic

collector current ideality factor. Thus, the noise performance at low frequencies can be determined

entirely from dc measurements.

2.3 High Injection Effects

Thus far, in analysis of the device operating characteristics, we have assumed low-injection

conditions. However, referring to equation (2.5), it is apparent that minimizationof the time constant

related to the charging of the junction capacitances requires large collector current densities. For

instance, given a typical base–collector capacitance of 15 fF/µm2, the charging-time constant for the

base–collector junction capacitance will be 0.4 pS/JC , where JC is given in mA/µm2. Now, if we

are running a device at an ft of 200 GHz, and only budget a tenth of the total time constant to the

charging and discharging of the base–collector junction capacitance, then a collector current density

of 20 mA/µm2 is required. This corresponds to a mobile charge concentration of 1.2×1018 cm−3. As

this is clearly on par with the doping concentration in the collector, it will certainly violate the low-

injection assumption. Furthermore, even if we budget the entire transit time to the charging of the

base–collector junction capacitance, the corresponding mobile charge concentration of 1.2×1017cm−3

is still rather high for low-injection assumptions to be justified. Thus, it is fair to say that modern

SiGe HBTs are operated in the high-injection regime in order to maximize ft. In this section, a brief

overview of some of the resulting consequences will be given.
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2.3.1 Webster Effect

When computing the dc terminal currents of the SiGe and Si bipolar devices, it was assumed that

the number of injected electrons in the base region was far outnumbered by the ionized acceptor

impurity concentration (nb � N−
A ). Thus, the hole concentration in the valence band, pb was

assumed to be equal to N−
A . However, under high-injection conditions, this assumption loses validity

and the correct expression for the hole concentration is pb = N−
A + nb = N−

A + JC/qvd, where vd is

the drift velocity of electrons and the collector current density is specified in A/cm2. Considering

the case of Si transistors, a first-order expression13 for the dc current gain can be rewritten as

βDC,Si ≈
µnb

µpe

LPE

WB

N+
DE

pb
≈ µnb

µpe

LPE

WB

N+
DE

N−
AB

1

1 + JC/qN−
ABvd

= βDC0,Si
1

1 + JC/qN−
ABvd

. (2.41)

Thus, at collector currents above JC = qN−
ABvd, the dc current gain will roll-off as the collector

current is further increased.

This effect was first described in 1954 by Webster and has since come to be known as the Webster

effect [70]. Referring to equation (2.41), it can be seen that the Webster effect causes a roll-off in

βDC at high current levels. For example, for an electron drift velocity of 1× 107cm·s and an ionized

impurity concentration in the base of 3×1018cm−3, βDC is degraded by a factor of two at a collector

current density of 48mA/µm2. As this doping level is typical of modern SiGe HBTs, the Webster

effect is not expected to play a large role in the degradation of βDC .

2.3.2 Kirk Effect

The Kirk effect is also known as base pushout and is very important in modern SiGe HBTs.

In deriving the transport equations, it has been assumed that the background dopant concentration

in the collector-base space charge region (SCR) is greater than the concentration of electrons being

injected (i.e., JC/vsat � qNDC). To consider the effect of high-injection on the collector–base SCR,

we begin by writing Poisson’s equation in this region, which relates the electric field to the net charge

density [54]:

dE

dx
=

q

ε0εr

(
p − n + N+

DC

)
≈ 1

ε0εr

(
qN+

DC − qn
)
≈
(
qN+

DC − JC/vsat

)
, (2.42)

13In order to model this effect correctly, it is required to also take the effect of the increase in pb on the minority
carrier mobility in the base into account.
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where vsat is the saturation velocity of electrons, p is the mobile hole charge density in the collector–

base SCR, and n is the mobile electron charge density in the collector base SCR. Referring to

equation 2.42, it is clear that the derivative of the electric field in the collector-base SCR depends

upon the net charge in this region.

In order to satisfy charge neutrality, the net charge in the collector side of the base–collector space

charge region must be equal to that in the base side of the junction such that the magnitude of the

electric field is maximum at the metallurgical junction and zero at the outside edges of the SCR.

Thus, under low-injection conditions, the penetration of either side of the SCR into the neutral-base

and collector regions is determined by the ionized impurity concentrations in the two regions, which

determines the built-in voltage, and the applied voltage which modulates the SCR width (dE/dx in

each region is fixed by the background doping levels). Thus, under low-injection assumptions, the

penetration of the SCR into each side of the base–collector junction is independent of the currents

flowing in the device.

However, when the mobile charge density in the SCR is no longer negligible with respect to the

collector background impurity concentration, the effective impurity concentration in the collector

side of the base–collector SCR is reduced by JC/qvsat which, due to charge neutrality requirements,

results in a widening of the SCR into the neutral collector. This will continue until the collector

current density grows to be equal to qvsatN
+
DC . At this point, the net charge density in the intrinsic

collector is zero and the intrinsic collector cannot support an electric field. Thus, the collector side

of the space charge region moves to the buried sub-collector. With any further increase in collector-

current density, the net charge in the intrinsic collector will be positive, and the base side of the

SCR will be pushed to the interface of the extrinsic and intrinsic collectors. Thus, the base will be

widened by the thickness of the intrinsic collector. This widening of the base was discovered by Kirk

and published in his seminal 1962 paper, “A theory of transistor cutoff frequency (ft) falloff at high

current densities” [71].

The Kirk effect is important because it increases the base transit time significantly as τb ∝W 2
B.

Referring to Fig. 2.2(a), we see that a typical doping concentration in the intrinsic collector is about

1 × 1018 cm−3. Thus, at room temperature the base pushout will occur when JC = qvsatNDC =

16 mA/µm2. As the collector–base (Miller) capacitance is proportional
√

N+
DC , CCB rises as the

collector doping is increased. Therefore, there is a clear tradeoff between the minimization of τCjc =

CjckTa/qIC , which scales as
√

N+
DC/IC , and the onset of the Kirk effect, which moves to higher

current densities as the collector doping is increased.
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2.4 Summary

In this chapter, the basic theory needed to understand the remainder of the dissertation has

been presented. In the first part of the chapter, the fundamentals of bipolar junction transistors and

SiGe heterojunction bipolar transistors were presented with an emphasis placed on the shortcomings

of standard bipolar transistors and how SiGe devices circumvent these issues. Next, the small-signal

and noise performance of bipolar devices was presented. Finally, the chapter ended with a discussion

of high-injection effects. In the next chapter, the properties of silicon materials and SiGe HBTs at

cryogenic temperatures will be discussed.
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Chapter 3

Expected Performance of SiGe

Transistors at Cryogenic

Temperatures

As explained in Chapter 2, the operating characteristics of SiGe transistors are tightly coupled

to the underlying material properties. In order to understand the operation of SiGe devices at

cryogenic temperatures, it is therefore necessary to study the temperature dependence of the physical

properties of Si materials as well as those of SiGe alloys. In Section 2.1.2, we saw that the operating

characteristics of a SiGe HBT can be described in terms of the operating characteristics of identically

doped Si device with a perturbation applied in order to account for the effect of the Ge content in the

base. Thus, a proper understanding of the cryogenic properties of the materials properties of silicon is

a critical foundation required to understand the behavior of SiGe devices at low temperatures. This

section begins with a study of the important material properties of Si as a function of temperature.

Next, a look into the expected cryogenic performance of SiGe HBTs is presented in terms of the

temperature dependence of various physical parameters. Finally, the chapter concludes with a

summary discussion of the key trends and device properties pertaining to the cryogenic operation

of SiGe transistors.

3.1 Properties of Silicon at Cryogenic Temperatures

Previously, it was shown that the terminal characteristics of SiGe HBTs can be described in

terms of those of a Si device with identical doping profiles, with minor adjustments applied to account

for the bandgap-engineered nature of SiGe devices. In this section, the temperature dependence of

the fundamental material properties of silicon are investigated.
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Figure 3.1: The energy bandgap versus ambient temperature for high purity silicon. Squares repre-
sent experimental data from [72] and the solid curve is a polynomial fit.

3.1.1 Bandgap: Intrinsic Si

Understanding the temperature dependence of the bandgap of intrinsic silicon material is ex-

tremely important, as the diffusion currents in a bipolar device are exponentially related to Eg. The

bandgap of high purity intrinsic silicon was measured from 2–300K by Bludau, Onton, and Heinke

using wavelength-modulation spectroscopy and the data were presented in tabular format in [72].

In order to predict device performance, a least-squares fourth-order polynomial fit was performed

to the bandgap data, resulting in the following approximation of Bludau and his co-authors’ data:

Eg ≈ 1.17 + 5.65× 10−6Ta − 5.11× 10−7T 2
a − 8.03× 10−10T 3

a + 2.50× 10−12T 4
a . (3.1)

The data from this study are plotted in Fig. 3.1.1 along with the fourth-order polynomial least

squares fit. As intrinsic silicon is cooled from 300K to 0K, the bandgap changes by just over 4%.

While this may not seem like a large deviation, it results in over 13 orders of magnitude change in

the value of exp {Eg/kTa} as the temperature is reduced from 300 to 18 K.

3.1.2 Effective Masses: Intrinsic Si

Because both the electron and hole effective masses influence the device properties, the temper-

ature dependence of each of these quantities is important. The electron density-of-states effective

mass, m∗
de, is a combination of the longitudinal and transverse electron effective masses and is given
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Figure 3.2: (a). The electron density of states effective mass as function of temperature. The
transverse and longitudinal components are also plotted. (b). The hole density-of-states effective
mass as a function of temperature.

by [52]

m∗
de =

(
6
√

m∗
l m∗2

t

)2/3

. (3.2)

Thus, the temperature dependence of the electron density-of-states effective mass depends upon

that of the longitudinal and transverse effective masses, m∗
l and m∗

t . Studies have been carried out

as to the temperature dependence of these parameters and it has been found that m∗
l is relatively

temperature independent whereas m∗
t can be characterized by a fourth order polynomial [73]:

m∗
l

m0
≈ 0.9163 (3.3)

and

m∗
t

m0
≈ 0.19049− 2.0905× 10−6Ta + 9.8985× 10−7T 2

a − 2.6789× 10−9T 3
a + 2.0270× 10−12T 4

a . (3.4)

A plot showing the temperature dependence of the electron density-of-states effective mass as well

as the components m∗
l and m∗

t appears in 3.2(a). It can be seen that m∗
de decreases only slightly as

Ta is reduced from 300 to 0 K.

The density-of-states effective mass for holes is a combination of the effective masses for holes in
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Figure 3.3: The intrinsic carrier concentration in silicon as a function of temperature. Temperature
effects due to both the bandgap and density-of-states effective are accounted for.

the light hole band, the heavy hole band, and the split-off valence band1 and is given as [73]

m∗
dh =

[
(m∗

hh)
3/2

+ (m∗
lh)

3/2
+ (m∗

soh)
3/2
]2/3

. (3.5)

As it turns out, the density of states effective mass is a complex function of temperature. However,

a reasonable fit to m∗
dh has been given by Green in [74]:

m∗
dh

m0
≈
(

0.444 + 0.361× 10−2Ta + 0.117× 10−3T 2
a + 0.126× 10−5T 3

a + 0.303× 10−8T 4
a

1 + 0.468× 10−2Ta + 0.229× 10−3T 2
a + 0.747× 10−6T 3

a + 0.173× 10−8T 4
a

)2/3

.

(3.6)

Equation (3.6) is plotted as a function of ambient temperature in Fig. 3.2(b). Clearly, m∗
dh varies

more with temperature than m∗
de. However, in terms of the overall picture, the temperature depen-

dence displayed by m∗
de is rather benign.

3.1.3 Carrier Concentration: Intrinsic Si

The intrinsic carrier concentration is given by the well-known formula [52, 55]

nio =
√

NCNV e−Eg/2kTa,

1In many texts, such as [52] and [55], the effective mass contribution from the split-off valence band is neglected.
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where

NC ≡ 2

(
2πm∗

dekTa

h2

)3/2

(3.7)

and

NV ≡ 2

(
2πm∗

dhkTa

h2

)3/2

. (3.8)

Thus,

nio ≈ 4.82e15T 3/2
a

√√√√6
m∗

t

m0

√
m∗

l

m0

[(
m∗

lh

m0

)3/2

+

(
m∗

hh

m0

)3/2

+

(
m∗

soh

m0

)3/2
]
e−Eg/2kTa. (3.9)

The intrinsic carrier concentration is exponentially proportional to temperature via the energy

bandgap and linearly related to T
3/2
a and the effective masses. As the effective masses were

shown to be only weakly temperature dependent2 , the conclusion is that nio goes as roughly

T
3/2
a exp {−Eg (Ta) /2kTa}.

The intrinsic carrier concentration appears as a function of temperature in Fig. 3.3. The tem-

perature dependence of nio is quite remarkable; with cooling from 300K to 10K, the intrinsic carrier

concentration changes by over 300 orders of magnitude. Furthermore, it can be seen that there is

a knee around 50K below which nio drops off rapidly. These trends have been confirmed experi-

mentally down to 77K by Sproul and Green [75]. However little data exists at lower temperatures,

where the theoretical intrinsic carrier concentration drops to very low levels. Nonetheless, we make

the assumption that the theory is correct3 . Thus, the intrinsic carrier concentration is expected to

play a very important role in determining device performance at cryogenic temperatures.

3.1.4 Carrier Mobility

Carrier mobility is an important consideration as it determines the effective velocity of carriers

under the influence of electric fields. Mobility is directly related to scattering mechanisms, which

include scattering due to lattice vibrations or phonons (µps), ionized impurities (µii), velocity sat-

uration (µvs), carrier-to-carrier collisions (µcc), and neutral impurities (µni). Of these mechanisms,

µvs, µcc, and µni are independent whereas µps and µii are coupled to each other [73]. Thus, the

2i.e., the magnitude of the proportionality.
3It is possible that the experimental values of nio would saturate at very low temperatures due to traps and other

defects not included in the theoretical calculation. However, these effects should not exist in pure silicon.
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total electron or hole mobility can be obtained by considering each of the effects in parallel as

µ =

(
1

µpsii
+

1

µvs
+

1

µcc
+

1

µni

)−1

, (3.10)

where µpsii is the mobility considering only phonon and ionized impurity scattering. As evidenced

by equation (3.10), the mobility can be degraded by any of the scattering contributions. Therefore,

it is important to understand the temperature dependence of each component.

3.1.4.1 Phonon Scattering

Phonon scattering refers to scattering due to lattice vibrations. As it turns out, the energy band

gap is a function of lattice constant and is modulated by lattice vibrations4. This modulation of the

bandgap causes scattering of free carriers. An explicit expression for the mobility due to phonon

scattering has been given by Bardeen and Shockley as [76]

µps =

[ √
8πh4cii

3E2
1m

5/2
0 k3/2

]
T−3/2

a , (3.11)

where m0 is the free electron mass, cii is the longitudinal elastic constant of the material, and E1

is a parameter which has units of eV and links the vibrations to the perturbations of the energy

bandgap. While equation (3.11) provides physical insight into phonon scattering5 , it depends not

only on empirically determined parameters cii and E1, but also on the effective mass, which was

shown to be a function of temperature in section 3.1.2. Therefore, it is desirable to use a model of

µps that is a more clearcut function of temperature, such as that provided by Gutiérrez in [73]:

µps =

[
1

µ0a (Ta/300)−κa
+

1

µ0b (Ta/300)−κb

]−1

. (3.12)

The parameters µ0a, µ0b, κa, and κb required for equation (3.12) are experimentally determined

coefficients and are given in Table 3.1.

4Phonons cause the conduction and valence bands to move in opposite directions, thus changing the bandgap,
whereas electrostatic potentials cause the conduction and valence bands to move in the same direction, thereby
preserving the bandgap [76].

5e.g., phonon scattering gets worse with increasing effective mass and scales with temperature as T
−3/2
a .



CHAPTER 3. EXPECTED CRYO. PERFORMANCE 40

Table 3.1: Coefficients for silicon µps calculations using equation (3.12) [73]

.
µ0a µ0b κa κb

cm2/Vs cm2/Vs - -

Electrons 4195 2153 1.5 3.13
Holes 2502 591 1.5 3.25

Table 3.2: Coefficients for silicon µpsii calculations using equation (3.14) [73]

.
µmin Nref κc

cm2/Vs cm−3 -

Electrons 197.17− 45.505× log 10 (Ta) 1.12× 1017 (Ta/300)
3.2

0.72× (Ta/300)
0.065

Holes 110.90− 25.597× log 10 (Ta) 2.23× 1017 (Ta/300)
3.2

0.72× (Ta/300)
0.065

3.1.4.2 Ionized Impurity Scattering

The second form of scattering is that from ionized impurities (i.e., dopants) and is described

by [55]

µii =
64
√

πε2s (2kTa)
3/2

NIq3m∗1/2



ln


1 +

(
12πεskTa

q2N
1/3
I

)2






−1

, (3.13)

where NI is the concentration of ionized impurities, m∗ is the conductivity effective mass, and εs is

the dielectric constant of the material. However, phonon scattering and ionized impurity scattering

are not fully independent, so it is not possible to simply combine equations (3.12) and (3.13) in

a parallel fashion. To overcome this difficulty, an alternative model was suggested by Caughey

and Thomas, who noticed that the general shape of mobility as a function of dopant concentration

resembled the Fermi-Dirac function [77]. The model is given as

µpsii = µmin +
µps − µmin

1 + (NI/Nref )
κc

, (3.14)

where µps is calculated using equation (3.12) and NI is the concentration of ionized impurities in the

material and is calculated using equations (3.17) and (3.18). In order to account for temperature

in equation (3.14), Gut́ıerrez performed a fit of the coefficients as a function of temperature. The

resulting coefficients appear in Table 3.2 [73].
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3.1.4.3 Neutral Impurity Scattering

In addition to scattering from the ionized impurities, carriers will also undergo scattering from

neutral impurities. This effect becomes important when a material contains a large number of

non-ionized impurities. The mobility due to neutral donor impurities has been modeled by Li and

Thurber [78] as

µni =
2π3q3m∗

ce

5NN εsh3
× 10−2

[
2

3

(
kTa

EN

)1/2

+
1

3

(
EN

kTa

)1/2
]

, (3.15)

where NN is the density of non-ionized donor atoms, EN = 1.136× 10−19 (m∗
ce/m0) (ε0/εS)2, and

mce = 1/3 (1/m∗
t + 2/m∗

l ) is the effective conduction mass [73]. Unfortunately, a relationship for

neutral impurity scattering in p-type silicon has not been identified, so this effect will be ignored for

mobility in p-type silicon.

3.1.4.4 Carrier-to-Carrier Scattering

At high injection levels, the carrier concentration can be high enough that the mobility is

compromised due to inter-carrier scattering. This effect has been studied by Dorkel and Leturcq [79]

and can be modeled as

µcc = 2× 1017 T
3/2
a

√
np ln

{
1 + 8.28× 108T 2

a (np)
−1/3

} , (3.16)

where n and p are the levels of electrons and holes in the silicon. As this is a high-injection effect,

it is not of great importance to the work reported here. Therefore, this effect will be ignored in

mobility calculations.

3.1.4.5 Overall Dependence of Mobility on Ambient Temperature

For the overall analysis, it is assumed that the dominant sources of mobility degradation are

phonon and ionized impurity scattering. This assumption is valid for the case in which the majority

of the impurities have been ionized and the operating currents are well below high-injection. The

mobility due to phonon and ionized impurity scattering appears in Fig. 3.4. For low ionized dopant

concentrations, the both the electron and hole mobilities increase by several orders of magnitude as

the ambient temperature is reduced from 300 to 18 K. However, the increase in mobilities become

much less important as the ionized dopant concentrations reach levels on the order of 1018 or higher.

Thus, the changes in mobility with cooling would not be expected to have a large impact on cryogenic
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Figure 3.4: (a). Computed electron mobility and (c) hole mobility as a function of temperature.
High field effects have been neglected. For doping levels above ∼1017, the mobilities are not strongly
dependent on temperature.

device performance.

3.1.5 Carrier Freeze-out

In order for a material to conduct current, free carriers must be present in the form of holes

in the valence band or electrons in the conduction band. It is well known that the conductivity

of metals increases greatly with cooling due to an increase in carrier mobility. However in some

semiconducting materials, the population of free carriers diminishes as the ambient temperature

is lowered. This phenomena is known as carrier freeze-out and is of interest as the properties of
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Figure 3.5: (a) Resistivity of various metals as a function of temperature [80]. (b) The resistivity of
intrinsic silicon as a function of temperature

EC

EV

∆ED

∆EA

ED

EA

Figure 3.6: Band structure for a doped semiconductor. In order to excite carriers from the donor
and acceptor states, an ionization energy of ∆ED and ∆EA is required.

semiconductor devices are tightly coupled to the free carrier concentration in the materials. To

demonstrate the problem, in Fig. 3.5 the conductivity of several metals is plotted alongside that

of intrinsic Si, both as a function of temperature. The impact of carrier freeze-out in intrinsic Si

is quite clear; as the number of free carriers exponentially decreases as the ratio of the bandgap

to the ambient temperature increases, intrinsic silicon becomes an excellent insulator at cryogenic

temperatures.

As it turns out, the issue of carrier freeze-out is eliminated if the semiconductor is doped at a

level above what is known as the Mott-transition. To understand why heavy doping is beneficial, it

is instructive to examine a band diagram of a lightly doped6 piece of silicon as shown in Fig. 3.6.

Doped silicon differs from intrinsic silicon in that a much smaller thermal excitation is required to

6i.e., below 1017cm−3.
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Table 3.3: Mott-transition (Ncrit) and low doping ionization energy for various silicon alloys.

Material Si:Sb Si:P Si:As Si:Bi Si:B

Type D D D D A
EA(D) [meV] 42.7 45.5 53.7 71.0 44.4
Ncrit [cm−3] 3.0× 1018 3.7× 1018 8.5× 1018 1.8× 1019 4.1× 1018

generate carriers, as typical dopant ionization energies are about a factor of twenty lower than the

bandgap of Si [81, 82, 83]. Thus, we would expect a lightly doped piece of silicon to conduct at

lower temperatures than an undoped piece of silicon. However, at absolute zero temperature, we

would still expect a lightly doped piece of silicon to be a perfect insulator as there is no thermal

excitation to free the carriers that are needed to conduct current from the dopant atoms. However,

the energy required to ionize the dopants depends upon the spacing of the impurity centers and

when the dopants are close enough that their wave-functions overlap7, impurity bands will form

and no ionization energy is required to conduct current. The dopant level at which the impurity

bands form is known as the Mott-transition, and above this level no carrier freeze-out effects will

occur8 [84]. The Mott-transition for various silicon alloys is given in Table 3.3 [85]. It is apparent

the Mott-transition in B, As, and P doped silicon is high enough that there is no guarantee that the

devices analyzed in this work will be doped heavily enough to completely avoid freeze-out effects.

Thus, a model is needed to calculate the fraction of ionized dopants as a function of temperature

and dopant concentration.

A detailed treatment of carrier freeze-out has recently been presented by Altermatt, Schenk, and

Heiser with the end result being an accurate numerical model of carrier freeze-out effects [85, 86].

This model will be used here as it is accurate down to well cryogenic temperatures. Using this

model, the ionized acceptor and donor concentrations can be computed as

N+
D

ND
=

1

2


1− b− g

n1

ND
+

√(
g

n1

ND
+ b− 1

)2

+ 4g
n1

ND


 (3.17)

and

N−
A

NA
=

1

2


1− b− g

p1

NA
+

√(
g

p1

NA
+ b− 1

)2

+ 4g
p1

NA


 . (3.18)

The equations and coefficients required to evaluate equations (3.17) and (3.18) can be found in Ta-

ble 3.4 and plots of the ionization ratio as a function of temperature and dopant concentration for

7i.e., there is a finite probability that two bound carriers can both be in the same location.
8This is true for a doped material in which the dopants are equally spaced within the lattice. For random dopant

spacing, the formation of impurity bands is gradual.
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Table 3.4: Coefficients and equations required to evaluate the ionization ratio [85]

Parameter Si:P Si:As Si:B

∆ED0(A0) (meV) 45.5 53.7 44.39
Nref (cm−3) 2.2× 1018 3× 1018 1.3× 1018

c 2 1.5 1.4
Nb (cm−3) 6× 1018 9× 1018 4.5× 1018

d 2.3 1.8 2.4
g 1/2 1/2 1/4

Equation

∆ED(A) ED0(A0)/
(
1 + ND(A)/Nref

)c

b 1/
(
1 + ND(A)/Nref

)d
n1 NC exp {−∆ED/kTa}
p1 NV exp {−∆EA/kTa}
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Figure 3.7: Fraction of dopants ionized as a function of dopant concentration and temperature for
(a) arsenic donor impurities and (b) boron acceptor impurities. The doping threshold for the Mott
transition is also indicated.

Si:As and Si:B are shown in Fig. 3.7. Carrier freeze-out effects are clearly important at cryogenic

temperatures for devices in which the dopant concentration is on the order of the Mott-transition.

Thus, the effects of carrier freeze-out will be considered in Chapter 6, when the temperature depen-

dence of the resistances associated with doped semiconductor regions is discussed.
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3.2 Properties of SiGe Transistors at Cryogenic Tempera-

tures

3.2.1 Doping-Induced Apparent Bandgap Narrowing

As discussed in Section 2.1.3, the collector current in a SiGe HBT depends upon the apparent

bandgap narrowing which can be written9

∆Eg,app ≈ 18.7× 10−3 ln

{
N−

AB

N+
DE

}
. (3.19)

and occurs due to heavy doping in the base and emitter. As ∆Eapp
g depends on the natural logarithm

of the ratio of ionized impurities in the base to that in the emitter, the net effect is that the bandgap

actually looks wider in terms of the barrier that the electrons being injected into the base must

overcome. Furthermore, since this is a bandgap effect, it is exponentially enhanced with decreasing

temperature. As it turns out, this, as opposed to carrier freeze-out, is actually the limiting factor

in the operation of modern silicon BJTs at cryogenic temperatures [30]. Fortunately, the bandgap

narrowing that the Ge induces is sufficient to compensate out the apparent bandgap narrowing.

Nevertheless, it offsets the effect of the Ge and, in the case of a triangular Ge profile (i.e., no Ge

content on the base side of the base–emitter depletion region), it is a limiting effect.

3.2.2 DC Terminal Currents

3.2.2.1 Base Current

In Section 2.1.3, expressions for the dc currents in a SiGe HBT were presented. These equations

depend upon the terminal currents in an identically doped silicon device as well as the bandgap

narrowing effects due to the Ge content in the base. With the tools developed in Section 3.1, it is

now possible to predict the changes that occur in the base current saturation coefficient, JB0 , with

cooling. From equation 2.12, the base current can be written as

JB (Ta) ≈ kTaµpe (Ta)n2
io (Ta)

LPE (Ta)N+
DE (Ta)

eqVBE/kTa = JB0 (Ta) eqVBE/VT . (3.20)

Of particular interest is the change in base saturation current, JB0, with cooling. From equation 3.20

and the information discussed in Section 3.1.3, the fractional change in base saturation current with

9Equation (3.19) is only valid for the case in which N−

AB > 7 × 1017. For the case in which this is not true,
equation (2.16) must be used instead.
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cooling from 300 K can be written as

JB0 (Ta)

JB0 (300)
=

(
Ta

300

)4 (
µpe (Ta)

µpe (300)

)(
LPE (300)N+

DE (300)

LPE (Ta)N+
DE (Ta)

)
e−Eg(Ta)/kTa

e−Eg(300)/(k300)
. (3.21)

In order to arrive at an explicit temperature dependence for JB0, it is necessary to write the tem-

perature dependences of µpe, LPE , N+
DE , and Eg. This can be done as follows:

µpe: Referring back to Fig. 3.4, it can be seen that the sensitivity of carrier mobility to temperature

is strongly dependent on the dopant concentration, with higher dopant concentrations result-

ing in a reduced sensitivity to temperature. Furthermore, the dopant level in the intrinsic

mono- or poly-emitter is on the order of 1019cm−3 or higher at the metallurgical base–emitter

junction [59, 87]. Thus, µpe can be assumed to be only weakly temperature dependent10 .

N+
DE: As discussed in Section 3.1.5, carrier freeze-out is not an issue in heavily doped polysilicon

materials such as the poly-emitter. Therefore, N+
DE is nearly independent of ambient temper-

ature.

LPE : The fundamental definition of hole diffusion length is [55]: LP ≡
√

DP τp =
√

µpτpkTa/q,

where τp, the hole minority carrier lifetime, is the average lifetime for a hole diffusing into the

n-doped region. The carrier lifetime in heavily doped materials is limited by band to band re-

combination with a lifetime equal to 1/CAN+
D

2
, where CA known as the Auger coefficient [88].

Dziewior and Schmid have studied the temperature dependence of the Auger coefficient for

holes in heavily doped silicon and found that there is only a very weak correlation between

CA and the ambient temperature [89]. Therefore, since N+
DE is nearly independent of temper-

ature and µpe is only weakly dependent on temperature, a reasonable approximation is that

LPE (Ta) ∝
√

Ta.

Eg: The temperature dependence of the silicon bandgap, Eg, was discussed in Section 3.1.1. Ex-

plicitly, the bandgap can be written as a function of temperature as Eg (Ta) ≈ 1.17 + 5.65×

10−6Ta − 5.11× 10−7T 2
a − 8.03× 10−10T 3

a + 2.50× 10−12T 4
a .

Thus, equation (3.21) can be rewritten as:

JB0 (Ta)

JB0 (300)
= 7.83× 1018

(
Ta

300

)7/2

e−Eg(Ta)/kTa. (3.22)

10In Section 3.1.4, the majority carrier mobilities were discussed. However, here we are referring to the minority
carrier mobilities. This may result in a small error, but does not change the result significantly.
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From this analysis, it is apparent that JB0 should decrease significantly at cryogenic temperatures.

Furthermore, the decrease should depend only upon the energy band gap of silicon, which is inde-

pendent of device technology.

3.2.2.2 Collector Current

The same procedure can be repeated for the collector current saturation coefficient, JC0, in

order to determine its temperature dependency. The value of JC0 (Ta) normalized to JC0 (TRT ) is

given as

JC0 (Ta)

JC0 (300)
≈

(
Ta

300 K

)3
γ̃ (Ta)

γ̃ (300)

η̃ (Ta)

η̃ (300)

µnb,Si (Ta)

µnb,Si (300)

N−
AB (300)

N−
AB (Ta)

eEg(300)/k300

eEg(Ta)/kTa

e∆Eg ,app/kTa

e∆Eg ,app/k300

e∆Eg,Ge(0)/kTa

e∆Eg,Ge(0)/k300
.

(3.23)

Since γ̃ = µnb,SiGe/µnb,Si, its value is assumed to be temperature independent. Furthermore,

based on the analysis given by Sokolić and Amon, η̃ = (NCNV )SiGe / (NCNV )Si is assumed to

be only weakly temperature dependent [90]. Thus, it will be considered constant as a function of

temperature. As discussed above, the mobilities are not strongly dependent upon temperature as

the doping level in the base is quite high. Thus, assuming the base is doped well above the Mott

transition, equation (3.23) can be simplified to

JC0 (Ta)

JC0 (300)
≈ 7.83× 1018

(
Ta

300

)3

e−Eg(Ta)/kTa
e(∆Eg,app+∆Eg,Ge(0))/kTa

e(∆Eg,app+∆Eg,Ge(0))/k300
. (3.24)

Referring to equation (3.24), it is apparent that detailed information regarding the temperature

dependence of both ∆Eg,app and ∆Eg,Ge (0) is required in order to predict the temperature depen-

dence of the collector saturation current. To complicate matters, both the exact location of the base

edge of the base–emitter space charge region and the magnitude of apparent bandgap narrowing are

dependent upon the doping profile in the base and emitter, thus making it impossible to determine

these quantities without detailed SIMS profiles. Thus, an ambiguity exists and it is assumed that

information about the collector saturation current cannot be used to determine the Ge content or

the doping levels. Due to these considerations, the temperature behavior of JC0 is expected to vary

greatly among the different SiGe devices.
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3.2.2.3 DC Current Gain

As discussed in Chapter 2, βDC is critical in determining the low-GHz range noise performance

of modern SiGe bipolar transistors. The temperature dependence of βDC can be evaluated by taking

the ratio of equation (3.24) to equation (3.22):

βDC (Ta)

βDC (300)
≈
√

300

Ta

e∆Eg,app+∆Eg,Ge(0)/kTa

e∆Eg,app+∆Eg,Ge(0)/k300
. (3.25)

Therefore, the dc current gain is exponentially enhanced by cooling provided that ∆Eg,app +

∆Eg,Ge (0) > 0. Furthermore, as the enhancement is related to the Ge concentration at the edge

of the base–emitter space charge region, this effect is expected to vary greatly among various SiGe

HBT technology platforms.

3.2.2.4 Non-Equilibrium Transport

In deriving the transport equations for bipolar transistors, it is usually assumed that the carri-

ers are at thermal equilibrium. Under this assumption, the Boltzmann approximation applies and

standard drift-diffusion theory can be used. However, researchers have observed that the collector

current ideality factor increases at cryogenic temperatures. Through the use of Monte-Carlo simula-

tion tools, the non-ideal collector current slope has been traced down to quasi-ballistic transport in

the base, which can be modeled as an increase in the effective temperature of the electrons [29]. In

terms of measured iv curves, non-equilibrium transport will appear as a degradation in the slope of

the collector current under low-injection conditions. Furthermore, this effect will limit the increase

in transconductance that can be obtained with cooling.

3.3 Summary

In this chapter, the cryogenic properties of silicon materials and SiGe devices have been explored.

In the first part of the chapter, it was shown that significant changes occur in the bandgap and

intrinsic carrier concentration of relatively pure silicon materials as well as in the carrier mobility

and ionized carrier concentration in lightly doped Si samples. In the second part of the chapter, the

expected effects of cooling on the dc currents of SiGe HBTs were discussed. It was seen that the

dc current gain is expected to grow exponentially with cooling, but that this enhancement effect is

expected to vary significantly among different processes. This concludes the theoretical section of

the thesis. In the next part of the dissertation, the cryogenic properties of a variety of SiGe devices
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will be evaluated experimentally.
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Part II

Modeling
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Chapter 4

Introduction to Modeling and

Description of Devices

In Part I, theoretical information regarding the operation of SiGe HBTs at cryogenic temper-

atures was presented. In this part of the thesis, the dc, RF, and noise modeling of a wide variety

of SiGe HBTs at cryogenic temperatures is investigated. In this chapter, an introduction to the

characterized devices and the measurement techniques will be given.

4.1 Summary of Device Technologies

In order to conduct a general investigation of the cryogenic operating characteristics of SiGe

HBTs, several different devices have been studied. In this section, a description of the various

transistors that have been evaluated will be given. A schematic cross section of a typical SiGe HBT

appears in Fig. 4.1. As they are vertical structures, the fabrication of SiGe HBTs requires both

the implantation of materials into the silicon substrate as well as the epitaxial growth of features

on the surface of the wafer. Furthermore, the fabrication of SiGe HBTs has to be done in such a

way that it is compatible with a standard CMOS process1 . In order to achieve the high level of

performance seen in today’s state-of-the-art SiGe devices, it is critical that each of these steps be

highly optimized. As it turns out, this optimization process has lead each foundry to develop a

slightly different recipe and these differences will be highlighted in the discussion that follows. In

particular, the following approaches have been taken to critical processing steps:

Collector module The n+ sub-collector module can be created either by ion-implantation, or by

first selectively doping n+ regions on the surface of the silicon wafer and then epitaxially

growing a Si layer to create buried sub-collector regions. While the former approach is less

1i.e., the devices must be able to withstand being heated to temperatures in the range of 1000◦ C
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Figure 4.1: Typical state-of-the-art HBT structure

costly, the latter approach results in lower sheet resistance [91]. Thus, buried layer (BL)

sub-collectors are superior to implanted sub-collectors.

Extrinsic base There are several flavors of extrinsic base commonly found in SiGe HBTs. First of

all, a distinction can be drawn between a raised extrinsic base and an implanted extrinsic base.

While a raised extrinsic base requires extra processing steps in comparison to an implanted

extrinsic base, the extra effort is rewarded by a improvement in performance [91]. This is

because the raised extrinsic base is self-aligned to the emitter, which allows for independent

optimization of the base resistance and the base–collector capacitance [92]. The second way

in which processes vary with respect to the extrinsic base is in the actual patterning of the

extrinsic base. In general, the E-B junction of SiGe HBTs is defined in either a fully-self-

aligned (FSA) or a quasi-self-aligned (QSA) manner. In the case of a FSA with non-selective

epitaxy, a sacrificial emitter is used2 in order to define the extrinsic base, allowing the extrinsic

base to butt up against the edge of the active base–emitter region, resulting in a low extrinsic

base contribution to the overall base resistance. On the other hand, a QSA extrinsic base

is not aligned to the E-B junction but by the alignment of two different masks and, as a

consequence, it is not possible to get the extrinsic base right up against the edge of the active

E-B junction [60]. Therefore, a QSA base will have a larger extrinsic base resistance than a

FSA extrinsic base.

Carbon doping of intrinsic base During the deposition of the SiGe base, a narrow B spike with

2An alternative approach to the fabrication of a FSA extrinsic base is the use selective base epitaxy [87].
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Table 4.1: A summary of the devices investigated. Transistor metrics are those reported by the
foundries [60, 87, 95, 96, 97, 98, 99]

Label Foundry Process name Tech. node ft/fmax BVCE0/BVCB0 Eff. device area
µm GHz V µm2

IBM-G4 IBM BiCMOS8HP 0.12 200/280 1.7/5.7 0.12×18
IHP-G4 IHP SG13 0.13 255/315 1.8/5.6 0.17×16× 2.09
ST-G4 ST BiCMOS9MW 0.13 230/280 1.6/5.8 0.13×9.86µm2

ST-X2 ST BipX2 0.15 233/249 1.50/5.45 0.15× 2× 14.77
ST-X1 ST BipX1 0.17 263/290 1.44/5.44 0.17× 2× 14.79
ST-X3 ST BipX3 0.17 263/290 1.44/5.44 0.17× 2× 14.79
JAZZ-G3 JAZZ SBC18 0.18 150/190 2.2/7.0 0.18× 6× 60
NXP-G3 NXP Qubic4Xi 0.25 216/177 1.44/5.20 0.3× 1

Foundry IBM IHP ST ST ST ST JAZZ NXP
Process BiCMOS8HP SG13 BiCMOS9MW BiPX2 BiPX1 BiPX3 SBC18 Qubic4Xi

Date rec’d 07/2008 11/2008 09/2008 01/2008 01/2008 09/2008 04/2007 10/2008
Wafer id A3CRQNP - J748CBZ25 J535RYV24 J514VBF03 J514VBF13 K58386-9 -

concentration on the order of 1019 cm−3 is typically introduced in order to dope the SiGe base.

However, later in the processing a rapid thermal annealing (RTA) process is carried out in

order to activate the polysilicon source, drain, gate, base, and emitter regions. Unfortunately,

the RTA process causes the dopants in the base to diffuse, putting a limit on the minimum

base thickness. One approach to overcoming this limitation without adversely affecting the

structural or electrical properties of the SiGe layer is to lightly dope the base with carbon,

which is effective in blocking the diffusion of boron during the RTA stage [93, 94].

Ge Profile As discussed at length in Chapters 2 and 3, the Ge profile across the base has serious

consequences in terms of device performance. First of all, βDC is determined largely by the

Ge content at the base edge of the base–emitter space-charge region. Secondly, the slope of

Ge across the base influences the base transit time, thereby playing a role in the overall speed

of the device. Finally, the Ge slope near the base edge of the base–emitter space-charge region

determines the extent to which the reverse-Early effect3 will influence device performance.

Common profiles include triangular (0% Ge on the emitter side of the base), trapezoidal, and

box (constant Ge) profiles.

A summary of the devices compared in the following chapters appears in Table 4.1 and information

about the processes from which each of the devices originate is given below.

3See [30], pg. 186.



CHAPTER 4. INTRODUCTION TO MODELING 55

4.1.1 IBM BiCMOS8HP

IBM’s fourth generation BiCMOS technology, BiCMOS8HP. was fully commercialized in 2005,

and is to date IBM’s most advanced BiCMOS offering [100]. The process features 0.12µm HBTs with

a low-resistance BL sub-collector, a FSA raised extrinsic base, and a B doped SiGe base with carbon

doping [95]. Unique features of this process include an in situ doped emitter with phosphorus

impurities4 [102]. Although the Ge concentration is reported to be 25% in [103], elsewhere it is

reported that IBM uses a trapezoidal profile [104, 105]. Therefore, it is assumed that the Ge profile

is trapezoidal with an average Ge content of 25%. Finally, the transistors have a room temperature

ft/fmax of 200/280 GHz and BVCE0/BVCB0 of 1.7/5.7 V [95].

Access to the IBM process was available through the Trusted Foundry program and five reticles

were taped-out between 2006 and 2008. In addition to integrated circuits, discrete devices were put

on each of these reticles along with the de-embedding structures required to extract device models.

A die photo of an HBT test structure along with the open/short de-embedding structures appears

in Fig. 4.2.

4.1.2 ST Microelectronics

In this work, ST Microelectronics devices from four different process lines were characterized.

All of the devices come from a process featuring BL sub-collectors, FSA raised extrinsic bases5 , B

doped SiGe bases with C doping, and in situ doped As mono-emitters6. The Ge profile for all devices

is known to be trapezoidal with the Ge content varying from 20–30% [60, 87]. Of the four devices,

three come from experimental processes, BiPX1, BiPX2, and BiPX3. The fourth device comes from

the ST BiCMOS9MW process, which is the most advanced BiCMOS technology platform currently

available from ST. The experimental devices were fabricated in the research stages leading to the

4Arsenic is typical used as the emitter dopant as it performs better during the required RTA stage [101].
5The extrinsic bases are aligned using selective epitaxy as opposed to a sacrificial emitter.
6The intrinsic emitters are mono-crystalline whereas the extrinsic emitters are polycrystalline

(a) (b) (c)

Figure 4.2: IBM BiCMOS8HP device photographs: (a) transistor, (b) short-circuit, and (c) open-
circuit test structures
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(a) (b) (c) (d)

Figure 4.3: ST device photos. (a) BiPX1 test structure, (b) close-up of BiPX1 device, (c) BiC-
MOS9MW test structure, (d) and close-up of BiCMOS9MW device

development of the BiCMOS9MW process.

The BiPX1 and BiPX3 processes are nearly identical and feature devices with 0.17µm emitter

widths, room temperature ft/fmax values of 263/290 GHz, and room temperature BVCEO/BVCBO

values of 1.44/5.44V. Finally, the effective area of the devices measured from the BiPX1 and BiPX3

processes are 0.17× 2× 14.79µm2.

The device from the BiPX2 process line features a 0.15µm emitter width, room temperature

ft/fmax values of 233/249 GHz, and room temperature BVCEO/BVCBO values of 1.50/5.45V. The

effective area of the measured BiPX2 device is 0.15× 2× 14.77µm2.

Finally, the device from the BiCMOS9MW process line features a 0.13µm emitter width, room

temperature ft/fmax values of 230/280 GHz, and room temperature BVCEO/BVCBO values of

1.6/5.8V. The effective area of the measured ST BiCMOS9MW device is 0.13× 9.86µm2.

Alongside each of the four devices is an open-circuit structure that can be used for de-embedding

purposes. Only the devices from the BiPX2 and BiCMOS9MW processes have associated short-

circuit structures7 . However, due to the close similarity in the layout of the BiPX1 and BiPX3

devices with the BiPX2 device, the short circuit for the BiPX2 was used in de-embedding the test

structure parasitics for all three of the experimental transistors.

4.1.3 IHP SG13

For evaluation purposes, sample IHP devices from the SG13 process were obtained. In the SG13

process, 0.12µm HBTs are available with a FSA raised extrinsic base8, a B doped intrinsic base with

C doping, and an in situ As doped polyemitter [97]. What separates this process from the other

processes is that the sub-collector is implanted rather than buried under an epitaxial layer, and that

7The BiCMOS9MW devices actually have several additional de-embedding structures as detailed in [106]. In this
work however, only the open- and short-circuit structures were used.

8The extrinsic bases are aligned using selective epitaxy as opposed to a sacrificial emitter.
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(a) (b) (c) (d)

Figure 4.4: IHP SG13 HBT test structures. (a) 0.12×16×2.04µm2 HBT test structure, (b) enlarged
view of the device, (c) short-circuit de-embedding structure, and (d) open-circuit de-embedding
structure

Figure 4.5: Photograph of JAZZ SBC18 test transistor

deep trench isolation is unavailable [107, 108]. The implanted sub-collector will result in an increase

in collector resistance and the lack of DTI will result in an increase in CCS as compared to a device

with a buried layer and DTI. Reported values of room temperature ft/fmax and BVCE0/BVCB0 for

the IHP SG13 HBTs are 255/315GHz and 1.8/5.2V, respectively.

The IHP devices evaluated in this investigation were samples provided by the foundry with an

effective area9 of 0.17x16x2.09µm2 (this is a 16 emitter device). In addition to the device structures,

open/short de-embedding structures were also provided. Die photos of the tested devices and de-

embedding structures appear in Fig. 4.4.

4.1.4 JAZZ SBC18

The devices evaluated in this study that are manufactured by JAZZ semiconductor are from

the 0.18µm SBC18 process line. SBC18 HBTs feature a low-resistance BL sub-collector, a FSA

extrinsic-base structure, deep-trench and shallow-trench isolation, and an in situ As doped poly-

emitter [109]. Unique features of JAZZ SBC18 devices include an implanted extrinsic base and a

triangular Ge profile with a peak Ge content of 30% [62]. Since the JAZZ devices have a triangular

9While the drawn emitter width is 0.12µm, the effective emitter width is 50nm larger. Therefore 50nm must be
added to all drawn dimensions in determining the effective device size.
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Figure 4.6: Photograph of NXP QUBIC4Xi test transistor

Ge distribution, it is expected that their βDC should have a weaker dependence on temperature

than is typical for devices with either trapezoidal or box Ge profiles. Finally, the room temperature

peak ft/fmax is 150/190GHz and the BVCEO/BVCB0 is 2.2/7.0V.

In order to evaluate the JAZZ devices at cryogenic temperatures, space was allocated on a SBC18

wafer in early 2007. Therefore, custom layouts were made for several HBTs along with the associated

de-embedding structures. The tested device area is 0.18 × 6 × 10 µm2. A Photograph of the test

transistor appears in Fig. 4.5

4.1.5 NXP QUBIC4Xi

The final devices evaluated were from NXP’s 0.25 µm QUBIC4Xi10 process, which features

SiGe HBTs with BL sub-collectors, in situ As doped poly-emitters, and B doped SiGe bases with

carbon doping. Unique features in the QUBIC4Xi process include a QSA raised extrinsic base, and

a Ge profile that is stepped rather than grated. Finally, the room temperature peak ft/fmax is

216/177 GHz and the BVCEO/BVCBO is 1.44/5.20V [99, 110, 111].

The QUBIC4Xi devices measured in this work are samples provided by the foundry and are fairly

small devices with an effective area of just 0.3 × 1µm2. Furthermore, no de-embedding structures

were provided. Thus, these devices were only evaluated at dc. A photograph of the test transistor

appears in Fig. 4.6.

4.2 Cryogenic Measurement Setup

A closed-cycle cryogenic wafer-probe station was used to characterize the devices, both at dc and

RF. A block diagram of the test setup appears in Fig. 4.7 and photos of the cryogenic wafer-probe

10It should be noted that packaged NXP BFU725F transistors have also been tested. However, as these devices are
not suitable for wafer probing, their performance was not included in the study reported here. For more information
regarding the cryogenic performance of these devices, see [43].
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Figure 4.7: Block diagram of cryogenic test setup

(a) (b)

Figure 4.8: (a) side and (b) top view of the cryogenic wafer-probe station located at the Jet Propul-
sion Laboratory (JPL)

station appear in Fig. 4.8. The probe station can reach temperatures as low as 14 K and an external

temperature controller is in place that allows the temperature to be servoed to any temperature

from 14 to over 400 K. In order to prevent ice buildup, a strong vacuum is pulled on the chamber

using an external vacuum pump, which is in operation when the chamber is at temperatures above

100 K. As the chamber is cooled further, a valve is sealed so that gases cannot enter or escape

the chamber and carbon absorber inside of the dewar provides cryo-pumping action to improve the

quality of the vacuum. In order to prevent the coaxial cables from presenting an overwhelming
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heat load to the refrigerator, stainless-steel 2.4 mm coaxial cables are used to bring in the RF signals

and the probe mounts are heatsunk with a copper braid to the copper chuck on which the dies lie.

The probes are thermally connected to the probe mounts using a thin layer of indium foil. The

temperature is monitored with precision temperature sensors thermally connected via indium foil

to the copper chuck as well as each of the probe mounts. Special cryogenic probes rated from 10–

300 K and manufactured by SUSS Microtech were used in order to measure the devices as standard

probes tend to have contact issues when measuring the same die at multiple temperatures due to a

non-uniform expansion of the coplanar probe tips [112, 113]. The dies are either epoxied onto small

pieces of copper, which are then thermally connected to the copper chuck using vacuum grease, or

placed directly on the copper chuck (with vacuum grease).

DC measurements were made with the VNA source power turned off and all measurements were

automated using Matlab scripts. The short-circuit de-embedding structures are used to determine

the series resistances as well as the ground return resistances to allow for the effects of these parasitics

to be removed from the dc data. For RF measurements, an 8722D VNA was used. A SUSS CS-8

calibration substrate with SOLT standards is used in order to calibrate to the probe-tips and on-

wafer open/short structures are used to move the reference plane to the surface of the transistors.

More details are given as to the RF measurement scheme in Chapter 6. For all device measurements

reported in this work, the emitter and substrate terminals are tied to ground and, unless stated

otherwise, VCB is fixed at 0 V. DC measurements were made with the VNA source power turned

off and all measurements were automated using Matlab scripts. The short-circuit de-embedding

structures are used to determine the series resistances as well as the ground return resistances to

allow for the effects of these parasitics to be removed from the dc data. For RF measurements,

an 8722D VNA was used. A SUSS CS-8 calibration substrate is used in order to calibrate to the

probe-tips and on-wafer open/short structures are used to move the reference plane to the surface

of the transistors. More details are given as to the RF measurement scheme in Chapter 6. For all

device measurements reported in this work, the emitter and substrate terminals are tied to ground

and, unless stated otherwise, VCB is fixed at 0 V.
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Chapter 5

DC Modeling

In this chapter, the dc operating characteristics of a variety of state-of-the-art HBTs are dis-

cussed and experimental results are compared with the theory introduced in Chapters 2 and 3.

The chapter begins with a study of the temperature dependence of the theoretical low-frequency1

noise performance of state-of-the-art SiGe HBTs, as predicted using the noise theory presented in

Chapter 2 in conjunction with measured dc data. This is followed by an investigation in which the

temperature dependencies of the terminal currents are studied and compared with theory. Through-

out the chapter, similarities and differences between the devices are studied and related to physical

properties associated with the various technology platforms. For all measurements reported in this

chapter, VCB=0 V and the emitter and substrate terminals are tied to ground.

5.1 Experimental Modeling of Noise in SiGe HBTs, f � ft

In this section, the theoretical low-frequency noise parameters of several state-of-the-art HBTs

are computed using dc measurements in conjunction with the HBT noise-theory presented in Sec-

tion 2.2 and the following questions are investigated: 1) What trends can be observed as the devices

are cooled? 2) How does the low-frequency cryogenic noise performance of SiGe HBTs vary among

foundries? 3) If at all, how is the low-frequency noise-performance at cryogenic temperatures related

to the room temperature device parameters?

As discussed in Section 2.2, to first order2, the low-frequency noise parameters of a SiGe HBT

are completely determined by its extrinsic transconductance Gm, extrinsic collector current ideal-

ity factor, ncx, and dc current gain, βDC . Explicitly, the low-frequency noise parameters can be

1In this work, ‘low-frequency’ refers to frequencies at which the parasitic capacitances are negligible.
2A derivation is given in Appendix E
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approximated as3

Tmin,LF ≈ Ta
ncx√
βDC

= κTa, (5.1)

ROPT,LF ≈
√

βDC

Gm
, (5.2)

and

NLF ≈
Tmin,LF

2T0
. (5.3)

Referring to equations (5.1)–(5.3), several conclusions can be drawn as to the relationship between

the noise parameters of a device and its dc characteristics:

1) Tmin,LF is reduced by increasing βDC and reducing ncx. It is also linearly dependent upon the

ambient temperature. However, the parameter κ = ncx/
√

βDC is not explicitly dependent on

temperature. Thus, κ is a useful parameter as it can be used to gauge how the dc properties

of the device are related to the changes in the low-frequency noise performance as the device

is cooled. For instance, if κ is constant with temperature, the implication is that the minimum

achievable noise temperature has improved by the same fractional amount as the ambient

temperature has dropped. However, if κ decreases as the device is cooled, this means that the

noise performance of the device has actually improved by a factor greater than the fractional

change in ambient temperature and vice-versa.

2) ROPT can be increased with either a reduction in Gm or an increase in βDC . Furthermore,

ROPT,LF scales inversely with the total device area and therefore can be reduced with an

increase in device size. Thus, it is alway possible to transistor with a desired value of ROPT,LF

by scaling the total emitter area of the device.

3) NLF is proportional to Tmin,LF and, to first order, does not need to be determined indepen-

dently. This is important as it indicates that the low-frequency noise performance of an HBT

is completely specified by two noise parameters.

5.1.1 κ and Tmin,LF Versus Temperature

When optimizing the low-frequency noise parameters, it is of the highest practical importance

to minimize Tmin,LF . The reason for this is that both Tmin and NLF are independent of device size

whereas a given value of ROPT,LF can always be obtained by proper device scaling. Furthermore,

NLF and Tmin,LF are coupled and can be minimized simultaneously. Thus, the behavior of κ as a

3In the following, the noise contributions of rb and re are ignored. This is especially valid at cryogenic temperatures.
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Figure 5.1: κ versus JC and Ta for the eight sample transistors

function of temperature is of the utmost importance and serves as a logical starting point for the

evaluation of the temperature dependence of the low-frequency noise in SiGe HBTs.

The dc characteristics of the eight different devices were measured at 300, 200, 77, 50, and

18 K and JC , βDC , Gm, and ncx were extracted as a function of the applied base voltage. These

temperatures were chosen for this study as each of these temperatures can be reached with one of

four technologies: 200 K can be reached with thermoelectric cooling4; 77 K and 50 K can be reached

with inexpensive and long-MTF brush-less stirling coolers [115]; finally 18 K can be reached with

a standard CTI refrigerator. For these measurements, the base and collector voltages were swept

such that the base–collector voltage was fixed at 0 V. From these data, κ was then extracted and

the results appear in Fig. 5.1.

Examination of these curves reveals several key features common to all of the devices. To begin

with, at room temperature, the minima of κ as a function of JC is relatively broad, indicating

that the room-temperature low-frequency noise performance is not terribly sensitive to bias point.

However, as the devices are cooled, it is apparent that the low-frequency noise performance becomes

much more sensitive to the bias point as the curves become much more concave5. As the curves

are directly proportional to Tmin,LF , this indicates that the range of collector current densities over

which near optimum noise performance can be achieved grows smaller as the temperature is reduced.

4Standard coolers can reach ∼160 K and can be mounted in a vacuum sealed package [114].
5The exception is the NXP-G3 device, for which the general shape of the κ versus JC curve does not change with

temperature.
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In addition to the general shapes of the curves, there is information in the temperature depen-

dence of the minima of κ with respect to JC . If ∂κmin/∂Ta is negative, the implication is that the

optimum low-frequency noise temperature of the device is dropping more rapidly than the ambient

temperature and vice-versa. Referring again to Fig. 5.1, for all of devices, κmin drops as the device is

cooled from 300 K to 200 K; in this temperature range, the optimum noise temperature is dropping

more rapidly than the ambient temperature for all of the devices. Thus, cooling a SiGe HBT from

300 to 200 K results in a significant enhancement in the low-frequency noise of all eight devices.

As the temperature is lowered from 200 to 77 K, a difference can be identified between the

devices as κmin continues to drop for the IBM-G4, ST-G4, ST-X2, and JAZZ-G3 devices but begins

to rise for the other four devices. Thus, in cooling from 200 to 77 K, a fractional reduction in

optimum noise temperature larger than the fractional reduction in ambient temperature is only

observed in half of the devices. Finally, as the devices are cooled below 77K, an increase in the

value of κmin is seen in observed for all of the devices, indicating that the fractional reduction in

ambient temperature is now greater than the fractional reduction in optimum noise temperature at

low-frequencies. In summary, for each of the devices, there is some temperature, Tκ,min, such that

κmin (Tκ,min) = min{κmin (Ta)}. At ambient temperatures above Tκ,min a fractional change in Ta

will produce a larger fractional change in Tmin,LF and vice-versa.

In order to convert the curves in Fig. 5.1 to noise temperature curves, the values of κ simply

need to be multiplied by Ta. This exercise was done and the results appear in Fig. 5.2. In addition,

Tmin,LF,JC ≡ min
JC

{Tmin,LF (JC)} (5.4)

was computed for each device and the resulting values along with the associated collector current

densities appear in Table 5.1. The spread in noise temperatures among the devices, both in terms

of what can be achieved as well as how things change as the devices are cooled is quite remarkable.

For instance, at 300K, Tmin,LF,JC varies among the devices from 5.9 to 29 K; a factor of nearly five.

Furthermore, at cryogenic temperatures, the spread is even wider with the best device being able to

achieve a low-frequency input-referred noise temperature of 0.5 K and the worst device only able to

reach 9.6 K.

5.1.2 The Temperature Dependence of ncx and βDC

It is desirable to determine the reason that the low-frequency noise performance of one device is

better than that of another and the information afforded by the figure-of-merit κ provides insufficient
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Figure 5.2: Low-frequency limit of Tmin for each of the eight devices at 300, 200, 77, 50, and 18 K.
The curves are calculated from the extracted values of βDC and ncx.
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Table 5.1: Global minima for Tmin,LF as a function of JC and the associated JC for state-of-the-art
devices. Tmin,LF values are computed from measured data using equation (5.1).

Tmin,LF,JC , K JC,Tmin,LF , mA/µm2

Ta, K 300 200 77 50 18 300 200 77 50 18

IBM-G4 16.7 7.3 2.2 1.7 1.4 2.4× 10−3 1.4× 10−2 5.7× 10−1 5.5× 10−1 4.6× 10−1

IHP-G4 16.6 6.8 3.0 2.6 2.1 2.8× 10−1 2.5× 10−1 4.0× 10−1 2.8× 10−1 1.6× 10−1

ST-G4 7.3 3.1 0.7 0.6 0.5 3.8× 10−4 3.4× 10−2 1.1× 10−1 6.8× 10−2 6.2× 10−2

ST-X1 6.9 2.0 1.0 1.0 0.9 6.7× 10−2 4.0× 10−1 6.9× 10−1 6.8× 10−1 5.6× 10−1

ST-X2 7.5 3.1 0.8 0.7 0.6 5.6× 10−4 5.4× 10−2 1.3× 10−1 8.8× 10−2 9.2× 10−2

ST-X3 5.9 1.9 0.9 0.8 0.8 5.0× 10−2 3.3× 10−1 9.7× 10−1 8.9× 10−1 5.7× 10−1

JAZZ-G3 29.0 16.0 4.9 4.1 3.6 2.5× 10−2 6.7× 10−2 5.1× 10−1 7.8× 10−1 7.1× 10−1

NXP-G3 14.4 9.0 8.9 9.7 9.6 1.5× 10+0 1.5× 10+0 1.9× 10+0 3.5× 10+0 5.7× 10−1

Table 5.2: Peak βDC and the associated value of collector-current density

βDC,pk JC,βpk , mA/µm2

Ta, K 300 200 77 50 18 300 200 77 50 18

IBM-G4 351 839 3400 4040 4340 3.1× 10−3 3.5× 10−2 1.2× 10+0 1.7× 10+0 1.9× 10+0

IHP-G4 466 1320 3660 3890 3850 8.9× 10−1 8.4× 10−1 2.3× 10+0 2.3× 10+0 2.5× 10+0

ST-G4 1840 5490 51600 56600 63600 5.0× 10−4 4.2× 10−2 2.3× 10−1 1.5× 10−1 1.3× 10−1

ST-X1 2720 15000 36800 37800 38200 1.8× 10−1 1.1× 10+0 5.7× 10+0 6.3× 10+0 7.2× 10+0

ST-X2 1630 5830 34800 36000 35000 8.9× 10−4 9.9× 10−2 3.7× 10−1 3.4× 10−1 3.0× 10−1

ST-X3 2810 15000 44800 45600 45900 6.6× 10−2 7.8× 10−1 4.1× 10+0 4.6× 10+0 4.7× 10+0

JAZZ-G3 118 189 566 623 651 3.5× 10−2 1.1× 10−1 7.8× 10−1 1.0× 10+0 1.2× 10+0

NXP-G3 801 1400 1150 1110 958 4.9× 10+0 6.3× 10+0 10.7× 10+0 1.1× 10+1 1.2× 10+1

means to do so, as it is a composite of two different parameters. Thus, in order to understand the

behavior of κ with temperature, it is necessary to investigate what happens to the values of βDC

and ncx as the devices are cooled. This task is easily accomplished as these parameters are readily

available. The dc current gain and extrinsic collector current ideality factor are plotted as a function

of collector current density at 300, 200, 77, and 18 K in Fig. 5.3. Referring to the plots of the dc

current gain, several important features and trends can be noted:

1) βDC is greatly enhanced by cooling to 18K for all devices except the NXP-G3 transistor. Thus,

if the extrinsic collector-current ideality factor were equal to unity (i.e., the collector-current

were ideal), then the low-frequency noise performance improvement of each device occurring

due to cooling should be determined entirely by the magnitude of the increase in βDC . In this

case, significant improvements should be seen in all of the devices except for the sample from

the NXP-G3 process.

2) The peak value of βDC varies significantly across processes.
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Figure 5.3: βDC and ncx as a function of JC for each of the eight devices
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3) The collector current density at which peak βDC occurs varies significantly across both tem-

perature and manufacturer.

4) As the devices are cooled, the temperature dependence of βDC becomes stronger.

Similarly, referring to the plots of the extrinsic collector current ideality factors, the following ob-

servations can be made:

1) At a fixed ambient temperature, ncx increases monotonically with increasing collector current.

2) At a fixed collector current density, ncx increases monotonically with decreasing temperature.

3) For collector current densities below ∼1mA/µm2, ncx is only weakly dependent upon JC .

4) At temperatures of ∼50 K and lower, the low-current limit of ncx is greater than unity. This

implies that the collector-current transport is occurring under non-equilibrium conditions.

5) For collector current densities above ∼1mA/µm2, ncx is highly dependent on JC . This sharp

increase can be attributed to high-injection effects. The onset and magnitude of this effect

appears to get worse at cryogenic temperatures. This may be in part due to freeze-out effects

if any of the intrinsic semiconductor regions are doped below the Mott-transition.

6) The uniformity of the ncx vs JC curves for the different devices gets slightly worse as the

ambient temperature is lowered. Nonetheless, the overall trend is consistent across the different

processes.

At room temperature, since ncx is very close to unity, the minimum achievable low-frequency noise

temperature of an HBT is generally determined by where the peak value of βDC occurs.

However, taking into account both the observations about βDC and those made with respect to

ncx, it becomes clear that as the device is cooled, both quantities become important as ncx begins

to depend upon JC . Therefore, there will be some tradeoff between minimizing ncx and maximizing

βDC . In other words, due to the sharp rise in ncx at modest current levels in HBTs operating at

cryogenic temperatures, the optimum bias point may be below the collector current density which

produces the peak value of βDC . Thus, simply maximizing the value of βDC without considering

the collector-current density at which the peak occurs is a risky way in which to optimize the low-

frequency noise performance of the device, as the improvement gained from an increase in βDC can

easily be cancelled out due to an increase in ncx.
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5.1.3 The Figure-of-Merit, ∆Tmin,LF,JC
(Ta)

Thus far, the low-frequency noise performance of several state-of-the-art SiGe HBTs has been

presented along with a general discussion of what happens to some of the key parameters as the

device is cooled. In addition, it has been implied that Tmin,LF,JC is not necessarily a monotonically

decreasing function with respect to βDC,pk. However, this study has not yet resulted in a solid

understanding of what causes the noise performance of one device to improve more than that of

another as the ambient temperature is decreased. In order to clarify this issue, a useful figure-of-

merit to investigate is,

∆Tmin,LF,JC (Ta) ≡ Tmin,LF,JC @300 K

Tmin,LF,JC @Ta
=

300 K

Ta

κmin (300 K)

κmin (Ta)
. (5.5)

∆Tmin,LF,JC is physically important as it is a measure of the improvement in the achievable low

frequency noise performance that is gained with cooling. In Fig. 5.4(a), ∆Tmin,LF,JC is plotted as a

function of Ta for each of the eight devices. It is remarkable how much variation is observed in the

values of ∆Tmin,LF,JC (Ta) among the different processes.

In order to verify that the fractional increase in βDC,pk does not tell the whole story, the value of

∆Tmin (18 K) was plotted for each device as a function of
√

βDC,pk (18 K)/
√

βDC,pk (300 K), and

a linear regression of the form y = α̂0 + α̂1
√

x was applied. The coefficients obtained in this fitting

exercise are6 α̂0 = 0.2 ± 5.5 and α̂1 = 2.5 ± 1.4 and the raw data along with the trend line and

normalized residuals (inlay) appears in Fig. 5.4(b). If ncx plays no role in the determination of

∆Tmin,LF,JC , then this fitting procedure should produce a good fit to the data. However, while the

linear regression certainly implies that the improvement in noise gets better with larger increases in

βDC,pk, the result also implies that the improvement is not determined entirely by the increase in

βDC,pk, as the slope coefficient cannot even be determined with 95% confidence to within a factor

of two. As suspected, the fractional increase in βDC,pk is only part of the explanation of the noise.

Thus, a more complete explanation is desired.

Referring back to equation (5.1), we see that the only remaining possible explanation is that

∆Tmin,LF,JC is also related to the temperature dependence of ncx. Furthermore, at room temper-

ature, it can be observed that ncx is nearly unity even at biases exceeding 1mA/µm2, implying

6The coefficients described in this section are specified to a 95% confidence interval using the t-statistic. It
is assumed that the residuals are approximately normally distributed (i.e., any higher order moments beyond the
variance are negligible). For information regarding confidence intervals of linear estimators, please see a statistics
book such as [116].



CHAPTER 5. DC MODELING 71

Ta [K]

∆
T

m
in

,L
F

,J
C

(T
a
)

IBM-G4
IHP-G4
ST-G4
ST-X2
ST-X1
ST-X3
JAZZ-G3
NXP-G4

101 102 103
100

101

102

(a)

√
βDC,pk@18K/βDC,pk@300K

∆
T

m
in

,L
F

,J
C

(1
8
K

)

r
i /

y
i

0 2 4 6

0 1 2 3 4 5 6

-2

0

2

0

2

4

6

8

10

12

14

16

18

20

(b)

JC for peak βDC [mA/µm2]

P
e

a
k

β
D

C

IBM-G4
IHP-G4
ST-G4
ST-X2
ST-X1
ST-X3
JAZZ-G3
NXP-G4

10-4 10-3 10-2 10-1 100 101 102
102

103

104

105

(c)

JC for peak βDC @300K, [mA/µm2]

∆
T

m
in

,L
F

,J
C

(1
8
K

)

r i
/
y i

10-3 102

10-4 10-3 10-2 10-1 10+0 10+1 10+2

-2

0

2

0

2

4

6

8

10

12

14

16

18

20

(d)

Figure 5.4: (a) ∆Tmin,LF,JC (Ta) as a function of ambient temperature. It should be noted that
the IHP-G4 markers are buried beneath the ST-X1 and ST-X3 markers. (b) ∆Tmin,LF,JC (18 K)
as a function of the square root of the ratio of βDC@18 K to βDC@300 K for each of the eight
devices. The trend line is given as y = 0.2 + 2.5x. However, the confidence intervals indicate that
the coefficient estimates are quite poor. (c) Peak βDC as a function of the collector current density
required to achieve peak βDC for each of the different technologies. Markers are positioned at 300,
200, 77, 50, and 18 K with the leftmost marker being at 300 K on each trace. (d) ∆Tmin,LF,JC (18 K),
plotted for each of the eight devices as a function of the collector current density at which the room
temperature peak βDC occurs. The trend line is given as y = 4.89− 2.75 log10 {x}.

that Tmin,JC (300 K) is solely7 determined by βDC,pk (300 K). As mentioned earlier, at cryogenic

temperatures ncx is fairly uniform across different technologies and increases rapidly with increas-

ing collector current density. Therefore, it can be assumed that given two devices with comparable

7This is a bit of an exaggeration. At room temperature, ncx is marginally degraded above 1 mA/µm2. However,
this change will only impact the NXP-G3 device, for which βDC,pk@300 K occurs at 4.9 mA/µm2.
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βDC,pk, the device in which the peak occurs at the lower value of JC will most likely demonstrate the

better low-frequency noise performance of the two devices. To investigate this notion, it is helpful to

look at a plot of βDC,pk as a function of the associated collector current density. Such a plot appears

in Fig. 5.4(c). It is quite apparent that the collector-current density associated with βDC increases

significantly as the device is cooled. Thus, it seems possible that there may be a correlation between

the collector current density at which the room temperature βDC occurs and ∆Tmin,LF,JC .

In order to test this hypothesis, a curve fit was performed to ∆Tmin,LF,JC (18 K) versus the

logarithm of the collector current associated with βDC,pk@300 K. The coefficients obtained are

α̂0 = 4.9± 1.2 and α̂1 = −2.8± 0.3, and the results of the fitting process appear in Fig. 5.4(d). It is

apparent from the residuals as well as the confidence intervals that there is statistically significant

evidence that the improvement in low frequency noise performance associated with cooling the

transistors is related to the current density required to achieve βDC,pk@300 K, with higher associated

values of JC coinciding with smaller improvements in the achievable noise and vice-versa. This is

very important because it implies that candidate devices for low-noise cryogenic applications can be

screened at room temperature by measuring the collector current density at which peak βDC occurs.

With this analysis complete, the explanation seems fairly trivial; the current density for peak

βDC increases with decreasing temperature. Thus, in order to avoid taking a hit on the low-frequency

noise due to a degradation in the extrinsic collector-current ideality factor, it is necessary that the

room temperature peak value of βDC occur at a reasonably low bias current. For devices which

have fairly high bias currents associated with βDC,pk at room temperature, the optimum bias point

at 18 K will lie below the collector current density required for βDC,pk due to a limiting mechanism

associated with ncx, which increases rapidly at bias currents above 1mA/µm2. Thus, the actual

βDC which results in minimum noise will be significantly lower than peak of βDC,pk and the noise

performance will not benefit from the full increase in peak dc current gain.

5.2 Gummel Curves and Modeling of Terminal Currents

In this section, we investigate the behavior of the terminal currents of SiGe HBTs operating at

low-injection as the devices are cooled. The method used for this study is as follows:

1) Measure the dc Gummel curves for each of the eight devices at 300, 200, 77, 50, and 18 K.

2) Extract physics based large-signal equivalent circuit models that are valid under low-injection.

3) Identify temperature dependent trends in the coefficients well as in the overall characteristics.
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The procedure described above relies upon the analysis of dc Gummel curves. To measure such a

curve, both the base and collector are driven with voltage sources and the dc currents are measured

as a function of base voltage under the constraint that VCB is fixed8. As with all other measurements

described in this work, both the emitter and substrate are tied to ground.

A typical test setup for measuring the dc Gummel curves appears in Fig. 5.5. When making dc

measurements, it is very important that the device sees a high quality RF termination as oscillations

can easily occur at high bias levels if the RF termination impedance is not well defined. Thus, the

dc voltages are fed through dc bias-tees with the RF ports terminated with broadband 50 Ω loads.

Generally, the voltages are swept in a linear fashion, producing a quasi-logarithmic sampling of

currents. Once the data are acquired, they are plotted against Vb on a semi-logarithmic scale. In

Fig. 5.6, an example of a typical Gummel curve is shown and four key regions are identified:

1) The collector current is mainly due to the ideal transport current and the base current is mainly

due to recombination in the base. The dominant components of the base current density in this

region can be described using a diode model: JB,RC = JB0,RC exp {VBE/nb,rcVT }, where JBR0

is the base recombination saturation current density and nb,rc is the low-injection base recom-

bination current ideality factor9. Similarly, the collector current can be written in terms of a

transfer current, which mathematically takes the form of a diode: JC = JC0 exp {VBE/nc0VT },

where JC0 is the saturation current density corresponding to the collector current and nc0 is

the low-injection collector current ideality factor10. In all cases, nc0 ≥ 1, with the lower limit

being the ideal case.

8i.e., the collector voltage and base voltage are swept together such that VC-VB is kept constant.
9The term “ideality factor” refers to a forward biased diode modeled using Boltzmann statistics in which the

current is the result of a diffusion process, and does not have physical meaning with respect to the how ideal the
recombination current is.

10nc0 is equal to nc in the low-current limit. However, in general, nc = IC/gmVT has bias dependence whereas nc0

is a bias independent parameter.
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Figure 5.6: Typical Gummel curve. Four regions of interest are roughly specified on the plot. (1)
Base current dominated by recombination currents. Collector current ideal. (2) Ideal base and
collector currents. (3) Reduction of slope due to resistances. (4) Onset of high-injection effects

.

2) The collector current is still ideal; however, now the ideal component of the base current

has begun to dominate. In this region, the base current density can be described by a

two diode model, with one diode included to account for the recombination current and the

other to describe the ideal current component: JB = JBI + JB0,RC = JB0 exp {VBE/nbVT }+

JB0,RC exp {VBE/nbrVT }. The mathematical description of the collector current is unchanged.

3) In this region, the logarithms of both the collector and base current densities are no longer

linear with respect to VB due to parasitic emitter and base resistances, which result in a

reduction of VBE for a given value VB . If the values of the access resistances are known, then

it is possible to plot the currents as a function of the intrinsic base–emitter voltage, VBE , in

which case the responses in this region will be linear.

4) In this region, high-injection effects come into play causing the currents to deviate further

from their ideal values. Thus they would not appear linear even if plotted against the intrinsic

base–emitter voltage.

Upon studying the structure of the Gummel curves, it is possible to construct the equivalent

circuit model shown in Fig. 5.7, which captures all of the effects described above. It should be noted

that, albeit with a penalty in performance, a HBT can be operated in the inverse mode11 [117].

Therefore, to fully describe the dc terminal currents, additional diodes and transport current sources

are needed to account for the reverse currents. Although these components are negligible under

11i.e. with the collector and emitter terminals swapped



CHAPTER 5. DC MODELING 75

C
C’

B
B’

E

E’

S

IBFIB,RC

IBR

ICF ICR

IS

re

rc

rb

Figure 5.7: The dc equivalent circuit model for a HBT

forward-active operation, and are therefore not extracted here, they are included for completeness

as they will become useful later on in Chapter 6.

In order to account for the high-injection effects, the expressions for the ideal diode and transport

currents are typically written in a slightly different form as compared to those given above as [60]

JBI =
q

GE
eVBE/nbVT [A/µm2] (5.6)

and

JC =
q

GB
eVBE/nc0VT [A/µm2], (5.7)

where GB and GE are base and emitter Gummel numbers, and represent the total mobile charge

in these regions [55]. As the Gummel numbers are a function of charge density, they increase

under high-injection condition resulting in the degradation of collector and base saturation current

densities. In order to maintain consistency with the definitions above, the bias dependencies of the

Gummel numbers will be defined as perturbations to their low-injection values:

GB = q
1 + ΦC

JC0
(5.8)

and

GE = q
1 + ΦE

JB0
, (5.9)
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where ΦC and ΦE are bias dependent parameters describing the degradation of the currents under

high-injection. Furthermore, ΦC and ΦE are monotonically increasing parameters that are infinites-

imally small in the low-injection regime. It should be noted that a similar approach is used in

compact modeling [67]. Thus, the final models of the currents including high injection effects are:

JB =
JB0

1 + ΦE
eVBE/nbVT + JB0,RCeVBE/nb,rcVT (5.10)

and

JC =
JC0

1 + ΦB
eVBE/nc0VT . (5.11)

The extraction and interpretation of the low-injection coefficients is the focus of much of the re-

mainder of Section 5.2. Before continuing on with the extraction of the coefficients that describe

the base and collector currents in the low-injection regime, we will begin by examining the general

characteristics of the Gummel curves and how they change with temperature.

5.2.1 Gummel Plots: General Observations

The Gummel curves were measured for each of the eight devices at 300, 200, 77, 50, and 18 K.

In Fig. 5.8, the Gummel curve associated with the collector currents of each of the eight devices is

shown; inspection of these plots reveals several interesting features:

1) The base–emitter voltage for a given collector current density increases monotonically with

decreasing temperature, with the greatest fractional increase occurring during cooling from

300 to 77 K. In Chapter 3, we saw that JC is proportional to n2
io, which theoretically should

drop by approximately 600 orders of magnitude when going from 300 to 18 K. While doping

and Ge-induced bandgap narrowing effects should make this effect considerably smaller, they

do not explain the fact that the change is getting weaker at lower temperatures. Thus, the

fact that VBE increases less as the temperature drops below 77 K is indicative of the presence

of non-equilibrium transport phenomena. This topic will be revisited later in the chapter.

2) The slope of the collector current density as a function of base voltage is getting steeper as

the device is cooled. This is expected as the low-injection transconductance of the devices

increases with cooling12.

3) While the majority of the devices have a rather smooth roll-off at high injection, the NXP-G3

12The increase was seen indirectly through the observed changes in ncx.
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Figure 5.8: Gummel plots for collector currents at 300 K, 200 K, 77 K, 50 K, and 18 K
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device exhibits abnormal behavior and undergoes quasi-saturation at cryogenic temperatures.

4) The collector current density at which resistive and high-injection effects begin to dominate

appears to drop a bit as the temperature is lowered.

5) In some of the low temperature curves, such as those corresponding to the JAZZ device, it

appears that there is an additional component to the collector current at low bias voltages.

This current is assumed to be a leakage current and will require an extra transport current in

the model.

The Gummel curves were also measured for the base currents and the resulting plots are shown in

Fig. 5.9. Inspection of these curves leads to several notable observations:

1) For most cases, the base–emitter voltage for a given base current density increases monotoni-

cally with decreasing temperature. However, there are some instances at low-injection where

this is not the case.

2) The neutral base recombination current appears to have a bigger influence at lower temper-

atures. This is not surprising as the magnitudes of the ideal base currents drop considerably

with cooling.

3) In general, the curves seem to get more structure as the temperature is lowered.

Finally, to allow for identification of differences in the way they change as function of temperature,

the base and collector currents of all the devices are plotted side by side at 300, 200, 77, and 18 K

in Fig. 5.10. In general, the collector currents appear to be much more well behaved than the base

currents. For instance, while the turn on voltage varies among the devices, the general shape of

the JC curves is similar among all devices, even as the temperature is lowered to 18 K. On the

other hand, the base current contours vary tremendously among the various devices, and this lack

of uniformity grows worse as the temperature is lowered. In order to better understand the behavior

of the terminal currents as a function of temperature, a quantitative analysis will be conducted in

the following section.

5.2.2 Modeling of Currents at Low-Injection

As described above, at low-injection, the base current is modeled as two diodes, with the first

diode representing the ideal current component and the second representing a recombination current.

Thus, four coefficients are required in order to fully describe the base current under low-injection
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Figure 5.9: Gummel plots for base currents at 300 K, 200 K, 77 K, 50 K, and 18 K
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Figure 5.10: Collector (left) and base Gummel plots with data for all devices at (a) 300, (b) 200,
(c) 77, and (d) 18 K
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Figure 5.11: Equivalent large-signal circuit model in the low-injection regime

conditions. Similarly, the collector current under low-injection conditions can be modeled as a

transport current source which has the mathematical form of a diode. Furthermore, in the case of

a collector leakage current, an additional transport current source can be used in order to capture

this effect. Thus, in general, four coefficients need to be determined in order to mathematically

describe the collector current at low-injection. Following this analysis, it can be deduced that eight

coefficients13 are required to fully specify the terminal currents under low-injection: 1) JB0 , 2) nb,

3) JB0,RC , 4) nb,rc, 5) JC0, 6) JC0,P , 7) nc0, and 8) nc,p.

Now, under low-injection conditions, the dc voltage drops across the access resistances are negli-

gible. Thus, the equivalent large signal model in the absence of collector leakage currents simplifies

to that shown in Fig. 5.11. Thus, as VBE is unaffected by parasitic resistances in this regime, it is

possible to determine the unknown coefficients by performing an optimization routine on the raw

Gummel-curve data. This optimization was performed for each of the devices at 300, 200, 77, 50,

and 18 K using a Matlab minimization routine. The full set of coefficients appears in Appendix C.

An example of typical results of the extraction procedure appears in Fig. 5.12. Clearly, the

proposed model works well in capturing the ideal current components in the low-injection region.

In the following sections, the change in the ideal coefficients, JB0, JC0, nb, and nc0, will be studied

and compared with theory. To begin with, we will investigate the ideality factors, nb and nc0.

5.2.3 Low Injection Ideality Factors and Effective Temperatures

The base and collector current ideality factors are important figures of merit for study at

cryogenic temperatures because they give a measure of the realized device performance in comparison

13In most cases, six coefficients are sufficient since the effect of the collector leakage current is usually negligible
rendering the determination of JC0,P and nc,p unnecessary.
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Figure 5.12: Examples of dc fit to low-injection Gummel data at (a) 300, (b) 77, and (c) 18 K

to the theoretical performance, as predicted by classical drift–diffusion theory. In particular, the

ideality factors at low-injection are especially revealing because they are constant with respect to

bias and thus cannot be of thermal origin. Using these coefficients, it is possible to define effective

electron and hole temperatures, Teff,n = nc0 × Ta and Teff,p = nb × Ta, which are the equivalent

temperatures which would result in the same low injection current slopes under the standard drift-

diffusion formulation14. Thus, the temperature dependence of Teff,n and Teff,p provides physical

information regarding the transport mechanisms and deserves serious investigation. As noted in

Chapter 3, several researchers have reported effective electron temperatures that are higher than

Ta for SiGe devices operating at cryogenic temperatures, which they have attributed to ballistic

transport through the thin base [29, 30]. However, there is little information in the literature

regarding the behavior of the effective hole temperature in SiGe devices operating at cryogenic

temperatures.

The extracted low-injection ideality factors, nb and nc0, were converted to effective temperatures

and are plotted against the ambient temperature in Fig. 5.13. When comparing these figures side

by side, it is evident that the behavior of the collector current is more ideal than is that of the base

current. In order to gain further insight into how Teff,n and Teff,p compare, all measured pairs

are plotted against one another in Fig. 5.14. It is clear that the carriers of the base and electron

currents act as if they are at different temperatures and that of the two currents, the collector

current behaves as if it is at a lower temperature. This is puzzling as the non-equilibrium transport

phenomena with which Teff,n is associated is attributed to ballistic transport through the thin base

at low-temperatures, which can be modeled as a rise in the effective temperature of the electrons [29].

14i.e. if the device were behaving perfectly at Teff , then the slope of the current would be what was measured at
Ta. Thus, the electrons (holes) behave as if they are at Teff,n(p), even though the lattice temperature is Ta
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Figure 5.13: Effective temperature for (a) hole and (b) electron currents at low-injection. The hole
current corresponds to the base current whereas the electron current corresponds to the collector
current.

Thus, the fact that the Teff,p is consistently higher than Teff,p seems to contradict the notion that

the rise in Teff,n is due to ballistic transport as the hole current cannot be ballistic. Nonetheless,

it is possible that the physics behind Teff,p are consistent the current theory of non-equilibrium

transport. This is an open issue and certainly deserves further study.

5.2.4 Saturation Currents

In the previous section, we saw that both the collector-current and base-current ideality factors

change significantly at cryogenic temperatures. In this section, we will look at how the saturation

current coefficients JC0 and JB0 change with cooling. To begin, we will examine JB0 , which, as we

saw in Chapter 3, theoretically should change as

JB0 (Ta)

JB0 (300)
≈ 7.83× 1018

(
Ta

300

)7/2

e−Eg(Ta)/kTa. (5.12)

Now, as it has been determined that the holes act as if they are hotter than the ambient temperature,

our expectation is that the fractional change in saturation current will be dictated by equation (5.12),

with the variable Ta replaced by the effective hole temperature, Teff,p. The ratio JB0 (Ta)/JB0 (300)
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Figure 5.14: Scatter plot of Teff,p vs Teff,n . For ambient temperatures of 77 K and below, Teff,n

is consistently lower than Teff,p with the exception of two points.
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Figure 5.15: Normalized JB0 plotted against 1/Teff,p. The data from all eight of the devices is
included in the plot.

is plotted in Fig. 5.15. Inspection of the data reveals that a better fit is

JB0 (Ta)

JB0 (300)
≈ 7.83× 1018e−Eg(Teff,p)/kTeff,p . (5.13)

This trend line also appears in 5.15 and is clearly a very good fit to the data. Thus, there is a

disagreement between the theory and measurement. While equations (5.12) and (5.13) differ by a

factor of (Ta/300)
3/2

, with the sheer scale of the problem a much more important issue is why the

base current acts as if it is at Teff,p as opposed to Ta. Quasi-ballistic transport is generally used
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to explain why the low-injection collector current ideality factor is significantly greater than unity

at cryogenic temperatures, with the justification being that the base layer is extremely thin [29].

However, this rationale does not apply to holes being back injected into the emitter. Thus, the

explanation as to why the holes behave as if they are at an elevated temperature deserves some

study using a device simulator.

The collector current saturation currents were also determined as a function of temperature.

However, as discussed in Chapter 3, there are multiple factors affecting the collector saturation cur-

rent, which makes its temperature dependence difficult to tie to physical characteristics of the device

without detailed information regarding the device structure. Thus, the temperature dependence of

the collector saturation current will not be discussed here. However, for reference, the extracted

values appear in Appendix C.

5.3 Summary

In this chapter, the dc operating characteristics of a variety of state-of-the-art SiGe HBTs have

been studied systematically at temperatures ranging from 300 to 18 K. In the first half of the chapter,

the theoretical low-frequency noise performance of the devices was investigated. As a result of the

study, it was found that the low-frequency noise performance of SiGe HBTs is enhanced significantly

with cooling to 18 K. Furthermore, it was revealed that the improvement in low-frequency noise

performance at 18 K can be predicted using room temperature Gummel curves. In the second half

of the chapter, the Gummel characteristics of the devices were studied. In this investigation, among

other things, it was discovered that, even at low-injection, both the electrons and holes behave as

if they are at elevated temperatures when the devices are cooled to cryogenic temperatures. In the

next Chapter, the RF characteristics of the devices are investigated.
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Chapter 6

Small-Signal Characterization and

Modeling

An understanding of the RF small-signal performance of a device is a critical step towards the

evaluation of a microwave transistor. While SiGe HBTs have been modeled extensively at 300 K,

little research has been conducted on how their small-signal model parameters vary as the devices

are cooled to cryogenic temperatures. Instead, RF studies have generally been focused on the high

frequency figures of merit ft and fmax [31, 32, 33, 34, 35]. Thus, a study of the small-signal model

at cryogenic temperatures is warranted. In this chapter, the small-signal modeling of the devices

described in Chapter 4 is presented. Of particular interest in this investigation is the relative change

that occurs in the device parameters as the ambient temperature is swept from room temperature

to deep cryogenic temperatures.

The chapter begins with a look into how ft and fmax depend upon temperature. Next, a small-

signal model extraction procedure is first presented and then applied to the modeling of the seven1

devices described in Chapter 4. During the discussion of the extracted parameters, expectations of

the changes anticipated with temperature are discussed and compared with the measured results. In

addition, where possible, the differences between the various devices are linked to physical differences

in the processes. All measurements in this section were made using the cryogenic probe station setup

described in Chapter 4.

6.1 The Temperature Dependence of ft and fmax

As a springboard to discussing the RF performance of SiGe HBTs at cryogenic temperatures,

it is intuitive to look at what happens to the ft and fmax of a SiGe HBT as the device is cooled.

1The NXP-G3 device was excluded from this study as RF de-embedding structures were not available.
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Referring back to the expression for ft, we have:

ft =
1

2π

[
τe + τb + τcbd +

kTa

qIc
(Cjbe + Cjcb) + rcCjcb

]−1

. (6.1)

Therefore, one would expect an increase in ft due to:

1) A drop in τe due to an increase in βDC ,

2) A drop in kTa/qIc,

3) A drop in τcbd due to an increase in vsat.

Furthermore, as fmax is proportional to
√

ft, one would expect that an increase in fmax will occur

with cooling as well.

The unity-current-gain cutoff-frequency, ft can be determined by extrapolating the ac current

gain,

h21 =
Y21

Y11
, (6.2)

which is assumed to roll-off at 20 dB/decade when plotted versus f . Similarly, the maximum

frequency of oscillation, fmax can be found by extrapolating the unilateral gain, defined as [118]

U =
|Y21 − Y12|2

4 (<{Y11}< {Y22} − <{Y12}< {Y21})
, (6.3)

Frequency [GHz]

H
2
1
,

U

10-1 100 101
102 103

100

101

102

103

104

Figure 6.1: Sample ft and fmax extraction data. The data which demonstrates sharper roll-off is
the unilateral gain.
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at 20 dB/decade when plotted against
√

f . In general, the measurement of ft is more reliable than

that of fmax. The reason for this is that the measurement of fmax is dependent upon the difference

between two potentially small numbers, <{Y11}< {Y22} and <{Y12}< {Y21}.. Nonetheless, if care

is taken in choosing an appropriate frequency range over which to extrapolate the unilateral gain2,

reliable estimates of fmax can be made.

In order to estimate ft and fmax the following procedure is used:

1) The open- and short-circuit de-embedding structures are measured.

2) S-Parameter measurements are made over a wide range of bias points from low currents to

over 20 mA/µm2.

3) The effects of the feed structure and pads are removed from the active bias measurements

using the procedure summarized in Appendix B.

Typical extraction data appears in Fig. 6.1. It is apparent from the curves that the measured data

follows the expected slopes. Using this procedure, the values of ft and fmax were extracted for each

of the seven devices at 18, 50, 77, 200, and 300 K and, at each temperature the peak value was

located. The values of ft,pk and fmax,pk as well as the associated collector current densities are given

numerically in Appendix C and the ratio of the 18 K values to room temperature values is plotted

for each device in Fig. 6.2. What is particularly interesting about these data is that, while there is

significant variation in fmax,pk, the ratio of the cryogenic value of ft,pk to room temperature ft,pk is

2At higher frequencies, the measurement is more reliable.
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Figure 6.2: Ratio increase in ft,pk and fmax,kp with cooling
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Figure 6.3: Ratio of increase in ft vs temperature for JC = 1mA/µm2

approximately 1.5±0.1. Furthermore, this trend is in good agreement with recently reported values

given in [31, 32, 33, 34, 35, 37]. Thus, it seems that cooling improves the value of peak ft by about

50%, regardless of the device structure.

In addition to studying the increase in ft,pk and fmax,pk, it is also interesting to study the increase

in ft at a fixed collector current density. In Fig. 6.3, the ratio of ft (Ta) to ft (300) is shown as a

function of temperature for a fixed collector current density of 1 mA/µm2 for each of the seven

devices. Inspection of these curves reveals two interesting features: 1) ft increases monotonically for

all of the devices with the exception of the JAZZ-G3 device, and 2) the increase in ft@1 mA/µm2 is

substantially greater than the increase in ft,pk, with the exception of the JAZZ-G3 device in which

the increase is the same in both cases. It is believed that the reason for a stronger increase at lower

biases is that the device is at a lower effective temperature, and hence the effect of cooling on the

terminal characteristics is more pronounced.

In addition to the increase in ft and fmax with cooling, it is important to examine how the

collector current required for peak ft and fmax changes with cooling. Referring to Appendix C, it

can be seen that the locations of peak ft and peak fmax are more or less concurrent. Therefore, it

is reasonable to consider just the location of peak ft and apply the conclusions to fmax. In Fig. 6.4,

ft and βDC are plotted together in order to gauge if it is possible to achieve both high dc current

gain and high ft simultaneously. Inspection reveals several interesting features:

1) For each of the seven devices, and at all temperatures, βDC,pk occurs at a considerably lower
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Figure 6.4: ft and βDC versus JC for each of the seven devices under study. The ft curves are
denoted by white markers whereas the βDC curves are denoted by solid markers.

current density than ft,pk.

2) The general shape of the ft curves is independent of temperature whereas the shape of the

βDC curves depends strongly on temperature.

3) The collector current density required to achieve ft,pk does not change significantly as the

devices are cooled.

4) The collector current density required to achieve βDC,pk increases as the devices are cooled.

As the low-frequency noise performance of a bipolar device depends primarily on the dc current

gain and collector current ideality factor, and the high-frequency noise performance depends upon

the value of ft, the observations made above imply that there will be a tradeoff in the bias point

based upon the desired frequency of operation; that is, as the frequency is increased, the bias point

which optimizes the noise will also increase. This topic has profound implications in terms of the

broadband noise performance of SiGe HBTs and will be revisited in Chapter 7.

6.2 Small-Signal Model Parameter Extraction Techniques

Design and simulation of microwave amplifiers requires accurate device models. Furthermore,

prediction of the noise performance of HBTs is not possible without models that relate physically

to the device structure (i.e., with accurate representations of physical resistances). While foundries

typically supply these models for temperatures in the−55–125 C range [119], models are not available
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at lower temperatures. In this section, techniques to extract a small-signal equivalent circuit model

which accurately captures the physics of the device operation will be reviewed. In section 6.3.2, these

small-signal modeling procedures are applied to several state-of-the-art devices, and a comparison

of the performance of the modeled devices is presented.

The schematic diagram of the small-signal equivalent circuit of a SiGe HBT is shown in Fig. 6.5

along with the identification of sub-circuits3 YI , YII , ZIII , and YIV . Several authors have proposed

models for SiGe HBTs that are considerably more complex than the model shown here. For instance,

it is common for rb and CCB to be broken up into intrinsic and extrinsic components [120, 121, 122].

However, for the large devices that are required for microwave LNAs that are optimized for 50 Ω

generator impedance, the resistances in the circuit are small, which makes the extraction of base

and collector capacitance splitting unreliable, leading to extraction parameters that are not unique

and thus cease to reveal physical information regarding the device structure. Therefore, the simple

model shown in Fig. 6.5 was chosen for this work as it is believed that unique component values can

be determined.

The extraction of bipolar junction transistor small-signal model parameters is a subject that has

received a great deal of attention in the literature over the years. Several authors have reported

methods of determining the entire equivalent circuit model using RF measurements [120, 121, 122,

123, 124]. While determining all of the parameters using RF network measurements permits one to

generate models which accurately capture the RF performance, it is diffucult to extract resistances

which are on the order of an ohm in this manner. For measuring small resistances, it is believed that

dc measurements provide much greater accuracy than high-frequency measurements, and methods

to measure each of the resistances have been presented in the literature [67, 125, 126, 127, 128, 129,

130, 131].

In this work, a combination of dc and RF measurements are used to determine the component

values. Inspection of the small model reveals that there are nine parameters to be determined: 1)

rb, 2) gbe, 3) CBE , 4) CCB, 5) rc, 6) re, 7) gm, 8) τd, and 9) CCS. An overview of the extraction

procedure is as follows:

1) Determine CCS and CCB using off-bias measurements, where VBE = 0 V.

2) Determine re and rc using dc measurements. If desired, these resistances can also be measured

using RF techniques to ensure consistency. As re degenerates the transistor, it is particularly

important that its value be accurately determined.

3The network parameters for the important sub-circuits is given in Appendix D.
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Figure 6.5: SiGe HBT small-signal model with sub-network blocks identified

3) De-embed CCS , rc, and re from the active-bias measurements to end up with the network

labeled ZII in Fig. 6.5.

4) Extract and de-embed rb to end up with the intrinsic network (YI in Fig. 6.5).

5) Determine the remaining parameters, gm, τd, gbe, and CBE .

For all measurements, it is assumed that both the substrate and emitter terminals are tied to ground.

Furthermore, for all active-bias measurements, VCB =0 V.

Prior to processing S-parameter data, the effects of the bondpads and feedlines are removed

using the procedure described in Appendix de-embedding. Once these effects have been removed,

the reference plane is at the contacts to the device. This is important as it will allow the extracted

models to be scaled and used with arbitrary wiring configurations. It is also important that any

systematic resistances be removed from the dc data prior to processing. Thus, the series and return

resistances are determined using the short circuit test structures.

6.2.1 Determination of CCS and CCB

The collector–base and collector–substrate capacitances are junction capacitances that can be

determined using off-bias measurements, in which the collector voltage is swept while the base is

held at 0V. Under this excitation, both gbe and gm become infinitesimally small and can be neglected

in the analysis. The resulting circuit appears in Fig. 6.6. The Y-parameters for the transistor in the
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Figure 6.6: Equivalent circuit for SiGe HBT in the off-bias state

off-bias state can thus be written as:

Yoff =




jωCCB(1+jωτBE)+jωCBE(1+jωτCB)
∆

−jωCCB(1+jωτBE)
∆

−jωCCB(1+jωτBE)
∆

jωCCB(1+jω(rb+re)CBE)
∆ + jωCCS


 , (6.4)

where

τBE = reCBE , (6.5)

τCB = rcCCB, (6.6)

and

∆ = 1 + jω (τBE (1 + rb/re) + τCB (1 + rb/rc)) − ω2τBEτCB (1 + rb/re + rb/rc) . (6.7)

Inspection of (6.4) allows the determination of CCB and CCS as:

CCB = − lim
ω→0

={Y12,off}
ω

(6.8)

and

CCS = lim
ω→0

={Y12,off + Y22,off}
ω

. (6.9)

Thus, CCB and CCS can be found for a single collector voltage by determining the y-intercept of equa-

tions (6.8) and (6.9) plotted as a function of ω. Example data used to determine the collector-base

and collector–substrate capacitances appear in Fig. 6.7 along with the linear fits used to determine

the y-intercepts. Once the capacitances have been extracted over a wide range of collector voltages,



CHAPTER 6. RF MODELING 95

Frequency [GHz]

−
=
{Y

1
2
}/

ω
[f
F

]

0 1 2 3 4 5
0

20

40

60

80

100

(a)

Frequency [GHz]

=
{Y

1
2
+

Y
2
2
}/

ω
[f
F

]

0 1 2 3 4 5
0

10

20

30

40

(b)

Figure 6.7: Example of data used for extraction of (a) CCB and (b) CCS . This particular data was
taken for a ST BiP-X3 device at 300 K physical temperature.

it is possible to fit smooth curves to the data as the bias dependence of depletion capacitances is

well known [132]:

CCB (VCB) =
CCB0

(1 + VCB/VCB0)
mcb

(6.10)

and

CCS (VCS) =
CCS0

(1 + VCS/VCS0)
mcs

. (6.11)

In Fig. 6.8, some example curves are shown demonstrating the effectiveness of the equations (6.10)

and (6.11) at representing the voltage dependence of the capacitances. Fitting the data to this form

is useful in that it allows the capacitances to be represented in a very compact form that can easily

be ported to a simulator.

Once the collector–substrate capacitance is known, it can easily be de-embedded4 , resulting in

the equivalent circuit marked ZIII in Fig. 6.5. The next step is to determine the emitter and collector

resistances.

6.2.2 Determination of re

As the emitter resistance degenerates the transistor, its accurate determination is essential in

determining an HBT model that has physical ties to the device structure. Therefore, a variety of

different techniques are used to determine re, and the results are compared in order to check for

4See Appendix B for information on de-embedding procedures.
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Figure 6.8: Example fits to (a) CCB and (b) CCS data
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Figure 6.9: Equivalent circuit diagrams used for open-collector and gummel parameter extraction
methods

consistency. Namely, the emitter resistance is extracted using dc forward-gummel measurements, dc

open-collector measurements, and active-bias RF S-parameter measurements. Each measurement

method is discussed below.
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6.2.2.1 re Extraction: Forward-Gummel Method

The dc emitter current of a SiGe HBT operating in the forward-active regime is given as

IE ≈ IB0

(
eVBE/nbVT − 1

)
+ IC0

(
eVBE/ncVT

)
≈ IC0

(
eVBE/ncVT

)
, (6.12)

where VBE ≈ VB − IEre. Thus, an expression for the applied base voltage can be written as

VB ≈ IEre + ncVT ln{IE/IC0} . (6.13)

Differentiating equation (6.13) with respect to the emitter current, we arrive at the following ex-

pression:

∂VB

∂IE
≈ re +

ncVT

IE
. (6.14)

6.2.2.2 re Extraction: Open-Collector Method

An alternative way in which the emitter resistance can be extracted is to use the open-collector

method as suggested by Rudolph in [67]. A block diagram of the test setup used for this measurement

appears in Fig. 6.11. The base terminal is driven with a swept current source and the collector

voltage is measured while the collector current is forced to be zero using a second current source.

Under these conditions, the device is in saturation as both pn junctions are forward biased. Thus,

the collector and base currents can be approximated as [67] Therefore, the emitter resistance can

be found by plotting ∂VB/∂IE as a function of 1/IE and extrapolating to determine the value of

the y-intercept [133]. An example plot demonstrating this technique appears in Fig. 6.10(a). It

should be noted that in the derivation it has been assumed that βDC is large, and that both IC0

and nc are independent of bias. These assumptions lose validity under high-injection conditions

(>10mA/µm2 in modern SiGe HBTs), so care must be taken to exclude data taken under operation

in the high-injection regime.

IC ≈ IC0e
VBE/ncVT − IBR0e

VBC/nbrVT (6.15)

and

IB ≈ IBR0e
VCB/nbrVT , (6.16)
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Figure 6.10: Sample extraction data using (a) the gummel method, (b) the open collector method,
and (c) the RF active bias method. These data are for a 0.13x9.86µm2 ST9MW device at 300K and
the extracted values of re are 1.054 Ω for the gummel measurement, 0.982 Ω for the open-collector
measurement and 0.887 Ω for the AC s-parameter measurement.

where IBR0 and nbr are the saturation coefficient and ideality factor associated with current flow

through the base–collector junction. Thus, the collector voltage can be approximated as

VC ≈ IBre + VT ln

{(
IB

IC0

)nc
(

IBR0

IB

)nbr
}

. (6.17)
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Figure 6.11: Test setup used for open-collector measurements

Finally taking a derivate of VC with respect to IB , we arrive at a linear polynomial function of 1/IB:

∂VC

∂IB

∣∣∣∣
IC=0

≈ re +
VT

IB
(nc − nbr) . (6.18)

Thus, the emitter resistance can be determined by fitting a line to ∂VC/∂IB as a function of 1/IB.

An example plot demonstrating the effectiveness of this method appears in Fig. 6.10(b).

6.2.2.3 re Extraction: Active-Bias RF S-Parameter Method

After removal of the collector–substrate capacitance, the reverse transimpedance of an HBT

under active bias is given as

Z12 = re +
1

g̃m + gbe + jωCBE
, (6.19)

where g̃m = gme−jωτd . In the limit as ω → 0, the real part of equation (6.19) simplifies to

lim
ω→0
<{Z12} =

1 + re (gm + gbe)

gm + gbe
=

1

gm + gbe
+ re. (6.20)

Finally, since both gm and gbe increase monotonically with emitter current,

re = lim
IE→∞

(
lim
ω→0
<{Z12}

)
. (6.21)

Therefore, re can be found by first extrapolating the y-intercept of Re {Z12} versus frequency and

then fitting a first order polynomial to the extrapolated intercepts as a function of 1/IE [134].

An example plot showing the fitting process for emitter resistance determination using the AC

Z-parameter method appears in Fig. 6.10(c).
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Figure 6.12: Example of rc extraction data. (a) The collector voltage plotted as a function of base
current for forced collector currents of 0–5 mA. The collector current step size is 1 mA. (b) The
increase in collector voltage plotted as a function of base current. The curve represents the sum of
rc and re. Nearly identical curves are obtained with other values of collector current.

6.2.3 Determination of rc

The collector resistance can be extracted using the dc open-collector method described by

Rudolph in [67]. In this method, both the collector and base terminals are driven with a current

source. If the device is in saturation, then the collector voltage can be written as

VC ≈ IC (rc + re) + IB (re) + VT ln

{(
IC + IB

IC0

)nc
(

IBR0

IB

)nbr
}

(6.22)

Now, taking the derivative of equation (6.22) with respect to IC , we arrive at the following equation:

∂VC

∂IC
≈ rb + re +

ncVT

IB + IC
. (6.23)

Thus the collector resistance can be determined as

rc ≈
∆VC

∆IC
− re. (6.24)

Example data obtained using this procedure appears in Fig. 6.12.
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6.2.4 Determination of rb

Extraction of base resistance is a complicated subject and has received considerable attention

in the literature [121, 123, 127, 135]. Recently, Raya et al. have proposed the fabrication of special

test structures to allow for direct measurement of the base resistance [127]. However, in this work,

the goal is to evaluate commercial devices and special test structures are not available. Therefore,

in situ extraction techniques are required.

Unlike the emitter and collector resistances, it is unreasonable to assume that rb is independent

of bias5 due to its distributed nature across the junction [136]. Therefore, extraction of the base

resistance should be carried out at each active bias point. To determine the base resistance at a

given bias, we begin by de-embedding the collector to substrate capacitance as well as the emitter

and collector resistances from the measured active-bias data to end up with the network parameters

of a circuit that can be represented by the block labeled ZII in Fig. 6.5. At this point, the base

resistance can be computed from the Z-parameters as

rb = <
{
ZII

11 − ZII
12

}
. (6.25)

If there are errors of εre and εCcs associated with the extraction of the emitter resistance and

collector–substrate capacitance, then it can be shown that the resulting error in the estimate of the

base resistance due to the use of equation (6.25) is given as

εrb ≈
εCcs

CCB

(
1

gm
+ εre

)
≈ εCcs

gmCCB
. (6.26)

As there will certainly be small errors in CCS , there will always be a finite error proportional to

εCcs/CCB. For the fairly large devices being investigated in this study, the base resistance and

emitter resistances are expected to be on the order of 1 Ω. If we take the numerical example of

εCcs/CCB = 0.01, then the error in extracting a base resistance of 1 Ω is less that 10% only when

the transconductance is greater than 100 mS6. Thus, the computation of the base-resistance using

the Z-parameter method is particularly error-prone at low biases, where 1/gm is large. However, at

high-biases this method should offer good accuracy.

An alternative base-resistance extraction method is to make the computation using HII
11 = 1/Y II

11.

5For completeness, it should be noted that the intrinsic collector resistance is actually bias dependent. However,
in this work, it is assumed that the collector resistance is dominated by the resistances of the buried sub-collector and
collector reach-through implants. Thus the bias dependence of rc is ignored.

6To jump ahead, the values of CCB are on the order of five times larger than those of CCS . Thus, in this numerical
example, we have assumed that there is a 5% error in the extraction of CCS .
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Because Y II
11 is determined with a short circuit on the collector terminal, this method is insensitive

to errors in the extraction of CCS . Explicitly, HII
11 can be written as

HII
11 =

1

Y II
11

= Rb +
gbe − jω (CCB + CBE)

g2
be + ω2 (CCB + CBE)

2 . (6.27)

Thus the base resistance can be determined as

rb = lim
ω→∞

<
{

1

Y11

}
. (6.28)

When equation (6.28) is used to extract rb, an error term arises due to any error in the extraction

and de-embedding of rc and re. In the limit as the frequency becomes infinite this error reduces to

the parallel combination of the error in extraction of these two resistances.

6.2.5 Determination of gm, τd, and gbe

After removing the parasitic resistances along with the collector–substrate capacitance, the

transconductance and its associated delay time can easily be determined from the Y-parameters of

the intrinsic circuit using the method provided in [123]:

gme−jωτd = Y I
21 − Y I

12, (6.29)

so

gm =
∣∣Y I

21 − Y I
12

∣∣ (6.30)

and

τd = −∠
(
Y I

21 − Y I
12

)

ω
. (6.31)

Alternatively, gm can be determined using the dc Gummel data as

gm =
∂IC

∂ (VB − reIE)
. (6.32)

It should be noted that determination of gm through dc measurements is error-prone at high biases

due to parasitic ground return resistances. Therefore, it is recommended that gm be determined

using RF measurements as this is believed to be more reliable. On the other hand, it is believed
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that gbe is best computed using dc measurements as

gbe =
gm

βAC
=

∂IB

∂VBE
. (6.33)

At high biases, the method presented in [8] can also be used to determine gbe.

6.2.6 Determination of CBE

The final parameter which must be extracted is the base–emitter capacitance, which can be

extracted from the intrinsic network as

CBE ≈ −
1

ω=
{
1/Y I

11

} −CCB (6.34)

or

CBE ≈ =
{
Y I

11 + Y I
12

}
. (6.35)

Once the base–emitter capacitance is known as a function of bias, it is possible to fit a smooth curve to

the extracted values. As it turns out, the base–emitter capacitance can be modeled mathematically

as a depletion capacitor in parallel with a fixed capacitor [134]:

CBE = CBE0 +
CBE1

(1− VBE/VBE0)
mbe

. (6.36)

With a method for the determination of CBE in place, a procedure for the extraction of each

of the component values is known. In the next section, this procedure will be applied to several

state-of-the-art HBTs.

6.3 Small-Signal Modeling Results

In the previous section, the techniques used to extract a complete small-signal model were

presented. These techniques have been applied to each of the seven devices and small-signal models

were extracted at 300, 200, 77, 50, and 18 K. In order to verify that the extraction procedure

produces sufficiently accurate models, a comparison of typical extraction results with measured S-

parameters is given at the beginning of the section. The small-signal models are then analyzed in

terms of their temperature dependence and uniformity across the different technologies. In order to

make a comparison as to how the different technologies change with temperature, the parameters



CHAPTER 6. RF MODELING 104

which depend upon bias will be compared at both a fixed current density, which is interesting from

the device physics point of view, and a fixed transconductance, which is interesting from the circuit

design point of view.

An example of some of the typical results that can be achieved when using the modeling procedure

presented in this section is shown in Fig. 6.13. This measurement was taken at 18 K and the bias

point in the presented data varies by a factor greater than 100:1. Clearly the agreement between

measurement and modeling is excellent. Thus, we will proceed to discuss the behavior of each of

the small-signal component values as a function of the ambient temperature.

6.3.1 Capacitances

The capacitances were extracted as a function of bias, and smooth curves were fit to the data.

The base–collector and collector–substrate capacitors were modeled as junction capacitances with

unknown parameters Cj0, Vj0, and mj , whereas the base–emitter capacitance was modeled as the

parallel combination of a junction capacitance and a bias independent capacitor. Fits were performed

at each temperature and all of the coefficients can be found in Appendix C.3.1. As the capacitances

play a key role in the high-frequency performance of SiGe HBTs, their temperature dependencies are

of great interest to this study. In the following, each of the three capacitances will be investigated

as a function of temperature.

6.3.1.1 Collector-Base Capacitance

Physically, CCB is a junction capacitance across the collector-base space-charge region (SCR).

When the device is cooled, we expect this region to grow a little wider due to a decrease in the

concentration of ionized dopants in the collector region. Thus, the value of CCB should drop pro-

portionally to the change in the collector-base SCR thickness [37]. The extracted capacitances are

shown in Fig. 6.14(a) for a fixed base–collector voltage of 0 V. It is interesting to note that the

device with the lowest base–collector capacitance per unit area (JAZZ-G3) is also the device which

demonstrates the poorest performance in terms of ft and fmax, whereas the device with the highest

base–collector capacitance per unit area (ST-G4) is also the best device in terms of high frequency

performance. This is an indication that the collector of the ST-G4 device is doped much more heav-

ily than the JAZZ device; presumably this was done in order to delay the onset of the Kirk effect.

This interpretation is supported by the fact that the collector current density required to achieve

peak ft and fmax is consistently higher for the ST-G4 device than any of the other devices whereas,
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Figure 6.13: Example extraction results. The data is for a 3x0.17x14.79µm2 ST-X3 device at 18 K.
Excellent agreement is seen for all four scattering parameters over this very wide range of bias
currents (> 100 : 1).
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Figure 6.14: (a) CCB and (b) normalized CCB as a function of ambient temperature for each of the
devices

for the JAZZ device, it is consistently lower than the other devices.

The base–collector capacitances normalized to their room temperature values are shown as a

function of ambient temperature in Fig. 6.14(b). As expected, a decrease in CCB was observed for

each of the seven devices as the temperature was lowered. Quantitatively speaking, the average

device showed about a 10% decrease in capacitance as the ambient temperature was lowered from

300 to 18 K. The standard deviation in the measurements was 2.5%, indicating that, in general,

the base–collector capacitance will drop. Furthermore, with cooling to 77 K, an average decrease in

base–collector capacitance of 7.5% was observed with a standard deviation of 1%. These numbers

are consistent with the changes observed with cooling to 77 K by Pruvost et al. [37].

6.3.1.2 Collector–Substrate Capacitance

As a direct consequence of the fact that the devices lie on a lightly doped substrate, a collector–

substrate capacitance exists. As discussed in Section 3.1.5, semiconductor materials which are doped

below the Mott-transition will show carrier freeze-out effects at temperatures below 30 K or so. This

incomplete ionization will result in a drop in the depletion capacitance at cryogenic temperatures

as CCS ∝
√

N−
A,sub. Furthermore, it will result in the conductivity of the substrate dropping by

orders of magnitude, rendering the substrate terminal of CCS essentially open-circuited. Thus, it

is expected that the measured collector–substrate capacitance should drop enormously at cryogenic

temperatures.
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Figure 6.15: (a) CCS and (b) normalized CCS as a function of ambient temperature for each of the
devices

The collector–substrate capacitances and the normalized collector–substrate capacitances are

plotted against ambient temperature for each of the seven devices in Fig. 6.15. As expected, a

sharp decline in the collector–substrate capacitance is observed in the majority of the devices as the

temperature is lowered from 50 to 18 K. It is believed that the remaining capacitances measured at

18 K are residual second-order effects, such as fringing capacitance from the collector terminal to

the metallic ground plane. Referring to the absolute values of the capacitances7 , it can be seen that

they are on the order of 3-8 fF/µm2, which is quite small.

6.3.1.3 Base–Emitter Capacitance

As discussed in Chapter 2, the base–emitter capacitance is the parallel combination of a depletion

capacitance, CBE,depl, and a diffusion capacitance, CBE,diff . As the depletion capacitance is a

junction capacitor, its temperature dependence is determined by the doping levels, which for modern

SiGe HBTs are high enough to render CBE,diff nearly completely independent of temperature. On

the other hand, the diffusion capacitance does depend on temperature as CBE,diff = gmτf =

7It should be noted that a high value of CCS was expected for the IHP device due to the lack of DTI in the SG-13
process. However, referring to Fig. 6.15(a), the measured value of CCS was found to be lower per unit-area than any
of the other devices. From the documentation provided with the devices, it looks as if the low-impedance ground
plane is not ohmically connected to the substrate. This would then explain the lower capacitance as the capacitance
from the ground plane to the substrate would be in series with CCS and is only expected to be on the order of a
couple of fF.
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qICτf/nckTa. For a SiGe HBT, τf = τb + τe, where [30]

τb ≈
W 2

B

2µ̃nb∆Eg,Ge (grade)
(6.37)

and

τe ≈
1

βAC

(
We

Spe
+

W 2
e

2Dpe

)
, (6.38)

where µ̃nb is the position averaged minority carrier mobility in the base, ∆Eg,Ge is the Ge grating in

V (as opposed to eV; q has been factored out), Spe is the hole surface recombination velocity at the

emitter contact and We is the width of the neutral emitter. In devices with high βAC , the forward

transit time is limited by τb, and CBE,diff can be written as

CBE,diff ≈ gm
W 2

B

2µ̃nb∆Eg,Ge (grade)
. (6.39)

Referring back to Fig. 3.4(b), it can be seen that there is little change in the mobility as a function

of temperature for the impurity concentrations present in the base of modern SiGe HBTs. Thus,

for a fixed collector-current density, we would expect CBE,diff to increase proportionally to the

transconductance as the device is cooled, resulting in a maximum fractional increase in CBE of

(300/Ta)× (nc(300)/nc(Ta)).

The base–emitter capacitance for each of the devices was extracted as a function of temperature

and bias current, and smooth curves were fit to the data at each temperature. A complete listing

of the coefficients used to model the capacitors as a function of VBE appears in Appendix C.3.1. In

order to study the temperature dependence of CBE , the extracted values were plotted as a function

of temperature for a fixed collector-current density, and the results are shown in Fig. 6.16(a). As

expected, the JAZZ-G3 device has considerably higher capacitance per unit-area than the other

devices.

In Fig. 6.16(b), the fractional increase of CBE for a fixed collector-current density of 1mA/µm2

is plotted as a function of temperature. It can be seen that the increase in CBE as the ambient tem-

perature drops from 300 to 18 K varies from approximately 1.4 to 2.5. These values are considerably

lower than the observed fractional increase of 2.4 to 4.3 in the transconductance as the temperature

was lowered. This indicates that the depletion capacitance must be a significant portion of the

overall capacitance. In order to verify the hypothesis that the temperature dependence of the base–

emitter capacitance is completely contained in the transconductance term in equation (6.39), the
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Figure 6.16: (a) CBE and (b) normalized CBE as a function of ambient temperature for each of the
devices

low-temperature8 collector-base capacitance values for each of the devices was extrapolated based

upon the values measured at 200 and 300 K in conjunction with the cryogenic transconductance

values9. The results of this procedure are plotted for several of the devices in Fig. 6.17 and indicate

that, to first order, the temperature dependence of CBE is in fact strongly coupled to that of the

transconductance. Thus, it is possible to roughly determine the base–emitter capacitance at cryo-

genic temperatures by knowing only the cryogenic transconductance and the values of gm and CBE

at two higher temperatures.

In addition to studying the temperature dependence of CBE at a fixed collector current density,

it is also important to study it for a fixed transconductance. In Fig. 6.18(a), CBE is plotted as

a function of temperature for a fixed transconductance of 100 mS/µm2, and in Fig. 6.18(b) the

values of CBE@18 K normalized to their room temperature values are plotted as a function of

transconductance. Clearly, the assumption that room temperature collector–base capacitance values

can be used at 18 K is invalid. This is very important as it implies that designs cannot be carried

out using room temperature models with the intention of scaling the collector current at cryogenic

temperatures to achieve the transconductance that was simulated at 300 K. Instead, in order to

accurately predict circuit performance, it is necessary that cryogenic circuits be designed using

models developed at cryogenic temperatures.

8i.e. 77 K and below
9The extrapolation used is bCBE (Ta) = m (gm (Ta) − gm (300 K)) + CBE (300 K), where m =

(CBE (300 K) − CBE (200 K)) / (gm (300 K) − gm (200 K)). Physically, the slope coefficient, m, is related to the
change in τb with cooling and is dependent upon the base doping.
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Figure 6.18: The temperature dependence CBE for a fixed value of gm. (a) The normalized value
of CBE as a function of ambient temperature for a fixed transconductance of 100 mS/µm2. (b) The
normalized value of CBE@18 K as a function of transconductance.
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6.3.2 Resistances

The resistances in a SiGe HBT arise as a consequence of the finite conductivity of the tungsten

contacts, polysilicon layers, and doped silicon layers. A “back of the envelope” calculation10 as to

the magnitude of the resistive component due to the tungsten contacts at room temperature gives

a result on the order of 0.4 Ωµm2 [96]. When cooled below 77 K, the conductivity of tungsten

increases by several orders of magnitude [137]. Thus, one can expect that a small component of each

of the resistances will go away when the device is cooled due to an increase in the conductivity of

the tungsten contacts.

In order to consider what will happen to the resistances associated with the doped silicon and

polysilicon regions, we can begin by writing an expression for the sheet resistance of a thin doped

region of semiconductor:

RS =
1

∫W

0 q N
−(+)
A(D) (x)µp(n) (x)dx

, [Ω/�] (6.40)

where W is the thickness of the region of semiconductor and x is the depth in the material [55].

The evaluation of equation (6.40) is not trivial since the position dependent mobility is a function

of both temperature and ionized impurity concentration. However, closed form expressions for all

required variables were provided in Chapter 3 (see equations (3.14) and (3.18)). Thus, it will be

very useful to investigate how the sheet-resistance of the materials varies for a fixed level of doping.

This calculation was completed for As, P, and B dopants and the resulting curves are shown in

Fig. 6.19. For polysilicon layers, whose doping level is on the order of 1×1021 cm−3, the calculations

show that regardless of which dopant is used, one can expect a decrease in sheet resistance of

approximately 25% for cooling from 300 to 77 K and an additional 15% decrease when going all the

way down to 18 K. It should also be noted that these calculations are in line with the experimental

result of ∼ 20% reported by Clark et al. for cooling to 77 K [138].

While the situation with the polysilicon resistances is fairly straightforward, the temperature

dependence of the lightly to moderately doped semiconductor regions is a bit more complicated

due to carrier freeze-out effects. For instance, if we take the case of As dopants, we see that for

impurity concentrations below about 1×1019 cm−3, the sheet resistance ceases to be a monotonically

decreasing function with respect to temperature. Instead, there is some temperature between 300 and

18 K at which the sheet resistance is minimum. Furthermore, for As acceptor impurity concentrations

10For an IBM BiCMOS8HP device, there are 46 contacts in a 0.12 × 18µ m2 region. As each contact is 9 Ω, the
resistance is 0.4 Ωµm2 .
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Figure 6.19: Normalized resistivity as a function of doping and temperature for a Si sample doped
with (a) As donor impurities, (b) P donor impurities, and (c) B acceptor impurities. The emitter is
usually doped with As, whereas the collector is usually doped with P. B is used in the base. The
effects of incomplete ionization and temperature were taken in to account when computing mobility.

lower than about 8×1019 cm−3, carrier freeze-out effects cause a steep increase in sheet resistance at

cryogenic temperatures. Thus, the behavior as a function of temperature of the resistances intrinsic

to a SiGe HBT will be highly dependent upon the impurity concentration in each of the regions of the

device. As this is only important at cryogenic temperatures, one would not expect the foundries to

take carrier freeze-out effects into account when optimizing the doping profiles. Thus, the behavior of

the resistances as a function of temperature is inherently difficult to predict. In the next section, we

will examine the behavior of the base, emitter, and collector resistances as a function of temperature.
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6.3.2.1 Base Resistance

The base resistance is a series combination of extrinsic resistances due to the polysilicon base

contact (rbx,p) and the tungsten base contact resistance (rbx,t) and an intrinsic spreading resistance

(rbi). The extrinsic components are assumed to be bias independent whereas the intrinsic part of

the base resistance decreases with increasing bias due to current crowding (distributed) effects [54].

As discussed above, a decrease of ∼ 40% is expected in rbx,p with cooling from 300 to 18 K. The

effect of rbx,t is assumed to be very small. Thus, the major unknown is the intrinsic base resistance,

rbi.

The base resistance was extracted as a function of bias for each of the seven devices and an

example result from each of the foundries appears in Fig. 6.20. At low biases, the IBM-G4 and

IHP-G4 devices have a minimum base resistance at a temperature in the vicinity of 50 K whereas

the minima is closer to 77 K for the ST-X1 and JAZZ-G3 devices. At current densities above

1 mA/µm2, the improvement in rb with cooling becomes less significant, and in the case of the

IBM-G4 and JAZZ-G3 devices, there is even a penalty in base resistance for cooling all the way to

18 K.

The percentage change in rb with cooling from to 300 to 18 K is shown for each of the devices

at 0.1 and 3.0 mA/µm2 in Fig. 6.21. At both the low- and high-injection bias points there is

considerable variation among the different devices. Recently, a study was published by Garcia et

al. in which the base resistance of eight different transistor were reported at 300 and 40 K [33],

with an average decrease in base resistance of 22% measured with cooling. The standard deviation

of the data is 10%. Unfortunately, the bias point was not stated. This is in agreement with the

extracted 50 K low-injection data reported here as the mean decrease in base resistance was found

to be 18.7% with a standard deviation of 16%. It should be noted that the standard deviation in

the work reported here is expected to be higher than that reported in [33], as the result of a wider

variety of devices under investigation.

6.3.2.2 Emitter Resistance

In modern SiGe HBTs, a p-doped silicon capping layer is grown on top of the SiGe base in order

to apply strain to the Ge film, thereby increasing the Ge-induced bandgap narrowing. To form

the emitter, an extrinsic polysilicon layer is deposited on top of the capping layer and a thermal

annealing process is carried out, resulting in the diffusion of a large concentration of As, or in the

case of the IBM devices, P, dopants into the capping layer. This layer then serves as the intrinsic n+
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Figure 6.20: Extracted base resistance as a function of JC

emitter [54]. While the dopant concentration in the extrinsic emitter is quite high, the concentration

of impurities in the intrinsic emitter is dependent upon the annealing process and can be considerably

lower.

Thus, there are two components to the emitter resistance; the external polyemitter, which we

expect to decrease by about 40% with cooling to 18 K, and the intrinsic emitter, which may or may

not change significantly depending on the exact concentration of dopants in the region. The emitter

resistance has been extracted for each of the seven devices under study and the results appear in

Fig. 6.22. Interestingly enough, the majority of the devices have an increase in emitter resistance

as they are cooled from 300 K to 18 K. The physical explanation for this must be that the emitter
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Figure 6.21: Percentage change in rb with cooling. (a) JC = 0.1 mAµm2 and (b) JC = 3 mA/µm2
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Figure 6.22: (a) Extracted emitter resistance for each of the devices and (b) percentage change with
cooling from 300 to 18 K

region closest to the metallurgical base–emitter junction of the devices is doped slightly below the

Mott transition and is freezing-out at cryogenic temperatures.

6.3.2.3 Collector Resistance

The collector resistance results from the intrinsic collector, as well as the access resistance

between the SIC and the collector terminals. As mentioned in Chapter 4, the IHP devices are
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Figure 6.23: (a) Collector resistance and (a) normalized collector resistance as a function of ambient
temperature

expected to have a higher extrinsic collector resistance in comparison to the other technologies, due

to use of an implanted sub-collector. As seen in Fig. 6.23, the measured resistance confirms this

expectation. However, it is interesting to note that the fractional improvement seen in the collector

resistance of the IHP device with cooling is similar to that of the devices with high quality buried

sub-collectors. Furthermore, referring to Fig. 6.24 the percentage change that was observed with

cooling from 300 to 18 K was 50 %, which is indicative that main sources of collector resistance are

the heavily doped buried sub-collector and reach-through implants.

6.3.3 Transconductance, gm, and Base–Emitter Conductance, gbe

The extracted intrinsic transconductance and input conductance are plotted in figures 6.25

and 6.26 for a collector current density of 1mA/µm2. The extrinsic transconductance was studied

in Chapter 5, and, for low biases, is equal to the intrinsic transconductance. At 1mA/µm2, an

increase in the transconductance ranging from 2.4 to 4.4 was observed. As discussed in Chapter 5,

non-equilibrium effects are responsible for limiting the achieved transconductance.

The base–emitter conductance was computed and the results appear in Fig. 6.26. If βAC and gm

rise together with cooling, there should be no change in gbe as a function of temperature. However,

as βAC rises much more rapidly than gm, gbe drops accordingly. The benefit of this drop is quite

profound. As gbe is vanishingly small at 18 K, it can be neglected in the small-signal model for

all biases except under very high injection. Furthermore, as the early effect is negligible in SiGe
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Figure 6.25: (a) Transconductance and (b) normalized transconductance as a function of ambient
temperature

HBTs [30], the output impedance is also very high. In comparison to FETs, which have finite

output resistance, HBTs are a much more ideal device at cryogenic temperatures in terms of input

and output resistances.
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Figure 6.26: (a) Base–emitter conductance and (b) normalized base–emitter conductance as a func-
tion of ambient temperature

6.4 Summary

In this chapter, a detailed investigation of the small-signal performance of SiGe HBTs has been

presented. The study began with a brief look into the behavior of ft and fmax with cooling in which

it was seen that the peak value of ft is improved by about 50% with cooling. The behavior of fmax

with cooling was found to be process dependent. After discussing the high-frequency figures-of-merit,

a small-signal extraction procedure was presented and applied to model several state-of-the-art SiGe

HBTs at a variety of temperatures. Next, the characteristics of each component of the small-signal

model were discussed in terms of temperature dependence both with respect to how the results

compare with theoretical expectations and in terms of how the device properties vary among the

different processes. In the next chapter, the noise of the devices will be modeled using the small-

signal and dc models which have been developed.
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Chapter 7

Noise Modeling

In this chapter, the models and theory developed in the preceding sections of the dissertation

are applied to determine the ultimate limitations of SiGe HBTs in terms of noise performance.

Furthermore, by analyzing the noise performance in terms of a figure of merit in which both noise and

gain are taken into account, an accurate limit on achievable system noise performance is determined.

The main goals of this chapter are 1) to determine the fundamental noise performance limitations of

SiGe HBTs in the ambient temperature range of 0–300 K, 2) to understand how the noise properties

of the devices change with temperature, and 3) to evaluate how SiGe devices compare with state-

of-the-art InP HEMT devices in terms of cryogenic noise performance.

The chapter begins with a brief review of the general concepts used to describe noise performance

as well as a description of the specific representation used to model the noise in a SiGe HBT. Next,

a procedure for the systematic determination of the metrics of interest is presented. With the

necessary framework in place, the noise modeling procedure is then applied to the devices that were

modeled in Chapter 6, and the results are discussed thoroughly. Finally, the chapter is drawn to a

close with a comparison of the noise performance of SiGe HBTs with that of state-of-the-art InP

HEMTs. Prior to describing the procedure of determining the noise properties, we will begin with

a brief review of noise parameters.

7.1 A Brief Review of Noise Parameters and the Concept of

Cascaded Noise Temperature

The spot noise-temperature of a linear two-port can be fully described by the formula [68]

Te = Tmin + T0
N |YS − YOPT |2
<{YOPT }< {YS}

, (7.1)
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where N = Rn<{YOPT }. While there are several alternative forms in which the equation (7.1) is

commonly cast, from a device modeling point of view this particular representation is ideal due to

its fundamental nature [68, 69]. In particular,

1) Tmin and N are invariant with respect to lossless transformations applied at both the input

and output of the two-port. Thus, they not affected by lossless packaging.

2) Tmin and N are independent of device size1.

3) YOPT varies with lossless transformations to the input of the two-port as a typical admittance

would. Furthermore, YOPT scales with size in the same manner as other admittances (i.e., a

factor of two increase in device size will result in a factor of two increase in YOPT .)

Thus, this set of noise parameters permits a fair comparison of devices, as Tmin and N do not depend

upon device size, and YOPT scales with device size and can be normalized to a device of unit area.

7.1.1 The Concept of Cascaded Noise Temperature

While the noise temperature and noise figure have become the standard figures of merit for

low-noise amplifiers and devices, they do not provide the information required to determine system

noise performance. The reason for this is straightforward; the noise temperature and noise figure

do not take gain into account. Thus, knowledge of only Te does not give enough information to

determine how the amplifier will behave in a system. The importance of gain in terms of sys-

tem noise temperature can be understood by considering Friss’s formula for the cascading of noisy

networks [139]:

Tsys = Te1 +
Te2

Ga1
+

Te3

Ga1Ga2
..., (7.2)

where Tsys is the overall input referred noise temperature of the cascade, Te1 and Ga1 are the noise

temperature and available gain of the first amplification stage, Te2 and Ga2 are the noise temperature

and available gain of the second amplification stage, and so on. Referring to equation 7.2, it is evident

that the gain of an LNA has a serious impact on the system noise temperature, even though the

noise temperature of the LNA is independent of gain.

A far more fundamental figure of merit is the cascaded noise temperature, which is a variant of

1It should be noted that Rn is a much more commonly quoted noise parameter in the literature. However, for the
purpose of device characterization, it is a biased figure of merit, as it is not independent of device area. Rn is inversely
proportional to the device size whereas YOPT scales with device size. Therefore, N = Rn<{YOPT } is independent
of device size.
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the noise measure introduced by Haus and Adler [8, 140], and is given as2

TCAS = T0M =
Te

1− 1/Ga
, (7.3)

where M is the noise measure and Ga = |Y21|2<{YS} /
(
<{Y22} |Y11 + YS |2 −<{Y12Y21 (Y ∗

11 + Y ∗
S )}

)

is the available gain of the network, and is a function of source admittance, YS [141]. The cascaded

noise temperature is a very fundamental property of a network since its minima is invariant to any

lossless transformation to the network; that is, it is invariant to lossless input, output, and feedback

networks. Furthermore, TCAS can be interpreted physically as the noise temperature of an infinite

chain of identical devices. Thus, it sets a limit on the system noise performance that is achievable

using a given device. Finally, for high values of Ga, the cascaded noise temperature simplifies to the

standard noise temperature. In this work, the cascaded noise temperature will be reported rather

than the standard noise temperature.

7.2 Noise Model

As discussed in Section 2.2, the noise parameters and Tcas of a SiGe HBT are completely

determined by the small-signal model and dc bias currents, so long as the shot-noise sources are

uncorrelated. Furthermore, if the shot-noise sources are correlated, then the impact is a reduction

in the minimum achievable noise of the device. Therefore, it is possible to estimate the noise

performance of a SiGe HBT knowing just the dc currents, which determine the magnitudes of the

shot-noise sources, the values of parasitic resistances, which contribute thermal noise, and the small-

signal model, which determines the frequency response of the device. Once the noise parameters for

a given device are determined, they can then be converted to Tcas allowing for the evaluation of the

ultimate performance limitations of the HBT.

The full small-signal noise model used in this work is shown in Fig. 7.1. The model has the same

lumped components as the model presented in Chapter 6, with additional thermal noise sources

for each of the physical resistances and shot noise sources associated with the base and collector

currents. It should be noted that the shot-noise sources are considered to be uncorrelated in this

work and their magnitudes are tabulated directly from dc measurements. In addition the input

conductance does not have thermal noise associated with it as it is not a physical resistance. In the

next section, the procedure for determining the noise performance from the small-signal model and

2equation (7.3) does not apply when there are negative resistances in the circuit. In this case, it is necessary to
replace Ga with Ge, which is the exchangeable gain of the network.
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Figure 7.1: Complete small-signal HBT noise model

dc terminal currents is summarized.

7.3 Noise Modeling Procedure

The HBT noise modeling procedure begins with the measurement of the dc terminal character-

istics and the extraction of the small-signal model over a wide range of bias points. These topics

were discussed at length in Chapters 5 and 6 and will not be revisited here. Assuming the bias and

small-signal characteristics of the device are known, the next step is to use a noise imbedding proce-

dure in order to determine the equivalent chain-representation of the noise, as referred to the input

terminals of the device. Once these noise spectra are known, determination of the noise parameters

is straightforward. Finally with the noise parameters known, the cascaded noise temperature can be

computed. In this section, this procedure will be detailed and pertinent equations will be provided.

Derivations of the key equations appear in Appendix E.

7.3.1 Computation of Noise Parameters

With the values of the small-signal model and internal noise sources known, determination of the

noise parameters is a straightforward exercise. To begin with, the noise parameters of the intrinsic

network are written in admittance (short-circuit) representation as

NY

I =




2qIB 0

0 2qIC


 . (7.4)
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Similarly, the admittance parameters of the intrinsic network can be written as

YI =




gbe + jω (CBE + CCB) −jωCCB

gm − jωCCB jωCCB


 . (7.5)

Now, with the noise and network parameters of the intrinsic network known, the next step is to

convert the matrices to the impedance (open-circuit) representation and add the effects of the

series resistances. The conversion of YI to ZI is trivial as ZI = YI
−1. The noise parameters

can be converted using NZ

I
= ZIN

Y

I
NI

†
, where the † operator refers to the hermitian transpose

operation [142].

Now, with the intrinsic network in the impedance representation, the imbedding of the series

resistances is straightforward:

ZII = ZI +




rb + re re

re rc + re


 (7.6)

and

NZ

II = NZ

I + 4kTa




rb + re re

re rc + re


 . (7.7)

At this point, all of the external noise sources are accounted for. Referring back to the equivalent

circuit, one might think that it is necessary to take the filtering effect of CCS into account before

converting the noise spectral densities to the desired set of noise parameters. However, the way that

the noise properties of a network are defined is in terms of available noise power at the output of

the network. Thus, as the collector–substrate capacitance can always be tuned out, it has no effect

on the noise parameters, and need not be accounted for in their calculation. Nonetheless, it may be

desired to calculate the full set of network parameters, so the shunt capacitance at the output will

be added for completeness:

YIII = YII +




0 0

0 jωCCS


 (7.8)

and NY
III

= NY
II

. As the final step, the following equations are used to convert to the desired noise

representation [30, 142, 143, 144]:

NA

III
=



|Nvn |2 Nvn,i∗n

Nv∗

n,in |Nin |2


 =




0 −1/Y III
21

1 −Y III
11 /Y III

21


NY

III




0 1

−1/Y III∗
21 −Y III∗

11 /Y III∗
21


 , (7.9)
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Tmin =
1

2k

(√
|Nvn |2 |Nin |2 − =

{
Nv∗

nin

}2
+<

{
Nv∗

nin

})
, (7.10)

N =
1

4kT0

√
|Nvn |2 |Nin |2 −=

{
Nv∗

nin

}2
(7.11)

GOPT =
1

|Nvn |2

√
|Nvn |2 |Nin |2 −=

{
Nv∗

nin

}2
, (7.12)

and

BOPT = −=
{
Nv∗

nin

}

|Nvn |2
. (7.13)

Therefore, given a small signal-model equivalent circuit model, the noise parameters can be deter-

mined in a systematic fashion that is amenable to automation.

7.3.2 Computation of Tcas,min

Upon determining the noise and network parameters of the device, it is possible to compute

TCAS as a function of source impedance at any particular bias. A particularly insightful formula for

the noise measure was provided by Fukui and is converted to TCAS to give [141, 145]:

TCAS =
Tmin + T0

N
<{YOPT }<{YS} |YS − YOPT |2

1− 1
Ga,max

− <{Y22}

<{YS}|Y21|
2 |YS − YOPT,G|2

, (7.14)

where Ga,max is the maximum available gain of the network and YOPT,G is the generator impedance

required to achieve this gain. Referring to equation (7.14), it is apparent that, for finite Ga,max,

TCAS > Tmin , and its minimization requires orchestrating a tradeoff between gain and noise match-

ing. In [141], Fukui showed the loci of source impedances producing constant noise measure form

circles when plotted on the smith chart, and that there is a unique optimum source impedance that

minimizes the noise measure3 .

A closed-form expression for the minimum noise measure as a function of source impedance has

been derived by Poole and Paul and once converted to TCAS is given as [146, 147]

TCAS,min = T0
−Mb +

√
M2

b − 4MaMc

2Ma
, (7.15)

where Ma, Mb, and Mc are defined in Table 7.1. Furthermore, Poole and Paul also provide the

3The existence of the optimum was also shown earlier by Haus and Adler. Furthermore, it was shown that if
the network is analyzed using a matrix formulation, then this minima is the smallest positive eigenvalue of the
characteristic noise matrix, with optimum source impedance corresponding to the associated eigenvector [140].



CHAPTER 7. NOISE MODELING 125

Table 7.1: Formulas required to compute Mmin

Coefficient Equation or description

Ma |1 + Γon|4
(
PQ + |C1|2

)

Mb |1 + Γon|2 |S21|2
(
8rn<{ΓonC1} −

(
4rn |Γon|2 + W

)
P − (W − 4rn)Q

)

Mc |S21|4 W
(
W − 4rn

(
1− |Γon|2

))

P |S21|2 + |S11|2 − |∆|2
Q |S21|2 + |S22|2 − 1

W |1 + Γon|2 (Fmin − 1)
C1 S11 − S∗

22 (S11S22 − S12S21)
∆ S11S22 − S12S21

rn Normalized noise resistance, Rn/Z0

Γon Optimum source reflection coefficient for noise match.

source reflection coefficient required to achieve TCAS,min:

ΓOPT,TCAS =
TCAS,min |1 + Γon|2 C∗

1 + 4T0rn |S21|2 Γon

TCAS,min |1 + Γon|2 P + T0 |S21|2 (4rn −W )
. (7.16)

Now, equipped with equations (7.4)–(7.16), it is possible to determine the noise parameters, TCAS ,

TCAS,min, and ΓOPT,TCAS directly from the dc and RF network parameters extracted in Chapters 5

and 6, allowing for a detailed comparison of the noise performance of state-of-the-art SiGe HBTs.

Furthermore, as TCAS,min is a function of both frequency and collector-current density, we can

define its global minima for a given frequency as

TCAS,min,JC ≡ min
JC∈ [0,∞)

TCAS,min (JC) . (7.17)

Finally, if we define the current density required to achieve TCAS,min,JC as JC,min,min then we can

define the following quantities:

Rmin,min ≡ ROPT,TCAS (JC,min,min) , (7.18)

Xmin,min ≡ XOPT,TCAS (JC,min,min) , (7.19)

QZmin,min ≡
XOPT,TCAS (JC,min,min)

ROPT,TCAS (JC,min,min)
, (7.20)

and

Nmin,min ≡ N (JC,min,min) . (7.21)
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The discussion and understanding of these parameters and their temperature dependence is the

topic of the following section.

7.4 Experimental Results

With the information obtained in Chapters 5 and 6, the noise parameters, TCAS,min, and

ΓOPT,TCAS were computed from 50 MHz-40 GHz as a function of bias point for each of the seven

devices described in Chapter 4. Once TCAS,min was known as a function of bias, its global minimum

value, TCAS,min,JC was located at each frequency by fitting a quadratic to interpolated data in an

area of the TCAS,min(f, JC) versus JC curve that was found to be near the location of the minima.

The collector-current density at which the minima occurs, JC,min,min, was also recorded as a function

of frequency. The fitting and interpolation routine is used in order to generate smooth curves of

TCAS,min,JC versus frequency (rather than discrete steps). Once TCAS,min,JC was determined, the

associated optimum source impedances were determined.

In addition, the noise resistance, Rn at the optimum bias is also recorded with the assumption

that the gain at the optimum bias point is sufficient to assure that Tmin ≈ TCAS,min. An example plot

demonstrating the difference between Tmin and TCAS,min appears in Fig. 7.2. The data illustrates

the difference between the room temperature value of TCAS,min and Tmin as a function of bias for a

ST-G4 device at 40 GHz. While the two curves stray at low-biases, in the vicinity of the minima of

TCAS,min, the values of TCAS,min and Tmin are fairly similar indicating that the assumption made

above will not lead to large errors. Thus, the sensitivity factor Nmin,min can be approximated as

Rn (JC,min,min) Rmin,min/
(
R2

min,min + X2
min,min

)
.

For reference, the complete set of data (TCAS,min,JC , JC,min,min, Rmin,min, Xmin,min, Nmin,min,

and QZminmin) is presented for each device in Figs. 7.11–7.17 at the end of the chapter (pp. 139–

145). In the following sections, the modeled noise performance of the devices will be compared and

analyzed at 18, 50, 77, 200, and 300 K ambient temperatures.

7.4.1 The Optimized Cascaded Noise Temperature, TCAS,min,JC

The optimized cascaded noise temperature,

TCAS,min,JC (f) ≡ min
JC∈[0,∞)

TCAS,min, (7.22)
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Figure 7.2: Comparison of Tmin with TCAS,min for a ST-G4 device at 300K. The operating frequency
is 40GHz.

is the global minima of TCAS,min as a function of bias4, and is a very fundamental figure of merit

for a low-noise amplifying device. To begin with, we will investigate how the optimized cascaded

noise temperature compares among the different processes. This will be followed by a look into how

this figure of merit behaves as a function of temperature. TCAS,min,JC was extracted for each of the

devices at 300, 200, 77, 50, and 18 K, and the results appear in Fig. 7.3. Upon inspection of the

data, several important observations can be made:

1) The noise performance of all the devices is greatly enhanced due to cooling. This is not a

surprise as we saw in Chapters 5 and 6 that βDC , ft, and gm all increase significantly with

cooling.

2) In the low-GHz range, where the noise is dominated by βDC and ncx, the noise performance

varies greatly from device to device. Furthermore, the modeled noise performance in this

frequency range is fairly consistent5 with the values calculated from dc measurements in Sec-

tion 5.1.

3) At cryogenic temperatures, the noise performance of all of the devices converges above 10 GHz

(with the exception of the JAZZ-G3 device).

4) In the low GHz frequency range, ST achieves far better noise performance than their competi-

tors. This is due to the fact that their devices demonstrate an order of magnitude higher βDC

4TCAS,min is the minimum value of TCAS with respect to source impedance.
5The values in Section 5.1 tend to underestimate the noise by 10–15% due to the omission of the thermal noise

due to the base and emitter resistances. This effect is less important at 18 K.
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Figure 7.3: TCAS,min,JC as a function of frequency at (a) 300 K, (b) 200 K, (c) 77 K, (d) 50 K, and
(e) 18 K
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than any of the other devices.

5) Below 2 GHz, the ST-G4 device demonstrates a minimum cascaded noise temperature of less

than 1 K at 18 K physical temperature. Furthermore, at 1 GHz, TCAS,min,JC is 0.69 K, which

is within 0.3 K of a state-of-the art InP HEMT having no gate leakage [39].

6) The JAZZ-G3 device is consistently worse than the other devices. This is expected as the JAZZ

device is from an older technology node and has lower βDC and ft than the other devices.

In addition to the raw noise performance, it is important to understand how things change

quantitatively with temperature. To do this, we can use an analogous method to that used in

Section 5.1.3, by defining the figure of merit

∆TCAS,min,JC (Ta) ≡ TCAS,min,JC (Ta)

TCAS,min,JC (300 K)
. (7.23)

In Fig 7.4, ∆TCAS,min,JC is plotted as a function of ambient temperature for the seven devices at

1, 5, 20, and 40 GHz. Several key points can be highlighted:

1) With cooling down to 200 K, the average value of ∆TCAS,min,JC is 2.5 at 1 GHz, 2.1 at 5 GHz,

and 1.8 at 20 GHz and 40 GHz. Thus the use of a thermoelectric cooler can improve the noise

performance of a SiGe HBT by a factor of about two.

2) With cooling down to 77 K, liquid nitrogen temperature, the average value of ∆TCAS,min,JC

is 6.7 at 1 GHz, 5 at 5 GHz, 3.7 at 20 GHz, and 3.4 at 40 GHz. Thus the effect of cooling

to 77 K is significantly greater on the low frequency end, where the enhancement is boosted

by large improvements in βDC with cooling. At the high-frequency end, the effect is roughly

equal to the drop in ambient temperature, which is not surprising as the thermal contributions

due to the losses have decreased.

3) With cooling down to 50 K, which can be reached using inexpensive sterling coolers, the average

value of ∆TCAS,min,JC is 8.6 at 1 GHz, 6.5 at 5 GHz, 4.7 at 20 GHz, and 4.3 at 40 GHz. Once

again, the improvement is much greater on the low-frequency end, where a large increase βDC

has helped significantly.

4) With cooling all the way to 18 K, the average value of ∆TCAS,min,JC is 11.9 at 1 GHz, 10.4 at

5 GHz, 7.8 at 20 GHz, and 6.9 at 40 GHz.
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Figure 7.4: The figure of merit ∆TCAS,min,JC (Ta) plotted as a function of temperature at (a) 1 GHz,
(b) 2 GHz, (c) 20 GHz, and (d) 40 GHz. Also included in the plots are contour lines marked “0.5X”,
“1X”, and “2X.” The interpretation of these contour lines is as follows: If the data is above the
line marked “1X”, this means that TCAS,min,JC has dropped by a factor greater than the factor of
change in ambient temperature. Similarly, if the data is above the line marked “2X”, this means that
TCAS,min,JC has dropped by a factor greater than twice the factor of change in ambient temperature.
The extension to the line marked “0.5X” is obvious.

5) The standard deviation of the values of ∆TCAS,min,JC is significantly smaller at higher fre-

quencies than at lower frequencies. This can be attributed to the much wider variation in

∂βDC/∂Ta than in ∂ft/∂Ta and ∂nc/∂Ta.
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7.4.2 Optimum Bias Point, JC,min,min

The frequency dependence of the current density required to achieve the optimum cascaded

noise temperature for a SiGe can be understood in terms of Tmin@JC,min,min, which is a very good

approximation of TCAS,min,JC , so long as the frequency is low enough that the amplifier has at least

10 dB of available gain. The expression for the minimum noise temperature as a function of source

impedance was originally given in Chapter 2 and, after some minor manipulations, is expressed here

as

Tmin ≈ Ta

√
1

βDC,eff
+

(
f

ft,eff

)2

, (7.24)

where βDC,eff = βDC/
(
n2

c + 2gmnc (rb + re)
)

and ft,eff = ft/
√

2gmnc (rb + re) represent effective

degradations to the dc current gain and the unity-current gain cutoff frequency due to the base

and emitter resistances. Referring to equation (7.24), there is a clear trade-off to be made between

βDC,eff and ft,eff , as the minimization of the noise with respect to bias point requires finding the

optimum balance between the frequency independent term and the frequency dependent term.

To complicate matters, the collector-current density required for peak ft in modern SiGe HBTs

is on the order of 10 mA/µm2 or higher, which is in the region where the collector-current ideality

factor is quite large (i.e., the collector current slope is far lower than the ideal value predicted by the

classical drift-diffusion equations). Thus, even if the collector-current density required to achieve

βDC,pk coincides with that required for peak ft,pk, the optimum bias point for noise in the low-

frequency range will still be different than that in the high frequency range due to the detrimental

effects of the steep rise in nc above 1 mA/µm2. Thus, there will always be a tradeoff between the

low and high frequency noise in the selection of the bias point.

To assist in gaining an intuitive understanding of the nature of this trade-off and how it varies

with temperature, the factors 1/βDC,eff and (f/ft,eff )
2

are shown in Fig. 7.5(a) for the frequency

dependent optimum collector current density JC,min,min (f) . In addition, the normalized values of

βDC,eff and ft,eff are shown in Fig. 7.5(b), and the normalized values of βDC and ft are shown in

Fig. 7.5(c). The information contained in these curves is quite revealing. First of all, as expected, in

the sub-GHz range, the noise is primarily determined by the dc current gain. However, inspection

of Figs. 7.5(b) and 7.5(c) reveals a very interesting feature of the cryogenic device operation in the

0.1-1 GHz range; while the device is biased near βDC,pk, βDC,eff is significantly lower, and effectively

cancels out the increase in βDC which has occurred with cooling6.

6The value of βDC@JC,min,min (150 MHz) at 18 K was found to be 40 times larger than at 300 K. However, at
the same bias point, the 18 K value of βDC,eff is reduced from βDC by a factor of 38. Fortunately, the temperature
has dropped substantially, resulting in an overall improvement of over 16.
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Figure 7.5: Illustration of the tradeoff between βDC and ft in the minimization of TCAS,min with
respect to JC . The solid markers are on the βDC traces whereas the white markers are on the ft

traces.

In terms of the high-frequency noise performance, equally valuable information can be obtained

from these curves. For instance, referring to Fig. 7.5(c), it can be seen that above 40 GHz,

JC,min,min (f) moves towards the current-density required to achieve ft,pk. However, inspection

of Fig. 7.5(b) reveals that beyond 10 GHz, the increase in ft results in diminishing returns in terms

of noise performance as the normalized ft,eff curves flatten out. However, the reason that the op-

timum bias point continues to move towards peak ft is that the criterion for bias selection is the

minimization of TCAS,min as opposed to Tmin. Thus, the increase in JC,min,min is simply occurring

in order to improve the available gain. In addition to the saturation of ft,eff , it is also notable that
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its limiting value at cryogenic temperatures is reduced significantly due to the rise in the collector

current ideality factor.

The optimum bias point required to achieve TCAS,min,JC for each of the seven devices is plotted

as a function of frequency in Figs. 7.11(b)-7.17(b). In general, these curves follow what one would

expect based upon the discussion above, with the bias at low temperatures being determined such

that βDC,eff is optimized at low-frequencies and that ft,eff and Ga are optimized at high-frequencies.

As a final note, it can be observed that JC,min,min (40 GHz) decreases significantly7 for all the devices

as the temperature is lowered from 300 to 18 K.

7.4.3 Optimum Source Impedance, Zmin,min

While closed form expressions were provided in Section 2.2 for ZOPT , no closed form expressions

exist for JC,min,min. Thus, it is difficult to ascertain the exact behavior of Zmin,min without resorting

to numerical techniques, and the discussion regarding Zmin,min will be restricted to modeling results.

The optimum generator impedance (Γmin,min) of the majority of the devices8 appears in Fig. 7.6,

and the real and imaginary components of the impedances appear in Figs. 7.11(c)–7.17(d). It is

evident from these data that the optimum source resistance for cascaded noise temperature match

decreases significantly with cooling. This is very important as it implies that a device sized for an

LNA designed for operation at 300 K is not correctly sized for a noise match at 18 K. Thus, a SiGe

amplifier cannot be simultaneously optimized for low-noise operation at 300 and 18 K.

To gauge the magnitude of the decrease in Rmin,min with temperature, the ratios of the 18

and 77 K values to the room temperature value were computed at 10 GHz for each of the devices;

the results appear in Fig. 7.7. At 18 K, an average decrease in Rmin,min of 50% from the room

temperature value was observed, with quite low variation among the different devices (σ = 5%).

Thus, on average, to achieve a given value of Rmin,min at 18 K one would need to use a device half

the size of that which would be used at room temperature. However, at 77 K, the results are closer

to the room temperature values; the average drop in Rmin,min is only 12%. Thus, as the effect is so

much more pronounced at 18 K, it is believed that it is associated with the collector current ideality

factor9.

In addition to Rmin,min, we are also interested in the behavior of Xmin,min as a function of

temperature as it indicates what kind of reactance will have to be tuned out in order to achieve

7The average decrease was 40%.
8The ST-X3 device was left out due to the fact that its associated result was indistinguishable from the result form

the ST-X1 device.
9It should be noted that this conclusion is consistent with equation (2.35) in Section 2.2.
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Figure 7.6: Γmin,min for the each of the studied devices at 300, 77, and 18 K. The results for the
ST-X3 device are indistinguishable from the results for the ST-X1 device. Therefore, only the ST-X1
device is included in the figure
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Figure 7.7: The ratio of change in Rmin,min with cooling. (a) Ta=18 K and (b) Ta=77 K

a noise match. Referring to Figs. 7.11(d)–7.17(d), we can see that Xmin,min is only sensitive to

temperature below about 5 GHz. To understand this result, we can begin by reviewing the equation

for the optimum source reactance for noise match:

XOPT ≈
1

gm

f/ft

1/βDC + (f/ft)
2
. (7.25)

At low-frequencies, XOPT depends upon the inverse of the transconductance. As not much transcon-

ductance is needed to provide considerable gain below 1 GHz, it is likely that the variation in the

low frequency value of Xmin,min is related to low transconductances. To test this hypothesis, the

50 MHz values of Xmin,min taken at 200 K and below were normalized to the room temperature

value and plotted against the normalized transconductance and a linear fit was performed. The

results appear in Fig. 7.8 and seem to indicate that the variation in low-frequency Xmin,min is in

fact correlated to variation in gm.

7.4.4 The Sensitivity Factor, Nmin,min

The sensitivity factor is defined in terms of the optimum noise match, not the match for optimum

cascaded noise temperature. Thus, in the discussion to follow, it is assumed that the gain of the

network is high enough to justify assuming Zmin,min = ZOPT . The sensitivity factors were calculated
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Figure 7.8: Normalized Xmin,min versus normalized gm

and appear in Figs. 7.11(e)–7.17(e). As discussed in [69], in order for a set of noise parameters to

be physical, the following must hold: 1 < 4NT0/Tmin < 2. Thus, if the quantity 4NT0/Tmin is

close to unity, then the interpretation is that the network is insensitive to source match, whereas

if the quantity is close to two, the opposite is true. Therefore, this ratio is quite important, and

thus has been plotted in Fig. 7.9. As discussed in Section 2.2, the first-order calculation predicts

that N ≈ Tmin/2T0. Referring to the modeled result, we see that this is true at low frequencies, but

loses validity at higher frequencies, where the sensitivity factor begins to roll-off. Nonetheless, it is

a fairly reasonable estimation. Referring to Fig. 7.9, we also see that the quantity 4NT0/Tmin is

only weakly dependent upon temperature.

7.4.5 Comparison with State-Of-The-Art InP

Indium-phosphide (InP) high-electron-mobility transistors (HEMTs) are the gold standard in

terms of semiconductors used in extremely low-noise cryogenically cooled low-noise amplifiers [6].

In this section, a comparison will be made between the cryogenic noise performance of state-of-the-

art InP HEMTs with that of the SiGe HBTs modeled in this report. The InP devices serving as a

reference in this comparison are from the Northrup Grumman Space Technology (NGST) 0.1µm InP

HEMT process line. These are the same devices used in many of the world’s most advanced cryogenic

LNAs, such as those reported in [6] and [10]. The model used in this comparison was developed by

N. Wadefalk and is for a 0.1×4×50µm2 HEMT operating at 15 K [148]. The topology of the model

is that proposed by Pospieszalski [25]. This is the same model that was used in the design of the
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Figure 7.10: Comparison of SiGe HBT and InP HEMT noise at 18 K. (a) The minimum noise
temperature. For the case of the SiGe curves, the minimum cascaded noise temperature has been
plotted. (b) The ratio of 4NT0/Tmin. This ratio must lie in the range of 1 and 2. It is assumed
that the HEMT has 50 nA gate leakage current. In addition, it is assumed that the SiGe device is
at the optimum bias at each frequency whereas the InP device is plotted at a fixed bias.

amplifier reported in [10].

A comparison of the minimum noise of the SiGe devices with that of an InP HEMT with 50 nA

of gate leakage current appears in Fig. 7.10(a). While the InP device is clearly superior to the

SiGe devices in terms of noise performance, the difference is not all that substantial. For instance,

the InP device has a minimum noise temperature of around 15 K at 40 GHz whereas the better
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SiGe devices have TCAS,min,JC values of around 20 K at this frequency. Furthermore, this is a

pessimistic comparison as the noise of the SiGe devices has been overestimated due to the omission

of correlation between the shot-noise sources in the SiGe noise model. In addition, the sensitivity

factors of a typical SiGe device and the InP device are plotted in Fig. 7.10(b). Clearly, the sensitivity

factor is quite similar for the two breeds of devices.

However, what is interesting to note is that at 40 GHz the transconductance of an optimally

sized SiGe device is approximately 50% higher than that of the InP device10. Thus, the optimum

SiGe device provides considerably more available gain than the optimum InP device at 40 GHz.

Furthermore, the size of the SiGe devices are considerably smaller; the ideal InP device at 40 GHz is

0.1×60 mA/µm2 whereas the optimum ST-G4 device is 0.13×3mA/µm2 (the optimum sizing of all

of the SiGe devices is in this range). This in combination with the fact that SiGe devices generally

come in a process in which CMOS FETs are also available helps to build a compelling argument for

using SiGe HBTs over InP HEMTs.

7.5 Summary

In this chapter, a comprehensive treatment of the cryogenic noise performance of SiGe HBTs

has been presented. The discussion began with an introduction to noise parameters and the concept

of minimum cascaded noise temperature. Next, a procedure by which one can compute noise per-

formance from dc and small-signal parameters was presented. After the presentation of background

information was complete, the cryogenic noise performance of a variety of devices was discussed in

detail. In the next chapter, a brief summary of all that has been learned about how the properties

of SiGe HBTs depend upon temperature will be presented, and then, in Chapter 9 we will forge

ahead with some real world applications of SiGe HBTs.

10Interestingly enough, this is true for all of the devices modeled in this work.
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Figure 7.11: IBM-G3 noise properties
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Figure 7.12: IHP-G4 noise properties
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Figure 7.13: ST-G4 noise properties
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Figure 7.14: ST-X2 noise properties
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Figure 7.15: ST-X1 noise properties
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Figure 7.16: ST-X3 noise properties
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Figure 7.17: JAZZ-G3 noise properties
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Chapter 8

Summary of Changes that Occur

in SiGe HBTs with Cooling

In the previous three chapters, a large amount of data has been presented and analyzed and the
purpose of this chapter is to provide a succinct recapitulation of the key changes that occur in SiGe
HBTs with cooling. This information is provided in tabular format below.

Table 8.1: Summary of SiGe HBT temperature behavior

DC Parameters

Parameter Temperature Dependence Comments

nc ∼ 220% increase For cooling from 300 to 18 K. High vari-
ability among the different processes (σ =
68%). Increase presumably due to ballis-
tic transport phenomena.

JB0 7.83× 1018e−Eg(Teff,h)/kTeff JB0 (300 K) Experimentally observed. The explana-
tion is still an open issue.

nb ∼ 390% increase For cooling from 300 to 18 K. High vari-
ability among the different processes (σ =
80%). Physical cause for increase still an
open issue.

βDC,pk 20− 3400% increase For cooling from 300 to 18 K. Tremen-
dous variability between processes due to
exponential dependence of Ge content on
neutral base side of B-E SCR.

RF Figures of Merit

Parameter Temperature Dependence Comments

ft,pk ∼ 50% increase For cooling from 300 to 18 K. Consistent
from one process to another (σ = 6%).
Not much change below 77 K, presumably
due to the fact that peak ft occurs at a
very high collector current density where
considerable self heating is likely.
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fmax,pk ∼ 35% increase High level of variation among processes
(σ = 15%)

Small-Signal Model Parameters

Parameter Temperature Dependence Comments

rb ∼ 26% decrease For cooling from 300 to 18 K.
JC =1mA/µm2. Varies strongly from
foundry to foundry (σ = 20%).

re ∼ 25% increase For cooling from 300 to 18 K. Varies
strongly from foundry to foundry (σ =
55%). Increase may have to do with emit-
ter annealing process.

rc ∼50% decrease For cooling from 300 to 18 K. Varies mod-
erately from foundry to foundry (σ =
10%). Does not seem to depend upon
style of sub-collector.

gm ∼ 200% increase JC =1 mA/µm2. For cooling from 300 to
18 K. Varies significantly from foundry to
foundry (σ = 65%).

gbe ∼ 84% decrease JC=1 mA/µm2. For cooling from 300 to
18 K. Fairly consistent (σ = 9%).

τd -
CBE ∼ 68% increase For cooling from 300 to 18 K. For

JC =1mA/µm2. Mainly attributed to
change in diffusion capacitance due to in-
crease in gm. Moderate variation from
process to process (σ = 19%)

CCB ∼10% decrease For cooling from 300 to 18 K. Attributed
to a decrease in the concentration of ion-
ized impurities in the collector.

CCS ∼ 44% decrease For cooling from 300 to 18 K. VCS=1 V.
Attributed to substrate freeze-out. It is
believed that the residual capacitance is
due to de-embedding errors.

Noise Parameters

Parameter Temperature Dependence Comments

Tcas,min ∼ 91% decrease For cooling from 300 to 18 K. 1.5 GHz.
Small variation from foundry to foundry
(σ = 2.5%)

∼ 83% decrease For cooling from 300 to 18 K. Average
value from 1-40 GHz. Small variation
from foundry to foundry (σ = 3.8%)

JC,min,min ∼ 25% decrease For cooling from 300 to 18 K. For noise
optimization at 40 GHz.

Ropt ∼ 50% decrease For cooling from 300 to 18 K. Average
value from 1-40 GHz. Moderate variation
from foundry to foundry (σ = 10%).
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Xopt ∼ 18% decrease For cooling from 300 to 18 K. Average
value from 1-40 GHz. Significant varia-
tion from foundry to foundry (σ = 16%)

QZOPT ∼ 84% increase For cooling from 300 to 18 K. Frequency
is 10 GHz. Inconsistent across foundries
(σ = 44%).

N ∼ 89% decrease For cooling from 300 to 18 K. Frequency is
10 GHz. Very consistent across foundries
(σ = 1.4%).
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Chapter 9

Cryogenic Low-Noise Amplifiers

In the preceding sections of this dissertation, a framework has been built upon which to un-

derstand and predict the performance of SiGe HBTs at cryogenic temperatures. In this section,

this framework is utilized to facilitate the design of low-noise amplifiers with state-of-the-art noise

performance. Several amplifiers are presented with topologies ranging from discrete transistor am-

plifiers to differential integrated-circuit feedback amplifiers. For each of these cases, simulation is

compared with measurement in order to validate the noise modeling procedure described previously.

9.1 Small-Signal Compact Noise Models

One difficulty in the design of integrated circuits intended to operate at cryogenic temperatures

is that transistor models in this temperature range are not available from the foundry. While

the small-signal models developed in Chapters 6 and 7 are certainly a good place to start in the

development of simulation tools aimed at cryogenic applications, the fact that each bias point has a

separate model is certainly a cumbersome feature that would ideally be avoided.

Referring back to Fig. 7.1, it can be seen that the model being used to describe the small-signal

and noise performance of the devices is actually quite simple; at a given bias point, 9 parameters are

used to describe the small-signal terminal current-voltage relationships and only two additional dc

currents are needed to determine the magnitude of the shot-noise sources. Furthermore, because of

a lack of redundancy in the model, we expect that the component values can be uniquely determined

leading to a smooth variation in extracted parameters as a function of bias. This expectation has

been corroborated by the data presented earlier. Thus, it is possible to fit smooth curves to the

small-signal model parameters as a function of collector current density.

Using the data extracted in Chapters 5-6, parameterized small-signal models were generated for



CHAPTER 9. CRYOGENIC LOW-NOISE AMPLIFIERS 151

Lb

Le

Figure 9.1: Basic LNA with emitter degeneration

several of the devices by fitting smooth curves to each of the small-signal component values as a

function of collector current density. The models were then entered into AWR’s Microwave Office

(MWO) simulation environment and scalability was added to the models. The resulting small-signal

models are parameterized in terms of collector current density and device area, and are very powerful

in the design of an amplifier as they allow one to quickly evaluate how changes in device size and

bias point affect the response of a circuit.

9.2 Inductively Degenerated Amplifiers

A very common technique used to achieve simultaneous input and noise match is to use inductive

emitter-degeneration as shown in Fig. 9.1. It can be shown that the small-signal input impedance

of an inductively degenerated transistor is

Zin =

(
jωLe +

gmLe

CBE
− j

ωCBE

)
1 + jωCCBZL

(1 + jωCCBZL) + CCB

CBE
(1 + gmZL + jωgmLe − ω2LeCBE)

≈ jωL̃e +
gmLe

C̃IN,m

− j

ωC̃IN,m

, (9.1)

where ZL is the load impedance, C̃IN,m = CBE + CCB (1−Av) is input capacitance accounting for

the Miller effect [149], and L̃e = Le/(1−Av) is a reduction in the equivalent value of Le due to the

Miller effect. In practice, a cascoded input stage is commonly used to isolate the input from the

output, thereby reducing the Miller effect tremendously. In this case, C̃IN,m ≈ CBE , and the design

procedure is greatly simplified. However, the discussion here will be kept general so as to apply to

amplifiers without cascoded input stages.

To begin with, let us consider equation (9.1), in which it can be seen that the introduction of

Le to the circuit has two effects: 1) the input reactance is increased by ωL̃e; and 2) a real part of

the input impedance, with value gmLe/C̃IN,m, is generated. In addition, it can be shown that the
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addition of a lossless inductance to the input loop does not have much effect upon the noise [30].

The procedure for designing a fully noise-optimized and power-matched LNA using emitter de-

generation is as follows:

1) If device models are unavailable, generate small-signal noise models over a wide range of bias

conditions following the methodology presented in Chapters 5–7.

2) Determine the collector current density, JC,OPT , which corresponds to the global minima of

TCAS at the desired upper frequency of operation. This is the current at which the input

transistor will be biased.

3) Compute the optimum source resistance for a unit-area transistor and scale the device size

such that the optimum source resistance for the scaled device is near the desired generator

impedance at the upper frequency of operation. The noise optimization is chosen for the upper

frequency rather than the center of the band since the sensitivity parameter N rises rapidly

with frequency.

4) Determine the collector–base capacitance and transconductance at the bias point and use

these values to compute the emitter inductance required for a power match somewhere near

the center of the band. The power-match frequency is chosen to be below the noise match

frequency so as to improve the bandwidth over which reasonable noise and power match is

achieved.

5) If designing an amplifier with a cascoded first stage, continue on to the next step. If designing

an amplifier with a single transistor as the first stage, determine the desired gain and choose

a load resistance value. Be sure that sufficient gain is realized in order to reduce the noise

contribution from subsequent stages to a reasonable level.

6) Compute the series inductance needed for noise match at the upper frequency of operation.

7) Design subsequent stages to flatten out the gain and provide reasonable output return loss. If

necessary, build a pad into the output to improve S22. If using a single transistor as the input

stage, ensure that the loading of the first stage is such that the effective input capacitance is

not changed1.

1i.e., either use small devices at the output or a cascoded input stage to improve the input–output isolation
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9.2.1 Example Design: a 0.7–3.0 GHz Cryogenic LNA with Very Low-

Noise Temperature

Upon measuring and modeling the ST BiP-X1 devices described in Chapters 4-7 it was realized

that the performance of these devices was expected to be very good. Therefore, a discrete transistor

amplifier was designed using the procedure described above. In addition to providing a means

to evaluate the ST BiP-X1 device, the design and testing of a discrete amplifier also provides a

framework in which to verify the noise modeling procedure developed in this work. The design

process and measurements results will be detailed below.

9.2.1.1 Design Process

In this section, the design process of a discrete-transistor two-stage low-noise amplifier is de-

scribed. The amplifier is to operate at 18 K physical temperature, use ST BiP-X1 devices, and

cover the 0.7–3 GHz frequency range. The design procedure will follow the plan described in the

previous section and will be carried out using custom scalable compact noise models of the type

described in Section 9.1. As a first step, the collector current density needs to be determined. To

accomplish this task, TCAS,min at 2.9GHz was plotted as a function of collector current density and

the global minima was located. Referring to Fig. 9.2(a), the optimum collector current density is

approximately 0.75 mA/µm2. At this bias current, the value of TCAS,min is ∼ 1.45 K. Following

the determination of the bias point, the device size is determined by choosing the size that produces

ROPT,TCAS,min = 50 Ω at 2.9 GHz. Referring to Fig. 9.2(b), we see that the optimum source resis-

tance at 2.9 GHz for this line of devices is approximately 550 Ω ·µm2, corresponding an ideal device

size of 11 µm2. Thus, we will use a device with four 0.17× 14.79µm2 fingers and a total device area

just over 10 µm2. Thus, the collector current should be about 7.5 mA.

With the bias point and device size selected, the small-signal parameter values can now be

determined. The calculated values of the input transistor small-signal component values appear in

Table 9.1. Next, a load resistance value of 50 Ω is selected to give an open-loop voltage gain greater

Table 9.1: Small-signal model component values for the input device at the optimum bias point.

CBE CCB CCS gm gbe rb rc re

680 fF 120 fF 14 fF 1.0 S 22µS 1.3Ω 0.48Ω 0.32Ω
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Figure 9.2: LNA device size optimization: selection of (a) collector current and (b) device size

than 30 dB. The resulting equivalent input capacitance next computed as

C̃IN = CBE + CCB

(
1 +

gmRL

1 + gmRe

)
= 5.3 pF. (9.2)

With knowledge of C̃IN , we are now ready to complete the design of the input stage by determining

the required values of Le and Lb. The degeneration inductance, Le is computed directly from

equation (9.1) as Le = Z0C̃IN/gm ≈ 270 pH. Finally, Lb is chosen as 2.1 nH to provide noise match

at 3 GHz, while providing power match near the center of the band.

With the topology of the first stage in place, the rest of the amplifier was designed and a

schematic diagram of the final circuit appears in Fig. 9.3. The amplifier consists of the low-noise

input stage described above, followed by a capacitively coupled output buffer stage. The output

stage helps improve the performance of the amplifier by increasing the input–output isolation and

providing additional gain. The device selected for the output buffer is a ST BiP-X1 device with four

0.17× 5.61µm2 fingers. This device is among the smallest of the sample devices that were available

and was chosen so as to minimize capacitive loading on the input stage. The bias current for the

output buffer was set to be approximately 1 mA, which biases the device in a range where it can

provide gain without presenting too large of a capacitive load to the input stage.

In order to flatten the gain response of the amplifier, the stages are coupled via 2.7 pF single-layer

ceramic capacitors fabricated by Dielectric-Labs (DLI). As it turns out, it is important to be judi-

cious in selection of the material used in ceramic capacitors when working at cryogenic temperatures.
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Figure 9.3: Schematic drawing of discrete-transistor cryogenic amplifier. The devices are from the
experimental ST BiPX1 process.

In order to determine which materials were acceptable, a wide variety of DLI capacitors were char-

acterized as a function of temperature and the temperature coefficients were extracted. A list of the

dielectric constants of the materials used in the tested capacitors appears in Table 9.2. The results

of this experiment appear in Fig. 9.4 and clearly show that the majority of the capacitors change

significantly with cooling. Furthermore, referring to Fig. 9.4 and Table 9.2, it is clear that there is a

correlation between the room temperature dielectric constant of the capacitors and the change that

occurs with cooling. Fortunately, the CG material was found to be adequately temperature stable..

In addition to the ceramic capacitors, a metal–insulator–semiconductor (MIS) capacitor was also

characterized, and its temperature stability was found to be excellent. Thus, the capacitors used in

the amplifier are of the MIS and CG variety.

The amplifier was assembled in an inexpensive package described in [43]. Photographs of the

assembled module appears in 9.5. The transistors were mounted in via holes and the 300 pH and

500 pH degeneration inductors were realized as bond wires to the metallic ground plane of the

pcb. A close-up photograph of one of the input transistor appears in Fig. 9.5(b), and illustrates

the grounding scheme. The 2.1 nH inductor at the input of the amplifier was also realized using a

bondwire. Measured results are presented below.
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Figure 9.4: Change in capacitance of DLI single-layer ceramic capacitors with cooling

Table 9.2: Dielectric constants for different materials used in DLI single-layer capacitors [150]

Di. Code BE BF BJ BL BN BT BU BV CG NP NS NU NV

εr 1250 445 3300 2000 4500 4200 8500 13500 70 85 300 600 900

9.2.1.2 Measurement Results

Upon assembly, the amplifier was cooled to 18 K where the gain and noise were measured using

the cold attenuator method described in Section 1.2.3. The measured noise appears in Fig. 9.6 along

with simulation and inspection reveals several key results:

1) The modeled noise is very consistent with the measured noise. This fact is important because

it provides strong support for the noise-modeling procedure presented in Chapter 7.

2) At 2.9 GHz, the measured noise of ∼1.75 K is within 0.3 K of TCAS,min,JC , the predicted

global optimum of the device.

3) The noise temperature is less than 2 K from 1–3 GHz. It is believed that this is the best noise

result to date for a LNA employing devices fabricated in a Si technology. Furthermore, this

result is comparable to the state-of-the-art result for InP of ∼ 1.5 K from 2-4 GHz [9].

After measuring the noise, the cryostat was heated to room temperature so that the amplifier

could be connected to an auxiliary channel and cryogenic S-parameter measurements could be taken.
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(a)

(b) (c)

Figure 9.5: (a) The assembled discrete amplifier. The input is on the left and the output is on the
right. DC power comes in via a set of pins in the upper right-hand corner. (b) Closeup of the input
device. The transistor is mounted inside of a via hole. The base connection is to the left, whereas
the collector connection is to the right. The emitter degeneration inductance is realized using a pair
of bondwires connecting from the top and bottom edges of the chip to the chassis. (c) The packaged
amplifier with the lid installed

Prior to installing the amplifier, an SOLT calibration was completed with the reference plane located

at the end of the internal cables connecting to the amplifier. Once the calibration was completed, the

amplifier was installed and the cryostat was cooled back down to 18 K, where the measurement was

completed. The results of the S-parameter measurements are presented along with simulated data in

Fig. 9.7. The agreement is quite good for all results except for S22, in which a strong disagreement

is seen even at low-frequencies. It is believed that this disagreement may have to do with the 50 Ω

termination resistor on the output of the amplifier and is not an indication of a transistor modeling
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Figure 9.6: Measured and modeled noise for discrete ST amplifier at 18 K physical temperature.
The raw data is plotted in grey with a smoothed overlay plotted in black. The agreement between
the measured trace and the simulation offers tremendous support for the modeling presented in
Chapters 5–7.

mistake. As the main point of the amplifier design was to prove that the modeling of the noise

properties of the HBTs is correct, the disagreement in S22 was deemed unimportant and was not

further investigated.

9.3 Extremely Broadband LNAs Employing Resistive Feed-

back

There are several applications in which very low-noise input-matched amplifiers in the 0–5 GHz

frequency range are required. For example, THz receiver systems that employ hot-electron-bolometer

(HEB) mixers in their front ends suffer from stability issues when the low-noise amplifier directly

following the mixer is poorly matched. The physical explanation for this problem is believed to be
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Figure 9.7: Measured and simulated S-parameters for discrete amplifier. The ambient temperature
is 18 K for both measurement and simulation

that reflections into HEB mixer cause a modulation of the bias current. This leads to problems

as HEB mixers are superconducting devices biased at a critical current density, above which the

material is resistive and below which it is superconducting. Thus, if the bias current is modulated

due to reflections, electrothermal-feedback will occur and the device performance will suffer [151].

Typical HEB mixers can be used with IF bandwidths spanning 0–3 GHz. However, due to the issue

of reflections, the bandwidth is usually limited to an octave by an isolator which is inserted between

the mixer and the LNA [44]. Thus, very-low noise amplifiers with impedance match are desired for

integration with HEB mixers.
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While inductively degenerated III-V HEMT amplifiers with excellent input match and noise

performance have been demonstrated in the 1–10 GHz range [10], there have been no results in which

these devices have been applied to multi-octave extremely low-noise amplifiers covering frequencies

in the 0.1–1 GHz range. This is mainly due to the fact that the input impedance of FETs below

1 GHz is very high and, because of the high gain of the devices and resulting Miller capacitances,

unreasonably large source inductor values are required in order to generate a real part of the input

impedance at low frequencies. Furthermore, as the optimum source resistance of a FET goes as

ft/f [6], very large devices are required in order to obtain values of ROPT in the 50 Ω range.

Unfortunately, due to the very large available gain of these devices, this often results in odd-mode

oscillations at very high frequencies2 . Finally, many HEMTs suffer from gate leakage currents, which

translates into an increase in Tmin at low frequencies. Thus, this is an area where there is a large

potential for SiGe LNAs.

It is well known that one can achieve an input match through the use of resistive feedback.

However, at room temperature, resistive feedback is generally considered to be an impractical option

for use in very-low noise applications as the thermal noise from the feedback resistor contributes an

unacceptable amount of noise. However, as the feedback resistor is cooled from 300 K to 15 K, its

thermal noise reduces by a factor of 20. Thus, it makes sense to look into the feasibility of using

a feedback resistor to provide impedance match without destroying the noise performance of the

amplifier. For the case of lossless feedback, feedback has no impact on noise figure. However, as

the gain is reduced, the noise measure is increased [132]. In the next section , the impact of lossy

feedback on the noise parameters of a two-port will be investigated.

9.3.1 The Effect of Lossy Feedback on Noise Performance

When designing a feedback amplifier analytically, a typical strategy is to compute the open-loop

characteristics and then determine the feedback component required to achieve a specific design goal.

For instance, the closed-loop gain and input resistance of the shunt–shunt feedback configuration

shown in Fig. 9.8 can be computed explicitly from the open-loop characteristics as [132, 152]

AV,CL ≈ −
AV,OL

1 + AV,OLRf/RS
= AV,OL · θAV (AV,OL, Rf , RS) (9.3)

RIN,CL ≈
Rf

1 + AV,OL
= Rf · θRIN (AV,OL) , (9.4)

2Odd-mode oscillation issues have been observed to be a major problem in state-of-the-art HEMT devices with
400 µm of gate periphery or higher.
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Figure 9.8: Simple shunt–shunt feedback amplifier

where AV,OL is open-loop gain and θAV and θRIN are scaling parameters relating the closed-loop gain

and input resistance to the open-loop parameters and feedback resistance. There is a clear advantage

to this approach, in that a scaling factor can be applied to basic theory regarding the open-loop

circuit in order to gain an intuitive feel of the closed-loop performance. Thus, from a design point

of view, it is important to develop the same sort of framework regarding the noise parameters of

feedback circuits. For instance, having a feeling as to the effect that adding lossy feedback has on the

minimum noise temperature or optimum source impedance of a amplifier in terms of the open-loop

noise parameters is invaluable, as it facilitates the efficient design of optimized circuits.

The impact that lossy feedback will have on an amplifier at cryogenic temperatures can be

determined by analyzing the generic circuit shown in Fig. 9.9(b). In this work, the open-loop
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Figure 9.9: (a). Generic two-port network with shunt resistive feedback applied. The two-port
network is represented in terms of Y-parameters and the noise is represented by an equivalent input
and output current source. The feedback network is located outside the dotted line. (b). Simplified
equivalent circuit in which the current noise due to the feedback resistor has been moved to the
input. This simplification involves ignoring a fully correlated current noise source at the output and
is valid so long as the close loop circuit has high gain.
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network is represented in terms of Y-parameters and has external noise-generators3 |i1|2 and |i2|2.

The feedback network consists of a resistor with its noise represented in terms of a thermal current

source with power spectral density given as |if |2 = 4kTagf∆f , where gf = 1/Rf is the feedback

conductance.

It can be shown4 that at frequencies well below the unity-current gain cutoff frequency of the

two-port, the minimum noise and optimum source resistance of the closed-loop circuit can be ap-

proximated as5

Tmin ≈
1

2k

√√√√ |i′1|
2 |i2|2

|Y21 − gf |2
(9.5)

and

ROPT ≈
2kTmin

|i′1|
2

, (9.6)

where the quantity |i′1|
2

= |i1|2 + 4kTagf represents a temperature dependent increase in the input

current noise power spectral density due to the addition of the feedback resistor to the circuit.

Furthermore, if the input transistor is a SiGe HBT with high dc current gain, |i′1|
2 ≈ 2qIC1/βDC1 +

4kTagf , where IC1 and βDC1 are the dc collector current and dc current gain of the input transistor.

Under these conditions, it can be shown that the following happens to the noise parameters as a

consequence of the resistive feedback:

Tmin The minimum noise of the open-loop amplifier is multiplied, due to gf , by a factor of θNP ≈
√

1 + 2βDC1kTagf/qIC1 =
√

1 + 2βDC1gf/gm,ideal. In Chapters 5 and 7, it was observed that

at a fixed bias point, βDC rises as roughly 1/Ta and Tmin drops as roughly 1/Ta. Thus, to

first order, θNP is independent of temperature and the noise added by the lossy feedback will

decrease proportionally to Ta. Finally, in order to avoid degradation of the noise due to the

inclusion of Rf in the circuit, it is necessary that βDC1gf � gm,ideal/2.

ROPT The optimum source resistance is multiplied by a factor 1/θNP . Thus, the optimum source

resistance will decrease.

N The sensitivity factor N is multiplied by θNP . This means that the noise performance of the

amplifier becomes more sensitive to source noise mismatch once the loop is closed. It should

3The internal network is noiseless and the noise parameters are completely described by the two external current
generators and their complex correlation coefficient, i1i∗2/|i1| |i2|.

4See Appendix E.2 for the derivation
5It has been assumed in the following that 1/Y11 � RS , |i1|

2 � |i2|
2, and |i1|

2|i2|
2 �

`
4kTagf

´2
. These

assumptions are valid for SiGe HBTs with high βDC so long as Rf is much larger than the generator resistance
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be noted that, under the approximations stated above, the figure-of-merit 4NT0/Tmin is un-

affected by lossy feedback.

Thus, it can be seen that by connecting the feedback resistor to a point with high open-loop gain,

its value can be made large (i.e., gf small) and the desired Rin can be obtained with a degradation

factor close to unity.

In this section, the impact of lossy feedback has been analyzed for an amplifier operating well

below ft. The provided equations give insight into how the noise properties of a feedback amplifier are

related to those of the same topology without feedback. However, in order to arrive at these simple

equations, several assumptions were made which will lose validity as the frequency of operation

gets high enough that the input capacitance is non-negligible. Fortunately, equations exist in the

literature which allow one to calculate the effect of feedback applied to any two-port [153]. However,

due to the involved nature of the calculations, the resulting formulas are not intuitive, and will

not be discussed here. Instead, we will move on and take a look at some very broadband amplifier

designs based upon this topology.

9.3.2 Example Design: A 0.1–5 GHz MMIC LNA

As a first attempt to design an integrated circuit using the models developed in Chapters 5-7, a

0.1–5 GHz LNA design was targeted for the IBM BiCMOS8HP process. In order to facilitate a rapid

design process, compact noise models of the type described in Section 9.1 were developed in AWR’s

Microwave Office (MWO) for a 0.12×3×18µm2 HBT operating at 15 K physical temperature. The

amplifier was then designed in MWO. Next, simulation was carried out at 300 K in Cadence Virtuoso

using foundry supplied models. After verifying that the simulation results at 15 K and 300 K agreed,

a layout was generated and parasitic capacitances were extracted. Finally, the parasitic capacitances

were back-annotated into the MWO simulation environment and the parasitics were tuned out.

Extracted resistance values were not included in the cryogenic simulations as the conductance of

metals increases significantly at cryogenic temperatures.

A schematic diagram of the designed amplifier is shown in Fig. 9.10(a) along with the external

components required to operate the amplifier. The circuit consists of a cascode input stage driving

an emitter follower buffer amplifier. The output of the emitter follower is fed back to the input via

a 5.7 kΩ feedback resistor. The input transistor is sized such that the optimum source resistance in

the 5 GHz range is approximately 50 Ω. In order to improve the gain bandwidth of the amplifier, a

series inductive element is included on the base of the emitter follower stage.
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Figure 9.10: (a) Schematic diagram of 0.1-5 GHz MMIC LNA including external components. Dotted
lines indicate the chip boundary. (b) Photograph of the fabricated IC

In order for the amplifier to work at both room temperature and at 15 K, it is necessary to

include provisions to reduce the bias current in each of the transistors by a factor of roughly three

when it is operated cryogenically. This reduction is required in order to achieve the same open-

loop gain at 15 K as was achieved at room temperature, thereby preserving the frequency response

of the amplifier. To accomplish this task, the biasing of the amplifier is configured such that a

change in the element re2 and a reduction in VCC is all that is needed. The bias to the base of the

cascoded transistor is provided through a current-mirror circuit and the base terminal is bypassed

through a damped capacitor. The reason for including the resistance in series with the capacitor is

to prevent a parasitic feedback path from forming due to the bondwire inductance from the cgnd

terminal to chassis ground. This problem is especially troublesome in extremely low-noise LNAs as

the gain tends to be on the order of 30dB. In addition, another parasitic feedback path was avoided

by providing a separate ground pad for the bypass capacitor located at the collector of the emitter

follower.

A die photograph of the fabricated amplifier appears in Fig. 9.10(b). The amplifier measures

0.5× 0.6mm2 including all bondpads, which is approximately one quarter the die area of a typical

cryogenic low-noise amplifier fabricated in a III-V process6 . For testing, the amplifier was mounted

in an inexpensive package shown in Fig. 9.11 and consisting of a PC board sandwiched in between

6The standard dimension for III-V amplifiers designed in our lab is 2 × 0.6mm2.
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Figure 9.11: Photograph of packaged 0.1–5 GHz amplifier

Table 9.3: Measured performance metrics for 0.1–5 GHz MMIC LNA

Temp. Freq. Te S21 S11 S22 OP1dB OIP2 OIP3 Pdiss
Range 1.5/3GHz 1.5/3GHz 1.5/3GHz 1.5/3GHz

K GHz K dB dB dB dBm dBm dBm mW

15 0.1–5 4.3/3.7 31.7/29.9 -14.1/-14.7 -17.3/-18.2 -10.5 30.5 5.9 20
300 0.1–5 67/75 28.3/27.0 -8.4/-11.8 -16.0/-15.5 - - - 76

two gold plated brass carriers [43], with the IC mounted in a VIA hole to minimize bondwire lengths.

Measurements were made at both 15 K and 300 K. Room temperature gain and noise are plotted

along with simulation results in Fig. 9.12(a) and the return loss is plotted in Fig. 9.12(b). At 300 K,

the packaged amplifier has a Te of less than 92 K (1.2 dB NF) out to 5 GHz with an average gain

and Te of 27.6 dB and 76 K (1.0 dB NF) over the 0.1–5 GHz range. In addition, inspection of

Figs. 9.12(a) and (b) reveals very good agreement between simulation and measurement. The slight

discrepancy in the gain can be explained by the failure to account for wiring resistances in the

simulation.

Following room temperature measurements, cryogenic gain and noise measurements were carried

out using the cold attenuator method described in [154] and the results are plotted in Fig. 9.12(c).

The amplifier achieves a Te of better than 5.4 K out to 5 GHz with an average value of Te and

gain of 4.3 K and 30.8 dB over the operating band. Following noise and gain measurements, the

amplifier was cooled without an attenuator on the input and its S11 and linearity were measured

and the results appear in Fig. 9.12(d) and Table 9.3. At 15 K, S11, S21, and Te were all found to

be in excellent agreement with the modeled result. The ripple in the return loss measurement is

believed to be due to changes in the stainless steel cable connecting the amplifier to input of the



CHAPTER 9. CRYOGENIC LOW-NOISE AMPLIFIERS 166

N
o

is
e

[K
]

Frequency [GHz]

G
a

in
[d

B
]

0 2 4 6 8 10

Sim.

Meas.

0

50

100

150

200 40

30

20

10

0

(a)

R
e

tu
rn

L
o

s
s

[d
B

]

Frequency [GHz]

0 2 4 6 8 10

Sim.

Meas.

0

-5

-10

-15

-20

(b)

N
o

is
e

[K
]

Frequency [GHz]

G
a

in
[d

B
]

0 2 4 6 8 10

Sim.

Meas.

20

15

10

5

0

40

30

20

10

0

(c)

g
Frequency [GHz]

R
e

tu
rn

L
o

s
s

[d
B

]

0 4 6 8 10

Sim.

Meas.

0

-5

-10

-15

-20

(d)

Figure 9.12: Gain and noise measured at (a) 300 K and (c) 15 K physical temperature. (b) Return
loss measured at 300 K and (d) 15 K. The 15 K noise measurement setup has been calibrated to
±1 K accuracy. To account for packaging effects in the simulation, an input loss of 0.27 dB was
assumed at 300 K and the inductance values of bondwires connecting to the amplifier were tuned as
the length of each bondwire was not accurately known. The bondwire inductances were assumed to
be independent of temperature and were tuned in both the 15 and 300 K simulations simultaneously.

dewar occurring with cooling as calibration of the VNA was carried out at 300 K.

9.3.3 Other Amplifier Designs

Several additional single ended LNAs have been developed in the IBM BiCMOS8HP process.

Of particular interest is an extremely broadband LNA, which has not been fully characterized as

of the writing of this dissertation. A schematic diagram of the amplifier appears in Fig. 9.13. The

amplifier uses a topology similar to that of the 0.1–5 GHz amplifier described above with several
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Figure 9.13: Schematic diagram for the 0.1–10GHz amplifier

notable topology improvements:

1) The bandwidth has been doubled (0.1–10 GHz).

2) The input transistor has its own ground return path through the input CPW transmission line.

As this structure is floating with respect to the global chip ground, this feature allows one to

have a well defined emitter degeneration inductance and also avoids problems associated with

feedback due to a common ground inductance.

3) The cascode transistor is self-biased using a 2 kΩ polysilicon resistor. This is advantageous in

that it removes the requirement for a current mirror and reduces power dissipation.

4) The entire bias network is included on chip and the circuit can be configured to operate at

either 300 or 15 K by shorting one of two pins to ground (e.g., to operate at 15 K, the pin

labeled “15 K” should be tied to ground). This is useful as it reduces the number of components

and interconnects.

5) An output buffer amplifier has been included in order to isolate the feedback amplifier from

the load. This significantly reduces the sensitivity of the circuit to packaging.

The circuit was fabricated in the IBM BiCMOS8HP process and a photograph of the circuit

appears in Fig. 9.14(a). The circuit including all bondpads occupies approximately 0.6× 0.6 mm2.
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(a) (b)

Figure 9.14: (a) 0.1–10 GHz amplifier die photograph. The die area including bondpads is 0.6 ×
0.6mm2. (b) Packaged amplifier

The chip was mounted in a coaxial fixture in order to make preliminary room temperature measure-

ments. A photo of the packaged amplifier appears in Fig. 9.14(b). The input signals are brought

in using microstrip to co-planar waveguide transitions. The dc lines are bypassed by 47 pF MIS

capacitors near the chip with larger capacitors on a dc bias board. 10 Ω series resistors are placed

between the two bypass capacitors to prevent them from resonating with each other.

The S-parameters of the amplifier were measured at room temperature and the preliminary

results are shown in Fig. 9.15. The disagreement between the room temperature measurements and

simulations are not yet fully understood, but are believed to have to do with the packaging of the

chip, as the response is quite sensitive to the location of the ground bondwires. Further work is

needed to determine the exact reason that the circuit is not behaving as expected and to find out

whether the problem is intrinsic to the chip or in the way it is packaged.

9.4 Differential LNAs

While the majority of applications require that a signal which is referenced to ground be sensed,

there are some cases in which the signal to be sensed is defined differentially between a pair of

wires. Furthermore, many of these differential systems do not have 100 Ω output impedance. For

example, quasi-self complimentary antennas can be made to work over extremely wide bandwidths,

but have a frequency independent differential input impedance of 270 Ω. Thus, to use a quasi-self

complementary feed, either a transformer is required to adapt the 270 Ω differential mode to a 50 Ω
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Figure 9.15: 0.1–10GHz amplifier response. The measurements were taken at 300 K whereas the
modeling was done at 15 K.
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Table 9.4: Bias currents for 0.1–10 GHz differential 270 Ω cryogenic LNA

Temperature VCC1 VCC2 ICC1 ICC2

K V V mA mA

15 2.00 2.35 1.5 9.5
40 2.05 2.50 2.0 14.0
300 2.60 3.90 6.9 35.3

single ended signal, or an amplifier that is designed to sense the high-impedance differential signal

directly must be used. When evaluating the two options, it becomes apparent that the latter is

preferable due to the fact that the transformer will introduce loss (which in turn introduces noise),

whereas a single ended amplifier can be converted to a differential structure with no change in

the noise characteristics7 . In this section, the design of differential LNAs intended to interface to

decade bandwidth feeds with 270 Ω output impedance will be presented. These amplifiers have been

designed using the same custom compact-noise models for the IBM BiCMOS8HP devices that were

used to design the single ended integrated circuit amplifiers discussed above.

9.4.1 Example Design: A 0.1–10 GHz Differential LNA with 270 Ω Input

Impedance

In this section, the simulation results and preliminary measurements of a 0.1–10GHz differential

LNA designed8 for operation at 15 K and matched to a 270 Ω differential-mode source impedance

and a 100 Ω differential load impedance is presented. A schematic diagram of the amplifier is

shown in Fig. 9.16. The amplifier consists of a cascade of two differential gain stages with resistive

differential-mode feedback applied in order to generate an input match. Inductive peaking is used in

the load of the first stage in order to improve the bandwidth of the amplifier. In order to avoid the

use of a cascode topology, capacitive neutralization is applied using dummy transistors with floating

emitters. The neutralization capacitors are denoted as Cn on the schematic. The amplifier requires

two reference currents and two reference voltages; the expected VCC voltages and currents are listed

in Table 9.4. Although the amplifier was designed for operation at 15 K, simulations have been also

been carried out at 40 and 300 K.

The circuit was fabricated in the IBM BiCMOS8HP process and a die photograph is shown in

Fig. 9.17. The amplifier performance was measured on wafer at 300 K using an Agilent 4-port vector

7This assumes an infinite common-mode rejection ratio (CMRR). In practice, there will always be a small degra-
dation to the noise due to a finite CMRR.

8As explained in Chapter 7, the fact that the amplifier is designed for operation at 15 K means that the input
device will be to small for noise match at higher temperatures.
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Figure 9.16: Schematic diagram of differential 0.1–10 GHz 270 Ω cryogenic LNA.

Figure 9.17: Die photograph of 0.1–10GHz differential 270 Ω LNA. The chip dimensions are 0.7×
0.7 mm2.
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Figure 9.18: Measured and simulated mixed-mode S-parameters for 0.1–10 GHz 270 Ω differential
LNA at 300 K physical temperature. Solid lines represent the measured data and dashed lines
represent the simulation. The measurements are normalized to 270 Ω differential at the input port
and 100 Ω differential at the output port. The agreement with the room-temperature simulation is
quite good.

network analyzer and the results are compared to simulation in Fig. 9.18. A photograph of the test

setup appears in Fig. 9.19. The agreement between the measurement and simulation is very good.

The common-mode rejection ratio was found to be greater than ∼60 dB over the entire operating

range and the input return loss was measured to be better than 15 dB over most of the operating

band. The excellent CMRR was achieved by careful circuit design and the use of common-centroid

layout techniques. Due to the very good agreement between room temperature measurements and
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Figure 9.19: Photographs of the differential amplifier test setup
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Figure 9.20: Expected noise for 0.1–10 GHz 270 Ω differential LNA operating at 15 and 40 K

simulations, the chip is believed to be quite promising. While the noise is yet to be measured, the

simulated differential mode noise is shown for operation at 15 and 40 K in Fig. 9.20. The noise

is expected to be in the 7 K range at 15 K physical temperature with a considerable degradation

expected at 40 K physical temperature due to the change in optimum device size. Future steps

include mounting the dies in coaxial fixtures and measuring the cryogenic noise performance of the

amplifier.
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Figure 9.21: Schematic diagram for 0.5–4 GHz 270 Ω differential-input, 100 Ω differential-output
cryogenic LNA

9.4.2 Example Design: 0.5–4 GHz Differential LNA with 270 Ω Input

Impedance

A 0.5–4 GHz 270 Ω differential-input, 100 Ω differential-output, cryogenic LNA that has been

optimized for operation at 40 K has been designed and fabricated in the IBM BiCMOS8HP process.

The schematic diagram of the amplifier appears in Fig. 9.21. The topology is quite similar to that

used in the single ended design presented in Section 9.3.2, with the appropriate modifications made

to convert the structure to a differential form. In order to bias the amplifier, a resistor must be

connected from the pad labeled REE to chassis ground. The values of REE required to operate

the amplifier at 300, 40, and 18 K are given along with the associated bias voltage and current in

Table 9.5.

The fabricated amplifiers have been received and preliminary on-wafer measurements have been

made at 300 K. A die photograph appears in Fig. 9.23 and the room temperature measurement

results appear in Fig. 9.22 along with 15 and 40 K simulation results. The simulated response is

very promising; the amplifier is expected to have better than 5 K noise up to 3 GHz when operating
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Figure 9.22: Simulated and measured response for 0.5–4 GHz 270 Ω differential-input LNA
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Table 9.5: Bias point and value of REE for 0.5–4 GHz LNA

Temperature REE VCC ICC

K Ω V mA

15 180 3.60 10.4
40 140 3.75 11.8
300 0 5.50 38.0

Figure 9.23: Die photograph for 0.5–4 GHz differential LNA. The chip measures approximately
0.95× 0.95 mm2.

at 40 K. The measured S-parameters agree with the expectation at low frequencies, however the

bandwidth of the received amplifier is less than expected. It is believed that this is due to the fact that

the simulation is for cryogenic operation whereas the measurement was made at room temperature,

but further simulations and measurements are needed to clarify this issue. The measured common-

mode rejection is greater than 30 dB over the entire range of operation. While the noise performance

was not measured, the simulated results are quite promising, with a noise temperature at 40 K

physical temperature of better than 5 K expected at frequencies below 3 GHz. Further work is

needed in order to package the amplifier and measure its cryogenic noise performance.

9.5 Summary

In this chapter, the models developed in Chapters 5–7 have been applied to the design of several

state-of-the-art low-noise amplifiers. The design and measurement of a discrete amplifier employing

inductive degeneration has been presented and the excellent agreement between the measured and

simulated noise offers strong support for the noise modeling procedure presented in Part II of the

dissertation. Furthermore, the noise performance of the discrete amplifier is on par with the best

InP amplifiers reported to date. Thus, this result is quite important in validating the selection of
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SiGe devices over their III-V counterparts for applications in which performance is the key criterion

by which a technology is to be selected.

In addition to the inductively degenerated discrete LNA, the use of resistive feedback to design

extremely broadband integrated circuit LNAs has been explored both theoretically and experimen-

tally. As an example, a 0.1–5 GHz LNA has been designed and measured. The experimental results

have been found to agree very well with simulation, and the low noise (<5 K) in conjunction with

the good return loss (>10 dB) over this extremely wide, 50:1, bandwidth offers further evidence of

the utility of resistive feedback at cryogenic temperatures. Finally, at the end of the chapter, some

newly fabricated high-impedance differential amplifiers were presented and their preliminary room

temperature measurements and expected cryogenic performance were discussed.
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Chapter 10

Conclusions

In this dissertation, the theory, modeling, and applications of state-of-the-art SiGe heterojunc-

tion bipolar transistors operating at cryogenic temperatures have been investigated. In the first part

of the thesis, the physical operating principles of SiGe HBTs were reviewed and a framework was

developed in order to facilitate an understanding of the physical reasons behind the changes in the

devices as they are cooled. In the second part of the dissertation, the dc, RF, and noise properties of

a variety of state-of-the-art SiGe HBTs were studied at temperatures ranging from 18–300 K. The

study was conducted in a systematic manner and the temperature dependence of each of the key

dc, small-signal, and noise parameters were extracted and analyzed. Furthermore, dc, small-signal,

and noise models were developed. The results of this study are important, as they provide a great

deal of practical information which can aid in developing an understanding of the physical changes

that occur when SiGe devices are operated at cryogenic temperatures. The section concluded in

Chapter 8 with a concise summary of many of the important trends that were identified in this part

of the dissertation.

In the final part of the thesis, the models developed in the earlier Chapters were applied to the

design of state-of-the-art SiGe low-noise amplifiers, in both discrete and MMIC form. Not only did

the study of these “proof of concept” amplifiers help to verify the correctness of the theoretical noise

modeling through the very good agreement that was observed between the measured and modeled

noise performance, but their experimentally observed extremely-low, sub 2 K, noise temperatures

also helped to demonstrate that SiGe amplifiers can compete with state-of-the-art InP amplifiers in

the frequency range below 5 GHz. Thus, in this dissertation, it has been shown that commercial

SiGe HBTs are a very strong contender for extremely low-noise cryogenic applications.
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10.1 Suggestions for Future Work

In the last section of the introduction, it was stated that the literature regarding the small-signal

and noise performance of SiGe HBTs at temperatures below 77 K is quite limited. While certain

aspects of their cryogenic operation have been studied in detail in this dissertation, it is the author’s

belief that the work reported here is just the tip of the iceberg and that there is still an enormous

amount of room to make meaningful contributions to the field. Firstly, it was seen in this work that

several of the small- and large-signal model parameters vary significantly from foundry to foundry.

Thus, a study in which the device fabrication is varied in a controlled manner would aid greatly in

understanding what factors influence the changes in small-signal model parameters. For instance,

in order to try to determine if the rise in emitter resistance that was observed below ∼50 K is due

to carrier freeze-out effects in the intrinsic emitter, an experiment could be carried out in which

otherwise identically constructed devices were processed with different emitter annealing durations.

Secondly, in Section 5.2.3, it was seen that both the electrons and holes behave as if they are at

an elevated temperature when the devices are cooled to cryogenic temperatures. While the increase

in effective electron temperature is generally explained in the literature as being related to non-

equilibrium (i.e. ballistic) transport through the very thin base region, this explanation does not

apply to the holes which are back injected into the emitter and consistently act as if they are at

a warmer temperature than the presumably ballistic electrons. Thus, a device level investigation

would help to explain why the base current behaves in this manner.

Another very important issue that has not been addressed in the experimental portion of this

work is the correlation of the shot-noise sources in the noise model. As the correlation term was

ignored in the noise modeling work, the noise at high frequencies has been overestimated. However,

despite the fact that the correlation has been disregarded, the noise performance of SiGe devices

at cryogenic temperatures was found to be only slightly worse than that of state-of-the-art 0.1 µm

InP transistors. Thus, the determination of the correlation delay term, a frequency independent

constant, would be very interesting as it would allow for a less pessimistic comparison of SiGe with

InP at cryogenic temperatures. The correlation term could be determined by mounting a device that

has near 50Ω optimum source resistance in a module and measuring the 50 Ω noise using the cold

attenuator method. As the delay term is a single number, it should be relatively easily determined

using statistical methods provided the transistor embedding network1 and its associated losses are

accurately known.

1i.e. the network connecting from the plane of the base contact to the end of the bondwire connecting to a 50Ω
input line.
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In summary, the noise and small-signal properties of SiGe HBTs have been investigated in detail,

beginning with the basic theoretical physics governing the cryogenic operation of SiGe HBTs and

continuing all the way through the application of the devices in state-of-the-art extremely low-noise

amplifiers. The results obtained in the work are very promising and demonstrate that it is now

possible to successfully use commercial SiGe HBTs in applications which were once restricted to

III-V HEMTs. However, despite the successes reported here, there is still ample room for basic

research in how the device fabrication relates to the dc, RF, and noise performance of SiGe HBTs

below 77 K, as well as applied research in the application of SiGe HBTs to extremely low-noise

amplifiers in the frequency range above 10 GHz, where the shot-noise correlation is expected to have

a significant impact.
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[85] P. P. Altermatt, A. Schenk, B. Schmithüsen, and G. Heiser, “A simulation model for the
density of states and for incomplete ionization in crystalline silicon. II. Investigation of Si:As
and Si:B and usage in device simulation,” Journal of Applied Physics, vol. 100, no. 11, p.
113715, 2006. [Online]. Available: http://link.aip.org/link/?JAP/100/113715/1

[86] P. P. Altermatt, A. Schenk, and G. Heiser, “A simulation model for the density of
states and for incomplete ionization in crystalline silicon. I. establishing the model in
Si:P,” Journal of Applied Physics, vol. 100, no. 11, p. 113714, 2006. [Online]. Available:
http://link.aip.org/link/?JAP/100/113714/1

[87] P. Chevalier, Private communication, 2008.

[88] M. Law, E. Solley, M. Liang, and D. Burk, “Self-consistent model of minority-carrier lifetime,
diffusion length, and mobility,” Electron Device Letters, IEEE, vol. 12, no. 8, pp. 401–403,
Aug 1991.

[89] J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited
silicon,” Applied Physics Letters, vol. 31, no. 5, pp. 346–348, 1977. [Online]. Available:
http://link.aip.org/link/?APL/31/346/1

[90] S. Sokolic and S. Amon, “Modelling base transport properties of npn SiGe HBT,” Semicon-
ductor Conference, 1996., International, vol. 1, pp. 263–266 vol.1, Oct 1996.

[91] D. L. Harame, “Device structures and BiCMOS integration,” in Silicon Heterostructure Hand-
book, J. Cressler, Ed. Boca Raton: CRC Press, 2006, pp. 215–231.

[92] M. Khater, “Present status and future directions for SiGe HBT technology,” Proceedings of
the 2006 Lester Eastman Conference on High Performance Devices, p. 13, Aug. 2006.

[93] B. Barbalat, T. Schwartzmann, P. Chevalier, B. Vandelle, L. Rubaldo, A. Lachater, F. Saguin,
N. Zerounian, F. Aniel, and A. Chantre, “The effect of carbon on neutral base recombination
in high-speed SiGeC heterojunction bipolar transistors,” Semiconductor Science Technology,
vol. 22, pp. S99–S102, 2007.

[94] H. J. Osten, “Carbon doping of SiGe,” in Silicon Heterostructure Handbook, J. Cressler, Ed.
Boca Raton: CRC Press, 2006, pp. 157–169.

[95] B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins,
V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld,
G. Freeman, and D. Ahlgren, “A 0.13 um BiCMOS technology featuring a 200/280 GHz
(fT/fmax) SiGe HBT,” Bipolar/BiCMOS Circuits and Technology Meeting, 2003. Proceedings
of the, pp. 203–206, Sept. 2003.

[96] BiCMOS 8HP Design Manual. IBM Microelectronics, 2008.

[97] H. Riicker, B. Heinemann, R. Barth, J. Bauer, D. Blum, D. Bolze, J. Drews, G. Fischer,
A. Fox, O. Fursenko, T. Grabolla, U. Haak, W. Hoppner, D. Knoll, K. Kopke, B. Kuck, A. Mai,
S. Marschmeyer, T. Morgenstern, H. Richter, P. Schley, D. Schmidt, K. Schulz, B. Tillack,
G. Weidner, W. Winkler, D. Wolansky, H.-E. Wulf, and Y. Yamamototo, “SiGe BiCMOS
technology with 3.0 ps gate delay,” Electron Devices Meeting, 2007. IEDM 2007. IEEE Inter-
national, pp. 651–654, Dec. 2007.



BIBLIOGRAPHY 187

[98] P. Hurwitz, Electrical Parameters of the SBC18 Process Family. JAZZ Semiconductor, 2008.

[99] W. van Noort, A. Rodriguez, H. Sun, F. Zaato, N. Zhang, T. Nesheiwat, F. Neuilly,
J. Melai, and E. Hijzen, “BiCMOS technology improvements for microwave application,”
Bipolar/BiCMOS Circuits and Technology Meeting, 2008. BCTM 2008. IEEE, pp. 93–96,
Oct. 2008.

[100] B. McConnel, “IBM announces next generation silicon germanium technology,” World Wide
Web electronic publication, Aug. 2005. [Online]. Available: http://www-03.ibm.com/press/
us/en/pressrelease/7819.wss

[101] P. Chevalier, C. Fellous, L. Rubaldo, D. Dutartre, M. Laurens, T. Jagueneau, F. Leverd,
S. Bord, C. Richard, D. Lenoble, J. Bonnouvrier, M. Marty, A. Perrotin, D. Gloria, F. Saguin,
B. Barbalat, R. Beerkens, N. Zerounian, F. Aniel, and A. Chantre, “230 GHz self-aligned
SiGeC HBT for 90 nm BiCMOS technology,” Bipolar/BiCMOS Circuits and Technology, 2004.
Proceedings of the 2004 Meeting, pp. 225–228, Sept. 2004.

[102] A. J. Joseph and J. S. Dunn, “Industry examples at the state-of-the-art: IBM,” in Silicon
Heterostructure Handbook, J. Cressler, Ed. Boca Raton: CRC Press, 2006, pp. 265–282.

[103] B. Jagannathan, M. Khater, F. Pagette, J.-S. Rieh, D. Angell, H. Chen, J. Florkey, F. Golan,
D. Greenberg, R. Groves, S. Jeng, J. Johnson, E. Mengistu, K. Schonenberg, C. Schnabel,
P. Smith, A. Stricker, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, “Self-aligned
SiGe NPN transistors with 285 GHz fMAX and 207 GHz fT in a manufacturable technology,”
Electron Device Letters, IEEE, vol. 23, no. 5, pp. 258–260, May 2002.

[104] P. J. Geiss, A. J. Joseph, R. Krishnasamy, and X. Liu, “SiGe heterojunction bipolar transistor
HBT and method of fabrication,” US Patent Application 0124882, May 2008.

[105] M. Dahlstrom, K. Walter, S. Von Bruns, R. Malladi, K. Newton, and A. Joseph, “Influence of
the Ge profile on VBE and current gain mismatch in advanced SiGe BICMOS NPN HBT with
200 GHz fT,” Bipolar/BiCMOS Circuits and Technology Meeting, 2006, pp. 1–4, Oct. 2006.

[106] F. Pourchon, C. Raya, N. Derrier, P. Chevalier, D. Gloria, S. Pruvost, and D. Celi, “From
measurement to intrinsic device characteristics: Test structures and parasitic determination,”
Bipolar/BiCMOS Circuits and Technology Meeting, 2008. BCTM 2008. IEEE, pp. 232–239,
Oct. 2008.

[107] H. Rucker, B. Heinemann, R. Barth, D. Bolze, J. Drews, U. Haak, W. Hoppner, D. Knoll,
K. Kopke, S. Marschmeyer, H. Richter, P. Schley, D. Schmidt, R. Scholz, B. Tillack, W. Win-
kler, H.-E. Wulf, and Y. Yamamoto, “SiGe:C BiCMOS technology with 3.6 ps gate delay,”
Electron Devices Meeting, 2003. IEDM ’03 Technical Digest. IEEE International, pp. 5.3.1–
5.3.4, Dec. 2003.

[108] D. Knoll, “Industry examples at the-state-of-the-art: IHP,” in Silicon Heterostructure Hand-
book, J. Cressler, Ed. Boca Raton: CRC Press, 2006, pp. 321–341.

[109] M. Racanelli, K. Schuegraf, A. Kalburge, A. Kar-Roy, B. Shen, C. Hu, D. Chapek, D. Howard,
D. Quon, F. Wang, G. U’ren, L. Lao, H. Tu, J. Zheng, J. Zhang, K. Bell, K. Yin, P. Joshi,
S. Akhtar, S. Vo, T. Lee, W. Shi, and P. Kempf, “Ultra high speed SiGe NPN for advanced
BiCMOS technology,” Electron Devices Meeting, 2001. IEDM Technical Digest. International,
pp. 15.3.1–15.3.4, 2001.

[110] P. Deixler, A. Rodriguez, W. De Boer, H. Sun, R. Colclaser, D. Bower, N. Bell, A. Yao,
R. Brock, Y. Bouttement, G. Hurkx, L. Tiemeijer, J. Paasschens, H. Huizing, D. Hartskeerl,
P. Agrarwal, P. Magnee, E. Aksen, and J. Slotboom, “QUBiC4X: An fT/fmax = 130/140GHz
SiGe:C-BiCMOS manufacturing technology with elite passives for emerging microwave appli-
cations,” Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting,
pp. 233–236, Sept. 2004.



BIBLIOGRAPHY 188

[111] R. Colcaser and P. Deixler, “Industry examples at the state-of-the-art: Philips,” in Silicon
Heterostructure Handbook, J. Cressler, Ed. Boca Raton: CRC Press, 2006, pp. 371–386.

[112] “Zprobe data-sheet,” 2004. [Online]. Available: http://www.suss.com/download?id=730

[113] J. Fernandez, “Cryogenic HEMT characterization,” Anaheim, CA, 1999, course notes, Cryo-
genic Wafer Probing of Microwave Devices, IEEE-MTTS IMS.

[114] R. Venkatasubramanian, “Cascade cryogenic thermoelectric cooler for cryogenic and room
temperature applications,” United States Patent 6,662,570, Dec. 2003.

[115] “Cryotel mt measured performance,” World Wide Web electronic publication. [Online].
Available: http://www.sunpower.com/lib/sitefiles/pdf/cryo MT.pdf

[116] S. Weisberg, Applied Linear Regression. Hoboken, NJ: Wiley-Interscience, 2005.

[117] A. Appaswamy, J. Cressler, and G. Niu, “A novel base current phenomenon in SiGe HBTs
operating in inverse mode,” Solid State Device Research Conference, 2007. ESSDERC 2007.
37th European, pp. 350–353, Sept. 2007.

[118] S. Mason, “Power gain in feedback amplifier,” Transactions of the IRE Professional Group on
Circuit Theory, vol. CT-1, no. 2, pp. 20–25, June 1954.

[119] B. Woods, H. Mantooth, and J. Cressler, “SiGe HBT compact modeling for extreme temper-
atures,” Semiconductor Device Research Symposium, 2007 International, pp. 1–2, Dec. 2007.

[120] P. Tasker and M. Fernandez-Barciela, “HBT small signal T and Pi model extraction using
a simple, robust and fully analytical procedure,” Microwave Symposium Digest, 2002 IEEE
MTT-S International, vol. 3, pp. 2129–2132, 2002.

[121] K. Xia, G. Niu, D. Sheridan, and W. Ansley, “Ratio based direct extraction of small-signal
parameters for SiGe HBTs,” Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of
the 2004 Meeting, pp. 144–147, Sept. 2004.

[122] K. Lee, K. Choi, S.-H. Kook, D.-H. Cho, K.-W. Park, and B. Kim, “Direct parameter extrac-
tion of SiGe HBTs for the VBIC bipolar compact model,” Electron Devices, IEEE Transactions
on, vol. 52, no. 3, pp. 375–384, Mar 2005.

[123] T.-R. Yang, J. M.-L. Tsai, C.-L. Ho, and R. Hu, “SiGe HBT’s small-signal pi modeling,”
Microwave Theory and Techniques, IEEE Transactions on, vol. 55, no. 7, pp. 1417–1424, July
2007.

[124] M. Dvorak and C. Bolognesi, “On the accuracy of direct extraction of the heterojunction-
bipolar-transistor equivalent-circuit model parameters Cp, CBC, and RE,” Microwave Theory
and Techniques, IEEE Transactions on, vol. 51, no. 6, pp. 1640–1649, June 2003.

[125] T. Ning and D. Tang, “Method for determining the emitter and base series resistances of
bipolar transistors,” Electron Devices, IEEE Transactions on, vol. 31, no. 4, pp. 409–412, Apr
1984.

[126] W. Sansen and R. Meyer, “Characterization and measurement of the base and emitter resis-
tances of bipolar transistors,” Solid-State Circuits, IEEE Journal of, vol. 7, no. 6, pp. 492–498,
Dec 1972.

[127] C. Raya, F. Pourchon, T. Zimmer, D. Celi, and P. Chevalier, “Scalable approach for HBT’s
base resistance calculation,” Semiconductor Manufacturing, IEEE Transactions on, vol. 21,
no. 2, pp. 186–194, May 2008.

[128] L. Giacoletto, “Measurement of emitter and collector series resistances,” Electron Devices,
IEEE Transactions on, vol. 19, no. 5, pp. 692–693, May 1972.



BIBLIOGRAPHY 189

[129] T. Chen, T. Krakowski, A. Strachan, Y. Liu, A. Sadovnikov, and J. Babcock, “Simultane-
ous extraction of collector and substrate series resistance by simple dc measurement,” Bipo-
lar/BiCMOS Circuits and Technology Meeting, 2006, pp. 1–4, Oct. 2006.

[130] R. Gabl and M. Reisch, “Emitter series resistance from open-collector measurements-influence
of the collector region and the parasitic pnp transistor,” Electron Devices, IEEE Transactions
on, vol. 45, no. 12, pp. 2457–2465, Dec 1998.

[131] K. Morizuka, O. Hidaka, and H. Mochizuki, “Precise extraction of emitter resistance from an
improved floating collector measurement,” Electron Devices, IEEE Transactions on, vol. 42,
no. 2, pp. 266–273, Feb 1995.

[132] P. R. Grey and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 3rd ed. New
York: John Wiley and Sons, 1993.

[133] R. Anholt, Electrical and Thermal Characterization of MESFETs, HEMTs, and HBTs.
Boston, MA: Artech House, 1995.

[134] K. Xia, “Improved RF noise modeling for silicon-germanium heterojunction bipolar transis-
tors,” Ph.D. dissertation, Auburn University, Auburn, AL, 2006.

[135] W. Kloosterman, J. Paasschens, and D. Klaassen, “Improved extraction of base and emit-
ter resistance from small signal high frequency admittance measurements,” Bipolar/BiCMOS
Circuits and Technology Meeting, 1999. Proceedings of the 1999, pp. 93–96, 1999.

[136] Y. Gobert, P. Tasker, and K. Bachem, “A physical, yet simple, small-signal equivalent circuit
for the heterojunction bipolar transistor,” Microwave Theory and Techniques, IEEE Transac-
tions on, vol. 45, no. 1, pp. 149–153, Jan 1997.

[137] E. A. Mechtly, “Properties of materials,” in Reference Data For Engineers: Radio Electronics,
Computer, and Communications, 9th ed., W. M. Middleton, Ed. Boston: Newnes, 2002, pp.
4–1–4–33.

[138] W. Clark, B. El-Kareh, R. Pires, S. Titcomb, and R. Anderson, “Low temperature CMOS-a
brief review,” Components, Hybrids, and Manufacturing Technology, IEEE Transactions on,
vol. 15, no. 3, pp. 397–404, Jun 1992.

[139] H. Friis, “Noise figures of radio receivers,” Proceedings of the IRE, vol. 32, pp. 419–422, July
1944.

[140] H. A. Haus and R. B. Adler, Circuit Theory of Linear Noisy Networks. New York, NY: John
Wiley & Sons, Inc., 1959.

[141] H. Fukui, “Available power gain, noise figure, and noise measure of two-ports and their graph-
ical representations,” IEEE Trans. Circuit Theory, vol. CT-13, pp. 137–142, June 1966.

[142] H. Hillbrand and P. Russer, “An efficient method for computer aided noise analysis of linear
amplifier networks,” Circuits and Systems, IEEE Transactions on, vol. 23, no. 4, pp. 235–238,
Apr 1976.

[143] D. Frickey, “Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for
complex source and load impedances,” Microwave Theory and Techniques, IEEE Transactions
on, vol. 42, no. 2, pp. 205–211, Feb 1994.

[144] H. Haus, W. Atkinson, G. Branch, W. Davenport, W. Fonger, W. Harris, S. Harrison,
W. McLeod, E. Stodola, and T. Talpey, “Representation of noise in linear twoports,” Pro-
ceedings of the IRE, vol. 48, pp. 69–74, Jan. 1960.

[145] R. Tucker, “Low-noise design of microwave transistor amplifiers (short papers),” Microwave
Theory and Techniques, IEEE Transactions on, vol. 23, no. 8, pp. 697–700, Aug 1975.



BIBLIOGRAPHY 190

[146] C. Poole and D. Paul, “Optimum noise measure terminations for microwave transistor ampli-
fiers (short paper),” Microwave Theory and Techniques, IEEE Transactions on, vol. 33, no. 11,
pp. 1254–1257, Nov 1985.

[147] J.-C. Liu, S.-S. Bor, and P.-C. Lu, “Comments on ‘optimum noise measure terminations for
microwave transistor amplifiers’ by C.R. Poole and D.K. Paul [and reply],” Microwave Theory
and Techniques, IEEE Transactions on, vol. 41, no. 11, pp. 2042–2043, Nov 1993.

[148] N. Wadefalk and S. Weinreb, “Very low noise amplifiers for very large arrays,” 2005, iEEE
Microwave Symposium Short Course.

[149] P. Leroux and M. Steyaert, LNA-ESD co-design for fully integrated CMOS wireless receivers.
Dordrecht, NL: Springer Press, 2005.

[150] Dielectric Labs, “Single-layer and broadband blocking capacitors.” [Online]. Available:
{www.dilabs.com/pdfs/SLC\%20Catalog.pdf}

[151] J. W. Kooi, J. J. A. Baselmans, M. Hajenius, J. R. Gao, T. M. Klapwijk, P. Dieleman,
A. Baryshev, and G. de Lange, “IF impedance and mixer gain of NbN hot electron
bolometers,” Journal of Applied Physics, vol. 101, no. 4, p. 044511, 2007. [Online]. Available:
http://link.aip.org/link/?JAP/101/044511/1

[152] B. Razavi, Design of Analog CMOS Integrated Circuits. New Dehli: Tata McGraw-Hill, 2002.

[153] S. Iversen, “The effect of feedback on noise figure,” Proceeding of the IEEE, vol. 63, pp. 540–
5420, Mar. 1975.

[154] J. E. Fernandez, “A noise measurement system using a cryogenic attenuator,” The Jet
Propulsion Laboratory, California Institute of Technology, TMO Progress Report 42-135F,
Nov. 1998. [Online]. Available: http://ipnpr.jpl.nasa.gov/progress\ report/42-135/135F.pdf

[155] J. Moll and I. Ross, “The dependence of transistor parameters on the distribution of base layer
resistivity,” Proceedings of the IRE, vol. 44, no. 1, pp. 72–78, Jan. 1956.

[156] E. Heasell, “The derivation of a relationship for the charge-control base lifetime in terms of
the base and collector small-signal conductances,” Electron Devices, IEEE Transactions on,
vol. 28, pp. 595–596, May 1981.

[157] H. Kroemer, “Two integral relations pertaining to the electron transport through a bipolar
transistor with a nonuniform energy gap in the base region,” Solid-State Electronics, vol. 28,
pp. 1101–1103, Nov. 1985.

[158] S. A. Wartenberg, RF Measurements of Die and Packages. Boston, MA: Artech House, 2002.

[159] M. Myslinski, W. Wiatr, and D. Schreurs, “A three-step procedure utilizing only two test
structures for deembedding transistor from on-wafer s-parameter measurements,” Microwaves,
Radar and Wireless Communications, 2004. MIKON-2004. 15th International Conference on,
vol. 2, pp. 674–677 Vol.2, May 2004.

[160] P. Penfield, “Wave representation of amplifier noise,” IRE Transactions on Circuit Theory,
pp. 84–86, Mar. 1962.



APPENDIX A. BJT DERIVATIONS 191

Appendix A

BJT Derivations

A.1 Terminal Currents in Si Transistors

In this section, the collector and base current densities are derived under the assumption that

the base width is very small.

A.1.1 Base Current Density, JB

The base current density can be calculated by computing the hole current flowing from the

p-doped region into the n-doped region in a p-n diode. The first step in this calculation is to derive

an expression for the ratio of hole charge on each side of the depletion region in terms of the built in

voltage, V0. Next, this expression will be generalized to include the effect of bias voltages. Finally,

the excess diffusion current density will be calculated. For all calculations, it is assumed that the

emitter width is greater than a diffusion length, that the junction is abrupt, and that the doping

levels are constants within each region. The expression for the hole current is [55]:

Jp (x) = qµpp (x)E (x)− qDp
∂p (x)

∂x
, (A.1)

where p (x) is the hole concentration in the semiconductor and x is the position along the device1.

At equilibrium, the hole current density must be zero. In the regions outside the depletion region,

this has obvious implications— the doping is constant so ∂p (x)/∂x = 0, forcing the electric-field,

E (x), to be non-existent. However, within the depletion region, ∂p (x)/∂x 6= 0 meaning there must

be a diffusion current flowing. Thus, a built-in voltage which produces a compensating drift current

has to exist. This built-in voltage can be found by solving a partial-differential equation derived

1It is assumed that the device is uniform in the yz plane so the analysis of a 1-d device is sufficient. This assumption
is equivalent to neglecting end effects.
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from equation (A.1) under equilibrium conditions:

− 1

VT

∂V (x)

∂x
=

1

p (x)

∂p (x)

∂x
, (A.2)

where VT = kT/q is the thermal voltage. After performing integration, the expression for the built-in

voltage is obtained:

V0 = Vn − Vf = VT ln

(
pp0

pn0

)
(A.3)

or

pp0

pn0
= eV0/VT . (A.4)

where pp0 and pn0 are the equilibrium hole concentrations in the p and n regions.

Thus far, all calculations have assumed equilibrium conditions. However, the concentrations

at the edge of the depletion region can be related to an applied bias through a modification of

equation (A.4) [52]:

pn (−xn0)

pp (xp0)
= e(VBE−V0)/VT , (A.5)

where VBE is the applied voltage with polarity defined from the p-region to the n-region. Assuming

that the majority charge density is relatively independent of bias, the excess hole charge on the

n-doped side of the depletion region can be written as

∆pn (−xn0) = pn0

(
eVBE/VT − 1

)
. (A.6)

From equation (A.1), we see that the excess diffusion current depends on the position dependent

charge concentration. For a long emitter, the average injected hole will recombine in within a hole

diffusion length, Lp [55]. Therefore, the position dependent excess minority charge distribution in

the emitter is given as:

∆pn (x) = pn (−xn0) e(x+xn0)/Lp = pn (−xn0) e−(x′)/Lp , (A.7)

where, to simplify calculations, a new coordinate x′ = − (x + xn0) has been defined such that the

emitter area is in the region x′ > 0. Now, the excess hole current can be directly calculated at the

edge of the depletion region:

Jp (x′ = 0) = −qDn
∂p (x′)

∂x
= pn

kTaµp

Lp
eVBE/VT (A.8)
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Realizing that, in the absence of recombination in the base, JB = Jp and pn = n2
io/N

+
DE =

N−
ABe−V0/VT , we can write the final formula for the base current density:

JB =
kTaµpn

2
io

N+
DELpe

eVBE/VT = N−
AB

kTaµp

Lpe
e(VBE−V0)/VT (A.9)

A.1.2 Collector Current Density, JC

To begin in deriving the collector current density, we determine the built in electric field using

by equating the hole drift and diffusion currents [52]:

qµp (x)E (x) = Dp
dp (x)

dx
. (A.10)

So, the built in electric field is:

E (x) =
VT

p (x)

dp (x)

dx
. (A.11)

Now, the total electron current can be written as:

Jn (x) = qµnn (x)E (x) + qDn
dn (x)

dx
. (A.12)

Substituting equation (A.11) into equation (A.12) and using Einstein’s relation (D = µVT ), we can

write the following equation for the electron current density in the semiconductor:

Jn (x) = qDn

[
n (x)

p (x)

dp (x)

dx
+

dn (x)

dx

]
=

qDn

p (x)

d {n (x) p (x)}
dx

. (A.13)

Next, integration can be carried out from position x to the edge of the base yielding the following

expression2 :

Jn (x)

qDn

∫ WB

x

p (x′) dx′ = n (x)p (x) . (A.14)

Thus, the minority carrier concentration at the edge of the base side of the base-emitter space charge

region is given as:

n (0) =
Jn (0)

qDnp (0)

∫ WB

0

p (x) dx. (A.15)

2The boundary condition n(WB) = 0 has been applied.
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Now, we know from standard diffusion theory3 that the electron concentration under active bias is

related to its equilibrium value by an exponential term that is a function of the applied bias:

n (0) = np0e
VBE/VT . (A.16)

Thus, we can solve for the collector current density by equating (A.15) with (A.16):

JC = Jn (0) =
qDnp(0)np0e

VBE/VT

∫WB

0 p (x) dx
= kT

µnp(0)np0e
VBE/VT

∫WB

0 p (x) dx
. (A.17)

Equation (A.17) is known as the Moll-Ross relation for bipolar transistors [155, 156], and relates the

total majority carrier charge in the base to the collector current density. Finally, if we assume that

a constant acceptor doping of N−
AB is used in the base and that the majority carrier concentration

at the base side of the space charge region is insensitive to applied bias, then p (x) = p (0) = N−
AB,

and equation (A.17) simplifies drastically:

JC = kT
µnn2

io

WBN−
AB

eVBE/VT . (A.18)

A.2 Capacitances

A.2.1 Base-Emitter Diffusion Capacitance, Cbed

Charge neutrality requires that the difference in number of majority carriers and minority

carriers in a doped semiconductor be equal to the total number of ionized impurities [55]. Thus, for

a change of in base minority charge of ∆Qnb, a base current is required to supply a change in the

majority concentration of ∆Qpb = ∆Qnb, and we can define a small-signal base-emitter diffusion

capacitance [132]:

Cbed =
∆Qpb

∆VBE
=

∆Qnb

∆VBE
=

∆Qnb

∆IC

∆IC

∆VBE
= gm

∆Qnb

∆IC
. (A.19)

Recall, that the minority current in the base is given as

JC =
qNdbDnb

WB

(
eVBE/VT − 1

)
≈ qNdbDnb

WB
eV/VT . (A.20)

3see [52] or [55]
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Now, the total minority carrier charge in the base is given as:

Qnb =

∫ WB

0

qAnp (x) dx =
qAnp0WB

2
eVBE/VT . (A.21)

Taking the ratio of minority carrier charge to collector current density, we can write an expression

for the minority carrier base transit time [132]:

τf ≡
Qnb

IC
=

W 2
B

2µnbVT
. (A.22)

Thus, from A.19, the diffusion capacitance can be written as:

Cbed = gmτf =
ICW 2

B

2µnbV 2
T

. (A.23)

A.2.2 Depletion Capacitances

A depletion (junction) capacitance occurs due to charge dipole in a pn junction and can be deter-

mined as [52]:

Cd =

∣∣∣∣
∂Qd

∂Vd

∣∣∣∣ , (A.24)

where Qd is the charge in each half of the depletion region and Vd is the potential across the depletion

region. The total charge on each side of the depletion region can be written as

|Qd| = qAxn0Nd = qAxp0Na, (A.25)

where xp0 and xn0 are the positions of the edge of the depletion region in the p and n doped regions.

In order to simplify (A.25), we can exploit the relationship between the dopant concentrations and

applied voltage as given by Streetman [52]:

xn0 = W
Na

Na + Nd
, (A.26)

where

W =

√
2ε (V0 − V )

q

Na + Nd

NaNd
. (A.27)

Thus, equation (A.25) can be written as

|Qd| = qAW
NaNd

Na + Nd
= A

√
2qε (V0 − V )

NaNd

Na + Nd
. (A.28)
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Figure A.1: (a) Drawing of Ge profile in the base. For the purpose of analysis, the depletion regions
are not included in the base. (b) Bandgap structure in the base region demonstrating reduction
from the Si bandgap due to Ge content and high doping levels. Egb0 is the bandgap for intrinsic
silicon.

Finally, the an expression for the depletion capacitance can be written as

Cd = εA

√
q

2ε (V0 − V )

NaNd

Na + Nd
=

εA

W
. (A.29)

A.3 SiGe

A.3.1 Terminal Currents

As discussed in Chapter 2.1.2 the introduction of Ge to the base in a SiGe transistor results

in a bandgap narrowing effect which has a strong effect on the collector current density, making

the collector current a strong function of the Ge profile. In this section, the collector current will

be derived for a linearly grated Ge profile, which is common in state-of-the-art SiGe HBTs. The
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conventions used for labels are consistent with those used by Cressler in [30]. A representative Ge

profile is drawn in Fig. A.1(a), with a sketch of the corresponding energy band diagram appearing

in Fig. A.1(b). There are two effects that are accounted for in the energy band diagram:

1) A position independent reduction in the bandgap of ∆Eg,app resulting from heavy doping in

the base.

2) A position dependent bandgap reduction due of ∆Eg,Ge (x) = ∆Eg,Ge (0)+(x/WB)∆Eg,Ge (grade)

due to the introduction of the Ge grating in the base.

To determine the collector current, we can use the generalized Moll-Ross equation as derived by

Kröemer [157]:

JC,SiGe =
q
(
eVBE/VT − 1

)

∫ WB

0

pb (x) dx

Dnb (x)n2
ib (x)

, (A.30)

where VT = kT/q, pb is the position dependent hole concentration, Dnb is the position dependent

electron diffusion constant, and nib is the position dependent intrinsic carrier concentration. The

intrinsic carrier concentration is proportional to the bandgap. Therefore, the square of the position

dependent intrinsic carrier concentration in SiGe can be written as [30]:

nib,SiGe (x)
2

= (NCNV )SiGe (x) e−Egb0/kTe∆Eg,app/kTe∆Eg,Ge(0)/kTex/WB∆Eg,Ge(grade)/kT . (A.31)

Next, as suggested by Cressler in [30], we define a ratio of effective density of states between SiGe

and Si,

γ (x) =
(NCNV )SiGe (x)

(NCNV )Si

, (A.32)

allowing us to rewrite equation (A.31) in a more compact form:

nib,SiGe = γ (x)n2
io,Sie

∆Eg,app/kT e∆Eg,Ge(0)/kT ex/WB∆Eg,Ge(grade)/kT . (A.33)

Finally, by assuming a constant level of ionized impurities in the base, N−
ab, and defining a position

averaged diffusion constants and density of states ratio, D̃nb and γ̃ the integral in the denominator

of (A.30) becomes:

N−
ab

n2
io,SiD̃nbγ̃e∆Eg,app/kTe∆Eg,Ge(0)/kT

∫ WB

0

e−x/WB∆Eg,Ge(grade)/kT dx. (A.34)
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Performing the integration and plugging the result into A.30, the collector current density can be

written:

JC,SiGe = q
n2

io,SiD̃nbγ̃

WBN−
AB

∆Eg,Ge(grade)/kT

1− e−∆Eg,Ge(grade)/kT
e∆Eg,app/kT e∆Eg,Ge(0)/kT

(
eVBE/VT − 1

)
. (A.35)

For comparison with Si devices, it is desirable to recast equation (A.35) in such a form that JC,Si

can be factored out of the expression. This can be done by substituting

η̃ ≡ D̃nb,SiGe

Dnb,Si
(A.36)

into equation (A.35). Doing so, the final equation for the collector current reads:

JC,SiGe = JC,Si

[
η̃γ̃e∆Eg,Ge(0)/kT ∆Eg,Ge(grade)/kT

1− e−∆Eg,Ge(grade)/kT

]
. (A.37)
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Appendix B

De-Embedding Procedure

B.1 Introduction to De-Embedding Using Y- and Z- Param-

eters

In general, shunt elements are best removed using a Y- parameters and series elements are best

removed using Z-parameters. The two general configurations appear in Fig. B.1 and the intrinsic

networks can be found as

Y = Y′ −




Y1 + Y2 −Y2

−Y2 Y2 + Y3


 (B.1)

and

Z = Z′ −




Z1 + Z2 Z2

Z2 Z2 + Z3


 (B.2)

YY1 Y3

Y2

(a)

Z

Z1 Z3

Z2

(b)

Figure B.1: Equivalent circuits for basic de-embedding
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DUT

ZA ZC

ZB

YA YC

YB

(a)

ZA ZC

ZB

YA YC

(b)

ZA ZC

YA YC

YB

(c)

Figure B.2: Equivalent circuit diagrams of transistor, open-circuit, and short-circuit test structures.

B.2 Transistor Test-Structure De-Embedding

In this section, the procedure used to remove the parasitic effects of the bondpads and feedlines

is presented. The topic of de-embedding has received considerable attention in the literature and a

good summary of the techniques commonly used can be found in Chapter 6 of [158]. In this work,

the three-step de-embedding procedure presented by Myslinski, Wiatr, and Schreurs is used [159]. A

diagram detailing the parasitic components which need to be removed by the de-embedding appears

in Fig. B.2(a). The unknown parasitics associated with the transistor test structure are: 1) YA and

YC , which are the admittances from the input and output bondpads to ground, 2) ZA and ZC , which

are the series impedances associated with the lines connecting from the bondpads to the transistor

input and output terminals, 3) YB , which is the admittance between the input and output terminals

of the transistor, and 4) ZB , which is the series resistance in the ground return path.

If all of the parasitics are known, then the following procedure can be used to determine the

intrinsic Y parameters of the DUT, Yint, from the measured Y parameters, Ym:

1) Remove YA and YC from Ym to end up with Y′
m

2) Invert Y′
m to end up with Z′

m

3) Remove ZA, ZB , and ZC from Z′
m

to end up with Z′′
m

4) Invert Z′′
m

to end up with Y′′
m

5) Remove YB from Y′′
m to end up with Yint

In order to determine the unknown parasitics, we use short- and open-circuit test structures, the

equivalent circuits of which appear in Figs. B.2(b) and B.2(c). To begin with, we determine YA and
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YC from the Y-parameters of the open-circuit test structure:

YA = Y OS
11 + Y OS

12 (B.3)

and

YC = Y OS
22 + Y OS

12 . (B.4)

With YA and YC known, the series elements can be computed from the measured admittance matrix

of the short-circuit test structure as

ZA =

[
1 0

]

YSS −




YA 0

0 YC







−1 


1

−1


 , (B.5)

ZB =

[
1 0

]

YSS −




YA 0

0 YC







−1 


0

1


 , (B.6)

and

ZC =

[
0 1

]

YSS −




YA 0

0 YC







−1 

−1

1


 . (B.7)

Finally, with the other elements known, YB can be determined as

YB =

(
− 1

Y OS
12

− ZA − ZC

)
. (B.8)
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Appendix C

Extracted Models

C.1 DC Parameters

C.1.1 DC Current Coefficients: Low-Injection Operation

In section 5, it was shown that under low-injection conditions, the base current and collector

current densities can be written as

JB = JB0e
VBE/nbVT + JB0,RCeVBE/nb,rcVT (C.1)

JC = JC0e
VBE/nc0VT + JC0,P eVBE/nc,pVT (C.2)

The coefficients JB0, nb, JB0,RC , and nb,rc appear in Tables C.1-C.4. For the IHP-G4, ST-X1, and

ST-X3 devices the base current at 18 K was inconsistent with the model1 and thus, fitting coefficients

are not given. Furthermore, it was not possible to extract the coefficients for the NXP-G3 device at

200 K.

The coefficients JC0, nc0, JC0,P , and nc,p appear in Tables C.5-C.8. It should be noted that the

coefficients associated with the parasitic leakage component of JC were only required to describe a

few of the devices operating at cryogenic temperatures. Specifically, they were required to describe

JC for the IBM-G4 device at 50 K and below as well as the ST-X1, ST-X3, and JAZZ-G3 devices

at 77 K and below.

1i.e. they had additional structure besides the recombination and diffusion current components.
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Table C.1: Extracted base saturation current, JB0, at low-injection.

300K 200K 77K 50K 18K

IBM-G4 1.1e-16 1.6e-25 3.2e-51 1.1e-56 1.7e-59
IHP-G4 7.8e-17 8.7e-24 7.0e-30 4.7e-30 -
ST-G4 4.8e-17 3.9e-27 5.3e-66 3.7e-80 8.2e-85
ST-X2 5.9e-17 1.2e-26 4.5e-48 2.5e-51 6.8e-55
ST-X1 1.3e-16 4.2e-25 4.5e-46 1.6e-47 -
ST-X3 1.7e-17 6.4e-25 2.1e-38 3.1e-42 -
JAZZ-G3 2.1e-16 2.6e-26 2.0e-57 4.5e-55 3.6e-56
NXP-G3 3.1e-14 - 4.0e-52 1.9e-55 2.2e-54

Table C.2: Extracted base ideality factors, nb, at low-injection.

300K 200K 77K 50K 18K

IBM-G4 1.022 1.076 1.434 2.006 5.324
IHP-G4 1.013 1.152 2.544 3.890 -
ST-G4 1.014 1.000 1.074 1.362 3.585
ST-X2 1.029 1.030 1.541 2.223 5.759
ST-X1 1.081 1.119 1.593 2.392 -
ST-X3 1.008 1.130 1.952 2.743 -
JAZZ-G3 1.063 1.038 1.256 2.060 5.651
NXP-G3 1.142 - 1.339 1.953 5.571

Table C.3: Extracted base recombination saturation currents, Jbr, at low-injection.

300K 200K 77K 50K 18K

IBM-G4 9.8e-11 1.8e-10 2.2e-17 1.2e-19 1.5e-20
IHP-G4 3.6e-12 1.9e-12 2.7e-11 1.6e-11 -
ST-G4 6.8e-12 4.7e-16 3.9e-23 7.8e-37 2.4e-40
ST-X2 5.3e-12 9.7e-11 1.1e-23 7.8e-20 5.7e-22
ST-X1 1.8e-7 1.7e-14 5.6e-16 3.8e-14 -
ST-X3 6.9e-12 3.0e-12 3.0e-17 1.7e-19 -
JAZZ-G3 7.0e-10 1.7e-11 1.5e-20 7.4e-18 1.5e-17
NXP-G3 1.4e-7 - 3.5e-12 6.7e-12 1.9e-12

Table C.4: Extracted base recombination ideality factors, nbr, at low-injection.

300K 200K 77K 50K 18K

IBM-G4 3.385 6.209 5.392 7.105 18.924
IHP-G4 1.752 3.118 14.311 20.788 -
ST-G4 2.737 2.166 3.800 3.265 8.226
ST-X2 3.078 4.770 3.679 7.416 17.923
ST-X1 5.992 3.394 5.716 10.576 -
ST-X3 2.175 3.481 5.271 6.875 -
JAZZ-G3 3.219 3.539 4.156 7.750 22.338
NXP-G3 3.168 - 6.871 11.013 28.921
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Table C.5: Extracted collector saturation currents, JC0 at low-injection (A/µm2).

300K 200K 77K 50K 18K

IBM-G4 4.4e-14 1.6e-23 6.6e-52 6.2e-78 8.9e-121
IHP-G4 5.5e-14 9.1e-23 8.1e-53 1.4e-69 6.6e-86
ST-G4 1.9e-13 9.6e-22 3.1e-44 7.5e-64 5.3e-92
ST-X2 8.5e-14 2.1e-22 2.5e-58 1.3e-86 6.8e-111
ST-X1 9.8e-14 2.6e-22 2.2e-51 1.2e-65 6.9e-72
ST-X3 1.3e-13 3.4e-22 1.1e-48 5.3e-63 8.9e-72
JAZZ-G3 1.2e-14 8.9e-24 1.3e-54 5.1e-65 7.2e-69
NXP-G3 4.2e-12 4.1e-20 3.5e-49 3.4e-63 1.7e-98

Table C.6: Extracted collector ideality factors, nc, at low-injection.

300K 200K 77K 50K 18K

IBM-G4 1.025 1.029 1.309 1.349 2.416
IHP-G4 1.015 1.034 1.238 1.458 3.321
ST-G4 1.044 1.070 1.473 1.571 3.013
ST-X2 1.019 1.037 1.116 1.160 2.527
ST-X1 1.025 1.032 1.231 1.496 3.815
ST-X3 1.036 1.039 1.305 1.563 3.841
JAZZ-G3 1.032 1.045 1.261 1.647 4.340
NXP-G3 1.024 1.061 1.236 1.499 2.681

Table C.7: Extracted Collector leakage saturation current, JCP0 at low-injection (A/µm2).

300K 200K 77K 50K 18K

IBM-G4 - - - 1.3e-18 5.7-24
IHP-G4 - - - - -
ST-G4 - - - - -
ST-X2 - - - - -
ST-X1 - - 3.7e-18 1.3e-17 8.4e-19
ST-X3 - - 1.3e-19 1.4e-19 1.4e-20
JAZZ-G3 - - 3.8-19 1.9e-19 7.0e-20
NXP-G3 - - - - -

Table C.8: Extracted collector leakage ideality factors, ncp, at low-injection.

300K 200K 77K 50K 18K

IBM-G4 - - - 8.303 15.897
IHP-G4 - - - - -
ST-G4 - - - - -
ST-X2 - - - - -
ST-X1 - - 5.083 8.298 20.704
ST-X3 - - 4.614 7.177 18.430
JAZZ-G3 - - 4.881 7.385 19.935
NXP-G3 - - - - -
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C.2 ft and fmax

The peak values of ft and fmax were extracted using the method presented in Chapter 6 and the

results appear below in Tables C.9-C.12.

Table C.9: Extracted peak ft

Technology 300K 200K 77K 50K 18K

IBM-G4 218 268 331 339 344
IHP-G4 246 297 356 349 348
ST-G4 277 331 415 411 416
ST-X2 239 268 327 340 359
ST-X1 254 287 339 343 355
ST-X3 248 297 359 368 373
JAZZ-G3 122 156 173 179 177

Table C.10: Extracted JC for peak ft

Technology 300K 200K 77K 50K 18K

IBM-G4 11.8 12.5 12.1 11.7 12.3
IHP-G4 9.7 10.0 10.1 8.6 5.3
ST-G4 14.6 15.2 13.1 13.2 12.7
ST-X2 10.7 10.7 9.3 9.7 9.2
ST-X1 11.2 12.4 11.4 10.8 11.5
ST-X3 11.5 12.6 12.1 11.7 12.1
JAZZ-G3 5.0 5.6 5.9 5.9 5.6

Table C.11: Extracted peak fmax

Technology 300K 200K 77K 50K 18K

IBM-G4 244 277 302 311 336
IHP-G4 192 281 289 315 271
ST-G4 261 310 311 340 359
ST-X2 231 278 296 298 363
ST-X1 211 255 233 227 282
ST-X3 210 248 238 238 283
JAZZ-G3 149 163 170 172 165

C.3 Small-Signal Model Component Values

In this section, the small-signal component values of the bias independent resistances are pre-

sented along with equations describing the bias dependence of the capacitors.
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Table C.12: Extracted JC for peak fmax

Technology 300K 200K 77K 50K 18K

IBM-G4 11.3 11.9 10.7 10.9 9.7
IHP-G4 10.6 10.4 10.9 9.3 5.3
ST-G4 11.8 13.1 16.4 13.9 13.6
ST-X2 8.2 10.6 11.1 8.3 10.1
ST-X1 9.8 9.5 9.9 8.2 7.0
ST-X3 9.0 9.2 9.6 10.9 7.6
JAZZ-G3 4.5 5.4 4.8 4.8 4.8

C.3.1 Capacitances

The base-collector and collector to substrate capacitances can be described in terms of depletion

capacitances. Thus, the equation for CCB and CCS is given as

CX =
CX0

(1 + VX/VX0)
mx , (C.3)

where X is either CB or CS depending upon which junction is being described. The coefficients

required to evaluate equation (C.3) for the collector-base junction appear in Tables C.13-C.15 and

the coefficients required for the collector-substrate junction appear in Tables C.16-C.18.

Table C.13: Extracted CCB0, fF/µm2

Technology 300K 200K 77K 50K 18K

IBM-G4 13.0 12.5 12.2 12.2 11.8
IHP-G4 14.7 14.1 13.4 13.3 13.4
ST-G4 19.7 18.9 18.5 18.4 18.3
ST-X2 14.1 13.4 13.1 13.0 12.1
ST-X1 12.4 11.9 11.6 11.5 11.5
ST-X3 12.9 12.3 12.0 12.0 11.9
JAZZ-G3 10.3 9.8 9.5 9.5 9.2

Table C.14: Extracted VCB0

Technology 300K 200K 77K 50K 18K

IBM-G4 0.689 0.855 1.062 1.123 1.067
IHP-G4 0.710 0.763 0.746 0.745 0.779
ST-G4 0.709 0.775 0.821 0.830 0.836
ST-X2 0.644 0.713 0.775 0.770 0.787
ST-X1 0.661 0.729 0.772 0.779 0.779
ST-X3 0.669 0.737 0.790 0.799 0.789
JAZZ-G3 0.699 0.882 1.033 1.047 1.084
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Table C.15: Extracted mcb

Technology 300K 200K 77K 50K 18K

IBM-G4 0.1602 0.1640 0.1834 0.1908 0.1756
IHP-G4 0.2458 0.2324 0.2073 0.1976 0.1918
ST-G4 0.2252 0.2179 0.2123 0.2121 0.2064
ST-X2 0.2222 0.2121 0.2073 0.1986 0.1734
ST-X1 0.2193 0.2092 0.2014 0.1992 0.1960
ST-X3 0.2252 0.2159 0.2118 0.2107 0.2014
JAZZ-G3 0.2126 0.2295 0.2408 0.2395 0.2306

Table C.16: Extracted CCS0, fF/µm2

Technology 300K 200K 77K 50K 18K

IBM-G4 5.6 8.7 7.7 6.8 2.0
IHP-G4 4.8 4.7 3.6 3.2 1.1
ST-G4 10.3 11.7 8.5 8.6 5.8
ST-X2 5.3 5.0 4.4 3.9 2.1
ST-X1 4.8 4.6 4.1 3.9 3.7
ST-X3 4.7 4.5 4.5 4.1 3.5
JAZZ-G3 7.4 8.6 7.9 7.3 3.2

Table C.17: Extracted VCS0

Technology 300K 200K 77K 50K 18K

IBM-G4 1.133 1.272 0.963 1.073 -
IHP-G4 0.987 0.962 0.440 0.490 -
ST-G4 0.413 0.378 0.527 0.481 -
ST-X2 0.466 0.507 0.667 0.649 -
ST-X1 0.461 0.501 0.671 0.698 0.742
ST-X3 0.485 0.506 0.619 0.608 0.701
JAZZ-G3 0.469 0.582 0.729 0.847 -

Table C.18: Extracted mcs

Technology 300K 200K 77K 50K 18K

IBM-G4 0.049 0.567 0.400 0.379 -
IHP-G4 0.317 0.407 0.186 0.117 -
ST-G4 0.126 0.048 0.077 0.052 -
ST-X2 0.155 0.157 0.127 0.077 -
ST-X1 0.134 0.141 0.122 0.109 0.086
ST-X3 0.137 0.148 0.109 0.091 0.070
JAZZ-G3 0.080 0.167 0.149 0.126 -
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Numerical fittings for the base–emitter capacitances were also extracted. The equation that was

used for this fitting is

CBE = CBE0 +
CBE1

(1− VBE/VBE0)
mbe . (C.4)

The coefficients required for the evaluation of CBE are given in Tables C.19–C.22.

Table C.19: Extracted CBE0 [fF/µm2]

Technology 300K 200K 77K 50K 18K

IBM-G4 27.5 29.2 36.5 35.6 40.3
IHP-G4 17.1 15.6 11.9 16.3 18.9
ST-G4 19.2 19.5 24.0 23.6 25.9
ST-X2 18.9 17.9 19.4 19.4 16.9
ST-X1 25.2 20.7 21.0 27.9 29.7
ST-X3 18.9 23.0 23.6 26.6 28.2
JAZZ-G3 19.2 18.6 18.6 33.2 32.5

Table C.20: Extracted CBE1 [fF/µm2]

Technology 300K 200K 77K 50K 18K

IBM-G4 2.0× 10−16 8.8× 10−17 1.1× 10−18 1.4× 10−18 2.2× 10−19

IHP-G4 9.4× 10−17 5.9× 10−16 1.4× 10−15 2.7× 10−16 1.6× 10−19

ST-G4 8.2× 10−17 9.9× 10−17 8.3× 10−19 1.2× 10−18 2.5× 10−19

ST-X2 6.5× 10−18 2.1× 10−17 3.5× 10−19 4.7× 10−20 2.9× 10−20

ST-X1 1.1× 10−17 2.2× 10−16 2.9× 10−16 5.6× 10−18 6.9× 10−19

ST-X3 4.9× 10−16 3.1× 10−17 1.5× 10−17 1.2× 10−20 5.6× 10−21

JAZZ-G3 1.4× 10−15 1.6× 10−15 1.5× 10−15 2.3× 10−18 3.6× 10−19

Table C.21: Extracted VBE0

Technology 300K 200K 77K 50K 18K

IBM-G4 1.000 1.048 1.108 1.085 1.097
IHP-G4 0.957 0.973 1.030 1.042 1.095
ST-G4 0.939 9.998 1.076 1.074 1.079
ST-X2 1.056 1.051 1.121 1.136 1.148
ST-X1 1.044 1.014 1.021 1.049 1.045
ST-X3 0.932 1.027 1.045 1.105 1.097
JAZZ-G3 0.905 1.000 1.069 1.122 1.185
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Table C.22: Extracted mbe

Technology 300K 200K 77K 50K 18K

IBM-G4 2.721 2.618 4.406 2.957 4.071
IHP-G4 2.625 1.239 0.862 1.341 4.533
ST-G4 2.866 2.284 4.000 3.608 4.096
ST-X2 5.216 3.240 4.877 5.877 6.299
ST-X1 4.773 2.669 1.701 3.363 4.105
ST-X3 1.807 3.127 2.956 6.886 6.963
JAZZ-G3 1.124 1.127 1.103 3.877 5.631

C.3.2 Resistances

The bias independent resistances are given below.

Table C.23: Emitter resistance, extracted using Gummel method, Ω · µm2

Technology 300K 200K 77K 50K 18K

IBM-G4 1.10 1.38 1.41 1.53 1.71
IHP-G4 1.47 2.40 2.78 2.92 3.31
ST-G4 1.61 1.45 1.10 1.15 1.20
ST-X2 2.41 2.49 3.27 3.38 3.41
ST-X1 2.90 3.21 2.73 2.77 3.38
ST-X3 2.74 2.96 2.83 2.97 3.15
JAZZ-G3 3.78 3.70 1.88 1.95 2.46

Table C.24: Extracted Collector Resistance, Ω · µm2

Technology 300K 200K 77K 50K 18K

IBM-G4 5.3 4.4 3.0 2.8 2.3
IHP-G4 12.1 10.0 7.8 7.0 6.0
ST-G4 4.8 4.5 3.9 3.7 3.3
ST-X2 1.8 3.7 1.0 0 0
ST-X1 6.6 4.8 4.3 4.0 3.1
ST-X3 6.3 4.6 3.3 2.9 2.8
JAZZ-G3 12.5 11.4 14.8 0 0
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Appendix D

Network Parameters for HBT

equivalent-circuit models

The equivalent circuit diagram for a SiGe HBT appears in Fig. D.1. In this section, the network

parameters associated with each sub-block used for parameter extraction will be presented.

D.1 Intrinsic HF Circuit

The network parameters of the intrinsic circuit are given as

YI =




gbe + jω (CBE + CCB) −jωCCB

g̃m − jωCCB jωCCB


 (D.1)

rb
CCB rc

gbe CBE
gme-jωτd VBE CCS

re

E’

C’

B’

S

CB

EYI

ZIII

YIV

ZII

Figure D.1: SiGe HBT small-signal model with sub-network blocks identified
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and

ZI =
1

g̃m + gbe + jωCCB




1 1

1− fgm

jωCCB
1 + CBE

CCB
+ gbe

jωCCB


 , (D.2)

where

g̃m = gme−jωτd . (D.3)

D.2 HF Circuit Including Base Resistance

The network parameters of the network block labeled “ZII” are given as

ZII =
1

g̃m + gbe + jωCCB




1 + rb (g̃m + gbe + jωCBE) 1

1− fgm

jωCCB
1 + CBE

CCB
+ gbe

jωCCB


 (D.4)

and

YII =




gbe + jω (CBE + CCB) −jωCCB

g̃m − jωCCB ωCCB (1 + rb (g̃m + gbe + jωCBE))




1 + rb (gbe + jω (CCB + CBE))
. (D.5)
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Appendix E

Noise in Bipolar Circuits

E.1 Noise in SiGe HBTs

The spectral densities of the equivalent input-referred noise generators for a SiGe HBT can be

written in chain representation as [30]

Svn ≈
|inc|2

|Y21|2
+ 4kTa (rb + re) , (E.1)

Sin ≈ |inc|2
|Y11|2

|Y21|2
+ |inb|2, (E.2)

and

Sinv∗

n
≈ |inc|2

Y11

|Y21|2
. (E.3)

For the case in which f << gm/Cmu and re is small1,

Y21 ≈ gm (E.4)

Y11 ≈
gm

βAC
+ jω (Cπ + Cµ) (E.5)

With the spectral densities known explicitly, the noise parameters Tmin, YOPT , and Rn can be

computed as [144, 160],

Rn =
Svn

4kT0
, (E.6)

GOPT =
1

Svn

√
SvnSin −=

{
Sinv∗

n

}2
, (E.7)

1The assumption being made here in terms of re being small is that gm is not reduced much due to re. Not making
this assumption is the equivalent of replacing gm with Gm = gm

1+gmre
.
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BOPT = −=
{
Sinv∗

n

}

Svn

, (E.8)

and

TMIN =
1

2k

[√
SinSvn −=

{
Sinv∗

n

}2
+<

{
Sinv∗

n

}]
. (E.9)

Thus, the noise paramters of an HBT can be written as

Rn =
Ta

T0

[
n

2gm
+ rb + re

]
, (E.10)

GOPT =
gm

1 + 2gm (rb + re) /nc

√(
1

βDC
+

1

β2
AC

)(
1 + 2

gm (rb + re)

nc

)
+ 2

gm (rb + re)

nc

(
f

ft

)2

,

(E.11)

BOPT = − f

ft

gm

1 + 2gm (rb + re) /nc
, (E.12)

and

TMIN = Tanc


 1

βAC
+

√(
1

βDC
+

1

β2
AC

)(
1 + 2

gm (rb + re)

nc

)
+ 2

gm (rb + re)

nc

(
f

ft

)2

 (E.13)

For SiGe HBTs, β2
AC � βDC and equation E.13 reduces to:

TMIN = Tanc

√
1

βDC

(
1 + 2

gm (rb + re)

nc

)
+ 2

gm (rb + re)

nc

(
f

ft

)2

(E.14)

In general, when dealing with transistors, it is desirable to use invariants as noise parameters. Thus,

the parameter N = RnGOPT will be used instead of Rn. For a BJT with high βAC , N can be

written as

N =
1

2

Tanc

T0

√
1

βDC

(
1 + 2

gb (rb + re)

nc

)
+ 2

gm (rb + re)

nc

(
f

ft

)2

≈ Tmin

2T0
(E.15)

Also, from equations (E.10)–(E.12), the noise conductance and optimum source as

gn =
Ta

T0

[
1

βDC
+

1

β2
AC

+

(
f

ft

)2
]

, (E.16)

ROPT =
βDC

gm

(
1 + βDC (f/ft)

2
)
√

1

βDC

(
1 +

2gm (rb + re)

nc

)
+

2gm (rb + re)

nc

(
f

ft

)2

, (E.17)
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and

XOPT =
−BOPT

G2
OPT + B2

OPT

=
−ω (CBE + CCB)

ω2 (CBE + CCB)
2

+ g2
m/βDC

. (E.18)

E.2 Amplifiers Employing Resistive Feedback

The analysis of a resistive feedback amplifier is equivalent to the analysis of the circuit shown in

Fig. E.1(a), where the Y-parameter block is assumed noiseless and noise sources i1, i2, and if are

uncorrelated. To work this problem, the effect of the feedback resistor will be approximated by

ignoring its contribution to equivalent noise current at the output as shown in Fig. E.1(b). This

approximation is valid so long as the closed-loop circuit has high current gain. The short-circuit

output current noise can then be written as

|ion|2 = |i′1|
2 |ZS |2 |Y21|2
|1 + Y11ZS |

+ |i2|2 + 2<
{

i1i∗2
Y21ZS

1 + Y11ZS

}
, (E.19)

where |i′1|
2

= |i1|2+|if |2. Similarly, the short-circuit output current from a generator with impedance

ZS can be written as

|iog |2 = |ig |2
|Y21|2 |ZS |2

|1 + Y11ZS |2
. (E.20)
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Figure E.1: (a). Generic two-port network with shunt resistive feedback applied. The two-port
network is represented in terms of Y-parameters and the noise is represented by an equivalent input
and output current source. The feedback network is located outside the dotted line. (b). Simplified
equivalent circuit in which the current noise due to the feedback resistor has been moved to the
input. This simplification involves ignoring a fully correlated current noise source at the output and
is valid so long as the close loop circuit has high gain.
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Defining an effective temperature of the source resistance, Te, and using the thermal noise relation

|ig|2 = 4kTe<{ZS} / |ZS |2 and equating |ion |2 with |iog |2, we can write the following relationship:

Te =
1

4kRS

[
|i′1|

2 |ZS |2 + |i2|2
|1 + Y11ZS |2

|Y21|2
+ 2<

{
i1i

∗
2ZS (1 + Y ∗

11ZS)

Y ∗
21

}]
. (E.21)

Now, making the approximation2. that |Y11ZS | << 1, which is valid for circuits in which high βDC

transistors and large feedback resistors are used, equation (E.21) can be simplified considerably:

Te ≈
1

4kRS

[
|i′1|

2 |ZS |2 +
|i2|2

|Y21|2
+ 2<

{
i1i∗2

ZS

Y ∗
21

}]
. (E.22)

It is our desire to minimize equation (E.22) with respect to the complex source impedance ZS =

RS + jXS . Taking derivatives of equation (E.22) with respect to RS and XS , we arrive at the

following set of equations:

∂Te

∂XS
=

1

4k

[
2XOPT

ROPT
|i′1|

2 − 2

ROPT
=
{

i1i∗2
Y ∗

21

}]
= 0 (E.23)

and

∂Te

∂RS
= |i′1|

2 − 1

R2
OPT

[
|i′1|

2
X2

OPT +
|i2|2

|Y21|2
− 2XOPT=

{
i1i∗2
Y ∗

21

}]
= 0. (E.24)

Solving equations (E.23) and (E.24) simultaneously yields the desired real and imaginary components

of the optimum source impedance:

ROPT =

√√√√ |i2|2

|i′1|
2 |Y21|2

− =
{

i1i∗2
Y ∗

21

}2

(E.25)

and

XOPT =
1

|i′1|
2
=
{

i1i
∗
2

Y ∗
21

}
. (E.26)

Thus, plugging equations (E.25) and (E.26) into equation (E.22), we arrive at the expression for the

minimum noise temperature in terms of the input and output referred noise powers:

TMIN =
1

2k




√√√√ |i′1|
2 |i2|2

|Y21|2
− =

{
i1i

∗
2

Y ∗
21

}2

+ <
{

i1i
∗
2

Y ∗
21

}

 (E.27)

2This approximation is valid so long as f/ft <<

r
1/

“
g2

m |ZS |
2

”
−

`
gf /gm

´2
− 2gf/ (gmβAC) − 1/β 2

AC ≈

1/ (gm |ZS |).
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Finally, the last noise parameter, gn can be obtained from the following equation:

Te = TMIN +
gnT0

RS

[
(RS −ROPT )

2
+ (XS −XOPT )

2
]
. (E.28)

Running through this exercise, the noise conductance is found to be:

gn =
|i′1|

2
+ |i2|2

4kT0
. (E.29)

At this point, a generic equation for each of the noise parameters in terms of the equivalent

input and output noise current sources has been found. The only simplification used is to assume

that the input admittance looking into the network when the output is terminated in a short circuit

is much lower than the source admittance. This assumption is quite reasonable for the case of a

resistive feedback amplifier3, which we will discuss now. If such an amplifier uses a bipolar device,

the input noise current power can be written as |i′1|
2

= 4kTagf +2qICβDC and the output noise can

be approximated4 as |i2|2 ≈ 2qIC , and the transimpedance can be approximated5 as Y21 ≈ gm − gf .

Thus, for a resistive bipolar feedback amplifier, the noise parameters can be approximated as:

TMIN = Ta
nc

gm

√
βDC (1− gf/gm)2

√
1 + 2βDC

gf

gm,ideal
≈ Ta

nc

gm

√
βDC

√
1 + 2βDC

gf

gm,ideal
, (E.30)

ROPT =

√
βDC

gm (1− gf/gm)

√
1

1 + 2βDCgf/ (qIC/kTa)
≈
√

βDC

gm

√
1

1 + 2βDCgf/gm,ideal
, (E.31)

XOPT ≈ 0, (E.32)

and

gn =
Ta

T0

nc

2gmβDC

(
1 + 2βDC

gf

gm,ideal

)
, (E.33)

where gm,ideal = ncgm = IC/ (kTa/q) is the ideal transconductance.

Now, for a shunt feedback amplifier, it is well known that the input impedance and gain are

easily related to the open loop voltage gain [152]:

AV,CL ≈ −
AV,OL

1 + AV,OLRS/RF
(E.34)

3It is assumed that the amplifier is operating at frequencies well below ft.
4We have neglected the output noise from the feedback resistor. This is valid provided the closed loop current gain

is high.
5This assumes that f << gm/ (2πCµ), which is valid to frequencies nearing roughly ft/5.
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and

RIN,CL ≈
RF

1 + AV,OL
, (E.35)

where ’OL’ stands for ’open-loop’, ’CL’ stands for ’closed-loop’, and AV,OL ≡ −gmRL||RF . Thus,

from a design perspective, it would be nice to be able to compute the closed loop noise parameters

directly from the open-loop noise parameters as a function of the feedback resistance. To accomplish

this task, we begin by defining the parameter θ:

θ ≡
√

1 + 2βDC
gf

gm,ideal
. (E.36)

Now, the noise parameters of the closed-loop amplifier can be expressed in terms of the open-loop

noise parameters and the variable θ:

TMIN,CL = θ TMIN,OL, (E.37)

ROPT,CL =
1

θ
ROPT,OL, (E.38)

XOPT,CL = XOPT,OL = 0, (E.39)

and

gn,CL = θ2gn,OL. (E.40)


