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Abstract

Over the past decade, low temperature detectors have been of great interest to the astronomy

community. These detectors work at very low temperatures, usually well below 1 K. Their ultra-high

sensitivity has brought astronomers revolutionary new observational capabilities and led to many

great discoveries, such as the demonstration that the geometry of the universe is flat[1, 2]. Although a

single low temperature detector has very impressive sensitivity, a large array of them would be much

more powerful and are highly demanded for the study of more difficult and fundamental problems

in astronomy. However, current detector technologies, such as transition edge sensors (TESs) and

superconducting tunnel junction (STJ) detectors, are difficult to integrate into a large array. When

the pixel count becomes relatively large (> 1000), great technical challenges are encountered in

fabricating and in reading out these detectors.

The microwave kinetic inductance detector (MKID) is a promising new detector technology

invented at Caltech and JPL which provides both high sensitivity and an easy solution to the

integration of detectors into a large array. It operates on the principle that the surface impedance

of a superconductor changes as incoming photons break Cooper pairs. This change is read out

by using high-Q superconducting microwave resonators capacitively coupled to a common feedline.

This architecture allows thousands of detectors (resonators) to be easily integrated through passive

frequency domain multiplexing. In addition, MKIDs are easy to fabricate and require minimal

cryogenic electronics support (a single HEMT amplifier can potentially multiplex 103−104 MKIDs).

In this thesis we will explore the rich and interesting physics behind these superconducting

microwave resonators used in MKIDs. This study was carried out around two main topics, the

responsivity and the noise of MKIDs.

In the discussion of the responsivity, the following physics are visited:

1. How does the surface impedance of a superconductor change with quasiparticle density?

2. What fraction of the distributed inductance of a superconducting transmission line is

contributed by the superconductor?

3. What is the static and dynamic response of the microwave resonant circuit used in MKIDs?

The first question is answered in Chapter 2 by applying the Mattis-Bardeen theory to bulk and

thin-film superconductors. The second question is answered in Chapter 3 by solving the quasi-TEM
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mode of the coplanar wave guide (CPW) using the tool of conformal mapping. The third question

is answered in Chapter 4 by applying the network theory to the readout circuit.

The experimental study of the noise is presented in Chapter 5, which is the focus of this thesis.

Before noise was measured on the first MKID, the fundamental noise limit was understood to be the

quasi-particle generation-recombination noise. Unexpectedly, a significant amount of excess noise

was observed. From a large number of experiments, we have found this excess noise to be pure

frequency noise (equivalent to a jitter in the resonance frequency), with the noise level depending on

the microwave power, the bath temperature, the superconductor/substrate materials combination,

and the geometry of the resonator. The observed noise properties suggest that the excess noise is

not related to the superconductor but is caused by the two-level systems (TLS) in the dielectric

materials in the resonator. The TLS are tunneling states which exist in amorphous solids and

causes the anomalous properties of these solids at low temperatures. Several special experiments

were designed to test the TLS hypothesis. From these experiments, we find that the effects of the

TLS on the resonance frequency and the quality factor of the resonators are in good agreement with

the TLS theory. In an important experiment we explored the geometrical scaling of TLS-induced

frequency shift and noise. The results give direct experimental evidence that the TLS, responsible

for the low temperature resonance frequency shift, dissipation, and frequency noise, are distributed

on the surface of the resonator, but not in the bulk substrate. Guided by the measured noise scaling

with geometry and power, we have come up with a semi-empirical noise model which assumes a

surface distribution of independent TLS fluctuators. With this knowledge about TLS and excess

noise, we propose a number of methods that can potentially reduce the excess noise.

Parallel to the experimental study, we have also taken great effort in working toward a theoretical

model of the noise. It is likely that the noise is related to the dielectric constant fluctuation caused by

the state switching (by absorption or emission of thermal phonons) or the energy level fluctuations

of the TLS. However, at the time this thesis was finished, we still do not have a complete theory

that can quantitatively explain all the experimental observations, and therefore the detailed physical

noise mechanism is still not clear.

With the theoretical results of the responsivity and the semi-empirical model of the noise es-

tablished in this thesis, a prediction of the detector sensitivity (noise equivalent power) and an

optimization of MKID design are now possible, which was the original motivation of this thesis.
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Chapter 1

Introduction

1.1 Microwave kinetic inductance detectors

1.1.1 Introduction to low temperature detectors

Over the past decade, low temperature detectors have been of great interest to the astronomy

community. These detectors work at very low temperatures, usually well below 1 K. Their ultra-

high sensitivity have brought astronomers with revolutionary new observational capabilities and led

to many great discoveries throughout a broad wavelength range—from submillimiter, optical/UV to

X-ray and gamma-ray.

The basic idea behind a traditional low temperature detector is quite simple [3]. It’s well known

that the heat capacity of an insulating crystal (or a superconducting metal well below its transition

temperature Tc) decreases as T 3. Therefore at a sufficient low temperature, any small amount of

heat (energy) deposited in a crystal would be in principle resolvable by using a thermometer. A

straightforward implementation of this idea, which a large family of low temperature detectors work

on today, is an absorber-thermometer scheme: an absorber is connected to a heat bath through a

weak heat link and a thermometer of some kind, attached to the absorber, is used to measure the

temperature change, from which the absorbed energy can be calculated.

Several types of thermometers have been developed and used in different applications. Neutron-

transmutation-doped (NTD) Ge thermistors were among the earliest developed detectors[4], and

are used in the Bolocam, a mm-wave camera at the Caltech Submillimeter Observatory (CSO)[5].

To make these thermistors, semiconductor Ge is irradiated with slow neutrons. After irradiation,

transmutation occurs and the radioactive nuclei decay into a mixing of n and p impurities. Because

of the high impedance of the NTD-Ge thermistor, low noise JFET amplifiers cooled down to 100 K

are usually used to read out these detectors.

A second type of thermometer, which make the most sensitive low temperature detectors of today

at almost all wavelengths, is the transition edge sensor (TES)[6, 7, 8, 9, 10]. These sensors use a thin
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strip of superconductor and operate at a temperature right on the superconducting transition edge

(T ≈ Tc), where the slope dR/dT is extremely steep. Due to the low impedance, and for stability

considerations, TES is usually voltage biased, and the current flowing through the sensor is usually

measured by using a superconducting quantum interference device (SQUID), which serves as a cold

low noise amplifier.

More recently, magnetic microcalorimeters (MMCs) have emerged as an alternative to TES for

some applications[11]. In a MMC, rare earth ions are embedded in a metal and the magnetization

of the metal in an external magnetic field sensitively changes with temperature. The magnetization

is again measured with a SQUID.

There is another category of low temperature detectors called quasiparticle detectors that do

not operate on the absorber-thermometer scheme. Instead of measuring the temperature change of

the absorber caused by the energy deposited by a photon, it directly measures the quasiparticles

created when a photon breaks Cooper pairs in a superconductor. Superconducting tunnel junction

(STJ)[12, 13] detectors and kinetic inductance detectors (MKIDs) are two examples in this category.

The STJs use a superconductor-insulator-superconductor (SIS) junction, which has a very thin

insulating tunnel barrier in between the two superconducting electrodes. Under a dc voltage bias,

the tunneling current changes when excess quasiparticles are generated in one of the electrodes. STJs

have a comparably high dynamic resistance and capacitance, and can be read out with FET-based

low-noise preamplifiers operated at room temperature. In addition, a magnetic field must be applied

to STJs to suppress the Josephson current.

Although a single low temperature detector has demonstrated very impressive sensitivity, a large

array of them would be much more powerful and are highly demanded for the study of more difficult

and fundamental problems in astronomy, with the cosmic microwave background (CMB) polarization

problem being one example. Although researchers are working on increasing the pixel count of all

type of low temperature detectors introduced above (NTD-Ge, TES, MMC, STJ), great technical

challenges exist in building and reading out these detectors when the pixel count becomes relatively

large (& 1000).

MKID is a promising detector technology invented in Caltech and JPL which provides both high

sensitivity and an easy solution to the integration of these detectors into a large pixel array[14, 15,

16, 17, 18]. A brief introduction of MKID will be given in the following sections of this chapter, and

the physics behind the detector will be explored in the rest of this thesis.

1.1.2 Principle of operation

In order to understand the principle of operation of MKID, let’s first explain the concept of kinetic

inductance of a superconductor. It is well known that a superconductor has zero dc resistance

(σdc → ∞) at T ≪ Tc. This is because the supercurrent is carried by pairs of electrons—the Cooper
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Figure 1.1: Detection principle of MKIDs. a) A photon with energy hν > 2∆ breaks Cooper pairs
and creates quasiparticles in a superconducting strip cooled to T < Tc. b) The superconducting strip
is used as an inductive element with a variable kinetic inductance Lki and a fixed inductance Lm in a
microwave resonant circuit. The increase in the quasiparticle density changes the surface impedance
Zs (mainly surface inductance Ls) which leads to a change in Lki. c) The transmission through
the resonant circuit has a narrow dip at the resonance frequency fr which moves when Lki changes.
d) The microwave probe signal acquires a phase shift when fr changes. e) Schematic illustration
(not to scale) of the coplanar waveguide resonator and feedline which implement the LC resonant
circuit of (b). Blue represents the superconducting film and white represents bare substrate. f) A
cross-sectional view of the coplanar waveguide geometry

pairs which can move freely in the superconductor without being scattered.

However, because Cooper pairs have inertia, superconductors have a nonzero ac impedance. The

effect of the inertia of the electrons to the conductivity is included in Drude’s model and the ac

conductivity σ(ω) is given by:

σ(ω) =
σdc

1 + jωτ
(1.1)

where ω is the frequency, τ is the scattering time, and the jωτ term arises from the phase lag

between the current and the electric field due to the inertia of the electrons. In a normal metal

at room temperature, the electron scattering time τ is very short, on the order of 10−14 s. So up

to the microwave frequencies, ωτ ≪ 1 and the conductivity appears almost purely resistive. In

a superconductor at T ≪ Tc, both σdc → ∞ and ωτ → ∞, but the ratio σdc/ωτ remains finite.

As a result, the ac conductivity σ(ω) of a superconductor is almost purely inductive, which gives

rise to a surface impedance Zs = | ~E|/|
∫
~Jdz| = Rs + jωLs (see Chapter 2) that is also almost

purely inductive, ωLs ≫ Rs. When a superconductor is used as a component in an ac circuit, the
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surface inductance Ls will contribute an inductance Lki called kinetic inductance, in addition to the

conventional magnetic inductance Lm. From an energy point of view, the inductance Lki accounts

for the energy stored in the supercurrent as the kinetic energy of the Coopers.

Cooper pairs are bound together by the electron-phonon interaction, with a binding energy

2∆ ≈ 3.52kTc[19]. At finite temperature T > 0, a small fraction of electrons are thermally excited

from the Cooper pair state. These excitations are called “quasiparticles” which are responsible for

small ac losses and a nonzero surface resistance Rs of the superconductor.

Photons with sufficient energy (hν > 2∆) may also break apart one or more Cooper pairs

(Fig. 1.1a). These “excess” quasiparticles will subsequently recombine into Cooper pairs on time

scales τqp ≈ 10−3 − 10−6 s. During this time period, the quasiparticle density will be increased by a

small amount δnqp above its thermal equilibrium value, resulting in a change in the surface impedance

δZs. Although δZs is quite small, it may be sensitively measured by using a resonant circuit

(Fig. 1.1b). Changes in Ls and Rs affect the frequency and width of the resonance, respectively,

changing the amplitude and phase of a microwave signal transmitted through the circuit (Fig. 1.1c

and Fig. 1.1d).

Although the schematic depicted in Fig. 1.1b directly suggests a lumped-element implementa-

tion, a distributed resonant circuit with a quarter wavelength coplanar waveguide (CPW) resonator

capacitively coupled to a CPW feedline (Fig. 1.1f) is mostly used in MKIDs, due to the technical

advantages that will be discussed shortly.

1.1.3 Technical advantages

MKIDs have several technical advantages:

• The fundamental noise in MKIDs is limited by the fluctuations in the quasiparticle density

caused by the random breaking of Cooper pairs into quasiparticles and recombination of quasi-

particles into Cooper pairs by thermal phonons. Because of the Poisson nature of these two

processes, this generation-recombination noise (g-r noise) is proportional to the quasiparticle

density itself, which decreases as exp(−∆/kT ) when T goes to zero. Therefore, by operating

at T ≪ Tc, in theory MKIDs can achieve a very high detector sensitivity.

• The CPW resonators are a simple planar structure that can be easily fabricated by standard

lithography from a single layer of superconducting film. Because it has no junctions, bilayers

or other difficult structures to make, even the fabrication of a large detector array is straight-

forward. Therefore, MKIDs have the advantages of low cost, high yield, and good uniformity

for the fabrication of a large detector array.

• The most attractive aspect of MKIDs is its capability for large scale frequency domain mul-

tiplexing. In MKIDs, an array of resonators, each with a different resonance frequency, are
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coupled to a common feedline. The detectors are read out by sending a probe microwave signal

containing a comb of frequencies tuned to the unique resonance frequency of each resonator,

amplifying the transmitted signal with a cryogenic high electron mobility transistor (HEMT)

amplifier, and demultiplexing the signal at room temperature. Only one input and output

transmission line (coaxial cable) and a single HEMT is needed for the readout of the entire

array, which largely simplifies the design of readout circuits and reduces the power dissipation

at the cold stage. In contrast, the direct multiplexing of TES or STJ detectors requires several

biasing wires per detector be made and one amplifier per detector be deployed.

Recent advances in the software defined radio (SDR) technology have provided a more elegant

solution for the readout of large MKID arrays[20]. On the transmitter side, the microwave

probe signal consisting of multiple tones can be generated by upconverting (mixing an IF

signal with an local microwave oscillation signal) an IF signal, which is produced by playing a

preprogrammed waveform stored in the computer memory through a fast D/A card. On the

receiver side, the transmitted microwave signal is first downconverted and then digitized by

a fast A/D card. The demodulation can be done digitally using signal processing algorithms

operating a field programmable gate array (FPGA).

1.1.4 Applications and ongoing projects

1.1.4.1 Antenna-coupled MKIDs for millimeter and submillimeter imaging

One of the ongoing projects in our group is the development of MKIDCam[21, 22], a MKID camera

with 600 pixels, each sensing 4 colors at mm/submm wavelength (see Table 6.1), which is to be

installed at CSO in 2010.

Fig. 1.2 illustrates the design concept of a single pixel in the array. Each pixel consists of a single

slot antenna, a band-pass filter and a quarter-wave CPW resonator coupled to the feedline. The

mm/submm radiation is first collected by the slot antenna. One can think of a lot of voltage sources

being placed at the points where the microstrip lines run over across the slots. These small voltage

signals are combined by the binary microstrip summing network to deliver a stronger signal to the

filter. The path lengths between the root of the summing tree and the microstrip crossing point of

each slot are designed to be the same, which ensures that only plane waves normally incident onto

the antenna will be coherently added up, thus defineing the directionality of the antenna. The band-

pass filters used here are superconducting filters which are a compact on-chip implementation of the

lumped-element LC filter networks. Both the antenna and the filters are made of superconductor

Nb, which has a Tc = 9.2 K and gives very small loss for the mm/submm wave. The desired in-band

mm/submm signal is selected by the filter and delivered to the CPW resonator by a Nb microstrip

overlapping with the center strip of the CPW resonator near its shorted end. Because the center
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Figure 1.2: An illustration of the pixel design in an antenna-coupled submm MKIDs array. The slot
antenna, on-chip filter, CPW resonator, and feedline are shown in this illustration. This pixel uses
a single slot antenna and has one filter, which is able to sense one polarization at one wavelength
(color). The actual pixel used in the MKIDCam has four filters, each followed by one CPW resonator.

strip is made of superconductor Al (Tc = 1.2 K), the submm/mm wave from the Nb microstrip will

break Cooper pairs in the Al strip in the overlapping region, change the local surface impedance Zs,

and be sensed by the resonator readout circuit.

The pixel design shown in Fig. 1.2 is slightly different from the actual pixel design used in the

MKIDCam array. The pixel shown here uses one filter and can therefore sense only one color, while

the pixel in MKIDCam uses 4 filters to sense the 4 colors, with each filter followed by a CPW

resonator. In Fig. 1.2, the entire CPW resonator as well as the feedline are made of Al, while in

a MKIDCam pixel only the center strip near the shorted end, where the microstrip overlaps with

CPW, is made of Al, and the remaining part is made of Nb. This “hybrid” resonator design helps to

confine Al quasiparticles in a small sensitive region and increase the quality factor of the resonator.

More discussions on the hybrid mm/submm MKIDs will be given in Chapter 4 and Chapter 6.

1.1.4.2 MKID strip detectors for optical/X-ray

Also under development in our group is the MKID detector array for optical and X-ray detection[23].

The optical and X-ray MKIDs share a common position-sensitive strip detector design as shown in

Fig. 1.3, which is borrowed from a scheme originally used by the STJ detectors. In this scheme,

an absorber strip made of a higher-gap superconductor with a large atomic number, usually Ta

(Tc = 4.4 K and Z = 181), is used to absorb the optical/X-ray photons. These high energy photons

break Cooper pairs and generate quasiparticles in the Ta absorber. The Ta quasiparticles (with
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Figure 1.3: An illustration of the strip detector design used in Optical/X-ray MKIDs. The optical/X-
ray photon breaks Cooper pairs and generates quasiparticles in the Ta absorber. The Ta quasipar-
ticles (with energy ∼ ∆Ta) diffuse to the edges of the absorber and are down-converted to Al
quasiparticles (with energy ∼ ∆Al) in the Al sensor strips attached to the Ta absorber. Because
∆Al < ∆Ta, the Al quasiparticles are trapped in the sensor strip and cause a change in the Al
quasiparticle density, which is sensed by the resonator circuit.

energy ∼ 2∆Ta) diffuse to the edges of the absorber and are downconverted (by breaking Cooper

pairs with lower gap energy) to Al quasiparticles (with energy ∼ 2∆Al) in the Al sensor strips that

are attached to the absorber on both edges. Because ∆Al < ∆Ta, a natural quasiparticle trap forms

which prevent the Al quasiparticles from leaving the Al sensor strip. These excess quasiparticles

change the Al quasiparticle density, which is sensed by the resonator circuit. Each single photon

absorbed will give rise to two correlated pulses in the readout signals from the two resonators. The

energy deposited by the photon can be resolved by looking at the sum of the two pulse heights, while

the position where the photon is absorbed can be resolved by examining the ratio between the two

pulse heights, or the arrival time difference between the two pulses. Therefore, this scheme makes

a position-sensitive spectrometer. An energy resolution of δE = 62 eV at 5.899 keV from a X-ray

MKID strip detector has been demonstrated[24].

1.1.4.3 MKID phonon sensor for dark matter search

Dark matter, the unknown form of matter that accounts for 25 percent of the entire mass of the

universe, has long been a fascinating problem to the theoretical physicists and astrophysicists, while

the search for dark matter has been one of the most challenging experiments to the experimentalists.

Weakly interacting massive particles (WIMPs) are leading candidates for the building blocks of

dark matter. These particles have mass and interact with gravity, but do not have electromagnetic

interaction with normal matter.

It is predicted that WIMP dark matter may be directly detected through its elastic-scattering

interaction with nuclei. One of the popular detection schemes, which sets the lowest constraint for
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(a) (b)

Figure 1.4: A proposed detector scheme of kinetic inductance phonon sensor for dark matter detec-
tion using CPW ground plane trapping. (a) Cross-sectional view and (b) top view of the detector
[25].

the WIMP-nucleon cross section today, is to jointly measure the effects of ionization and lattice

vibrations (or phonons) caused by the nuclear recoil from a WIMP impact event, using a crystalline

Ge or Si absorber (also called a target). By examining the ionization signal and the phonon signal,

WIMP events can be discriminated from non-WIMP events.

Currently the Cryogenic Dark Matter Search (CDMS) experiment uses 19 Ge targets (a total

mass of 4.75 kg) and 11 Si targets (a total mass of 1.1 kg), with TES phonon sensors covering the

surface of each target. As the total target mass will be significantly increased (> 100 kg) in the

next generation of CDMS experiments, how to instrument such a large target at low cost while

maintaining a high sensitivity becomes a big challenge.

MKID phonon sensors offer an interesting solution to this scaling problem. Fig. 1.4 shows a

detector scheme proposed by Golwala[25]. In this scheme, the surface of the target is covered by

frequency domain multiplexed CPW resonators. Phonons generated by the nuclear recoil arrive at

the surface and break Cooper pairs mostly in the Al ground planes. The Al quasiparticles then

diffuse to the edges of the CPW ground plane, where a narrow strip of lower gap superconductor

(Ti or W) overlaps with the Al ground planes. The Al quasiparticles will be downconverted Ti or

W quasiparticles which are trapped in the edge region and sensed by the resonator.

In another scheme proposed by the CDMS group in UC Berkeley[26], Nb strip resonators are

placed in a separate wafer as shown in Fig. 1.5. The Ge target is first coated with a thin Al film on

the surface serving as a ground plane. The strip resonators are then suspended over the ground plane

at the desired separation using spacers. The structure becomes a air-gapped microstrip (inverted

microstrip). The quasiparticles are generated in the Al ground plane and are sensed when they
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(a) (b)

Figure 1.5: The detector scheme of the kinetic inductance phonon sensor using air-gapped microstrip
resonators for dark matter detection. (a) Separation of function: resonators are patterned onto a
standard sized wafer, which is then affixed to the thick absorber. The absorber receives minimal
processing. (b) Cross-sectional view of kinetic inductance phonon sensor test device. The probe
wafer, containing the resonators, is suspended above the absorber using metal foil spacers. Figure
from [26]

diffuse to the region underneath the top Nb strip. One of the advantages of this scheme is that no

lithography is required on the large target, because of the separation of resonator wafer from the

target. Fairly high-Q resonators (Qr ∼ 40, 000) using this structure have been demonstrated[26].

1.2 Other applications of superconducting microwave res-

onators

Ever since the original work on MKIDs was started, superconducting microwave resonators have

attracted great attention both inside and outside the low temperature detector community. The

following shows a number of successful applications of superconducting microwave resonators, which

have been inspired by MKIDs.

1.2.1 Microwave frequency domain multiplexing of SQUIDs

The traditional time domain multiplexing of SQUID uses switching circuit to periodically select a

sensor in an array for readout. This scheme is still rather complicated in terms of fabrication and

operation. Recently, researchers in NIST[27, 28] and JPL[29, 30] are investigating the frequency

domain multiplexing of SQUIDs using superconducting resonators.

The circuit schematic of the SQUID multiplexer developed in NIST is illustrated in Fig. 1.6. The

quarterwave resonator is terminated with a single junction SQUID loop, instead of being directly
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Figure 1.6: Schematic of the SQUID multiplexer using the quarterwave CPW resonators (modeled
as parallel LC resonators). Figure from [28]

50 µm

5 µm

1 mmA

B C

Figure 1.7: Integrated circuit for cavity QED. Panel A, B, and C show the entire device consisting of
the CPW resonator and the feedline, the coupling capacitor, and the Cooper pair box, respectively.
Figure from [31]

short circuited as in MKIDs. Because of the flux-dependent Josephson inductance, the SQUID loop

acts as a flux-variable inductor. Therefore a change of the flux in the SQUID loop will modify the

total inductance, leading to a resonance frequency shift that can be read out. A prototype of this

multiplexer with high-Q (∼ 18,000) resonators has been demonstrated by the NIST group.

1.2.2 Coupling superconducting qubits to microwave resonators

The cavity quantum electrodynamic (CQED) experiments, which study the interaction between

photons and atoms (light and matter), are usually performed with laser and two-level atoms in an

optical cavity. For the first time, Wallraff et al.[31] have demonstrated that these experiments can

also be carried out with microwave photons and superconducting qubits (Cooper pair box) in a

superconducting microwave resonator. They call it “circuit QED”.

A picture of such a device is shown in Fig. 1.7. In this device, a full-wave Nb CPW resonator is

capacitively coupled to the input and output transmission lines. A Cooper pair box is fabricated in

the gap between the center strip and the ground planes and in the middle of the full-wave resonator,
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nators

are capacitively

a

b

6 mm

10 mm

x

FIG. 2: (a) Drawing of our device showing frequency multiplexed

Figure 1.8: (a) Device drawing showing frequency multiplexed quarterwave CPW resonators. (b)
A zoom-in view of a suspended nanomechanical beam clamped on both ends (with Si substrate
underneath etched off) and electrically connected to the center strip of the CPW. Figure from [36]

where the electric field is maximal, allowing a strong coupling between the qubit and the cavity. The

two Josephson tunnel junctions are formed at the overlap between the long thin island parallel to

the center conductor and the fingers extending from the much larger reservoir coupled to the ground

plane.

The coupled circuit of qubit and resonator can be described by the well-known Jaynes-Cummings

Hamiltonian[32]. It can be shown that for weak coupling g or large detuning ∆ = ε/h − fr (ε is

the two-level energy of the qubit and fr is the resonance frequency), g ≪ ∆, the reactive loading

effect of the qubit will cause the resonator frequency to shift by ±g2/∆ depending on the quantum

state of the qubit. This shift can be measured by a weak microwave probe signal. Therefore, this

dispersive measurement scheme performs a quantum non-demolition read-out of the qubit state.

Circuit-QED opens up a new path to perform quantum optics and quantum computing exper-

iments in a solid state system. Currently, circuit-QED has become a very hot area of quantum

computing research[33, 34, 35].

1.2.3 Coupling nanomechanical resonators to microwave resonators

A superconducting microwave resonator is also used in an recent experiment to read out the motion

of a nanomechanical beam, or the quantum mechanical state of a mechanical harmonic oscillator[36].

The device used for this experiment is shown in Fig. 1.8. A nanomechanical beam (50 µm long with

a 100 nm by 130 nm crosssection) is formed by electron beam lithography of an Al film deposited on
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a Si substrate. The beam is suspended by etching off the Si substrate underneath it. Because the Al

beam is electrically connected to the center strip, the local centerstrip-to-ground capacitance depends

on the position of the beam. If the beam has a displacement or deformation, it will cause a shift in

the resonance frequency, which can be read out from the transmission measurement. In addition to

the detection of the nanomechanical motion, researchers are working on cooling the nanomechanical

resonators towards their ground state, by making use of the radiation pressure effect.
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Chapter 2

Surface impedance of
superconductor

2.1 Non-local electrodynamics of superconductor and the

Mattis-Bardeen theory

It is well known that an electromagnetic field penetrates into the normal metal with a finite skin

depth δ. The skin depth can be calculated using Maxwell’s equations and Ohm’s law, which expresses

a local relationship between the current density ~Jn and the electric field ~E in the normal metal:

~Jn(~r) = σ ~E(~r) =
σdc

1 + jωτ
~E(~r) , (2.1)

where σdc is the DC conductivity and τ is the relaxation time of the electrons, related by τ = l/v0

to the mean free path l and the Fermi velocity v0. Because τ is usually below a picosecond at room

temperature, the condition ωτ ≪ 1 holds at microwave frequency ωτ ≪ 1, and so σ ≈ σdc. The skin

depth δ is derived to be

δ ≈

√
2

ωµσdc
, (2.2)

where µ is the magnetic permeability of the metal; usually µ ≈ µ0.

The local relationship Eq. 2.1 and the classic skin depth (Eq. 2.2) are valid when the electric field

~E varies little within a radius l around some point ~r, which translates to l ≪ δ. Because δ decreases

at higher frequencies and l increases at lower temperatures, a non-local relationship between ~Jn

and ~E may occur at high enough frequency or low enough temperature. A non-local relationship

replacing Eq. 2.1 was proposed by Chambers[37]:

~Jn(~r) =
3σdc

4πl

∫

V

~R~R · ~E(~r′)e−R/l

R4
d~r′ , (2.3)
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where ~R = ~r′ − ~r. Eq. 2.3 is non-local because ~Jn at point ~r depends on ~E not just at that point,

but is instead a weighted average of ~E in a volume around ~r. If ~E varies little in the vicinity of ~r so

that ~E can be taken out of the integral, Eq. 2.3 returns to the local relationship.

Due to the Meissner effect, an electromagnetic field also penetrates into a superconductor over

a distance called the penetration depth λ. Similar to the classical skin effect, in the calculation of λ

both local and non-local behavior may occur. Equations reflecting a local relationship between the

supercurrent Js (assuming the two fluid model with ~J = ~Js + ~Jn) and the fields were proposed by

London[38] (known as the famous London equations):

∂

∂t
~Js =

~E

µ0λ2
L

, (2.4)

∇× ~Js = − 1

λ2
L

~H, (2.5)

where µ0 is the vacuum permeability, ~H is the magnetic field, and λL is the London penetration

depth. At zero temperature, the London penetration depth λL0 is given by

λL0 =

√
m

µ0ne2
, (2.6)

where m, n, and e are the mass, density, and charge of the electron, respectively. In the London

gauge ∇ · ~A = 0, the second London equation can be written as1

~Js = − 1

λ2
L

~A. (2.7)

These equations apply to superconductors where the local condition is satisfied. In general, a

non-local relationship is more appropriate, because the mean free path l may become large in high

quality superconductors at low temperatures. Based on the observation of increasing penetration

depth with increasing impurity density or decreasing mean free path, Pippard proposed an empirical

non-local equation [41]:

~Js(~r) = − 3

4πξ0λ2
L

∫

V

~R~R · ~A(~r′)e−R/ξ

R4
d~r′ (2.8)

with
1

ξ
=

1

ξ0
+

1

αpl
(2.9)

where ξ0, ξ are the coherence lengths of the pure and impure superconductor and αp is an empirical

1Throughout this thesis, the magnetic vector potential is defined as ~H = ∇ × ~A, which is used by Mattis and
Bardeen[39] and Popel[40].
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constant. The coherence length ξ0 is related to v0 and ∆0 by

ξ0 =
~v0
π∆0

, (2.10)

where ∆0 is the gap parameter at zero temperature introduced by the BCS theory[42]. The coherence

length ξ0 may be thought as the minimum size of a Cooper pair as dictated by the Heisenburg

uncertainty principle.

From the BCS theory, Mattis and Bardeen have derived a non-local equation between the total

current density ~J (including the supercurrent and the normal current) and the vector potential

~A[39]:

~J(~r) =
3

4π2v0~λ2
L0

∫

V

~R~R · ~A(~r′)I(ω,R, T )e−R/l

R4
d~r′ (2.11)

with

I(ω,R, T ) = − jπ

∫ ∆

∆−~ω

[1 − 2f(E + ~ω)][g(E) cosα∆2 − j sinα∆2]e
jα∆1dE

− jπ

∫ ∞

∆

[1 − 2f(E + ~ω)][g(E) cosα∆2 − j sinα∆2]e
jα∆1dE

+ jπ

∫ ∞

∆

[1 − 2f(E)][g(E) cosα∆1 + j sinα∆1]e
−jα∆2dE,

and

∆1 =






√
E2 − ∆2 , |E| > ∆

j
√

∆2 − E2 , |E| < ∆
, ∆2 =

√
(E + ~ω)2 − ∆2, g(E) =

E2 + ∆2 + ~ωE

∆1∆2
, α = R/(~v0),

(2.12)

where ∆ = ∆(T ) is the gap parameter at temperature T and f(E) is the Fermi distribution function

given by

f(E) =
1

1 + e
E

kT

. (2.13)

The function I(ω,R, T ) decays on a characteristic length scale R ∼ ξ0, which arises from the

fact that the superconducting electron density cannot change considerably within a distance of the

coherence length. Eq. 2.11 is consistent (qualitatively) with Eq. 2.8, because both the Pippard kernel

eR/ξ and the full Mattis-Bardeen kernel I(ω,R, T )eR/l express a decaying profile with a characteristic

length dictated by the smaller of l and ξ0.

In the next section of this chapter, we will start from Eq. 2.11 and evaluate the surface impedance

of superconductor step by step.
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Figure 2.1: Configuration of a plane wave incident onto a bulk superconductor

2.2 Surface impedance of bulk superconductor

2.2.1 Solution of the Mattis-Bardeen kernel K(q)

Consider the problem of a plane wave incident onto a bulk superconductor as illustrated in Fig. 2.1.

The bulk superconductor has its surface in the x − y plane and fills the half space of z > 0. The

plane wave ~E = Ex(z)x̂ is polarized in the x direction and is only a function of z, as are the vector

potential ~A = Ax(z)x̂ and current density ~J = Jx(z)x̂.

By introducing the one-dimensional Fourier transform of Jx(z) and Ax(z):

Jx(z) =

∫ +∞

−∞
Jx(q)ejqzdq

Ax(z) =

∫ +∞

−∞
Ax(q)ejqzdq , (2.14)

Eq. 2.11, which takes a form of spatial convolution, can be converted into a product in Fourier

domain:

Jx(q) = −K(q)Ax(q) (2.15)

with the Mattis-Bardeen kernel (see Appendix A):

K(q) = − 3

π~v0λ2
L0q

∫ ∞

0

[
sinx

x3
− cosx

x2
]I(ω, x/q, T )e−x/qldx (2.16)

where x = qR.

When further simplifying K(q), one will encounter the following integrals:

∫ ∞

0

e−bx[
sinx

x3
− cosx

x2
] cos(ax)dx = R(a, b) (2.17)
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∫ ∞

0

e−bx[
sinx

x3
− cosx

x2
] sin(ax)dx = S(a, b). (2.18)

These integrals can be worked out by the method of Laplace transformation. The result is:

W (s = b− ja) = R(a, b) + jS(a, b) = −s
2

+
1

2
(s2 + 1) arctan

1

s
.

The derivation and the detailed expressions of R(a, b) and S(a, b) are given in Appendix A.

Finally, the kernel K(q) works out to be

Re{K(q)} =
3

~v0λ2
L0q

×
{ ∫ ∆

max{∆−~ω,−∆}
[1 − 2f(E + ~ω)]{ E2 + ∆2 + ~ωE√

∆2 − E2
√

(E + ~ω)2 − ∆2
R(a2, a1 + b) + S(a2, a1 + b)}dE

+
1

2

∫ −∆

∆−~ω

[1 − 2f(E + ~ω)]{[g(E) + 1]S(a−, b) − [g(E) − 1]S(a+, b)}dE

−
∫ ∞

∆

[1 − f(E) − f(E + ~ω)][g(E) − 1]S(a+, b)dE

+

∫ ∞

∆

[f(E) − f(E + ~ω)][g(E) + 1]S(a−, b)dE

}
(2.19)

Im{K(q)} =
3

~v0λ2
L0q

×
{
−1

2

∫ −∆

∆−~ω

[1 − 2f(E + ~ω)]{[g(E) + 1]R(a−, b) + [g(E) − 1]R(a+, b)}dE

+

∫ ∞

∆

[f(E) − f(E + ~ω)]{[g(E) + 1]R(a−, b) + [g(E) − 1]R(a+, b)}dE
}

(2.20)

where b = 1/ql, a+ = a1 + a2, a
− = a2 − a1, a1 = ∆1/(~v0q), and a2 = ∆2/(~v0q). When ~ω < 2∆,

the first integrals in both the real and the imaginary parts of K(q) vanish. Physically, these two

integrals represent the breaking of Cooper pairs that have a binding energy of 2∆ with photons of

energy ~ω.

2.2.2 Asymptotic behavior of K(q)

It can be shown from Eq. 2.19 that to the lowest order

W (s) =





π
4 |s| → 0

1
3s |s| → ∞

(2.21)
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and thus

R(a, b) =
π

4
, S(a, b) = 0 a2 + b2 → 0 (2.22)

R(a, b) =
b

3(a2 + b2)
, S(a, b) =

b

3(a2 + b2)
a2 + b2 → ∞. (2.23)

The asymptotic behavior of K(q) at q → 0 and q → ∞ can be derived from the asymptotic form of

W (s).

2.2.2.1 K(q → 0)

In this limit, we have

a ∼ 1

v0q
∼ 1

qξ0
→ ∞ (a = a1, a2, a

+, a−), b ∼ 1

ql
→ ∞. (2.24)

Thus a2 + b2 → ∞ is satisfied and from Eq. 2.23

R(a, b) =
b

3(a2 + b2)
∝ q, S(a, b) =

b

3(a2 + b2)
∝ q. (2.25)

It turns out that the terms of R and S in Eq. 2.19 and Eq. 2.20 cancel the factor 1/q in front of the

integrals. The result is that K(q) approaches a constant as q goes to zero. Because the condition

a2 + b2 ≫ 1 requires either argument be large, we arrive at the following conclusion:

K(q) = K0(ξ0, l, T ), q ≪ max{ 1

ξ0
,

1

l
} (2.26)

where K0(ξ0, l, T ) is a constant dependent on the parameters such as ξ0, l, and T .

2.2.2.2 K(q → ∞)

In this limit, we have

a ∼ 1

qξ0
→ 0 (a = a1, a2, a

+, a−), b ∼ 1

ql
→ 0. (2.27)

Thus a2 + b2 → 0 is satisfied. Inserting Eq. 2.22 into Eq. 2.19, we find that K(q) goes as 1/q as q

becomes very large. Because the condition a2 + b2 ≪ 1 requires both arguments be small, we arrive

at the following conclusion:

K(q) =
K∞(ξ0, l, T )

q
, q ≫ max{ 1

ξ0
,

1

l
} (2.28)

where K∞(ξ0, l, T ) is another constant.
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Figure 2.2: A sketch of K(q)

2.2.2.3 A sketch of K(q)

Fig. 2.2 depicts the general behavior of K(q), which divides into three regimes. In regime I, where

q ≪ max{ 1
ξ0
, 1

l }, K(q) approaches the constant K0(ξ0, l, T ). In regime III, where q ≫ max{ 1
ξ0
, 1

l }
K(q) goes as K∞(ξ0, l, T )/q. Regime II is the transition regime.

The behavior of K(q) shown in Fig. 2.2 agrees with our earlier discussion of the spatial domain

Mattis-Bardeen kernel I(ω,R, T )e−R/l. Because the kernel I(ω,R, T )e−R/l decays on a characteristic

length of R ∼ min{ξ0, l}, its Fourier transform K(q) will span a width of q ∼ max{1/ξ0, 1/l}.

2.2.3 Surface impedance Zs and effective penetration depth λeff for spec-

ular and diffusive surface scattering

The surface impedance Zs is usually defined as the ratio between the transverse components of ~E

field and ~H field on the surface of the metal. In our configuration, as shown in Fig. 2.1,

Zs =
Ex

Hy
|z=0. (2.29)

In the following, we will derive expressions which relate Zs to the Fourier domain Mattis-Bardeen

kernel function K(q).

From the Maxwell equation ∇× ~E = −jωµ0
~H and the relationship ~H = ∇× ~A, we find for our
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configuration

Ex(z) = −jωµ0Ax(z)

Hy(z) =
dAx(z)

dz

Zs = −jωµ0
Ax(z)

dAx(z)/dz

∣∣∣∣
z=0

. (2.30)

Using another Maxwell Equation ∇× ~H = jωǫ0 ~E+ ~J and neglecting the displacement current term

(which is much smaller than ~J in metal), we get

Jx(z) = −d
2Ax(z)

dz2
. (2.31)

On the other hand, we have derived in Appendix A the one-dimensional form of the Mattis-Bardeen

equation equivalent to Eq. 2.11:

Jx(z) =

∫
K(η)Ax(z′)dz′

K(η) =
3

4π~v0λ2
L

∫ ∞

1

du(
1

u
− 1

u3
)I(ω, |η|u, T )e−|η|u/l (2.32)

with η = z′ − z. Here K(η) is the inverse Fourier transform of −K(q) discussed in Section 2.2.1.

There is some subtlety in combining Eq. 2.31 and Eq. 2.32 to obtain a workable equation for

Ax(z). It turns out that how the electrons scatter from the surface matters, because we are studying

the current distribution in a region very close to the surface. The usual assumption is that a portion

p of the electrons reflect from the surface specularly (after reflection, the normal component of the

momentum of the electron flips its sign) and the remaining portion 1 − p of the electrons scatter

diffusively (after scattering the momentum of the electron is randomized)[43].

For the perfect specular scattering case (p = 1), one can make a even continuation of the field

and current into the z < 0 space which leads to the following integro-differential equation:

− d2Ax(z)

dz2
=

∫ ∞

−∞
K(η)Ax(z′)dz′. (2.33)

For the perfect diffusive scattering case (p = 0), one can derive another integro-differential

equation:

− d2Ax(z)

dz2
=

∫ ∞

0

K(η)Ax(z′)dz′. (2.34)

A complete solution of the equation is not necessary for the purpose of evaluating the surface

impedance, because only the ratio of A and its derivative on the surface is needed, according to
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Eq. 2.30. However, even solving for this ratio from the two integro-differential equations is non-

trivial. The solution is obtained in Fourier domain, and only the ultimate results are quoted here:

Perfect specular scattering: Zs =
jµ0ω

π

∫ ∞

−∞

dq

q2 +K(q)
(2.35)

Perfect diffusive scattering: Zs =
jµ0ωπ∫∞

0
ln(1 + K(q)

q2 )dq
(2.36)

where K(q) is the one-dimensional Mattis-Bardeen kernel in Fourier space. Please refer to Reuter

and Sondheimer [43] and Hook [44] for the detailed derivations of these two equations.

Although formula for the specular scattering case is mathematically simpler than the diffusive

scattering case, the latter is considered to better represent the real situation of electron scattering

at the metal surface and is more widely used. In this thesis, we adopt the diffusive scattering

assumption and use Eq. 2.36 to evaluate surface impedance.

The surface impedance Zs generally has a real and imaginary part

Zs = Rs + jXs = R+ jωLs = Rs + jωµ0λeff (2.37)

where Rs, Xs, and Ls are called surface resistance, surface reactance, and surface inductance,

respectively, and λeff is called the effective penetration depth. For temperature much lower than

Tc, usually Rs ≪ Xs. If we assume that Jx(z), Hy(z), and Ax(z) all decay into the superconductor

exponentially as e−z/λeff , and ignoring Rs, we can immediately see from Eq. 2.30 that

Zs ≈ jωµ0λeff . (2.38)

For diffusive scattering, according to Eq. 2.36, λeff can be calculated by

λeff =
π

Re
[∫∞

0 ln(1 + K(q)
q2 )dq

] . (2.39)

2.2.4 Surface impedance in two limits

It is useful to rewrite Eq. 2.36 into the following form

Zs = jµ0ωλL0
π

∫∞
0 ln(1 +

λ2
L0

K(Q/λL0)

Q2 )dQ
(2.40)

where both λ2
L0K(Q/λL0) and Q are dimensionless.

According to Eq. 2.26 and Eq. 2.28, K(Q/λL0) has the following asymptotic behavior for small

and large Q:
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Regime I: Q≪ max{λL0

ξ0
, λL0

l }, K(Q/λL0) = K0(ξ0, l, T ) (2.41)

Regime III: Q≫ max{λL0

ξ0
, λL0

l }, K(Q/λL0) = λL0K∞(ξ0, l, T )/Q. (2.42)

2.2.4.1 Extreme anomalous limit

In the extreme anomalous approximation, one assumes that Regime III holds for all Q of importance

in the integral in Eq. 2.40, so K(Q) can be replaced by its asymptotic form of Eq. 2.42.

Zs = jµ0ωλL0
π

∫∞
0

ln(1 +
λ3
L0

K∞(ξ0,l,T )

Q3 )dQ

= jµ0ω[

√
3

2
K∞(ξ0, l, T )−1/3] (2.43)

λeff = Re

[√
3

2
K∞(ξ0, l, T )−1/3

]
(2.44)

where
∫∞
0

ln(1 + 1/x3)dx = 2π/
√

3 is used.

According to Eq. 2.42, the condition for the extreme anomalous limit is

ξ0 ≫ λL0 AND l ≫ λL0. (2.45)

In fact, this condition can be relaxed to

ξ0 ≫ λeff AND l ≫ λeff . (2.46)

This is because the lower limit of the integral
∫∞
0 ln(1+1/x3)dx can be set to a small number ǫ instead

of 0 without significant error. For qualitative discussion, let’s take ǫ = 1, which corresponds to a

lower limit of Ql ≈ 3
√
λ3

L0K∞(ξ0, l, T ) ≈ λL0/λeff in the integral of Eq. 2.40. For self consistency,

K(Q) for Q > Ql must be all in Regime III and therefore Ql must satisfy the condition Ql ≈
λL0/λeff ≫ max{λL0

ξ0
, λL0

l }, which leads to the condition Eq. 2.46.

According to the condition given by Eq. 2.45, the extreme anomalous limit occurs when the

effective penetration depth λeff , which is the characteristic length scale of the penetrating magnetic

field, is much less than the the smaller of ξ0 and l, which is the decay length of the Mattis-Bardeen

kernel. Extreme anomalous effect may also occur in a normal metal at high frequency and low

temperature, when the classical skin depth δ becomes shorter than the scattering length l.
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2.2.4.2 Local limit

In the local approximation, one assumes that Regime I holds for all Q of importance in the integral

in Eq. 2.40; K(Q) can be replaced by its asymptotic form in Eq. 2.41.

Zs = jµ0ωλL0
π

∫∞
0 ln(1 +

λ2
L0K0(ξ0,l,T )

Q2 )dQ

= jµ0ω[K0(ξ0, l, T )−1/2]

λeff = Re
[
K0(ξ0, l, T )−1/2

]
(2.47)

where
∫∞
0

ln(1 + 1/x2)dx = π is used.

The condition for this approximation to be valid, according to Eq. 2.41, is

ξ0 ≪ λL0 OR l ≪ λL0. (2.48)

Similar to the extreme anomalous case, this condition can be relaxed to

ξ0 ≪ λeff OR l ≪ λeff . (2.49)

Another widely used definition of local (or dirty) limit in the literature is

l ≪ ξ0 AND l ≪ λeff (2.50)

which is stronger than condition of Eq. 2.49. So the local approximation and result of effective

penetration Eq. 2.47 is guaranteed to be valid in such defined local limit.

According to the condition given by Eq. 2.48, the local limit occurs when the characteristic length

scale of the Mattis-Bardeen kernel (the smaller of ξ0 and l) is much smaller than the length scale of

the penetrating magnetic field (λeff). Therefore, the vector potential Ax(z′) ≈ Ax(z) can be taken

out of the integral in Eq. 2.32 as a constant, leading to a local equation. The local equation can be

expressed in terms of K0(ξ0, l, T ). With K(q) ≈ K0(ξ0, l, T ) for all q, K(η) = K0(ξ0, l, T )δ(η). The

one-dimensional Eq. 2.32 reduces to

Jx(z) = −K0(ξ0, l, T )Ax(z) =
K0(ξ0, l, T )

jµ0ω
Ex(z). (2.51)

If a complex conductivity

σ =
K0(ξ0, l, T )

jµ0ω
(2.52)

is defined, the problem can be solved by using Ohm’s law J = σE, as if it were a normal metal with

conductivity σ. This complex conductivity will be discussed in more detail later in this chapter.
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2.2.5 Numerical approach

Analytical formulas for Zs may be derived for a few special cases under certain approximations,

which will be discussed later in this chapter. In general, Zs has to be evaluated by numerical

approach. The task for such a numerical program is to calculate a two-fold integral: for a given q

the evaluation of K(q) involves 6 energy integrals for hω > 2∆ or 4 integrals for hω < 2∆, according

to Eq. 2.19 and Eq. 2.20; then an integral of K(q) over q gives Zs, as defined in Eq. 2.36. To carry

out these numerical integrals efficiently and robustly, a few tactics have been used, which are briefly

discussed in Appendix B.

2.2.6 Numerical results

A numerical program “surimp” was developed in the C++ language to implement the theory and

algorithm discussed above. To calculate the surface impedance, the program takes frequency ω and

temperature T as two independent variables, and requires five material-dependent parameters to be

specified: the transition temperature Tc, the energy gap at zero temperature ∆0 (or the ratio of

∆0 to kT ), the London penetration depth at zero temperature λL0, the mean free path l and the

coherence length ξ0 (or the Fermi velocity v0).

In addition, the temperature dependent gap function ∆(T ) is calculated using a subroutine

borrowed from the “Supermix” software, a package developed at Caltech originally for the super-

conducting SIS mixer design[45]. In “Supermix”, the reduced energy gap ∆(T )/∆0 as a function of

T/Tc is interpolated from a table of experimentally measured values given by Muhlschlegel[46] for

T/Tc > 0.18, and from the low temperature approximate expression (see Eq. 2.88)

∆(T )

∆0
≈ exp[−

√
2πkT

∆0
exp(−∆0

kT
)] ≈ exp[−

√
3.562x exp(−1.764/x)] (2.53)

for x = T/Tc < 0.18, where the BCS value ∆0 = 1.762kTc is assumed in the right-hand side of

Eq. 2.53.

2.2.6.1 λeff of Al and Nb at zero temperature

As a first application of the program “surimp”, we calculate the surface impedance Zs of Al and Nb

at T = 0 K and f = 6 GHz. The material parameters are taken from Popel [40] and are listed in

Table 2.1, except that the BCS ratio of ∆0/kT = 1.76 is used. The program gives λeff = 51.4 nm

for Al and λeff = 63.5 nm for Nb. From the listed material dependent parameters, we see that Al is

in the extreme anomalous limit case while Nb is in the local limit case.
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Table 2.1: λeff of bulk Al and Nb.
Al Nb

Tc [K] 1.2 9.2
λL0 [nm] 15.4 33.3

v0 [106 m/s] 1.34 0.28
ξ0[nm] 1729 39
l [nm] 10000 20

∆0 [meV] 0.182 1.395
∆0

kTc
1.76 1.76

λeff (0 K, 6 GHz) [nm] 51.4 63.5
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Figure 2.3: Surface resistance Rs and surface reactanceXs of aluminum as a function of temperature
T . The material parameters used in the calculation are from Table 2.1

2.2.6.2 Temperature dependence of Zs

In this example, we use the program “surimp” to calculate the temperature dependence of surface

impedance. The surface resistance Rs and surface inductance Xs (or the real and imaginary part

of Zs) of Al are calculated for T from 0 to 1.15 K (slightly below Tc = 1.2K) and the results are

plotted in Fig. 2.3. As expected from the theory, we see that Rs goes to zero as T → 0 while Xs

approaches a nonzero finite value Xs(0).

The temperature dependence of Zs predicted by “surimp” can be tested by fitting it to the data

of variation of resonance frequency fr and quality factor Qr of a superconducting resonators as a

function of bath temperature. The relationships between fr, Qr and Xs, Rs are

δfr

fr
=

fr(T ) − fr(0)

fr(0)
= −α

2

Xs(T ) −Xs(0)

Xs(0)
= −α

2

δλeff

λeff

δ
1

Qr
=

1

Qr(T )
− 1

Qr(0)
= α

Rs(T ) −Rs(0)

Xs(0)
(2.54)
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Figure 2.4: Fractional resonance frequency shift δfr

fr
and change in inverse quality factor δ 1

Qr
vs.

temperature T . Data measured from a Al resonator with film thickness d = 220 nm, center strip
width s = 3 µm, gap width g = 2 µm, fr = 6.911 GHz, Qr = 68000, and Tc = 1.25 K. ∆0 =
0.181 meV and α = 0.07 is obtained from the best fit. Other material-related parameters are from
Table 2.1.
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where α is the kinetic inductance fraction. Eq. 2.54 will be derived in the next two chapters. The

measured δfr/fr and δ1/Qr can be fitted to the calculated δXs/Xs and δRs/Xs with a simple linear

fitting model according to Eq. 2.54. The energy gap ∆0 and the kinetic inductance fraction α are

taken as two fitting parameters. Tc can be measured by experiment. Other parameters are taken

from the literature and set fixed. The data of fr(T ) and Qr(T ) from an Al resonator is fitted in this

way and the result is shown in Fig. 2.4, which shows a good agreement between data and calculation.

2.2.6.3 Frequency dependence of Zs

0 2 4 6 8
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Figure 2.5: Frequency dependance of the effective penetration depth λeff of an Al bulk supercon-
ductor. The material parameters are from Table 2.1 except ∆0 = 1.70kTC.

The frequency dependance of effective penetration depth of Al is calculated and plotted in

Fig. 2.5. As a verification of our calculation, we use exactly the same material parameters used

by Popel in Fig. 15 of Ref. [40]. Comparing Fig. 2.5 to Fig. 15 of Ref. [40], we find that the

frequency dependence calculated by “surimp” is identical to that calculated by Popel.

2.3 Surface impedance of superconducting thin films

2.3.1 Equations for specular and diffusive surface scattering

One can also apply the Mattis-Bardeen equations to the case of thin films. Consider a plane super-

conductor with thickness d as shown in Fig. 2.6. If the film is thin enough, the magnetic field can

penetrate through the film and both ~H and ~J can be nonzero inside the film, which is different from

the bulk case.
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x x

z=d

z=0

Figure 2.6: Configuration of a plane wave inci-
dent onto a superconducting thin film
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z=-2d
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…
…
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Figure 2.7: Field configuration used by Srid-
har to calculate Zs of a thin film assuming
specular scattering boundary condition at
both interfaces

Again, to apply the Mattis-Bardeen equations one has to assume either specular scattering or

diffusive scattering at the surface. For specular scattering boundary at both sides of the film, the

problem can be solved by mirroring the field and current repeatedly to fill the entire space (see

Fig. 2.7) and applying the equation

− d2Ax(z)

dz2
=

∫ ∞

−∞
K(η)Ax(z′)dz′, η = z′ − z (2.55)

which can easily be solved in a similar manner as in the bulk case. The result is derived by Sridhar[47]

to be

Zs =
iµ0ω

d

+∞∑

n=−∞

1

q2n +K(qn)
(2.56)

where qn = nπ/d. Comparing Eq. 2.56 to Eq. 2.35, we see that the only change is that the integral

in the bulk case has been replace by an infinite series in the thin film case.

For the diffusive scattering boundary condition, the equation is

− d2Ax(z)

dz2
=

∫ d

0

K(η)Ax(z′)dz′, η = z′ − z (2.57)

and unfortunately has to be solved numerically.
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2.3.2 Numerical approach

There are two tasks in the numerical calculation of surface impedance of a thin film: evaluating the

kernel function K(η) and solving the integro-differential equation of Eq. 2.57.

2.3.2.1 Implementing the finite difference method

N

2

1

0

N-1

Figure 2.8: Thin film divided into N slices

The integro-differential equation of Eq. 2.57 can be solved numerically by the finite difference

method (FD). To implement FD method, we first divide the film into N thin slices of equal thickness

t=d/N (see Fig. 2.8). Then we follow the standard procedures to convert Eq. 2.57 into a discrete

FD equation. On the left-hand side, we employ the simple three-point approximation formula

d2Ax(z)

dz2
≈ (An+1 − 2An +An−1)/t

2. (2.58)

On the right-hand side, we apply the simple extended trapezoidal rule to approximate the integral

as a sum ∫ d

0

K(η)Ax(z′)dz′ ≈ t

N∑

n′=0

Knn′A(n′) (2.59)

where

Knn′ =






1
2K(|n− n′| t) if n′ = 0 or N

1
t

∫ (n+1/2)t

(n−1/2)t K(|nt− x′|)dx′ if n′ = n

K(|n− n′| t) otherwise

. (2.60)
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So we get the following FD equations

An+1 − 2An +An−1 = −t3
N∑

n′=0

Knn′A(n′), n = 1, ..., N − 1. (2.61)

2.3.2.2 Boundary condition

Eq. 2.61 provides N − 1 linear equations with N + 1 unknowns (A0 ... AN ), so two more equations

are needed. The two additional equations come from the boundary conditions at the interfaces at

z = 0 and z = d. In the configuration of Fig. 2.6, both sides of the film are connected to free space

and the electromagnetic wave is incident from z = 0 into the film. In this case, at z = 0 one can

assume either boundary conditions of the first kind

A(z)|z=0 = 1 ⇒ A0 = 1 (2.62)

or of the second kind

Hy(0) =
dA(z)

dz

∣∣∣∣
z=0

= 1 ⇒ A1 −A0 = t (2.63)

where a two point formula for dA(z)/dz is used. Physically, the former specifies a vector potential

and the latter specifies a magnetic field on the z = 0 surface.

At the interface of z = d, one usually assumes that the transmitted wave sees the free space

impedance

Z0 = −jωµ0
A(z)
dA(z)

dz

∣∣∣∣∣
z=d

⇒ (1 +
jωµ0

Z0
t)AN −AN−1 = 0, (2.64)

Because the free space impedance Z0 ≈ 377 Ω is usually much larger than the surface impedance of

the film, boundary condition Eq. 2.64 is virtually equivalent to

Hy(d) =
dA(z)

dz

∣∣∣∣
z=d

= 0 ⇒ AN = AN−1 (2.65)

which physically forces a zero magnetic field on the z = d surface.

2.3.2.3 Retrieving the results

With proper boundary conditions, the FD problem is ready to solve. The N + 1 linear equations

can easily be solved with standard numerical algorithms. Unfortunately, we can not utilize a sparse

algorithm to accelerate the calculation.

For thin films, the transmitted wave is often important and can not be neglected. In these cases,

it is often not enough to consider only the surface impedance at the surface z = 0. We can generalize
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the concept of surface impedance and define a pair of impedances for the thin film

Z11 =
Ex(0)

Hy(0)
= −jωµ0

Ax(z)|z=0

dAx(z)/dz|z=0
= −jωµ0t

A0

A1 −A0
(2.66)

Z21 =
Ex(d)

Hy(0)
= −jωµ0

Ax(z)|z=d

dAx(z)/dz|z=0
= −jωµ0t

AN

A1 −A0
(2.67)

Instead of returning one impedance, both Z11 and Z21 are calculated from the solution and reported

by our numerical program.

In the case that the electromagnetic wave is incident from one side of the thin film (d < λeff),

with the other side exposed to the free space, we have Hy(d) ≈ 0 (see the previous discussion of

Eq. 2.65) and Hy(0) = K =
∫ d

0 Jxdz according to Ampere’s law, where K represents the sheet

current (current flowing in the entire film thickness). Therefore the electric fields at the two surfaces

are given by

Ex(0) = Z11K, Ex(d) = Z21K. (2.68)

In the anti-symmetric excitation case, as in a TEM mode of a superconducting coplanar waveg-

uide (discussed in more detail in the next chapter), the electromagnetic wave is incident from both

sides of the film with Hy(0) = −Hy(d). One can decompose this problem into two problems, each

with a wave incident from one side. It can be shown that in this anti-symmetric excitation case,

Hy(0) = −Hy(d) = K/2

Ex(0) = Ex(d) = (Z11 + Z21)K/2. (2.69)

2.3.3 Numerical results

With slight modification to “surimp”, a program “surimpfilm” is developed to calculate the surface

impedance of a superconducting thin film. The program takes ω and T as independent variables

and the same 5 material parameters. It takes the film thickness d and the number of subdivisions

to the film N as two additional parameters. Besides, all 3 types of boundary conditions (specifying

value of A, value of H or the load impedance Z) can be applied to both the top side and the bottom

side of the film. The values of generalized surface impedance Z11 and Z12 are returned from the

program.

2.3.3.1 λeff of Al thin film

We use “surimpfilm” to calculate the thickness dependence of surface impedance for Al at T = 0 K

and f = 6 GHz. The result is shown in Fig. 2.9. We see that Z11 approaches its bulk value when the

thickness is large compared to the bulk penetration depth (roughly d > 3λeff) and Z12 goes to zero,

implying no magnetic field penetrates through. As the thickness of the film is reduced, both Z11
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Figure 2.9: Effective penetration depth of Al thin film vs. thickness. f = 6 GHz, T = 0 K, and
other material related parameters are from Table 2.1, except that the mean free path l is set to the
film thickness d. In the calculation, N = 400 division is used. The two effective penetration depths
are defined as λeff1 = Z11

jωµ0
and λeff2 = Z21

jωµ0
.

and Z21 increase. Ultimately when the film is very thin, Z11 and Z21 become equal, which implies

that the film is completely penetrated. We also notice that the impedance goes as 1/d2, which will

be explained later in this chapter.

2.4 Complex conductivity σ = σ1 − jσ2

The concept of complex conductivity σ = σ1 − jσ2 was first introduced by Glover and Tinkham[48]

for the superconding states. σ1 and σ2 are expressed by two integrals[39]

σ1

σn
=

2

~ω

∫ ∞

∆

[f(E) − f(E + ~ω)](E2 + ∆2 + ~ωE)√
E2 − ∆2

√
(E + ~ω)2 − ∆2

dE

+
1

~ω

∫ −∆

∆−~ω

[1 − 2f(E + ~ω)](E2 + ∆2 + ~ωE)√
E2 − ∆2

√
(E + ~ω)2 − ∆2

dE (2.70)

σ2

σn
=

1

~ω

∫ ∆

max{∆−~ω,−∆}

[1 − 2f(E + ~ω)](E2 + ∆2 + ~ωE)√
∆2 − E2

√
(E + ~ω)2 − ∆2

dE. (2.71)

We recall that the expression for K(q) in Eq. 2.19 and Eq. 2.20 generally has 4 integrals in the

real part and 2 integrals in the imaginary part. We will show that under certain conditions some of

the integrals vanish and the total 6 integrals reduce to the 3 integrals of σ1 and σ2. In these cases,

Zs and λeff have simplified expressions in terms of σ1 and σ2.
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2.4.1 Surface impedance Zs in various limits expressed by σ1 and σ2

2.4.1.1 Thick film, extreme anomalous limit

In the extreme anomalous limit, both Zs and λeff are related only to the value of K∞(ξ0, l, T )

according to Eq. 2.44. It can be shown by comparing the asymptotic expression of K(q) at q → ∞
to the expression of σ in Eq. 2.70 and 2.71 that

K∞(ξ0, l, T ) =
3πω

4v0λ2
L0

σ2 + jσ1

σn
. (2.72)

Thus

Zs =
j
√

3µ0ω

2
[

3πω

4v0λ2
L0

σ2 + jσ1

σn
]−1/3. (2.73)

2.4.1.2 Thick film, local limit

In the local limit, both Zs and λeff are related only to the value of K0(ξ0, l, T ) according to Eq. 2.47.

It can be shown by comparing the asymptotic expression of K(q) at q → 0 to the expression of σ in

Eq. 2.70 and 2.71 that

K0(ξ0, l, T ) =
ωl

v0λ2
L0

σ2 + jσ1

σn
. (2.74)

From Eq. 2.6 and the expression of σn

σn =
ne2τ

m
(2.75)

where n, e, and m are the density, charge, and mass of the electron, respectively, it can be derived

that

λL0 =

√
l

µ0σnv0
. (2.76)

Inserting Eq. 2.76 into Eq. 2.74, we get another equivalent expression of K0(ξ0, l, T )

K0(ξ0, l, T ) = jωµ0(σ1 − jσ2) (2.77)

which is consistent with Eq. 2.52. It follows from Eq. 2.47 that

Zs = jµ0ω[
ωl

v0λ2
L0

σ2 + jσ1

σn
]−1/2

or

Zs =

√
jµ0ω

σ1 − jσ2
. (2.78)
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We again see that Zs of a superconductor in the local limit can be directly obtained by substi-

tuting σ = σ1 − jσ2 for σn in the corresponding classical formulas.

2.4.1.3 Thin film

If the film thickness t is smaller than the electron mean free path in the bulk case l∞, l will be

limited by surface scattering and l ≈ d. If in addition the local condition l ≪ ξ0 and l ≪ λL0 are

satisfied, the local equation ~J = σ ~E applies. Moreover, if the film thickness satisfies d ≪ λeff , the

field penetrates through the entire film and the current distribution is almost uniform across the

film with Jx(z) ≈ Jx(0), as is the electric field Ex(z) ≈ Ex(0). The following expression of Zs can

be derived

Zs = Z11 = Z21 =
Ex(0)

∫ d

0 Jx(z)dz
=

1

(σ1 − iσ2)d
, (2.79)

where Z11 and Z12 are defined in Eq. 2.66 and 2.67. Because σ goes as 1/l ∼ 1/d, Zs has a 1/d2

dependence on the film thickness d.

2.4.2 Change in the complex conductivity δσ due to temperature change

and pair breaking

2.4.2.1 Relating δZs to δσ

MKIDs operate on a principle that the surface impedance Zs of a superconducting film changes

when photons break Cooper pairs and generate quasiparticles (QPs)[14, 16]. The responsivity of

MKIDs is related to dZs/dnqp, where nqp is the QP density.

It follows from the discussion in the previous section that the change in Zs is related to the

change in σ by

δZs

Zs
= γ

δσ

σ
, γ =





−1/2 Thick film, local limit

−1/3 Thick film, extreme anomalous limit

−1 Thin film, local limit

. (2.80)

Thus, dσ/dnqp becomes an important quantity in discussing responsivity of MKIDs.

2.4.2.2 Effective chemical potential µ∗

One straightforward way of calculating dσ/dnqp is through dσ/dnqp = ∂σ(T )/∂T
∂nqp(T )/∂T (the ratio between

the change in the conductivity and the change in the quasiparticle density, both caused by a change
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in the bath temperature) from Eq. 2.70, Eq. 2.71, and

nqp = 4N0

∫ ∞

0

1

1 + e
E

kT

dǫ, ǫ =
√
E2 − ∆2 (2.81)

where N0 is the single spin density of states. The result from such a calculation gives δσ due to a

change in thermal QP density from a change in bath temperature, which does not directly apply

to excess QPs from pair breaking. To account for excess QPs, we adopt Owen and Scalapino’s

treatment[49] and introduce an effective chemical potential µ∗ to the Fermi distribution function

f(E;µ∗, T ) =
1

1 + e
E−µ∗

kT

. (2.82)

Physically, Eq. 2.82 treats the QPs as a Fermi gas with a thermal equilibrium distribution char-

acterized by the chemical potential µ∗ and the temperature T . This assumption is valid because at

low temperatures, phonons with energy less than 2∆ (under-gap phonons) are much more abundant

than the phonons with energy larger than 2∆ (over-gap phonons); therefore the time scale τl for

excess QPs to thermalize with the lattice (phonon) temperature T (assisted by under-gap phonons)

is much shorter than the time scale τqp for excess QPs to recombine (assisted by over-gap phonons);

as a result, during the time τl < t < τqp, the QPs may be described using the Fermi function given

by Eq. 2.82.

With the introduction of µ∗, the total QP density nqp (including both thermal and excess

QPs), the superconducting gap ∆, and the complex conductivity σ can be rederived by substi-

tuting f(E;µ∗, T ) for f(E;T ) in the corresponding BCS formula and the Mattis-Bardeen formula.

The relevant equations now modify to

nqp = 4N0

∫ ∞

0

1

1 + e
E−µ∗

kT

dǫ, ǫ =
√
E2 − ∆2 (2.83)

1

N0V
=

∫
~ωc

0

tanh E−µ∗

2kT

E
dǫ (2.84)

σ1

σn
=

2

~ω

∫ ∞

∆

[f(E;µ∗, T ) − f(E + ~ω;µ∗, T )](E2 + ∆2 + ~ωE)√
E2 − ∆2

√
(E + ~ω)2 − ∆2

dE

+
1

~ω

∫ −∆

∆−~ω

[1 − 2f(E + ~ω;µ∗, T )](E2 + ∆2 + ~ωE)√
E2 − ∆2

√
(E + ~ω)2 − ∆2

dE (2.85)

σ2

σn
=

1

~ω

∫ ∆

∆−~ω

[1 − 2f(E + ~ω;µ∗, T )](E2 + ∆2 + ~ωE)√
∆2 − E2

√
(E + ~ω)2 − ∆2

dE. (2.86)
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2.4.2.3 Approximate formulas of ∆, nqp, σ, and dσ/dnqp for both cases

Under the condition that ~ω ≪ ∆ (Cond. 1), kT ≪ ∆ (Cond. 2) and e−
E−µ∗

kT ≪ 1 (Cond. 3),

Eq. 2.83–2.86 have the following analytical approximate formula[50]:

nqp = 2N0

√
2πkT∆e−

∆−µ∗

kT (2.87)

∆

∆0
= 1 −

√
2πkT

∆
e−

∆−µ∗

kT = 1 − nqp

2N0∆
(2.88)

σ1

σn
=

4∆

~ω
e−

∆−µ∗

kT sinh(ξ)K0(ξ), ξ =
~ω

2kT
(2.89)

σ2

σn
=

π∆

~ω
[1 − 2e−

∆−µ∗

kT e−ξI0(ξ)] (2.90)

where In, Kn are the nth order modified Bessel function of the first and second kind, respectively

The first two conditions (Cond. 1 and Cond. 2) are apparently satisfied by a typical Al MKID

with Tc = 1.2 K and microwave frequency ω/2π below 10 GHz. Meanwhile, the QP density due to

pair breaking from a photon with energy hν is estimated by nqp ≈ hν
∆V . Assuming a sensing volume

V ∼ 3 µm× 0.2 µm× 100 µm (center strip width × film thickness × quasiparticle diffusion length)

and taking T=0.1 K, N0 = 1.72 × 1010 µm−3eV−1, and ∆ = 0.18 meV for Al, e−
E−µ∗

kT is estimated

from Eq. 2.87 to be 0.1 for a 6 keV photon and 1.4 × 10−5 for a 1 eV photon, both much less than

1. Thus for Al MKIDs up to X-ray band, the third condition (Cond. 3) is also satisfied.

Now we are ready to derive σ and its derivative for the two cases.

Case 1: thermal QPs due to temperature change

In Eq. 2.87–2.90, only two of the four variables ∆, nqp, µ
∗, and T are independent. By taking

µ∗ and T as independent variables, setting µ∗ = 0, and keeping only the lowest-order terms in

Eq. 2.87–2.90, we arrive at the following results

σ1(T )

σn
=

4∆0

~ω
e−

∆0
kT sinh(ξ)K0(ξ) (2.91)

σ2(T )

σn
=

π∆0

~ω
[1 −

√
2πkT

∆0
e−

∆0
kT − 2e−

∆0
kT e−ξI0(ξ)] (2.92)

nqp(T ) = 2N0

√
2πkT∆0e

−∆0
kT (2.93)

dσ1

dnqp
= σn

1

N0~ω

√
2∆0

πkT
sinh(ξ)K0(ξ){

∆0

kT − ξ cosh(ξ)
sinh(ξ) + ξK1(ξ)

K0(ξ)

∆0

kT + 1
2

} (2.94)

dσ2

dnqp
= σn

−π
2N0~ω

[1 +

√
2∆0

πkT
e−ξI0(ξ){

∆0

kT + ξ − ξ I1(ξ)
I0(ξ)

∆0

kT + 1
2

}] (2.95)

where the directives are evaluated by dσ/dnqp = ∂σ(T )/∂T
∂nqp(T )/∂T .

Case 2: excess QPs due to pair breaking
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Using Eq. 2.87 to suppress the explicit dependence of µ∗, taking nqp and T as independent

variables and keeping the lowest-order terms in Eq. 2.88–2.90, we arrive at the following result

σ1(nqp, T )

σn
=

2∆0

~ω

nqp

N0

√
2πkT∆0

sinh(ξ)K0(ξ) (2.96)

σ2(nqp, T )

σn
=

π∆0

~ω
[1 − nqp

2N0∆0
(1 +

√
2∆0

πkT
e−ξI0(ξ))] (2.97)

dσ1

dnqp
= σn

1

N0~ω

√
2∆0

πkT
sinh(ξ)K0(ξ) (2.98)

dσ2

dnqp
= −σn

π

2N0~ω
[1 +

√
2∆0

πkT
e−ξI0(ξ)] (2.99)

where the directives are evaluated by dσ/dnqp = ∂σ(nqp, T )/∂nqp. In this case, we find that σ is a

linear function of nqp and

κ =
δσ/|σ|
δnqp

≈ 1

πN0

√
2

πkT∆0
sinh(ξ)K0(ξ) + j

1

2N0∆0
[1 +

√
2∆0

πkT
e−ξI0(ξ)]. (2.100)

It can be derived from Eq. 2.80 that

δZs

|Zs|
= κ|γ|δnqp. (2.101)

2.4.2.4 Equivalence between thermal quasiparticles and excess quasiparticles from pair

breaking
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Figure 2.10: dσ/dnqp vs. T calculated for two cases. ∂σ1(T )/∂T
∂nqp(T )/∂T and ∂σ2(T )/∂T

∂nqp(T )/∂T are plotted by

the upper and lower solid lines,
∂σ1(nqp,T )

∂nqp
and

∂σ2(nqp,T )
∂nqp

by dashed lines. Other parameters are

f = 6 GHz, N0 = 1.72 × 1010µm−3eV−1, and ∆0 = 0.18 meV for Al.

Comparing Eq. 2.94 and Eq. 2.95 to Eq. 2.98 and Eq. 2.99, we find the two cases only differ from
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each other by the factors inside the curly brackets, which are found to be close to unity over the

temperature and frequency range that MKIDs operate in.

The values of dσ/dnqp of the two cases are evaluated for Al and plotted in Fig. 2.10. We see

that the thermal QP curves (solid lines) separates very little from the excess QP curves (dashed

lines), which means that adding a thermal quasiparticle (by slightly changing the temperature) and

adding a non-thermal quasiparticle (by breaking Cooper pairs) have the same effect on changing

the complex conductivity. The equivalence between thermal and excess QPs allows us to use bath

temperature sweep to calibrate the responsivity of MKIDs instead of using a external source.
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Chapter 3

Kinetic inductance fraction of
superconducting CPW

3.1 Theoretical calculation of α from quasi-static analysis

and conformal mapping technique

In Chapter 2 we discussed how the electromagnetic properties of a superconductor changes with

temperature or external Cooper-pair breaking. The topic of this chapter is how such a change will

affect the transmission properties of a superconducting transmission line.

In this chapter, we first introduce and validate the quasi-static assumption for the supercon-

ducting CPW (SCPW). Under this assumption, the SCPW is fully characterized by its distributed

inductance L and capacitance C according to the transmission line theory. As a common prac-

tice, we first treat the SCPW as a perfect-conductor CPW and calculate its geometric inductance

Lm. The effect of superconductivity is then included perturbatively as an additional inductance Lki

called kinetic inductance. The ratio of Lki to the total inductance L = Lm +Lki is called the kinetic

inductance fraction α, which is an important parameter related to the MKID responsivity.

This chapter is divided into two parts. The first half mainly discusses the theoretical calculation of

α, including the calculation of Lm, C, and a geometrical factor g which relates Lki to the penetration

depth λeff . Throughout these calculations, the powerful tool of conformal mapping is widely applied

and both analytical formulas and numerical methods are derived. The second half of this chapter

discusses the experimental technique used to determine α. The experimental results are compared

to the theoretical calculations. Both thick film and thin film cases are covered in the theory part as

well as in the experimental part.
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Figure 3.1: Coplanar waveguide geometry

3.1.1 Quasi-TEM mode of CPW

Consider an electromagnetic wave propagating on a transmission line along the z−axis. The field

quantities ~E, ~H, and the current density ~J can be written in a general form as (with a harmonic

time dependence ejωt omitted):

~X(x, y, z) = [~xt(x, y) + xz(x, y)ẑ]e
−jβz (3.1)

where β is the propagation constant and the vector ~X is decomposed into its transverse component

~xt and longitudinal component xz ẑ.

The solutions to Maxwell’s equations show that a CPW made of perfect conductor (perfect

CPW) immersed in a homogenous media can support a TEM mode. In this “pure” TEM mode, the

longitudinal components of ~E and ~H vanish while the transverse component of current density ~J

vanishes:

ez = 0, hz = 0, jt = 0. (3.2)

A superconducting CPW differs from the above case in two aspects. First, a conventional CPW

is usually made on a substrate (see Fig. 3.1), so the regions on the top and bottom of the CPW

are filled with media of different dielectric constants. This inhomogeneity gives rise to longitudinal

components ez, hz and transverse component jt. Second, the superconductor has a finite surface

impedance which gives rise to longitudinal components ez on the surface. The conclusion is that a

superconducting CPW cannot support a pure TEM mode.

However, both theory and lab measurements show that the propagation mode in a supercon-

ducting CPW is quasi-TEM, where non-TEM field components are much smaller than the TEM

components. For instance, jt contributed by the inhomogeneity from the substrate/air interface is
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estimated to be on the order of (see Appendix C)

jt
jz

∼ w

λ
(3.3)

where w is the transverse dimension of the transmission line and λ is the actual wavelength of the

wave in propagation. A lithographed CPW line used in MKIDs usually has a transverse dimension of

10–100 µm (the distance between the two ground planes) while the wavelength is usually thousands

of microns. Thus, jt/jz ∼ 1% and jt is indeed small as compared to jz .

On the other hand, according to the definition of surface impedance, superconductor contributes

an ez on the metal surface that is estimated by

ez

et
≈ Zs

Z0
(3.4)

where Zs is the surface impedance and Z0 is the characteristic impedance of the transmission line.

For CPW made of superconducting Al, Zs is on the order of mΩ (e.g., surface reactance Xs ≈ 2 mΩ

for T=0 K, f=5 GHz, and λeff = 50 nm) and Z0 = 50 Ω. Thus, ez/et ∼ 10−4 in our case. Even for

a normal metal, Zs is usually much smaller than Z0 and so ez is always much smaller than et.

It can be shown [51] that for the quasi-TEM mode of CPW, the transverse fields ~et and ~ht

are solutions to two-dimensional static problems, from which the distributed capacitance C and

inductance L can be derived.

In the electrostatic problem, because ~et quickly attenuates to zero over the Thomas- Fermi length

(on the order of one Å, which is always much smaller than the film thickness that we use) into the

superconductor, the electric energy inside the superconductor has a negligible contribution to the

capacitance C and the electric field ~et outside the superconductor is almost identical to that for

a perfect conductor. Therefore, ~et can be solved with the introduction of an electric potential Φ,

which satisfies the Laplace’s equation

∇2Φ = 0 (3.5)

outside the superconductor, and has constant values at the surfaces of the superconductors which

are now treated as perfect conductors. For a CPW, we assume Φ = V on the center strip and Φ = 0

on the two ground planes. ~et is given by ~et = ∇Φ. The distributed capacitance C can be obtained

either from C = Q/V where Q is the total charge on the center strip, or from C = 2we/V
2 where

we is the total electric energy (per unit length).

In the magnetostatic problem, ~ht penetrates into the superconductor by a distance given by the

effective penetration depth λeff . In general, the magnetic field can be derived by solving the Maxwell

equations together with the Mattis-Bardeen equation (Eq. 2.11). This leads to the following two
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equations of the vector potential Az(x, y):





∇2Az = 0 outside the superconductor

∇2Az =
∫
K(x− x′, y − y′)Az(x

′, y′)dx′dy′ inside the superconductor
(3.6)

where K(x− x′, y− y′) is the Mattis-Bardeen kernel appropriate for the two dimensional problems.

To join these two equations, we require ~ht to be continuous at the superconductor surfaces.

Similar to the electrostatic problem, if the penetration depth is much smaller than the film

thickness, λeff ≪ t, the magnetic field outside the superconductor is almost identical to that for a

perfect conductor. Therefore, ~ht can be solved from the first Laplace equation in Eq. 3.6, with the

perfect conductor boundary condition—Az is constant at superconductor surfaces or ~ht is parallel to

the surfaces, and with the constraint that a total current I is flowing in the center strip and returns

in the two ground planes for a CPW. The transverse field ~ht can be obtained from ~ht = ∇ × Az .

The (distributed) geometric inductance Lm can be obtained either from Lm = φ/I where φ is the

total magnetic flux per unit length going through the gap between the center strip and the ground

planes, or from Lm = 2wm/I
2 where wm is the total magnetic energy. To account for the stored

energy and dissipation inside the superconductor, we use the surface current derived for the perfect

conductor (equal to ~ht on the surface) and apply the surface impedance Zs of the superconductor

to the calculation of the (distributed) kinetic inductance Lki and (distributed) resistance R.

However, if the penetration depth is much larger than the film thickness, λeff ≫ t, so that the

film is fully penetrated by the magnetic field, the perfect-conductor approximation for the surface

current and the near magnetic field outside the superconductor is no longer a good approximation,

because the perfect-conductor boundary condition—ht parallel to the superconductor surfaces—

fails at the edges of the superconducting film; as the film becomes thinner and thinner, the surface

current derived for a perfect conductor will become more and more singular at these edges, while

in fact both the magnetic field and current density will become less and less singular due to the

longer penetration. In this case, one has to solve faithfully the two equations in Eq. 3.6. However,

for λeff ≫ t, the relationship between ~J and ~A becomes local (see Section 2.4.1.3) and the second

equation in Eq. 3.6 can be replaced by the London equation:

∇2Az =
1

λ2
L

Az (3.7)

which is easier to solve than the original differential-integral equation.

So far the electrostatic problem and the magnetostatic problem are independent, which is enough

in many cases where only the distributed parameters L and C, or the characteristic impedance Z0 =
√
L/C and the phase velocity vp = 1/

√
LC are required. The two static problems can be further

linked by applying the relationships between the voltage and current given by the transmission line
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Figure 3.2: Schwarz-Christoffel mapping

equations.

3.1.2 Calculation of geometric capacitance and inductance of CPW using

conformal mapping technique

A powerful tool for solving a two-dimensional static problem is the conformal mapping technique.

Consider a potential problem
∂2Φ

∂u2
+
∂2Φ

∂v2
= 0 (3.8)

in domain W with spatial coordinates (u, v). A complex function

z = f(w), w = u+ jv, z = x+ jy (3.9)

maps (u, v) to a new domain Z with coordinates (x, y). The theory of complex analysis tells us

if the mapping function f is analytical, it is also conformal (or angle-preserving), and so Laplace’s

equation is invariant:
∂2Φ

∂x2
+
∂2Φ

∂y2
= 0. (3.10)

Often Laplace’s equation is difficult to solve in the original domain but relatively easy in the other

domain that is specially chosen.

A type of conformal mapping that is particularly useful in microwave engineering is called the

Schwarz-Christoffel mapping (SC-mapping),and maps a half of the complex plane into the interior of

a polygon. Fig. 3.2 shows the general configuration of SC mapping. The required mapping function

is

z = f(w) = f(w0) + c

∫ w

w0

n−1∏

j=1

(w′ − wj)
αj−1dw′ (3.11)

where παj , j = 1, ..., n−1 are the internal angles of the polygon. As we can see in Fig. 3.2, the points

wi on the real axis, the real axis itself, and the entire upper plane are mapped into the vertices zj ,

the boundary, and the interior of the polygon, respectively. We will use SC-mapping technique to
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solve the transverse fields of CPW and calculate L and C.

3.1.2.1 Zero thickness
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Figure 3.3: SC-mapping of the cross section of a CPW with zero thickness into a parallel-plate
capacitor

We begin with a CPW line with zero thickness as shown in Fig. 3.3(a). The center strip has a

width of 2a and the separation between the two ground planes is 2b. Because we only care about

the capacitance and inductance, the only relevant parameter is the ratio k = a/b. Without affecting

L and C, we first normalize the CPW dimensions by a so that the center strip width becomes 2 and

the ground-plane separation becomes 2/k, which are also indicated in Fig. 3.3(a).

The upper half of the W -plane can be mapped into the interior of the rectangle in the ξ-plane

as shown in Fig. 3.3(b). According to Eq. 3.11, the mapping function with the points {−1/k, -1, 1,

1/k} mapping into the four corners of the rectangle is given by

ξ = A

∫ w

0

1√
(1 − w′2)(1 − k2w′2)

dw′ (3.12)

where A is an unimportant factor that scales the size of the rectangle. By setting A = 1, the width
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and height of the CPW can be expressed in terms of a special function K(k) called the complete

elliptic integral of the first kind [52]:

K = K(k) =

∫ 1

0

1√
(1 − x2)(1 − k2x2)

dx (3.13)

K ′ = K(k′) =

∫ 1/k

1

1√
(x2 − 1)(1 − k2x2)

dx (3.14)

(3.15)

where k′ =
√

1 − k2.

Now the capacitance C between the center strip and the ground planes through upper half plane

in free space can be easily obtained from the capacitance of the parallel-plate capacitor in the ξ

plane:

C1/2 = 2ǫ0
K(k)

K(k′)
. (3.16)

Due to the symmetry, the lower half CPW filled with the substrate which has a dielectric constant

ǫr, will contribute a capacitance ǫrC1/2. Thus, the total capacitance of a zero-thickness CPW line

is

C = (1 + ǫr)C1/2 =
1 + ǫr

2
ǫ0

4K(k)

K(k′)
. (3.17)

The factor

ǫeff =
1 + ǫr

2
(3.18)

is often referred to as the effective dielectric constant, because the presence of the substrate effectively

increases the total capacitance by a factor of ǫeff , as if the CPW were immersed in a homogenous

medium with a dielectric constant of ǫeff .

Similarly, the total inductance for a zero-thickness CPW line is

L1/2 = µ0
K(k′)

2K(k)
(3.19)

L =
L1/2

2
= µ0

K(k′)

4K(k)
. (3.20)

We note that the presence of the substrate does not affect the inductance, because both air and the

substrate have µ = 1, and the magnetostatic problem does not see the substrate.
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Figure 3.4: SC-mapping of the cross section of a CPW with finite thickness t into a parallel plate
capacitor

3.1.2.2 Finite thickness with t≪ a

We now consider a CPW line with finite thickness t as shown in Fig. 3.4. The center-strip width

and the separation between ground planes are still 2a and 2b as before. The strategy here is to

“flatten” the structure into a zero-thickness CPW and calculate L and C from the derived formula.

The upper half CPW in the Z-plane can be mapped into a zero-thickness CPW in the W -plane with

the following mapping function (see Fig. 3.4):

Z =

∫ w

0

√
(w′2 − u′21 )(w′2 − u′22 )

(w′2 − u2
1)(w

′2 − u2
2)
dw′ + jt (3.21)

where the four points u1, u
′
1, u2, u

′
2 on the real axis which defines the mapping have to be derived

from the following equations:

a =

∫ u′
1

0

G(w′)dw′ (3.22)

t =

∫ u1

u′
1

G(w′)dw′ (3.23)

b− a =

∫ u2

u1

G(w′)dw′ (3.24)

t =

∫ u′
2

u2

G(w′)dw′ (3.25)

with

G(w) =

√∣∣∣∣
(w2 − u′21 )(w2 − u′22 )

(w2 − u2
1)(w

2 − u2
2)

∣∣∣∣. (3.26)

These non-linear equations have no analytical solutions in general. When the thickness is very

small, however, approximate solutions can be derived. When t → 0, u1, u
′
1 → a and u2, u

′
2 → b,
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Figure 3.5: Constructing the capacitance C of a CPW with thickness t

keeping terms up to the first order in t/a, we find the solutions of u1, u
′
1, u2, u

′
2 (see Appendix D for

the derivation1)

d =
2t

π

u1 = a+
d

2
+

3 log 2

2
d− d

2
log

d

a
+
d

2
log

b− a

a+ b

u2 = b− d

2
− 3 log 2

2
d+

d

2
log

d

b
+
d

2
log

b− a

a+ b

u′1 = u1 − d

u′2 = u2 + d. (3.27)

Then the capacitance and inductance of the upper half CPW (in free space) is given by

C1/2(t) = ǫ0
2K(kt)

K(k′t)
(3.28)

L1/2(t) = µ0
K(k′t)

2K(kt)
(3.29)

where kt = u1(t)/u2(t) and k′t =
√

1 − k2
t .

There is a subtlety in constructing the total capacitance and inductance. Because the substrate

does not exactly fill half of CPW to the symmetry line (see the dashed line in Fig. 3.5), it is found

that the total capacitance is better approximated by the sum of the half capacitance of a CPW

with thickness t in free space (ǫ = 1) and the half capacitance of a zero-thickness CPW in dielectric

(ǫ = ǫr):

C = C1/2(t) + ǫrC1/2(0) = ǫ0
2K(kt)

K(k′t)
+ ǫrǫ0

2K(k)

K(k′)
. (3.30)

And the total inductance is

L =
L1/2(t/2)

2
= µ0

K(k′t
2

)

4K(k t
2
)
. (3.31)

1I have derived these formulas myself, but I am not sure if they already exist in the massive literature on coplanar
waveguide.



48

0 2 4 6

-2

0

2

-2 0 2

0

1

2

3

1 2

3 4 

5

Inf

Inf

1 2 3

45Inf

E
H

E
H

z-plane

ξ-plane

s g

7(    )

6(    )

6,7(    )

Figure 3.6: Mapping a quadrant of a finite-thickness CPW into a rectangle using Matlab SC toolbox

3.1.2.3 General case of finite thickness from a numerical approach

The SC-mapping can also be solved by numerical programs. One of the basic tasks for such a

numerical program is to solve the nonlinear equations like those in Eq. 3.22–3.25 and determine

the mapping parameter to the requested precision. We find the Schwarz-Christoffel toolbox (SC-

toolbox) for MATLAB developed at University of Delaware [53] to be very flexible and accurate for

our purpose.

With the SC-toolbox we directly map a quadrant of the CPW geometry with finite thickness t

into a rectangle (parallel-plate capacitor) without the intermediate step of flattening the CPW (see

Fig. 3.6). The vertices of the rectangle ξi are given by the toolbox and L, C are calculated by

C1/4 = ǫ0
|ξ3 − ξ1|
|ξ4 − ξ3|

(3.32)

L1/4 = µ0
|ξ4 − ξ3|
|ξ3 − ξ1|

. (3.33)

The total capacitance and inductance from the same approximation as used in Eq. 3.30 and shown

in Fig. 3.5 is

C = 2[C1/4(t) + ǫrC1/4(0)]

L =
L1/4(t/2)

4
. (3.34)

The approximation used in the electrostatic problem applies a magnetic wall boundary condition

at the exposed substrate surface and solves Laplace’s equation in the free space and substrate regions

independently. It is also possible to solve for the capacitance accurately without approximation. In
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Figure 3.7: Calculating the exact capacitance of a CPW by solving Laplace’s equation in the W-plane

order to do this, we first map the right-hand-side half of the CPW into a parallel plate capacitor

partially filled with dielectric (see Fig. 3.7). Then we solve Laplace’s equation faithfully in the

parallel-plate structure by the partial differential equation (PDE) toolbox of Matlab. The PDE

toolbox internally implements the finite element method (FEM) and is capable of solving equations

of the general type [54]

−∇ · (c∇Φ) + aΦ = f. (3.35)

The equation compatible with PDE toolbox and appropriate for our electrostatic problem is

∇ · [ǫ(σ, η)∇Φ(σ, η)] = 0 (3.36)

which comes from one of Maxwell’s equations: ∇ · ~D = 0. ǫ(σ, η) is set to 1 (vertices in blue in

Fig. 3.7(b)) or ǫr (vertices in red in Fig. 3.7(b)) depending on whether (σ, η) maps to a point (x,y)

in the free space region or the substrate region in Fig. 3.7(a). The boundary conditions Φ = 1 and

Φ = 0 are applied on the left and right parallel plates, and ∂Φ
∂v = 0 on both the top and bottom

edges of the rectangle. A typical solution of Φ is shown in Fig. 3.7(b). The difference between Φ

as compared to the solution of parallel plates fully filled with dielectric is plotted in Fig. 3.7(b). As

we can see, the former differs from the latter only in the air-substrate interface region. From the

solution Φ, the total electric energy we is calculated and the capacitance is derived.
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3.1.2.4 Results of L and C calculated using different methods

t [nm] 300 100
s [µm] 1.5 3.0 6.0 1.5 3.0 6.0
L0 [nH/m] 436.8 436.8 436.8 436.8 436.8 436.8
L1 [nH/m] 345.1 384.7 407.3 399.4 415.8 425.1
L2 [nH/m] 352.1 386.5 407.8 400.2 416.0 425.2
C0 [pF/m] 165.6 165.6 165.6 165.6 165.6 165.6
C1 [pF/m] 173.6 169.0 167.3 167.8 166.8 166.2
C2 [pF/m] 171.4 168.7 167.2 167.7 166.7 166.2
C3 [pF/m] 172.0 169.1 167.4 167.9 166.7 166.1
L0: L from zero-thickness formula
L1: L from finite-thickness approximate formula
L2: L from numerical method
C0: C from zero-thickness formula
C1: C from finite-thickness approximate formula
C2: C from numerical method with magnetic wall approximation
C3: C from numerical method without approximation

Table 3.1: L and C calculated using different methods for different geometries

Results of L and C calculated using different methods, including zero-thickness formula (L0 and

C0), approximate formula for t≪ a (L1 and C1), numerical SC mapping with magnetic wall approx-

imation (L2 and C2), and the numerical SC mapping followed by FEM without any approximation

(C3), are compared in Table 3.1. L and C are evaluated for three center-strip widths 1.5, 3, 6 µm

and two film thicknesses 300 nm and 100 nm. The ratio between the center-strip width to the width

of the gap is fixed to 3:2.

As expected, we see that the results using different methods converge to the same value as t/a

goes to zero. As t/a increases, L0 and C0 first break down, which deviate from the most accurate

values L2 and C3 significantly for larger t. Thus these zero-thickness formulas have large error when

applied to thick-film CPW. The approximate formula L1 and C1 work quite well for not-so-thick

films. The error is only 2 % for t/a = 1/5 (s = 0.6 µm and t = 300 nm). In all these geometries, C2

is always very close to C3, suggesting that the magnetic wall approximation is a good approximation.

Because of the presence of the substrate in the electrostatic problem, the errors in C using different

methods are much less than the error in L.

3.1.3 Theoretical calculation of α for thick films (t ≫ λeff)

3.1.3.1 Kinetic inductance Lki, kinetic inductance fraction α, and geometrical factor g

For a transmission line made of perfect conductor, the magnetic field ~H is completely excluded

from the conductor. The inductance L is related to the energy stored in the magnetic field outside

the conductor. Because this L purely depends on the geometry, it is referred to as the geometric

inductance, denoted by Lm. The calculation of Lm has been discussed intensively in the preceding
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Figure 3.8: ~E field and ~H field near the surface of a thick superconducting CPW.

section of this chapter.

For a superconducting transmission line, the ~H field extends into the superconductor by a dis-

tance given by the penetration depth. In this case, the supercurrent flowing in this penetrated

layer carries a significant amount of kinetic energy of the Cooper pairs, which will also contribute

to L. Because this energy depends on the penetration depth which changes with temperature and

quasi-particle density, we usually write the total inductance L as a sum of two parts, a fixed part

L0 and a variable part L1.

It can be shown that L0 ≈ Lm, because the magnetic field outside the superconductor is usually not

too much different from that of a perfect conductor and has little dependence on the penetration

depth. L1 is what we usually refer to as the kinetic inductance Lki.
2 The total inductance can now

be written as

L = L0 + Lki ≈ Lm + Lki. (3.37)

The kinetic inductance fraction α is defined as the ratio of the kinetic inductance Lki to the total

inductance L

α =
Lki

L
. (3.38)

In MKIDs, a large α means a large fraction of the inductance is able to change with the quasi-particle

density, which usually means a more responsive detector.

Fig. 3.8 shows the ~E and ~H field inside and outside a thick superconducting CPW line. Inside

the superconductor, ~H and ~J are zero everywhere except in a surface layer of thickness λeff . Outside

2Strictly speaking, besides the kinetic energy of the Cooper pairs, the magnetic energy stored in the penetrating
magnetic field also contributes to the variable inductance L1. In the thick film case, these two contributions are
comparable, while in the thin film case, the kinetic energy of Cooper pairs dominates over the magnetic energy.
Throughout this thesis, we do not discriminate L1 and Lki.
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the superconductor, the fields are close to a TEM mode, except the ~E field has a small longitudinal

component Ez, giving rise to a small component of Poynting vector ~S directed normally into the

superconductor surface. This normal component delivers complex power (per unit length) into the

superconductor, which is calculated by
∫
C
~E∗ × ~Hdl =

∫
C E

∗
z · H‖dl, where the integral is along

the surface contour C of the superconductor in the cross-sectional plane. On the other hand, the

dissipation and stored magnetic energy inside the superconductor are represented by 1
2RI

2 and

1
2LkiI

2, respectively, in the transmission line model. According to the Poynting theorem,

1

2
RI2 = Re[

∫

C
E∗

z ·H‖dl] (3.39)

1

2
ωLkiI

2 = Im[

∫

C
E∗

z ·H‖dl]. (3.40)

With the relationship between Ez and H‖ given by the surface impedance

Zs =
Ez

H‖
= Rs + jωLs. (3.41)

We finally derive

R = gRs (3.42)

Lki = gLs = gµ0λeff (3.43)

where

g =

∫
C H

2
‖dl

I2
(3.44)

Eq. 3.44 shows that the kinetic inductance is related to the effective penetration depth λeff by

a factor g, which depends only on the geometry. The calculation of λeff is discussed in great detail

in Chapter 2. The calculation of the geometrical factor g requires the evaluation of the contour

integral of H2
‖ . As discussed at the beginning of this chapter, H‖ can be derived by treating the

superconductor as a perfect conductor and solving the Laplace’s equation outside. This allows us to

use the same conformal mapping technique as used in the calculation of L and C.

3.1.3.2 Approximate formula of g under the condition of t≪ a

The contour integral of H2
‖ in Eq. 3.44 diverges for a zero-thickness CPW, because a 1/x type of

singularity will be encountered at the edges of center strip and ground planes. For finite thickness

CPW, a 1/
√
x type of singularity will be encountered instead, which is integrable.

To evaluate the integral, we use the same two-step SC-mapping as used in Section 3.1.2.3: the
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finite-thickness CPW in the Z-plane is first mapped into a zero-thickness CPW in the W -plane

by Eq. 3.21, which is then mapped into a parallel-plate structure in the ξ-plane by Eq. 3.12. It’s

most convenient to work on the integral in the W−plane. Assume a uniform magnetic field H = 1

between the parallel plates in the ξ-plane. The magnetic field H‖ in the W -plane and Z-plane are

|dξ/dw| and |dξ/dz| = |dξ/dw| / |dz/dw|, respectively. The current on the center strip I and the

geometrical factor g can be written as

I = 4

∫ u1

0

∣∣∣∣
dξ

dw

∣∣∣∣ dw (3.45)

g =
4

I2

{∫ u1

0

+

∫ ∞

u2

}[∣∣∣∣
dξ

dw

∣∣∣∣ /
∣∣∣∣
dz

dw

∣∣∣∣
]2 ∣∣∣∣

dz

dw

∣∣∣∣ dw (3.46)

with

∣∣∣∣
dξ

dw

∣∣∣∣ =
1∣∣∣

√
(w2 − u2

1)(w
2 − u2

2)
∣∣∣

(3.47)

∣∣∣∣
dz

dw

∣∣∣∣ =
∣∣∣∣∣

√
(w2 − u′21 )(w2 − u′22 )√
(w2 − u2

1)(w
2 − u2

2)

∣∣∣∣∣ . (3.48)

In the case of t≪ a, approximate solutions for u1, u
′
1, u2, u

′
2 are available (see Eq. 3.27). Using

the lowest-order approximations: u1 = a, u′1 = a− 2t/π, u2 = b, u′2 = b+ 2t/π, a formula of g has

been derived by Collins[55]

g = gctr + ggnd

gctr =
1

4aK2(k)(1 − k2)

[
π + log

4πa

t
− k log

1 + k

1 − k

]

ggnd =
k

4aK2(k)(1 − k2)

[
π + log

4πb

t
− k log

1 + k

1 − k

]
(3.49)

where gctr and ggnd are the contribution from the center strip and the ground planes, respectively,

and k = a/b as before. This formula is estimated to be accurate to within 10 percent for t < 0.05a

and k < 0.8.

3.1.3.3 Numerical calculation of g for general cases

The geometrical factor g can be evaluated numerically with the help of SC-toolbox. To do this, one

must first determine the values of the mapping parameters of u1, u
′
1, u2, u

′
2 using the SC-toolbox.

With these parameters available, the integrals in Eq. 3.46 can be evaluated numerically.
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t [nm] 300 200 100
s [µm] 0.6 3 6 0.6 3 6 0.6 3 6
Lm [nH/m] 255.7 387.7 408.7 309.4 401.3 416.7 363.2 416.7 425.5
g [µm−1] 1.525 0.391 0.214 1.633 0.4127 0.2249 1.819 0.4498 0.2434
Lki [nH/m] 95.81 24.57 13.45 102.6 25.93 14.13 114.3 28.26 15.29
α 0.2726 0.0596 0.03186 0.2491 0.06069 0.0328 0.2393 0.06351 0.03469

Table 3.2: Lm, g, Lki, and α calculated from the approximate formula Eq. 3.49. λeff = 50 nm is
assumed in the calculation.

t [nm] 300 200 100
s [µm] 0.6 3 6 0.6 3 6 0.6 3 6
Lm [nH/m] 280.5 386.5 407.8 315.9 400.2 416 362.6 416 425.2
g [µm−1] 1.209 0.3673 0.2066 1.385 0.3945 0.2193 1.655 0.4385 0.24
Lki [nH/m] 75.98 23.08 12.98 86.99 24.79 13.78 104 27.55 15.08
α 0.2132 0.05635 0.03085 0.2159 0.05832 0.03206 0.2229 0.06212 0.03426

Table 3.3: Lm, g, Lki, and α calculated from the numerical method. λeff = 50 nm is assumed in the
calculation.

3.1.3.4 A comparison of g calculated using different methods

The geometrical factor g, the kinetic inductance fraction α, as well as the geometric inductance Lm

and the kinetic inductance Lki are calculated using the two methods and are compared in Table 3.2

and 3.3. We see that the approximate formula of g gives less than 10% error for t/a < 0.1. We also

find that Lki increases as t or s decreases. Furthermore, g scales as 1/s. This is because H‖ scales

as 1/s while the integration interval scales as s (Eq. 3.44).

3.1.4 Theoretical calculation of α for thin films (t < λeff)

For thin films with t < λeff , the geometrical factor g and the kinetic inductance Lki can no longer

be evaluated from the contour integral of H‖ that is derived for a perfect conductor. The reason has

been discussed at the beginning of this chapter. There, we also show that in this case the vector

potential Az satisfies the Laplace equation outside the superconductor and the London equation

inside the superconductor, as given by

∇2 ~A =






1
λ2
L

~A , inside the superconductor

0, outside the superconductor.
. (3.50)

A numerical program “induct” developed by Chang [56] is useful in this case. The program uses

a variational method to find the current distribution in superconducting strips and calculates the

inductance by minimizing the total magnetic and kinetic energy. It can be shown that the variational

method used in “induct” is equivalent to solving the equations 3.50. “Induct” takes one parameter,

the London penetration depth (effective) λL, and outputs the total inductance L. By comparing
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Figure 3.9: Calculated total inductance L as a function of the surface inductance Ls = 1/σ2t for a
thin-film CPW. The film thickness used in the calculation is t = 20 nm. Four curves from top to
bottom correspond to four CPW geometries with center strip widths of 0.6, 1.5, 3, 6 µm and with
the ratio between the center strip width and the gap width fixed at 3 to 2. Data marked with “+”
are calculated from “induct”. The four lines show linear fits to the data.

the local equation in the normal form and in the London form at low temperatures,

~J =
1

iωµ0λ2
L

~E = −iσ2
~E, (σ1 ≪ σ2 for T ≪ Tc) (3.51)

we find that λL is related to σ2 by

λL =

√
1

ωµ0σ2
. (3.52)

On the other hand, we have shown in Section 2.4.1.3 that the surface inductance of a supercon-

ducting thin film with t < λeff is given by

Ls =
1

σ2t
(3.53)

By varying σ2 in Eq. 3.52 and Eq. 3.53, and inserting λL into “induct”, we can derive the total

inductance L as a function of the surface inductance Ls. The results calculated for CPW with four

different geometries are shown in Fig. 3.9. We find that L almost has a linear dependence on Ls,
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which allows us to extend the thick-film formula

L = Lm + gLs (3.54)

to the thin film case. The equivalent geometrical inductance Lm and geometrical factor g can be

determined from the intercept and slope of a linear fit to the data. The linear fits are indicated by

the solid lines in Fig. 3.9, with the derived values of Lm and g listed in the legend. The equivalent

kinetic inductance Lki and kinetic inductance fraction α for the thin film case are still given by

Lki = gLs

α =
gLs

Lm + gLs
(3.55)

Thus, we have unified formulation for both the thick film and thin film cases.

For a specific CPW, the relevant quantities (L, Lm, Lki, g, and α) can be derived using the

following procedures:

1. Calculate the total inductance L as a function of the surface inductance Ls for the specific

film thickness t, and from a linear fit, derive Lm and g;

2. Measure the sheet resistance of the film above its Tc (e.g., at 4 K for Al films), from which

derive σn;

3. Calculate σ2(ω, T ) from the formula of σ2/σn derived in Chapter 2 (Eq. 2.92);

4. Insert σ2 into Eq. 3.53, and from Eq. 3.54 and Eq. 3.55 derive Lki and α.

3.1.5 Partial kinetic inductance fraction

It is often the case that the quasiparticles are only generated in the center strip of CPW instead of the

whole superconducting film. In this situation, although the entire superconducting film contributes

to Lki, only the center strip where quasiparticle density has a change δnqp contributes to δLki. Thus

we define a partial kinetic inductance fraction α∗ as

α∗ =
L∗

ki

L
=
L∗

ki

Lki
α (3.56)

where L∗
ki is the partial kinetic inductance contributed from the center strip of the CPW. In the

thick film case (t ≫ λeff), L∗
ki is calculated by
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s [µm] 0.6 3 6 5 5 5
g [µm] 0.4 2 4 1 2 3
r1 0.7309 0.7244 0.7224 0.6133 0.6713 0.7118
r2 0.6528 0.6986 0.7074 0.5911 0.6513 0.6939
r1: ratio of α∗/α from Eq. 3.49
r2: ratio of α∗/α from numerical method

Table 3.4: Ratio of α∗/α calculated using the two methods. A film thickness of t = 200 nm is used
in these calculations.

s [µm] 3 5
g [µm] 2 2
λL [nm] 100 150 200 100 150 200
t = 40 nm 0.8174 0.858 0.8863 0.7613 0.8066 0.8412
t = 60 nm 0.7978 0.8368 0.8664 0.7412 0.7821 0.8162
t = 100 nm 0.7762 0.8107 0.8395 0.7192 0.754 0.7851

Table 3.5: Ratio of α∗/α calculated using “induct” program

L∗
ki = g∗Ls

g∗ =

∫
C∗ H

2
‖dl

I2
(3.57)

where the contour C∗ only runs along the surface of the center strip. In Eq. 3.49 we already give

an approximate formula for g∗, and numerical evaluation of g∗ is also straightforward. The ratios of

L∗
ki/Lki (or α∗/α) evaluated from both the approximate formula and numerical method for a number

of geometries are listed in Table 3.4. We can see that the center strip accounts for more than half

of the kinetic inductance. As t/a → 0, the ratio approaches a constant L∗
ki/Lki → 1/(1 + k) = 0.7

for CPW geometries with center-strip-to-gap ratio of 3:2, according to Eq. 3.49.

In the thin film case (t < λeff), α∗/α can still be calculated by using the “induct” program. The

“induct” program allows users to assign different London penetration depths to the center strip and

the ground planes. We first calculate the total inductance L and its increment δL by assigning both

the center strip and the ground planes with the actual λL and λL + δλL. Then we calculate the

partial inductance increment δL∗ by only increasing the London penetration depth of the center

strip to λL + δλL while keeping the ground planes at λL. The ratio of δL∗/δL yields the ratio of

α∗/α. The ratios of δL∗/δL are calculated for a number of combinations of geometry, thickness, and

London penetration depth, and are listed in Table 3.5. We find that for these geometries the ratios

are between 80 % to 90 %, and are higher than the thick film case.



58

3.2 Experimental determination of α

In this section, we describe an experimental method to determine the kinetic inductance fraction α

of a superconducting CPW.

3.2.1 Principle of the experiment

lc lr

in

out
fe

e
d
li
n
e

c
o
u
p
le

r

resonator

Figure 3.10: Coupler structure of the α-test device

The resonant frequency fr of a quarter–wave resonator of length lr is given by

fr =
1

4lr
√
LC

. (3.58)

According to Eq. 3.58 and Eq. 3.37, a straightforward way of determining α is to compare the

measured resonance frequency of a superconducting CPW resonator f sc
r , with the calculated resonant

frequency fm
r of the same resonator assuming only the magnetic inductance Lm:

α = 1 − (
f sc

r

fm
r

)2. (3.59)

This method, however, is only accurate for CPW with large α, because the relative error in Eq. 3.59

is:
σα

α
= 2

1 − α

α

√
(
σfm

r

fm
r

)2 + (
σfsc

r

f sc
r

)2. (3.60)

For example, if f sc
r or fm

r has an relative error of 1%, the relative error in α will be 6% for α = 25%

which is acceptable, and 98% for α = 2% which is too large to be useful.

For a CPW geometry with small α, we resort to the temperature dependence of the resonant
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Res# Group# s [µm] Lc [µm] Lr [mm] fm
r [GHz] Qc

0 1 0.6 168.60 4558.42 6.466 1.0107E+05
1 1 0.6 168.60 4533.42 6.500 1.0000E+05
2 1 0.6 168.60 4508.42 6.535 9.8937E+04
3 2 1.5 130.45 4408.41 6.713 2.0222E+05
4 2 1.5 130.45 4383.41 6.750 2.0000E+05
5 2 1.5 130.45 4358.41 6.788 1.9779E+05
6 3 3.0 156.56 4180.82 6.960 1.0116E+05
7 3 3.0 156.56 4155.82 7.000 1.0000E+05
8 3 3.0 156.56 4130.82 7.041 9.8844E+04
9 4 6.0 173.75 4004.95 7.163 6.8670E+04

10 4 6.0 148.75 4004.95 7.206 1.0886E+05
11 4 6.0 123.75 4004.95 7.250 2.0000E+05
12 4 6.0 123.75 3979.95 7.294 1.9759E+05
13 4 6.0 123.75 3954.95 7.339 1.9519E+05
14 5 24.0 263.41 3713.70 7.453 2.0254E+04
15 5 24.0 263.41 3663.70 7.548 1.9748E+04

Table 3.6: Design parameters of the α-test device. fm
r is calculated assuming a film thickness of

200 nm.

frequency fr and quality factor Qr (see Eq. 2.54):

δfr(T )

fr
=

fr(T ) − fr(0)

fr(0)
= −α

2

δXs(T )

Xs

δ
1

Qr(T )
=

1

Qr(T )
− 1

Qr(0)
= α

Rs(T )

Xs
. (3.61)

Because the temperature dependence of the surface impedance is an intrinsic property of the su-

perconductor, Xs(T ) and Rs(T ) are common for resonators of all geometries made from the same

superconducting film. The ratio of δfr/fr or δ(1/Qr) between two CPW geometries, with the

common temperature dependence canceled out, gives the ratio of α:

αi

αj
=

(δfr/fr)i

(δfr/fr)j
=
δ(1/Qr)i

δ(1/Qr)j
. (3.62)

If αi is large and can be determined with a good accuracy from Eq. 3.59, the small αj can also be

determined with fairly good accuracy by scaling αi with the ratio given by Eq. 3.62.

3.2.2 α-test device and the experimental setup

For this experiment, we designed two α-test devices which are made of Al films with two different

thicknesses: 200 nm and 20 nm. In each device, an Al film was deposited on a silicon substrate

and patterned into 16 CPW quarter-wavelength resonators with 5 different geometries. As shown in

Fig. 3.10, each resonator has a coupler of length lc and a common center-strip width of 6 µm, which

capacitively couples the resonator body to the feedline for readout. The coupler is then widened (or
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narrowed) into the resonator body, with center-strip widths sr of 0.6 µm, 1.5 µm, 3 µm, 6 µm, or

24 µm, and a length lr. The ratio between center strip width s and the gap g in both the coupler

and the resonator body section is fixed to 3:2, to maintain a constant impedance at Z0 ≈ 50 Ω.

The relevant design parameters of the α-test device are listed in Table 3.2.2. Because the smaller

geometries are expected to have larger α, they are designed to have smaller fm
r . This guarantees

the actual resonance frequencies f sc
r are always in a fixed order easy to recognize, with smaller

geometries at lower frequencies regardless of the film thickness.

The device is mounted in a dilution fridge and cooled down to T as low as 100 mK. A microwave

synthesizer is used to excite the resonators. The signal transmitted past the resonator is amplified

with a cryogenic HEMT amplifier and compared with the original signal using an IQ-mixer. As

the excitation frequency f is swept through the resonance, the I-Q output from the IQ-mixer, after

corrections, gives the complex transmission S21 through the device and HEMT. The readout system

used in this experiment is described in more detail in Section 5.2 and shown in Fig. 5.1. The

resonance frequency fr is obtained by fitting the complex S21 data to its theoretical model. The

IQ-mixer correction and resonance curve fitting are given in the Appendix E and F.

3.2.3 Results of 200 nm Al α-test device (t ≫ λeff and t ≪ a)

The 200 nm device was cooled in the dilution fridge and Tc was measured to be 1.25 K. All the 16

resonators were observed.

3.2.3.1 α of the smallest geometry

We first measured the resonant frequency and quality factor of all the resonators at 150 mK. α

are immediately calculated from Eq. 3.59 for each resonator and the group mean value is listed in

Table 3.7 in the column “α1”. We will only take α1
1 = 27.6% of group 1 as a reliable value and

abandon the rest, based on the previous discussion.

3.2.3.2 Retrieving values of α from fr(T ) and Qr(T )

α of the remaining four geometries are determined from the temperature sweep data. δfr(T )/fr and

δ(1/Qr) for all the resonators are measured from 150 mK to 480 mK in steps of 10 mK and plotted

in Fig. 3.11(a) and Fig 3.11(b) . In both plots, the curves fall onto 5 trajectories corresponding to

the 5 geometries. We normalize them by the value of group-1. The normalized curves appear to be

flat in the temperature range between 220 mK and 300 mK (see Fig. 3.12), where the ratios αi/α1

are retrieved. The ratios as well as the values of αi scaling down from α1 are listed in Table 3.7 in

the two columns “αi/α1” and “α2”.

The ratio of αi/α1 can also be derived by fitting δfr/fr and δ(1/Qr) to Eq. 3.61, with δXs/Xs
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Figure 3.11: Measured δfr/fr and δ(1/Qr) as a function of T from the 200 nm α-test device
(a)Plot of δfr/fr vs. T (b)Plot of δ(1/Qr) vs. T
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Figure 3.12: δfr/fr normalized by group-1 from the 200 nm α-test device
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Figure 3.13: Fitting (a)δfr/fr with δXs/Xs and (b)δ(1/Qr) with Rs/Xs from the 200 nm α-test
device

group# α1 αi/α1 α2 α3 α4 α5

1 27.6% 1.000 27.6% 27.6% 27.6% 30.8%
2 12.3% 0.430 11.9% 12.6% 13.1% 14.5%
3 4.3% 0.230 6.3% 7.0% 7.2% 7.8%
4 0.3% 0.130 3.6% 4.1% 4.0% 4.2%
5 -6.5% 0.039 1.1% 1.3% 1.2% 1.2%

Table 3.7: Results from the 200 nm α-test device

α1: α from Eq. 3.59
αi/α1: α ratio between the ith group and the group 1
α2: α from scaling the largest alpha with αi/α1

α3: α from fitting δfr/fr to δXs/Xs

α4: α from fitting δ(1/Qr) to Rs/Xs

α5: α from a numerical calculation of g and λ ≈= 64 nm from “surimp”

and Rs/Xs calculated from Martis-Bardeen theory by our “surimp” program described in Chapter

2. As for the five material-dependent parameters required by “surimp”, we take values of vf and

λL from reference[40], Tc = 1.25 K, and l = 200 nm (limited by the film thickness). The parameter

∆(0)/kbTc is chosen such that the fitting yields 27.6% for the smallest 0.6–0.4 geometry. Once

determined, the same five parameters are used to fit for the other four geometries. The results are

listed in Table 3.7 in the column “α3” and “α4”. We see that “α3” and “α4” agree with “α2”. The

advantage of the fitting approach (α3, α4) over the direct ratio approach (α2) is that the former

takes into account of the frequency dependence of the surface impedance which does not cancel

completely in Eq. 3.62 between two resonators.

3.2.3.3 Comparing with the theoretical calculations

The experimental results of α are compared with the theoretical calculations. The kinetic inductance

fraction can be calculated from Eq. 3.44 and Eq. 3.43 because the film thickness is several times
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larger than the penetration depth. With λeff = 64 nm calculated from “surimp”, calculated values

of α are listed in Table 3.7 in the column “α5”. We find a good agreement, within 10%, between

the theoretical results and the experimental results.

3.2.4 Results of 20 nm Al α-test device (t < λeff)

The 20 nm α-test device was cooled in a dilution fridge in another cooldown. Tc was measured to

be 1.56 K. 14 out of the 16 resonators showed up (Res 2 and Res 11 fail to show up).

3.2.4.1 α of the smallest geometry

We measured the resonant frequency and quality factor of all the 14 resonators at 120 mK. α

calculated from Eq. 3.59 are listed in Table 3.8 under column “α1”. We see that α of this 20 nm

device is significantly larger than the 200 nm device. Even the largest geometry gives an α over

20%. Thus the values of α1 derived from Eq. 3.59 are all reliable.

3.2.4.2 Retrieving values of α from fr(T )

δfr/fr as a function of T are measured between 110 mK and 575 mK in steps of 15 mK and plotted

in Fig. 3.14. Curves for the 14 resonators still fall onto five trajectories. The quality factors are

also measured which appear to be very low. We were unable to distinguish trajectories between

geometric groups from the δ(1/Qr) curves. So we proceed only with the δfr/fr data. The results

from both the direct ratio approach and the fitting approach are shown in Fig. 3.15 and Fig. 3.16,

and are listed in Table 3.8 under columns “α2” and “α3”. The parameters used in the fits are: Tc=

1.56 K, l=20 nm, vf = 1.34 × 106 m/s, λL = 15.4 nm, and ∆0/kbTc = 1.71. We can see that the

values of α2 and α3 are notably smaller compared to α1, for which we do not have an explanation

yet.
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Figure 3.14: Measured δfr/fr as a function
of T from the 20 nm Al device
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Figure 3.16: Fitting δfr/fr with δXs/Xs from the 20 nm device

g# α1 αi/α1 α2 α3 α6

1 89.3% 1.000 89.3% 89.3% 88.3%
2 76.5% 0.770 68.7% 70.2% 75.6%
3 62.7% 0.560 50.0% 51.6% 61.8%
4 45.3% 0.430 38.4% 41.0% 46.4%
5 20.6% 0.160 14.3% 16.8% 20.2%

Table 3.8: Results from the 20 nm α-test device

α6: α calculated from “induct” program with λL = 165 nm. Other symbols same as in Table 3.7.

3.2.4.3 Comparing with the theoretical calculations

Since the thickness 20 nm is less than the effective penetration depth, it is appropriate to calculate

α from “induct” program, instead of surface integral method. α calculated from “induct” program,

assuming a effective London penetration depth of λL = 165 nm, are listed in Table 3.8 in the column

“α6”. Unfortunately, the sheet resistance of the film at 4 K was not measured for this device and

λL can not be verified from the procedures described in Section 3.1.4.

3.2.5 A table of experimentally determined α for different geometries and

thicknesses.

The values of α determined from the two α-test devices described in this section and from another

40 nm geometry-varying device are summarized in Table 3.9. This table is useful for a quick estima-

tion of α for geometries listed or close to those listed in the table. For example, the submm MKID,

with a 6 µm width center strip, a 2 µm wide gap, and a 60 nm thick Al film, is estimated to have a

kinetic inductance fraction around 20%.
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s [µm] \ t [nm] 200 40 20
0.6 27.6% 89.3%
1.5 12.6% 76.5%

3 7% 45% 62.7%
5 26%
6 4.1% 45.3%

10 17%
24 1.3% 20.6%

Table 3.9: Summary of experimentally determined α for different center-strip widths and thicknesses.
Values of α are reported using α1 for 20 nm and 40 nm devices, and α3 for 200 nm device.
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Chapter 4

Analysis of the resonator readout
circuit

In this chapter, we discuss the resonator readout circuit. The basic question to be answered is: if

the kinetic inductance of the superconducting resonator has a change δLki due to a change in the

quasiparticle density δnqp, what will be the change in the phase and amplitude of the microwave

output signal?

We begin with an introduction of the basics of a quarter-wave transmission line resonator. Then

we present a network model of a resonator capacitively coupled to a feedline. To be general, we

assume the transmission line resonator is terminated by a small impedance Zl instead of being

shorted. From the network model, we derive the responsivity of MKID both for Zl = 0 case and

Zl 6= 0 case. The Zl = 0 case corresponds to the simple short-circuited λ/4 resonator and the

Zl 6= 0 case corresponds to the hybrid resonator, which has a short sensor strip section near the

short-circuited end that is made from a different type of superconductor or a different geometry

from the rest of the resonator. For the hybrid resonator, both the static and dynamic response are

discussed.

4.1 Quarter-wave transmission line resonator

4.1.1 Input impedance and equivalent lumped element circuit

A short-circuited CPW transmission line of length λ/4 (see Fig. 4.1(a)) makes a simple while useful

microwave resonator[57]. According to the transmission line theory, the input impedance of a shorted

transmission line of length l is

Zin = Z0 tanh(α+ jβ)l = Z0
1 − j tanhαl cotβl

tanhαl − j cotβl
(4.1)
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Figure 4.1: A short-circuited λ/4 transmission line and its equivalent circuit. (a) Illustration of a
short-circuited λ/4 resoantor. The voltage and current distributions show standing wave patterns.
(b) The equivalent RLC parallel resonance circuit, valid near resonance

where

γ = α+ jβ =
√

(R+ jωL)(jωC) (4.2)

is the complex propagation constant, and

Z0 =

√
L

C
(4.3)

is the characteristic impedance of the transmission line. Here L, C, and R are the distributed

inductance, capacitance, and resistance of the transmission line.

For a lossless line, α = 0 and

Zin = jZ0 tanβl. (4.4)

At the fundamental resonance frequency

ω0 =
π

2l
√
LC

or f0 =
1

4l
√
LC

(4.5)

we have

β0l =
π

2
, Zin = ∞. (4.6)
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For a transmission line with small loss αl ≪ 1 at a frequency close to the resonance frequency

ω = ω0 + ∆ω, Eq. 4.1 approximately reduces to

Zin =
Z0

αl + jπ∆ω/2ω0
. (4.7)

Recall that the impedance of a parallel RLC circuit shown in Fig. 4.1(b) has the same form near

the resonance frequency

Zin =
1

1/R̃+ 2j∆ωC̃
. (4.8)

Thus a short-circuited transmission line of length λ/4 is equivalent to a parallel RLC resonance

circuit, with the equivalent lumped elements R̃, L̃, and C̃ related to the distributed R, L, and C of

the transmission line by

R̃ =
2

l

L

RC
, C̃ =

l

2
C, L̃ =

8l

π2
L. (4.9)

And the quality factor Q of the circuit is

Q =
π

4αl
= ω0

L

R
. (4.10)

4.1.2 Voltage, current, and energy in the resonator

At the resonance frequency ω = ω0, the RMS voltage and current have standing-wave distributions

along the transmission line

V (x) = Vm cos
πx

2l
, I(x) = Im sin

πx

2l
(4.11)

where Vm is the maximum voltage at the open end (x = 0) and Im is the maximum current at the

shorted end (x = l). Vm and Im are related by Vm = ImZ0. It follows that the electric energy,

magnetic energy and dissipation (per unit length) are

We(x) =
1

2
CV (x)2 =

1

2
CV 2

m cos2
πx

2l

Wm(x) =
1

2
LI(x)2 =

1

2
LI2

m sin2 πx

2l

Pl(x) =
1

2
RI(x)2 =

1

2
RI2

m sin2 πx

2l
. (4.12)
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The lumped-element relationships in Eq. 4.9 can also be derived by equating the total electric energy

and magnetic energy in the RLC tank circuit and in the transmission line resonator,

Total electric energy =
1

2
C̃V 2

in =
1

2

∫ l

0

CV 2
m cos2

πx

2l
dx

Total magnetic energy =
1

2

V 2
in

ω2
0L̃

=
1

2

∫ l

0

LI2
m sin2 πx

2l
dx

Total dissipation =
1

2

V 2
in

R̃
=

1

2

∫ l

0

RI2
m sin2 πx

2l
dx (4.13)

which, by applying Vin = Vm and Eq. 4.5, leads to the same results as in Eq. 4.9.

4.2 Network model of a quarter-wave resonator capacitively

coupled to a feedline

feedline

to resonator

Lc

(a)

1 2

3

Z0 Z0

Zr

Cc

(b)
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Z
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L

(c)

Figure 4.2: Network model of a λ/4 resonator capacitively coupled to a feedline. (a)The “elbow”
coupler. (b) Equivalent lumped element circuit of the coupler. (c) A network model and the signal
flow graph

The resonator readout circuit used in MKIDs consists of feedline, coupler, and λ/4 transmission
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line resonator, which is shown in Fig. 4.2(a). Using the equivalent circuit of the coupler shown

in Fig. 4.2(b), and by considering the frequency dependent complex impedance of a shorted λ/4

transmission line (Eq. 4.7), Mazin[16] and Day[14] have derived the resonance condition for the

circuit. Here we present an alternative derivation from the network analysis approach.

4.2.1 Network diagram

Fig. 4.2(c) shows a diagram of the equivalent network model, as well as its signal flow graph. In this

diagram, the coupler is modeled by a 3-port network block with its port 3 connected to one end of

the λ/4 transmission line. To facilitate future discussions of the hybrid resonator design, we assume

the other end of the transmission line is terminated by a load impedance Zl. For the case of shorted

λ/4 resonator, we shall simply set Zl = 0. We assume that the feedline is a lossless transmission line

with characteristic impedance Z0, which may be different from the impedance Zr of the resonator

transmission line.

4.2.2 Scattering matrix elements of the coupler’s 3-port network

The scattering matrix of the coupler’s 3-port network can be easily derived from its equivalent

lumped element circuit (Fig. 4.2(b)), in which a coupling capacitor Cc weakly couples the resonator

to the feedline. Let δ0 = ωCcZ0 and δr = ωCcZr. For weak coupling (which is required by a high

Qr resonator), Cc is small and δ0, δr ≪ 1. Under these assumptions, the scattering matrix S is

given by1

S =




−jδ0/2 1 − jδ0/2 j
√
δ0δr

1 − jδ0/2 −jδ0/2 j
√
δ0δr

j
√
δ0δr j

√
δ0δr 1 − 2jδr − 2δ2r − δrδ0


 . (4.14)

We find the following general properties for Sij :

S21 ≈ 1 (4.15)

S31 = S13, S32 = S23 (4.16)

S31 = S32, S13 = S23 (4.17)

|S33| =
√

1 − 2|S31|2. (4.18)

Eq. 4.15 states the fact that the direct transmission through the feedline is close to 1. Eq. 4.16 comes

from the reciprocity of the 3-port network. Because the dimension of the coupler is much smaller

1In the discussion that follows, S-parameters are normalized to the characteristic impedance of Z0 for port 1 and
port 2, and Zr for port 3 and port A.
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than the wavelength, port 1 and port 2 appear to be symmetric and Eq. 4.17 holds. Eq. 4.18 holds

because the 3-port network is lossless.

4.2.3 Scattering matrix elements of the extended coupler-resonator’s 3-

port network

We can extend the coupler’s 3-port network to include the λ/4 transmission line connected to port-3.

This can be easily done by shifting the reference plane of port-3 to the other end of the resonator,

to port A. The relevant scattering matrix elements are modified to

SA1 = S1A = SA2 = S2A = S31e
−γl (4.19)

SAA = S33e
−2γl (4.20)

where l ≈ λ/4 is the length of the transmission line section.

4.2.4 Transmission coefficient t21 of the reduced 2-port network

When port-A is terminated by the load impedance Zl, the whole circuit reduces to a 2-port network.

With the help of the signal flow graph, the total transmission from port 1 to port 2 can be written

as:

t21 = S21 +
SA1ΓS2A

1 − ΓSAA
= S21 +

S2
31

e2γl/Γ − S33
(4.21)

where Γ is the reflection coefficient from the load

Γ =
Zl − Zr

Zl + Zr
. (4.22)

For the simple case that the λ/4 transmission line is shorted at port A, Γ = −1. In order to further

simplify Eq. 4.21, we first introduce a coupling quality factor Qc defined as:

Qc = 2π
energy stored in the resonator

energy leak from port 3 to port 1 and 2 per cycle
=

π

2|S31|2
. (4.23)

The relationship between Qc and S31 can be understood from a power flow point of view: during

each cycle the traveling wave inside the λ/4 resonator is reflected twice at port 3 and upon each

reflection a fraction |S13|2 of the stored energy leaks out to port 1 and port 2, respectively. As a

result, a total fraction 4|S13|2 of the energy leaks out of the resonator per cycle.
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With Eq. 4.23, we find

S31 = j

√
π

2Qc
(4.24)

S33 ≈
√

1 − 2|S31|2ejφ ≈ 1 − π

2Qc
+ jφ, (φ << 1) (4.25)

where φ ≪ 1 because the wave is reflected from an open end of the transmission line at port 3.

Because of the small coupling capacitance Cc, the input impedance of port 3 is very high. Meanwhile,

the propagation constant γ is related to the distributed inductance L, capacitance C, and resistance

R by:

γ = α+ jβ = jβ(1 − j

2QTL
) =

√
(R+ jωL)(jωC) (4.26)

where

β = ω
√
LC (4.27)

QTL =
ωL

R
. (4.28)

QTL is the quality factor of the transmission line.

Define a quarter-wave resonance frequency fλ/4 as,

fλ/4 =
1

4l
√
LC

. (4.29)

Under the condition that l ≈ λ/4 and Zl ≪ Zr, we have

−e2γl =≈ 1 +
π

2QTL
+ jπ

f − fλ/4

fλ/4
(4.30)

1

−Γ
=
Zr + Zl

Zr − Zl
≈ 1 + 2zl = 1 + 2rl + 2jxl = 1 +

π

2Ql
+ 2jxl (4.31)

with

zl =
Zl

Zr
= rl + jxl, (|zl| ≪ 1) (4.32)

Ql =
π

4rl
(4.33)

where Ql is the quality factor associated with the dissipation in the load impedance.
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With these relationships, Eq. 4.21 can now be reduced to

t21 = S21 +
S2

31

e2γl/Γ − S33

= 1 −
1

Qc

( 1
Qc

+ 1
QT L

+ 1
Ql

) + 2j(f−fλ/4
fλ/4

+ 2
πxL − φ

π )

= 1 −
Qr

Qc

1 + 2jQr
f−fr

fr

(4.34)

where Qr is the total quality factor of the resonator given by

1

Qr
=

1

Qc
+

1

Qi
=

1

Qc
+

1

QTL
+

1

Ql
. (4.35)

Qi is the internal quality factor of the resonator which accounts for all the other loss channels (Ql,

QTL) than through coupling to the feedline (QC). The resonance frequency fr is given by

fr = fλ/4(1 +
φ

π
− 2xL

π
). (4.36)

4.2.5 Properties of the resonance curves

For a simple shorted λ/4 resonator, we set Zl = 0 and the resonance frequency and quality factor

are given by

fr = fλ/4(1 +
φ

π
) (4.37)

1

Qr
=

1

Qc
+

1

Qi
, Qi = QTL. (4.38)

According to Eq. 4.34, t21(f) is fully characterized by three parameters Qc, fr, Qr (or Qi). Qc

depends on the coupling capacitance Cc and is fixed for a certain coupler design. fr and Qi are

related to the transmission line parameters (R, L, C, and l) of the resonator.

The complex t21 as a function of f is plotted in Fig. 4.3(a). When f ≪ fr or f ≫ fr, t21 is

close to t21(∞) = 1 and the feedline is unaffected by the resonator. When f sweeps through the

resonance, t21 traces out a circle which is referred to as the resonance circle. At the resonance

frequency f = fr,

t21 = 1 − Q

Qc
=

1/Qi

1/Qi + 1/Qc
. (4.39)

The diameter of the circle is

d =
Q

Qc
=

1/Qc

1/Qi + 1/Qc
. (4.40)
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Figure 4.3: Plot of t21(f) (solid line) and its variation t′21(f) (dashed line) due to a small change in
δfr and δQr. (a) complex plot (b) magnitude plot (c) phase plot (with respect to t21(∞) = 1)
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In the coupling Q limited case where Qc ≪ Qi, we find Q → Qc and d → 1, while in the internal

Q limited case where Qc ≫ Qi, we find Q → Qi and d → 0. In the critical coupling case we have

Qc = Qi and d = 1/2.

The magnitude of t21 as a function of f is plotted in Fig. 4.3(b). According to Eq. 4.34, |t21(f)|2

has a Lorentzian shape

|t21(f)|2 = 1 −
1

Q2
r
− 1

Q2
i

1
Q2

r
+ 4

(
f−fr

fr

)2 . (4.41)

Again, when f ≫ fr or f ≪ fr, the transmission |t21| is close to 1; at the resonance frequency

f = fr, |t21| is at the minimum and the feedline is fully loaded by the resonator.

The phase angle θ of t21 with respect to the off-resonance point t21(∞) = 1 is plotted in

Fig. 4.3(c). θ equals half of the phase angle measured from the center of the circle. According

to Eq. 4.34, θ has the following profile

θ = − arctan2Qr
f − fr

fr
(4.42)

which changes from π/2 to −π/2 when f sweeps from f ≪ fr to f ≫ fr. We find that the slope

dθ/df is maximized at the resonance frequency f = fr.

The complex t21 can be measured with a vector network analyzer. The resonance parameters

Qc, fr, Q, and Qi can be obtained by fitting the t21 data to the theoretical models. There are at

least two different fitting methods: one can fit the magnitude |t21| to a Lorentzian profile according

to Eq. 4.41, or fit the phase angle θ to an “arctan” profile according to Eq. 4.42. Discussion on both

methods are given in Appendix E.

4.3 Responsivity of MKIDs I — shorted λ/4 resonator (Zl =

0)

If the distributed inductance and resistance of the superconducting transmission line have small

variations δL and δR, due to a change in the quasiparticle density δnqp, the variation in the resonance

frequency and quality factor are given by, according to Eq. 4.28, Eq. 4.36, and Eq. 3.37-3.43,

δfr

fr
= −1

2

δL

L
= −α

2

δLki

Lki
= −α

2

δXs

Xs
(4.43)

δ
1

Qi
=

δR

ω0L
= α

δRs

Xs
(4.44)

where Zs = Rs+jXs is the surface impedance and α is the kinetic inductance fraction. The variation

of t21 with the microwave frequency tuned to and fixed at the original resonance frequency fr is,
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from Eq. 4.34,

δt21|f=fr =
Q2

r

Qc
(δ

1

Qi
− 2j

δfr

fr
) ≈ α

Q2
r

Qc

δZs

|Zs|
, (Rs ≪ Xs for T ≪ Tc). (4.45)

The relationship between δt21 and δnqp is, from Eq. 4.45, Eq. 2.80, and Eq. 2.100,

δt21 = α|γ|κQ
2
r

Qc
δnqp (4.46)

where κ is the coefficient defined in Eq. 2.100.

Eq. 4.46 is appropriate for quasiparticles generated uniformly in the entire resonator, both in

the center strip and the ground planes. A change in the thermal quasi-particle density caused by

a change in the bath temperature will lead to a resonator response that is describable by Eq. 4.46.

In the photon detection applications, however, the quasiparticles are usually generated only in the

center strip, and so α in Eq. 4.46 should be replaced by the partial kinetic inductance fraction α∗.

We should also take into account the fact that the quasiparticles are usually generated near the

shorted end instead of the entire center strip. It can be derived from a modal analysis that the effect

to the resonance frequency and internal quality factor due to position dependent variations δL(x)

and δR(x) are weighted by the square of the current distribution in the resonator2:

δfr

fr
= −1

l

∫ l

0

sin2 πx

2l

δL(x)

L
dx (4.47)

δ
1

Qi
=

2

l

∫ l

0

sin2 πx

2l

δR(x)

ω0L
dx. (4.48)

One can check Eq. 4.47 and 4.48 are consistent with Eq. 4.43 and Eq. 4.44. It follows that, if in

general δnqp(x) has a position-dependent distribution along the center strip, the response δt21 is

given by

δt21 =

{
2

l

∫ l

0

sin2 πx

2l
δnqp(x)dx

}
α∗|γ|κQ

2
r

Qc
. (4.49)

If the quasiparticles are uniformly distributed near the shorted end, with sin2 πx
2l ≈ 1 we finally

derive

δt21
δNqp

≈ 2α∗|γ|κ
V

Q2
r

Qc
(4.50)

where V is the volume of the entire center strip and Nqp is the total number of quasiparticles.

Eq. 4.50 suggests that we can make the MKID more responsive by making α∗, γ, κ, and Q2

Qc
larger,

2For modal analysis, see Section 2.6 of reference [16]. It can also be derived by replacing the exp(−2γl) factor with

exp
{
−2[γl +

∫ l
0

δγ(x)dx]
}

(the WKB approximation) in Eq. 4.21 and the derivations that follows.
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and the volume V smaller. According to Eq. 2.100, κ is set by the material property (such as N0

and ∆0) of the superconductor and has a weak dependence on temperature and frequency. Once a

superconductor is selected, κ is almost fixed. Both V and α∗ can be largely increased by shrinking the

geometry, including making the lateral dimension smaller and reducing the film thickness. When the

film thickness is made thinner than the bulk penetration depth, |γ| automatically takes its maximum

value 1, according to Eq. 2.80. The factor Q2
r/Qc can be rewritten as

Q2
r

Qc
=

Q2
iQc

(Qi +Qc)2
=

Qi
(√

Qi

Qc
+
√

Qc

Qi

)2 ≥ Qi

4
(4.51)

which has a maximum at Qc = Qi for a fixed Qi. Usually Qi is set by the residual resistance of the

superconductor or the dielectric loss of the resonator. The factor Q2/Qc is maximized by designing

a coupling Qc to match the internal Qi.

To assess and optimize the overall performance of the detector, one has to take into account other

factors such as quasiparticle recombination and noise. A comprehensive discussion of the sensitivity

of MKID is given in Chapter 6.

An example response of δt21 to an increase in the quasiparticle density δnqp is plotted in Fig. 4.3

by the dashed lines. Because Rs increases with nqp and Xs decreases with nqp, the resonance

frequency shifts to lower frequency f ′
r < fr and the quality factor decreases Q′ < Q, resulting in a

smaller resonance circle. Under the fixed driving frequency f = fr, t21 moves from the point on the

outer circle indicated by “*” to the point on the inner circle indicated by “�”. We note that the

displacement δt21 in the complex plain has both components in the tangential direction (referred

to as the phase direction) and the radial direction (referred to as the amplitude direction) of the

resonance circle, which are proportional to δXs and δRs, respectively. The displacement in the phase

direction is usually several times larger than in the amplitude direction (see Fig. 2.10). However, the

noise in MKIDs is found to be almost entirely in the phase direction. Amplitude readout sometimes

gives better sensitivity than phase readout. Discussion on noise, sensitivity, and phase readout vs.

amplitude readout are the main topics of Chapter 5 and 6.

4.4 Responsivity of MKIDs II — λ/4 resonator with load

impedance (Zl 6= 0)

4.4.1 Hybrid resonators

Recently it has been more popular to use the “hybrid” resonator design for MKIDs. As shown in

Fig. 4.4, the resonator consists of two sections, a long transmission line section and a short sensor

strip section. The two sections may be made from two different superconductors or two different
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feedline
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lr
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Figure 4.4: A hybrid design of MKID. The total length of the resonator (including the sensor strip)
is lr and the length of the sensor strip is ls.

geometries. There are several advantages of using a hybrid design. If the sensor strip section is made

of a lower gap superconductor (e.g., Al) and the transmission line section is made of a higher gap

superconductor (e.g., Nb), it forms a natural quasi-particle trap — the quasiparticles generated on

the sensor strip will be confined in the most sensitive region where the current is maximum. If the

transmission line section is made of a wider geometry, it will benefit from the noise reduction effect

(see Section 5.6).

4.4.2 Static response

The result of δt21 due to a static change in the load impedance δzl = δZl/Zr is given by, according

to Eq. 4.34,

δt21|f=fr =
Q2

r

Qc
(δ

1

Qr
− 2j

δfr

fr
)

=
4

π

Q2
r

Qc
δzl. (4.52)

It is often the case that the total dissipation is dominated by the superconductor loss in the load

impedance so that Qi ≈ Ql. For example, in the hybrid submm MKID the sensor strip is made of

thin Al (∼ 40 nm) film and the rest of the resonator is made of thick Nb (> 100 nm) film. The

background optical loading (from the blackbody radiation of the atmosphere) will create a constant

density of quasiparticles in the Al strip that is much larger than the thermal quasiparticles density

in both Al and Nb sections. In this case, the microwave power in the resonator is mainly dissipated

though the surface resistance of Al.

It can be derived from Eq. 4.33, Eq. 4.52 that

δt21|f=fr =
Q2

r

QcQi

δzl

rl
=

Q2
r

QcQi

δnqp

nqp

[
1 + j

Im(κ)

Re(κ)

]
(4.53)
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which is maximized under critical coupling Qc = Qi

δt21|f=fr , Qc=Qi =
1

4

δnqp

nqp

[
1 + j

Im(κ)

Re(κ)

]
. (4.54)

We can also derive the following formulas

Q−1
i = Q−1

l =
4Rl

πZr
= α∗|γ|Re(κ)nqp

2ls
lr

(4.55)

δfr

fr
= − 2Xl

πZr
= −α

2

∗
|γ|Im(κ)δnqp

2ls
lr

(4.56)

where ls is the length of the sensor strip and lr ≈ λ/4 is the total length of the quarter-wave resonator

(including ls, see Fig. 4.4).

4.4.3 Power dissipation in the sensor strip

Before moving onto a discussion of the dynamic response, we first calculate the power dissipation

Pl in the load impedance Zl (sensor strip).

From a signal flow analysis illustrated in Fig. 4.2(c), the current Il flowing through Zl is given

by

Il =
V +

A − V −
A

Zr
=

V +
1√
Z0Zr

SA1

1 − ΓSAA
(1 − Γ) ≈ V +

1√
Z0Zr

−2j
√

2
πQc

1
Qr

+ 2j f−fr

fr

. (4.57)

The power dissipated by Zl is given by

Pl =
1

2
|I2

l |Rl = P+
1

2
Q2

r

QiQc

1 + 4Q2
r

∣∣∣f−fr

fr

∣∣∣
2 . (4.58)

Right on resonance f = fr and under critical coupling Qc = Qi, the power dissipated in the load

impedance is half of the input power to port-1

Pl =
1

2
P+

1 =
1

2
Pµw . (4.59)

4.4.4 Dynamic response

Assuming that the load impedance has a slow time-dependent variation δZL(t), we would like to

find the corresponding response in the output voltage δV −
2 (t).

Here we apply a perturbation analysis to the circuit. We first replace the load impedance Zl

with a resister Rl and a inductor Ll in serial connection, and discuss them separately.

Let VR(t), I(t), and R be the unperturbed voltage, current and resistance of the resistor. And
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Figure 4.5: Equivalent circuit for (a) δR(t) and (b) δL(t) perturbations. The equivalent network
model is shown in (c).

let δVR(t), δI(t), and δR(t) be their perturbations. Considering the total voltage, current, and

resistance with and without the perturbations, we can write down the following equations,

[VR(t) + δVR(t)] = [I(t) + δI(t)][R+ δR(t)] (4.60)

VR(t) = I(t)R. (4.61)

Subtracting Eq. 4.61 from Eq. 4.60 and dropping the 2nd-order terms, we get

δVR(t) = I(t)δR(t) + δI(t)R (4.62)

which suggests an effective circuit as shown in Fig. 4.5(a).

Similarly, for the inductance perturbation we have

δVL(t) = L(t)
d

dt
δI(t) + δL(t)

d

dt
I(t) (4.63)

which suggests an effective circuit as shown in Fig. 4.5(b).

Therefore the effect of the perturbation δZl can be taken into account by adding an effective
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voltage source δVs(t) to the original network model, as illustrated in Fig. 4.5 (c),

δVs(t) = δR(t)I(t) + δL(t)
d

dt
I(t). (4.64)

Assume that δR(t) and δL(t) are narrow-banded signal with Fourier transforms

δR(t) =

∫ +∆f̃

−∆f̃

δR(f̃)ej2πf̃tdf̃

δL(t) =

∫ +∆f̃

−∆f̃

δL(f̃)ej2πf̃tdf̃ . (4.65)

Inserting Eq. 4.65 into Eq. 4.64 and using I(t) = Ile
j2πft, we find

δVs(f + f̃) = Il[δR(f̃) + i2πfδL(f̃)] = IlδZl(f̃) (4.66)

where δVs(f + f̃) is the Fourier transform of δVs(t). δV
−
2 (t), the voltage response at port 2, is given

by,

δV −
2 (f + f̃) = V +

A (f + f̃)

√
Z0

ZL
S2A(f + f̃)

=
δVs(f + f̃)

1 − ΓSAA

Zr

Zr + Zl

√
Z0

Zr
S2A. (4.67)

Now we define a time dependent transmission coefficient t21(t) with its Fourier transform t21(f̃)

δt21(f̃) =
δV −

2 (f + f̃)

V +
1

. (4.68)

When the output microwave signal V −
2 is homodyne mixed with V +

1 using a IQ mixer, the dynamic

trajectory in the IQ plane is described t21(t).

From Eq. 4.57, 4.66, and 4.67, we derive

δt21(f̃) =
4Q2

r

πQc

1

1 + 2jQr
f−fr

fr

1

1 + 2jQr
f+f̃−fr

fr

δzl(f̃). (4.69)

When the resonator is driven on resonance f = fr, we find

δt21(f̃)|f=fr =
4Q2

r

πQc

1

1 + 2jQr
f̃
fr

δzl(f̃). (4.70)

Eq. 4.70 shows that under small perturbation δzl, the resonator circuit acts as a low-pass filter

with a bandwidth equal to the resonator’s bandwidth fr/2Q. One can also verify that by setting

f̃ = 0, Eq. 4.70 gives the same static response as derived in Eq. 4.52.
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In the case that Qi is set by the superconductor loss in the sensor strip, we find

δt21(f̃)|f=fr =
Q2

r

QcQi

δzl(f̃)

rl

1

1 + 2jQr
f̃
fr

. (4.71)

We further assume that at any time the instant load impedance ZL(t) depends only on the QP

density nqp(t) at that time. With this assumption, Eq. 4.71 leads to

δt21(f̃)|f=fr =
Q2

r

QcQi

δnqp(f̃)

nqp

[
1 + j

Im(κ)

Re(κ)

]
1

1 + 2jQr
f̃
fr

(4.72)

which is maximized at critical coupling Qc = Qi

δt21(f̃)|f=fr , Qc=Qi =
1

4

δnqp(f̃)

nqp

[
1 + j

Im(κ)

Re(κ)

]
1

1 + 2jQr
f̃
fr

. (4.73)

It’s easy to see that Eq. 4.71, 4.72 and 4.73 are the counterparts of Eq. 4.52, Eq. 4.53, and Eq. 4.54,

respectively.
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Chapter 5

Excess noise in superconducting
microwave resonators

5.1 A historical overview of the noise study

The fundamental noise limit for MKIDs is set by the quasiparticle generation-recombination (g-r)

noise (see Section 6.1.1), which decreases exponentially to zero and makes the detector extremely

sensitive as the temperature goes to zero. Unfortunately and unexpectedly, a significant amount

of excess noise was observed in these resonators, which prevents the detectors from achieving the

ultimate sensitivity imposed by the g-r noise. The discovery of this excess noise and a discussion

of its influence on detector NEP dates back to 2003[14]. There we have shown, from the noise

measurement of a 200 nm thick Al on sapphire MKID, that the NEP limited by the excess noise

is two orders of magnitude higher than that limited by the g-r noise, and one order of magnitude

higher than that limited by the HEMT amplifier (due to the coupling limited Q). The origin of this

excess noise remained largely unknown at that time.

Since then, systematic studies of the excess noise have been carried out both theoretically and

experimentally. Early studies were focused on exploring the noise properties and are described in

detail in Mazin’s thesis[15]. Several interesting properties of the excess noise have been observed in

this early work, although some of the discussions and conclusions remained more qualitative than

quantitative. We found that the noise is dominantly a phase noise (or a frequency noise, equivalent

to a jitter in the resonator’s resonance frequency); we observed that the excess noise has a strong

dependence on the microwave readout power. An important discovery was that the Al devices made

on sapphire substrate gave significant lower noise than those made on the Si substrate. Although

in 2003[14] we suggested that the excess noise is too large to be explained by the quasiparticle

fluctuations in the superconductor, the apparent substrate dependence of the noise gave stronger

evidence that the noise is not related to superconductor.

Meanwhile, we began to search for the candidates of the noise source from the literature of low



84

temperature physics. We noticed that excess telegraph noise was reported from the single electron

transistor (SET) community. In one experiment, they were able to constrain the noise source as

being in the substrate by looking at the correlation of the charge fluctuation signals from the two

SETs placed close to each other on the same substrate[58]. Fluctuations of similar origins were also

found in tunnel junctions and were reported from the quantum computing community. By spring

2005, Peter Day, a JPL member of our MKID group, had described in a proposal the idea that the

noise might be generated by two-level tunneling systems in amorphous dielectrics. Our affection to

this possibility was substantially increased by the results of Martinis et al. [59], who found that

the decoherence of their Josephson qubits could be explained by the dielectric loss caused by the

two-level systems (TLS) in the tunnel barrier. TLS are tunneling states in amorphous solids, which

have a broad distribution of energy splitting and can be thermally activated at low temperatures,

causing anomalous properties (thermal, acoustic and dielectric) and noise. It turns out that TLS

were studied as early as in 1960s and a quite established TLS model already existed since the early

1970s[60, 61]. One of the results from Martinis et al. that caught our attention was that the TLS-

induced dielectric loss has a strong saturation effect, a behavior perhaps related to the observed

power dependence of excess noise in our resonators. Since then, TLS has become a strong candidate

for the noise source of our resonators.

The devices tested in the early days were mostly made of Al. In these measurements, the

resonator’s frequency shift and internal loss are dominated by the conductivity of the superconductor.

It was first proposed by Kumar[62, 63] to use Nb resonators to study the low temperature anomalous

frequency shift predicted by the TLS theory, and the temperature dependence of excess noise. For

this purpose, a Nb on Si CPW resonator was fabricated and tested. From this device, we got two

interesting results. First, the noise was seen to decrease dramatically with temperature. Although

we do not know what mechanism causes this phenomenon, this is a strong evidence that the excess

noise is not from the superconductor, because Nb has Tc = 9.2 K and at T < 1 K the contribution

from the conductivity is negligible. Second, the noise level measured from these resonators were as

low as that from the Al on sapphire resonators, contradicting our general experience of higher noise

on Si substrate than sapphire substrate. From this experiment, we began to suspect that the TLS

noise source might be related to the surface or interface, instead of to the bulk substrate, which was

proved to be true in a later experiment.

I started to study the excess noise in 2004, following the early work of Mazin’s thesis. In summary,

progress in three major areas has been made in my thesis. First, the properties of the excess noise,

including power, temperature, material, and geometry dependence, have been quantified; Second,

the TLS, responsible for both the low temperature anomalous frequency shift and the excess noise,

are confirmed to have a surface distribution, while a bulk distribution in substrate has been ruled

out. Three, a semi-empirical noise model has been developed to explain the power and geometry
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dependence of the noise, which is useful to predict noise for a specified resonator geometry.

The organization of this chapter follows the historical path of the noise study. Following a brief

introduction to the noise measurement setup and the data analysis in Section 5.2, we present the

observed general properties of the excess noise in Section 5.3, including its property of being pure

frequency (phase) noise, the power dependence, temperature dependence, material dependence, and

geometry dependence. These properties give strong evidence that the excess noise is not coming

from the superconductor but from the two level-systems in the dielectric materials in the resonator.

For this reason, we give a review of the standard TLS theory in the first half of Section 5.4. The

established TLS theory may be readily applied to explain the power and temperature dependence

of the resonator’s frequency shift and dissipation, but not the noise. We dedicate the second half

of Section 5.4 to the discussion of the noise model. Because we still do not have a complete TLS

noise model yet, in this section we do not go any further than giving some qualitative and semi-

quantitative discussions. Nevertheless, based on the TLS theory and experimental observations of

the excess noise, we propose a semi-empirical model that is practically useful to predict noise in

the resonators. Guided by the TLS theory, several interesting experiments are designed to test the

TLS hypothesis, which is discussed in Section 5.5. In the first two experiments, TLS are artificially

added into the resonator through a deposited layer of amorphous dielectric material. The behavior

of the resonators loaded with TLS is found to be in good agreement with the TLS theory and

the observed increase of frequency noise in these resonators demonstrates that TLS are able to

act as noise source. The next two experiments, which explore the geometrical scaling of the TLS-

induced frequency shift and noise, are the two critical experiments of this chapter. They give direct

experimental evidence that the TLS are distributed on the surface of the resonator but not in the

bulk substrate. Moreover, the measured geometrical scaling of frequency noise can be satisfactorily

explained by the semi-empirical model introduced in Section 5.4.6. With the knowledge about TLS

and excess noise, we discuss a number of methods that can potentially reduce the excess noise in

Section 5.6, which concludes this chapter.

5.2 Noise measurement and data analysis

The homodyne system used for resonator readout and for noise measurement is illustrated in Fig. 5.1.

A microwave synthesizer generates a microwave signal at frequency f which is used to excite a

resonator. The transmitted signal is amplified with a cryogenic high electron mobility transistor

(HEMT) amplifier mounted at 4 K stage and a room-temperature amplifier, and is then compared

to the original signal using an IQ mixer. The output voltages I and Q of the IQ mixer are proportional

to the in-phase and quadrature amplitudes of the transmitted signal. As f is varied, the output

ξ = [I,Q]T (the superscript T represents the transpose) traces out a resonance circle (Fig. 5.2(a)).
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Figure 5.1: A diagram of the homodyne readout system used for the noise measurement

With f fixed, ξ is seen to fluctuate about its mean, and the fluctuations δξ(t) = [δI(t), δQ(t)]T are

digitized for noise analysis, typically over a 10 s interval using a sample rate Fs = 250 kHz.
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Figure 5.2: (a) Resonance circle of a 200 nm Nb on Si resonator at 120 mK (solid line), quasiparticle
trajectory calculated from the Mattis-Bardeen theory[39] (dashed line). For this figure, the readout
point ξ = [I,Q] is located at the resonance frequency fr. (b) Noise ellipse (magnified by a factor
of 30). Other parameters are fr=4.35 GHz, Qr = 3.5 × 105 (coupling limited), w=5 µm, g=1 µm,
readout power Pr ≈ -84 dBm, and internal power Pint ≈-30 dBm.

The fluctuations δξ(t) (vector function of t) can be projected into two special directions, the

direction tangent to the resonance circle (referred to as the phase direction) and its orthogonal

direction (referred to as the amplitude direction). Fluctuation components δξ‖(t) and δξ⊥(t) (scalar

functions of t) in these two directions correspond to fluctuations in the phase and amplitude of

the resonator’s electric field ~E, respectively. The voltage noise spectra in the phase and amplitude
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direction can be calculated from

〈δξ‖(ν)δξ∗‖(ν′)〉 = S‖(ν)δ(ν − ν′)

〈δξ⊥(ν)δξ∗⊥(ν′)〉 = S⊥(ν)δ(ν − ν′) (5.1)

where δξ‖(ν) and δξ⊥(ν) are the Fourier transform of the time domain fluctuations δξ‖(t) and δξ⊥(t),

respectively.

The noise data δξ(t) can also be quantified by studying the spectral-domain noise covariance

matrix S(ν), defined by

〈δξ(ν)δξ†(ν′)〉 = S(ν)δ(ν − ν′), S(ν) =



 SII(ν) SIQ(ν)

S∗
IQ(ν) SQQ(ν)



 , (5.2)

where δξ(ν) is the Fourier transform of the time-domain data, the dagger represents the Hermitian

conjugate, SII(ν) and SQQ(ν) are the auto-power spectra, and SIQ(ν) is the cross-power spectrum.

The matrix S(ν) is Hermitian and may be diagonalized using a unitary transformation; however,

we find that the imaginary part of SIQ is negligible and that an ordinary rotation applied to the

real part Re S(ν) gives almost identical results. We calculate the eigenvectors and eigenvalues of

S(ν) at every frequency ν:

OT (ν)ReS(ν)O(ν) =


 Saa(ν) 0

0 Sbb(ν)


 , (5.3)

where O(ν) = [va(ν), vb(ν)] is an orthogonal rotation matrix. We use Saa(ν) and va(ν) to denote

the larger eigenvalue and its eigenvector.

The total noise power in δξ(t) can be quantified and clearly visualized by plotting a noise ellipse,

defined by

δξTC−1δξ = 1 (5.4)

where

C =

∫ ν2

ν1

ReS(ν)dν (5.5)

is the covariance matrix for δI and δQ filtered for the corresponding bandpass.

The noise in the phase direction can also be described in terms of the phase noise Sθ(ν) and the

(fractional) frequency noise Sδfr (ν)/f2
r , because the voltage fluctuations in the phase direction δξ‖

can be viewed as being caused by either fluctuations in the phase angle, δθ (with reference to the

center of the resonance circle) or jitters in the resonator’s resonance frequency, δfr. The voltage

noise S‖(ν), phase noise Sθ(ν) and the frequency noise Sδfr (ν)/f2
r are related to each other by the
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following relationships:

Sδθ(ν) =
S‖(ν)

r2
, (δθ =

δξ‖
r

) (5.6)

Sδfr (ν)/f2
r =

Sδθ(ν)

16Q2
, (
δfr

fr
=

δθ

4Q
) (5.7)

where r is the radius of the resonance circle. They will be used to compare the excess noise in future

discussions.

In practice, the calculation of the noise spectra (e.g., SII(ν) and SQQ(ν)) can be accomplished

efficiently using the Matlab function “pwelch”[54]. We use “pwelch” to calculate the power spectrum

in three different frequency resolutions for three noise frequency ranges. The noise spectra shown

in this chapter usually are plotted with 1 Hz resolution for 1 Hz ≤ ν < 50 Hz, 10 Hz resolution for

1 Hz ≤ ν < 1 kHz, and 100 Hz resolution for 1 kHz ≤ ν < 125 kHz (Fs/2). Unless noted, the noise

spectra are calculated as double-sided spectra with S(ν) = S(−ν) and only the positive frequencies

are plotted.

5.3 General properties of the excess noise

5.3.1 Pure phase (frequency) noise
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Figure 5.3: Noise spectra in the phase (Saa(ν), solid line) and amplitude (Sbb(ν), dashed line)
directions, and the rotation angle (φ(ν), dotted line). The noise data are from the same Nb/Si
resonator under the same condition as in Fig. 5.2.

A typical pair of spectra Saa(ν) and Sbb(ν) are shown in Fig. 5.3, along with the rotation angle

φ(ν), defined as the angle between va(ν) and the I axis. Three remarkable features are found for
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all noise data. First, φ(ν) is independent of ν within the resonator bandwidth (the r.m.s. scatter

is σφ ≤ 0.4◦ per 10 Hz frequency bin from 1 Hz to 5 kHz in Fig. 5.3), which means that only two

special directions, va and vb, diagonalize S(ν). Second, va is always tangent to the IQ resonance

circle while vb is always normal to the circle, even when f is detuned from fr. Because Saa(ν)

and Sbb(ν) are the noise spectra projected into these two constant directions according to Eq. 5.3,

they are equal to the voltage noise spectra calculated from Fourier transform of the projected time

domain noise data δξ‖(t) and δξ⊥(t),

Saa(ν) = S‖(ν)

Sbb(ν) = S⊥(ν). (5.8)

Third, Saa(ν) is well above Sbb(ν) (see Fig. 5.3). When we plot the noise ellipse according to Eq. 5.4

and 5.5 using a integration bandpass ν1 = 1 Hz and ν2 = 1 kHz, we find the major axis of the noise

ellipse is always in the phase direction, and the ratio of the two axes is always very large (8 for the

noise ellipse shown in Fig. 5.2(b)).

Fig. 5.3 also shows that the amplitude noise spectrum is flat except for a 1/ν knee at low frequency

contributed by the electronics. The amplitude noise is independent of whether the synthesizer is

tuned on or off the resonance, and is consistent with the noise temperature of the HEMT amplifier.

The phase noise spectrum has a 1/ν slope below 10 Hz, typically a ν−1/2 slope above 10 Hz, and

a roll-off at the resonator bandwidth fr/2Qr (as is the case in Fig. 5.3) or at the intrinsic noise

bandwidth ∆νn, whichever comes first. The phase noise is well above the HEMT noise, usually

by two or three orders of magnitude (in rad2/Hz) at low frequencies. It is well in excess of the

synthesizer phase noise contribution or the readout system noise.

Quasi-particle fluctuations in the superconductor, perhaps produced by temperature variations

or the absorption of high frequency radiation, can be securely ruled out as the source of the measured

noise by considering the direction in the IQ plane that would correspond to a change in quasi-particle

density δnqp. According to the discussion in Section 2.4, both the real and inductive parts of the

complex conductivity σ respond linearly to δnqp, δσ = δσ1−iδσ2 = κ|σ|δnqp, resulting in a trajectory

that is always at a nonzero angle ψ = tan−1(δσ1/δσ2) to the resonance circle, as indicated by the

dashed lines in Fig. 5.2(a) and (b). Mattis-Bardeen calculations yield ψ = tan−1[Re(κ)/Im(κ)] > 7◦

for Nb below 1 K, so quasi-particle fluctuations are strongly excluded, since ψ >> σφ. Furthermore,

ψ is measured experimentally by examining the response to X-ray, optical/UV, or submillimeter

photons, and is typically ψ ≈ 15◦ ([24, 50], and see Section 5.6.3).
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Figure 5.4: Excess noise in the phase direction under different readout powers Pµw. (a) Voltage
noise spectrum S‖(ν). (b) Phase noise spectrum Sδθ(ν) (left axis) and fractional frequency noise
spectrum Sδfr (ν)/f2

r (right axis). The readout powers of the 4 curves are Pµw =-87 dBm, -91 dBm,
-95 dBm, -99 dBm from top to bottom in (a) and from bottom to top in (b). The data is measured
from a 200 nm thick Al on sapphire resonator.

5.3.2 Power dependence

The excess noise has a dependence on the microwave readout power Pµw. Fig. 5.4 compares the

measured noise spectra of a resonator under four different readout powers in steps of 4 dBm. We

found the voltage noise increases with the readout power, as shown in Fig. 5.4(a). A 2 dB separation

is found between the two adjacent noise spectra, suggesting

S‖(ν) ∝ P
1
2

µw. (5.9)

The excess noise, when converted to phase noise or frequency noise, decreases with readout power.

The same separation of 2 dB but with a reversed order (top curve with the lowest Pµw) is seen in

Fig. 5.4(b), which suggests:

Sδθ(ν) ∝ P
− 1

2
µw , Sδfr (ν)/f2

r ∝ P
− 1

2
µw . (5.10)

Eq. 5.9 and Eq. 5.10 are consistent because the radius of the resonance loop r scales as r ∝ P
1
2

µw .

To compare the excess noise among resonators with different fr and Qr, we plot the frequency

noise Sδfr (ν)/f2
r as a function of the microwave power inside the resonator (the internal power). It

can be shown that the internal power Pint is related to the readout power Pµw by

Pint =
2

π

Q2
r

Qc
Pµw (5.11)

for a quarter-wave resonator.

The frequency noise vs. internal power for resonators with different fr and Qr on the same
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Figure 5.5: Frequency noise at 1 kHz Sδfr (1 kHz)/f2
r vs. internal power Pint falls on to straight lines

of slope -1/2 in the log-log plot indicating a power law dependance: Sδfr/fr
∝ P

−1/2
int . Data points

marked with“+”,“�”, and “*” indicate the on-resonance (f = fr) noise of three different resonators
(with different fr and Qr on the same chip) under four different Pµw . Data points marked with
“◦” indicate the noise of resonator 1 (marked with “*”) measured at half-bandwidth away from the
resonance frequency (f = fr ± fr/2Qr) under the same four Pµw. The data is measured from a 200
nm thick Al on sapphire device.

substrate are compared in Fig. 5.5. The data points, from three different resonators, four different

readout powers, driven on-resonance and detuned, fall nicely onto a straight line of slope -1/2 in the

log-log plot, suggesting that the frequency noise depends on the internal power Pint of the resonator

by a power law

Sδfr (ν)/f2
r ∝ P

− 1
2

int . (5.12)

The power law index -1/2 in Eq. 5.12 is suggestive. For comparison, amplifier phase noise is a

multiplicative effect that would give a constant noise level independent of Pint, while the amplifier

noise temperature is an additive effect that would produce a 1/Pint dependence.

5.3.3 Metal-substrate dependence

The excess noise also depends on the materials used for the resonator. In Fig. 5.6, we plot the

frequency noise spectrum at 1 KHz Sδfr (1 kHz)/f2
r against internal power Pint for five resonators

made of different metal-substrate combinations (all substrates used are crystalline substrates). In

addition to the power dependence Sδfr (ν)/f2
r ∝ P

−1/2
int , we find that the noise levels are material

dependent. In general, sapphire substrates give lower phase noise than Si or Ge, roughly by an

order of magnitude in the noise power. However the Nb/Si resonator showed low noise comparable

with Al/sapphire resonator, suggesting that the etching or interface chemistry, which is different for

Nb and Al, may play a role. Two Al/Si resonators with very different Al thicknesses and kinetic
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inductance fractions[64] fall onto the dashed equal-noise scaling line, strongly suggesting that the

superconductor is not responsible for the phase noise.
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Figure 5.6: Power and material dependence of the frequency noise at ν = 1 kHz. All the resonators
shown in this plot have w=3 µm, g=2 µm and are measured around 120 mK. The spectra used in
this plot are single-sided (ν > 0).

As will be discussed in great detail later in this chapter, the TLS on the surface of the resonator,

either metal surface or the exposed substrate surface, are responsible for the excess noise. Therefore,

the metal-substrate dependence of the excess noise shown in Fig. 5.6 turns out to have nothing to

do with the bulk properties of the superconductor or the substrate. Instead, it’s their surface or

interface properties that make a difference. For example, the metal Al, Nb and crystalline Si, Ge can

all form a native oxide layer on the surface, which can be the host material of the TLS. The defects,

impurities and chemical residues introduced during etching and other processes of the fabrication

may be another source of TLS.

5.3.4 Temperature dependence

The temperature dependence of the excess frequency noise is best demonstrated by the experiment

in which the noise of a Nb on Si resonator is measured at temperatures below 1 K. Because Nb

has a transition temperature Tc = 9.2 K, the noise contribution from superconductor are frozen at

T < 1 K. Any temperature dependence of noise has to be from other low energy excitations — TLS

in the resonator.

Fig. 5.7 shows the measured phase and amplitude noise spectra under readout power Pµw =

−85 dBm at several temperatures between 120 mK and 1200 mK. While the amplitude noise (S⊥(ν),

in green) remains almost unchanged, the phase noise (S‖(ν), in blue) decreases steeply with temper-

ature. As mentioned earlier, the amplitude noise spectrum S⊥(ν) is consistent with the noise floor



93

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

V
ol

ta
ge

 n
oi

se
 P

S
D

 [A
D

U
2 /H

z]

Frequency [Hz]

 

 

S
||

S⊥
S

||
 − S⊥

Figure 5.7: Phase noise (S‖(ν), blue curves) and amplitude noise (S⊥(ν), green curves) spectra
measured at T=120, 240, 400, 520, 640, 760, 880, 1000, 1120 mK (from top to bottom). The true
phase noise can be calculated by subtracting the amplitude noise from the phase noise, which is
plotted as the red curves. The voltage unit used here is the unit of our AD card with 1 V =
32767 ADU. The data is measured from a 200 nm Nb on Si resonator under a fixed readout power
Pµw = −85 dBm.

of the readout electronics (mainly limited by the noise temperature of our HEMT). Therefore, we

calculate the “true” phase noise by subtracting the measured S⊥(ν) from S‖(ν) and the results are

plotted in red curves in Fig. 5.7.

To better quantify the temperature and power dependence of the frequency noise, we retrieve

the noise values at 1 kHz from the phase noise spectrum (red curve) at each readout power and each

temperature. The 1 kHz frequency noise Sδfr (1 kHz)/f2
r is plotted as a function of Pµw and T in

Fig. 5.8. The even spacing (∼ 2 dB) between any two adjacent noise curves indicates the P
−1/2
int

dependence of frequency noise as expected. At a fixed Pµw, we find the frequency noise roughly

falls onto a power-law relationship and at intermediate temperatures 300 mK < T < 900 mK the

temperature dependence is close to

Sδfr (1 kHz)/f2
r ∝ T−2 (5.13)

as indicated by the parallel solid lines in Fig. 5.8. This scaling is consistent with the T−1.73 scaling

found by Kumar[63], where he was fitting for a broader range of temperatures.

In addition to the noise, the resonance frequency fr and quality factor Qr also show strong

temperature dependence, which are shown in Fig. 5.9. Later in this chapter we will see plenty

examples of similar fr(T ) and Qr(T ) curves and show that they can be well explained by the TLS

theory.
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In summary, the measured temperature dependence of resonance frequency, quality factor, and

frequency noise strongly suggest to us that TLS in the dielectric materials are responsible for the

noise.

5.3.5 Geometry dependence

The geometry dependence of the frequency noise was carefully studied with a Nb on sapphire

geometry-test device, which contains CPW resonators with five different center strip widths (sr

=3 µm, 5 µm, 10 µm, 20 µm, and 50 µm) and with the ratio between the center strip width and the

gap width fixed to 3:2. Here we only present the conclusions, while leaving the detailed data and

analysis to Section 5.5.2.2, after the introduction of TLS theory and a semi-empirical noise model.

Fig. 5.10 shows the measured frequency noise (before and after the correction for coupler’s noise

contribution) at ν = 2 kHz as a function of center strip width sr under the same internal power

Pint = −25 dBm. We find that the frequency noise has a geometrical scaling

Sδfr (ν)/f2
r ∝ 1/s1.6

r . (5.14)

The noise data as well as the temperature-dependent fr(T ) and Qr(T ) data measured from this

geometry-test device will be discussed in great detail in Section 5.5.2.2. As we will show there, these

data not only confirm the TLS hypothesis but further point to a surface distribution of TLS and

rule out a uniform distribution of TLS in the bulk substrate.
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5.4 Two-level system model

In this section, we first give a review of the standard two-level system (TLS) theory. Then we present

a semi-empirical TLS noise model.

5.4.1 Tunneling states

Experiments show that amorphous solids exhibit very different thermal, acoustic, and dielectric

properties from crystalline solids at low temperatures. In 1972, the standard two-level system

model was independently introduced by Phillips[60] and Anderson[61], which satisfactorily explains

the experimental results. This model assumes that a broad spectrum of tunneling states exist in

amorphous solids. Although the microscopic nature of the TLS is still unknown, it is often thought

that in a disordered solid, one or a group of atoms can tunnel between two sites. These tunneling

states have elastic and electric dipole moments that can couple to the elastic and electric fields.

Such a tunneling two-level system can be quantum mechanically treated as a particle in a double-

well potential, as illustrated in Fig. 5.11.

In the local basis (φ1 and φ2), the system Hamitonian can be written as

H =
1

2



 −∆ ∆0

∆0 ∆



 , (5.15)

where ∆ is called the asymmetric energy which equals the energy difference between the right well

and the left well. ∆0 is the tunneling matrix element.

In the standard TLS theory, a uniform distribution in ∆ and a log uniform distribution in ∆0 is
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Figure 5.10: The frequency noise Sδf (2 kHz)/f2
r at Pint = −25 dBm measured from the geometry-test
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values of Sδf (2 kHz)/f2

r scale as s−1.58
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details on the device, noise data, and analysis.

assumed

P (∆,∆0)d∆d∆0 =
P0

∆0
d∆d∆0 (5.16)

where P0 is the two-level density of state found to be on the order of 1044/J·m3.

The Hamiltonian in Eq. 5.15 can be diagonalized to give the eigenenergies ±ε/2 where

ε =
√

∆2 + ∆2
0. (5.17)

The true eigenstates ψ1 and ψ2 can be written in terms of φ1 and φ2 as

ψ1 = φ1 cos θ + φ2 sin θ (5.18)

ψ2 = φ1 sin θ − φ2 cos θ (5.19)

where

tan 2θ =
∆0

∆
. (5.20)

In the diagonal representation (ψ1, ψ2) the Hamiltonian is in the form of a standard TLS,

H0 =
1

2
εσz (5.21)

where

σx =



 0 1

1 0



 , σy =



 0 −i
i 0



 σz =



 1 0

0 −1



 (5.22)
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Figure 5.11: A illustration of a particle in a double-well potential

are the Pauli matrices.

5.4.2 Two-level dynamics and the Bloch equations

TLS can interact with an external electric field ~E and strain field e. It can be shown that the

dominant effect of the external fields on the TLS is through the perturbation in the asymmetry

energy ∆, while changes in the tunnel barrier ∆0 can usually be ignored[65]. In the electric problem,

the interaction Hamiltonian can be written as (in ψ1, ψ2 basis)

He
int =

[
∆

ε
σz +

∆0

ε
σx

]
~d0 · ~E. (5.23)

We recognize

~d′ = 2 ~d0
∆

ε
(5.24)

as the permanent electric dipole moment and

~d = ~d0
∆0

ε
(5.25)

as the transition electric dipole moment[66]. Because ∆0 ≤ ε, the maximum transition dipole

moment of a TLS with energy splitting ε is ~d0. Later we will see that the first term in Eq. 5.23 gives

rise to a relaxation response and the second term gives a resonant response to the electric field. In

our problem of TLS in a microwave resonator, He
int gives the coupling between the TLS and the

microwave photons.
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Similarly, in the acoustic problem, the interaction Hamiltonian can be written as

Ha
int =

[
∆

ε
σz +

∆0

ε
σx

]
γe (5.26)

where γ is the elastic dipole moment and e is the strain field. In our problem, Ha
int couples the TLS

to the phonon bath and causes relaxations.

The Hamitonian of TLS in the electric problem

H = H0 +He
int (5.27)

has a formal analogy to that of a spin 1/2 system in a magnetic field

H = −~γ ~B · ~S = −~γ( ~B0 · ~S) − ~γ( ~B′ · ~S) (5.28)

where ~B0 is the static magnetic field, ~B′ is the (oscillating) perturbation field, and ~S = ~σ/2.

Comparing Eq. 5.23 to Eq. 5.28, we identify the following correspondence

− ~γ ~B = (0, 0, ε) and − ~γ ~B′ = (2~d · ~E, 0, ~d′ · ~E). (5.29)

Without relaxation processes, the dynamic equation for a free spin in a magnetic field is simply

d

dt
~S(t) = γ~S × ~B (5.30)

where ~S(t) can be either interpreted as the spin operator in Heisenberg picture or as the classical

spin (because the quantum mechanical and classical equation take the same form in this problem).

When the relaxation processes are considered, the evolution of the ensemble average of the spin

operators 〈Si(t)〉 is described by the famous Bloch equations, which were first derived to describe

the nuclear magnetic resonance[67]:

d

dt
〈Sx(t)〉 = γ (〈Sy〉Bz − 〈Sz〉By) − 〈Sx〉

T2
= 0

d

dt
〈Sy(t)〉 = γ (〈Sz〉Bx − 〈Sx〉Bz) −

〈Sy〉
T2

= 0

d

dt
〈Sz(t)〉 = γ (〈Sx〉By − 〈Sy〉Bx) − 〈Sz〉 − Seq

z [Bz(t)]

T1
(5.31)

where T1 and T2 are the longitudinal and transverse relaxation times, respectively, and

Seq
z [Bz(t)] =

1

2
tanh(

~γBz(t)

2kT
) (5.32)
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is the instantaneous equilibrium value of Sz.

5.4.3 Solution to the Bloch equations

To solve the Bloch equations in Eq. 5.31, we first set up the magnetic field as

~B0 = (0, 0, B0) , ~B
′ = 2 ~B1 cosωt =

(
B1

x, 0, B1
z

)
(ejωt + e−jωt). (5.33)

Here we enforce B0 < 0. Next, we linearize the term Seq
z [Bz(t)] with its Taylor expansion assuming

B1
z ≪ |B0|

Seq
z [Bz(t)] = Seq

z (B0) +B′
z(t)dS

eq
z /dB0. (5.34)

Because the perturbation field in Eq. 5.33 is time harmonic, the steady state solution to Eq. 5.31

can be written as a sum of frequency components at ωm = mω (m is an integer)

〈
~S(t)

〉
=

m=+∞∑

m=−∞

~Sm exp(jωmt). (5.35)

By inserting Eq. 5.35 and Eq. 5.33 into Eq. 5.31 and equating the coefficient in front of exp(jωmt)

on the left- and right-hand sides of Eq. 5.31, one will obtain a set of coupled linear equations for

Sm. It can be shown that only equations for m = −1, 0,+1 are important.

The solutions to these equations are given, for example, by Hunklinger[68]. Note that he used

Sm to represent the coefficient for the frequency component e−jωmt, while here we use it for the

frequency component ejωmt. Therefore, a substitution of −ω for ω will convert his results to ours.

The magnetic susceptibilities χi(ω) are defined by

S1
x = χx(ω)~γB1

x

S1
z = χz(ω)~γB1

z (5.36)

and are derived to be

χx(ω) = −S
0
z

2~

[
1

ω0 − ω + jT−1
2

+
1

ω0 + ω − jT−1
2

]
(5.37)

χz(ω) =
dSeq

z

d(~γB0)

1 − jωT1

1 + ω2T 2
1

(5.38)

where ω0 = −γB0 and

S0
z =

1 + (ω0 − ω)2T 2
2

1 + (γB1
x)2T1T2 + (ω0 − ω)2T 2

2

Seq
z . (5.39)
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The susceptibilities χx(ω) and χz(ω) are of two different origins: χx(ω) describes the resonant

response of the spins to the ac magnetic field, while χz(ω) has the typical form of a relaxation

process. Furthermore, the first term in Eq. 5.37 is the response to the rotating wave and the second

term is to the counter rotating wave.

The results for spins in magnetic field can be easily converted to the results for our problem —

TLS in an electric field coupled to a phonon bath—by applying the correspondence in Eq. 5.29. For

TLS in an electric field, we define an electric susceptibility tensor for the resonance process
��

χ res (ω)

and a susceptibility tensor for the relaxation process
��

χ rel (ω)

〈
~d
〉

=
��

χ res (ω) · ~E (5.40)
〈
~d′
〉

=
��

χ rel (ω) · ~E. (5.41)

It can be shown that

��

χ res (ω) = −σ
0
z

~

[
1

ωε − ω + jT−1
2

+
1

ωε + ω − jT−1
2

]
~d~d (5.42)

��

χ rel (ω) = −dσ
eq
z (ε)

dε

1 − jωT1

1 + ω2T 2
1

~d′ ~d′ (5.43)

where

σeq
z (ε) = − tanh(

ε

2kT
) (5.44)

σ0
z =

1 + (ωε − ω)2T 2
2

1 + Ω2T1T2 + (ωε − ω)2T 2
2

σeq
z (ε). (5.45)

Here ωε = ε/~ and Ω = 2~d · ~E/~ is the Rabi frequency.

5.4.4 Relaxation time T1 and T2

In absence of an external field, the Bloch equation for 〈σz〉 becomes

d

dt
〈σz〉 = −〈σz〉 − σeq

z

T1
. (5.46)

Because 〈σz〉 = p1−p2 is equal to the population difference between the upper and lower states, T−1
1

relaxation rate is the rate at which a non-equilibrium population relaxes to its equilibrium value,

through the interaction with the phonon bath. Both phonon emission and absorption contribute

to this relaxation process. When the two-level population is in thermal equilibrium, the phonon

emission and absorption processes are balanced and the population stays unchanged. If the two-

level population is out of equilibrium, one phonon process will dominate over the other, always
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pulling the system back to its equilibrium. It can be shown that T1 is given by [66]

1

T1
=

(
∆0

ε

)2
1

T1,min
(5.47)

1

T1,min
=

[
γ2
L

v5
L

+
γ2
T

v5
T

]
ε3

2πρ~4
coth(

ε

2kT
) (5.48)

where γL and γT are the longitudinal and transverse deformation potential, respectively, vL and vT

are the longitudinal and transverse sound velocity, respectively, and ρ is the mass density. T1,min is

the minimum T1 time for a TLS with splitting energy ε.

The transverse relaxation time T2 is also called the dephasing time. In absence of the external

field, the transverse spin operators in Heisenberg picture will be precessing about the z axis and the

σ+ = σx + jσy operator is given by,

σ+(t) = σ+(0) exp(−j ε
~
t). (5.49)

If the energy level ε fluctuates with time and the fluctuations δε are not identical for different TLS,

even if an ensemble of TLS starts with the same spin σ+(0) (in phase), they will no longer be in

phase after a period of time. Each spin picks up a random phase θ(t) =
∫ t

0
δε(τ)dτ and the ensemble

average value of 〈σ+〉 (or the transverse spin components 〈σx〉 and 〈σy〉) will decay to zero in a rate

that is dictated by 1/T2, because usually
〈
e−jθ(t)

〉
has a behavior of exponential decay1:

〈
e−j

∫ t
0

δε(τ)dτ
〉
∼ e−t/T2 (5.50)

For TLS in an amorphous material, the energy level fluctuation δε(t) is described by a “diffusion”

process, referred to as spectral diffusion. As shown in Fig. 5.12, the energy levels gradually spread

out and in the long time limit (t≫ T ∗
1 with T ∗

1 being the average T1 time), δε reaches a stationary

distribution with a width of ∆ε. And T2 is inversely proportional to ∆ε. Roughly speaking, T2 is

the time for which the spread in the random phase θ is of the order π/2 and can be estimated by

T−1
2 =

2

π

∆ε

~
. (5.51)

The major contribution to the energy level fluctuations δε is through the TLS-TLS interaction. The

interaction energy between two TLS (i, j) is given by[65]

δεij = c
∆i

εi

∆j

εj

γiγj

ρv2r3ij
(5.52)

1Depending on the detailed process of δε(t), the decay generally has a more complicated form than a single
exponential and is not always compatible with the single T2-rate description used in the Bloch equations.
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Figure 5.12: An illustration of spectral diffusion. Figure from [65]

where γi∆/ε and γj∆/ε are the permanent elastic dipole moments of the two TLS, rij is the distance

between the two TLS, and C is a constant of order unity. Physically, Eq. 5.52 describes the process

in which one TLS changes its states and produces a strain field that is felt by another TLS. Replacing

1/r3ij with the volume density of thermally excitable TLS P0kT and averaging over the neighboring

TLS j leads to

∆ε ∼ C
γ2PkT

ρv2

∆

ε
(5.53)

and therefore

T−1
2 ∼ C

2γ2PkT

π~ρv2

∆

ε
(5.54)

is expected to have a linear dependence on temperature.

5.4.5 Dielectric properties under weak and strong electric fields

At microwave frequencies (ω ∼ 109 Hz) and at low temperatures (T < 1 K, T1 > 1 µs), ωT1 ≫ 1

and the relaxation contribution given by Eq. 5.43 is much smaller than the resonant contribution

given by Eq. 5.43. Therefore, we will give no further discussion on the relaxation contribution.

For the resonant interaction, the TLS contribution to the (isotropic) dielectric function is given

by

ǫTLS(ω) =

∫∫∫ [
ê·

��

χ res (ω) · ê
] P

∆0
d∆d∆0dd̂ = ǫ′TLS(ω) − jǫ′′TLS(ω) (5.55)

where we have averaged over the TLS asymmetry ∆, tunnel splitting ∆0, and dipole orientation d̂.
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5.4.5.1 Weak field

If the electric field is weak and the condition Ω2T1T2 ≪ 1 is satisfied, Eq. 5.55 can be worked out

(see Appendix G)

ǫTLS(ω) =

∫ εmax

0

Pd2
0

3~
tanh

(
ε

2kBT

)[
1

ωε − ω + jT−1
2

+
1

ωε + ω − jT−1
2

]
dε (5.56)

= −2Pd2
0

3

[
Ψ

(
1

2
− ~ω − j~T−1

2

2jπkBT

)
− log

εmax

2πkBT

]
(5.57)

where Ψ is the complex digamma function and εmax is the maximum energy splitting of TLS.

The TLS contribution to the dielectric loss tangent δ is given by

δTLS =
ǫ′′TLS(ω)

ǫ
= δ0TLS tanh

(
~ω

2kBT

)
(5.58)

where the relationship[52] ImΨ(1/2 + jy) = (π/2) tanhπy has been applied, and δ0TLS = πPd2
0/3ǫ

represents the TLS-induced loss tangent at zero temperature in weak electric field. Here ǫ is the

dielectric constant of the TLS hosting material.

Similarly, the TLS contribution to the real part of the dielectric constant is given by

ǫ′TLS(ω)

ǫ
= −2δ0TLS

π

[
ReΨ

(
1

2
− ~ω

2jπkBT

)
− log

εmax

2πkBT

]
(5.59)

where ~T−1/2πkT ≪ 1/2 has been neglected and the sign before ~ω/2jπkT can take either “+” or

“-”, because Ψ(z) = Ψ(z).

Eq. 5.58 for the loss tangent can be alternatively derived by considering the imaginary part of

the integral in Eq. 5.56. The major contribution to this integral is from the resonant absorption

term

Im

[
1

ωε − ω + jT−1
2

]
=

T−1
2

(ωε − ω)2 + (T−1
2 )2

(5.60)

which is a narrow Lorentzian peak centered at ω with a line width T−1
2 . Physically it means only

the TLS close to resonance ωε ≈ ω have significant contribution the loss tangent. Neglecting the

1/(ωε +ω+ jT−1
2 ) term and pulling tanh(ε/2kT ) out of the integral as tanh(~ω/2kT ) will yield the

same result for δTLS in Eq. 5.58.

Eq. 5.58 and Eq. 5.59 are the two important results of TLS theory. The predicted temperature

dependence is illustrated in Fig. 5.13. The loss tangent δTLS (blue curve) is highest (δTLS = δ0TLS)

at low temperatures T . ~ω/2k, and decreases monotonically with T , as 1/T at high temperatures

T ≫ ~ω/2k. ǫ′TLS (red curve) has a non-monotonic behavior: ǫ′TLS increases with T when T < ~ω/2k;

ǫ′TLS decreases when T > ~ω/2k; a maximum in ǫ′TLS occurs around T = ~ω/2k.

The predicted temperature and frequency dependence of δTLS and ǫ′TLS have been tested on all
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Figure 5.13: Temperature dependence of δTLS (blue curve) and ǫ′TLS (red curve)

kinds of amorphous solids and are found to be in great agreement with the experiments. Eq. 5.58

and Eq. 5.59 have been used extensively to derive the values of δ0TLS for different materials. We use

them in the experiments described in Section 5.5 to obtain crucial information of the TLS in our

resonators.

5.4.5.2 Strong field

For general and strong electric field, ǫTLS(ω) has to be evaluated from the full integral

ǫTLS(ω) =

∫ εmax

0

Pd2
0

3
tanh

(
ε

2kBT

)[
1 + (ωε − ω)2T 2

2

1 + Ω
2
T1T2 + (ωε − ω)2T 2

2

]

×
[

1

ωε − ω + jT−1
2

+
1

ωε + ω − jT−1
2

]
dε (5.61)

where

Ω =
2d0| ~E|√

3~

∆0

ε
(5.62)

is the modified Rabi frequency accounting for the orientation integral (see Appendix G).

For the imaginary part of the integral, the main contribution is still from the 1/(ωε −ω− jT−1
2 )

term. By dropping the other term 1/(ωε+ω−jT−1
2 ), the integrand now contains a power-broadened

absorption profile

[
1 + (ωε − ω)2T 2

2

1 + Ω
2
T1T2 + (ωε − ω)2T 2

2

]
× Im

[
1

ωε − ω + jT−1
2

]
=

−T−1
2[

T−1
2

√
1 + Ω

2
T1T2

]2
+ (ωε − ω)2

(5.63)

where the width of the Lorentzian is broadened by a factor of κ =

√
1 + Ω

2
T1T2. As a result, the
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TLS loss tangent

δTLS = δ0TLS

tanh
(

ε
2kBT

)

√
1 + Ω

2
T1T2

(5.64)

is reduced by a factor of κ from the weak field result.
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Figure 5.14: Electric field strength dependence of δTLS

Because Ω ∝ | ~E|, the loss tangent δTLS depends on the electric field strength as

δTLS(| ~E|) =
δTLS(| ~E| = 0)√

1 + | ~E/Ec|2
(5.65)

where Ec is a critical field for TLS saturation defined as

Ec =

√
3~

2d0| ~E|
√
T1,minT2

. (5.66)

The | ~E| dependence of δTLS is illustrated in Fig. 5.14, where we see that δTLS scales as | ~E|−1 in

a strong electric field | ~E| ≫ Ec.

The real part of the integral in Eq. 5.61 can also be approximately evaluated. Because

Re[
1

ωε − ω + jT−1
2

] ∼ 1

ωε − ω
, Re[

1

ωε + ω − jT−1
2

] ∼ 1

ωε + ω
(5.67)

does not converge (yielding logarithmic divergence) when integrated to a large εmax, it means that

the contribution to ǫ′TLS from large detuned TLS is not negligible. In other words, TLS from a

broad range of energy, on-resonance and detuned, all contribute to ǫ′TLS. In addition, we find that

the contributions from the two terms in Eq. 5.67 are comparable and therefore none of them can be
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neglected. After making a number of mathematical approximations, we derive 2(see Appendix G)

ǫ′TLS(κ) − ǫ′TLS(0)

ǫ
= δ0TLS(1 − κ)sech2(

~ω

2kT
)
~T−1

2

2kT
+ δ0TLS tanh(

~ω

2kT
)
1 − κ2

κ

T−1
2

2ω
(5.68)

where ǫ′TLS(0) is the weak field result given by Eq. 5.59. Usually κ~T−1
2 ≪ kT and κT−1

2 ≪ ω,

therefore, the power dependence of ǫ′TLS has a very small effect.

5.4.6 A semi-empirical noise model assuming independent surface TLS

fluctuators

We assume that the TLS have a uniform spatial distribution within a volume of TLS-host material

Vh that occupies some portion of the total resonator volume V . Consider a TLS labeled α, located

at a random position ~rα ∈ Vh and with an energy level separation εα = (∆2
α + ∆2

0,α). The TLS

transition dipole moment is given by ~dα = d̂αd0∆0,α/εα, where the dipole orientation unit vector

d̂α is assumed to be random and isotropically distributed. In the weak–field, linear response limit,

the TLS contribution to the dielectric tensor of the hosting medium is

��

ǫ TLS (ω,~r) = −
∑

α

~d~dδ(~r − ~rα)

[
1

εα − ~ω + jΓα
+

1

εα + ~ω − jΓα

]
σz,α. (5.69)

Eq. 5.69 looks very similar to Eq. 5.42 but the interpretations are quite different. In Eq. 5.42 σ0
z is

the ensemble average of σz when the system is in steady-state. Here σz,α is used microscopically to

represent the state of an individual TLS at time t which takes values of −1 for the lower state of the

TLS and +1 for the upper state. We also replaced the dephasing linewidth T−1
2 , which is an average

effect, with a general linewidth Γ. Averaging over the TLS position, asymmetry, tunnel splitting,

and dipole orientation, and assuming a thermal distribution for the level population, Eq. 5.69 gives

the same result for the TLS contribution to the (isotropic) dielectric function as in Eq. 5.57

ǫTLS(ω) = −2Pd2
0

3

[
Ψ

(
1

2
− ~ω − jΓ

2jπkBT

)
− log

εmax

2πkBT

]
. (5.70)

As derived earlier, the real (ǫ′TLS) and imaginary (ǫ′′TLS) parts of ǫTLS yield the well-known results

for the TLS contribution to the dielectric constant Eq. 5.59 and loss tangent Eq. 5.58. When these

TLS are coupled to the resonator, the average effects to the frequency shift and quality factor can

be derived both classically from the cavity perturbation theory given by Pozar[57] and quantum-

2I have derived this formula by myself which hasn’t been tested by any experiment yet.
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mechanically from the cavity QED theory[69]. The results for weak field are

∆fr

fr
= −

∫
Vh
ǫ′TLS| ~E|2 d~r

2
∫

V
ǫ| ~E|2 d~r

=
Fδ0TLS

π

[
ReΨ

(
1

2
− ~ω

2jπkBT

)
− log

εmax

2πkBT

]
(5.71)

∆
1

Qr
= −

∫
Vh
ǫ′′TLS| ~E|2 d~r
∫

V
ǫ| ~E|2 d~r

= Fδ0TLS tanh

(
~ω

2kT

)
(5.72)

where δ0TLS = 3Pd2
0/2ǫh and

F =

∫
Vh
ǫh ~E(~r)2d~r

∫
V ǫ

~E(~r)2d~r
=
we

h

we
. (5.73)

F is a filling factor which accounts for the fact that the TLS host material volume Vh may only

partially fill the resonator volume V , giving a reduced effect on the variation of resonance frequency

and quality factor. According to Eq. 5.73, F is the ratio of the electric energy we
h stored in the

TLS-loaded volume to the total electric energy we stored in the entire resonator.

It can be derived from Eq. 5.71 that the TLS-induced temperature variation of frequency shift

is given by

fr(T ) − fr(0)

fr
=
Fδ0TLS

π

[
ReΨ

(
1

2
− ~ω

2jπkBT

)
− log

~ω

2πkBT

]
. (5.74)

If the internal loss of the resonator is dominated by the TLS-induced dielectric loss, the internal

quality factor Qi has a temperature dependence given by

1

Qi(T )
= Fδ0TLS tanh

(
~ω

2kT

)
. (5.75)

In Section 5.5, Eq. 5.74 and Eq. 5.75 are directly applied to the experimental data of ∆fr(T )/fr

and 1/Qi(T ) measured at T << Tc, to retrieve Fδ0TLS for each resonator.

Now, if the dielectric constant fluctuates on time scales τǫ ≫ 1/ω, according to Eq. 5.71, we

would expect to see resonator frequency fluctuations given by

δfr(t)

fr
= −

∫
Vh
ǫ′TLS(~r, t)| ~E|2 d~r
2
∫

V ǫ| ~E|2 d~r
. (5.76)

From Eq. 5.69, we see that ǫ′TLS could fluctuate with time if the TLS switch states randomly (σz,α

changes sign), for instance due to phonon emission or absorption, or if the the energy level separation

Eα is perturbed randomly, for instance due to a collection of nearby TLS that randomly switch states

and produce a randomly varying strain field that couples to TLS α. Whatever the mechanism, for

independently fluctuating TLS, from Eq. 5.69 we would expect that the Fourier spectra of the δǫ1
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fluctuations to obey

〈δǫ′∗TLS(~r1, ν1) δǫ
′
TLS(~r2, ν2)〉 = Sǫ(~r1, ν1, T )δ(~r1 − ~r2)δ(ν1 − ν2). (5.77)

Therefore, the resonator frequency power spectrum should be given by

Sδfr (ν)

f2
r

=

∫
Vh
Sǫ(~r, ν, T )| ~E|4d~r

4
(∫

V ǫ| ~E|2d~r
)2 . (5.78)

For weak enough ~E field, the fluctuations in δǫ′TLS should not depend on ~E and therefore Eq. 5.78

predicts that the resonator noise is independent of microwave power. Noise in this low power regime

is very difficult to measure and the behavior of the noise remains unknown, because the level of the

noise usually falls below the HEMT noise floor. While in the familiar high Pint regime, in which

most MKIDs operate[14] and most of the noise data are taken[70], the frequency noise is observed to

scale as P
−1/2
int as discussed in Section 5.3.2. This P

−1/2
int scaling reminds us of TLS saturation effects

discussed in Section 5.4.5.2 which are quantitatively described by Eq. 5.64. We therefore make the

ansatz that the noise depends on field strength in a similar manner:

Sǫ(~r, ν, ω, T ) = κ(ν, ω, T )/
√
| ~E(~r)|2 + E2

n,c(ω, T ) , (5.79)

where En,c(ω, T ) is a critical electric field, likely related to the critical field Ec for the saturation

of the TLS dissipation (Eq. 5.66), and the noise spectral density coefficient κ(ν, ω, T ) is allowed to

vary with (microwave) frequency ω and temperature T [63]. Because we are assuming a uniform

distribution of TLS in the volume Vh, we do not expect Sǫ to have an additional explicit dependence

on position ~r. At high power for which E ≫ En,c in the region contributing significantly to the

resonator noise, Eq. 5.78 becomes

Sδfr (ν)

f2
r

= κ(ν, ω, T )

∫
Vh

| ~E|3d3r

4
(∫

V
ǫ| ~E|2d3r

)2 . (5.80)

In Appendix H, we have further derived a noise formula for our transmission line resonators by

inserting the appropriate resonator field into Eq. 5.80,

Sδfr (ν)

f2
r

= κ(ν, ω, T )
4
∫
Ah
ρ(x, y)3dxdy

3πC2V0l
, (5.81)

where C is the distributed capacitance of the transmission line, l is the length of the resonator, V0 is

the voltage at the open end, and ρ(x, y) is the electric field distribution in the cross-sectional plane

normalized to V0 = 1 V. It is easy to see that Eq. 5.81 exhibits the desired P
−1/2
int scaling with power.
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The semi-empirical model, especially Eq. 5.80 and Eq. 5.81, will be applied and tested in the

experiments in the next section.

5.5 Experimental study of TLS in superconducting resonators

In this section, we present measurements of several devices that are specially designed to study TLS

in the resonators. By applying the TLS theory and noise model developed in Section 5.4, we have

obtained important information of the TLS which provides new clues to physical mechanism of the

TLS noise.

5.5.1 Study of dielectric properties and noise due to TLS using super-

conducting resonators

In the following two experiments, TLS are known to be in a deposited layer of a known type of

amorphous material. Because the thickness of the TLS layer is much larger (hundreds of nm) than

the intrinsic TLS layer on a bare CPW resonator (a few nm)3, the TLS effects are more pronounced

and easier to measure. From these experiments, we would like to know whether the TLS theory

gives a good description of the observed TLS effects and whether these extrinsic TLS are able to

produce excess noise that exhibits the same noise properties as observed from the intrinsic TLS.

5.5.1.1 Sillicon nitride (SiNx) covered Al on sapphire device

In this experiment we artificially deposited a 1µm thick layer of amorphous SiNx by plasma-enhanced

chemical vapor deposition (PECVD) on top of Al on sapphire CPW resonators. We measured fr,

Qr and noise before and after the deposition, to study how TLS are coupled to a resonator and how

the noise changes before and after the deposition of the SiNx layer.

• Device and measurement The original device is a typical Al on sapphire CPW device: a

200 nm thick Al film is deposited on a crystalline sapphire substrate and patterned into several CPW

quarter-wave resonators. All these resonators have center strip width sr = 3 µm, gap gr = 2µm

and resonator lengths lr ∼ 8 mm to produce resonance frequencies fr ∼ 4 GHz. The original

device, after various measurements, was deposited with a ∼ 1 µm thick layer of SiNx by plasma-

enhanced chemical vapor deposition (PECVD) on its surface, for further testing and measurements

(see Fig. 5.15).

As usual, we use a vector network analyzer to measure the S21 transmission (through the device,

HEMT and a room temperature amplifier). The resonance frequency fr, total quality factor Qr,

coupling quality factor Qc, and internal quality factor Qi are derived from fitting S21(f) data, using

3We will see in Section 5.5.2.1 that the TLS are distributed in a nm-thick surface layer instead of the bulk substrate.
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Figure 5.15: An illustration of the SiNx-covered CPW resonator. The Al film is in blue color and
the SiNx layer is in red color.

the procedures described in Appendix E. For noise characterization, both the measurement setup

and the noise data analysis are standard, and have been described in Section 5.2.

• Resonance Frequency shift before and after the deposition of SiNx The fundamental

resonance frequency fr of all resonators (7 resonators with different Qc) are measured before and

after the deposition of SiNx. After the deposition of SiNx, we also measured the non-fundamental

resonances around 2fr and 3fr. The resonance at 2fr is very likely to come from the coupled slot-

line mode (also called the odd mode) of CPW line[71]. We include them for two reasons: they have

lower Qc (∼ 6000) closer to the TLS-limited Qi (∼ 2000) at low excitation powers, which gives us

better sensitivity at those powers; these 2fr- (around 7 GHz) and 3fr- (around 10 GHz) resonances

also allow us to study the frequency dependence of various properties.

Table 5.1: fr before and after the deposition of SiNx

fr (GHz) before fr (GHz) after ratio
Res 1 3.880 3.428 1.13
Res 2 3.880*2=7.760∗ 7.658 1.01
Res 3 3.880*3=11.64∗ 10.167 1.14

The resonance frequency shift of one of the resonators and its 2fr, 3fr harmonics (they are

refereed to as Res 1, Res 2 and Res 3, and treated as if they were three physically independent

resonators hereafter) are quantitatively compared in Table 5.1. Because fr of Res 2 and Res 3 are

not measured on the bare device, they are inferred by the doubling and tripling fr of Res 1. On

the other hand, we use EM simulation programs to calculate the effective dielectric constant ǫeff for

the CPW even mode (Res 1 and Res 3) before and after the deposition. With a dielectric constant

ǫh = 7.2 for SiNx, the simulation result gives ǫeff, before = 5.5 for the bare device and ǫeff, after = 7.2

for the SiNx-covered device. And the ratio

√
ǫeff,after

ǫeff,before
= 1.14 (5.82)
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Figure 5.16: Internal loss Q−1
i as a function of Pint of the 3 resonators measured at several temper-

atures between 50 mK to 300 mK. T ranges from 50 mK to 300 mK in steps of 50 mK (or 25 mK)
and Pr ranges from -65 dBm and -120 dBm in steps of 4 dBm (or 2 dBm).

agrees very well with the measured fr ratios of Res 1 and Res 3 in Table 5.1. This result confirms

that both the geometric parameters and dielectric constants we assumed are very close to their real

values. We notice that the fr ratio for Res 2 are much less than Res 1 and Res 3, suggesting that

the CPW odd mode probably has a field distribution that is less concentrated in the SiNx layer as

compared to the CPW even mode.

• Power dependence of fr and Qi We measure fr and Qi of the 3 resonators in a two-

dimensional sweep of bath temperature T and readout power Pµw. Fig. 5.16 shows internal loss

Q−1
i as a function of internal power Pint at different temperatures.

We can clearly see 3 regimes in Fig. 5.16(a): below -80 dBm (regime I), Q−1
i reaches a constant

high value; between -80 dBm and -40 dBm (regime II), Q−1
i decreases with Pint and scales as P

−1/2
int ;

above -40 dBm (regime III), Q−1
i increases with Pint. The regime III behavior is known to be caused

by the non-linearity of superconductor at high power and is not TLS-related. Res 2 (Fig. 5.16(b))

and Res 3 (Fig. 5.16(c)) also show the same features, except that we have to subtract 1.3 × 10−5
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Table 5.2: δ0TLS and fr from a joint fit to the Q−1
i (T ) and fr(T ) data at the lowest readout power

fr (GHz) Fδ0TLS F δ0TLS

Res 1 3.4294 7.63 × 10−4 0.31 2.46 × 10−3

Res 2 7.6593 2.21 × 10−4 - -
Res 3 10.172 9.92 × 10−4 0.31 3.20 × 10−3

from Q−1
i for Res 2 and 6 × 10−6 for Res 3 to make them scale as P

−1/2
int in regime II. These extra

power independent small losses might be related to the interface between Al and SiNx—for example,

from a slightly damaged surface of Al formed during the deposition process. In regime I and II, Q−1
i

is limited by the TLS-induced loss tangent δTLS which displays a typical saturation behavior that

is discussed in Section 5.4.5.2.

• Temperature dependence of fr and Qi To retrieve the value of δ0TLS (δTLS for weak field

at zero temperature), we fit the data of Q−1
i (T ) and fr(T ) under the lowest readout power at each

temperature to their theoretical profiles Eq. 5.75 and Eq. 5.74. For each resonator, Q−1
i (T ) and

fr(T ) are fitted jointly with two fitting parameters: fr and the product Fδ0TLS . As shown in

Fig. 5.17, fits to the TLS model generally agree well with the data, except that a large deviation

is seen in the fr fit of Res 3. We find that at the lowest readout powers an adjacent resonator is

entering the bandwidth of Res 3 and probably makes the fitting routine report an inaccurate fr.

The values of Fδ0TLS and fr from the fits are listed in Table 5.2. Because both the CPW

geometry and the thickness of SiNx are known, we can derive the electric field distribution from EM

simulations and calculate the filling factor F according to Eq. 5.73. For Res 1 and Res 3 with CPW

even mode, we find F = 0.31. Using this value of filling factor, Res 1 data yields δ0TLS = 2.46× 10−3

and Res 3 data yields δ0TLS = 3.2 × 10−3 for our SiNx. These values of δ0TLS are pretty reasonable.

Typical values of δ0TLS for amorphous materials are usually found between 10−4 and 10−2 in the

literature[59]. Even for the same amorphous material, the value of δ0TLS depends largely on how the

material is prepared. For example, low-loss SiNx made from PECVD process with δ0TLS ≈ 10−4 was

reported from another research group[59], which is significantly lower than what we measured from

our SiNx.

The difference between the two values of δ0TLS derived from Res 1 and Res 3, though not large,

suggests that the TLS density of states P might be frequency dependent, because Res 1 and Res

3 are physically the same resonator with the same filling factor F and the only difference is their

resonance frequencies, 3.4 GHz vs. 10.2 GHz.

• Noise comparison before and after the deposition of SiNx Noise, as well as its power and

temperature dependence, is measured on both the bare device and the SiNx-covered device. The

noise from the bare device shows the general features of excess noise that have been discussed in



113

0.05 0.1 0.15 0.2 0.25 0.3
2

3

4

5

6

7

8

x 10
−4

T (K)

1/
Q

i
Res−1

 

 

data
fit

(a)

0.05 0.1 0.15 0.2 0.25 0.3
−0.5

0

0.5

1

1.5

2

2.5
x 10

−4

T (K)

∆ 
f r/f r

Res−1

 

 

data
fit

(b)

0.05 0.1 0.15 0.2 0.25 0.3
1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−4

T (K)

1/
Q

i

Res−2

 

 

data
fit

(c)

0.05 0.1 0.15 0.2 0.25 0.3
−15

−10

−5

0

5
x 10

−6

T (K)

∆ 
f r/f r

Res−2

 

 

data
fit

(d)

0.05 0.1 0.15 0.2 0.25 0.3
6

7

8

9

10

11

12
x 10

−4

T (K)

1/
Q

i

Res−3

 

 

data
fit

(e)

0.05 0.1 0.15 0.2 0.25 0.3
−6

−4

−2

0

2

4
x 10

−5

T (K)

∆ 
f r/f r

Res−3

 

 

data
fit

(f)

Figure 5.17: Joint fit of Q−1
i and fr vs. T at lowest readout power into their theoretical profiles

Eq. 5.74 and Eq. 5.75
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detail in Section 5.3.

Fig. 5.18(a) shows a pair of phase and amplitude noise spectra, measured on Res 1 of the SiNx-

covered device at T = 50 mK and Pint = −50 dBm. It has the same features as the noise from a

bare resonator: the noise is dominantly phase noise; amplitude noise is mostly flat and limited by

the HEMT noise floor; the phase noise spectrum has a 1/f slope below 10 Hz, a 1/f−1/2 at higher

frequencies and a roll-off at around 10 kHz. The frequency noise of Res 1 at ν = 500 Hz as a

function of Pint is plotted in Fig. 5.18(b) for two different temperatures, T = 125 mK (blue) and

T = 200 mK(red). For comparison, the noise from the bare device measured at T = 120 mK is also

plotted (black). In addition to the familiar P
−1/2
int power dependence, we find that the noise has

increased by a factor a 20 after the deposition of SiNx. This implies that the measured excess noise

of the SiNx-covered device, as shown in Fig. 5.18(a), is mainly produced by the TLS in the SiNx

layer.
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Figure 5.18: Excess noise measured on Res 1 of the SiNx-covered device. (a) Phase and amplitude
noise spectra measured at T = 50 mK and Pint = −50 dBm. (b) Frequency noise at 500 Hz
Sδfr (500 Hz) vs. internal power Pint. The blue and red lines are measured at T = 125 mK and
T = 200 mK, respectively. As a comparison, noise measured at T = 120 mK before the deposition
of SiNx is indicated by the black line.

•Temperature dependence of excess phase noise Constrained by the low Qr at low Pint and

the nonlinearity effect of superconductor at high Pint, we have a very limited window of readout

power in which we can measure noise. Also we can not reliably measure noise at T > 250 mK,

because the resonator is made of Al (Tc = 1.2 K) and the effect from superconductivity will mix in

at higher temperatures.

Fig. 5.19 shows the frequency noise at ν = 500 Hz of Res 1 measured between 50 mK and

225 mK and at Pint =-48 dBm (interpolated). The noise shows a strong temperature dependence

on the temperature, scaling roughly as T−1.5 above 125 mK.
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Figure 5.19: Temperature dependence of frequency noise measured on Res 1 at Pint = −48 dBm
from the SiNx-covered device

Conclusion The measured temperature dependence of ∆fr/fr and Q−1
i , as well as the power and

temperature dependence of Q−1
i , all agree well with the TLS theory. By fitting the ∆fr(T )/fr data

and Qi(T )−1 data to Eq. 5.74 and Eq. 5.75, the product Fδ0TLS can be derived. If F is known, δ0TLS

can be determined, which is one of the important parameters of the TLS.

After the deposition of SiNx, the phase noise is seen to increase by a factor of 20. It also keeps

all the general features of phase noise found in a bare resonator. The fact that the noise from a

SiNx-covered device and from a bare device shows the same features is strong evidence that the

noise in both cases is of the same origin — TLS.

5.5.1.2 Nb microstrip with SiO2 dielectric on sapphire substrate

Another device we measured with a large TLS filling factor is a Nb on sapphire half-wavelength

microstrip resonator device. Between the top strip (600 nm thick) and the ground plane (150 nm

thick), both made of Nb, is a layer of sputtered (amorphous) SiO2 dielectric (400 nm thick). Other

relevant resonator parameters are listed in Table 5.3. Because the electric field is largely confined

in the dielectric layer, the microstrip should have a very high filling factor. Indeed, EM simulation

shows that F = 94% for this microstrip device.

• Power and temperature dependence of fr and Qi. We first measure the power and

temperature dependence of fr and Qi, and fit the latter to the TLS model to retrieve the value of

Fδ0TLS, as we did in the previous experiment with the SiNx-covered device.

The results are shown in Fig. 5.20. In Fig. 5.20(a) we plot a group of Q−1
i vs. Pint curves at

different T , which looks very similar to its counter part in the SiNx experiment. In Fig. 5.20(b) we

plot a group of fr vs. T curves at different Pint, which shows the signature shape of TLS-induced
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Figure 5.20: Measured power and temperature dependence of fr and Qi from Nb on sapphire with
SiO2 dielectric microstrip device. (a) Q−1

i as a function of Pint at several temperatures (indicated in
the legend) between 20 mK and 500 mK. (b) fr as a function of T measured at several readout powers
Pµw (indicated in the legend) between -132 dBm and -72 dBm. (c) Fitting Q−1

i (T ) at Pµw = −132
(lowest Pµw) to the theoretical model Eq. 5.75 yields Fδ0TLS = 5.35 × 10−4. The first three data
points are ignored, because for these data points the electric field is not below the critical field, as
shown in (a). (d) Fitting fr(T ) at Pµw = −132 dBm (lowest Pµw) to the theoretical model Eq. 5.74
yields Fδ0TLS = 6 × 10−4.

variation of dielectric constant, as discussed in Section 5.4.5.1. We also see that at temperature

above 100 mK, these curves shows very little power dependence, which is expected from Eq. (5.68).

The noticeable power dependence under 100 mK is probably due to the heating effect.

The data of Q∗−1
i (T ) and fr(T ) under the lowest readout power at each temperature are sepa-

rately fitted to their theoretical profiles Eq. 5.75 and Eq. 5.74. Fairly good fits are obtained as shown

in Fig. (5.20(c)) and Fig. (5.20(d)). The value of Fδ0TLS is 5.4 × 10−4 derived from the Q−1
i (T ) fit

and 6 × 10−4 from the fr(T ) fit, which roughly agrees (within 20%) with each other. This means

the loss tangent δ0TLS of the SiO2 dielectric is around δ0TLS ∼ 6 × 10−4, which is a factor of 4 better

compared to the SiNx measured in the experiment described in the previous section.
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Figure 5.21: Frequency noise at 30 Hz as a function of temperature measured at Pint=-78, -86, -94,
and -102 dBm from Nb on sapphire with SiO2 dielectric microstrip device. At T > 100 mK, the
noise roughly scales as T−2.

• Power and temperature dependence of frequency noise. The frequency noise measured at

temperatures between 20 mK and 500 mK under several readout powers are shown in Fig. (5.5.1.2).

We again see that the noise decreases rapidly at high temperature (T > 100 mK) and roughly scales

as T−2, which is also observed in Fig. 5.8 and Fig. 5.19. In addition, we see that the noise decrease

slightly at very low temperatures, which is another interesting clue to the physics of the TLS noise.

• Estimating κ(ν, ω, T ) from noise data. Because both the spatial distribution of the TLS

(uniformly distributed in the dielectric layer) and the electric field (from EM simulation or simply

approximated by a parallel plate structure) are known, we are ready to apply the semi-empirical

noise model developed in Section 5.4.6 and estimate the noise coefficient κ(ν, ω, T ) for SiO2 used in

our microstrip.

As an example, we will derive the spectrum of κ(ν, 5 GHz, 120 mK) from the frequency noise

Table 5.3: Parameters of Nb/SiO2/Nb microstrip
resonance frequency fr 5.07 GHz
internal power Pint -43 dBm
Nb top strip width w 7.5 µm
Nb top strip thickness d 600 nm
thickness of SiO2 h 400 nm
resonator length l 15 mm (half-wave)
capacitance per unit length C 7.3e-10 F/m (85 ǫ0)
characteristic impedance Z0 8.66 Ω
effective dielectric constant ǫeff 3.6
CPW voltage at open end V0 1.86 mV
integral

∫
Ah
ρ(x, y)3dxdy I3 47/µm
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spectrum measured at T = 120 mK and Pint = −38 dBm shown in Fig. 5.22(a). The 3 parameters,

C, V0, and l, required by Eq. 5.81 are calculated and listed in Table 5.3. The integral

I3 =

∫

Ah

ρ(x, y)3dxdy ≈ w/h2 (5.83)

is calculated by approximating the microstrip field with that in a parallel plate structure.

According to Eq. 5.81, the conversion factor from the frequency noise Sδfr (ν)/f2
r to κ(ν, ω, T ) is

given by

g =
4I3

3πC2V0l
=

9.90 × 107

ǫ20
m−2V−1. (5.84)

By applying this factor, we finally derive the spectrum κ(ν, 5 GHz, 120 mK) which is shown in the

Fig. 5.22(b).

The noise coefficient κ(ν, ω, T ) for other temperatures T and microwave frequencies ω can be

derived in a similar way. Because on this device we have only one microstrip resonator with fr ∼
5 GHz, we are unable to obtain κ for other frequencies. In future experiments, it should be easy

to design resonators which spread out in the wider frequency range in which we are interested. In

fact, according to the TLS picture, the frequency noise should be only dependent on the value of

~ω/kT , instead of ω and T individually. Once the values of κ(ν, ~ω/kT ) are derived, they can be

used to predict the frequency noise in resonators with any geometry, resonance frequency, and at

any temperature, as long as the TLS are of the same type, and the spatial distribution of the TLS

and the electric field are known in these resonators.
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Figure 5.22: Frequency noise spectrum (a) and the derived noise coefficient κ (b). The noise spectra
are measured at T = 120 mK and Pint = −38 dBm from the Nb microstrip device with SiO2

dielectric.
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5.5.2 Locating the TLS noise source

From the experimental and theoretical results presented in the preceding sections of this chapter,

we are almost certain that the excess noise is caused by fluctuating TLS in the dielectric materials.

So far we have not given any discussion on where the TLS are. As shown in Fig. 5.23, at least four

locations in our CPW resonator can host the TLS fluctuators—the bulk substrate or its exposed

surface, the interface layers between the metal films and the substrate, and the oxide layers on the

metal surfaces. In the next two experiments, we will give experimental evidence that the TLS are

distributed on the surface of the resonator but not in the bulk substrate.

Figure 5.23: Potential locations of TLS noise source: bulk substrate (yellow), exposed substrate
surface (red), the interface layers between the metal films and the substrate (green), and oxide
layers on the metal surfaces (blue)

5.5.2.1 Evidence for a surface distribution of TLS from frequency shift measurement

We have learned a lot about the TLS effects on the dielectric properties from the study of SiNx-

covered device and SiO2 dielectric microstrip device. Especially, we are able to determine the

product of the TLS loss tangent δ0TLS and filling factor F by fitting the TLS models to either the

temperature dependence of ∆fr(T )/fr data at any readout power or Q−1
i (T ) data at low power. In

this experiment, we go back and apply this analysis to study the intrinsic TLS in the bare resonators.

The key idea of this experiment is to measure ∆fr/fr of coplanar waveguide (CPW) resonators

with different geometries in order to obtain values of Fδ0TLS for each geometry. The frequency-

multiplexed resonators are all fabricated simultaneously and are integrated onto a single chip, and

are measured in a single cooldown. We can therefore safely assume that a single value of the loss

tangent δ0TLS applies for all resonator geometries. This allows the variation of the filling factor F

with geometry to be determined, providing information on the geometrical distribution of the TLS.

If TLS are in the bulk substrate with dielectric constant ǫr, Eq. 5.73 applied to the CPW field

distribution would yield a filling factor F ≈ ǫr/(ǫr +1) that is independent of the resonator’s center

strip width sr. If instead the TLS are in a surface layer, F should be dependent on the CPW

geometry, scaling roughly as 1/sr.

The geometry test device used in this experiment consists of five CPW quarter-wavelength res-

onators with different geometries. They are patterned from a 120 nm-thick Nb film deposited on a
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Figure 5.24: An illustration of the CPW coupler and resonator. The inset shows a cross-sectional
view of the CPW. The contour of the metal surface and the contour of the exposed surface of the
substrate are indicated by the solid line and the dashed line, respectively.

crystalline sapphire substrate. Because Nb has a critical temperature Tc = 9.2 K, the effect of super-

conductivity on the temperature dependence of the resonance frequency is negligible for T < 1 K.

As shown in Fig. 5.24, each resonator is capacitively coupled to a common feedline using a CPW

coupler of length lc ∼= 200 µm and with a common center-strip width of sc = 3 µm. The coupler is

then widened into the resonator body, with a center-strip width of sr = 3 µm, 5 µm, 10 µm, 20 µm

or 50 µm, and a length of lr ∼ 5 mm. The ratio between center strip width s and the gap g in both

the coupler and the resonator body is fixed to 3:2, to maintain a constant impedance of Z0 ≈ 50 Ω.

The resonance frequencies are fr ∼ 6 GHz, and the coupler is designed to have a coupling quality

factor Qc ∼ 50, 000.

Fig. 5.25 shows the measured frequency shifts ∆fr/fr for the five resonators as a function of

temperature over the temperature range 100 mK to 800 mK. Although all of the resonators display

a common shape for the variation of frequency with temperature, the magnitude of the effect varies

strongly with geometry. As shown by the dashed lines in Fig. 5.25, fits to the TLS model (Eq. 5.74)

generally agree quite well with the data. The familiar non-monotonic variation of the dielectric

constant with temperature can be clearly seen in Fig. 5.25: fr increases (ǫ decreases) when T >

~ω/2k; a minimum in fr (a maximum in ǫ) occurs around T = ~ω/2k; at lower temperatures (T <

100 mK), we would expect to see a decrease in fr (increase in ǫ) as indicated by the extrapolation

of the fit. The largest deviations from the TLS model (about 4%) occur at the lowest temperatures,

and are likely due to TLS saturation effects discussed in Section 5.4.5.2. Power-dependent frequency

shifts of this size have also been previously observed experimentally[63]. Here, we will ignore these

small effects and focus on the geometrical dependence.

With the exception of the 3 µm resonator, the measured values of Fδ0TLS from the fits have to

be corrected for the coupler because the coupler’s center strip width sc = 3 µm differs from that
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Figure 5.25: Fractional frequency shift ∆fr/fr as a function of temperature. ∆fr/fr is calculated
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from 100 mK to 600 mK, and in steps of 100 mK above 600 mK. The markers represent different
resonator geometries, as indicated by the values of the center strip width sr in the legend. The
dashed lines indicate fits to the TLS model.

of the resonator, sc 6= sr. In the limit lc << lr, it can be shown that the corrected filling factor is

given by,

F ∗ =
F − tF3µm

1 − t
(5.85)

where t = 2lc/(lc + lr). The values of F ∗δ0TLS are listed in Table 5.4, as well as the ratios relative to

the value for 3 µm resonator.

We also measured the resonance frequencies at 4.2 K (0.46 Tc), allowing the shift ∆fr(4.2 K) =

fr(4.2 K)−fr(100 mK) as well as the kinetic inductance fraction to be calculated for each geometry,

as shown in Table 5.4.

Fig. 5.26 shows the results for the geometrical scaling of the corrected filling factor F ∗ and the

kinetic inductance fraction α, plotted as ratios relative to their respective values for the resonator

with a 3 µm wide center strip. The observed strong variation of F ∗ with geometry immediately rules

out a volume TLS distribution, and favors a surface distribution. We investigate this in more detail

by comparing the data to two theoretically calculated geometrical factors gm and gg, which have

units of inverse length and are calculated from contour integrals in a cross-sectional plane given by

gm =
1

V 2

∫

metal

~E2dl (5.86)

gg =
1

V 2

∫

gap

~E2dl (5.87)

where V is the CPW voltage. The first integral is actually a sum of three contour integrals, taken

over the surfaces of the three metal conductors, the center strip and the two ground planes. The
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Figure 5.26: The scaling of the measured values of the kinetic inductance α and TLS filling factor
F ∗, as well as the calculated values of the CPW geometrical factors gm and gg, are shown, as a
function of the resonator center strip width sr. The top panel shows the ratios of α (r1), F

∗ (r2),
gm (r3), and gg (r4) to their values for the 3 µm resonators. The bottom panel shows these ratios
normalized by the kinetic inductance ratio r1.

second contour integral is taken over the two “gaps”, the surface of the exposed substrate in between

the conductors. These contours are illustrated in the inset of Fig. 5.24. The integrals are evaluated

numerically using the electric field derived from a numerical conformal mapping solution to the

Laplace equation, where the conformal mapping procedure is identical to that used in the calculation

of α described in Section 3.1.3.1.

According to Eq. 5.73, F ∗ should have the same scaling as gm if the TLS are distributed on the

metal surface (or at the metal-substrate interface), or as gg if the TLS are located on the surface of

the exposed substrate. The kinetic inductance of the CPW may also be calculated using a contour

integral similar to that of gm, except that the integrand is replaced by ~H2[64]. Because the magnetic

field ~H is proportional to ~E for a quasi-TEM mode, we expect the kinetic inductance fraction α to

have the same geometrical scaling as gm.

Fig. 5.26 shows that the four quantities, F ∗, α, gm, and gg, all scale as s−γ
r with γ = 0.85− 0.91.

The finite thickness of the superconducting film is responsible for the deviations from γ = 1. This

is very strong evidence that the TLS have a surface distribution and are not uniformly distributed

in the bulk substrate. These data, however, cannot discriminate between a TLS distribution on

the metal surface and a TLS distribution on the exposed substrate surface (the gap), because the

corresponding theoretical predictions (gm and gg) are very similar and both agree with the data.

Future measurements of resonators with various center-strip-to-gap ratios may allow these two TLS

distributions to be separated.

The absolute values of F ∗δ0TLS are also of interest. Assuming a typical value of δ0TLS ∼ 10−2 for

the TLS-loaded material[59], the measured value of F ∗δ0TLS = 3×10−5 for the 3 µm resonator yields
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a filling factor of F ∗ ∼ 0.3%. Numerical calculations show that this is consistent with a ∼ 2 nm layer

of the TLS–loaded material on the metal surface or a ∼ 3 nm layer on the gap surface, suggesting

that native oxides or adsorbed layers may be the TLS host material[72].

Table 5.4: Values and ratios
sr fr(100 mK) ∆fr(4.2 K) α

α3µm
F ∗δ0TLS

F∗

F∗
3µm

gm

gm,3µm

gg

gg,3µm

[µm] [GHz] [MHz] ×10−5

3 µm 5.666 11.1 1 2.98 ± 0.12 1 1 1
5 µm 5.735 7.41 0.67 2.00 ± 0.07 0.67 0.62 0.64
10 µm 5.800 4.15 0.37 1.10 ± 0.03 0.37 0.33 0.35
20 µm 5.836 2.28 0.21 0.54 ± 0.03 0.18 0.17 0.19
50 µm 5.851 1.02 0.092 0.24 ± 0.02 0.08 0.075 0.086

5.5.2.2 More on the geometrical scaling of frequency noise
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Figure 5.27: Frequency noise of the four CPW resonators measured at T = 55 mK. (a) Frequency
noise spectra at Pµw = −65 dBm. From top to bottom, the four curves correspond to CPW center
strip widths of sr = 3 µm, 5 µm, 10 µm, and 20 µm. The various spikes seen in the spectra are
due to pickup of stray signals by the electronics and cabling. (b) Frequency noise at ν = 2 kHz as
a function of Pint. The markers represent different resonator geometries, as indicated by the values
of sr in the legend. The dashed lines indicate power law fits to the data of each geometry.

In addition to the low-temperature frequency shift data, we also measured the frequency noise

data on the same geometry test device as described in the previous section in the same cooldown.

The frequency noise spectra Sδfr (ν)/f2
r of the five resonators are measured for microwave readout

power Pµw in the range -61 dBm to -73 dBm. As an example, the frequency noise spectra measured

at Pµw = −65 dBm are shown in Fig. 5.27(a). Apart from a common spectral shape, we clearly see

that the level of the noise decreases as the center strip becomes wider. Unfortunately the noise of

the 50 µm-resonator is not much higher than that of our cryogenic HEMT amplifier, and therefore

those measurements are less reliable, so we exclude the 50 µm-resonator from further discussion.
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Figure 5.28: The measured frequency noise Sδf (2 kHz)/f2
r at Pint = −25 dBm is plotted as a

function of the center strip width sr. Values directly retrieved from power-law fits to the data in
Fig. 5.27 are indicated by the open squares. Values corrected for the coupler’s contribution are
indicated by the stars. The corrected values of Sδf (2 kHz)/f2

r scale as s−1.58
r , as indicated by the

dashed line.

The noise levels at ν =2 kHz were retrieved from the noise spectra and are plotted as a function

of resonator internal power Pint = 2Q2
rPµw/πQc in Fig. 5.27(b). All resonators display a power

dependence close to Sδf/f
2
r ∝ P

−1/2
int , as we have previously observed[73, 70, 63]. In order to

study the geometrical scaling of the noise in more detail, we first fit the noise vs. power data

for each resonator to a simple power law, and retrieve the values of the noise Sδf (2 kHz)/f2
r at

Pint = −25 dBm for each geometry. These results (Fig. 5.28) again show that the noise decreases

with increasing sr, although not (yet) as a simple power law.

To make further progress, we apply the semi-empirical noise model (Eq. 5.80) to the coupler

correction. For the resonators that are wider than the coupler (sr > sc = 3 µm), the measured

values of Sδfr/f
2
r need to be corrected for the coupler’s noise contribution. A similar procedure was

applied in the frequency shift data in the previous section (Eq. 5.85). In the limit lc << lr, the

correction is given by

S∗
δfr

= (Sδfr − ηSδfr , 3µm)/(1 − η) (5.88)

where η = 3πlc/4(lc + lr). The corrected values are plotted in Fig. 5.28 (with symbol stars) and

are found to have a simple power–law scaling 1/s1.58
r . We find a similar noise scaling, 1/sα

r , with α

between 1.49 and 1.6, for noise frequencies 400 Hz < ν < 3 kHz.

While the fact that an |E|3–weighted coupler noise correction leads to a simple power law noise

scaling is already quite encouraging, we will now go further and show that the observed s−1.58
r power–

law slope can be reproduced by our semi-empirical noise model. Measurements of the anomalous
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Figure 5.29: The calculated dimensionless noise scaling function Fm
3 (t/sr) is plotted as a function of

the ratio between the CPW half film thickness t and the center strip width sr. The inset shows the
conformal mapping used to derive the electric field. The contour integral for Fm

3 (t/sr) is evaluated
on the surface of the metal, as outlined by the solid lines in the W -plane. Results are shown for four
different values of the parameter β = 0.28, 0.33, 0.38, 0.43 that controls the edge shape (see inset).
The dashed lines indicate power law (t/sr)

γ fits to Fm
3 (t/sr).

low temperature frequency shift described in the previous section have already pointed to a surface

distribution of TLS. If these TLS are also responsible for the frequency noise, according to Eq. 5.80

we would expect the noise to have the same geometrical scaling as the contour integral I3 =
∫
| ~E|3ds

evaluated either on the metal surface (Im
3 ) or the exposed substrate surface (Ig

3 ). For zero-thickness

CPW, although the integral is divergent, the expected scaling can be shown to be I3 ∝ 1/s2r. For

CPW with finite thickness, we can evaluate I3 numerically using the electric field derived from a

numerical conformal mapping solution. The two-step mapping procedure used here is modified from

that given by Collin[55] and is illustrated in the inset of Fig. 5.29. We first map a quadrant of

finite-thickness CPW with half thickness t ( in the W -plane) to a zero-thickness CPW (in the Z-

plane) and then to a parallel-plate capacitor (in the ξ-plane). To avoid non-integrable singularities,

we must constrain all internal angles on the conductor edges to be less than π/2, which leads to

the condition 0.25 < β < 0.5, where βπ is the angle defined in Fig. 5.29. Instead of evaluating I3

directly, we define a normalized dimensionless integral F3(t, sr) =
∫
| ~E/E∗|3ds∗, where s∗ = s/sr is

a normalized integration coordinate and E∗ = V/sr is a characteristic field strength for a CPW with

voltage V . Now F3 depends only on the ratio t/sr and is related to the original contour integral by

I3(sr, t, V ) = (V 3/s2r)F3(t/sr). The results Fm
3 (t/sr) calculated for the metal surface are plotted

in Fig. 5.29, and show a power law scaling Fm
3 ∼ (t/sr)

γ with γ ≈ −0.45 for 0.003 < t/sr < 0.02,

the relevant range for our experiment. We also find that for a wide range of β, 0.27 < β < 0.43,

although the absolute values of Fm
3 (t/sr) vary significantly, the scaling index γ remains almost

constant, −0.456 < γ < −0.440. Therefore, γ appears to depend little on the edge shape.
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From Eq. 5.80, the noise scaling is predicted to be Im
3 (t, sr, V ) ∝ s−2−γ

r ∼ s−1.55
r (at fixed

V ), which agrees surprisingly well with the measured s−1.58
r scaling. We also investigated the case

for TLS located on the exposed substrate surface, and found that F g
3 has almost identical scaling

(γ ≈ −0.45) as Fm
3 . While we still cannot say whether the TLS are on the surface of the metal

or the exposed substrate, we can safely rule out a volume distribution of TLS fluctuators in the

bulk substrate; this assumption yields a noise scaling of ∼ s−1.03
r , significantly different than that

measured.

In summary, the scaling of the frequency noise with resonator power and CPW geometry can

be satisfactorily explained by the semi-empirical model developed in Section 5.4.6 and with the as-

sumption of a surface distribution of independent TLS fluctuators. These results allow the resonator

geometry to be optimized, which will be discussed in the next section. Had we known the exact

~E field distribution and the exact TLS distribution for our CPW resonators, we would be able to

derive the noise coefficient κ(ν, ω, T ) as we did for the SiQ2 microstrip experiment discussed earlier.

Unfortunately, the two parameters, the edge shape and the thickness of the TLS layer, required for

calculating κ(ν, ω, T ) are not easily available. However, they are expected to be common among

resonators fabricated simultaneously on the same wafer, and more or less stable for resonators fab-

ricated through the same processes. Since we have shown that the ratio of | ~E|3 integral between

two resonator geometries is insensitive to the edge shape, we can still predict the scaling of the noise

among different resonator geometries[74].

5.6 Method to reduce the noise

Based on our knowledge of the excess noise, we propose several methods that may potentially reduce

the noise. Some of them have already been put into the action and proved to be effective. Of course,

a better understanding of the physics of the TLS noise may lead to more effective noise reduction

methods.

5.6.1 Hybrid geometry

5.6.1.1 Two-section CPW

Our noise model (Eq. 5.80) implies that the noise contributions are weighted by | ~E|3, so TLS

fluctuators located near the coupler end of a quarter-wave resonators should give significantly larger

noise contributions than those located near the shorted end. Meanwhile, the noise measurement

of the geometry test device has demonstrated that the noise decreases rapidly with increasing sr,

scaling as s−1.6
r . This leads us to a two-section CPW resonator design for MKID. As shown in

Fig. 5.30, the resonator has a wider section (with center strip width s1, gap g1, and length l1) on
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1 2

Figure 5.30: An illustration of the two-section CPW MKID design. Quasiparticles are generated
and confined in the effective sensor area indicated by the red strip.

2

1

Figure 5.31: An illustration of the MKID design using interdigitated capacitor. Quasiparticles are
generated and confined in the effective sensor area indicated by the red strip.

the coupler end to benefit from the noise reduction, but a narrower section (with center strip width

s2, gap g2, and length l2) at the low-| ~E| shorted end to maintain a high kinetic inductance fraction

and responsivity. Meanwhile, we can make the section 1 CPW from a higher gap superconductor

(e.g., Nb) and section 2 from a lower gap superconductor (e.g., Al), to confine the quasiparticles in

section 2. To maximize the noise reduction effect and the responsivity, we should also make l1 ≫ l2.

In the example design as shown in Fig. 5.30, we have s1/s2 = g1/g2 = 4. According to the s−1.6
r

noise scaling, this detector design is expected to give 9 times lower frequency noise and therefore 3

times better NEP as compared to the conventional one-section CPW with s2 and g2.
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5.6.1.2 A design using interdigitated capacitor

The wider geometry section in the two-section CPW design can be replaced by a interdigitated

planar capacitor section, as shown in Fig. 5.31. Such an interdigitated design makes the resonator

more compact and easier to fit into a detector array where the space is limited. The strips and

gaps in the interdigitated capacitor should be made as wide as is allowed by the space in order to

maximize the noise reduction effect. Because the dimension of the capacitor (l1 ∼ 1 mm) is designed

to be much smaller than the wavelength λ > 10 mm, the voltage distribution on the interdigitated

capacitor structure is almost in phase and such a structure indeed acts as a lumped-element capacitor

C′. The length of the shorted sensor strip in section 2 is also much smaller than the wavelength, so

the sensor strip acts as an inductor with inductance L′ = Ll1, where L is the inductance per unit

length of the CPW in section 2. The entire structure shown in Fig. 5.31 virtually becomes a parallel

RLC resonant circuit and can be conveniently described by a lumped-element circuit model.

5.6.2 Removing TLS

An obvious way of reducing excess noise is to remove the TLS fluctuators from the resonator,

partially or completely.

5.6.2.1 Coating with non-oxidizing metal

If the TLS are in the oxide layer of the superconductor, coating the superconductor with a layer

of non-oxidizing metal (for example, Au) may get rid of some of the TLS on the metal surface and

reduce noise. However, it can not remove all the TLS because the superconducting film will still

be exposed to air and form oxides at the edges where they are etched off. Because the electric

field strength is usually peaked at these edges, the noise contributions from these remaining TLS,

according to the | ~E|3 weighting, are still significant. EM simulation shows that this method may

only moderately reduce the noise by a factor of a few.

5.6.2.2 Silicides

The surface oxide can only be avoided if the superconducting film is not exposed to air. This

is almost impossible for standard lithographed planar structures but may be possible by using

superconducting silicides (such as PtSi[75], CoSi[76]). These silicides are made by ion implantation

of metal into silicon substrate. With this process, for example, one can bury a entire CPW into the

crystalline Si up to ∼ 100 nm deep beneath the surface. One can bury it even deeper by regrowing

crystalline Si on the surface. Because the crystalline structure of Si will not be destroyed and no

amorphous material will be created in these processes, the devices made from these silicides are

expected to be free of TLS fluctuators and excess noise.
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5.6.3 Amplitude readout

As has been shown earlier in this chapter, no excess noise is observed in the amplitude direction and

the amplitude noise, set by the noise temperature of HEMT, can be orders of magnitude lower than

the phase noise at low noise frequencies. Therefore, using amplitude readout may avoid the excess

noise and in some cases give better sensitivity.

Recall from Chapter 2 and 4 that a change in the quasiparticle will cause a change in both the

real (σ1) and imaginary (σ2) part of the conductivity, resulting in an IQ trajectory that is always

at a nonzero angle ψ = tan−1(δσ1/δσ2) to the resonance circle. Calculation from Martis-Bardeen’s

theory shows that tanψ = 1/4 ∼ 1/3 for the temperature and frequency range that MKIDs usually

operate in. This means as soon as the phase noise exceeds the amplitude noise (HEMT noise floor)

by about a factor of 10 (in power), amplitude readout may yield a better NEP than the phase

readout.
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Figure 5.32: Detector response to a single UV photon event. The data is measured from a 40 nm
Al on sapphire MKID illuminated by monochromatic UV photons (λ = 254 nm) at around 200 mK.
The quasi-particle recombination time is measured to be 20 µs. The inset shows the resonance circle
and the pulse response in the IQ plane. In the zoom-in view of the pulse response, one can identify
the pulse and the noise ellipse. The angle between the average pulse direction and the major axis
of the noise ellipse is 15◦.

Fig. 5.32 shows the measured detector response to a 254 nm UV photon. From the average pulse

trajectory and the major axis of the noise ellipse, we determine ψ ≈ 15◦. Applying the standard

optimal filtering analysis to these data, we derived the NEP for both the phase and amplitude

readout, which is plotted in Fig. 5.33. We see that amplitude NEP is a factor of 4 lower than the

phase NEP at low frequency (below 10 Hz). At high frequency (above 5 kHz), the phase NEP

becomes better than the amplitude NEP again. To take advantage of the signal in both directions,

one can analyze the data using a two-dimensional optimal filtering algorithm. It can be shown that
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Figure 5.33: NEP calculated for the phase readout (blue), amplitude readout (green), and a combined
readout (red)

the two-dimensional NEP is given by

NEP−2
2D = NEP−2

pha + NEP−2
amp (5.89)

which is indicated by the lowest curve in Fig. 5.33.
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Chapter 6

Sensitivity of submm kinetic
inductance detector

In this chapter, we will discuss the sensitivity of submm MKIDs, as an example of applying the

models and theories of superconducting resonators developed in the previous chapters.

As the first stage of the detector development, these submm MKIDs are to be deployed in the

Caltech Submillimeter Observatory (CSO), a ground-based telescope. For ground-based observa-

tions, it is inevitable that the detector will be exposed to the radiations from the atmosphere and

have a background photon signal. Once the intrinsic noise of the detector is made smaller than

the shot noise of this background photon signal, the sensitivity of the detector is adequate. This

requirement is called background limited photon (BLIP) detection.

One of the important questions to be answered in this chapter is whether our submm MKIDs

can achieve the background limited photon detection on the ground, or in other words, whether the

intrinsic detector noise (g-r noise, HEMT amplifier noise, and TLS noise) is below the photon noise

of the background radiation from the atmosphere.

6.1 The signal chain and the noise propagation

In our submm MKID design, we have adopted the hybrid resonator architecture as discussed in

Section 4.4, Section 5.6.1, and shown in Fig. 5.30.

For the purpose of a sensitivity analysis, the signal chain of the detector is illustrated in Fig. 6.1:

the submm photon stream (with optical power p) breaks the Cooper pairs and generates quasipar-

ticles (with density nqp), which changes the impedance of the sensor strip Zl and the microwave

output signal V −
2 (the microwave voltage seen at the input port of the HEMT). We would like to

derive the fluctuations in the output voltage δV −
2 when the sensor strip is under the optical loading

p.
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Figure 6.1: A diagram of the signal chain and noise propagation in a hybrid submm detector.
p: optical power; Zl: load impedance of the sensor strip nqp: quasiparticle density; V −

2 : output
microwave voltage seen at the input port of the HEMT

6.1.1 Quasiparticle density fluctuations δnqp under an optical loading p

When the sensor strip is under optical loading, the total quasiparticle density nqp is the sum of

the thermal quasiparticle density nth
qp (generated by thermal phonons) and the excess quasiparticle

density nex
qp (generated by optical photons).

nqp = nth
qp + nex

qp (6.1)

Three independent physical processes are involved in changing nqp and must be modeled: thermal

quasiparticle generation, excess quasiparticle generation, and quasiparticle recombination. We can

write out the following rate equation,

dnqp(t)

dt
= [gth(t) + gex(t) − r(t)] (6.2)

where gth(t), gex(t), and r(t) are the rates for the 3 processes.

6.1.1.1 Quasiparticle recombination r(t)

The average quasiparticle recombination rate only depends on the total quasiparticle density nqp

and is calculated by[77]

〈r(t)〉 = r(nqp) = Rn2
qp. (6.3)

With this definition, the quasiparticle lifetime is given by1

1

τqp(nqp)
= 2Rnqp (6.4)

1We usually express the quasiparticle lifetime as τ−1
qp = τ−1

0
+2Rnqp, to account a finite lifetime τ0 at low nqp. In

the regime that submm MKIDs operate, nqp from the background loading is usually large enough so that the Rnqp

term will dominate over the τ−1

0
term. For this reason, we ignore the τ−1

0
term throughout the calculations in this

chapter.
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where R is the recombination constant.

We write

r(t) =
2R(t)

V
= 〈r(t)〉 + δr(t) (6.5)

where V is the volume of the sensor strip and R(t) represents the recombination events in the volume

V . R(t) is often modeled by a Poisson point process[78] and it can be shown that the auto-correlation

function of δr(t) is a delta function

< δr(t)δr(t′) > =
4

V 2
〈R(t)〉 δ(t− t′) =

2

V
Rn2

qpδ(t− t′) (6.6)

and the power spectrum is white

Sδr(f̃) =
2

V
Rn2

qp. (6.7)

6.1.1.2 Thermal quasiparticle generation gth(t)

The average thermal generation rate only depends on the bath temperature T and is in balance

with the thermal recombination rate when the system is in thermal equilibrium and without excess

quasiparticles

〈
gth(t)

〉
= gth(T ) = r(nth

qp(T )) = Rnth
qp(T )2 (6.8)

where nth
qp is the thermal quasiparticle density given by Eq. 2.93.

We write

gth(t) =
2Gth(t)

V
=
〈
gth(t)

〉
+ δgth(t) (6.9)

where Gth(t) represents the thermal generation events, which is also modeled by a Poisson point

process. The power spectrum of δgth(t) is

Sδgth(f̃) =
2

V
Rnth

qp(T )2. (6.10)

6.1.1.3 Excess quasiparticle generation gex(t) under optical loading

We assume that the number of excess quasiparticles generated by each detected submm photon

is given by ζ(ν,∆), which in general, depends both on the photon energy hν and the gap energy

∆ (binding energy of the Cooper pair). An empirical assumption about ζ(ν,∆) often adopted for

photon to quasiparticle conversion is that a fraction of ηe ≈ 60% of the photon energy goes to the
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quasiparticles,

ηe =
ζ∆

hν
(6.11)

Thus, the excess quasiparticle generation rate gex(t) and the photon detection rate Gph(t) (num-

ber of photons detected per unit time) are related by

gex(t) =
ζ

V
Gph(t). (6.12)

The statistical properties of Gex(t) can be found in photon counting theory. In addition, to

simplify the discussion, we make the following assumptions:

1. The optical loading is from the black body radiation with mean photon occupation number

nph = (e
hν
kT − 1)−1;

2. The photon numbers and their fluctuations of different modes are independent;

3. The detector has a narrow band of response (
∫
dν → ∆ν);

4. The detector is single mode (AΩ = λ2, where A is the area of the detector and Ω is diffraction

limited solid angle) and is only sensitive to one of the two polarizations;

5. The detector has a quantum efficiency of 1. (A reduced quantum efficiency η can be introduced

with the substitution nph → ηnph.)

Under these assumptions, we can derive

< Gph(t) >= ∆νnph (6.13)

p =< Gph(t) > hν = ∆νnphhν (6.14)

< δGph(t)δGph(t′) >= ∆νnph(1 + nph)δ(t− t′) (6.15)

where p is the average optical power received by the detector. Therefore

〈gex(t)〉 = gex(p) =
ζ

V
∆νnph =

ζp

hνV
(6.16)

Sδgex(f̃) =

(
ζ

V

)2

∆νnph(1 + nph) =

(
ζ

V

)2
p

hν
(1 +

p

hν∆ν
). (6.17)

6.1.1.4 Steady state quasiparticle density nqp

The steady state quasiparticle density nqp can be derived by solving

dnqp(t)

dt
= 0 (6.18)
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which leads to a quadratic equation

Rn2
qp −Rnth

qp(T )2 − ζp

hνV
= 0. (6.19)

We usually operate at a low enough temperature so that the excess quasiparticle generation rate

dominates over the thermal quasiparticle generation rate

gex(p) ≫ gth(T ). (6.20)

Under this condition, the thermal generation terms can be neglected and the steady-state equation

reduces to,

Rn2
qp =

ζp

hνV
(6.21)

and the positive root is

nqp =

√
ζp

hνRV
(6.22)

6.1.1.5 Fluctuations in quasiparticle density δnqp

The fluctuations in the quasiparticle density δnqp(t) = nqp(t) − nqp can be shown to satisfy the

following equation,

dδnqp(t)

dt
= −2Rnqpδnqp(t) + [δgth(t) + δgex(t) − δr(t)] (6.23)

This allows us to calculate the power spectrum of δnqp in the Fourier domain as,

Sδnqp(f̃) =
τ2
qp

1 + (2πf̃τqp)2
[Sδgth(f̃) + Sδgex(f̃) + Sδr(f̃)] =

τ2
qp

1 + (2πf̃τqp)2
Sgr(f̃) (6.24)

where τqp = τqp(nqp) and we have used the fact that the 3 processes are independent. Under the

condition that the excess quasiparticle generation dominates over thermal generation,

Sgr(f̃) ≈ Sδr(f̃) + Sδgex(f̃)

≈ 2ζp

hνV 2
+

(
ζ

V

)2
p

hν
(1 +

p

hν∆ν
) (6.25)

where Eq. 6.14 and Eq. 6.21 have been applied. By applying Eq. 6.3 and Eq. 6.22 we can further

derive the spectral density of the fractional quasiparticle density fluctuations,

S δnqp
nqp

(f̃) =
Sδnqp(f̃)

n2
qp

=
1/4

1 + (2πf̃τqp)2

[
(2/ζ + 1)hν

p
+

1

∆ν

]
. (6.26)
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Note that the power spectra derived above are double-sided with −∞ < f̃ <∞.

6.2 Noise equivalent power (NEP)

Now we are ready to calculate NEP of our submm MKIDs limited by different noise sources.

Throughout the derivation that follows, we make the assumption that the noise frequency f̃ of

interest is small compared to both the resonator bandwidth f̃ ≪ fr/2Qr and the recombination

bandwidth f̃ ≪ fr/2πτqp.

We also assume that the maximum microwave power allowed to be dissipated in the sensor strip

equals the submm optical power absorbed in the sensor strip times a fudge factor ξ ≥ 12

Pl = ξηep. (6.27)

This ensures that the microwave readout power will not overwhelm the optical power in generating

quasiparticles and so the quasi-particle population in the sensor strip is always dominated by the

submm photon generated quasiparticles. For simplicity, we assume ξ = 1 in future derivations.

6.2.1 Background loading limited NEP

The directive of the logarithm of Eq. 6.21 yields a very simple and useful relationship

dnqp/nqp

dp
=

1

2p
. (6.28)

The background loading limited NEP can be calculated by

NEPBLIP(f̃) =
√
SBLIP

δnqp/nqp
(f̃)

∣∣∣∣
dnqp/nqp

dp

∣∣∣∣
−1

(6.29)

=

√(
2

ζ
hν + hν +

p

∆ν

)
p

=

√(
2∆

ηe
+ hν +

p

∆ν

)
p (6.30)

where Eq. 6.26 and Eq. 6.11 have been used.

2In theory, the microwave frequency (< 10 GHz) is far below the gap frequency of Al (∼90 GHz) and can not
directly break Cooper pairs. However, in experiments we have observed both a shift in the resonance frequency and a
decrease in the quality factor as the microwave power increases, which suggests that the microwave power (dissipated
by the surface resistance) is able to increase the quasiparticle density in the superconductor through some unknown
mechanism. Because part (perhaps most part) of this dissipated microwave power goes to the phonon bath, the fudge
factor must be larger (perhaps much larger) than 1.
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6.2.2 Detector NEP limited by the HEMT amplifier

The HEMT noise temperature Tn is equivalent to a voltage fluctuation δV2− seen at the input port

of the HEMT, with the noise power spectrum given by

SHEMT
δV2−

(f + f̃) = kTnZ0 (6.31)

which, after IQ demodulation, leads to a (isotropic) noise

SHEMT
IQ (f̃) = kTnZ0/2 (6.32)

in either the phase or amplitude quadrature of the IQ voltage output. In order to calculate NEP

utilizing Eq. 6.28, we would like to convert the HEMT noise to an equivalent fluctuation in the

quasiparticle density δnqp/nqp.

In Section 4.4, we have discussed the the dynamic response of a hybrid resonator. According to

Eq. 4.73 and 4.58, under the optimal condition (which maximizes the responsivity)

Qc = Qi and f = fr (6.33)

the spectrum of the fluctuations in the microwave output voltage δV −
2 , due to fluctuations in quasi-

particle density δnqp/nqp, is given by

δV −
2 (f + f̃) = V +

1 δt21(f̃) =

√
Z0Pl

4

δnqp(f̃)

nqp

[
1 + j

Im(κ)

Re(κ)

]
(6.34)

where Pl is the power dissipated in the sensor strip. After IQ demodulation, the voltage noise in

the IQ output is3

SIQ(f̃) =
Z0Pl

8
Sδnqp/nqp

r2κ (6.35)

where rκ = Re(κ)/Im(κ) for phase readout and rκ = 1 for amplitude readout. Therefore, the

equivalent noise spectrum of the HEMT amplifier, in terms of quasi-particle fluctuations δnqp/nqp,

is given by

SHEMT
δnqp/nqp

(f̃) =
4kTn

Plr2κ
. (6.36)

With Eq. 6.28, 6.27, and 6.36, the HEMT limited NEP for both amplitude readout and phase

3Note that the noise power delivered to the load by δV2 is |δV2|2/2Z0 and a factor of 1/2 arises.
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readout can be calculated by

NEPHEMT(f̃) =
√
SHEMT

δnqp/nqp
(f̃)

∣∣∣∣
dnqp/nqp

dp

∣∣∣∣
−1

(6.37)

=

√
16kTnp

ξηer2κ
. (6.38)

6.2.3 Requirement for the HEMT noise temperature Tn in order to achieve

BLIP detection

The condition for background limited detection is that the detector noise is dominated by the

background photon noise but not the HEMT amplifier, or equivalently, the HEMT limited NEP

should be below the BLIP NEP:

NEPBLIP > NEPHEMT (6.39)

which leads to the following criteria,

(
2∆

ηe
+ hν +

p

∆ν
)p >

16kTnp

ξηer2κ
. (6.40)

This imposes a requirement for the HEMT noise temperature,

Tn <
ξr2κ(2∆ + ηehν + ηep/∆ν)

16k
. (6.41)

We assume that the optical loading is equivalent to a blackbody of temperature Tload in front

of the telescope and the telescope has an optical efficiency of ηopt, so that the optical power the

detector directly sees can be calculated from

p = ηoptkTload∆ν (6.42)

which leads to

Tn <
ξr2κ
16

(2∆/k + ηehν/k + ηeηoptTload). (6.43)

The required HEMT noise temperature Tn in order to achieve BLIP detection is calculated for

the four mm/submm bands used in MKIDcam and are listed in Table 6.1. The appropriate effective

loading temperatures Tload quoted for CSO, a photon to quasiparticle conversion factor of ηe = 0.6,

a fudge factor of ξ = 1, an overall optical efficiency of ηopt = 25%, and a ratio of 3 between

the phase signal and the amplitude signal (rκ = 3) are assumed in these calculations. For each
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band, the detector sees an optical loading around 10 pW. Also listed in Table 6.1 are the BLIP

NEP (NEPBLIP), HEMP amplifier limited NEPs for the phase readout (NEPHEMT
pha ) and amplitude

readout (NEPHEMT
amp ), where Tn = 5 K is assumed in these NEP calculations.

We find that the values of T amp
n listed in Table 6.1 are all less than 5 K, while T pha

n all greater

than 5 K, the noise temperature of the HEMT currently in use. This means that the BLIP detection

is not achieved in the amplitude readout; it would be achieved by using the phase readout, if there

were no excess phase noise. However, the fudge factor we assumed in the calculation was very

conservative ξ = 1. In reality, ξ could be much larger than 1 and the amplitude readout might have

already been or very close to be background limited, using the hybrid resonator design under the

optimal operation conditions.

Band λ0 ν0 (∆ν) Tload T amp
n T pha

n NEPBLIP NEPHEMT
amp NEPHEMT

pha NEPTLS
pha

[µm] [GHz] [K] [K] [K] [10−17 W√
Hz

] [10−17 W√
Hz

] [10−17 W√
Hz

] [10−16 W√
Hz

]

1 1300 230 (60) 50 1.2 10.6 6.7 13.8 4.6 4.6
2 1050 285 (50) 60 1.4 12.3 7.2 13.8 4.6 4.6
3 860 350 (30) 102.5 1.9 17.0 8.6 14.0 4.7 4.7
4 740 405 (20) 162.5 2.5 23.0 10.3 14.4 4.8 4.8

Table 6.1: Requirement for the HEMT noise temperature Tn in order to achieve BLIP detection cal-
culated from Eq. 6.43. λ0: center wavelength; ν0: center frequency; ∆ν: bandwidth; Tload: effective
loading temperature in front of the telescope; T amp

n , T pha
n : required HEMT noise temperature Tn for

amplitude and phase readout; NEPBLIP: background loading limited NEP; NEPHEMT
amp , NEPHEMT

pha :
HEMT limited detector NEP for amplitude readout and phase readout, calculated using Tn = 5 K
and a phase-to-amplitude signal ratio of rκ = 3; NEPTLS

pha : TLS limited detector NEP for phase

readout. All NEPs are quoted at f̃ = 1 Hz with f̃ defined in −∞ < f̃ <∞.

In deriving the results in Table 6.1, we have made several assumptions. One of the important

assumptions is that Qi is set by the superconductor loss in the sensor strip. As long as this condition

is satisfied, we find the BLIP criteria Eq. 6.43 does not depend on the detailed resonator design

parameters, such as the film thickness, the resonator geometry, or the kinetic inductance fraction.

6.2.4 Detector NEP limited by the TLS noise

Because there is no excess noise in the amplitude direction, NEPHEMT
amp quoted in Table 6.1 are

directly achievable when implementing the amplitude readout. For phase readout, however, the

NEP will be greatly degraded due to the excess phase noise caused by the TLS.

To predict the TLS limited detector NEP, we need to estimate the frequency noise for our submm

MKID. This can be done by scaling the measured noise according to Eq. H.6. The noise level of Nb

on Si resonator at the internal power of -40 dBm shown in Fig. 5.6 is chosen as the noise standard,

from which the noise will be scaled. According to Eq. H.6, the noise of different resonators should

scale with a noise scaling factor Nf = I3
g/(C

2
rV0lr). So the parameters Cr, lr, V0, and I3

g are directly

relevant to the noise scaling.



140

The detailed design parameters of a hybrid resonator used in the submm MKID array, as well

as the relevant parameter of the Nb on Si resonator, are shown in Table 6.2. In this table Band

1 parameters are used in the calculations. Those parameters directly relevant to the noise scaling

are marked with the stars. The values of Ig
3 are evaluated using the conformal mapping solution as

described in Section 3.1.2.3, assuming β = 0.33 (internal angles of 2π/3).

From the evaluation of the noise factor Nf , we find the frequency noise of the hybrid resonator

at its optimal operation power (Pint = −46 dBm) is larger than that of the Nb on Si resonator at the

internal power of -40dBm by a factor of 4.2. The predicted frequency noise for the hybrid resonators

are 2.1 × 10−19/Hz at 1kHz and 6.6 × 10−18/Hz at 1Hz, if a 1/

√
f̃ spectral shape is assumed.

To calculate NEP, the following frequency responsivity factor is needed

δfr/fr

δp
=

δfr/fr

δnqp/nqp

δnqp/nqp

δp
= − rκ

2Qi

1

2p
(6.44)

where the following formula, derived from Eq. 4.55 and 4.56, is applied:

δ
1

Qi
− 2j

δfr

fr
=

1

Qi

[
1 + j

Im(κ)

Re(κ)

]
δnqp

nqp
. (6.45)

Finally, the TLS noise limited detector NEP for phase readout is given by

NEPTLS
pha =

√
Sδfr (f̃)/f2

r

∣∣∣∣
δfr/fr

δp

∣∣∣∣
−1

=
4pQi

rκ

√
Sδfr (f̃)/f2

r . (6.46)

The results of NEPTLS
pha are listed in Table 6.1 for all four bands and in Table 6.2 for Band 1.

We can see that for phase readout, the TLS limited detector NEP is a factor of 10 higher than

the HEMT limited NEP and is a factor of 5 – 7 higher than the BLIP NEP. Therefore, the BLIP

detection is not achieved using the current design with the phase readout.

One way of achieving a better NEPTLS
pha is to make the film thinner. As the result of a thinner

film, the kinetic inductance fraction α, the quasiparticle density nqp, and the fractional frequency

noise Sδfr/f
2
r will increase, while the internal Qi, the internal power Pint, and the quasiparticle

lifetime τqp will decrease. It can be shown that Sδfr/f
2
r increases as

√
1/Qi and NEPTLS

pha decreases

at a fixed optical loading, according to Eq. 6.46. Currently we are also working on modifying the

design to implement a interdigitated capacitor scheme, as discussed in Sec. 5.6.1.2, to reduce the

TLS noise.
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Parameter Meaning Nb/Si hybrid Reference
fr [GHz] resonance frequency 4 7.5
sr [µm] center strip width 3 6 Fig. 4.4
gr [µm] gap width 2 2 Fig. 4.4
t [nm] film thickness 200 60
ls [mm] length of the sensor strip (Al) - 1 Fig. 4.4
V [µm3] volume of the sensor strip (Al) - 360
∗lr [mm] total length of resonator 8.3 4.3 Eq. 4.29
∗Cr [pF/m] capacitance per unit length 142 171 Sec. 3.1.2.3
Lr [H/m] inductance per unit length - 349 Sec. 3.1.2.3
Zr [Ω] characteristic impedance - 45 Eq. 4.3
α∗ partial kinetic inductance fraction - 0.2 Sec. 3.2.5
Tc [K] transition temperature - 1.35
∆0 [meV] superconducting gap - 0.2
T [K] operation temperature 0.12 0.22

κ [10−7µm3] δσ/|σ|
δnqp

- 1.19 + 3.35j Eq. 2.100

γ a power index - -1 Eq. 2.80
p [pW] detector optical loading - 1.03 Eq. 6.42
R [µm−3s−1] recombination constant - 9.6 Ref. [77]
nqp,0 [µm−3] steady-state quasiparticle density - 7403 Eq. 6.22
τqp [µs] quasiparticle recombination time - 7 Eq. 6.4
Qi internal quality factor - 12200 Eq. 4.55
Qc coupling quality factor - 12200 Eq. 6.33
Qr resonator quality factor - 6100 Eq. 4.35
Pµw [dBm] readout power - -79 Eq. 4.59
Pint [dBm] internal power -40 -46 Eq. H.4
∗V0 [mV] voltage at open (coupler) end 6.5 3 Eq. H.4
∗I3

g [V3µm−2] contour integral on metal surface 1.35 1.95 Sec. 5.5.2.2

∗Nf = I3
g/(C

2
rV0lr) noise scaling factor 1.24 5.2 Eq. H.6

Sδfr (1 kHz)/f2
r

[10−19/Hz]
noise level at 1 kHz 0.5 2.1 Fig. 5.6

Sδfr (1 Hz)/f2
r

[10−18/Hz]
noise level at 1 Hz (1/

√
f shape) 1.6 6.6 Sec. 5.3.1

δfr/fr

δp [1/W] responsivity - 5.6 × 106 Eq. 6.44

NEPTLS
pha

[10−16W/
√

Hz]

TLS limited NEP for phase readout - 4.6 Eq. 6.46

Table 6.2: Design parameters and derived quantities involved in the calculation of TLS limited
detector NEP
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Appendix A

Several integrals encountered in
the derivation of the
Mattis-Bardeen kernel K(q) and
K(η)

A.1 Derivation of one-dimensional Mattis-Bardeen kernel K(η)

and K(q)

The Mattis-Bardeen non-local equation 2.11 is a vector equation in the general form of three-

dimensional convolution

~J(~r) =

∫
K̃(~R) · ~A(~r′)d~r′ (A.1)

where

K̃(~R) = C
~R~RI(ω,R, T )e−R/l

R4
(A.2)

~R = (x′ − x)x̂+ (y′ − y)ŷ + (z′ − z)ẑ. (A.3)

K̃(~R) is a tensor and C is an unimportant constant. In the configuration of a plane wave polarized

in the x direction incident onto the surface of a bulk superconductor in the x− y plane as shown in

Fig. 2.1, we need to derive the one-dimensional form of Eq. A.1. With

~J = Jxx̂, ~A = Axx̂ (A.4)
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we can rewrite Eq. A.1 in Cartesian coordinates as

Jx(z) =

∫ ∫ ∫
C

(x̂ · ~R)2I(ω,R, T )e−R/l

R4
Ax(z′)dx′dy′dz′ (A.5)

=

∫
K(z′ − z)Ax(z′)dz′ (A.6)

where

K(z′ − z) = C

∫ ∫
(x̂ · ~R)2I(ω,R, T )e−R/l

R4
dx′dy′. (A.7)

(A.8)

Using the property that

f(z′) =

∫
f(z′′)δ(z′ − z′′)dz′′ (A.9)

we get

K(z′ − z) = C

∫ ∫ ∫
(x̂ · ~R1)

2I(ω,R1, T )e−R1/l

R4
1

δ(z′ − z′′)dx′dy′dz′′ (A.10)

= C

∫
(x̂ · ~R1)

2I(ω,R1, T )e−R1/l

R4
1

δ((z′ − z) − (z′′ − z))d~R1 (A.11)

~R1 = (x′ − x)x̂+ (y′ − y)ŷ + (z′′ − z)ẑ. (A.12)

This integral can be worked out in spherical coordinates

K(z′ − z) = C

∫ ∞

0

dR1

∫ π

0

sin θdθ

∫ 2π

0

dφ sin2 θ cos2 φI(ω,R1, T )e−R1/lδ(z′ − z −R cos θ)

= Cπ

∫ ∞

0

dR1

∫ π

0

dθ sin3 θI(ω,R1, T )e−R1/lδ(z′ − z −R1 cos θ)

= Cπ

∫ ∞

0

dR1

∫ 1

−1

dt(1 − t2)I(ω,R1, T )e−R1/lδ(z′ − z −R1t)

= Cπ

∫ 1

−1

dt
1 − t2

|t|

∫ ∞

0

dR1I(ω,R1, T )e−R1/lδ(R1 −
z′ − z

|t| )

=





Cπ
∫ 1

0 dt
1−t2

|t| I(ω,
z′−z

t , T )e−
z′−z

tl z′ − z > 0

Cπ
∫ 0

−1
dt 1−t2

|t| I(ω,
z′−z

t , T )e−
z′−z

tl z′ − z < 0

= Cπ

∫ 1

0

dt
1 − t2

t
I(ω,

|z′ − z|
t

, T )e−
|z′−z|

tl

= Cπ

∫ ∞

1

du(
1

u
− 1

u3
)I(ω, |z′ − z|u, T )e−

|z′−z|u
l . (A.13)
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Finally, we have

K(η) = Cπ

∫ ∞

1

du(
1

u
− 1

u3
)I(ω, |η|u, T )e−|η|u/l (A.14)

with η = z′ − z.

The one-dimensional kernel in Fourier space K(q) can be worked out by Fourier transform of

Eq. A.14. Instead of working on the final result, we start from one of the intermediate results in

Eq. A.13:

K(q) = −
∫ ∞

−∞
K(η)ejqηdη

= −Cπ
∫ ∞

0

dR1

∫ 1

−1

dt(1 − t2)I(ω,R1, T )e−R1/l{
∫ ∞

−∞
δ(η −R1t)e

jqηdη}

= −Cπ
∫ ∞

0

dR1

∫ 1

−1

dt(1 − t2)I(ω,R1, T )e−R1/lejqR1t

(A.15)

where the minus sign arises from the definition Jx(q) = −K(q)Ax(q) in Eq. 2.15. The integral with

respect to t can be easily carried out

∫ 1

−1

(1 − t2)ejR1qtdt =
4

(qR1)2
[
sin qR1

qR1
− cos(qR1)]. (A.16)

Finally, we get

K(q) = −Cπ
∫ ∞

0

[
sin qR1

(qR1)3
− cos qR1

(qR1)2
]I(ω,R1, T )e−R1/ldR1. (A.17)

A.2 R(a, b) and S(a, b)

We encounter the following two integrals in solving for K(q):

∫ ∞

0

e−bx(
sinx

x3
− cosx

x2
) cos axdx = R(a, b) (A.18)

∫ ∞

0

e−bx(
sinx

x3
− cosx

x2
) sin axdx = S(a, b). (A.19)

They can be worked out by method of Laplace transform. Let s = b− ia and

W (s) = R(a, b) + iS(a, b)

=

∫ ∞

0

1

x2
(
sinx

x
− cosx)e−(b−ia)xdx

=

∫ ∞

0

{ 1

x2
(
sinx

x
− cosx)}e−sxdx. (A.20)
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Now the problem becomes finding the Laplace transform of the term in the curly brackets. From

the two tabulated Laplace transforms:

L(sinx) =
1

1 + s2
(A.21)

L(cosx) =
s

1 + s2
(A.22)

and by iteratively applying the property of Laplace transform:

L(f(x)) =

∫ s

0

L(f ′(x))ds + f(0) (A.23)

W (s) works out to be

W (s) = −s
2

+
s2 + 1

2
arctan

1

s
. (A.24)

It follows that

R(a, b) = Re[W (b − ia)]

= − b

2
+
ab

4
ln[
b2 + (1 + a)2

b2 + (1 − a)2
] +

1

4
(1 + b2 − a2){arctan[

2b

b2 + a2 − 1
] + nxπ} (A.25)

S(a, b) = Im[W (b − ia)]

=
a

2
− ab

2
{arctan[

2b

b2 + a2 − 1
] + nxπ} +

1

8
(1 + b2 − a2) ln[

b2 + (1 + a)2

b2 + (1 − a)2
] (A.26)

nx = 0 for b2 + a2 − 1 ≥ 0, nx = 1 for b2 + a2 − 1 < 0.

In our numerical program, R(a, b) and S(a, b) are evaluated by Eq. A.25 and Eq. A.26.

A.3 RR(a, b), SS(a, b), RRR(a, b, t), and SSS(a, b, t)

The following two integrals are encountered in solving for K(η) in the thin film surface impedance

calculation:

∫ ∞

1

(
1

u
− 1

u3
)e−au cos(bu)du = RR(a, b) (A.27)

∫ ∞

1

(
1

u
− 1

u3
)e−au sin(bu)du = SS(a, b). (A.28)

Let s = a+ jb and define

X(s) = RR(a, b) − jSS(a, b)

=

∫ ∞

1

(
1

u
− 1

u3
)e−sudu. (A.29)
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The complex-valued integral of X(s) can be worked out and the result is

X(s) =
s− 1

2
e−s − s2 − 2

2
E1(s) (A.30)

where E1(s) is a special function called exponential integral. In our numerical program, RR(a, b)

and SS(a, b) are evaluated from first evaluating X(s) from Eq. A.29 and then taking the real and

imaginary part. Separate expressions of the real and imaginary part are also available and given by

Popel[40].

When solving for

Knn′(η) =
2

t

∫ t
2

0

K(η)dη (A.31)

two other integrals are encountered

2

t

∫ t/2

0

SS(aη, bη)dη = RRR(a, b, t) (A.32)

2

t

∫ t/2

0

SS(aη, bη)dη = SSS(a, b, t). (A.33)

With s = a+ jb, we define

Y (s, t) = RRR(a, b, t) − jSSS(a, b, t)

=
2

t

∫ t/2

0

∫ ∞

1

(
1

u
− 1

u3
)e−sηududη.

(A.34)

The complex-valued integral Y (s, t) works out to be

Y (s, t) =

∫ ∞

1

(
1

u
− 1

u3
)
2(1 − estu/2)

stu
du

=
4

3st
+ (

st

12
− 1

6
− 4

3st
)e−st/2 + (1 − s2t2

24
)E1(st/2). (A.35)

In our numerical program, RRR(a, b, t) and SSS(a, b, t) are evaluated from first evaluating the

complex Y (s) from Eq. A.35 and then taking the real and imaginary parts of Y (s). Separated

expressions of the real and imaginary parts are also available and given by Popel.
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Appendix B

Numerical tactics used in the
calculation of surface impedance of
bulk and thin-film superconductors

B.1 Dimensionless formula

The integrals of K(q) in Eq. 2.19 and Eq. 2.20 are made dimensionless by redefining the following

normalized variables:

ω =
~ω

∆
, q =

~v0q

∆
, bq =

~v0
∆l

, b =
bq
q

(B.1)

ǫ =
E

∆
, ∆1 =

√
|ǫ2 − 1|, ∆2 =

√
|(ǫ+ ω)2 − 1| (B.2)

a1 =
∆1

q
, a2 =

∆2

q
, a+ = a1 + a2, a− = a1 − a2 (B.3)

and K(q) becomes

Re{λ2
L0K(q)} =

3

q
×

{∫ 1

max{1−ω,−1}
[1 − 2f(ǫ+ ω)]{ ǫ(ǫ+ ω) + 1√

1 − ǫ2
√

(ǫ+ ω)2 − 1
R(a2, a1 + b) + S(a2, a1 + b)}dǫ

+
1

2

∫ −1

1−ω

[1 − 2f(ǫ+ ω)]{[g(ǫ) + 1]S(a−, b) − [g(ǫ) − 1]S(a+, b)}dǫ

−
∫ ∞

1

[1 − f(ǫ) − f(ǫ+ ω)][g(ǫ) − 1]S(a+, b)dǫ

+

∫ ∞

1

[f(ǫ) − f(ǫ+ ω)][g(ǫ) + 1]S(a−, b)dǫ

}
(B.4)

(B.5)
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Im{λ2
L0K(q)} =

3

q
×

{
−1

2

∫ −1

1−ω

[1 − 2f(ǫ+ ω)]{[g(ǫ) + 1]R(a−, b) + [g(ǫ) − 1]R(a+, b)}dǫ

+

∫ ∞

1

[f(ǫ) − f(ǫ+ ω)]{[g(ǫ) + 1]R(a−, b) + [g(ǫ) − 1]R(a+, b)}dǫ
}
. (B.6)

B.2 Singularity removal

The integrals in Eq. B.4 and Eq. B.6 involves finite and infinite integrals with singularity at lower

or upper limit. They can be pre-removed by the following change of variables:

∫ b

a

f(x)√
x− a

dx = 2

∫ √
b−a

0

f(y2 + a)dy, x = y2 + a

∫ b

a

f(x)√
x− b

dx = 2

∫ √
b−a

0

f(b− y2)dy, x = b− y2

∫ b

a

f(x)√
x− a

√
x− b

dx =

∫ a+b
2

a

f(x)√
x− a

√
x− b

dx+

∫ b

a+b
2

f(x)√
x− a

√
x− b

dx

∫ a

−a

f(x)√
x2 − a2

dx =

∫ −π/2

π/2

f(sin y)dy, x = sin y. (B.7)

We also encounter a singularity in the integral of Eq. 2.36 at Q = 0. To remove it, we first split the

integration interval of [0,∞] into [0, 1] and [1,∞]. Then the first integral can be rewritten as

∫ 1

0

ln(1 +
λ2

L0K(Q/λL0)

Q2
dQ)

=

∫ 1

0

ln(Q2 + λ2
L0K(Q/λL0)dQ) −

∫ 1

0

lnQ2dQ

=

∫ 1

0

ln(Q2 + λ2
L0K(Q/λL0)dQ) + 2

(B.8)

which is no longer singular at Q = 0.
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B.3 Evaluation of K(η)

It can be derived that the expression of K(η) ( η > 0) can be obtained from the expression of K(q)

with the following substitutions

1/q → η

R(a, b) → RR(a, b)

S(a, b) → SS(a, b)

− qK(q)
4 → K(η)

. (B.9)

Similarly, Knn can be obtained from the expression of K(q) with the following substitutions

1/q → t/2

R(a, b) → RRR(a, b, t)

S(a, b) → SSS(a, b, t)

− qK(q)
4 → Knn

. (B.10)

Thus the numerical integrals of K(q) developed for the the bulk case can be largely reused with

slight modifications for the thin film case.
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Appendix C

jt/jz in quasi-TEM mode

z

t
w

h

+ + + + + + + + + + + +

+      +     +     +     +     +     +     +

1 2

Figure C.1: Current and charge distribution on the surface of the center strip

The continuity equation of charge reads

∇ · ~J +
∂ρ

∂t
= 0 (C.1)

which can be rewritten into the following form

∇t · ~jt = jβjz − jωρ. (C.2)

For a CPW in a homogenous media, a pure TEM mode exists. In this mode,

βjz = ωρ (C.3)

jt = 0 (C.4)

holds on every point on the conductor surface. From an integral of Eq. C.3 along an arbitrary

contour enclosing the center conductor, we get

βIz = ωQ (C.5)
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where Q is the total charge (per unit length) on the center strip. For a CPW with substrate-air

inhomogeneity, Eq. C.5 still holds macroscopically. From the solution to the magnetostatic problem,

Iz splits into equal halves on the bottom and top sides of the center strip and jz is symmetric on

the two sides. From the solution to the electrostatic problem, we have an unequal distribution of

total charge Q, with Q/(1 + ǫr) and Qǫr/(1 + ǫr) on the top and bottom sides (see Fig. C.1). In

this case, Eq. C.3 and C.4 no longer hold on every point and the magnitude of ∇t · ~jt may be on the

same order of βjz at some points:

∇t · ~jt ∼ βjz . (C.6)

Integrating Eq. C.6 in the rectangular area as shown in Fig. C.1 and applying the divergence theorem,

we find

(j2t − j1t )h ∼ βjzwh

jt ∼ j2t − j1t ∼ βjzw (C.7)

which leads to

jt
jz

∼ w

λ
. (C.8)

The result in Eq. C.8 can be understood by looking at the charge redistribution: jz redistributes

the charges along the propagation direction (z direction) and jt redistributes the charges within the

cross-sectional plane; in a cycle, jz effectively moves the charges by the distance of a wavelength λ

while jt moves the charges by a distance no greater than the transverse dimension w. Therefore,

the ratio of jz to jt is on the order of the ratio of the wavelength to the transverse dimension of the

transmission line.
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Appendix D

Solution of the conformal mapping
parameters in the case of t ≪ a

We first write u1, u
′
1, u2, u

′
2 as

u1 = a+ δ1 (D.1)

u2 = b+ δ2 (D.2)

u′1 = u1 − d1 (D.3)

u′2 = u2 + d2. (D.4)

δ1, δ2, d1 and d2 all go to zero as t goes to zero. To solve the integral equations in Eq. 3.22–3.25,

we rewrite the integrand G(u) as

G(w) =

√∣∣∣∣
w − u′1
w − u1

· w + u′1
w + u1

· w − u′2
w − u2

· w + u′2
w + u2

∣∣∣∣ (D.5)

which is the square-root of a product of 4 fractions. Because u1 ≈ u′1 and u2 ≈ u′2, the pair of zero

and pole in each fraction are very close to each other. Whenever the pair of zero and pole are far

away from the integration interval, we replace the fraction with its first-order Taylor expansion, e.g.,

√
w − u′1
w − u1

≈ 1 − d1

2(w − u1)
. (D.6)
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Eq. 3.23 can be approximately worked out

t =

∫ u1

u′
1

G(w′)dw′

≈
∫ u1

u′
1

√
w′ − u′1
u1 − w′ dw

′ + o(t)

=
πd1

2
. (D.7)

In the same way Eq. 3.25 yields t = πd2/2. Therefore

d1 = d2 = d =
2t

π
. (D.8)

Eq. 3.22 and Eq. 3.24 can be worked out with a few more steps

a ≈
∫ u′

1

0

√
u′1 − w′

u1 − w′

[
1 − d

2(w′ + u1)
+

d

2(w′ − u2)
+

d

2(w′ + u2)

]
dw′

≈
∫ u′

1

0

√
u′1 − w′

u1 − w′ +
d

2

∫ u′
1

0

(
− 1

w′ + u1
+

1

w′ − u2
+

1

w′ + u2

)
dw′

=

(
√
u1(u1 − d) + d log

√
d

√
u1 +

√
u1 − d

)
+
d

2

(
− log 2 + log

u1 + u2

u2
+ log

u2

u2 − u1

)

= u1 −
d

2
− 3 log 2

2
+
d

2
log

d

a
+
d

2
log

a+ b

b− a

b− a ≈
∫ u2

u1

√
w′ − u′1
w′ − u1

u′2 − w′

u2 − w′

[
1 − d

2(w′ + u1)
+

d

2(w′ + u2)

]
dw′

≈
∫ u2

u1

√
w′ − u′1
w′ − u1

u′2 − w′

u2 − w′ +

∫ u2

u1

d

2

[
− 1

w′ + u1
+

1

w′ + u2

]
dw′

≈
(
u2 − u1 + d− log

d

4(u2 − u1)

)
+
d

2

(
− log

u1 + u2

2u1
+ log

2u2

u1 + u2

)

=

(
u2 − u1 + d− log

d

4(b− a)

)
+
d

2

(
− log

a+ b

2a
+ log

2b

a+ b

)
. (D.9)

The sum of the two equations gives

b = u2 +
d

2
+

3 log 2

2
− d

2
log

d

b
+
d

2
log

b− a

a+ b
. (D.10)

Therefore

δ1 =
d

2
+

3 log 2

2
d− d

2
log

d

a
+
d

2
log

b− a

a+ b

δ2 =
d

2
+

3 log 2

2
d− d

2
log

d

b
+
d

2
log

b − a

a+ b

(D.11)
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and Eq. 3.27 is derived.
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Appendix E

Fitting the resonance parameters
from the complex t21 data

In this appendix, we discuss how to determine the resonance parameters fr, Qr, and Qc by fitting

to the measured complex t21 data from the network analyzer.

E.1 The fitting model

The total transmission t21 through the device, amplifiers, and cables measured by the network

analyzer, can be written as

t21(f) = ae−2πjfτ

[
1 − Qr/Qce

jφ0

1 + 2jQ(f−fr

fr
)

]
. (E.1)

Eq. E.1 is our fitting model which contains seven parameters: arg[a],|a|, τ , fr, Qr, Qc, and

φ0. Here a is a complex constant accounting for the gain and phase shift through the system.

The constant τ accounts for the cable delay related with the path length of the cables. The other

parameters have been introduced in Chapter 4.

E.2 The fitting procedures

Although it is possible to use Eq. E.1 and directly fit for all the 7 parameters simultaneously, such a

nonlinear multi-parameter fitting problem is non-robust and extremely sensitive to the initial values.

For this reason, we usually break down the 7-parameter fitting problem into several independent

fitting problems, each only containing one or two parameters. The fitting results obtained from

this step-by-step method are usually quite good. If further accuracy is needed or the statistics of

the fitting results are required, we will finally run a 7-parameter refined fitting, using the results

obtained from the step-by-step method as initial values.
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Figure E.1: Fitting the resonance circle step by step in the complex plain. The data in this plot is
from a Al on Si resonator.

E.2.1 Step 1: Removing the cable delay term

Let {(fi, zi)} be the set of transmission data we would like to fit, which is measured by a network

analyzer at a low temperature (usually between 50 mK and 200 mK for Al devices).

The cable delay time τ can be measured directly using the network analyzer’s “electronic delay”

function. At off-resonance frequencies the t21 data reflects the pure cable term e2πjfτ , which is

usually a circle or an arc centered at the origin. When the electronic delay τ is set to an optimal

value, these circles (arcs) should shrink to a blob of minimal size. For example, in our current setup

τ is usually around 30 ns, which depends on the length of the coaxial cables in use. Another way to

remove the cable effect is to normalize the low temperature transmission data z by the transmission

data zb measured at a much higher temperature (above Tc/2). At this high temperature, the

superconductor loss becomes so large that almost all the resonances have died out, leaving only the

trace of the cable delay term (see the green curve in Fig. E.1).

After this step, with the cable delay term removed, the new data z′ should now appear as a circle

(see the red curve in Fig. E.1).

E.2.2 Step 2: Circle fit

In this step, we will determine the center zc = xc + jyc and the radius r of the circle z′ resulted

from the previous step. For this circle fitting problem, we use the method described by Chernov
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and Lesort[79]. In this method, the objective function to be minimized is

F(xc, yc, r) =
n∑

i=1

[Aw′
i
2

+Bx′i + Cy′i +D]2 (E.2)

which is subject to the constraint B2 + C2 − 4AD = 1. Here w′
i
2

= x′i
2

+ y′i
2
. In matrix form,

F = ATMA and the constraint is ATBA = 1, where

A = (A,B,C,D)T

M =




Mww Mxw Myw Mw

Mxw Mxx Mxy Mx

Myw Mxy Myy My

Mw Mx My n




(E.3)

B =




0 0 0 −2

0 1 0 0

0 0 1 0

−2 0 0 0




(E.4)

(E.5)

where Mij are the moments of the data. For example, Mxw =
∑n

i=1 xiwi and Mx =
∑n

i=1 xi.

This is a constrained nonlinear minimization problem which can be solved by the standard

Lagrange multiplier method. With the introduction of a Lagrange multiplier η we minimize the

function

F∗ = ATMA− η(AT BA − 1) (E.6)

Differentiating with respect to A leads to the linear equation

MA− ηBA = 0 (E.7)

η can be solved from the equation

det(M − ηB) = 0 (E.8)

Q(η) = det(M−ηB) = 0 is a polynomial equation of 4-th degree. It can be shown that Q(η) = 0 has

3 positive roots and the smallest one minimizes F∗. Thus η can be efficiently found by a numerical

root searching algorithm with start value of η = 0. Once η is determined, other parameters A, B C,
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Figure E.2: Fitting the phase of z′′i (a)Z ′′ (b)θi(f) (blue) and its fit(red)

D can be obtained from Eq. E.7 and the circle parameters are given by

xc = − B

2A

yc = − C

2A

r =
1

4A2
(E.9)

The purple dashed curve in Fig. E.1 shows the result from this circle fitting procedure.

E.2.3 Step 3: Rotating and translating to the origin

In this step, we translate the circle to the origin and align it along real axis by the following

transformation:

z′′i = (zc − z′i) exp (−jα) (E.10)

where zc and α = arg(zc) are the results from circle fitting. This is equivalent to setting up a new

coordinate system at the center of the circle as shown in Fig. E.1.

E.2.4 Step 4: Phase angle fit

In this step, the phase angle θ of z′′i as a function of f is fit to the following profile:

θ = −θ0 + 2 tan−1[2Qr(1 − f

fr
)] (E.11)
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where θi = arg(z′′i ). We use Matlab curve fitting toolbox to carry out a robust non-linear minimiza-

tion:

min

{
n∑

i=1

∣∣∣∣θi + θ0 − 2 tan−1[2Qr(1 − fi

fr
)]

∣∣∣∣
2
}
. (E.12)

fr, Qr, and θ0 are determined from the fit. The phase angle data and fit are shown in Fig. E.2(b).

Figure E.3: Geometric relationships used to determine Qc and φ0

E.2.5 Step 5: Retrieving other parameters

The parameters Qc and φ0 can be found from the geometric relationships illustrated in Fig. E.3.

According to Eq. 4.40, Qc is

Qc =
|zc| + r

2r
Qr. (E.13)

And φ0 is related to θ0 by

φ0 = θ0 − arg(zc). (E.14)

E.3 Fine-tuning the fitting parameters

The parameters obtained from the step-by-step fitting procedures can be used as the initial values

to run a refined multi-parameter non-linear fitting. This time we fit zi directly to Eq. (E.1). We use

Matlab curve fitting toolbox to do a robust non-linear least-squared fitting. One of the advantages

of using the curve fitting toolbox is that the confidence interval for each parameter is automatically

reported by the toolbox. To evaluate and compare the goodness of the fits, we calculate the reduced

χ2 by

χ2 =
1

n− 7

∑n
i=1 |zi − zfit|2

σ2
z

. (E.15)
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Figure E.4: Refining the fitting result from the step-by-step fitting procedures. The result from the
step-by-step fitting procedures is plotted in (a) and (b), while the result from the refined fitting
procedure is plotted in (c) and (d). Data z (blue) and its fit zfit(red) are plotted in (a) and (c). Real
(blue) and imaginary (green) part of the residues (zfit − z) are plotted in (b) and (d).



161

where n − 7 is the degree of freedom in the fitting problem. σ2
z is estimated from the mean square

distance between two adjacent data points of the first m data points

σ2
z =

∑m
i=1 |zi − zi+1|2

2m
(E.16)

This method of estimating σ2
z works quite well because the first m data points are usually at off

resonance frequencies with the Gaussian-distributed noise from the measurement system.

As shown in Fig. E.4, both the initial fit and the refined fit usually have small χ2. The refined

fit yields a χ2 close to 1, which means the fitting model Eq. E.1 is a good model.

E.4 Fitting |t21|2 to the skewed Lorentzian profile

Resonance parameters can also be found by fitting the |t21|2 data to the following skewed Lorentzian

model

|t21(f)|2 = A1 +A2(f − fr) +
A3 +A4(f − fr)

1 + 4Q2
r

(
f−fr

fr

)2 . (E.17)

The fitting result is shown in Fig. E.5. For the data set used throughout this appendix, we find that

the result of fr from this skewed Lorentzian fit agrees with the previous fitting method within 10−7

and Q within 0.1%.
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Figure E.5: Fitting |t21| to skewed Lorentzian model
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Appendix F

Calibration of IQ-mixer and data
correction

Assume that the LO port of the IQ mixer is fed with a microwave signal of complex amplitude

ALO = 1 and the RF port with ARF = reiθ . The output voltages can be written as

I = I0 +AI cos θ (F.1)

Q = Q0 +AQ cos(θ + γ). (F.2)

Here γ is the phase difference between the I and Q channels. I0, Q0 account for the DC offset and

AI , AQ account for the unbalanced gains in the two channels. For an ideal IQ-mixer, γ = −π/2,

I0 = Q0 = 0, AI = AQ = A, and as θ goes from 0 to 2π, the IQ output traces out a circle centered

at the origin in the IQ plane. For a nonideal IQ-mixer, the output traces out an ellipse which is off

the origin, as shown in Fig. F.1. Easy to see that the center of the ellipse is at (I0, Q0). It can

be shown that the other 3 mixer parameters AI , AQ, and γ are related to the half long axis a, half

short axes b, and the orientation angle Φ by

AI =
√
a2 cos2 Φ + b2 sin2 Φ

AQ =
√
a2 sin2 Φ + b2 cos2 Φ

γ = α1 − α2

α1 = arctan
b sin Φ

a cosΦ

α2 = π − arctan
b cosΦ

a sin Φ
. (F.3)

These relationships are illustrated in Fig. F.2 by two triangles.

According to Eq. F.3, the 3 parameters AI , AQ, and γ, which characterize a non-ideal IQ mixer,

can be fully determined from the IQ ellipses. This provides us a way to experimentally measure

these parameters. One can use a phase shifter to produce a θ sweep and obtain the IQ ellipse.
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Figure F.1: IQ mixer output tracing out an ellipse

Unfortunately, we do not have a programmable phase shifter. Instead, we obtain the IQ ellipse by

beating two synthesizers. The output frequencies of the two synthesizers are set to be 1 kHz apart

and the IQ ellipses are digitized at a sample rate of 2 kHz for 1 second (two circles are recorded).

The data is then fit to a ellipse by standard routines to give a, b, and Φ.

The IQ ellipses measured at a number of frequencies and RF input powers by beating two

synthesizers are plotted in Fig. F.3. The ratio of AI/AQ and γ are indicated in these plots. As

expected, the AI/AQ is close to but not exactly 1. γ varies between −85◦ and −113◦ at frequencies

between 2 GHz and 10 GHz. The ellipses under different RF input powers at the same frequency

are concentric and the long and short axes scale linearly with RF amplitude. From these ellipses,

we obtain AI , AQ, and γ at discrete frequencies and powers from Eq. F.3. These values are then

interpolated at arbitrary frequency and power in the measurement range to generate the continuous

functions AI(f, PRF), AI(f, PRF), and γ(f, PRF). Using these functions, the amplitude and phase



164

1

 

 

I

(a)

 2

AQ

a sin!

b cos!

x

(b)

Figure F.2: Relationships between AI , AQ, γ and a, b, Φ illustrated in two triangles

of the original RF input microwave signal can be recovered by

g =
cos(θ + γ)

cos θ
=
AIQ

AQI

θ =





arctan cos γ−g

sin γ (I > 0)

arctan cos γ−g
sin γ + π (I < 0)

r =





I
AI cos θ (if cos θ 6= 0)

Q
AQ cos(θ+γ) (if cos θ = 0)

. (F.4)
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Figure F.3: IQ ellipses from beating two synthesizers. Data and fits are plotted in blue and red,
respectively. Ellipses for each frequency are measured with LO power of 13 dBm and RF power in
steps of 2 dBm.
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Appendix G

Several integrals encountered in
the calculation of ǫTLS(ω)

G.1 Integrating
��

χ res (ω) over TLS parameter space

Here we evaluate the integral of Eq. 5.55. Let

χ(ωε, ω) =
1

~(ωε − ω + jT−1
2 )

+
1

~(ωε + ω − jT−1
2 )

. (G.1)

The full integral reads

ǫTLS(ω) =

∫∫ [
ê·

��

χ res (ω) · ê
] P

∆0
d∆0d∆dd̂

=

∫ ∆max

0

d∆

∫ ∆0,max

∆0,min

P

∆0
d∆0

∫ π
2

0

sin θdθ

×
{(

∆0

ε

)2

d2
0 cos2 θ tanh

( ε

2kT

) [ 1 + (ωε − ω)2T 2
2

1 + Ω2T1T2 + (ωε − ω)2T 2
2

]
χ(ωε, ω)

}
. (G.2)

Let u = ∆0/ε. By applying the following change of variables

∫ ∆max

0

∫ ∆0,max

∆0,min

P

∆0
d∆0d∆ −→

∫ εmax

0

∫ 1

umin

P

u
√

1 − u2
dudε (G.3)

the integral reduces to

ǫTLS(ω) = Pd2
0

∫ εmax

0

dε

∫ 1

umin

u√
1 − u2

du

∫ π
2

0

cos2 θ sin θdθ

×
{

tanh
( ε

2kT

) [ 1 + (ωε − ω)2T 2
2

1 + Ω2T1T2 + (ωε − ω)2T 2
2

]
χ(ωε, ω)

}
. (G.4)



167

1 10 100 1000

10 5

10 4

0.001

0.01

0.1

1

13/

3/1
2

 a

)(F a

Figure G.1: Comparison between F (a) and 1/(a2 + 3)

Note that

Ω2T1 =

(
2d0| ~E| cos θ

~

∆0

ε

)2

× T1,min

(
ε

∆0

)2

= 2d2
0| ~E|2 cos2 θT1,min/~

2 (G.5)

has dependence on θ but no dependence on u. Therefore, the integral of u can be separately worked

out

∫ 1

umin

u√
1 − u2

du =
√

1 − u2
min ≈ 1 (G.6)

reducing the integral to

ǫTLS(ω) = Pd2
0

∫ π
2

0

cos2 θ sin θdθ

×
{∫ εmax

0

dε tanh
( ε

2kT

) [ 1 + (ωε − ω)2T 2
2

1 + Ω2T1T2 + (ωε − ω)2T 2
2

]
χ(ωε, ω)

}
. (G.7)

The integral on θ is of the following form

∫ 1

0

t2

a2t2 + 1
dt =

a− arctan(a)

a3
= F (a). (G.8)

In fact, for all range of a, F (a) can be well approximated by a simpler function, as shown in Fig. G.1

F (a) ∼ 1

3

1

a2/3 + 1
. (G.9)

According to Eq. G.9, the θ-integral and θ-dependence of Ω can be effectively removed by substi-
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tuting d0/
√

3 for d0 in the ε integral

ǫTLS(ω) =
Pd2

0

3

∫ εmax

0

dε tanh
( ε

2kT

)[ 1 + (ωε − ω)2T 2
2

1 + Ω
2
T1T2 + (ωε − ω)2T 2

2

]
χ(ωε, ω) (G.10)

where the effective Rabi frequency is modified to

Ω =
2d0| ~E|√

3

∆0

ε
. (G.11)

G.2 ǫTLS(ω) for weak field (| ~E| → 0).

If the electric field is weak and Ω
2
T1T2 ≪ 1 is satisfied, we can set Ω = 0 in Eq. G.7. The integral

of θ can now be separated to yield 1/3. The integral simplifies to

ǫTLS(ω) =
Pd2

0

3~

∫ εmax

0

tanh
( ε

2kT

)[ 1

ωε − ω + jT−1
2

+
1

ωε + ω − jT−1
2

]
dε. (G.12)

Now let x = ε/kT , z = (~ω − j~T−1
2 )/kT and xm = εmax/kT . We rewrite the integral as

ǫTLS(ω) =
Pd2

0

3

∫ xm

0

tanh(
x

2
)

2x

x2 − z2
dx. (G.13)

The following are pure mathematical derivations

∫ xm

0

tanh(
x

2
)

2x

x2 − z2
dx

=

∫ xm

0

[
tanh(

x

2
) − 1

] 2x

x2 − z2
dx+

∫ xm

0

2x

x2 − z2
dx

≈
∫ ∞

0

−2

ex + 1

2x

x2 − z2
dx+ log(

−x2
m

z2
)

= −2

∫ ∞

0

(
1

ex − 1
− 2

e2x − 1

)
2x

x2 − z2
dx+ log(

−x2
m

z2
)

= −2

[∫ ∞

0

1

ex − 1

2x

x2 − z2
dx−

∫ ∞

0

2

e2x − 1

2x

x2 − z2
dx− log(

jxm

z
)

]

= −2

[∫ ∞

0

1

e2πt − 1

2t

t2 + (jz/2π)2
dt−

∫ ∞

0

2

e2πt − 1

2t

t2 − (jz/π)2
dt− log(

jxm

z
)

]

= −2

[∫ ∞

0

1

e2πt − 1

2t

t2 + ( −z
2πj )2

dt−
∫ ∞

0

2

e2πt − 1

2t

t2 + (−2z
2πj )2

dt− log(
jxm

z
)

]

= −2

{[
log(

−z
2πj

) +
2πj

2z
− ψ(

−z
2πj

)

]
− 2

[
log(

−z
πj

) +
πj

2z
− ψ(

−z
πj

)

]
− log(

jxm

z
)

}

= −2

[
ψ(

1

2
− z

2πj
) − log(

xm

2π
)

]
. (G.14)
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In the derivations above, we have applied the following two formula found in Abramowitz and Stegun

(page 259)[52], to express the integral in terms of complex digamma function ψ:

ψ(z) = log z − 1

2z
− 2

∫ ∞

0

tdt

(t2 + z2)(e2πt − 1)

ψ(2z) =
1

2
ψ(z) +

1

2
ψ(z +

1

z
) + log 2. (G.15)

Therefore in the weak field limit,

ǫTLS(ω) = −2Pd2
0

3

[
ψ(

1

2
− ~ω − jT−1

2

2πjkT
) − log(

εmax

2πkT
)

]
. (G.16)

G.3 ǫTLS(ω) for nonzero ~E field.

For general nonzero electrical field, we evaluate the real part (ǫ′TLS) and the imaginary part (ǫ′′TLS)

separately.

For the integral of ǫ′′TLS, the major contribution is from the first term in χ(ωε, ω) and the second

term can be neglected. After dropping the second term, the integral becomes

ǫ′′TLS(ω) =
Pd2

0

3~

∫ εmax

0

dε tanh
( ε

2kT

)


 −T−1
2

(T−1
2

√
1 + Ω

2
T1T2)2 + (ωε − ω)2



 . (G.17)

The factor in the square brackets is a Lorentzian centered at ωε with a line width of T−1
2

√
1 + Ω

2
T1T2.

Because within the width of the Lorentizian tanh(ε/2kT ) is almost constant, it can be taken out of

the integral leading to

ǫ′′TLS(ω) ≈ −Pd
2
0

3~
tanh

(
~ω

2kT

)∫ εmax

0

dε



 −T−1
2

(T−1
2

√
1 + Ω

2
T1T2)2 + (ωε − ω)2





≈ −πPd
2
0

3

tanh
(

~ω
2kT

)
√

1 + Ω
2
T1T2

. (G.18)

The field-dependent loss tangent is given by

δTLS = δ0
tanh

(
~ω
2kT

)
√

1 + (| ~E|/Ec)2
(G.19)

where the critical electric field is

Ec =

√
3~

2d0| ~E|
√
T1,minT2

. (G.20)
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Next, we work on the real part of the integral in Eq. G.7 for ǫ′TLS(ω). Let κ(| ~E|) =

√
1 + Ω

2
T1T2

be the saturation factor. The difference in ǫ′TLS(ω) between strong field and zero field is calculated

by

δǫ′(κ) = ǫ′TLS(κ) − ǫ′TLS(0)

=
Pd2

0

3~

∫ εmax

0

tanh
( ε

2kT

)[ 1 + (ωε − ω)2T 2
2

1 + Ω
2
T1T2 + (ωε − ω)2T 2

2

− 1

]

×
{

(ωε − ω)

(ωε − ω)2 + (T−1
2 )2

+
(ωε + ω)

(ωε + ω)2 + (T−1
2 )2

}
dε. (G.21)

Now we calculate the contribution from the two terms in the curly brackets separately.

δǫ′1 =
Pd2

0

3~

∫ εmax

0

tanh
( ε

2kT

)[ 1 + (ωε − ω)2T 2
2

1 + Ω
2
T1T2 + (ωε − ω)2T 2

2

− 1

]
ωε − ω

(ωε − ω)2 + (T−1
2 )2

dε

=
Pd2

0

3~

∫ εmax

0

tanh
( ε

2kT

)[ ∆ω

∆ω2 + (κT−1
2 )2

− ∆ω

∆ω2 + (T−1
2 )2

]
dε. (G.22)

Because the term in the square brackets

∆ω

∆ω2 + (κT−1
2 )2

− ∆ω

∆ω2 + (T−1
2 )2

=
(1 − κ2)(T−1

2 )2∆ω

[∆ω2 + (T−1
2 )2][∆ω2 + (κT−1

2 )2]
(G.23)

is an odd function of ∆ω which has significant contribution to the integral only when |ωε−ω| . κT−1
2 ,

we can replace tanh
(

ε
2kT

)
by its Taylor expansion at ε = ~ω and extend the integral limits to ±∞,

δǫ′1 ≈ Pd2
0

3

∫ ∞

−∞

[
tanh

(
~ω

2kT

)
+ sech2

(
~ω

2kT

)
~∆ω

2kT

] [
∆ω

∆ω2 + (κT−1
2 )2

− ∆ω

∆ω2 + (T−1
2 )2

]
d∆ω

=
πPd2

0

3
sech2

(
~ω

2kT

)
~T−1

2

2kT
(1 − κ)

(G.24)

The contribution from the second term in the curly brackets is Eq. G.21.

δǫ′2 =
Pd2

0

3~

∫ εmax

0

tanh
( ε

2kT

)[ −Ω
2
T1T2

1 + Ω
2
T1T2 + (ωε − ω)2T 2

2

]
ωε + ω

(ωε + ω)2 + (T−1
2 )2

dε

(G.25)

where the term in the square brackets is only nonzero within a small range around ωε ∼ ω in which
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Figure G.2: δǫ′, δǫ′1 and δǫ′2 as a function of temperature. Left panel shows ǫ′TLS for zero field κ = 0
(blue) and nonzero field κ = 3 (red). Their difference is plotted by the bottom curve in the right
panel, as well as the two contributions δǫ′1 and δǫ′2. In the right panel, solid lines are calculated
from evaluating the exact integrals numerically while the dashed line are calculated from the derived
approximate formula.

all other terms are almost constant. Therefore

δǫ′2 ≈ Pd2
0

3~
tanh

(
~ω

2kT

)
1

2ω

∫ ∞

−∞

[
−Ω

2
T1T2

1 + Ω
2
T1T2 + (ωε − ω)2T 2

2

]
dε

=
πPd2

0

3
tanh

(
~ω

2kT

)
T−1

2

2ω

1 − κ2

κ

(G.26)

Finally, we have derived

ǫ′TLS(κ) − ǫ′TLS(0)

= δǫ′1 + δǫ′2

=
πPd2

0

3

[
sech2

(
~ω

2kT

)
~T−1

2

2kT
(1 − κ) + tanh

(
~ω

2kT

)
T−1

2

2ω

1 − κ2

κ

]
(G.27)

The temperature variation of ǫ′TLS for zero field κ = 0 and nonzero field κ = 3 are plotted in

the left panel in Fig. G.2. We can see that ǫ′TLS decreases with the field strength. The difference

between the two curves δǫ′ = ǫTLS(κ = 3) − ǫTLS(κ = 0), separated into the two contributions

δǫ′1 and δǫ′2, evaluated both numerically from the exact integrals and analytically from the derived

approximate formula, are plotted in the right panel of Fig. G.2. There we see that the approximate

formula works pretty well.
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Appendix H

Semi-empirical frequency noise
formula for a transmission line
resonator

In this appendix, we derive the formula of frequency noise in the high power regime for a transmission

line resonator from the semi-empirical noise model Eq. 5.80

Sδfr (ν)

f2
r

= κ(ν, ω, T )

∫
Vh

| ~E|3d3r

4
(∫

V ǫ| ~E|2d3r
)2 (H.1)

We consider a m-wave transmission line resonator in general. For example, for a quarter-wave

resonator m = 1/4 and for a half-wave resonator m = 1/2. Assume that the transmission line goes

in the z-direction with z = 0 and z = l represents the coupler end (always an open end) and the

opposite end, respectively. The cross-section of the transmission line is in the x−y plane, with x-axis

parallel to surface of the metal film and y-axis perpendicular to the surface. The spatial distribution

of the electric field in the resonator has a standing wave pattern given by

|E(x, y, z)| = V0ρ(x, y)| cos(
2πmz

l
)| (H.2)

where V0 is the voltage at z=0 (a harmonic time dependence of ejωt is assumed and omitted as

usual), which is related to the internal power Pint and readout power Pµw by,

Pint =
V 2

+

2Zr
=

(V0/2)2

2Zr
=

1

2πm
Pµw

Q2

Qc
(H.3)

V0 =

√
4Zr

πm

Q2
r

Qc
Pµw (H.4)

ρ(x, y) is the field distribution in the cross-sectional plane normalized by V0. The denominator in

Eq. H.1 is related to the electric energy in the system and can be expressed in terms of transmission
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line parameters

2

∫

V

ǫE(~r)2d~r = CV 2
0 l (H.5)

Inserting Eq. H.2 and Eq. H.5 to Eq. H.1 yields

Sδfr (ν)

f2
r

= κ(ν, ω, T )
4
∫
Ah
ρ(x, y)3dxdy

3πC2V0l
(H.6)

Because of the term V0 in the denominator, Eq. H.6 gives the correct P
−1/2
int power dependence

of noise. Eq. H.6 also predict that the noise scales inversely with length, which arises from the

incoherent sum of the contribution from independent fluctuators along the z-axis.

The most important part of the noise formula Eq. H.6 is the following integral

I3 =

∫

Ah

ρ(x, y)3dxdy (H.7)

which is taken in the area Ah occupied by the TLS host material in the cross-sectional plane. It can

be shown that for microstrip transmission line

I3 =

∫

Ah

ρ(x, y)3dxdy ≈ w

h2
(H.8)

where the field is approximated by that of a parallel plate capacitor. Here w and h are the width

and the thickness of the dielectric in the microstrip. For a surface distribution of TLS,

I3 =

∫

Ah

ρ(x, y)3dxdy ≈ t

∫

Ch

ρ(ξ)3dξ (H.9)

where the contour Ch runs over the TLS distributed surface and t is the thickness of the TLS layer.
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