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Abstract

Variational integrators are a class of discretizations for mechanical systems which are derived by

discretizing Hamilton’s principle of stationary action. They are applicable to both ordinary and

partial differential equations, and to both conservative and forced problems. In the absence of

forcing they conserve (multi-)symplectic structures, momenta arising from symmetries, and energy

up to a bounded error.

In this thesis the basic theory of discrete variational mechanics for ordinary differential equations

is developed in depth, and is used as the basis for constructing variational integrators and analyzing

their numerical properties. This is then taken as the starting point for the development of a new

class of asynchronous time stepping methods for solid mechanics, known as Asynchronous Variational

Integrators (AVIs). These explicit methods time step different elements in a finite element mesh with

fully independent and decoupled time steps, allowing the simulation to proceed locally at the fastest

rate allowed by local stability restrictions. Numerical examples of AVIs are provided, demonstrating

the excellent properties they posess by virtue of their variational derivation.
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Chapter 1

Introduction

1.1 Variational integrators

This thesis futher develops the subject of variational integrators as it applies to mechanical systems

of engineering interest. The idea behind this class of algorithms is to discretize the variational

formulation of a given problem, rather than the differential equations. These problems may be

either conservative or dissipative and forced, and may be cast as either ordinary or partial differential

equations. For conservative problems, we focus on discretizing Hamilton’s principle of stationary

action in Lagrangian mechanics, while for dissipative or forced problems we discretize the Lagrange-

d’Alembert principle. While the idea of discretizing variational formulations of mechanics is standard

for elliptic problems, in the form of Galerkin and finite element methods (e.g., Johnson [1987], Hughes

[1987]), it has only been applied relatively recently to derive variational time stepping algorithms

for mechanical systems.

Advantages of variational integrators. The variational method for deriving integrators means

that the resulting algorithms automatically have a number of properties. In particular, they are

symplectic methods1, they exactly preserve momenta associated to symmetries of the system, and

they have excellent longtime energy stability.

These properties make them ideal for simulating physical systems which are either conservative

or near-conservative. In such cases, one frequently wishes to compute certain averaged or statistical

properties of the system, such as the speed of a shock-front, and maintaining good conservation

properties where appropriate can be essential.

In addition, the variational methodology allows one to easily and cleanly derive good integrators

even in extremely complex geometries, such as the asynchronous space-time meshes used in §6.1.

This applies whether the mechanical system is conservative or not.

Finally, the variational methodology serves as a unifying framework from which to consider the

1Symplecticity is explained in more detail in §1.6.3, §1.6.4, §2.1.3, and §2.2.2.
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Lagrangian side of symplectic integration theory. This fact derives from generating function theory,

which shows that all symplectic integrators for Lagrangian systems are in fact variational.

Geometric integration. Variational integrators are examples of methods which preserve geomet-

ric structures of the continuous system, and as such they fall within the general class of geometric

integration techniques. For mechanical systems the primary quantities on which most work has fo-

cussed are momenta, energy, and symplectic structures. An important result due to Ge and Marsden

[1988] shows that an integrator can either preserve energy and momenta, or symplectic structure

and momenta, but not all three. For this reason, the geometric integration community has largely

split into those working on symplectic-momentum methods, including variational integrators, and

those working on energy-momentum methods.

PDEs and multisymplectic discretizations. Variational integrators for ODEs can be extended

to PDEs by discretizing both space and time variationally. An elegant framework within which this

can be performed is given by multisymplectic mechanics, which is a local space-time viewpoint

of mechanics. As with ODEs, variational methods for multisymplectic PDEs conserve (multi-)

symplecticity, momenta, and have excellent energy behavior.

Asynchronous Variational Integrators (AVIs). In this thesis, the primary application of

variational discretizations of multisymplectic PDEs is the development of Asynchronous Variational

Integrators (AVIs) for solid mechanics. These methods use fully decoupled asynchronous space-time

meshes, which means that in a finite element setting all elements can be time stepped independently

of each other, subject only to local CFL conditions. This provides a large efficiency gain, as it is

no longer necessary for the time step of the whole mesh to be dictated by the smallest element,

as would ordinarily be the case for explicit time steppers. Furthermore, the variational method of

derivation ensures that they asynchronicity is introduced without losing any of the good properties

of standard methods such as the Newmark algorithm.

1.2 History and literature

Of course, the variational view of mechanics goes back to Euler, Lagrange and Hamilton. The form

of the variational principle most important for continuous mechanics that we use in this article is

due, of course, to Hamilton [1834]. We refer to Marsden and Ratiu [1999] for additional history,

references and background on geometric mechanics.

There have been many attempts at the development of a discrete mechanics and corresponding

integrators that we will not attempt to survey in any systematic fashion. The theory of discrete

variational mechanics in the form we shall use it (that uses two copies Q×Q of the configuration space
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for the discrete analogue of the velocity phase space) has its roots in the optimal control literature of

the 1960s: see, for example, Jordan and Polak [1964], Hwang and Fan [1967] and Cadzow [1970]. In

the context of mechanics early work was done, often independently, by Cadzow [1973], Logan [1973],

Maeda [1980, 1981a,b], and Lee [1983, 1987], by which point the discrete action sum, the discrete

Euler-Lagrange equations and the discrete Noether’s theorem were clearly understood. This theory

was then pursued further in the context of integrable systems in Veselov [1988, 1991] and Moser and

Veselov [1991], and in the context of quantum mechanics in Jaroszkiewicz and Norton [1997a,b] and

Norton and Jaroszkiewicz [1998].

The variational view of discrete mechanics and its numerical implementation is further developed

in Wendlandt and Marsden [1997a,b] and then extended in Kane, Marsden, and Ortiz [1999a],

Marsden, Pekarsky, and Shkoller [1999b,a], Bobenko and Suris [1999a,b] and Kane, Marsden, Ortiz,

and West [2000]. The beginnings of an extension of these ideas to a nonsmooth framework is given

in Kane, Repetto, Ortiz, and Marsden [1999b], and is carried further in Fetecau, Marsden, Ortiz,

and West [2003a]. Other applications include Rowley and Marsden [2002], and an investigation of

convergence is given in Müller and Ortiz [2003].

Other discretizations of Hamilton’s principle are given in Mutze [1998], Cano and Lewis [1998]

and Shibberu [1994]. Other versions of discrete mechanics (not necessarily discrete Hamilton’s

principles) are given in, for instance, Itoh and Abe [1988], Labudde and Greenspan [1974, 1976a,b],

and MacKay [1992].

Of course, there have been many works on symplectic integration, largely done from other points

of view than that developed here. We will not attempt to survey this in any systematic fashion, as the

literature is simply too large with too many points of view and too many intricate subtleties. We give

a few highlights and give further references in the body of the thesis. For instance, we shall connect

the variational view with the generating function point of view that was begun in De Vogelaére

[1956]. Generating function methods were developed and used in, for example, Ruth [1983], Forest

and Ruth [1990] and in Channell and Scovel [1990]. See also Berg, Warnock, Ruth, and Forest [1994],

and Warnock and Ruth [1992, 1991]. For an overview of symplectic integration, see Hairer, Lubich,

and Wanner [2002], as well as Sanz-Serna [1992b] and Sanz-Serna and Calvo [1994]. Qualitative

properties of symplectic integration of Hamiltonian systems are given in Gonzalez, Higham, and

Stuart [1999] and Cano and Sanz-Serna [1997]. Longtime energy behaviour for oscillatory systems

is studied in Hairer and Lubich [2000]. Longtime behaviour of symplectic methods for systems with

dissipation is given in Hairer and Lubich [1999]. A numerical study of preservation of adiabatic

invariants is given in Reich [1999b] and Shimada and Yoshida [1996]. Backward error analysis is

studied in Benettin and Giorgilli [1994], Hairer [1994], Hairer and Lubich [1997] and Reich [1999a].

Other ideas connected to the above literature include those of Baez and Gilliam [1994], Gilliam [1996],

Gillilan and Wilson [1992]. For other references see the large literature on symplectic methods in
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molecular dynamics, such as Schlick, Skeel, Brunger, Kale, Board, Hermans, and Schulten [1999],

and for various applications, see Hardy, Okunbor, and Skeel [1999], Leimkuhler and Skeel [1994],

Barth and Leimkuhler [1996] and references therein.

A single-step variational idea that is relevant to our approach is given in Ortiz and Stainier

[1999], and developed further in Radovitzky and Ortiz [1999], and Kane et al. [1999b, 2000].

Direct discretizations on the Hamiltonian side, where one discretizes the Hamiltonian and the

symplectic structure, are developed in Gonzalez [1996b,a] and further in Gonzalez [1999] and Gon-

zalez et al. [1999]. This is developed and generalized much further in McLachlan, Quispel, and

Robidoux [1998, 1999].

Multisymplectic mechanics has its origins in the mid-twentieth century (see Kijowski and Tul-

czyjew [1979] and references therein for a representative view). There has been a recent explosion

in work, however, driven by numerical applications, beginning with independent work by Marsden,

Patrick, and Shkoller [1998] and Bridges and Reich [2001a]. Non-numerical applications have also

advanced, with work by Marsden and Shkoller [1999], Kouranbaeva and Shkoller [2000], Bridges and

Laine-Pearson [2001], Hydon [2001], Bridges and Derks [2002], and Binz, de Leon, de Diego, and

Socolescu [2002]. The work on numerical applications has advanced on several main fronts, including

that in Bridges and Reich [2001b], Reich [2000a], and Reich [2000b], as well as Islas and Schober

[2002] and Islas, Karpeev, and Schober [2001], and the series of papers by Sun and Qin [2000], Wang

and Qin [2001], Guo, Li, and Wu [2001b], Chen [2001], Guo, Ji, Li, and Wu [2001a], Guo, Li, Wu,

and Wang [2002a], Guo, Li, Wu, and Wang [2002b], Guo, Li, Wu, and Wang [2002c], Chen and

Qin [2002], Liu and Qin [2002], Chen [2002], Hong and Qin [2002], Wang and Qin [2002], and Chen

[2003]. Finally, there is the work associated with this thesis, which is discussed in the next section.

The asynchronous methods developed in this thesis have much in common with multi-time step

integration algorithms, sometimes termed subcycling methods. These algorithms have been devel-

oped in Neal and Belytschko [1989] and Belytschko and Mullen [1976], mainly to allow high-frequency

elements to advance at smaller time steps than the low-frequency ones. In its original version, the

method grouped the nodes of the mesh and assigned to each group a different time step. Adjacent

groups of nodes were constrained to have integer time step ratios (see Belytschko and Mullen [1976]),

a condition that was relaxed in Neal and Belytschko [1989] and Belytschko [1981]. Recently an im-

plicit multi-time step integration method was developed and analyzed in Smolinski and Wu [1998].

We also mention the related work of Hughes and Liu [1978] and Hughes, Pister, and Taylor [1979].

There are also many connections between the multi-time step impulse method (also known as Verlet-

I and r-RESPA), which is popular in molecular dynamics applications, and the AVI algorithm (see

Grubmüller, Heller, Windemuth, and Schulten [1991] and Tuckerman, Berne, and Martyna [1992]).
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1.3 Work associated with this thesis

Work incorporated in and arising from this thesis is:

• Kane, Marsden, Ortiz, and West [2000] studied the Newmark algorithm from the perspective of

variational integrators and proved that the Newmark method with γ = 1/2 is itself variational

and hence symplectic. This paper also included the first introduction of the idea of a discrete

Lagrange-d’Alembert principle for forced and dissipative systems.

• Marsden, Pekarsky, Shkoller, and West [2001] laid the groundwork for variational multisym-

plectic integrators of continuum theories by reformulating classical continuum mechanics in an

intrinsic multisymplectic framework. The two examples treated in detail were ideal fluids and

hyper-elasticity, and much attention was paid to the role of incompressibility. This necessitated

the development of the first theory of constrained multisymplectic systems.

• Marsden and West [2001] provided a survey of the existing theory for discrete variational

mechanics and variational integrators for ODEs. It also presented a great deal of new theory

for the first time, including much work on the numerical properties of variational integrators

such as high-order methods and approximation accuracy results.

• Fetecau, Marsden, Ortiz, and West [2003a] considered Lagrangian systems with trajectories

which are continuous but nonsmooth, with collision problems being the main focus. This

lead to the development of both a continuous variational theory for such systems as well as

variational integrators for such problems. These were the first geometric integrators developed

which were applicable to nonsmooth systems.

• Fetecau, Marsden, and West [2003b] extended the nonsmooth ODE theory from Fetecau et al.

[2003a] to the multisymplectic PDE setting. This provides a formulation which encompasses

such problems as fluid-solid interactions, internal shock waves in continua and collisions of

elastic bodies.

• Lew, Marsden, Ortiz, and West [2003a] introduced the concept of Asynchronous Variational

Integrators (AVI). This paper also developed further the concept of full variations for multi-

symplectic systems and the conservation properties associated with horizontal variations.

• Lew, Marsden, Ortiz, and West [2003b] further investigated the numerics of AVIs. This in-

volved studying a large scale simulation of a helicopter rotor blade as well as providing a proof

of convergence and an analysis of the computational complexity of AVIs. This was the first

proof of convergence for a fully asynchronous integration time integration method.

• Jalnapurkar, Leok, Marsden, and West [2003] developed a discrete version of Routh reduction

theory for systems with abelian symmetry groups.
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• Oliver, West, and Wulff [2003] studied the approximate momentum conservation properties of

variational discretizations of nonlinear wave equations, giving both numerical examples and

theory explaining the observed behavior. This represented the first rigorous results concerning

the backward error analysis of spatial PDE discretizations.

• Cirak and West [2003] used the ideas in Fetecau et al. [2003a] as the basis for constructing a

very efficient technique for explicit time stepping of finite element models with collisions, and

demonstrated the algorithms on large parallel simulations of colliding shells and solids.

• Pekarsky and West [2003] developed groupoid discretizations of diffeomorphism groups and

used these to construct the first exactly circulation preserving integrators for ideal fluids.

• Lall and West [2003] unified the discretizations of the calculus of variations used in discrete

mechanics and in discrete optimal control. This lead to the development of the Hamiltonian

side of discrete mechanics and the concept of a discrete Hamilton-Jacobi equation for discrete

mechanics.

1.4 Outline of thesis

We begin in §1.5 to §1.7 with a simple overview of variational integrators for ODEs and PDEs. This

material is a summary of §2 to §6.

In §2 we develop discrete variational mechanics for ODEs, including extensive comparisons with

continuous-time Lagrangian and Hamiltonian mechanics. This is then used in §3 as the basis for

variational integrators, whose numerical properties are investigated in detail. Next, §4 considers

both discrete mechanics and variational integrators for systems with forcing and constraints.

The final two chapters deal with variational mechanics and integrators for PDEs. In §5 we for-

mulate continuum mechanics within the context of variational multisymplectic mechanics, while in

§6 we develop Asynchronous Variational Integrators (AVIs) as a special case of variational multi-

symplectic discretizations.

1.5 Discrete Dynamics and Variational Integrators

In this section we give a brief overview of how discrete variational mechanics can be used to derive

variational integrators. We begin by reviewing the derivation of the Euler-Lagrange equations, and

then show how to mimic this process on a discrete level.
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1.5.1 Continuous time Lagrangian dynamics

For concreteness, consider the Lagrangian system L(q, q̇) = 1
2 q̇TMq̇−V (q), where M is a symmetric

positive-definite mass matrix and V is a potential function. We work in R
n or in generalized

coordinates and will use vector notation for simplicity, so q = (q1, q2, . . . , qn). In the standard

approach of Lagrangian mechanics, we form the action function by integrating L along a curve q(t)

and then compute variations of the action while holding the endpoints of the curve q(t) fixed. This

gives

δS(q) = δ

∫ T

0

L
(
q(t), q̇(t)

)
dt =

∫ T

0

[
∂L

∂q
· δq +

∂L

∂q̇
· δq̇

]

dt

=

∫ T

0

[
∂L

∂q
−

d

dt

(
∂L

∂q̇

)]

· δq dt +

[
∂L

∂q̇
· δq

]T

0

, (1.1)

where we have used integration by parts. The final term is zero because we assume that δq(T ) =

δq(0) = 0. Requiring that the variations of the action be zero for all δq implies that the integrand

must be zero for each time t, giving the well-known Euler-Lagrange equations

∂L

∂q
(q, q̇)−

d

dt

(
∂L

∂q̇
(q, q̇)

)

= 0. (1.2)

For the particular form of the Lagrangian chosen above, this is just

Mq̈ = −∇V (q),

which is Newton’s equation: mass times acceleration equals force. It is well known that the system

described by the Euler-Lagrange equations has many special properties. In particular, the flow

on state space is symplectic, meaning that it conserves a particular two-form, and if there are

symmetry actions on phase space, then there are corresponding conserved quantities of the flow,

known as momentum maps. We will return to these ideas later in this work in §2.

1.5.2 Discrete time Lagrangian dynamics

We will now see how discrete variational mechanics performs an analogue of the above derivation.

Rather than taking a position q and velocity q̇, consider now two positions q0 and q1 and a time

step ∆t ∈ R. These positions should be thought of as being two points on a curve at time ∆t apart,

so that q0 ≈ q(0) and q1 ≈ q(∆t).

We now consider a discrete Lagrangian Ld(q0, q1,∆t), which we think of as approximating the

action integral along the curve segment between q0 and q1. For concreteness, consider the very

simple approximation to the integral
∫ T

0
Ldt given by using the rectangle rule2 (the length of the

2As we shall see later, more sophisticated quadrature rules lead to higher-order accurate integrators.
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interval times the value of the integrand with the velocity vector replaced by (q1 − q0)/∆t):

Ld(q0, q1,∆t) = ∆t

[
1

2

(
q1 − q0

∆t

)T

M

(
q1 − q0

∆t

)

− V (q0)

]

. (1.3)

Next consider a discrete curve of points {qk}
N
k=0 and calculate the discrete action along this sequence

by summing the discrete Lagrangian on each adjacent pair. Following the continuous derivation

above, we compute variations of this action sum with the boundary points q0 and qN held fixed.

This gives

δSd({qk}) = δ
N−1∑

k=0

Ld(qk, qk+1,∆t) =
N−1∑

k=0

[
D1Ld(qk, qk+1,∆t) · δqk + D2Ld(qk, qk+1,∆t) · δqk+1

]

=
N−1∑

k=1

[
D2Ld(qk−1, qk,∆t) + D1Ld(qk, qk+1,∆t)

]
· δqk

+ D1Ld(q0, q1,∆t) · δq0 + D2Ld(qN−1, qN ,∆t) · δqN , (1.4)

where we have used a discrete integration by parts (rearranging the summation). Henceforth, DiLd

indicates the slot derivative with respect ot the i-th argument of Ld. If we now require that the

variations of the action be zero for any choice of δqk with δq0 = δqN = 0, then we obtain the

discrete Euler-Lagrange equations

D2Ld(qk−1, qk,∆t) + D1Ld(qk, qk+1,∆t) = 0, (1.5)

which must hold for each k. For the particular Ld chosen above, we compute

D2Ld(qk−1, qk,∆t) = M

(
qk − qk−1

∆t

)

D1Ld(qk, qk+1,∆t) = −

[

M

(
qk+1 − qk

∆t

)

+ (∆t)∇V (qk)

]

,

and so the discrete Euler-Lagrange equations are

M

(
qk+1 − 2qk + qk−1

(∆t)2

)

= −∇V (qk).

This is clearly a discretization of Newton’s equations, using a simple finite difference rule for the

derivative.

If we take initial conditions (q0, q1), then the discrete Euler-Lagrange equations define a recursive

rule for calculating the sequence {qk}
N
k=0. Regarded in this way, they define a map (qk, qk+1) 7→

(qk+1, qk+2) which we can think of as a one-step integrator for the system defined by the continuous

Euler-Lagrange equations. This viewpoint is considered in depth in §3.
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Figure 1.1: Average kinetic energy (1.6) as a function of T for a nonlinear spring-mass lattice system,
using a first-order variational integrator (VI1) and a fourth-order Runge-Kutta method (RK4) and
a range of time steps ∆t. Observe that the Runge-Kutta method suffers substantial numerical
dissipation, unlike the variational method.

Heat calculation example. As we will consider in detail in §1.6, variational integrators are in-

teresting because they inherit many of the conservative properties of the original Lagrangian system.

As an example of this, we consider the numerical approximation of the heat of a coupled spring-mass

lattice model. The numerical heat for time T is defined to be the numerical approximation of

K̄(T ) =
1

T

∫ T

0

1

2
‖q̇‖2 dt, (1.6)

while the true heat of the system is the limit of the quantity,

K̄ = lim
T→∞

K̄(T ). (1.7)

The temperature of the system, which is an intensive—as opposed to extensive—quantity, is the

heat K divided by the heat capacity nd, where n is the number of masses and d is the dimension of

space. We assume that the system is ergodic and that this limit exists. In Figure 1.1 we plot the

numerical approximations to (1.6) at T = 105 computed using a first-order variational integrator

(VI1) and a fourth-order Runge-Kutta method (RK4). As the time step is decreased the numerical

solution tends towards the true solution.

Note, however, that the lack of dissipation in the variational integrator means that for quite

large time steps it computes the averaged kinetic energy much better. To make this precise, we

consider the harmonic approximation to the lattice system (that is, the linearization), for which we

can compute the limit (1.7) analytically. The error in the numerically computed heat is plotted

in Figure 1.2 for a range of different time steps ∆t and final times T , using the same first-order

variational method (VI1) and fourth-order Runge-Kutta method (RK4), as well as a fourth-order
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Figure 1.2: Error in numerically approximated heat for the harmonic (linear) approximation to the
lattice system from Figure 1.1, using a first-order variational integrator (VI1), a fourth-order Runge-
Kutta method (RK4) and a fourth-order variational integrator (VI4). The three plots have different
final times T , while the cost is increased within each plot by decreasing the time step ∆t. For each
T the dashed horizontal line is the exact value of K̄(T ) − K̄, which is the minimum error that the
numerical approximation can achieve without increasing T . Observe that the low-order variational
method VI1 beats the traditional RK4 method for larger errors, while the high-order variational
method VI4 combines the advantages of both high-order and variational structure to always win.

variational integrator (VI4).

To compute the heat (1.7) numerically we must clearly let T → ∞ and ∆t → 0. Both of these

limits increase the cost of the simulation, and so there is a tradeoff between them. As we see in

Figure 1.2, for a fixed T there is some ∆t which adequately resolves the integral (1.6), and so the

error cannot decrease any further without increasing T . To see this, take a numerical approximation

K̄(T,∆t) to (1.6) and decompose the error as

K̄(T,∆t)− K̄
︸ ︷︷ ︸

total error

= K̄(T,∆t)− K̄(T )
︸ ︷︷ ︸

discretization error

+ K̄(T )− K̄
︸ ︷︷ ︸

limit error

. (1.8)

Decreasing ∆t will reduce the discretization error, but at some point this will become negligible

compared to the limit error, which will only tend to zero as T is increased.

The striking feature of Figure 1.2 is that the variational integrators perform far better than a

traditional Runge-Kutta method. For large error tolerances, such as 1% or 5% error (10−2 or 5×10−2

in Figure 1.2), the first-order variational method is very cheap and simple. For higher precision,

the fourth-order Runge-Kutta method eventually becomes cheaper than the first-order variational

integrator, but the fourth-order variational method combines the advantages of both and is always

the method of choice.

Of course, such sweeping statements as above have to be interpreted and used with great care,

as in the precise statements in the text that follows. For example, if the integration step size is

too large, then sometimes energy can behave very badly, even for a variational integrator (see, for
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example, Gonzalez and Simo [1996]). It is likewise well known that energy conservation does not

guarantee trajectory accuracy. These points will be discussed further below.

1.5.3 Variational integrators

We are primarily interested in discrete Lagrangian mechanics for deriving integrators for mechanical

systems. Any integrator which is the discrete Euler-Lagrange equation for some discrete Lagrangian

is called a variational integrator. As we have seen above, variational integrators can be imple-

mented by taking two configurations q0 and q1 of the system, which should approximate q0 ≈ q(t0)

and q1 ≈ q(t0 + ∆t), and then solving the discrete Euler-Lagrange equations (1.5) for q2. This pro-

cess can then be repeated to calculate an entire discrete trajectory. The map (qk−1, qk) 7→ (qk, qk+1)

defined by the discrete Euler-Lagrange equations is known as the discrete evolution map.

Position-momentum form. For mechanical systems it is more common to specifiy the initial

conditions as a position and a velocity (or momentum), rather than two positions. To rewrite a vari-

ational integrator in a position-momentum form we first observe that we can define the momentum

at time step k to be

pk = D2Ld(qk, qk+1,∆t) = −D1Ld(qk−1, qk,∆t). (1.9)

The two expressions for pk are equal because this equality is precisely the discrete Euler-Lagrange

equations (1.5). Using this definition we can write the position-momentum form of a variational

integrator as

pk = −D1Ld(qk, qk+1,∆t) (1.10a)

pk+1 = D2Ld(qk, qk+1,∆t). (1.10b)

Given an initial condition (q0, p0) we can solve the implicit equation (1.10a) to find q1, and then

evaluate (1.10b) to give p1. We then have (q1, p1) and we can repeat the procedure. The sequence

{qk}
N
k=0 so obtained will clearly satisfy the regular discrete Euler-Lagrange equations (1.5) for all k,

due to the definition (1.9) of pk. This equality is further elaborated in §2.4.2.

Order of accuracy. We remarked above that a discrete Lagrangian should be thought of as

approximating the continuous action integral. We will now make this statement precise. We say

that a discrete Lagrangian is of order r if

Ld(q0, q1,∆t) =

∫ ∆t

0

L(q(t), q̇(t))dt +O(∆t)r+1, (1.11)
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where q(t) is the unique solution of the Euler-Lagrange equations for L with q(0) = q0 and q(∆t) = q1.

It can then be proven (see Theorem 3.3) that if Ld is of order r, then the corresponding variational

integrator is also of order r, so that

qk = q(k ∆t) +O(∆t)r+1.

To design high-order variational integrators, we must therefore construct discrete Lagrangians which

accurately approximate the action integral.

Symmetric methods. One useful observation when calculating the order of integrators is that

symmetric methods always have even order. We say that a discrete Lagrangian is symmetric if

Ld(q0, q1,∆t) = −Ld(q1, q0,−∆t). (1.12)

This implies [Marsden and West, 2001, Theorem 2.4.1] that the resulting variational integrator will

also be symmetric, and will thus automatically be of even order. We will use this fact below.

Geometric aside. The definition (1.9) of pk defines a map Q×Q→ T ∗Q. In fact we can define two

such maps, known as the discrete Legendre transforms, by FL+
d (q0, q1) = (q1,D2Ld(q0, q1,∆t)) and

FL−
d (q0, q1,∆t) = (q1,−D1Ld(q0, q1)). This is discussed further in §2.4.1. The position-momentum

form (1.10) of the discrete Euler-Lagrange equations is thus given by F̃∆t
Ld

= FL±
d ◦ F∆t

Ld
◦ (FL±

d )−1

and is a map F̃∆t
Ld

: T ∗Q→ T ∗Q, where F∆t
Ld

: Q×Q→ Q×Q is the discrete evolution map. This

shows that variational integrators are really one-step methods, although they may initially appear

to be two-step. This form of the integrator is called the discrete Hamilton map and is investigated

in §2.4.3.

1.5.4 Examples of discrete Lagrangians

We now consider some examples of discrete Lagrangians.

Generalized midpoint rule. The classical midpoint rule for the system ẋ = f(x) is given by

xk+1−xk = (∆t)f((xk+1+xk)/2). If we add a parameter α ∈ [0, 1] where the force evaluation occurs

(so α = 1/2 is the standard midpoint), then we can write the corresponding discrete Lagrangian

Lmp,α
d (q0, q1,∆t) = (∆t)L

(

(1− α)q0 + αq1,
q1 − q0

∆t

)

(1.13)

=
∆t

2

(
q1 − q0

∆t

)T

M

(
q1 − q0

∆t

)

− (∆t)V
(

(1− α)q0 + αq1

)

.
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The discrete Euler-Lagrange equations (1.5) are thus

M

(
qk+1 − 2qk + qk−1

(∆t)2

)

= −(1− α)∇V
(

(1− α)qk + αqk+1

)

− α∇V
(

(1− α)qk−1 + αqk

)

(1.14)

and the position-momentum form (1.10) of the variational integrator is

pk = M

(
qk+1 − qk

∆t

)

+ (1− α)(∆t)∇V
(

(1− α)qk + αqk+1

)

(1.15a)

pk+1 = M

(
qk+1 − qk

∆t

)

− α(∆t)∇V
(

(1− α)qk + αqk+1

)

. (1.15b)

This is always an implicit method, and for general α ∈ [0, 1] it is first-order accurate. When α = 1/2

it is easy to see that Lmp,α
d is symmetric, and thus the integrator is second-order.

Generalized trapezoidal rule. Rather than evaluating the force at an averaged location, we

could instead average the evaluated forces. Doing so at a parameter α ∈ [0, 1] gives a generalization

of the trapezoidal rule

Ltr,α
d (q0, q1,∆t) = (∆t)(1− α)L

(

q0,
q1 − q0

∆t

)

+ (∆t)αL

(

q1,
q1 − q0

∆t

)

(1.16)

=
∆t

2

(
q1 − q0

∆t

)T

M

(
q1 − q0

∆t

)

− (∆t)
(

(1− α)V (q0) + αV (q1)
)

.

Computing the discrete Euler-Lagrange equations (1.5) gives

M

(
qk+1 − 2qk + qk−1

(∆t)2

)

= −∇V (qk) (1.17)

with corresponding position-momentum (1.10) form

pk = M

(
qk+1 − qk

∆t

)

+ (∆t)(1− α)∇V (qk) (1.18a)

pk+1 =

(
qk+1 − qk

∆t

)

− (∆t)α∇V (qk). (1.18b)

This method is explicit for all α, and is generally first-order accurate. For α = 1/2 it is symmetric,

and thus becomes second-order accurate.

Observe that there is no α in the discrete Euler-Lagrange equations (1.17), although it does

appear in the position-momentum form (1.18). This means that the only effect of α is on the starting

procedure of this integrator, as thereafter the trajectory will be entirely determined by (1.17). If

we are given an initial position and momentum (q0, p0), then we can use (1.18a) to calculate q1 and

then continue with (1.17) for future time steps. For this procedure to be second-order accurate it is

necessary to take α = 1/2 in the use of (1.18a) for the first time step.
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Newmark method. The Newmark family of integrators, originally given in Newmark [1959], are

widely used in structural dynamics codes. They are usually written (see, for example, Hughes [1987])

for the system L = 1
2 q̇TMq̇ − V (q) as maps (qk, q̇k) 7→ (qk+1, q̇k+1) satisfying the implicit relations

qk+1 = qk + (∆t)q̇k +
1

2
(∆t)2 [(1− 2β)a(qk) + 2βa(qk+1)] (1.19a)

q̇k+1 = q̇k + (∆t) [(1− γ)a(qk) + γa(qk+1)] (1.19b)

a(q) = M−1(−∇V (q)), (1.19c)

where the parameters γ ∈ [0, 1] and β ∈ [0, 1
2 ] specify the method. It is simple to check that the

method is second-order if γ = 1/2 and first-order otherwise, and that it is generally explicit only for

β = 0.

The β = 0, γ = 1/2 case is well known to be symplectic (see, for example, Simo, Tarnow, and

Wong [1992]) with respect to the canonical symplectic form ΩL. This can be easily seen from the fact

that this method is a rearrangement of the position-momentum form of the generalized trapezoidal

rule with α = 1/2. Note that this method is the same as the velocity Verlet method, which is popular

in molecular dynamics codes. As we remarked above, if the method (1.18) is implemented by taking

one initial step with (1.18a) as a starting procedure, and then continued with (1.17), then this will

give a method essentially equivalent to explicit Newmark. To be exactly equivalent, however, and to

be second-order accurate, one must take α = 1/2 in the use of (1.18a). This will be of importance

in §6.1.6.

It is also well known (for example, Simo et al. [1992]) that the Newmark algorithm with β 6= 0

does not preserve the canonical symplectic form. Nonetheless it can be shown Kane et al. [2000] that

the Newmark method with γ = 1/2 and any β can be generated from a discrete Lagrangian, and

it thus preserves a non-canonical symplectic structure. An alternative and independent method of

analyzing the symplectic members of Newmark has been given by Skeel, Zhang, and Schlick [1997],

including an interesting nonlinear analysis in Skeel and Srinivas [2000]. The Newmark method is

discussed in greater detail in §3.6.3.

Galerkin methods and symplectic Runge-Kutta schemes. Both the generalized midpoint

and generalized trapezoidal discrete Lagrangians discussed above can be viewed as particular cases

of linear finite element discrete Lagrangians. If we take shape functions

φ0(α) = 1− α φ1(α) = α, (1.20)
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then a general linear Galerkin discrete Lagrangian is given by

LG,0
d (q0, q1,∆t) =

m∑

i=1

wiL

(

φ0(αi)q0 + φ1(αi)q1,
φ̇0(αi)q0 + φ̇1(αi)q1

∆t

)

, (1.21)

where (αi, wi), i = 1, . . . ,m, is a set of quadrature points and weights. Taking m = 1 and (α1, w1) =

(α, 1) gives the generalized midpoint rule, while taking m = 2, (α1, w1) = (0, 1− α) and (α2, w2) =

(1, α) gives the generalized trapezoidal rule.

Taking high-order finite element basis functions and quadrature rules is one method to construct

high-order variational integrators. In general, we have a set of basis functions φj , j = 0, . . . , s, and

a set of quadrature points (αi, wi), i = 1, . . . ,m. The resulting Galerkin discrete Lagrangian is then

LG,s,full
d (q0, . . . , qs,∆t) =

m∑

i=1

wiL





s∑

j=0

φj(αi)qj ,
1

∆t

s∑

j=0

φ̇j(αi)qj



 . (1.22)

This (s+1)-point discrete Lagrangian can be used to derive a standard two-point discrete Lagrangian

by taking

LG,s
d (q0, q1,∆t) = ext

Q1,...,Qs−1

LG,s,full
d (q0, Q1, . . . , Qs−1, q1,∆t), (1.23)

where ext LG,s,full
d means that LG,s,full

d should be evaluated at extreme or critical values of Q1, . . . , Qs.

When s = 1 we immediately recover (1.21). Of course, using the discrete Lagrangian (1.22) is

equivalent to a finite element discretization in time of (1.1), as in Bottasso [1997] for example.

An interesting feature of Galerkin discrete Lagrangians is that the resulting variational integrator

can always be implemented as a partitioned Runge-Kutta method (see §3.6.6 for details). Using this

technique high-order implicit methods can be constructed, including the collocation Gauss-Legendre

family and the Lobatto IIIA-IIIB family of integrators.

1.5.5 Constrained systems

Many physical systems can be most easily expressed by taking a larger system and imposing con-

straints, which we take here to mean requiring that a given constraint function g is zero for all

configurations. To discretize such problems, we can either work in local coordinates on the con-

straint set {q | g(q) = 0}, or we can work with the full configurations q and use Lagrange multipliers

to enforce g(q) = 0. Here we consider the second option, as the first option requires no modification

to the variational integrator theory3.

3In the event that the constraint set is not a vector space, local coordinates would require the more general theory
of discrete mechanics on smooth manifolds, as in §4.
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Taking variations of the action with Lagrange multipliers added requires that

δ

N−1∑

k=0

[

Ld(qk, qk+1, h) + λk+1 · g(qk+1)
]

= 0 (1.24)

and so using (1.4) gives the constrained discrete Euler-Lagrange equations

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) = −λk · ∇g(qk) (1.25a)

g(qk+1) = 0 (1.25b)

which can be solved for λk and qk+1
4. These equations have all of the conservation properties, such

as symplecticity and momentum conservation, as the unconstrained discrete equations.

An interesting example of a constrained variational integrator is the SHAKE method [Ryckaert,

Ciccotti, and Berendsen, 1977], which can be neatly obtained by taking the generalized trapezoidal

rule of §1.5.4 with α = 1/2 and forming the constrained equations as in (1.25). This is carried out

in §4.5.4.

1.5.6 Forcing and dissipation

Now we consider nonconservative systems; those with forcing and those with dissipation. For prob-

lems in which the nonconservative forcing dominates there is likely to be little benefit from variational

integration techniques. There are many problems, however, for which the system is primarily con-

servative, but where there are very weak nonconservative effects which must be accurately accounted

for. Examples include weakly damped systems, such as photonic drag on satellites, and small control

forces, such as arise in continuous thrust technologies for spacecraft. In applications such as these

the conservative behavior of variational integrators can be very important, as they do not introduce

numerical dissipation in the conservative part of the system, and thus accurately resolve the small

nonconservative forces.

Recall that the (continuous) integral Lagrange-d’Alembert principle is

δ

∫

L(q(t), q̇(t))dt +

∫

F (q(t), q̇(t)) · δq dt = 0, (1.26)

where F (q, v) is an arbitrary force function. We define the discrete Lagrange-d’Alembert prin-

ciple to be

δ
∑

Ld(qk, qk+1) +
∑[

F−
d (qk, qk+1) · δqk + F+

d (qk, qk+1) · δqk+1

]
= 0, (1.27)

4Observe that the linearization of the above system is not symmetric, unlike for constrained elliptic problems. This
is because we are solving forward in time, rather than for all times at once as in a boundary value problem.
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where Ld is the discrete Lagrangian and F−
d and F+

d are the left and right discrete forces. These

should approximate the continuous forcing so that

F−
d (qk, qk+1) · δqk + F+

d (qk, qk+1) · δqk+1 ≈

∫ tk+1

tk

F (q(t), q̇(t)) · δq dt.

The equation (1.27) defines an integrator (qk, qk+1) 7→ (qk+1, qk+2) given implicitly by the forced

discrete Euler-Lagrange equations:

D1Ld(qk+1, qk+2) + D2Ld(qk, qk+1) + F−
d (qk+1, qk+2) + F+

d (qk, qk+1) = 0. (1.28)

The simplest example of discrete forces is to take

F−
d (qk, qk+1) = F (qk)

F+
d (qk, qk+1) = 0,

which, together with the discrete Lagrangian (1.3), gives the forced Euler-Lagrange equations

M

(
qk+1 − 2qk + qk−1

h2

)

= −∇V (qk) + F (qk).

The position-momentum form of a variational integrator with forcing is useful for implementation

purposes. This is given by

pk = −D1Ld(qk, qk+1)− F−
d (qk, qk+1)

pk+1 = D2Ld(qk, qk+1) + F+
d (qk, qk+1).

As an example of a variational integrator applied to a nonconservative system, in Figure 1.3 we

plot the energy evolution of a Lagrangian system with dissipation added, which is simulated using a

low-order variational integrator with forcing, as in (1.28), and a standard high-order Runge-Kutta

method. Despite the disadvantage of being low-order, the variational method tracks the error decay

more accurately as it does not artificially dissipate energy for stability purposes.

1.6 Conservation Properties of Variational Integrators

1.6.1 Noether’s theorem and momentum conservation

One of the important features of variational systems is that symmetries of the system lead to

momentum conservation laws of the Euler-Lagrange equations, a classical result known as Noether’s

theorem.
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Figure 1.3: Energy evolution for a dissipative mechanical system, for a second-order variational
integrator and a fourth-order Runge-Kutta method. The benchmark solution is a very expensive
and accurate simulation. Observe that the variational method correctly captures the rate of decay
of the energy, unlike the Runge-Kutta method.

Consider a one-parameter group of curves qε(t), with q0(t) = q(t), which have the property that

L(qε(t), q̇ε(t)) = L(q(t), q̇(t)) for all ε. When the Lagrangian is invariant in this manner, then we

have a symmetry of the system, and we write

ξ(t) =
∂qε(t)

∂ε

∣
∣
∣
∣
ε=0

(1.29)

for the infinitesimal symmetry direction.

The fact that the Lagrangian is invariant means that the action integral is also invariant, so

its derivative with respect to ε will be zero. If q(t) is a solution trajectory, then we can set the

Euler-Lagrange term in equation (1.1) to zero to obtain

0 =
∂

∂ε

∣
∣
∣
∣
ε=0

∫ T

0

L
(
q(t), q̇(t)

)
dt =

∂L

∂q̇

(
q(T ), q̇(T )

)
· ξ(T )−

∂L

∂q̇

(
q(0), q̇(0)

)
· ξ(0). (1.30)

The terms on the right hand side above are the final and initial momentum in the direction ξ, which

are thus equal. This is the statement of Noether’s theorem.

As examples, consider the one-parameter groups qε(t) = q(t) + εv and qε(t) = exp(εΩ)q(t) for

any vector v and skew-symmetric matrix Ω. The transformations give translations and rotations,

respectively, and evaluating (1.30) for these cases gives conservation of linear and angular momentum,

assuming that the Lagrangian is indeed invariant under these transformations.
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Geometric aside. More generally, we may consider an arbitrary Lie group G, with Lie algebra g,

rather than the one-dimensional groups taken above. The analogue of ξ(t) is then the infinitesimal

generator ξQ : Q→ TQ, for any ξ ∈ g, corresponding to an action of G on Q whose lift to TQ leaves

L invariant. Equation (1.30) then becomes (∂L/∂q̇) · ξQ|
T
0 = 0, which means that the momentum

map JL : TQ→ g∗ is conserved, where JL(q, q̇) · ξ = (∂L/∂q̇) · ξQ(q). While we must generally take

many one-parameter groups, such as translations by any vector v, to show that a quantity such as

linear momentum is conserved, with this general framework we can take g to be the space of all vs,

and thus obtain conservation of linear momentum with only a single group, albeit multidimensional,

as is done in §2.1.4.

1.6.2 Discrete time Noether’s theorem and discrete momenta

A particularly nice feature of the variational derivation of momentum conservation is that we simu-

taneously derive both the expression for the conserved quantity and the theorem that it is conserved.

By using the variational derivation in the discrete time case, we can thus obtain the definition of

discrete time momenta, as well as a discrete time Noether’s theorem implying that they are con-

served.

Take a one-parameter group of discrete time curves {qε
k}

N
k=0, with q0

k = qk, such that Ld(q
ε
k, qε

k+1) =

Ld(qk, qk+1) for all ε and k. The infinitesimal symmetry for such an invariant discrete Lagrangian

is written

ξk =
∂qε

k

∂ε

∣
∣
∣
∣
ε=0

. (1.31)

Invariance of the discrete Lagrangian implies invariance of the action sum, and so its ε derivative

will be zero. Assuming that {qk} is a solution trajectory, then (1.4) becomes

0 =
∂

∂ε

∣
∣
∣
∣
ε=0

N−1∑

k=0

Ld(q
ε
k, qε

k+1) = D1Ld(q0, q1) · δξ0 + D2Ld(qN−1, qN ) · δξN . (1.32)

Observing that 0 = D1Ld(q0, q1) · ξ0 +D2Ld(q0, q1) · ξ1 as Ld is invariant, we thus have the discrete

Noether’s theorem

D2Ld(qN−1, qN ) · ξ = D2Ld(q0, q1) · ξ, (1.33)

where the discrete momentum in the direction ξ is given by D2Ld(qk, qk+1) · ξ.

Consider the example discrete Lagrangian (1.13) with α = 0, and assume that q ∈ Q ≡ R
3

and that V is a function of the norm of q only. This is the case of a particle in a radial potential

for example. Then the discrete Lagrangian is invariant under rotations qε
k = exp(εΩ)qk, for any
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skew-symmetric matrix Ω ∈ R
3×3. Evaluating (1.33) in this case gives

qN ×M

(
qN − qN−1

tN − tN−1

)

= q1 ×M

(
q1 − q0

t1 − t0

)

. (1.34)

We have thus computed the correct expressions for the discrete angular momentum, and shown that

it is conserved. Note that while this expression may seem obvious, in more complicated examples

this will not be the case.

Geometric aside. As in the continuous case, we can extend the above derivation to multidi-

mensional groups and define a full discrete momentum map JLd
: Q × Q → g∗ by JL(q0, q1) · ξ =

D2Ld(q0, q1) · ξQ(q1). In fact there are two discrete momentum maps, corresponding to D1Ld and

D2Ld, but they are equal whenever Ld is invariant, as we shall see in §2.2.3.

1.6.3 Continuous time symplecticity

In addition to the conservation of energy and momenta, Lagrangian mechanical systems also conserve

another quantity known as a symplectic bilinear form.

Consider a two-parameter set of initial conditions (qε,ν
0 , vεν

0 ) so that (qε,ν(t), vε,ν(t)) is the result-

ing trajectory of the system. The corresponding variations are denoted

δqε
1(t) =

∂

∂ν
qε,ν(t)

∣
∣
∣
∣
ν=0

δqν
2 (t) =

∂

∂ε
qε,ν(t)

∣
∣
∣
∣
ε=0

δ2q(t) =
∂

∂ε

∂

∂ν
qε,ν(t)

∣
∣
∣
∣
ε,ν=0

and we write δq1(t) = δq0
1(t), δq2(t) = δq0

2(t) and qε(t) = qε,0(t). We now compute the second

derivative of the action integral to be

∂

∂ε

∣
∣
∣
∣
ε=0

∂

∂ν

∣
∣
∣
∣
ν=0

S(qε,ν) =
∂

∂ε

∣
∣
∣
∣
ε=0

(DS(qε) · δqε
1)

=
∂

∂ε

∣
∣
∣
∣
ε=0

(
∂L

∂vi
(δqε

1)
i(T )−

∂L

∂vi
(δqε

1)
i(0)

)

=
∂2L

∂qj∂vi
δqi

1(T )δqj
2(T ) +

∂2L

∂vj∂vi
δqi

1(T )δq̇j
2(T ) +

∂L

∂vi
δ2qi(T )

−
∂2L

∂qj∂vi
δqi

1(0)δqj
2(0)−

∂2L

∂vj∂vi
δqi

1(0)δq̇j
2(0)−

∂L

∂vi
δ2qi(0).

Here and subsequently, repeated indices in a product indicate sum over the index range. If we reverse

the order of differentiation with respect to ε and ν, then by symmetry of mixed partial derivatives
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we will obtain an equivalent expression. Subtracting this from the above equation then gives

∂2L

∂qj∂vi

[

δqi
1(T )δqj

2(T )− δqi
2(T )δqj

1(T )
]

+
∂2L

∂vj∂vi

[

δqi
1(T )δq̇j

2(T )− δqi
2(T )δq̇j

1(T )
]

=
∂2L

∂qj∂vi

[

δqi
1(0)δqj

2(0)− δqi
2(0)δqj

1(0)
]

+
∂2L

∂vj∂vi

[

δqi
1(0)δq̇j

2(0)− δqi
2(0)δq̇j

1(0)
]

.

Each side of this expression is an antisymmetric bilinear form evaluated on the variations δq1 and

δq2. The fact that this evaluation gives the same result at t = 0 and at t = T implies that the

bilinear form itself is preserved by the Euler-Lagrange equations. This bilinear form is called the

symplectic form of the system, and the fact that it is preserved is called symplecticity of the flow

of the Euler-Lagrange equations.

This is a conservation property in the same way that momenta and energy are conservation prop-

erties of Lagrangian mechanical systems, and it has a number of important consequences. Examples

of this include Liouville’s theorem, which states that phase space volume is preserved by the time

evolution of the system, and fourfold symmetry of the eigenvalues of linearizations of the system, so

that if λ is an eigenvalue, so too are −λ, λ̄ and −λ̄. There are many other important examples, see

Marsden and Ratiu [1999].

Geometric aside. The above derivation can be written using differential geometric notation as

follows. The boundary terms in the action variation equation (1.1) are intrinsically given by ΘL =

(FL)∗Θ, the pullback under the Legendre transform of the canonical one-form Θ = pidqi on T ∗Q.

We thus have dS = (F t
L)∗ΘL−ΘL and so using d2 = 0 (which is the intrinsic statement of symmetry

of mixed partial derivatives) we obtain 0 = d2S = (F t
L)∗(dΘL) − dΘL. The symplectic two-form

above is thus ΩL = −dΘL, and we recover the usual statement of symplecticity of the flow F t
L for

Lagrangian systems, as we shall show in greater detail in § 2.1.3.

1.6.4 Discrete time symplecticity

As we have seen above, symplecticity of continuous time Lagrangian systems is a consequence of the

variational structure. There is thus an analogous property of discrete Lagrangian systems.

Consider a two-parameter set of initial conditions (qε,ν
0 , qε,ν

1 ) and let {qε,ν
k }

N
k=0 be the resulting

discrete trajectory. We denote the corresponding variations by

δqε
k =

∂

∂ν
qε,ν
k

∣
∣
∣
∣
ν=0

δq̄ν
k =

∂

∂ε
qε,ν
k

∣
∣
∣
∣
ε=0

δ2qk =
∂

∂ε

∂

∂ν
qε,ν
k

∣
∣
∣
∣
ε,ν=0

and we write δqk = δq0
k, δq̄k = δq̄0

k and qε
k = qε,0 for k = 0, . . . , N . The second derivative of the



22

action sum is thus given by

∂

∂ε

∣
∣
∣
∣
ε=0

∂

∂ν

∣
∣
∣
∣
ν=0

Sd({q
ε,ν
k }) =

∂

∂ε

∣
∣
∣
∣
ε=0

(

DSd({q
ε
k}) · δq

ε
)

=
∂

∂ε

∣
∣
∣
∣
ε=0

(

D1iLd(q
ε
0, q

ε
1) (δqε

0)
i + D2iLd(q

ε
N−1, q

ε
N ) (δqε

N )i
)

= D1jD1iLd(q0, q1)δq
i
0δq̄

j
0 + D2jD1iLd(q0, q1)δq

i
0δq̄

j
1

+ D1jD2iLd(qN−1, qN )δqi
Nδq̄j

N−1 + D2jD2iLd(qN−1, qN )δqi
Nδq̄j

N

+ D1iLd(q0, q1)δ
2qi

0 + D2iLd(qN−1, qN )δ2qi
N . (1.35)

By symmetry of mixed partial derivatives, reversing the order of differentiation above will give an

equivalent expression. Subtracting one from the other will thus give zero, and rearranging the

resulting equation we obtain

D1jD2iLd(qN−1, qN )
[

δqi
Nδq̄j

N−1 − δq̄i
Nδqj

N−1

]

= D2jD1iLd(q0, q1)
[

δq̄i
0δq

j
1 − δqi

0δq̄
j
1

]

. (1.36)

We can also repeat the derivation in (1.35) and (1.36) for Ld(q
ε,ν
0 , qε,ν

1 ), rather than the entire action

sum, to obtain

D2jD1iLd(q0, q1)
[

δq̄i
0δq

j
1 − δqi

0δq̄
j
1

]

= D1jD2iLd(q0, q1)
[

δqi
1δq̄

j
0 − δq̄i

1δq
j
0

]

, (1.37)

which can also be directly seen from the symmetry of mixed partial derivatives. Substituting this

into (1.36) now gives

D1jD2iLd(qN−1, qN )
[

δqi
Nδq̄j

N−1 − δq̄i
Nδqj

N−1

]

= D1jD2iLd(q0, q1)
[

δqi
1δq̄

j
0 − δq̄i

1δq
j
0

]

. (1.38)

We can now see that each side of this equation is an antisymmetric bilinear form, which we call

the discrete symplectic form, evaluated on the variations δqk and δq̄k. The two sides give this

expression at the first time step and the final time step, so we have that the discrete symplectic form

is preserved by the time evolution of the discrete system.

In the next section we will consider some numerical consequences of this property.

Geometric aside. Intrinsically we can identify two one-forms Θ+
Ld

= D2Lddq1 and Θ−
Ld

=

D1Lddq0, so that dSd = (FN
Ld

)∗Θ+
Ld

+ Θ−
Ld

. Using d2 = 0 (symmetry of mixed partial deriva-

tives) gives 0 = d2Sd = (FN
Ld

)∗(dΘ+
Ld

) + dΘ−
Ld

and so defining the discrete symplectic two-forms

Ω±
Ld

= −dΘ±
Ld

gives (FN
Ld

)∗Ω+
Ld

= −Ω−
Ld

, which is the intrinsic form of (1.36). However, we observe

that 0 = d2Ld = d(Θ+
Ld

+ Θ−
Ld

) = −Ω+
Ld
−Ω−

Ld
and hence Ω+

Ld
= −Ω−

Ld
, which is (1.37). Combining

this with our previous expression then gives (FN
Ld

)∗Ω+
Ld

= Ω+
Ld

as the intrinsic form of (1.38), discrete
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Figure 1.4: Energy computed with variational second-order Newmark and fourth-order Runge-Kutta.
Note that the variational method does not artificially dissipate energy.

symplecticity of the evolution, as will be investigated in § 2.2.2.

Observe that using the discrete Legendre transforms we have Θ±
Ld

= (FL±
d )∗Θ, where Θ = pidqi is

the canonical one-form on T ∗Q. The expression (1.38) thus shows that the map FL+
d ◦FLd

◦(FL+
d )−1

preserves the canonical symplectic two-form Ω on T ∗Q. Variational integrators are thus symplectic

methods in the standard sense, a point which will be further discussed in §2.4.3 and §2.4.4.

1.6.5 Backward error analysis

We now briefly consider why preservation of a symplectic form may be advantageous numerically.

We first consider a numerical example, and then the theory which explains it.

Approximate energy conservation. If we use a variational method to simulate a nonlinear

model system and plot the energy versus time, then we obtain a graph like that in Figure 1.4. For

comparison, this graph also shows the energy curve for a simulation with a standard method such

as RK4 (the common fourth-order Runge-Kutta method).

The system being simulated here is purely conservative and so there should be no loss of en-

ergy over time. The striking aspect of this graph is that while the energy associated with a stan-

dard method decays due to numerical damping, for the Newmark method the energy error remains

bounded. This may be understood by recognizing that the integrator is symplectic, that is, it

preserves the same two-form on state space as the true system.

Backward error analysis. To understand the above numerics it is necessary to use the concept

of backward error analysis, whereby we construct a modified system which is a model for the
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numerical method. Here we only give a simple outline of the procedure; for details and proofs see

Hairer et al. [2002] or Reich [1999a].

Consider an ODE ẋ = f(x) and an integrator xk+1 = F (xk) which approximates the evolution

of f . For a given initial condition x0 let x(t) be the true solution of ẋ = f(x) and let {xk}
N
k=0 be

the discrete time approximation generated by F . Now let ˙̄x = f̄(x̄) be a second ODE, called the

modified system,5 for which the resulting trajectory x̄(t) exactly samples the points xk, so that

x̄(k∆t) = xk. We say that the backward error of F to f is the error ‖f̄ − f‖, measured in an

appropriate norm. This contrasts with the usual forward error of F to f given by ‖xk −x(k∆t)‖,

which is also known as trajectory error.

We can now understand why variational integrators are different to standard methods. Namely,

their modified systems are Lagrangian systems6. That is, for a given Lagrangian L, a variational

integrator is exactly solving a system L̄, which is close to L. This means that the discrete trajectory

(which is exactly sampling the trajectory of L̄) has all of the properties of a conservative mechanical

system, such as energy conservation.

In the particular case of energy, we see in Figure 1.5a the phase space portrait of the exact

solution of the nonlinear pendulum equations (a conservative Lagrangian system), together with the

discrete time trajectories of a variational integrator and a standard Runge-Kutta method. Clearly

the Runge-Kutta method is dissipative, and so its trajectory limits to the origin. In contrast, the

variational integrator has an exactly conserved energy (the energy of the modified system L̄) and so

it remains on its level set for all time.

While it is not generally possible to calculate the modified system exactly, it is possible to find

O(∆t)r truncations of it. In Figure 1.5b the energy level set of the third-order truncation of the

modified equation is plotted, and we see that indeed the variational integrator remains almost on it.

This also explains why the energy plots for variational integrators contain a typical oscillation about

the true energy. The modified energy level set will be close to the true energy level set everywhere,

but it will typically be inside it at some locations and outside it at others. As the discrete trajectory

evolves on the modified energy level set it thus has a non-modified energy which is sometimes greater

than and sometimes less that the true value, but which never deviates very far. This results in the

characteristic energy oscillation.

5In fact for most integrators F there will not be an exact modified system f̄ , but instead there will only be a system
such that x̄(k∆t) = xk + C1 exp(−C2/(∆t)), so the modified system is said to be exponentially close to the discrete
time integrator. For ∆t sufficiently small this is effectively as good as a true modified system. Furthermore, these
estimates do not hold for all time, but rather for times on the order of exp(C3/(∆t)), which once again is essentially
as good as forever for most computational purposes.

6This is typically done in the literature on the Hamiltonian side, by showing that symplectic integrators have
Hamiltonian modified systems. As all variational integrators are symplectic and regular Hamiltonian systems are
Lagrangian the result follows.
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Figure 1.5: Phase space plots of: (a) symplectic method compared to non-symplectic Runge-Kutta
method for the pendulum system, (b) third-order truncation of the modified energy.

1.7 Multisymplectic systems and variational integrators

There are two basic approaches with can be taken to extend the technique of variational integra-

tors to PDEs. The first is to somehow discretize the spatial dimensions in such a way that the

resulting semidiscrete problem is a Lagrangian ODE system to which variational integrators can be

applied directly. The second is to use the variational technique to discretize both space and time

simultaneously, which ensures that both the space–semidiscrete and time–semidiscrete systems will

be Lagrangian, as well as opening the way to truly space-time discretizations such as that used for

asynchronous time stepping in §6.

We focus here on the second approach, discretizing both space and time variationally, as it

provides a more powerful framework for analyzing the properties of the resulting fully discrete sys-

tem. The setting in which we formulate space-time variational systems is that of multisymplectic

mechanics, which we now briefly outline.

1.7.1 Variational multisymplectic mechanics

Geometry of multisymplectic systems. The base space X is the space of independent vari-

ables, typically space-time (t, x1, . . . , xn) with t being time and x1, . . . , xn being space dimensions.

To simplify notation we will frequently treat time as the zeroth space coordinate, so that x0 = t and

the independent variables are (x0, . . . , xn).

At each space-time point we have some number of dependent variables q1, . . . , qm, which we

regard as elements of a fiber over the space-time point. The set of all space-time points together with

the independent fields at each point is thus a fiber bundle Y over X , known as the configuration

bundle. A section of this bundle is a map q : X → Y which leaves the base space point fixed, and

thus gives independent variable values for any choice of dependent variables. We will typically write
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a section as qi = qi(t, x1, . . . ,n ) for i = 1, . . . ,m, and we picture it as a hypersurface in Y , as shown

in Figure 1.6.

x

t = x0

q

Figure 1.6: A graphical representation of a section of a fiber bundle, showing how a section gives
the independent variables q at each space-time point (t, x).

Just as the configuration bundle Y corresponds to the configuration manifold Q of traditional

mechanics (together with time), we require the space-time analog of the tangent bundle TQ. This is

the first jet bundle J1Y , which is the space Y together with the space of derivatives of the indepen-

dent variables q. We can thus write points in J1Y as (x0, . . . , xn, y1, . . . , ym, v1
0, . . . , v

m
n), where

vi
j corresponds to the derivative of qi with respect to xj , for i = 1, . . . ,m and j = 0, . . . , n. If we

regard J1Y as a fiber bundle over X , then a section q(x0, . . . , xn) of Y given a section j1q(x0, . . . , xn)

of J1Y by

j1q(x0, . . . , xn) =

(

x0, . . . , xn, q1, . . . , qm, q1
,1 =

∂q1

∂x1
, . . . , qm

n

∂qm

∂xn

)

. (1.39)

Dynamics of multisymplectic systems. To describe the dynamics of a multisymplectic system,

we proceed in a similar fashion to standard mechanics and define a Lagrangian L : J1Y → R, which

is now a function of a space-time point, the independent variables, and their derivatives. We then

integrate the Lagrangian over space-time to find the action

S(q) =

∫

X

L
(
j1q(x0, . . . , xn)

)
dx0 . . . dxn. (1.40)

We then look for configurations q which are stationary points of the action, holding q fixed on the

boundary of X . The action variation is then

δS(q) =

∫

X

[
∂L

∂qi
δqi +

∂L

∂vi
j
δqi

,j

]

dx0 . . . dxn

=

∫

X

[
∂L

∂qi
−

d

dxj

∂L

∂vi
j

]

δqi dx0 . . . dxn +

∫

∂X

∂L

∂vi
j
δqi dx0 . . . dxn, (1.41)
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where i = 0, . . . ,m, j = 1, . . . , n and we have used integration by parts. Taking the variations δqi to

be zero on the boundary ∂X of space-time eliminates the second term in (1.41) and requiring that

the remainder be zero for all such δqi gives the Euler-Lagrange equations

∂L

∂qi
(x0, . . . , xn)−

d

dxj

(
∂L

∂vi
j
(x0, . . . , xn)

)

= 0. (1.42)

We see here that the action variation (1.41) gives the classical weak form of the PDE describing the

system, while the Euler-Lagrange equations give the corresponding strong form.

Multisymplectic systems have a great deal of interesting geometry associated with them, as dis-

cussed in Gotay, Isenberg, and Marsden [1997], Marsden et al. [1998], and Marsden and Shkoller

[1999], for example. In particular, the variational structure ensures certain conservation properties

for multisymplectic systems, so that they have a Noether’s theorem describing the conserved mo-

menta arising from symmetries, and they have an extension of the symplectic structure of Lagrangian

mechanics (hence the name “multisymplectic”). These points are discussed in detail in §5.

Nonlinear wave equation example. Consider a system with two independent variables (t, x)

and one dependent variable q. The base space is thus X = R
2, the configuration bundle is Y = R

2×R,

and so the first jet bundle is J1Y = R
2 × R × R

2, with coordinates (t, x, q, vt, vx). Taking the

Lagrangian to be

L(t, x, q, vt, vx) =
1

2
v2

t −
c2

2
v2

x + F (q), (1.43)

for some potential F (q), we can readily calculate that the Euler-Lagrange equations (1.42) are the

regular nonlinear wave equation

q,tt = c2q,xx + F ′(q) (1.44)

with wavespeed c, where F ′ is the derivative of F .

1.7.2 Multisymplectic discretizations

We now consider variational discretizations of multisymplectic systems, as introduced by Marsden

et al. [1998]. For simplicity we restrict outselves here to the case of one space dimension and one

time dimension.

Just as with variational integrators for ODEs we discretize space and time, for example by taking

the rectangular grid in Figure 1.7 with step sizes ∆t and ∆x in time and space. The space-time

nodes are thus (ti, xj), at the i-th time step and j-th spatial step, and we write qi,j for the value of

the field variable at the node.

To approximate the dynamics of a continuous Lagrangian multisymplectic system, we need to
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∆t

Figure 1.7: An example mesh for a multisymplectic space-time discretization. Here ∆t and ∆x are
the time and space step sizes, respectively, space is horizontal and time is vertical.

approximate the action integral over a single space-time element with a discrete Lagrangian

Ld(qi,j , qi+1,j , qi,j+1, qi+1,j+1) ≈

∫

[ti,ti+1]×[xj ,xj+1]

L(j1q(t, x)) dt dx, (1.45)

where q(t, x) is a continuous function which approximates qi,j , with q(ti, xj) ≈ qi,j .

To approximate the complete action integral (1.40) we now sum over all elements to obtain the

discrete action

Sd(q) =
k−1∑

i=0

`−1∑

j=0

Ld(qi,j , qi+1,j , qi,j+1, qi+1,j+1), (1.46)

and we require that this be stationary with respect to variations in qi,j for each node (ti, xj) which

is in the interior of the space-time region. Taking such a representative (ti, xj), we see that there

are four terms in (1.46) which contain qi,j , and so stationarity gives the discrete Euler-Lagrange

equations

D1Ld(qi,j , qi+1,j , qi,j+1, qi+1,j+1) + D2Ld(qi−1,j , qi,j , qi−1,j+1, qi,j+1)

+ D3Ld(qi,j−1, qi+1,j−1, qi,j , qi+1,j) + D4Ld(qi−1,j−1, qi,j−1, qi−1,j , qi,j) = 0. (1.47)

Given initial data, such as qi,j for i = 0 and i = 1 and all j, these equations then define an integrator

for calculating the values at time step i = 2, and hence advancing forward in time.

Just as with variational integrators for ODEs, the variational method of derivation for multi-

symplectic discretizations means that the resulting numerical methods preserve (multi-)symplectic

structures, have conserved momenta, and have excellent energy behavior. We discuss this in more

detail in §6.1.4 and §6.3.
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Wave equation example. For the wave equation Lagrangian (1.43), a simple approximation is

given by

Ld(qi,j , qi+1,j , qi,j+1, qi+1,j+1) = (∆t)(∆x)

[

1

2

(
qi+1,j − qi,j

∆t

)2

−
c2

2

(
qi,j+1 − qi,j

∆t

)2

+ F (qi,j)

]

.

(1.48)

Computing the discrete Euler-Lagrange equations (1.47) for this Lagrangian gives

qi+1,j − 2qi,j + qi−1,j

(∆t)2
− c2 qi,j+1 − 2qi,j + qi,j−1

(∆x)2
− F ′(qi,j) = 0, (1.49)

which is clearly a discretization of (1.44).
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Chapter 2

Discrete variational mechanics

2.1 Background: Lagrangian mechanics

2.1.1 Basic definitions

Consider a configuration manifold Q, with associated state space given by the tangent bundle

TQ, and a Lagrangian L : TQ→ R.

Given an interval [0, T ], define the path space to be

C(Q) = C([0, T ], Q) = {q : [0, T ]→ Q | q is a C2 curve}

and the action map G : C(Q)→ R to be

G(q) ≡

∫ T

0

L(q(t), q̇(t))dt. (2.1)

It can be proved that C(Q) is a smooth manifold [Abraham, Marsden, and Ratiu, 1988], and G is

as smooth as L.

The tangent space TqC(Q) to C(Q) at the point q is the set of C2 maps vq : [0, T ] → TQ such

that πQ ◦ vq = q, where πQ : TQ→ Q is the canonical projection.

Define the second-order submanifold of T (TQ) to be

Q̈ ≡ {w ∈ T (TQ) | TπQ(w) = πTQ(w)} ⊂ T (TQ)

where πTQ : T (TQ) → TQ and πQ : TQ → Q are the canonical projections. Q̈ is simply the set of

second derivatives d2q/dt2(0) of curves q : R → Q, which are elements of the form ((q, q̇), (q̇, q̈)) ∈

T (TQ).

Theorem 2.1. Given a Ck Lagrangian L, k ≥ 2, there exists a unique Ck−2 mapping DELL : Q̈→

T ∗Q and a unique Ck−1 one-form ΘL on TQ, such that, for all variations δq ∈ TqC(Q) of q(t), we
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have

dG(q) · δq =

∫ T

0

DELL(q̈) · δqdt + ΘL(q̇) · δ̂q
∣
∣
∣

T

0
, (2.2)

where

δ̂q(t) =

((

q(t),
∂q

∂t
(t)

)

,

(

δq(t),
∂δq

∂t
(t)

))

.

The mapping DELL is called the Euler-Lagrange map and has the coordinate expression

(DELL)i =
∂L

∂qi
−

d

dt

∂L

∂q̇i
.

The one-form ΘL is called the Lagrangian one-form and in coordinates is given by

ΘL =
∂L

∂q̇i
dqi. (2.3)

Proof. Computing the variation of the action map gives

dG(q) · δq =

∫ T

0

[
∂L

∂qi
δqi +

∂L

∂q̇i

d

dt
δqi

]

dt

=

∫ T

0

[
∂L

∂qi
−

d

dt

∂L

∂q̇i

]

· δqidt +

[
∂L

∂q̇i
δqi

]T

0

using integration by parts, and the terms of this expression can be identified as the Euler-Lagrange

map and the Lagrangian one-form.

2.1.2 Lagrangian vector fields and flows

The Lagrangian vector field XL : TQ→ T (TQ) is a second-order vector field on TQ satisfying

DELL ◦XL = 0 (2.4)

and the Lagrangian flow FL : TQ× R → TQ is the flow of XL (we shall ignore issues related to

global versus local flows, which are easily dealt with by restricting the domains of the flows). We

shall write F t
L : TQ→ TQ for the map FL at the frozen time t.

For an arbitrary Lagrangian, equation (2.4) may not uniquely define the vector field XL and

hence the flow map FL may not exist. For now we will assume that L is such that these objects

exist and are unique, and in §2.3.3 we will see under what conditions this is true.

A curve q ∈ C(Q) is said to be a solution of the Euler-Lagrange equations if the first term

on the right-hand side of (2.2) vanishes for all variations δq ∈ TqC(Q). This is equivalent to (q, q̇)
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being an integral curve of XL, and means that q must satisfy the Euler-Lagrange equations

∂L

∂qi
(q, q̇)−

d

dt

(
∂L

∂q̇i
(q, q̇)

)

= 0 (2.5)

for all t ∈ (0, T ).

2.1.3 Lagrangian flows are symplectic

Define the solution space CL(Q) ⊂ C(Q) to be the set of solutions of the Euler-Lagrange equations.

As an element q ∈ CL(Q) is an integral curve of XL, it is uniquely determined by the initial condition

(q(0), q̇(0)) ∈ TQ and we can thus identify CL(Q) with the space of initial conditions TQ.

Defining the restricted action map Ĝ : TQ→ R to be

Ĝ(vq) = G(q), q ∈ CL(Q) and (q(0), q̇(0)) = vq,

we see that (2.2) reduces to

dĜ(vq) · wvq
= ΘL(q̇(T ))((FT

L )∗(wvq
))−ΘL(vq)(wvq

)

= ((FT
L )∗(ΘL))(vq)(wvq

)−ΘL(vq)(wvq
) (2.6)

for all wvq
∈ Tvq

(TQ). Taking a further derivative of this expression, and using the fact that

d2Ĝ = 0, we obtain

(FT
L )∗(ΩL) = ΩL,

where ΩL = dΘL is the Lagrangian symplectic form , given in coordinates by

ΩL(q, q̇) =
∂2L

∂qi∂q̇j
dqi ∧ dqj +

∂2L

∂q̇i∂q̇j
dq̇i ∧ dqj .

2.1.4 Lagrangian flows preserve momentum maps

Suppose that a Lie group G, with Lie algebra g, acts on Q by the (left or right) action Φ : G×Q→ Q.

Consider the tangent lift of this action to ΦTQ : G × TQ → TQ given by ΦTQ
g (vq) = T (Φg) · vq,

which is

ΦTQ
(
g, (q, q̇)

)
=

(

Φi(g, q),
∂Φi

∂qj
(g, q) q̇j

)

.
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For ξ ∈ g define the infinitesimal generators ξQ : Q→ TQ and ξTQ : TQ→ T (TQ) by

ξQ(q) =
d

dg

(

Φg(q)
)

· ξ,

ξTQ(vq) =
d

dg

(

ΦTQ
g (vq)

)

· ξ.

In coordinates these are given by

ξQ(q) =

(

qi,
∂Φi

∂gm
(e, q)ξm

)

,

ξTQ(q, q̇) =

(

qi, q̇i,
∂Φi

∂gm
(e, q)ξm,

∂2Φi

∂gm∂qj
(e, q)q̇jξm

)

.

We now define the Lagrangian momentum map JL : TQ→ g∗ to be

JL(vq) · ξ = ΘL · ξTQ(vq). (2.7)

It can be checked that an equivalent expression for JL is

JL(vq) · ξ =

〈
∂L

∂q̇
, ξQ(q)

〉

,

where ∂L/∂q̇ represents the Legendre transformation, discussed shortly. This equation is convenient

for computing momentum maps in examples: see Marsden and Ratiu [1999].

The traditional linear and angular momenta are momentum maps, with the linear momentum

JL : TR
n → R

n arising from the additive action of R
n on itself, and the angular momentum

JL : TR
n → so(n)∗ coming from the action of SO(n) on R

n.

An important property of momentum maps is equivariance , which is the condition that the

following diagram commutes.

TQ
JL //

ΦT Q
g

��

g∗

Ad∗

g−1

��
TQ

JL

// g∗

(2.8)

In general, Lagrangian momentum maps are not equivariant, but we give here a simple sufficient

condition for this property to be satisfied. Recall that a map f : TQ→ TQ is said to be symplectic

if f∗ΩL = ΩL. If, furthermore, f is such that f∗ΘL = ΘL, then f is said to be a special symplectic

map. Clearly a special symplectic map is also symplectic, but the converse does not hold.

Theorem 2.2. Consider a Lagrangian system L : TQ→ R with a left action Φ : G×Q→ Q. If the

lifted action ΦTQ : G × TQ → TQ acts by special canonical transformations, then the Lagrangian

momentum map JL : TQ→ g∗ is equivariant.
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Proof. Observing that (ΦTQ
g )−1 = ΦTQ

g−1 , we see that equivariance is equivalent to

JL(vq) · ξ = JL ◦ TΦg−1(vq) ·Adg−1 ξ.

We now compute the right-hand side of this expression to give

JL ◦ ΦTQ
g−1(vq) ·Adg−1 ξ =

〈
ΘL

(
ΦTQ

g−1(vq)
)
, (Adg−1 ξ)TQ

(
ΦTQ

g−1(vq)
)〉

=
〈
ΘL

(
ΦTQ

g−1(vq)
)
, T (ΦTQ

g−1) · ξTQ(vq)
〉

=
〈(

(ΦTQ
g−1)

∗ΘL

)
(vq), ξTQ(vq)

〉

=
〈
ΘL(vq), ξTQ(vq)

〉
,

which is just JL(vq) · ξ, as desired. Here we used the identity (Adg ξ)M = Φ∗
g−1ξM [Marsden and

Ratiu, 1999] to pass from the first to the second line.

A Lagrangian L : TQ → R is said to be invariant under the lift of the action Φ : G ×Q → Q

if L ◦ ΦTQ
g = L for all g ∈ G, and in this case the group action is said to be a symmetry of

the Lagrangian. Differentiating this expression implies that the Lagrangian is infinitesimally

invariant , which is the statement dL · ξTQ = 0 for all ξ ∈ g.

Observe that if L is invariant, then this implies that ΦTQ acts by special symplectic transforma-

tions, and so the Lagrangian momentum map is equivariant. To see this, we write L ◦ ΦTQ
g = L in

coordinates to obtain L(Φg(q), ∂qΦg(q) · q̇) = L(q, q̇), and now differentiating this with respect to q̇

in the direction δq gives

∂L

∂q̇

(
Φg(q), ∂qΦg(q) · q̇

)
· ∂qΦg(q) · δq =

∂L

∂q̇
(q, q̇) · δq.

But the left- and right-hand sides are simply (ΦTQ
g )∗ΘL and ΘL, respectively, evaluated on ((q, q̇), (δq, δq̇)),

and thus we have (ΦTQ
g )∗ΘL = ΘL.

We will now show that, when the group action is a symmetry of the Lagrangian, then the

momentum maps are preserved by the Lagrangian flow. This result was originally due to Noether

[1918], using a technique similar to the one given below.

Theorem 2.3 (Noether’s theorem). Consider a Lagrangian system L : TQ → R which is

invariant under the lift of the (left or right) action Φ : G × Q → Q. Then the corresponding

Lagrangian momentum map JL : TQ→ g∗ is a conserved quantity of the flow, so that JL ◦F t
L = JL

for all times t.

Proof. The action of G on Q induces an action of G on the space of paths C(Q) by pointwise action,

so that Φg : C(Q) → C(Q) is given by Φg(q)(t) = Φg(q(t)). As the action is just the integral of the
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Lagrangian, invariance of L implies invariance of G and the differential of this gives

dG(q) · ξC(Q)(q) =

∫ T

0

dL · ξTQdt = 0.

Invariance of G also implies that Φg maps solution curves to solution curves and thus ξC(Q)(q) ∈ TqCL,

which is the corresponding infinitesimal version. We can thus restrict dG · ξC(Q) to the space of

solutions CL to obtain

0 = Ĝ(vq) · ξTQ(vq) = ΘL(q̇(T )) · ξTQ(q̇(T ))−ΘL(vq) · ξTQ(vq).

Substituting in the definition of the Lagrangian momentum map JL, however, shows that this is just

0 = JL(FT
L (vq)) · ξ − JL(vq) · ξ, which gives the desired result.

We have thus seen that conservation of momentum maps is a direct consequence of the invariance

of the variational principle under a symmetry action. The fact that the symmetry maps solution

curves to solution curves will extend directly to discrete mechanics.

In fact, only infinitesimal invariance is needed for the momentum map to be conserved by the

Lagrangian flow, as a careful reading of the above proof will show. This is because it is only

necessary that the Lagrangian be invariant in a neighbourhood of a given trajectory, and so the

global statement of invariance is stronger than necessary.

2.2 Discrete variational mechanics: Lagrangian viewpoint

Take again a configuration manifold Q, but now define the discrete state space to be Q×Q. This

contains the same amount of information as (is locally isomorphic to) TQ. A discrete Lagrangian

is a function Ld : Q×Q→ R.

To relate discrete and continuous mechanics it is necessary to introduce a time step h ∈ R, and

to take Ld to depend on this time step. For the moment, we will take Ld : Q × Q × R → R, and

will neglect the h dependence except where it is important. We shall come back to this point later

when we discuss the context of time-dependent mechanics and adaptive algorithms. However, the

idea behind this was explained in the introduction.

Construct the increasing sequence of times {tk = kh | k = 0, . . . , N} ⊂ R from the time step h,

and define the discrete path space to be

Cd(Q) = Cd({tk}
N
k=0, Q) = {qd : {tk}

N
k=0 → Q}.

We will identify a discrete trajectory qd ∈ Cd(Q) with its image qd = {qk}
N
k=0, where qk = qd(tk).
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The discrete action map Gd : Cd(Q)→ R is defined by

Gd(qd) =

N−1∑

k=0

Ld(qk, qk+1).

As the discrete path space Cd is isomorphic to Q× · · · ×Q (N + 1 copies), it can be given a smooth

product manifold structure. The discrete action Gd clearly inherits the smoothness of the discrete

Lagrangian Ld.

The tangent space Tqd
Cd(Q) to Cd(Q) at qd is the set of maps vqd

: {tk}
N
k=0 → TQ such that

πQ ◦ vqd
= qd, which we will denote by vqd

= {(qk, vk)}Nk=0.

The discrete object corresponding to T (TQ) is the set (Q × Q) × (Q × Q). We define the

projection operator π and the translation operator σ to be

π : ((q0, q1), (q
′
0, q

′
1)) 7→ (q0, q1),

σ : ((q0, q1), (q
′
0, q

′
1)) 7→ (q′0, q

′
1).

The discrete second-order submanifold of (Q×Q)× (Q×Q) is defined to be

Q̈d ≡ {wd ∈ (Q×Q)× (Q×Q) | π1 ◦ σ(wd) = π2 ◦ π(wd)},

which has the same information content as (is locally isomorphic to) Q̈. Concretely, the discrete

second-order submanifold is the set of pairs of the form ((q0, q1), (q1, q2)).

Theorem 2.4. Given a Ck discrete Lagrangian Ld, k ≥ 1, there exists a unique Ck−1 mapping

DDELLd : Q̈d → T ∗Q and unique Ck−1 one-forms Θ+
Ld

and Θ−
Ld

on Q × Q, such that, for all

variations δqd ∈ Tqd
C(Q) of qd, we have

dGd(qd) · δqd =
N−1∑

k=1

DDELLd((qk−1, qk), (qk, qk+1)) · δqk

+ Θ+
Ld

(qN−1, qN ) · (δqN−1, δqN )−Θ−
Ld

(q0, q1) · (δq0, δq1). (2.9)

The mapping DDELLd is called the discrete Euler-Lagrange map and has coordinate expression

DDELLd((qk−1, qk), (qk, qk+1)) = D2Ld(qk−1, qk) + D1Ld(qk, qk+1).

The one-forms Θ+
Ld

and Θ−
Ld

are called the discrete Lagrangian one-forms and in coordinates
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are

Θ+
Ld

(q0, q1) = D2Ld(q0, q1)dq1 =
∂Ld

∂qi
1

dqi
1, (2.10a)

Θ−
Ld

(q0, q1) = −D1Ld(q0, q1)dq0 = −
∂Ld

∂qi
0

dqi
0. (2.10b)

Proof. Computing the derivative of the discrete action map gives

dGd(qd) · δqd =
N−1∑

k=0

[D1Ld(qk, qk+1) · δqk + D2Ld(qk, qk+1) · δqk+1]

=

N−1∑

k=1

[D1Ld(qk, qk+1) + D2Ld(qk−1, qk)] · δqk

+ D1Ld(q0, q1) · δq0 + D2Ld(qN−1, qN ) · δqN

using a discrete integration by parts (rearrangement of the summation). Identifying the terms

with the discrete Euler-Lagrange map and the discrete Lagrangian one-forms now gives the desired

result.

Unlike the continuous case, in the discrete case there are two one-forms that arise from the

boundary terms. Observe, however, that dLd = Θ+
Ld
−Θ−

Ld
and so using d2 = 0 shows that

dΘ+
Ld

= dΘ−
Ld

.

This will be reflected below in the fact that there is only a single discrete two-form, which is the

same as the continuous situation and is important for symplecticity.

2.2.1 Discrete Lagrangian evolution operator and mappings

A discrete evolution operator X plays the same role as a continuous vector field, and is defined to

be any map X : Q×Q→ (Q×Q)×(Q×Q) satisfying π◦X = id. The discrete object corresponding

to the flow is the discrete map F : Q × Q → Q × Q defined by F = σ ◦ X. In coordinates, if

the discrete evolution operator maps X : (q0, q1) 7→ (q0, q1, q
′
0, q

′
1), then the discrete map will be

F : (q0, q1) 7→ (q′0, q
′
1).

We will be mainly interested in discrete evolution operators which are second-order , which is the

requirement that X(Q×Q) ⊂ Q̈d. This implies that they have the form X : (q0, q1) 7→ (q0, q1, q1, q2),

and so the corresponding discrete map will be F : (q0, q1) 7→ (q1, q2). We now consider the particular

case of a discrete Lagrangian system.

The discrete Lagrangian evolution operator XLd
is a second-order discrete evolution oper-
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ator satisfying

DDELLd ◦XLd
= 0

and the discrete Lagrangian map FLd
: Q×Q→ Q×Q is defined by FLd

= σ ◦XLd
.

As in the continuous case, the discrete Lagrangian evolution operator and discrete Lagrangian

map are not well defined for arbitrary choices of discrete Lagrangian. We will henceforth assume

that Ld is chosen so as to make these structures well defined, and in §2.4 we will give a condition

on Ld which ensures that this is true.

A discrete path qd ∈ Cd(Q) is said to be a solution of the discrete Euler-Lagrange equations

if the first term on the right-hand side of (2.9) vanishes for all variations δqd ∈ Tqd
Cd(Q). This means

that the points {qk} satisfy FLd
(qk−1, qk) = (qk, qk+1) or, equivalently, that they satisfy the discrete

Euler-Lagrange equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0, for all k = 1, . . . , N − 1. (2.11)

2.2.2 Discrete Lagrangian maps are symplectic

Define the discrete solution space CLd
(Q) ⊂ Cd(Q) to be the set of solutions of the discrete

Euler-Lagrange equations. Since an element qd ∈ CLd
(Q) is formed by iteration of the map FLd

, it

is uniquely determined by the initial condition (q0, q1) ∈ Q×Q. We can thus identify CLd
(Q) with

the space of initial conditions Q×Q.

Defining the restricted discrete action map Ĝd : Q×Q→ R to be

Ĝd(q0, q1) = Gd(qd); qd ∈ CLd
(Q) and (qd(t0), qd(t1)) = (q0, q1),

we see that (2.9) reduces to

dĜd(vd) · wvd
= Θ+

Ld
(FN−1

Ld
(vd))((F

N−1
Ld

)∗(wvd
))−Θ−

Ld
(vd)(wvd

)

= ((FN−1
Ld

)∗(Θ+
Ld

))(vd)(wvd
)−Θ−

Ld
(vd)(wvd

) (2.12)

for all wvd
∈ Tvd

(Q×Q) and vd = (q0, q1) ∈ Q×Q. Taking a further derivative of this expression,

and using the fact that d2Ĝd = 0, we obtain

(FN−1
Ld

)∗(ΩLd
) = ΩLd

,

where ΩLd
= dΘ+

Ld
= dΘ−

Ld
is the discrete Lagrangian symplectic form , with coordinate

expression
ΩLd

(q0, q1) =
∂2Ld

∂qi
0∂qj

1

dqi
0 ∧ dqj

1.
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This argument also holds if we take any subinterval of 0, . . . , N and so the statement is true for any

number of steps of FLd
. For a single step we have (FLd

)∗ΩLd
= ΩLd

.

Given a map f : Q×Q→ Q×Q, we will say that f is discretely symplectic if f∗ΩLd
= ΩLd

.

The above calculations thus prove that the discrete Lagrangian map FLd
is discretely symplectic,

just as we saw in the last section that the Lagrangian flow map is symplectic on TQ.

2.2.3 Discrete Noether’s theorem

Consider the (left or right) action Φ : G×Q→ Q of a Lie group G on Q, with infinitesimal generator

as defined in §2.1. This action can be lifted to Q×Q by the product ΦQ×Q
g (q0, q1) = (Φg(q0),Φg(q1)),

which has an infinitesimal generator ξQ×Q : Q×Q→ T (Q×Q) given by

ξQ×Q(q0, q1) = (ξQ(q0), ξQ(q1)).

The two discrete Lagrangian momentum maps J+
Ld

, J−
Ld

: Q×Q→ g∗ are

J+
Ld

(q0, q1) · ξ = Θ+
Ld
· ξQ×Q(q0, q1),

J−
Ld

(q0, q1) · ξ = Θ−
Ld
· ξQ×Q(q0, q1).

Using the expressions for Θ±
Ld

allows the discrete momentum maps to be alternatively written as

J+
Ld

(q0, q1) · ξ = 〈D2Ld(q0, q1), ξQ(q1)〉 ,

J−
Ld

(q0, q1) · ξ = 〈−D1Ld(q0, q1), ξQ(q0)〉 ,

which are computationally useful formulations.

As in the continuous case, it is interesting to consider when the discrete momentum maps are

equivariant. This is the conditions

J+
Ld
◦ ΦQ×Q

g = Ad∗
g−1 ◦J+

Ld
,

J−
Ld
◦ ΦQ×Q

g = Ad∗
g−1 ◦J−

Ld
.

In general these equations will not be satisfied; however, there is a simple sufficient condition, similar

to the condition in the continuous case.

Recall that we have defined a map f : Q×Q→ Q×Q to be discretely symplectic if f∗ΩLd
= ΩLd

.

We now define f to be a special discrete symplectic map if f∗Θ+
Ld

= Θ+
Ld

and f∗Θ−
Ld

= Θ−
Ld

.

This clearly means that f is also discretely symplectic, but the reverse is not true.

Theorem 2.5. Take a discrete Lagrangian system Ld : Q × Q → R with a (left or right) group
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action Φ : G × Q → Q. If the product lifted action ΦQ×Q : G × Q × Q → Q × Q acts by special

discrete symplectic maps, then the discrete Lagrangian momentum maps are equivariant.

Proof. The proof used in Theorem 2.2 for the continuous case can also be used here, with J+
Ld

and

J−
Ld

being considered separately.

If the lifted action only preserves one of Θ+
Ld

or Θ−
Ld

, then only the corresponding momentum

map will necessarily be equivariant.1

If a discrete Lagrangian Ld : Q × Q → R is such that Ld ◦ ΦQ×Q
g = Ld for all g ∈ G, then Ld

is said to be invariant under the lifted action, and Φ is said to be a symmetry of the discrete

Lagrangian. Note that invariance implies infinitesimal invariance , which is dLd · ξQ×Q = 0 for

all ξ ∈ g. Also note that

dLd = Θ+
Ld
−Θ−

Ld
,

and so when Ld is infinitesimally invariant under the lifted action the two discrete momentum maps

are equal. In such cases we will use the notation JLd
: Q × Q → g∗ for the unique single discrete

Lagrangian momentum map.

Note that invariance of Ld under the lifted action implies that ΦQ×Q
g is a special discrete sym-

plectic map. This can be seen by differentiating Ld ◦ ΦQ×Q
g = Ld with respect to q1 to obtain

D2Ld

(
ΦQ×Q

g (q0, q1)
)
· ∂qΦg(q1) · δq1 = D2Ld(q0, q1) · δq1,

and observing that the left- and right-hand sides are just (ΦQ×Q
g )∗Θ+

Ld
and Θ+

Ld
, respectively, applied

to (q0, q1, δq0, δq1). Hence (ΦQ×Q
g )∗Θ+

Ld
= Θ+

Ld
, and a similar calculation gives the result for Θ−

Ld
.

We now give the discrete analogue of Noether’s theorem, Theorem 2.3, which states that mo-

mentum maps of symmetries are constants of the motion.

Theorem 2.6 (Discrete Noether’s theorem). Consider a given discrete Lagrangian system

Ld : Q×Q→ R which is invariant under the lift of the (left or right) action Φ : G×Q→ Q. Then

the corresponding discrete Lagrangian momentum map JLd
: Q×Q→ g∗ is a conserved quantity of

the discrete Lagrangian map FLd
: Q×Q→ Q×Q, so that JLd

◦ FLd
= JLd

.

Proof. We will use the same idea as in the proof of the continuous Noether’s theorem, based on the

fact that the variational principle is invariant under the symmetry action.

Begin by inducing an action of G on the discrete path space Cd(Q) by using the pointwise action.

Then

dGd(qd) · ξCd(Q)(qd) =

N−1∑

k=0

dLd · ξQ×Q,

1As in the continuous case, equivariance plays an important role in reduction theory and, in the Hamiltonian
context, equivariance guarantees that the momentum map is Poisson, which is often useful.
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and so the space of solutions CLd
(Q) of the discrete Euler-Lagrange equations is invariant under the

lifted action of G, and the discrete Lagrangian map FLd
: Q×Q→ Q×Q commutes with the lifted

action Φg : Q×Q→ Q×Q.

Identifying CLd
(Q) with the space of initial conditions Q×Q and using equation (2.12) gives

dGd(qd) · ξC(Q)(qd) = dĜd(q0, q1) · ξQ×Q(q0, q1)

=
((

FN
Ld

)∗(
Θ+

Ld

)
−Θ−

Ld

)
(q0, q1) · ξQ×Q(q0, q1).

For symmetries the left-hand side is zero, and so we have

(Θ+
Ld
· ξQ×Q) ◦ FN

Ld
= Θ−

Ld
· ξQ×Q,

which is simply the statement of preservation of the discrete momentum map, given that for sym-

metry actions there is only a single momentum map and that the above argument holds for all

subintervals, including a single time step.

As in the continuous case, only infinitesimal invariance of the discrete Lagrangian is actually

required for the discrete momentum maps to be conserved. This is due to the fact that only local

invariance is used in the proof above, and global invariance is not necessary.

Note that if G is not a symmetry of Ld, then the two discrete momentum maps will not be equal,

and it is precisely the difference J+
Ld
− J−

Ld
which describes the evolution of either momentum map

during the time step. To see this, define

J∆
Ld

(qk, qk+1) = J+
Ld

(qk, qk+1)− J−
Ld

(qk, qk+1)

and observe that the discrete Euler-Lagrange equations imply

J+
Ld

(qk−1, qk) = J−
Ld

(qk, qk+1).

Combining the two above expressions shows that the two discrete momentum maps evolve according

to

J+
Ld

(qk, qk+1) = J+
Ld

(qk−1, qk) + J∆
Ld

(qk, qk+1),

J−
Ld

(qk, qk+1) = J−
Ld

(qk−1, qk) + J∆
Ld

(qk−1, qk).

Clearly, if Ld is invariant, then J∆
Ld

= 0, and so the momentum maps are equal and they are

conserved. If not, then these equations describe how the momentum maps evolve.
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2.3 Background: Hamiltonian mechanics

2.3.1 Hamiltonian mechanics

We will only concern ourselves here with the case of a phase space that is the cotangent bundle of

a configuration manifold. Although some of the elegance and power of the Hamiltonian formalism

is lost in this restriction, it is simpler for our purposes, and of course is the most important case for

applications.

Consider then a configuration manifold Q, and define the phase space to be the cotangent

bundle T ∗Q. The Hamiltonian is a function H : T ∗Q → R. We will take local coordinates on

T ∗Q to be (q, p).

Define the canonical one-form Θ on T ∗Q by

Θ(pq) · upq
=
〈
pq, TπT∗Q · upq

〉
, (2.13)

where πT∗Q : T ∗Q → Q is the standard projection and 〈·, ·〉 denotes the natural pairing between

vectors and covectors. In coordinates, Θ(q, p) = pidqi. The canonical two-form Ω on T ∗Q is

defined to be

Ω = −dΘ,

which has coordinate expression Ω(q, p) = dqi∧dpi. The pair (T ∗Q,Ω) is an example of a symplec-

tic manifold and a mapping F : T ∗Q→ T ∗Q is said to be canonical or symplectic if F ∗Ω = Ω.

If F ∗Θ = Θ, then F is said to be a special symplectic map, which clearly implies that it is also

symplectic. Note that a particular case of special symplectic maps is given by cotangent lifts of

maps Q→ Q, which automatically preserve the canonical one-form on T ∗Q (see Marsden and Ratiu

[1999] for details).

Given a Hamiltonian H, define the corresponding Hamiltonian vector field XH to be the

unique vector field on T ∗Q satisfying

iXH
Ω = dH. (2.14)

Writing XH = (Xq,Xp) in coordinates, we see that the above expression is

−Xpi
dqi + Xqidpi =

∂H

∂qi
dqi +

∂H

∂pi
dpi,

which gives the familiar Hamilton’s equations for the components of XH , namely,

Xqi(q, p) =
∂H

∂pi
(q, p), (2.15a)

Xpi
(q, p) = −

∂H

∂qi
(q, p). (2.15b)
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The Hamiltonian flow FH : T ∗Q × R → T ∗Q is the flow of the Hamiltonian vector field XH .

Note that, unlike the Lagrangian situation, the Hamiltonian vector field XH and flow map FH are

always well defined for any Hamiltonian.

For any fixed t ∈ R, the flow map F t
H : T ∗Q→ T ∗Q is symplectic, as can be seen by differentiating

to obtain

∂

∂t

∣
∣
∣
∣
t=0

(F t
H)∗Ω = LXH

Ω = diXH
Ω + iXH

dΩ

= d2H − iXH
d2Θ = 0,

where we have used Cartan’s magic formula LXα = diXα+ iXdα for the Lie derivative and the fact

that d2 = 0.

2.3.2 Hamiltonian form of Noether’s theorem

Consider a (left or right) action Φ : G × Q → Q of G on Q, as in §2.1. The cotangent lift of this

action is ΦT∗Q : G× T ∗Q→ T ∗Q given by ΦT∗Q
g (pq) = Φ∗

g−1(pq), which in coordinates is

ΦT∗Q
(
g, (q, p)

)
=

(

(Φ−1
g )i(q), pj

∂Φj
g

∂qi
(q)

)

.

This has the corresponding infinitesimal generator ξT∗Q : T ∗Q→ T (T ∗Q) defined by

ξT∗Q(pq) =
d

dg

(
ΦT∗Q

g (pq)
)
· ξ,

which has coordinate form

ξT∗Q(q, p) =

(

qi, pi,−

[(
∂Φ

∂q

)−1]i

j

∂Φj

∂gm
ξm,

pj
∂2Φj

∂qi∂gm
ξm − pj

∂2Φj

∂qi∂qj

[(
∂Φ

∂q

)−1]j

k

∂Φk

∂gm
ξm

)

,

where the derivatives of Φ are all evaluated at (e, q).

The Hamiltonian momentum map JH : T ∗Q→ g∗ is defined by

JH(pq) · ξ = Θ(pq) · ξT∗Q(pq).

For each ξ ∈ g we define Jξ
H : T ∗Q → R by Jξ

H(pq) = JH(pq) · ξ, which has the expression

Jξ
H = iξT∗Q

Θ. Note that the Hamiltonian map is also given by the expression

JH(pq) · ξ = 〈pq, ξQ(q)〉,
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which is useful for computing it in applications.

Writing the requirement for equivariance of a Hamiltonian momentum map gives the equation

JH ◦ ΦT∗Q
g = Ad∗

g−1 ◦JH .

Unlike the Lagrangian setting, however, cotangent lifted actions are always special symplectic maps,

and so we have (ΦT∗Q
g )∗Θ = Θ irrespective of the Hamiltonian. This gives the following result.

Theorem 2.7. Consider a Hamiltonian system H : T ∗Q → R with a (left or right) group action

Φ : G×Q→ Q. Then the Hamiltonian momentum map JH : T ∗Q→ g∗ is always equivariant with

respect to the cotangent lifted action ΦT∗Q : G× T ∗Q→ T ∗Q.

Proof. Once again, we can use exactly the same proof as for Theorem 2.2 in the continuous case.

The only difference is that H need not be restricted to ensure that the lifted action is a special

symplectic map.

A Hamiltonian H : T ∗Q → R is said to be invariant under the cotangent lift of the action

Φ : G×Q→ Q if H ◦ ΦT∗Q
g = H for all g ∈ G, in which case the action is said to be a symmetry

for the Hamiltonian. The derivative of this expression implies that such a Hamiltonian is also

infinitesimally invariant , which is the requirement dH · ξT∗Q = 0 for all ξ ∈ g, although the

converse is not generally true.

Theorem 2.8 (Hamiltonian Noether’s theorem).Let H : T ∗Q→ R be a Hamiltonian which

is invariant under the lift of the (left or right) action Φ : G × Q → Q. Then the corresponding

Hamiltonian momentum map JH : T ∗Q→ g∗ is a conserved quantity of the flow; that is, JH ◦F
t
H =

JH for all times t.

Proof. Recall that (ΦT∗Q
g )∗Θ = Θ for all g ∈ G as the action is a cotangent lift, and hence LξT∗Q

Θ =

0. Now computing the derivative of Jξ
H in the direction given by the Hamiltonian vector field XH

gives

dJξ
H ·XH = d(iξT∗Q

Θ) ·XH

= LξT∗Q
Θ ·XH − iξT∗Q

dΘ ·XH

= −iXH
Ω · ξT∗Q

= −dH · ξT∗Q = 0

using Cartan’s magic formula LXα = diXα + iXdα and (2.14). As F t
H is the flow map for XH this

gives the desired result.
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Noether’s theorem still holds even if the Hamiltonian is only infinitesimally invariant, as it is

only this local statement which is used in the proof.

2.3.3 Legendre transforms

To relate Lagrangian mechanics to Hamiltonian mechanics we define the Legendre transform or

fibre derivative FL : TQ→ T ∗Q by

FL(vq) · wq =
d

dε

∣
∣
∣
∣
ε=0

L(vq + εwq),

which has coordinate form

FL : (q, q̇) 7→ (q, p) =

(

q,
∂L

∂q̇
(q, q̇)

)

.

If the fibre derivative of L is locally an isomorphism, then we say that L is regular , and if it

is a global isomorphism, then L is said to be hyperregular . We will generally assume that we are

working with hyperregular Lagrangians.

The fibre derivative of a Hamiltonian is the map FH : T ∗Q→ TQ defined by

αq · FH(βq) =
d

dε

∣
∣
∣
∣
ε=0

H(βq + εαq),

which in coordinates is

FH : (q, p) 7→ (q, q̇) =

(

q,
∂H

∂p
(q, p)

)

.

Similarly to the situations for Lagrangians, we say that H is regular if FH is a local isomorphism,

and that H is hyperregular if FH is a global isomorphism.

The canonical one- and two-forms and the Hamiltonian momentum maps are related to the

Lagrangian one- and two-forms and the Lagrangian momentum maps by pullback under the fibre

derivative, so that

ΘL = (FL)∗Θ, ΩL = (FL)∗Ω, and JL = (FL)∗JH .

If we additionally relate the Hamiltonian to the Lagrangian by

H(q, p) = FL(q, q̇) · q̇ − L(q, q̇), (2.16)

where (q, p) and (q, q̇) are related by the Legendre transform, then the Hamiltonian and Lagrangian

vector fields and their associated flow maps will also be related by pullback to give

XL = (FL)∗XH ; F t
L = (FL)−1 ◦ F t

H ◦ FL.
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In coordinates this means that Hamilton’s equations (2.15) are equivalent to the Euler-Lagrange

equations (2.11). To see this, we compute the derivatives of (2.16) to give

∂H

∂q
(q, p) = p ·

∂q̇

∂q
−

∂L

∂q
(q, q̇)−

∂L

∂q̇
(q, q̇)

∂q̇

∂q

=
∂L

∂q
(q, q̇) (2.17a)

= −
d

dt

(
∂L

∂q̇
(q, q̇)

)

= −ṗ, (2.17b)

∂H

∂q̇
(q, p) = q̇ + p ·

∂q̇

∂p
−

∂L

∂q̇
(q, q̇)

∂q̇

∂p

= q̇, (2.17c)

where p = FL(q, q̇) defines q̇ as a function of (q, p).

A similar calculation to the above also shows that if L is hyperregular and H is defined by (2.16),

then H will also be hyperregular and the fibre derivatives will satisfy FH = (FL)−1. The converse

statement also holds (see Marsden and Ratiu [1999] for more details).

The above relationship between the Hamiltonian and Lagrangian flows can be summarized by

the following commutative diagram, where we recall that the symplectic forms and momentum maps

are also preserved under each map.

TQ
F t

L //

FL

��

TQ

FL

��
T ∗Q

F t
H

// T ∗Q

(2.18)

One consequence of this relationship between the Lagrangian and Hamiltonian flow maps is a

condition for when the Lagrangian vector field and flow map are well defined.

Theorem 2.9. Given a Lagrangian L : TQ → R, the Lagrangian vector field XL, and hence the

Lagrangian flow map FL, are well defined if and only if the Lagrangian is regular.

Proof. This can be seen by relating the Hamiltonian and Lagrangian settings with FL, or by com-

puting the Euler-Lagrange equations in coordinates to give

0 = D1L(q, q̇)−
d

dt
D2L(q, q̇)

= D1L(q, q̇)−D1D2L(q, q̇) · q̇ −D2D2L(q, q̇) · q̈.

Thus, q̈ is well defined as a function of (q, q̇) if and only if D2D2L is invertible, which by the implicit

function theorem is equivalent to FL being locally invertible.
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2.3.4 Generating functions

As with Hamiltonian mechanics, a useful general context for discussing canonical transformations

and generating functions is that of symplectic manifolds. Here we limit ourselves, as above, to the

case of T ∗Q with the canonical symplectic form Ω.

Let F : T ∗Q→ T ∗Q be a transformation from T ∗Q to itself and let Γ(F ) ⊂ T ∗Q× T ∗Q be the

graph of F . Consider the one-form on T ∗Q× T ∗Q defined by

Θ̂ = π∗
2Θ− π∗

1Θ.

where πi : T ∗Q × T ∗Q are the projections onto the two components. The corresponding two-form

is then

Ω̂ = −dΘ̂ = π∗
2Ω− π∗

1Ω.

Denoting the inclusion map by iF : Γ(F )→ T ∗Q× T ∗Q, we see that we have the identities

π1 ◦ iF = π1|Γ(F ), and π2 ◦ iF = F ◦ π1 on Γ(F ).

Using these relations, we have

i∗F Ω̂ = i∗F (π∗
2Ω− π∗

1Ω)

= (π2 ◦ iF )∗Ω− (π1 ◦ iF )∗Ω

= (π1|Γ(F ))
∗(F ∗Ω− Ω).

Using this last equality, it is clear that F is a canonical transformation if and only if i∗F Ω̂ = 0 or,

equivalently, if and only if d(i∗F Θ̂) = 0. By the Poincaré lemma, this last statement is equivalent to

there existing, at least locally, a function S : Γ(F ) → R such that i∗F Θ̂ = dS. Such a function S is

known as the generating function of the symplectic transformation F . Note that S is not unique.

The generating function S is specified on the graph Γ(F ), and so can be expressed in any local

coordinate system on Γ(F ). The standard choices, for coordinates (q0, p0, q1, p1) on T ∗Q×T ∗Q, are

any two of the four quantities q0, p0, q1 and p1; note that Γ(F ) has the same dimension as T ∗Q.

2.3.5 Coordinate expression

We will be particularly interested in the choice (q0, q1) as local coordinates on Γ(F ), and so we give

the coordinate expressions for the above general generating function derivation for this particular

case. This choice results in generating functions of the so-called first kind [Goldstein, 1980].
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Consider a function S : Q×Q→ R. Its differential is

dS =
∂S

∂q0
dq0 +

∂S

∂q1
dq1.

Let F : T ∗Q→ T ∗Q be the canonical transformation generated by S. In coordinates, the quantity

i∗F Θ̂ is

i∗F Θ̂ = −p0dq0 + p1dq1,

and so the condition i∗F Θ̂ = dS reduces to the equations

p0 = −
∂S

∂q0
(q0, q1), (2.19a)

p1 =
∂S

∂q1
(q0, q1), (2.19b)

which are an implicit definition of the transformation F : (q0, p0) 7→ (q1, p1). From the above general

theory, we know that such a transformation is automatically symplectic, and that all symplectic

transformations have such a representation, at least locally.

Note that there is not a one-to-one correspondence between symplectic transformations and real-

valued functions on Q×Q, because for some functions the above equations either have no solutions

or multiple solutions, and so there is no well-defined map (q0, p0) 7→ (q1, p1). For example, taking

S(q0, q1) = 0 forces p0 to be zero, and so there is no corresponding map ϕ. In addition, one has to

be careful about the special case of generating the identity transformation, as was noted in Channell

and Scovel [1990] and Ge and Marsden [1988]. As we will see later, this situation is identical to the

existence of solutions to the discrete Euler-Lagrange equations, and, as in that case, we will assume

for now that we choose generating functions and time steps so that the equations (2.19) do indeed

have solutions.

2.4 Discrete variational mechanics: Hamiltonian viewpoint

2.4.1 Discrete Legendre transforms

Just as the standard Legendre transform maps the Lagrangian state space TQ to the Hamiltonian

phase space T ∗Q, we can define discrete Legendre transforms or discrete fibre derivatives

F
+Ld, F

−Ld : Q×Q→ T ∗Q, which map the discrete state space Q×Q to T ∗Q. These are given by

F
+Ld(q0, q1) · δq1 = D2Ld(q0, q1) · δq1,

F
−Ld(q0, q1) · δq0 = −D1Ld(q0, q1) · δq0,
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which can be written

F
+Ld : (q0, q1) 7→ (q1, p1) = (q1,D2Ld(q0, q1)),

F
−Ld : (q0, q1) 7→ (q0, p0) = (q0,−D1Ld(q0, q1)).

If both discrete fibre derivatives are locally isomorphisms (for nearby q0 and q1), then we say that

Ld is regular . We will generally assume that we are working with regular discrete Lagrangians. In

some special cases, such as if Q is a vector space, it may be that both discrete fibre derivatives are

global isomorphisms. In that case we say that Ld is hyperregular .

Using the discrete fibre derivatives it can be seen that the canonical one- and two-forms and

Hamiltonian momentum maps are related to the discrete Lagrangian forms and discrete momentum

maps by pullback, so that

Θ±
Ld

= (F±Ld)
∗Θ, ΩLd

= (F±Ld)
∗Ω, and J±

Ld
= (F±Ld)

∗JH .

When the discrete momentum maps arise from a symmetry action, the pullback of the Hamiltonian

momentum map by either discrete Legendre transform gives the unique discrete momentum map

JLd
= (F±Ld)

∗JH .

In the continuous case there is a particular relationship between a Lagrangian and a Hamiltonian

so that the corresponding vector fields and flow maps are related by pullback under the Legendre

transform. Indeed, we rarely consider pairs of Lagrangian and Hamiltonian systems which are not

related in this way. In the discrete case a similar relationship exists, as will be shown in §2.5.

Unlike the continuous case, however, we will generally be interested in discrete Lagrangian sys-

tems that do not exactly correspond to a given Hamiltonian system. In this case, the symplectic

structures and momentum maps are related by pullback under the discrete Legendre transforms, but

the flow maps are not. As we will see later, this is a reflection of the fact that discrete Lagrangian

systems can be regarded as symplectic-momentum integrators.

2.4.2 Momentum matching

The discrete fibre derivatives also permit a new interpretation of the discrete Euler-Lagrange equa-

tions. To see this, we introduce the notation

p+
k,k+1 = p+(qk, qk+1) = F

+Ld(qk, qk+1),

p−k,k+1 = p−(qk, qk+1) = F
−Ld(qk, qk+1),
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for the momentum at the two endpoints of each interval [k, k + 1]. Now observe that the discrete

Euler-Lagrange equations are

D2Ld(qk−1, qk) = −D1Ld(qk, qk+1),

which can be written as

F
+Ld(qk−1, qk) = F

−Ld(qk, qk+1), (2.20)

or simply

p+
k−1,k = p−k,k+1.

That is, the discrete Euler-Lagrange equations are simply enforcing the condition that the momen-

tum at time k should be the same when evaluated from the lower interval [k − 1, k] or the upper

interval [k, k +1]. This means that along a solution curve there is a unique momentum at each time

k, which we denote by

pk = p+
k−1,k = p−k,k+1.

A discrete trajectory {qk}
N
k=0 in Q can thus also be regarded as either a trajectory {(qk, qk+1)}

N−1
k=0

in Q×Q or, equivalently, as a trajectory {(qk, pk)}Nk=0 in T ∗Q.

It will be useful to note that (2.20) can be written as

F
+Ld = F

−Ld ◦ FLd
. (2.21)

A consequence of viewing the discrete Euler-Lagrange equations as a matching of momenta is

that it gives a condition for when the discrete Lagrangian evolution operator and discrete Lagrangian

map are well defined.

Theorem 2.10. Given a discrete Lagrangian system Ld : Q × Q → R, the discrete Lagrangian

evolution operator XLd
and the discrete Lagrange map FLd

are well defined if and only if F
−Ld is

locally an isomorphism. The discrete Lagrange map is well defined and invertible if and only if the

discrete Lagrangian is regular.

Proof. Given (q0, q1) ∈ Q×Q, the point q2 ∈ Q required to satisfy

XLd
(q0, q1) = (q0, q1, q1, q2)

is defined by equation (2.20), and so q2 is uniquely defined as a function of q0 and q1 if and only if

F
−Ld is locally an isomorphism. From the definition of FLd

it is well defined if and only if XLd
is.

The above argument only implies that FLd
is well defined as a map, however, meaning that it can

be applied to map forward in time. For it to be invertible, equation (2.20) shows that it is necessary
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and sufficient for F
+Ld also to be a local isomorphism, which is equivalent to regularity of Ld.

2.4.3 Discrete Hamiltonian maps

Using the discrete fibre derivatives also enables us to push the discrete Lagrangian map FLd
:

Q×Q → Q ×Q forward to T ∗Q. We define the discrete Hamiltonian map F̃Ld
: T ∗Q → T ∗Q

by F̃Ld
= F

±Ld ◦ FLd
◦ (F±Ld)

−1. The fact that the discrete Hamiltonian map can be equivalently

defined with either discrete Legendre transform is a consequence of the following theorem.

Theorem 2.11. The following diagram commutes.

(q0, q1)
� FLd //

u

F
+Ld

��5
55

55
55

55
55

55
5I

F
−Ld

��		
		

		
		

		
		

		
(q1, q2)

u

F
+Ld

��5
55

55
55

55
55

55
5I

F
−Ld

��		
		

		
		

		
		

		

(q0, p0)
�

F̃Ld

// (q1, p1)
�

F̃Ld

// (q2, p2)

(2.22)

Proof. The central triangle is simply (2.21). Assume that we define the discrete Hamiltonian map by

F̃Ld
= F

+Ld ◦FLd
◦ (F+Ld)

−1, which gives the right-hand parallelogram. Replicating the right-hand

triangle on the left-hand side completes the diagram. If we choose to use the other discrete Legendre

transform, then the reverse argument applies.

Corollary 2.1. The following three definitions of the discrete Hamiltonian map,

F̃Ld
= F

+Ld ◦ FLd
◦ (F+Ld)

−1,

F̃Ld
= F

−Ld ◦ FLd
◦ (F−Ld)

−1,

F̃Ld
= F

+Ld ◦ (F−Ld)
−1,

are equivalent and have coordinate expression F̃Ld
: (q0, p0) 7→ (q1, p1), where

p0 = −D1Ld(q0, q1), (2.23a)

p1 = D2Ld(q0, q1). (2.23b)

Proof. The equivalence of the three definitions can be read directly from the diagram in Theo-

rem 2.11.

The coordinate expression for F̃Ld
: (q0, p0) 7→ (q1, p1) can be readily seen from the defini-

tion F̃Ld
= F

+Ld ◦ (F−Ld)
−1. Taking initial condition (q0, p0) ∈ T ∗Q and setting (q0, q1) =

(F−Ld)
−1(q0, p0) implies that p0 = −D1Ld(q0, q1), which is (2.23a). Now, letting (q1, p1) = F

+Ld(q0, q1)
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gives p1 = D2Ld(q0, q1), which is (2.23b).

As the discrete Lagrangian map preserves the discrete symplectic form and discrete momentum

maps on Q×Q, the discrete Hamiltonian map will preserve the pushforwards of these structures. As

we saw above, however, these are simply the canonical symplectic form and canonical momentum

maps on T ∗Q, and so the discrete Hamiltonian map is symplectic and momentum-preserving.

We can summarize the relationship between the discrete and continuous systems in the following

diagram, where the dashed arrows represent the discretization.

TQ,FL
//___

FL

��

Q×Q,FLd

FLd

��
T ∗Q,FH

//___ T ∗Q, F̃Ld

(2.24)

2.4.4 Discrete Lagrangians are generating functions

As we have seen above, a discrete Lagrangian is a real-valued function on Q×Q which defines a map

F̃Ld
: T ∗Q→ T ∗Q. In fact, a discrete Lagrangian is simply a generating function of the first kind for

the map F̃Ld
, in the sense defined in §2.3. This is seen by comparing the coordinate expression (2.23)

for the discrete Hamiltonian map with the expression (2.19) for the map generated by a generating

function of the first kind.

2.5 Correspondence between discrete and continuous

mechanics

We will now define a particular choice of discrete Lagrangian which gives an exact correspondence

between discrete and continuous systems. To do this, we must firstly recall the following fact.

Theorem 2.12. Consider a regular Lagrangian L for a configuration manifold Q, two points q0, q1 ∈

Q and a time h ∈ R. If ‖q1 − q0‖ and |h| are sufficiently small, then there exists a unique solution

q : R→ Q of the Euler-Lagrange equations for L satisfying q(0) = q0 and q(h) = q1.

Proof. See Marsden and Ratiu [1999].

For some regular Lagrangian L we now define the exact discrete Lagrangian to be

LE
d (q0, q1, h) =

∫ h

0

L(q0,1(t), q̇0,1(t))dt (2.25)

for sufficiently small h and close q0 and q1. Here q0,1(t) is the unique solution of the Euler-Lagrange

equations for L which satisfies the boundary conditions q0,1(0) = q0 and q0,1(h) = q1, and whose
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existence is guaranteed by Theorem 2.12.

We will now see that with this exact discrete Lagrangian there is an exact correspondence between

the discrete and continuous systems. To do this, we will first establish that there is a special

relationship between the Legendre transforms of a regular Lagrangian and its corresponding exact

discrete Lagrangian. This result will also prove that exact discrete Lagrangians are automatically

regular.

Lemma 2.1. A regular Lagrangian L and the corresponding exact discrete Lagrangian LE
d have

Legendre transforms related by

F
+LE

d (q0, q1, h) = FL(q0,1(h), q̇0,1(h)),

F
−LE

d (q0, q1, h) = FL(q0,1(0), q̇0,1(0)),

for sufficiently small h and close q0, q1 ∈ Q.

Proof. We begin with F
−LE

d and compute

F
−LE

d (q0, q1, h) = −

∫ h

0

[
∂L

∂q
·
∂q0,1

∂q0
+

∂L

∂q̇
·
∂q̇0,1

∂q0

]

dt

= −

∫ h

0

[
∂L

∂q
−

d

dt

∂L

∂q̇

]

·
∂q0,1

∂q0
dt−

[
∂L

∂q̇
·
∂q0,1

∂q0

]h

0

,

using integration by parts. The fact that q0,1(t) is a solution of the Euler-Lagrange equations shows

that the first term is zero. To compute the second term we recall that q0,1(0) = q0 and q0,1(h) = q1,

so that
∂q0,1

∂q0
(0) = Id and

∂q0,1

∂q0
(h) = 0.

Substituting these into the above expression for F
−LE

d now gives

F
−LE

d (q0, q1, h) =
∂L

∂q̇
(q0,1(0), q̇0,1(0)),

which is simply the definition of FL(q0,1(0), q̇0,1(0)).

The result for F
+LE

d can be established by a similar computation.

Since (q0,1(h), q̇0,1(h)) = Fh
L(q0,1(0), q̇0,1(0)), Lemma 2.1 is equivalent to the following commu-
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tative diagram.

(q0, q1)I

F
−LE

d

��		
		

		
		

		
		

		
u

F
+LE

d

��5
55

55
55

55
55

55
5

(q0, p0) (q1, p1)

(q0, q̇0)
�

F h
L

//
_

FL

OO

(q1, q̇1)
_

FL

OO

(2.26)

Combining this diagram with (2.18) and (2.22) gives the following commutative diagram for the

exact discrete Lagrangian.

(q0, q1)
�

F
LE

d //
u

F
+LE

d

��5
55

55
55

55
55

55
5I

F
−LE

d

��		
		

		
		

		
		

		
(q1, q2)

u

F
+LE

d

��5
55

55
55

55
55

55
5I

F
−LE

d

��		
		

		
		

		
		

		

(q0, p0)
�

F̃
LE

d
=F h

H

// (q1, p1)
�

F̃
LE

d
=F h

H

// (q2, p2)

(q0, q̇0)
�

F h
L

//
_

FL

OO

(q1, q̇1)
�

F h
L

//
_

FL

OO

(q2, q̇2)
_

FL

OO

(2.27)

This proves the following theorem.

Theorem 2.13. Consider a regular Lagrangian L, its corresponding exact discrete Lagrangian LE
d ,

and the pushforward of both the continuous and discrete systems to T ∗Q, yielding a Hamiltonian

system with Hamiltonian H and a discrete Hamiltonian map F̃LE
d
, respectively. Then, for a suffi-

ciently small time step h ∈ R, the Hamiltonian flow map equals the pushforward discrete Lagrangian

map:

Fh
H = F̃LE

d
.

This theorem is a statement about the time evolution of the system, and can also be interpreted

as saying that the diagram (2.24) commutes with the dashed arrows understood as samples at times

{tk}
N
k=0, rather than merely as discretizations.

We can also interpret the equivalence of the discrete and continuous systems as a statement
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about trajectories. On the Lagrangian side, this gives the following theorem.

Theorem 2.14. Take a series of times {tk = kh, k = 0, . . . , N} for a sufficiently small time step

h, and a regular Lagrangian L and its corresponding exact discrete Lagrangian LE
d . Then solutions

q : [0, tN ] → Q of the Euler-Lagrange equations for L and solutions {qk}
N
k=0 of the discrete Euler-

Lagrange equations for LE
d are related by

qk = q(tk) for k = 0, . . . , N, (2.28a)

q(t) = qk,k+1(t) for t ∈ [tk, tk+1]. (2.28b)

Here the curves qk,k+1 : [tk, tk+1]→ Q are the unique solutions of the Euler-Lagrange equations for

L satisfying qk,k+1(kh) = qk and qk,k+1((k + 1)h) = qk+1.

Proof. The main non-obvious issue is smoothness. Let q(t) be a solution of the Euler-Lagrange

equations for L and define {qk}
N
k=0 by (2.28a). Now the discrete Euler-Lagrange equations at time

k are simply a matching of discrete Legendre transforms, as in (2.20), but by construction and

Lemma 2.1 both sides of this expression are equal to FL(q(tk), q̇(tk)). We thus see that {qk}
N
k=0 is

a solution of the discrete Euler-Lagrange equations.

Conversely, let {qk}
N
k=0 be a solution of the discrete Euler-Lagrange equations for LE

d and define

q : [0, tN ] → Q by (2.28b). Clearly q(t) is C2 and a solution of the Euler-Lagrange equations on

each open interval (tk, tk+1), and so we must only establish that it is also C2 at each tk, from which

it will follow that it is C2 and a solution on the entire interval [0, tN ].

At time tk the discrete Euler-Lagrange equations in the form (2.20) together with Lemma 2.1

reduce to

FL(qk−1,k(tk), q̇k−1,k(tk)) = FL(qk,k+1(tk), q̇k,k+1(tk)),

and, as FL is a local isomorphism (due to the regularity of L), we see that q(t) is C1 on [0, tN ]. The

regularity of L also implies that

q̈(t) = (D2D2L)−1(D1L−D1D2L · q̇(t))

on each open interval (tk, tk+1), and as the right-hand side only depends on q(t) and q̇(t) this

expression is continuous at each tk, giving that q(t) is indeed C2 on [0, tN ].

To summarize, given Lagrangian and Hamiltonian systems with the Legendre transform mapping

between them, the symplectic forms and momentum maps are always related by pullback under FL.

If, in addition, L and H satisfy the special relationship (2.16), then the flow maps and energy

functions will also be related by pullback.

Exactly the same statements hold for the relationship between a discrete Lagrangian system and
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a Hamiltonian system. However, when discussing continuous systems we almost always assume that

L and H are related by (2.16), whereas for discrete systems we generally do not assume that Ld and

L or H are related by (2.25). This is because we are interested in using the discrete mechanics to

derive integrators, and the exact discrete Lagrangian is generally not computable.

2.6 Background: Hamilton-Jacobi theory

2.6.1 Generating function for the flow

As discussed in §2.3, it is a standard result that the flow map F t
H of a Hamiltonian system is a

canonical map for each fixed time t. From the generating function theory, it must therefore have

a generating function S(q0, q1, t). We will now derive a partial differential equation which S must

satisfy.

Consider first the time-preserving extension of FH to the map

F̂H :T ∗Q× R→ T ∗Q× R, (pq, t) 7→ (F t
H(pq), t).

Let πT∗Q : T ∗Q×R→ T ∗Q be the projection, and define the extended canonical one-form and

the extended canonical two-form to be

ΘH = i∗T∗QΘ− i∗T∗QH ∧ dt,

ΩH = −dΘH = i∗T∗QΩ− i∗T∗QdH ∧ dt.

We now calculate

T F̂H ·

(

δpq, δt) = (TF t
H · δpq +

∂

∂t
F t

H(pq) · δt, δt

)

= (TF t
H · δpq + XH ◦ F t

H · δt, δt),

using that F t
H is the flow map of the vector field XH , and so

F̂ ∗
HΩH = (iT∗Q ◦ F̂H)∗Ω− ((iT∗Q ◦ F̂H)∗dH) ∧ (F̂ ∗

Hdt)

= i∗T∗Q(F t
H)∗Ω + (i∗T∗Q(F t

H)∗dH) ∧ dt− ((iT∗Q ◦ F̂H)∗dH) ∧ dt

= (iT∗Q)∗(F t
H)∗Ω = i∗T∗QΩ

as F t
H preserves Ω for fixed t. This identity essentially states that the extended flow map pulls back

the extended symplectic form to the standard symplectic form.

Consider now the space T ∗Q × R × T ∗Q and the projection π1 : T ∗Q × R × T ∗Q → T ∗Q × R
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onto the first two components and π2 : T ∗Q× R× T ∗Q→ T ∗Q× R onto the last two components.

Define the one-form

Θ̂ = π∗
2ΘH − π∗

1i∗T∗QΘ,

and let the corresponding two-form be

Ω̂ = −dΘ̂ = π∗
2ΩH − π∗

1i∗T∗QΩ.

The flow map of the Hamiltonian system acts as FH : T ∗Q × R → T ∗Q and so the graph of FH is

a subset Γ(FH) ⊂ T ∗Q× R × T ∗Q. Denote the inclusion map by iFH
: Γ(FH) → T ∗Q× R × T ∗Q.

We now observe that

π1 ◦ iFH
= π1|Γ(FH),

π2 ◦ iFH
= F̂H ◦ π1 on Γ(FH),

and using these relations calculate

i∗FH
Ω̂ = i∗FH

π∗
2ΩH − i∗FH

π∗
1i∗T∗QΩ

= (π2 ◦ iFH
)∗ΩH − (π1 ◦ iFH

)∗i∗T∗QΩ

= (π1|Γ(FH))
∗(F̂ ∗

HΩH − i∗T∗QΩ)

= 0.

We have thus established that d(i∗FH
Θ̂) = 0 and so, by the Poincaré lemma, there must locally exist

a function S : Γ(FH)→ R so that i∗FH
Θ̂ = dS. It is clear that restricting the above derivations to a

section with fixed t simply reproduces the earlier derivation of generating functions for symplectic

maps, and so the restriction St : Γ(F t
H)→ R is a generating function for the map F t

H : T ∗Q→ T ∗Q.

The additional information contained in the statement i∗FH
Θ̂ = dS dictates how S depends on t.

2.6.2 Hamilton-Jacobi equation

As for the case of general generating functions discussed in §2.3, we will now choose a particular set

of coordinates on ΓFH and investigate the implications of i∗FH
Θ̂ = dS.

Consistent with our earlier choice, we will take coordinates (q0, q1, t) for Γ(FH) and thus regard

the generating function as a map S : Q×Q× R→ R. The differential is thus

dS =
∂S

∂q0
dq0 +

∂S

∂q1
dq1 +

∂S

∂t
dt,
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and we also get

Θ̂ = −p0dq0 + p1dq1 −H(q1, p1)dt,

so the condition i∗FH
Θ̂ = dS is

p0 = −
∂S

∂q0
(q0, q1, t),

p1 =
∂S

∂q1
(q0, q1, t),

H

(

q1,
∂S

∂q1
(q0, q1, t)

)

=
∂S

∂t
(q0, q1, t).

The first two equations are simply the standard relations which implicitly specify the map F t
H from

the generating function St. The third equation specifies the time-dependence of S and is known as

the Hamilton-Jacobi PDE , and can be regarded as a partial-differential equation to be solved

for S.

To fully specify the Hamilton-Jacobi PDE it is necessary also to provide boundary conditions. As

it is first-order in t, it is clear that specifying S as a function of q0 and q1 at some time t will define

the solution in a neighbourhood of that time. This is equivalent to specifying the map generated by

S at some time, up to an arbitrary function of t. Taking this to be the flow map for some fixed time,

we see that the unique solution of the Hamilton-Jacobi PDE must be the flow map for nearby t.

2.6.3 Jacobi’s solution

While it is possible in principle to solve the Hamilton-Jacobi PDE directly for S, it is generally

nonlinear and a closed form solution is not normally possible. By 1840, however, Jacobi had realized

that the solution is simply the action of the trajectory joining q0 and q1 in time t: see Jacobi [1866].

This is known as Jacobi’s solution ,

S(q0, q1, t) =

∫ t

0

L(q0,1(τ), q̇0,1(τ))dτ, (2.29)

where q0,1(t) is a solution of the Euler-Lagrange equations for L satisfying the boundary conditions

q(0) = q0 and q(t) = q1, and where L and H are related by the Legendre transform (assumed to be

regular). This can be proved in the same way as Lemma 2.1.
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2.7 Discrete variational mechanics: Hamilton-Jacobi

viewpoint

As was discussed in §2.4, a discrete Lagrangian can be regarded as the generating function for the

discrete Hamiltonian map F̃Ld
: T ∗Q → T ∗Q. We then showed in §2.5 that there is a particular

choice of discrete Lagrangian, the so-called exact discrete Lagrangian, which exactly generates the

flow map FH of the corresponding Hamiltonian system. From the development of Hamilton-Jacobi

theory in §2.6, it is clear that this exact discrete Lagrangian must be a solution of the Hamilton-

Jacobi equation. In fact, as can be seen by comparing the definitions given in equations (2.25) and

(2.29), the exact discrete Lagrangian is precisely Jacobi’s solution of the Hamilton-Jacobi equation.

To summarize, discrete Lagrangian mechanics can be regarded as a variational Lagrangian deriva-

tion of the standard generating function and Hamilton-Jacobi theory. Discrete Lagrangians generate

symplectic transformations, and given a Lagrangian or Hamiltonian system, one can construct the

exact discrete Lagrangian which solves the Hamilton-Jacobi equation, and this will then generate

the exact flow of the continuous system.
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Chapter 3

Variational integrators

3.1 Introduction

We now turn our attention to considering a discrete Lagrangian system as an approximation to a

given continuous system. That is, the discrete system is an integrator for the continuous system.

As we have seen, discrete Lagrangian maps preserve the symplectic structure and so, regarded

as integrators, they are necessarily symplectic. Furthermore, generating function theory shows that

any symplectic integrator for a mechanical system can be regarded as a discrete Lagrangian system,

a fact we state here as a theorem.

Theorem 3.1. If the integrator F : T ∗Q × R → T ∗Q is symplectic, then there exists1 a discrete

Lagrangian Ld whose discrete Hamiltonian map F̃Ld
is F .

Proof. As shown above in §2.3, any symplectic transformation locally has a corresponding generating

function, which is then a discrete Lagrangian for the method, as discussed in §2.4.4.

In addition, if the discrete Lagrangian inherits the same symmetry groups as the continuous

system, then the discrete system will also preserve the corresponding momentum maps. As an

integrator, it will thus be a so-called symplectic-momentum integrator .

Just as with continuous mechanics, we have seen that discrete variational mechanics has both a

variational (Lagrangian) and a generating function (Hamiltonian) interpretation. These two view-

points are complementary and both give insight into the behaviour and derivation of useful integra-

tors.

However, the above theorem is not literally used in the construction of variational integrators,

but is rather used as the first steps in obtaining inspiration. We will obtain much deeper insight

from the variational principle itself and this is, in large part, what sets variational methods apart

from standard symplectic methods.

1The discrete Lagrangian may exist only locally, as is the case with generating functions, as was discussed in §2.3.
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Symplectic integrators have traditionally been approached from a Hamiltonian viewpoint and

there is much existing literature treating this topic (see, for example, Hairer, Nørsett, and Wanner

[1993], Hairer and Wanner [1996], MacKay [1992] and Sanz-Serna [1992a]). In this thesis, we con-

centrate on the analysis of symplectic methods from the variational viewpoint, and we reinterpret

many standard concepts from ODE integration theory in this light.

It is also important to distinguish the two ways in which we can derive variational or generating

function integrators. First, we can attempt to approximately solve the Hamilton-Jacobi PDE for

a given system, such as by taking power series expansions of the generating function. This was

used in some of the earliest derivations of symplectic integrators (such as De Vogelaére [1956] and

Channell and Scovel [1990]). Second, the method we advocate involves trying to approximate the

known Jacobi’s solution to the Hamilton-Jacobi PDE: that is, we construct discrete Lagrangians

that approximate the exact discrete Lagrangian. This approach is powerful not only because of

the coherent and unifying underlying theory that reveals the beautiful geometry underlying discrete

mechanics, but also because it leads to practical integrators.

In this section we will assume that Q, and thus also TQ and T ∗Q, is a finite-dimensional vector

space with an inner product 〈·, ·〉 and corresponding norm ‖ · ‖. In the case that it is not a vector

space, we can embed Q within a vector space and use the theory of constrained discrete systems

developed below in §4.4 and discussed further in §4.5.2.

A word of caution: we must be careful about imagining that we can simply pick a coordinate chart

and apply the vector space methods described below in such a chart. Doing so indiscriminately can

lead to coordinate-dependent integrators that can be unattractive theoretically as well as impractical:

for instance, using Euler angles for rigid body integrators has the difficulty that we may spend most

of our computational time switching coordinate systems. See, for instance, Wisdom, Peale, and

Mignard [1984], Leimkuhler and Patrick [1996] and related papers. For some special classes of

configuration manifolds, however, such as when Q is a Lie group, there may be particular global

coordinate systems that can be used for this purpose.

We will also frequently consider integrators for Lagrangian systems of the form L(q, q̇) = 1
2 q̇T Mq̇−

V (q). When dealing with such systems, we will always assume that M is a positive-definite sym-

metric mass matrix, so that FL(q, q̇) = Mq̇ and thus that L is regular.

3.1.1 Implementation of variational integrators

Although the distinction between the discrete Lagrangian map FLd
: Q × Q × R → Q × Q and

its pushforward F̃Ld
: T ∗Q × R → T ∗Q is important geometrically, for implementation purposes

the two maps are essentially the same. This is because of the observation made in §2.4.2 that

the discrete Euler-Lagrange equations that define FLd
can be interpreted as matching of momenta

between adjacent intervals.
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In other words, given a trajectory q0, q1, q2, . . . , qk−1, qk the map FLd
: Q × Q × R → Q × Q

calculates qk+1 according to

D2Ld(qk−1, qk, h) = −D1Ld(qk, qk+1, h).

If we now take pk = D2Ld(qk−1, qk, h) for each k, then this equation is simply

pk = −D1Ld(qk, qk+1, h), (3.1)

which, together with the next update

pk+1 = D2Ld(qk, qk+1, h), (3.2)

defines the pushforward map F̃Ld
: T ∗Q × R → T ∗Q. Another way to think of this is that the pk

are merely storing the values D2Ld(qk−1, qk, h) from the last step.

For this reason it is typically easier to implement a variational integrator as the single step

map F̃Ld
, as this also provides a simple method of initialization from initial values (q0, p0) ∈ T ∗Q.

Many discrete Lagrangians have pushforward maps that are simple to implement. For example,

F̃Ld
may be explicit, or it may be a Runge-Kutta method or other integrator type with standard

implementation techniques.

In the general case when no special form is apparent, however, the equations (3.1) and (3.2)

must be solved directly. The update (qk, pk) 7→ (qk+1, pk+1) thus involves first solving the implicit

equation (3.1) for qk+1 and then evaluating the explicit update (3.2) to give pk+1.

To solve the implicit equation (3.1) we must typically use an iterative technique such as Newton’s

method. This involves computing a first guess qk+1,0 for qk+1, such as qk+1,0 = 2qk− qk−1, and then

computing the sequence of approximations qk+1,n, n = 1, 2, . . . until they converge to the solution

value qk+1. For Newton’s method, the iteration rule is given by

qi
k+1,n+1 = qi

k+1,n −Aij

[

pj
k +

∂Ld

∂qj
0

(q0, q1, h)

]

,

where Aij is the inverse of the matrix

Aij =
∂2Ld

∂qi
0∂qj

1

(q0, q1, h).

In the case that the Lagrangian has a simple form, such as L(q, q̇) = 1
2 q̇T Mq̇ − V (q), then we can

use an initial guess based on pk, such as qk+1,0 = qk + hM−1pk.

While the Newton’s method outlined above typically experiences very fast convergence, it is also
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expensive to have to recompute Aij at each iteration of the method. For this reason, it is typical

to use an approximation to this matrix which can be held constant for all iterations of Newton’s

method. See Hairer et al. [1993] for details of this approach for Runge-Kutta methods.

3.1.2 Equivalence of integrators

Given two discrete Lagrangians L1
d and L2

d, we would like to know whether the integrators they

generate are the same. Here it will be important to distinguish between the discrete Lagrangian

maps Q × Q → Q × Q and the discrete Hamiltonian maps T ∗Q → T ∗Q. We assume that we are

dealing with regular discrete Lagrangians, so that the corresponding maps are well defined.

We say that L1
d is (strongly) equivalent to L2

d if their discrete Hamiltonian maps are equal,

so that F̃L1
d

= F̃L2
d
. Using the expression F̃L1

d
= F

+L1
d ◦ (F−L1

d)
−1, we see that if L1

d and L2
d are

equivalent, then their discrete Legendre transforms will be equal. This implies that the difference

L∆
d = L1

d−L2
d must be a function of h only. That is, L∆

d (q0, q1, h) = f(h) for some function f . This

is clearly also a sufficient condition, as well as being necessary.

We define L1
d to be weakly equivalent to L2

d if their discrete Lagrangian maps FL1
d

and FL2
d

are

equal. A sufficient (and presumably necessary) condition for this to be true is that their difference

L∆
d = L1

d − L2
d is a null discrete Lagrangian ; that is, the discrete Euler-Lagrange equations for

L∆
d are satisfied by any triplet (q0, q1, q2). This terminology follows that of the continuous case, as

in, for example, Oliver and Sivaloganathan [1988].

If L∆
d is a null discrete Lagrangian, then D2L

∆
d (q0, q1, h) cannot depend on q0 and D1L

∆
d (q1, q2, h)

cannot depend on q2. Furthermore, these two derivatives must be the negative of each other for all

q1. We thus have that L∆
d is a null discrete Lagrangian if and only if it is of the form L∆

d (q0, q1, h) =

f(q1, h)− f(q0, h) for some function f .

Using the above calculations, it is clear that strong equivalence implies weak equivalence of

discrete Lagrangians. For variational integrators, weak equivalence is thus in some sense the more

fundamental notion. Intuitively, if two integrators give solutions which have the same positions qk

for all time, but different momenta pk at each step, then we would like to regard the methods as

being essentially the same. This is exactly weak equivalence.

3.2 Background: Error analysis

In this section we consider a numerical method F : T ∗Q × R → T ∗Q which approximates the flow

FH : T ∗Q × R → T ∗Q of a given Hamiltonian vector field XH . Error analysis is concerned with

difference between an exact trajectory and a discrete trajectory.2

2The reader should be cautioned that in many circumstances, such as the integration of chaotic or complex systems,
it may make little sense to imagine accurately computing an exact, but highly unstable, individual trajectory. Instead,
we often want to accurately compute robust quantities such as statistical measures that are insensitive to modelling
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3.2.1 Local error and method order

An integrator F of XH is said to be of order r if there exist an open set U ⊂ T ∗Q and constants

Cl > 0 and hl > 0 so that

‖F (q, p, h)− FH(q, p, h)‖ ≤ Clh
r+1 (3.3)

for all (q, p) ∈ U and h ≤ hl. The expression on the left-hand side of this inequality is known as the

local error , and if a method has order of at least 1, then it is said to be consistent .

3.2.2 Global error and convergence

Having defined the error after one step, we now consider the error after many steps. The integrator

F of XH is said to be convergent of order r if there exist an open set U ⊂ T ∗Q and constants

Cg > 0, hg > 0 and Tg > 0 so that

‖(F )N (q, p, h)− FH(q, p, T )‖ ≤ Cgh
r,

where h = T/N , for all (q, p) ∈ U , h ≤ hg and T ≤ Tg. The expression on the left-hand side is the

global error at time T .

For one-step methods such as we consider here, convergence follows from a local error bound on

the method and a Lipschitz bound on XH .

Theorem 3.2. Suppose that the integrator F for XH is of order r on the open set U ⊂ T ∗Q with

local error constant Cl, and assume that L > 0 is such that

∥
∥
∥
∥

∂XH

∂(q, p)

∥
∥
∥
∥
≤ L

on U . Then the method is consistent on U with global error constant Cg given by

Cg =
Cl

L

(
eLTg − 1

)

Proof. See, for example, Hairer et al. [1993].

3.2.3 Order calculation

Given an integrator F for XH , the order can be calculated by expanding both the true flow FH and

the integrator F in a Taylor series in h and then comparing terms. If the terms agree up to order r,

then the method will be of order r.

errors and dynamical sensitivities, and we may wish to do so for long times. In such cases, backward error analysis as
outlined in §1.6.5 typically provides a better understanding of the error in the computation. Nonetheless, the forward
error is also very important, and we focus on this here.
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Here we explicitly write the first few terms of the Taylor series for the true flow for a Hamiltonian

of the form H(q, p) = 1
2pT M−1p + V (q). The corresponding Hamiltonian vector field XH is

q̇ = M−1p, (3.4a)

ṗ = −∇V (q), (3.4b)

and so the flow (q(h), p(h)) = FH(q0, p0, h) has the expansion

q(h) = q0 + hM−1p0 −
1

2
h2M−1∇V (q0) +O(h3), (3.5a)

p(h) = p0 − h∇V (q0)−
1

2
h2∇2V (q0)M

−1p0 +O(h3). (3.5b)

We will see below an example of using this to calculate the order of a simple class of methods.

3.3 Variational error analysis

Rather than considering how closely the trajectory of F matches the exact trajectory given by FH ,

we can alternatively consider how closely a discrete Lagrangian matches the ideal discrete Lagrangian

given by the action. As we have seen in §2.5, if the discrete Lagrangian is equal to the action, then

the corresponding discrete Hamiltonian map F̃Ld
will exactly equal the flow FH . We now investigate

what happens when this is only an approximation.

The approach taken here is to show that when the discrete Lagrangian approximates a continuous

Lagrangian, the discrete integrator approximates the continuous flow and thus the classical theory

implies that the global discrete trajectory approximates the continuous trajecctory. An alternative

approach, described in Müller and Ortiz [2003], is to directly prove the convergence of trajectories

from the convergence of the discrete Lagrangian to a continuous Lagrangian, in an appropriate sense.

3.3.1 Local variational order

Recall that the exact discrete Lagrangian (2.25) is defined by

LE
d (q0, q1, h) =

∫ h

0

L(q, q̇)dt,

where q(t) is the solution of the Euler-Lagrange equations satisfying q(0) = q0 and q(h) = q1.

We say that a given discrete Lagrangian Ld is of order r if there exist an open subset Uv ⊂ TQ

with compact closure and constants Cv > 0 and hv > 0 so that

‖Ld(q(0), q(h), h)− LE
d (q(0), q(h), h)‖ ≤ Cvhr+1 (3.6)
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for all solutions q(t) of the Euler-Lagrange equations with initial condition (q, q̇) ∈ Uv and for all

h ≤ hv.

3.3.2 Discrete Legendre transform order

The discrete Legendre transforms F
+Ld and F

−Ld of a discrete Lagrangian Ld are said to be of

order r if there exists an open subset Uf ⊂ T ∗Q with compact closure and constants Cf > 0 and

hf > 0, so that

‖F+Ld(q(0), q(h), h)− F
+LE

d (q(0), q(h), h)‖ ≤ Cfhr+1, (3.7a)

‖F−Ld(q(0), q(h), h)− F
−LE

d (q(0), q(h), h)‖ ≤ Cfhr+1, (3.7b)

for all solutions q(t) of the Euler-Lagrange equations with initial condition (q, q̇) ∈ Uf and for all

h ≤ hf .

The relationship between the orders of a discrete Lagrangian, its discrete Legendre transforms

and its discrete Hamiltonian map is given in the following fundamental theorem.

Theorem 3.3. Given a regular Lagrangian L and corresponding Hamiltonian H, the following are

equivalent for a discrete Lagrangian Ld:

(1). the discrete Hamiltonian map for Ld is of order r,

(2). the discrete Legendre transforms of Ld are of order r,

(3). Ld is equivalent to a discrete Lagrangian of order r.

Proof. Begin by assuming that Ld is equivalent to a discrete Lagrangian of order r, and we will

show that the discrete Legendre transforms are of order r. From §3.1.2 we know that equivalent

discrete Lagrangians have the same discrete Legendre transforms, and we may thus assume without

loss that Ld is itself of order r. Now note that (3.6) is equivalent to there existing a function

ev : T ∗Q× R→ T ∗Q so that

Ld(q(0), q(h), h) = LE
d (q(0), q(h), h) + hr+1ev(q(0), q(h), h)

with ‖ev(q(0), q(h), h)‖ ≤ Cv on Uv. Also, from Theorem 2.12 it is clear that we can parametrize

the set Uv by either the initial condition (q, q̇) or by the endpoints (q(0), q(h)).

Taking derivatives of the above expression with respect to q(h) gives

F
+Ld(q(0), q(h), h) = F

+LE
d (q(0), q(h), h) + hr+1D2ev(q(0), q(h), h),
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and as ev is smooth and bounded on the compact set cl(Uv), so too is D2ev, giving (3.7a). Taking

derivatives with respect to q(0) now shows that the discrete Legendre transforms of Ld are of order

r.

Now assume that F
+Ld and F

−Ld are of order r, and set

ev(q(0), q(h), h) =
1

hr+1

[
Ld(q(0), q(h), h)− LE

d (q(0), q(h), h)
]
.

Taking derivatives with respect to q(0) and q(h) and using (3.7) shows that ‖D1ev‖ ≤ Cf and

‖D2ev‖ ≤ Cf on cl(Uf ), which is compact. This then implies that ev(·, ·, h) is itself locally

bounded in its first two arguments, and so there exists a function d(h) and a constant Cv such

that ‖ev(q(0), q(h), h) − d(h)‖ ≤ Cv. This then proves that Ld(q(0), q(h), h) − d(h) has variational

order r, and so Ld is equivalent to a discrete Lagrangian of order r.

We will now show the equivalence of the discrete Hamiltonian map being of order r and the

discrete Legendre transforms being of order r. To do this we will make use of the following fact,

which is a consequence of the implicit function theorem.

Assume that we have smooth functions related by

f1(x, h) = g1(x, h) + hr+1e1(x, h),

f2(y, h) = g2(y, h) + hr+1e2(y, h),

with e1 and e2 bounded on some compact sets. Then we have

f2(f1(x, h), h) = g2(g1(x, h), h) + hr+1e12(x, h), (3.8a)

f−1
1 (y, h) = g−1

1 (y, h) + hr+1ē1(y, h), (3.8b)

for some functions e12(x, h) and ē1(y, h) bounded on compact sets.

Now assume that F
+Ld and F

−Ld are of order r and use Corollary 2.1 to write

F̃Ld
= F

+Ld ◦ (F−Ld)
−1,

F̃LE
d

= F
+LE

d ◦ (F−LE
d )−1.

Equation (3.8) gives the existence of a bounded function el such that

F̃Ld
(q(0), q(h), h) = F̃LE

d
(q(0), q(h), h) + hr+1el(q(0), q(h), h),

and thus we see that the discrete Hamiltonian map is of order r.
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Finally, assume that F̃LE
d

is of order r, and observe that

(F−Ld)
−1(q0, p0) = (q0, πQ ◦ F̃Ld

(q0, p0)),

so (3.8) implies (3.7b). But now we recall from (2.21) that

F
+Ld = F̃Ld

◦ F
−Ld,

and together with (3.8a) this gives (3.7a), showing that the discrete Legendre transforms are of order

r.

3.3.3 Variational order calculation

Given a discrete Lagrangian, its order can be calculated by expanding the expression for Ld(q(0), q(h), h)

in a Taylor series in h and comparing this to the same expansion for the exact Lagrangian. If the

series agree up to r terms, then the discrete Lagrangian is of order r.

We explicitly evaluate the first few terms of the expansion of the exact discrete Lagrangian to

give

LE
d (q(0), q(h), h) = hL(q, q̇) +

1

2
h2

(
∂L

∂q
(q, q̇) · q̇ +

∂L

∂q̇
(q, q̇) · q̈

)

+O(h3), (3.9)

where q = q(0), q̇ = q̇(0) and so forth. Higher derivatives of q(t) are determined by the Euler-

Lagrange equations.

Example 3.1. An illustrative class of discrete Lagrangian is given by

Lα
d (q0, q1, h) = hL

(

(1− α)q0 + αq1,
q1 − q0

h

)

for some parameter α ∈ [0, 1]. Calculating the expansion in h gives

Lα
d (q(0), q(h), h) = hL(q, q̇) +

1

2
h2

(

2α
∂L

∂q
(q, q̇) · q̇ +

∂L

∂q̇
(q, q̇) · q̈

)

+O(h3).

Comparing this to the expansion (3.9) for the exact discrete Lagrangian shows that the method is

second-order if and only if α = 1/2; otherwise it is only consistent.

Calculating the discrete Hamiltonian map for L(q, q̇) = 1
2 q̇T Mq̇−V (q) gives the integrator F̃α

Ld
:

(q0, p0) 7→ (q1, p1) defined implicitly by the relations

q1 − q0

h
= M−1 (αp0 + (1− α)p1) , (3.10a)

p1 − p0

h
= −∇V ((1− α)q0 + αq1) . (3.10b)



69

Note that this method is explicit for α = 0 or α = 1 and that it is simply the midpoint rule for

α = 1/2. Expanding (3.10) in h gives

q1 = q0 + hM−1p0 − (1− α)h2∇V (q0) +O(h3),

p1 = p0 − h∇V (q0)− αh2∇2V (q0)M
−1p0 +O(h3),

and comparing this to the expansion (3.5) of the true flow shows that the method is second-order if

and only if α = 1/2, and otherwise it is only consistent.

The local error and the discrete Lagrangian error thus agree, as expected. ♦

Example 3.2. As the expansions of discrete Lagrangians are linear in Ld, if we take the symmetrized

discrete Lagrangian

Lsym,α
d =

1

2
Lα

d +
1

2
L1−α

d ,

then the expansion will agree with that of the exact discrete Lagrangian up to terms of order h2, so

it gives a method that is second-order for any α. ♦

3.4 The adjoint of a method and symmetric methods

For a one-step method F : T ∗Q×R→ T ∗Q the adjoint method is F ∗ : T ∗Q×R→ T ∗Q defined by

(F ∗)h ◦ F−h = Id; (3.11)

that is, (F ∗)h = (F−h)−1. The method F is said to be self-adjoint if F ∗ = F . Note that we always

have F ∗∗ = F .

Given a discrete Lagrangian Ld : Q×Q× R → R, we define the adjoint discrete Lagrangian to

be L∗
d : Q×Q× R→ R defined by

L∗
d(q0, q1, h) = −Ld(q1, q0,−h). (3.12)

The discrete Lagrangian Ld is said to be self-adjoint if L∗
d = Ld. Note that L∗∗

d = Ld for any Ld.

Theorem 3.4. If the discrete Lagrangian Ld has discrete Hamiltonian map F̃Ld
, then the adjoint L∗

d

of the discrete Lagrangian has discrete Hamiltonian map equal to the adjoint map, so that F̃L∗

d
= F̃ ∗

Ld
.

If the discrete Lagrangian is self-adjoint, then the method is self-adjoint. Conversely, if the method

is self-adjoint, then the discrete Lagrangian is equivalent to a self-adjoint discrete Lagrangian.

Proof. Consider discrete Lagrangians Ld and L∗
d and the corresponding discrete Hamiltonian maps

F̃Ld
and F̃L∗

d
. For F̃Ld

and F̃L∗

d
to be adjoint, the definition (3.11) requires that F̃Ld

(q0, p0,−h) =
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(q1, p1) and F̃L∗

d
(q1, p1, h) = (q0, p0) for all (q0, p0). In terms of the generating functions this is

p0 = −D1Ld(q0, q1,−h),

p1 = D2Ld(q0, q1,−h),

p1 = −D1L
∗
d(q1, q0, h),

p0 = D2L
∗
d(q1, q0, h).

(3.13)

Equating the expressions for p0 and p1 shows that this, in turn, is equivalent to

−D1Ld(q0, q1,−h) = D2L
∗
d(q1, q0, h),

D2Ld(q0, q1,−h) = D1L
∗
d(q1, q0, h).

(3.14)

Now, if Ld and L∗
d are mutually adjoint, then the definition (3.12) implies (3.14) and so (3.13),

thus establishing that F̃Ld
and F̃L∗

d
must also be mutually adjoint, which is written F̃L∗

d
= F̃ ∗

Ld
.

Note that this implies that F̃ ∗
L∗

d
= F̃Ld

.

If Ld is self-adjoint and so Ld = L∗
d, then this immediately gives that F̃Ld

= F̃ ∗
Ld

and so F̃Ld
is

also self-adjoint.

Conversely, if F̃Ld
and F̃L∗

d
are adjoint, then (3.11) implies (3.13) which implies (3.14). As this

simply states that the derivatives of Ld and L∗
d with respect to q0 and q1 satisfy the requirement

(3.12) for adjointness it follows that Ld and L∗
d are mutually adjoint up to the addition of a function

of h. Symmetry of F̃Ld
thus implies symmetry of Ld up to a function of h, and so Ld is equivalent

to a self-adjoint discrete Lagrangian.

3.4.1 Exact discrete Lagrangian is self-adjoint

It is easy to verify that the exact discrete Lagrangian (2.25) is self-adjoint. This can be done either

directly from the definition (3.12), or by realizing that the exact flow map FH generated by LE
d

satisfies (3.11), and then using Theorem 3.4.

3.4.2 Order of adjoint methods

To relate the expansions of Ld and its adjoint in terms of h, it is necessary to work with the modified

form

L∗
d

(
q(−h/2), q(h/2), h

)
= −Ld

(
q(h/2), q(−h/2),−h

)
,

which can be used in the same way as L∗
d(q(0), q(h), h)=−Ld(q(h), q(0),−h). From this it is clear

that the expansion of L∗
d is the negative of the expansion of Ld with h replaced by −h. In other
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words, if Ld has expansion

Ld(h) = hL
(1)
d +

1

2
h2L

(2)
d +

1

6
h3L

(3)
d + · · · ,

then L∗
d will have expansion

L∗
d(h) = −(−h)L

(1)
d −

1

2
(−h)2L

(2)
d −

1

6
(−h)3L

(3)
d − · · ·

= hL
(1)
d −

1

2
h2L

(2)
d +

1

6
h3L

(3)
d − · · ·

and so the series agree on odd terms and are opposite on even terms.

This shows that the order of the adjoint discrete Lagrangian L∗
d is the same as the order of Ld.

Furthermore, if Ld is self-adjoint, then all the even terms in its expansion must be zero, showing

that self-adjoint discrete Lagrangians are necessarily of even order (the first nonzero term, which is

r + 1, must be odd).

These same conclusions can be also be reached by working with the discrete Hamiltonian map,

and showing that its adjoint has the same order as it, and that it is of even order whenever it is self-

adjoint. Theorems 3.4 and 3.3 then give the corresponding statements for the discrete Lagrangians.

Example 3.3. Perhaps the simplest example of adjoint discrete Lagrangians is the pair

Ld(q0, q1, h) = hL

(

q0,
q1 − q0

h

)

,

L∗
d(q0, q1, h) = hL

(

q1,
q1 − q0

h

)

,

which clearly satisfy (3.12). For a Lagrangian of the form L = 1
2 q̇T Mq̇ − V (q) these two discrete

Lagrangians produce the methods F̃Ld
and F̃L∗

d
given by

F̃Ld







q1 = q0 + hM−1p1,

p1 = p0 − h∇V (q0),

F̃L∗

d







q1 = q0 + hM−1p0,

p1 = p0 − h∇V (q1).

In the terminology of Hairer et al. [2002] these are the two types of symplectic Euler. We can now

explicitly compute:

(F̃L∗

d
)h ◦ (F̃Ld

)(−h)(q0, p0) = F̃L∗

d
(q0 + hM−1p1, p0 − h∇V (q0), h)

= (q0, p0),
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which shows that F̃Ld
and F̃L∗

d
are indeed mutually adjoint. ♦

Example 3.4. The discrete Lagrangians in the previous example are just Lα
d for α = 0 and α = 1,

respectively. Extending this gives (Lα
d )∗ = L1−α

d , which shows that the midpoint rule (given by

α = 1/2) is self-adjoint. From this it is also clear that the symmetrized versions Lsym,α
d are self-

adjoint for all α. ♦

3.5 Composition methods

We now consider how to combine several discrete Lagrangians together to obtain a new discrete

Lagrangian with higher order, or some other desirable property. The resulting discrete Hamiltonian

map will be the composition of the maps of the component discrete Lagrangians. References on

composition methods include Yoshida [1990], Qin and Zhu [1992], McLachlan [1993] and Murua and

Sanz-Serna [1999].

The strength of the composition methodology can be illustrated by a few simple examples. Given

a one-step method F : T ∗Q × R → T ∗Q with corresponding adjoint F ∗, then the method F̂h =

Fh/2 ◦(F ∗)h/2 will be self-adjoint and have order at least equal to that of F . Furthermore, for a self-

adjoint method F with order r, which we recall must be even, the method F̂h = F γh◦F (1−2γ)h◦F γh

with the constant γ = (2 − 21/(r+1))−1 will have order r + 2. This thus provides a simple way to

derive methods of arbitrarily high order starting from a given low-order method. See the above

references for details and more complicated examples.

Consider now discrete Lagrangians Li
d and time step fractions γi for i = 1, . . . , s satisfying

∑s
i=1 γi = 1. Note that the γi may each be positive or negative. We now give three equivalent

interpretations of composition discrete Lagrangians.

3.5.1 Multiple steps

Begin by taking a discrete trajectory {qk}
N
k=0, dividing each step (qk, qk+1) into s substeps (qk =

q0
k, q1

k, q2
k, . . . , qs

k = qk+1). Rather than using the same discrete Lagrangian for each step, as we have

previously always assumed, we will now use the different Li
d on each substep in turn.

This is equivalent to taking the discrete action sum to be

Gd

(
{(qk = q0

k, . . . , qs
k = qk+1)}

N
k=1

)
=

N∑

k=0

s∑

i=1

Li
d(q

i−1
k , qi

k, γih). (3.15)

The discrete Euler-Lagrange equations, resulting from requiring that this be stationary, pair neigh-
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bouring discrete Lagrangians together to give

D2L
i
d(q

i−1
k , qi

k, γih) + D1L
i+1
d (qi

k, qi+1
k , γi+1h) = 0, (3.16a)

i = 1, . . . , s− 1,

D2L
s
d(q

s−1
k , qs

k, γsh) + D1L
1
d(q

0
k+1, q

1
k+1, γ

1h) = 0, (3.16b)

where the steps are joined with qs
k = q0

k+1.

Considering the Li
d as generating functions for the discrete Hamiltonian maps F̃Li

d
shows that

this is simply taking a step with F̃L1
d

of length γ1h, followed by a step with F̃L2
d

of length γ2h, and

so on. The map over the entire time step is thus the composition of the maps

F̃ γsh
Ls

d
◦ · · · ◦ F̃ γ2h

L2
d

◦ F̃ γ1h
L1

d

.

3.5.2 Single step, multiple substeps

We now combine the discrete Lagrangians on each step into one multipoint discrete Lagrangian

defined by

Ld(q
0
k, q1

k, . . . , qs
k, h) =

s∑

i=1

Li
d(q

i−1
k , qi

k, γih), (3.17)

and we define the discrete action sum over the entire trajectory to be

Gd

(
{(qk = q0

k, . . . , qs
k = qk+1)}

N
k=1

)
=

N∑

k=0

Ld(q
0
k, q1

k, . . . , qs
k, h), (3.18)

which is clearly equal to (3.15).

Requiring that Gd be stationary gives the extended set of discrete Euler-Lagrange equations

DiLd(q
0
k, q1

k, . . . , qs
k, h) = 0 i = 2, . . . , s (3.19a)

Ds+1Ld(q
0
k, q1

k, . . . , qs
k, h) + D1Ld(q

0
k+1, q

1
k+1, . . . , q

s
k+1, h) = 0, (3.19b)

which are equivalent to (3.16a) and (3.16b), respectively.

3.5.3 Single step

Finally, we form a standard discrete Lagrangian which is equivalent to the above methods. Set the

composition discrete Lagrangian to be

Ld(qk, qk+1, h) = ext
(q1

k
,...,qs−1

k
)
Ld(qk = q0

k, q1
k, q2

k, . . . , qs−1
k , qs

k = qk+1, h) (3.20)
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which is the multipoint discrete Lagrangian defined above, evaluated on the trajectory within the

step which solves (3.19a).

Note that the derivatives of this discrete Lagrangian satisfy

D1Ld(qk, qk+1, h) = D1Ld(qk, q1
k, q2

k, . . . , qs−1
k , qk+1, h)

+

s−1∑

i=1

DiLd(qk, q1
k, q2

k, . . . , qs−1
k , qk+1, h) ·

∂qi
k

∂qk

= D1Ld(qk, q1
k, q2

k, . . . , qs−1
k , qk+1, h)

= D1L
1
d(qk, q1

k, γ1h)

using (3.19a), and similarly

D2Ld(qk, qk+1, h) = Ds+1Ld(qk, q1
k, q2

k, . . . , qs−1
k , qk+1, h)

= D2L
s
d(q

s−1
k , qk+1, γ

sh).

This gives the following theorem.

Theorem 3.5. Take discrete Lagrangians Li
d and time step fractions γi for i = 1, . . . , s satisfying

∑s
i=1 γi = 1. Define the composition discrete Lagrangian Ld by (3.20). Then the discrete Hamilto-

nian map F̃Ld
is

F̃h
Ld

= F̃ γsh
Ls

d
◦ · · · ◦ F̃ γ2h

L2
d

◦ F̃ γ1h
L1

d

formed by the composition of the discrete Hamiltonian maps for each Li
d.

Proof. The equations that define F̃Ld
are

pk = −D1Ld(qk, qk+1, h) = −D1L
1
d(qk, q1

k, γ1h),

pk+1 = D2Ld(qk, qk+1, h) = D2L
s
d(q

s−1
k , qk+1, γ

sh),

together with (3.19a), which is equivalent to (3.16a), which we write as

pi
k = D2L

i
d(q

i−1
k , qi

k, γih) = −D1L
i+1
d (qi

k, qi+1
k , γi+1h)

for i = 1, . . . , s− 1. Setting p0
k = pk and ps

k = pk+1, we can group these to give

pi−1
k = −D1L

i
d(q

i−1
k , qi

k, γih),

pi
k = D2L

i
d(q

i−1
k , qi

k, γih),

for i = 1, . . . , s, which are the definition of F̃ γsh
Ls

d
◦ · · · ◦ F̃ γ2h

L2
d

◦ F̃ γ1h
L1

d

, thus giving the required



75

equivalence.

3.6 Examples of variational integrators

In this section we will consider a number of standard symplectic methods and show how to write

them as variational integrators. Recall that we are assuming that Q is a linear space with inner

product 〈·, ·〉 and corresponding norm ‖ · ‖. We will always assume that the Lagrangian L : TQ→ R

is regular, so that it has a corresponding Hamiltonian H : T ∗Q→ R. In addition, we will sometimes

consider the Lagrangian composed of a kinetic and a potential energy, so that it is of the form

L(q, q̇) = 1
2 q̇T Mq̇ − V (q), where M is a positive-definite symmetric matrix.

3.6.1 Midpoint rule

Given a Hamiltonian system H : T ∗Q → R, the midpoint rule is an integrator Fh : (q0, p0) 7→

(q1, p1). Setting z0 = (q0, p0) and z1 = (q1, p1) the map is defined implicitly by the relation

z1 − z0

h
= XH

(
z1 + z0

2

)

,

where XH is the Hamiltonian vector field. Writing the two components separately gives

q1 − q0

h
=

∂H

∂p

(
q1 + q0

2
,
p1 + p0

2

)

, (3.21a)

p1 − p0

h
= −

∂H

∂q

(
q1 + q0

2
,
p1 + p0

2

)

. (3.21b)

The symplectic nature of the midpoint rule is often explained by using the Cayley transform (this

remark is due, as far as we know, to Krishnaprasad and J. C. Simo; see, for example, M. A. Austin

and Wang [1993], Simo et al. [1992] and Simo and Tarnow [1992], and related papers). See Marsden

[1999] for an exposition of this method.

To write the midpoint rule as a variational integrator, assume that H is regular and that L is

the corresponding regular Lagrangian defined by (2.16). Define the discrete Lagrangian

L
1
2

d (q0, q1, h) = hL

(
q1 + q0

2
,
q1 − q0

h

)

.

Evaluating the expressions (2.23) for the discrete Hamiltonian map gives

p0 = −
h

2

∂L

∂q

(
q1 + q0

2
,
q1 − q0

h

)

+
∂L

∂q̇

(
q1 + q0

2
,
q1 − q0

h

)

,

p1 =
h

2

∂L

∂q

(
q1 + q0

2
,
q1 − q0

h

)

+
∂L

∂q̇

(
q1 + q0

2
,
q1 − q0

h

)

,
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and subtracting and adding these two equations produces

p1 − p0

h
=

∂L

∂q

(
q1 + q0

2
,
q1 − q0

h

)

, (3.22)

p1 + p0

2
=

∂L

∂q̇

(
q1 + q0

2
,
q1 − q0

h

)

.

The second of these equations is simply the statement that

(
q1 + q0

2
,
p1 + p0

2

)

= FL

(
q1 + q0

2
,
q1 − q0

h

)

,

and so using (2.17a) shows that (3.22) is equivalent to (3.21b), while (2.17c) gives (3.21a).

For regular Lagrangian systems, the midpoint discrete Lagrangian L
1/2
d thus has discrete Hamil-

tonian map which is the midpoint rule on T ∗Q for the corresponding Hamiltonian system.

3.6.2 Störmer-Verlet

The Verlet method [Verlet, 1967] (also known as Störmer’s rule) was originally formulated for molec-

ular dynamics problems and remains popular in that field. The derivation of Verlet as a variational

integrator is in Wendlandt and Marsden [1997a] and is implicitly in Gillilan and Wilson [1992] as

well.

Verlet is usually written for systems of the form L(q, q̇) = 1
2 q̇T Mq̇ − V (q), and was originally

formulated as a map Q×Q→ Q×Q given by (qk, qk+1) 7→ (qk+1, qk+2) with

qk+1 = 2qk − qk−1 + h2ak,

where we use the notation ak = M−1(−∇V (qk)). As can be readily seen, this is just the discrete

Lagrangian map FLd
: Q×Q→ Q×Q for either of

L0
d(q0, q1, h) = hL

(

q0,
q1 − q0

h

)

,

L1
d(q0, q1, h) = hL

(

q1,
q1 − q0

h

)

,

or indeed any affine combination of these two. In particular, consider the symmetric version

Ld(q0, q1, h) =
1

2
hL

(

q0,
q1 − q0

h

)

+
1

2
hL

(

q1,
q1 − q0

h

)

,

which gives Verlet as the corresponding FLd
. Pushing this forward to T ∗Q with F

±Ld now gives
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F̃Ld
: T ∗Q→ T ∗Q defined by (2.23). Evaluating these yields

pk = M

(
qk+1 − qk

h

)

+
1

2
h∇V (qk),

pk+1 = M

(
qk+1 − qk

h

)

−
1

2
h∇V (qk+1).

Now we subtract the first equation from the second and solve the first equation for qk+1 to obtain

qk+1 = qk + hM−1pk +
1

2
h2M−1(−∇V (qk)),

pk+1 = pk + h

(
−∇V (qk)−∇V (qk+1)

2

)

,

which is the so-called velocity Verlet method [Swope, Andersen, Berens, and Wilson, 1982; Allen

and Tildesley, 1987] written on T ∗Q. Using the Legendre transform FL(q, q̇) = (q,Mq̇) this can also

be mapped to TQ.

We thus see that velocity Verlet will preserve the canonical two-form Ω on T ∗Q, and as Ld is

invariant under linear symmetries of the potential, Verlet will also preserve quadratic momentum

maps such as linear and angular momentum.

3.6.3 Newmark methods

The Newmark family of integrators, originally given in Newmark [1959], are widely used in structural

dynamics codes. They are usually written (see, for example, Hughes [1987]) for the system L =

1
2 q̇T Mq̇−V (q) as maps TQ→ TQ given by (qk, q̇k) 7→ (qk+1, q̇k+1) satisfying the implicit relations

qk+1 = qk + hq̇k +
h2

2
[(1− 2β)a(qk) + 2βa(qk+1)] , (3.23a)

q̇k+1 = q̇k + h [(1− γ)a(qk) + γa(qk+1)] , (3.23b)

a(q) = M−1(−∇V (q)), (3.23c)

where the parameters γ ∈ [0, 1] and β ∈ [0, 1
2 ] specify the method. It is simple to check that the

method is second-order if γ = 1/2 and first-order otherwise, and that it is generally explicit only for

β = 0.

The β = 0, γ = 1/2 case is well known to be symplectic (see, for example, Simo et al. [1992])

with respect to the canonical symplectic form ΩL on TQ. This can be easily seen from the fact that

this method is simply the pullback by FL of the discrete Hamiltonian map for Lsym,α
d with α = 0 or

α = 1. Note that this method is the same as velocity Verlet.

It is also well known (for example, Simo et al. [1992]) that the Newmark algorithm with β 6= 0

does not preserve the canonical symplectic form. Nonetheless, based on a remark by Suris, it can
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be shown [Kane et al., 2000] that the Newmark method with γ = 1/2 and any β can be generated

from a discrete Lagrangian. To see this, we introduce the map ϕβ : Q×Q→ TQ defined by

ϕβ(qk, qk+1) =

(

qk,
[qk+1 − qk

h

]

−
h

2

[
(1− 2β)a(qk) + 2βa(qk+1)

]
)

.

Pulling the Newmark map back by ϕβ to a map Q × Q → Q × Q gives the map (qk, qk+1) 7→

(qk+1, qk+2) where

qk+2 − 2qk+1 + qk

h2
= βa(qk+2) + (1− 2β)a(qk+1) + βa(qk). (3.24)

A straightforward calculation now shows that this is in fact the discrete Lagrange map FLβ

d

for the

discrete Lagrangian

Lβ
d (q0, q1, h) = h

1

2

(
ηβ(q1)− ηβ(q0)

h

)T

M

(
ηβ(q1)− ηβ(q0)

h

)

− hṼ (ηβ(q0)),

where we have introduced the map ηβ : Q→ Q defined by

ηβ(q) = q − βh2M−1∇V (q)

and the modified potential function Ṽ : Q→ R satisfying ∇Ṽ ◦ ηβ = ∇V , which will exist for small

h.

This result shows that the Newmark method for γ = 1/2 is the pullback of the discrete Hamilto-

nian map F̃Lβ

d

by the map F
+Lβ

d ◦ (ϕ
β)−1. As the discrete Hamiltonian map preserves the canonical

symplectic form on T ∗Q, this means that Newmark preserves the two-form [F+Lβ
d ◦ (ϕβ)−1]∗Ω on

TQ. Note that this is not the canonical two-form ΩL on TQ, but this is enough to explain the

otherwise inexplicably good longtime behaviour of γ = 1/2 Newmark for nonlinear problems.

An alternative and independent method of analyzing the symplectic members of Newmark has

been given by Skeel et al. [1997], including an interesting nonlinear analysis in Skeel and Srinivas

[2000]. This is based on the observation that if we define the map η̄β : TQ→ TQ by

η̄β(q, v) =
(
ηβ(q), v

)
,

then the pushforward of the Newmark method by η̄β is given by (xk, vk) 7→ (xk+1, vk+1), where

xk+1 = xk + hvk +
1

2
h2ak, (3.25a)

vk+1 = vk +
1

2
h(ak + ak+1), (3.25b)

ak = a(xk + βh2ak). (3.25c)
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This map can be shown to be symplectic with respect to the canonical two-form ΩL on TQ, and so

Newmark will preserve the two-form (η̄β)∗ΩL on TQ.

To summarize, we have the following commutative diagram, where the map F̃Lβ

d

preserves the

canonical two-form Ω on T ∗Q, the map (3.25) preserves the Lagrange two-form ΩL on TQ, and we

have set γ = 1/2 in the Newmark equation (3.23).

T ∗Q

F̃
L

β
d

��

Q×Q
F
+Lβ

doo ϕβ

//

(3.24)F
L

β
d

��

TQ
η̄β

//

(3.23)

��

TQ

(3.25)

��
T ∗Q Q×Q

F
+Lβ

d

oo
ϕβ

// TQ
η̄β

// TQ

3.6.4 Explicit symplectic partitioned Runge-Kutta methods

Symplectic integrators which are explicit partitioned Runge-Kutta methods were first used by Ruth

[1983] and Forest and Ruth [1990], who constructed them as a composition of steps, each one

generated by a generating function of the third kind. Using the same idea shows that these methods

are also variational, at least for Hamiltonians with kinetic energy of the form T (p) = 1/2pT M−1p

for some constant mass matrix M .

It can be shown [Hairer et al., 1993] that explicit symplectic partitioned Runge-Kutta methods

can always be written as the composition of a number of steps of the method F a,b : T ∗Q×R→ T ∗Q

given by

q1 = q0 + ahM−1p0,

p1 = p0 − bh∇V (q1),

and of its adjoint method (F a,b)∗, with each step having different parameters (a, b). Furthermore,

it is simple to check that these can be chosen so that all steps have nonzero a.

We now see, however, that the method F a,b is the discrete Hamiltonian map for the discrete

Lagrangian La,b
d given by

La,b
d (q0, q1, h) = h

[

b
1

2

(
q1 − q0

h

)T

M

(
q1 − q0

h

)

−
1

a
V (q1)

]

,

and from Theorem 3.4 it is clear that (F a,b)∗ is the discrete Hamiltonian map of the adjoint discrete

Lagrangian (La,b
d )∗.

We can thus form a composition discrete Lagrangian as in Theorem 3.5 whose discrete Hamil-

tonian map is the composition of the F a,b and (F a,b)∗, and is therefore the explicit symplectic

partitioned Runge-Kutta method.
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3.6.5 Symplectic partitioned Runge-Kutta methods

Partitioned Runge-Kutta methods are a class of integrators about which much is known and which

generalize standard Runge-Kutta methods. The symplectic members of Runge-Kutta were first

identified by Lasagni [1988], Sanz-Serna [1988] and Suris [1989]. Symplectic partitioned Runge-

Kutta methods appeared in Sanz-Serna [1992a] and Suris [1990]. Good general references are Hairer

et al. [1993] and Hairer and Wanner [1996]. See also Geng [1995, 2000], Sofroniou and Oevel [1997a]

and Sofroniou and Oevel [1997b] for order conditions and derivations. An explicit construction has

been given by Suris [1990] for the discrete Lagrangian which generates any symplectic partitioned

Runge-Kutta method. We summarize this derivation below.

Recall that a partitioned Runge-Kutta method for the regular Lagrangian system L is a map

T ∗Q × R → T ∗Q specified by the coefficients bi, aij , b̃i, ãij for i, j = 1, . . . , s, and defined by

(q0, p0) 7→ (q1, p1) for

q1 = q0 + h

s∑

j=1

bjQ̇j , p1 = p0 + h

s∑

j=1

b̃jṖj , (3.26a)

Qi = q0 + h

s∑

j=1

aijQ̇j , Pi = p0 + h

s∑

j=1

ãijṖj , i = 1, . . . , s, (3.26b)

Pi =
∂L

∂q̇
(Qi, Q̇i), Ṗi =

∂L

∂q
(Qi, Q̇i), i = 1, . . . , s, (3.26c)

where the points (Qi, Pi) are known as the internal stages. In the special case that aij = ãij and

bi = b̃i, a partitioned Runge-Kutta method is said to be simply a Runge-Kutta method.

It is well known that the method is symplectic (that is, it preserves the canonical symplectic

form Ω on T ∗Q) if the coefficients satisfy

biãij + b̃jaji = bib̃j , i, j = 1, . . . , s, (3.27a)

bi = b̃i, i = 1, . . . , s. (3.27b)

We now assume that we have coefficients satisfying (3.27) and write a discrete Lagrangian that

generates the corresponding symplectic partitioned Runge-Kutta method. Given points (q0, q1) ∈

Q×Q, we can regard (3.26) as implicitly defining p0, p1, Qi, Pi, Q̇i and Ṗi for i = 1, . . . , s. Taking

these to be so defined as functions of (q0, q1), we construct a discrete Lagrangian

Ld(q0, q1, h) = h
s∑

i=1

biL(Qi, Q̇i). (3.28)

It can now be shown [Suris, 1990] that the corresponding discrete Hamiltonian map is exactly the

map (q0, p0) 7→ (q1, p1), which is the symplectic partitioned Runge-Kutta method. Nonsymplectic
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partitioned Runge-Kutta methods will clearly not have a corresponding discrete Lagrangian formu-

lation.

Theorem 3.6. The discrete Hamiltonian map generated by the discrete Lagrangian (3.28) is a

symplectic partitioned Runge-Kutta method.

Proof. To check that the discrete Hamiltonian map defined by Ld is indeed the partitioned Runge-

Kutta method specified by (3.26), we need only check that equations (2.23) are satisfied. We compute

∂Ld

∂q0
(q0, q1) = (∆t)

s∑

i=1

bi

[
∂L

∂q
·
∂Qi

∂q0
+

∂L

∂q̇
·
∂Q̇i

∂q0

]

= (∆t)

s∑

i=1

bi

[

Ṗi ·
∂Qi

∂q0
+ Pi ·

∂Q̇i

∂q0

]

,

using the definitions for Pi and Ṗi in (3.26). Differentiating the definition for Qi in (3.26b) and

substituting in this and the definition of Pi in (3.26b) now gives

∂Ld

∂q0
(q0, q1) = (∆t)

s∑

i=1

bi

[

Ṗi ·

(

I + (∆t)

s∑

j=1

aij
∂Q̇j

∂q0

)

+

(

p0 + (∆t)

s∑

j=1

ãijṖj

)

·
∂Q̇i

∂q0

]

= (∆t)

s∑

i=1

bi

[

Ṗi + p0 ·
∂Q̇i

∂q0

]

+ (∆t)2
s∑

i=1

s∑

j=1

(biãij + bjaji)Ṗj ·
∂Q̇i

∂q0
,

and we can use the symplecticity identities (3.27) to obtain

∂Ld

∂q0
(q0, q1) = p0 ·

[

(∆t)

s∑

i=1

bi
∂Q̇i

∂q0

]

+ (∆t)

s∑

i=1

biṖi

+ (∆t)
s∑

j=1

bjṖj ·

[

(∆t)
s∑

i=1

bi
∂Q̇i

∂q0

]

= −p0,

where we have differentiated the expression for q1 in (3.26a) to obtain the identity

(∆t)

s∑

i=1

bi
∂Q̇i

∂q0
= −I.

This thus establishes that the first equation of (2.23) is satisfied.

Differentiating Ld with respect to q1 and following a similar argument to that above gives the
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second part of (2.23), and shows that the discrete Hamiltonian map F̃Ld generated by the discrete

Lagrangian (3.28) is indeed the symplectic partitioned Runge-Kutta method.

This construction thus provides a proof of the well-known fact that the restrictions (3.27) on the

coefficients mean that the partitioned Runge-Kutta method is symplectic, as discrete Hamiltonian

maps always preserve the canonical symplectic form. In addition, the linear nature of the definition

of the discrete Lagrangian (3.28) means that it will inherit linear symmetries of the Lagrangian L,

which thus proves the standard result that partitioned Runge-Kutta methods preserve quadratic

momentum maps.

Another way to regard the above derivation is to say that we have written down a generating

function of the first kind for the symplectic partitioned Runge-Kutta map.

3.6.6 Galerkin methods

To obtain accurate variational integrators, the results in §3.3 show that the discrete Lagrangian

should approximate the action over short trajectory segments. One way to do this practically is

to use polynomial approximations to the trajectories and numerical quadrature to approximate the

integral. This can be shown to be equivalent both to a class of continuous Galerkin methods and to

a subset of symplectic partitioned Runge-Kutta methods.

This approach is related to the Continuous Galerkin and Discontinuous Galerkin methods, as

in Estep and French [1994], Hulme [1972b,a] and Thomée [1997]. These methods differ in the

precise choice of function space (continuous or discontinuous) and whether the position and velocity

components are projected separately or the velocity projection is given by the lift of a position

projection.

We know that a discrete Lagrangian should be an approximation

Ld(q0, q1, h) ≈ ext
q∈C([0,h],Q)

G(q),

where C([0, h], Q) is the space of trajectories q : [0, h] → Q with q(0) = q0 and q(h) = q1, and

G : C(0, h)→ R is the action (2.1).

To approximate this quantity, we choose the particular finite-dimensional approximation Cs([0, h], Q) ⊂

C([0, h], Q) of the trajectory space given by

Cs([0, h], Q) = {q ∈ C([0, h], Q) | q is a polynomial of degree s},

and we approximate the action integral with numerical quadrature to give an approximate action
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Gs : C([0, h], Q)→ R by

Gs(q) = h

s∑

i=1

biL
(
q(cih), q̇(cih)

)
, (3.29)

where ci ∈ [0, 1], i = 1, . . . , s are a set of quadrature points and bi are the associated maximal order

weights. We now set the Galerkin discrete Lagrangian to be

Ld(q0, q1, h) = ext
q∈Cs([0,h],Q)

Gs(q), (3.30)

which can be practically evaluated. This procedure, of course, is simply performing Galerkin projec-

tion of the weak form of the ODE onto the space of piecewise polynomial trajectories. Furthermore,

as we will show below, the resulting integrator is a symplectic partitioned Runge-Kutta method.

To make the above equations explicit, choose control times 0 = d0 < d1 < d2 < · · · < ds−1 < ds =

1 and control points q0
0 = q0, q

1
0 , q2

0 , . . . , qs−1
0 , qs

0 = q1. These uniquely define the degree s polynomial

qd(t; q
ν
0 , h) which passes through each qν

0 at time dνh, that is, qd(dνh) = qν
0 for ν = 0, . . . , s. Letting

l̃ν,s(t) denote the Lagrange polynomials associated with the dν , we can express qd(t; q
ν
0 , h) as

qd(τh; qν
0 , h) =

s∑

ν=0

qν
0 l̃ν,s(τ). (3.31)

For qd(t; q
ν
0 , h) to be a critical point of the discrete action (3.29) we must have stationarity with

respect to variations in qν
0 for ν = 1, . . . , s−1. Differentiating (3.29) and (3.31) implies that we have

0 = h
s∑

i=1

bi

[
∂L

∂q
(cih)l̃ν,s(ci) +

1

h

∂L

∂q̇
(cih)

˙̃
lν,s(ci)

]

(3.32)

for each ν = 1, . . . , s−1, where we denote ∂L
∂q (cih) = ∂L

∂q (qd(cih), q̇d(cih)) and similarly for the other

expressions.

The integration scheme (q0, p0) 7→ (q1, p1) generated by the Galerkin discrete Lagrangian (3.30)

is now given implicitly by the relations

−p0 =
∂Ld

∂q0
(q0, q1, h), p1 =

∂Ld

∂q1
(q0, q1, h).
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Evaluating these expressions and restating (3.32) gives the set of equations

E(0) :−p0 = h

s∑

i=1

bi

[
∂L

∂q
(cih)l̃0,s(ci) +

1

h

∂L

∂q̇
(cih)

˙̃
l0,s(ci)

]

,

E(ν) : 0 = h

s∑

i=1

bi

[
∂L

∂q
(cih)l̃ν,s(ci) +

1

h

∂L

∂q̇
(cih)

˙̃
lν,s(ci)

]

, ν = 1, . . . , s− 1,

E(s) : p1 = h
s∑

i=1

bi

[
∂L

∂q
(cih)l̃s,s(ci) +

1

h

∂L

∂q̇
(cih)

˙̃
ls,s(ci)

]

,

which define the discrete Hamiltonian map (q0, p0) 7→ (q1, p1).

The above Galerkin discrete Lagrangian can also be interpreted as a function of several points,

in a similar way to the composition discrete Lagrangians discussed in §3.5. Essentially, we choose a

set of interior points which act as a parametrization of the space of degree s polynomials mapping

[0, h] to Q.

More precisely, we form the multipoint discrete Lagrangian

Ld(q
0
0 , q1

0 , . . . , qs
0, h) = Gs

(
qd(t; q

ν
0 , h)

)
,

where we recall that qd(t; q
ν
0 , h) is the unique polynomial of degree s passing through qν

0 at time

dνh and Gs is defined by (3.29). This multipoint discrete Lagrangian is the analogue of the discrete

Lagrangian (3.17). The appropriate discrete action is then

Gd

(
{(qk = q0

k, . . . , qs
k = qk+1)}

N
k=1

)
=

N∑

k=0

Ld(q
0
k, q1

k, . . . , qs
k, h),

and the corresponding discrete Euler-Lagrange equations are given by (3.19). Clearly, the discrete

Lagrangian defined by extremizing the above multipoint Ld with respect to the interior points qν
0

for ν = 1, . . . , s is just the original Galerkin discrete Lagrangian (3.30), and the extended discrete

Euler-Lagrange equations are thus equivalent to E(ν) above for ν = 0, . . . , s. This follows in the

same way as the proof of Theorem 3.5.

We will now see that these Galerkin variational integrators can be realized as particular examples

of Runge-Kutta or partitioned Runge-Kutta schemes.

Theorem 3.7. Take a set of quadrature points ci with corresponding maximal order weights bi and

let Ld be the corresponding Galerkin discrete Lagrangian (3.30). Then the integrator generated by
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this discrete Lagrangian is the partitioned Runge-Kutta scheme defined by the coefficients

bi = b̃i =

∫ 1

0

li,s(ρ)dρ,

aij =

∫ ci

0

lj,s(ρ)dρ,

ãij = b̃j

(

1−
aji

bi

)

,

(3.33)

where the li,s(ρ) are the Lagrange polynomials associated with the ci.

Proof. Given (q0, p0), (q1, p1) and qν
0 satisfying E(ν), ν = 0, . . . , s, we will show that they also satisfy

the partitioned Runge-Kutta equations (3.26) written for a Lagrangian system with coefficients given

by (3.33). We restate the defining equations here for reference:

q1 = q0 + h

s∑

j=1

bjQ̇j , p1 = p0 + h

s∑

j=1

b̃jṖj , (3.34a)

Qi = q0 + h

s∑

j=1

aijQ̇j , Pi = p0 + h

s∑

j=1

ãijṖj , i = 1, . . . , s, (3.34b)

Pi =
∂L

∂q̇
(Qi, Q̇i), Ṗi =

∂L

∂q
(Qi, Q̇i), i = 1, . . . , s. (3.34c)

We will show that these equations are satisfied by the discrete Hamiltonian map.

Set Q̇i = q̇d(cih; qν
0 , h) so that q̇d(τh; qν

0 , h) =
∑s

j=1 Q̇j lj,s(τ). Integrating this expression and

using the fact that qd(0; qν
0 , h) = q0 gives

qd(τh; qν
0 , h) = q0 + h

s∑

j=1

Q̇j

∫ τ

0

lj(ρ)dρ.

Setting Qi = qd(cih; qν
0 , h) and using q1 = qd(h; qν

0 , h) now gives the first parts of (3.34a) and (3.34b)

for Qi and q1. Now define Pi and Ṗi according to (3.34c).

Until this point we have not made use of the relations E(ν). We will now begin to do so by

forming the sum of the E(ν), ν = 0, . . . , s. This gives

p1 − p0 = h

s∑

i=1

bi

[

∂L

∂q
(cih)

s∑

ν=0

l̃ν,s(ci) +
1

h

∂L

∂q̇
(cih)

s∑

ν=0

˙̃
lν,s(ci)

]

.

However, the Lagrange polynomials l̃ν,s(τ) sum to the identity function, and therefore the sum of

their derivatives must be zero. We thus recover the second part of (3.34a) for p1.

Note that the l̃ν,s+1 are a set of s + 1 independent polynomials of degree s and thus are a basis

for Ps, the space of polynomials of degree s. For each j = 1, . . . , s the polynomial lj,s is of degree
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s− 1 and so has an integral of degree s. This implies that there exist coefficients mj
ν such that

s∑

ν=0

mj
ν l̃ν,s+1(τ) =

∫ τ

0

lj,s(ρ)dρ− bj .

Differentiating this expression with respect to τ and evaluating it at τ = 0 and τ = 1 gives the

following three identities:

s∑

ν=0

mj
ν
˙̃
lν,s+1(τ) = lj,s(τ),

mj
s =

s∑

ν=0

mj
ν l̃ν,s+1(1) =

∫ 1

0

lj,s(ρ)dρ− bj = 0,

mj
0 =

s∑

ν=0

mj
ν l̃ν,s+1(0) = −bj .

If we now form the sum
∑s

ν=0 mj
νE(ν) and make use of the above identities, we obtain

bjp0 = h

s∑

i=1

bi

[

Ṗi

(∫ ci

0

lj,s(ρ)dρ− bj

)

+
1

h
Pilj,s(ci)

]

= h
s∑

i=1

Ṗi [bi(aij − bj)] + bjPj ,

which can be rearranged to give the second part of (3.34b) for Pi.

If the âij in Theorem 3.7 are equal to the aij , then the method is clearly the special case of a

Runge-Kutta method, rather than the general partitioned Runge-Kutta case. Note that the defini-

tion of the âij in (3.33) is simply a rearrangement of the requirement (3.27a), and so the partitioned

Runge-Kutta methods equivalent to the Galerkin variational integrators are naturally symplectic,

as is clear from the symplectic nature of variational integrators in general. In addition, the additive

structure of the Galerkin discrete Lagrangian means that Ld will inherit linear symmetries of L,

so Noether’s theorem recovers the well-known fact that the partitioned Runge-Kutta methods will

preserve quadratic momentum maps.

A particularly elegant symplectic Runge-Kutta method is the collocation Gauss-Legendre

rule . In the present derivation this results simply from taking the quadrature points ci to be those

given by the Gauss-Legendre quadrature, which is the highest-order quadrature for a given number

of points. The ci produced in this manner are all strictly between 0 and 1.

If the system being integrated is stiff, then better numerical performance results from having

cs = 1, making the integrator stiffly accurate [Hairer and Wanner, 1996]. If we also wish to preserve

the symmetry of the discrete Lagrangian, then it is natural to seek the ci giving the highest order

quadrature rule while enforcing c0 = 0 and cs = 1. This is the so-called Lobatto quadrature, and
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the Galerkin variational integrator generated in this way is the standard Lobatto IIIA-IIIB

partitioned Runge-Kutta method .
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Chapter 4

Forcing and constraints

4.1 Background: Forced systems

Lagrangian and Hamiltonian systems with external forcing arise in many different contexts. Par-

ticular examples include control forces from actuators, dissipation and friction, and loading on

mechanical systems. As we will see below, when integrating such systems it is important to take

account of the geometric structure to avoid spurious numerical artifacts. One way to do this is by

extending the discrete variational framework to include forcing, which we will now do.

4.1.1 Forced Lagrangian systems

A Lagrangian force is a fibre-preserving map fL : TQ → T ∗Q over the identity, which we write

in coordinates as

fL : (q, q̇) 7→ (q, fL(q, q̇)).

Given such a force, it is standard to modify Hamilton’s principle, seeking stationary points of the

action, to the Lagrange-d’Alembert principle , which seeks curves q ∈ C(Q) satisfying

δ

∫ T

0

L(q(t), q̇(t))dt +

∫ T

0

fL(q(t), q̇(t)) · δq(t)dt = 0, (4.1)

where the δ represents variations vanishing at the endpoints. Using integration by parts shows that

this is equivalent to the forced Euler-Lagrange equations, which have coordinate expression

∂L

∂q
(q, q̇)−

d

dt

(
∂L

∂q̇
(q, q̇)

)

+ fL(q, q̇) = 0. (4.2)

Note that these are the same as the standard Euler-Lagrange equations (2.5) with the forcing term

added.
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4.1.2 Forced Hamiltonian systems

A Hamiltonian force is a fibre-preserving map fH : T ∗Q→ T ∗Q over the identity. Given such a

force, we define the corresponding horizontal one-form f ′
H on T ∗Q by

f ′
H(pq) · upq

=
〈
fH(pq), TπQ · upq

〉
,

where πQ : T ∗Q → Q is the projection. This expression is reminiscent of the definition (2.13) of

the canonical one-form Θ on T ∗Q, and in coordinates it is f ′
H(q, p) · (δq, δp) = fH(q, p) · δq, so the

one-form is clearly horizontal.

The forced Hamiltonian vector field XH is now defined to satisfy

iXH
Ω = dH − f ′

H

and in coordinates this gives the well-known forced Hamilton’s equations

Xq(q, p) =
∂H

∂q
(q, p), (4.3a)

Xp(q, p) = −
∂H

∂p
(q, p) + fH(q, p), (4.3b)

which are the same as the standard Hamilton’s equations (2.15) with the forcing term added to the

momentum equation.

4.1.3 Legendre transform with forces

Given a Lagrangian L, we can take the standard Legendre transform FL : T ∗Q → TQ and relate

Hamiltonian and Lagrangian forces by

fL = fH ◦ FL.

If we also have a Hamiltonian H related to L by the Legendre transform according to (2.16), then

it can be shown that the forced Euler-Lagrange equations and the forced Hamilton’s equations

are equivalent. That is, if XL and XH are the forced Lagrangian and Hamiltonian vector fields,

respectively, then (FL)∗(XH) = XL.

4.1.4 Noether’s theorem with forcing

We now consider the effect of forcing on the evolution of momentum maps that arise from symmetries

of the Lagrangian L : TQ → R. Let Φ : G × Q → Q be a symmetry of L and let the Lagangian

momentum map JL : TQ→ g∗ be as defined in Section 2.1.4.
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Evaluating the left-hand side of (4.1) for a variation of the form δq(t) = ξQ(q(t)) gives

∫ T

0

dL · ξTQdt +

∫ T

0

fL · ξQdt =

∫ T

0

fL · ξQdt,

as L is assumed to be invariant. Using integration by parts as in the derivation of the forced

Euler-Lagrange equations, we see that the above expression is equal to

∫ T

0

[
∂L

∂q
(q, q̇)−

d

dt

(
∂L

∂q̇
(q, q̇)

)

+ fL(q, q̇)

]

+ ΘL · ξTQ|
T
0

= (JL ◦ FT
L )(q(0), q̇(0)) · ξ − JL(q(0), q̇(0)) · ξ,

and so equating these two statements of (4.1) gives

[
(JL ◦ FT

L )(q(0), q̇(0))− JL(q(0), q̇(0))
]
· ξ =

∫ T

0

fL(q(t), q̇(t)) · ξQ(q(t))dt. (4.4)

This equation describes the evolution of the momentum map from time 0 to time T , and shows that

forcing will generally alter the momentum map. In the special case that the forcing is orthogonal to

the group action, the above derivation shows that Noether’s theorem will still hold.

Theorem 4.1 (Forced Noether’s theorem). Consider a Lagrangian system L : TQ → R with

forcing fL : TQ → T ∗Q and a symmetry action Φ : G ×Q → Q such that 〈fL(q, q̇), ξQ(q)〉 = 0 for

all (q, q̇) ∈ TQ and all ξ ∈ g. Then the Lagrangian momentum map JL : TQ→ g∗ will be preserved

by the flow, so that JL ◦ F t
L = JL for all t.

A similar result can also be derived for Hamiltonian systems, either by taking the Legendre

transform of a regular forced Lagrangian system, or by working directly on the Hamiltonian side as

in Section 2.3. For more details on the relationship between momentum maps and forcing see Bloch,

Krishnaprasad, Marsden, and Ratiu [1996].

Note that, for nonzero forcing, the Lagrangian and Hamiltonian flows do not preserve the sym-

plectic two-form. This can be seen by calculating dĜ as was done in Section 2.1.3, and realizing

that it contains a term with the integral of the force which does not vanish except when fL = 0.
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4.2 Discrete variational mechanics with forces

4.2.1 Discrete Lagrange-d’Alembert principle

As with other discrete structures, we take two discrete Lagrangian forces f+
d , f−

d : Q×Q→ T ∗Q,

which are fibre-preserving in the sense that πQ◦f
±
d = π±

Q, and which thus have coordinate expressions

f+
d (q0, q1) = (q1, f

+
d (q0, q1)),

f−
d (q0, q1) = (q0, f

−
d (q0, q1)).

We combine the two discrete forces to give a single one-form fd : Q×Q→ T ∗(Q×Q) defined by

fd(q0, q1) · (δq0, δq1) = f+
d (q0, q1) · δq1 + f−

d (q0, q1) · δq0. (4.5)

As with discrete Lagrangians, the discrete forces will also depend on the time step h, which is

important when relating the discrete and continuous mechanics. Given such forces, we modify the

discrete Hamilton’s principle, following Kane et al. [2000], to the discrete Lagrange-d’Alembert

principle , which seeks discrete curves {qk}
N
k=0 that satisfy

δ

N−1∑

k=0

Ld(qk, qk+1) +

N−1∑

k=0

[
f−

d (qk, qk+1) · δqk + f+
d (qk, qk+1) · δqk+1

]
= 0 (4.6)

for all variations {δqk}
N
k=0 vanishing at the endpoints. This is equivalent to the forced discrete

Euler-Lagrange equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+
d (qk−1, qk) + f−

d (qk, qk+1) = 0, (4.7)

which are the same as the standard discrete Euler-Lagrange equations (2.11) with the discrete forces

added. These implicitly define the forced discrete Lagrangian map fd : Q×Q→ Q×Q.

4.2.2 Discrete Legendre transforms with forces

Although in the continuous case we used the standard Legendre transform for systems with forcing,

in the discrete case it is necessary to take the forced discrete Legendre transforms to be

F
f+Ld : (q0, q1) 7→ (q1, p1) = (q1,D2Ld(q0, q1) + f+

d (q0, q1)), (4.8a)

F
f−Ld : (q0, q1) 7→ (q0, p0) = (q0,−D1Ld(q0, q1)− f−

d (q0, q1)). (4.8b)
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Using these definitions and the forced discrete Euler-Lagrange equations (4.7), we can see that the

corresponding forced discrete Hamiltonian map F̃Ld
= F

f±Ld ◦ FLd
◦ (Ff±Ld)

−1 is given by

the map F̃Ld
: (q0, p0) 7→ (q1, p1), where

p0 = −D1Ld(q0, q1)− f−
d (q0, q1), (4.9a)

p1 = D2Ld(q0, q1) + f+
d (q0, q1), (4.9b)

which is the same as the standard discrete Hamiltonian map (2.23) with the discrete forces added.

4.2.3 Discrete Noether’s theorem with forcing

Consider a group action Φ : G×Q→ Q and assume that the discrete Lagrangian Ld : Q×Q→ R

is invariant under the lifted product action, as in Section 2.2.3. We can now calculate (4.6) in the

direction of a variation δqk = ξQ(qk) to give

N−1∑

k=0

dLd(qk, qk+1) · ξQ×Q(qk, qk+1) +

N−1∑

k=0

fd(qk, qk+1) · ξQ×Q(qk, qk+1)

=
N−1∑

k=0

fd(qk, qk+1) · ξQ×Q(qk, qk+1),

or we can use a discrete integration by parts to obtain the alternative expression

N−1∑

k=1

[
D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+

d (qk−1, qk) + f−
d (qk, qk+1)

]
·ξQ(qk)

+
[
D2Ld(qN−1, qN ) + f+

d (qN−1, qN )
]
· ξQ(qN )

+
[
D1Ld(q0, q1) + f−

d (q0, q1)
]
· ξQ(q0)

= F
f+Ld(qN−1, qN ) · ξQ(qN )− F

f−Ld(q0, q1) · ξQ(q0).

We now consider how the discrete momentum map should be defined in the presence of forcing, as

there is a choice between the expressions (2.7) involving Θ±
Ld

and the expressions

Jf+
Ld

(q0, q1) · ξ =
〈
F

f+Ld(q0, q1), ξQ(q1)
〉
, (4.10a)

Jf−
Ld

(q0, q1) · ξ =
〈
F

f−Ld(q0, q1), ξQ(q1)
〉
, (4.10b)

which are based on the discrete Legendre transforms. In the unforced discrete case and in the

continuous case both with and without forcing, these expressions are equal to the definition based

on ΘL and so the question does not arise. For a discrete system, however, consideration of the forced

exact discrete Lagrangian defined below shows that (4.10) are the correct definitions. Given this,
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we can equate the above two forms of (4.6) to obtain

[
Jf+

Ld
◦ FN−1

Ld
− Jf−

Ld

]
(q0, q1) · ξ =

N−1∑

k=0

fd(qk, qk+1) · ξQ×Q(qk, qk+1),

which describes the evolution of the discrete momentum map. If the discrete forces are orthogonal

to the group action, so that 〈fd, ξQ×Q〉 = 0 for all ξ ∈ g, then we have

0 =
〈
dLd + fd, ξQ×Q

〉
= Jf+

Ld
− Jf−

Ld
,

and thus the two discrete Lagrangian momentum maps are equal. Denoting this unique map by

Jf
Ld

: Q × Q → g∗, we see that the momentum map evolution equation gives a forced Noether’s

theorem for discrete mechanics.

Theorem 4.2 (Discrete forced Noether’s theorem).Consider a discrete Lagrangian system Ld :

Q×Q→ R with discrete forces f+
d , f−

d : Q×Q→ T ∗Q and a symmetry action Φ : G×Q→ Q such

that 〈fd, ξQ×Q〉 = 0 for all ξ ∈ g. Then the discrete Lagrangian momentum map Jf
Ld

: Q×Q→ g∗

will be preserved by the discrete Lagrangian evolution map, so that Jf
Ld
◦ FLd

= Jf
Ld

.

With the above definition of the discrete Lagrangian momentum map in the presence of forcing,

we see that it will be the pullback of the Hamiltonian momentum map under the forced discrete

Legendre transforms, and so the discrete forced Noether’s theorem can also be stated for the forced

discrete Hamiltonian map F̃Ld
with the canonical momentum map JH : T ∗Q→ g∗.

As in the continuous case, a similar calculation to that given above shows that the discrete

symplectic form will not be preserved in the presence of forcing.

4.2.4 Exact discrete forcing

In the unforced case, we have seen that the discrete Lagrangian should approximate the continuous

action over the time step. When forces are added, this must be modified so that the discrete

Lagrange-d’Alembert principle (4.6) approximates the continuous expression (4.1).

Given a Lagrangian L : TQ → R and a Lagrangian force fL : TQ → T ∗Q, we define the exact

forced discrete Lagrangian LE
d : Q × Q × R → R and the exact discrete forces fE+

d , fE−
d :

Q×Q× R→ T ∗Q to be

LE
d (q0, q1, h) =

∫ h

0

L(q(t), q̇(t))dt, (4.11a)

fE+
d (q0, q1, h) =

∫ h

0

fL(q(t), q̇(t)) ·
∂q(t)

∂q1
dt, (4.11b)

fE−
d (q0, q1, h) =

∫ h

0

fL(q(t), q̇(t)) ·
∂q(t)

∂q0
dt, (4.11c)
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where q : [0, h] → Q is the solution of the forced Euler-Lagrange equations (4.2) for L and fL

satisfying the boundary conditions q(0) = q0 and q(h) = q1.

Note that this exact discrete Lagrangian is not the same as that for the unforced system with

Lagrangian L, as the curves q(t) are different. In other words, the exact discrete Lagrangian depends

on both the continuous Lagrangian and the continuous forces, as do the discrete forces.

Given these definitions of the exact discrete quantities and the forced discrete Legendre trans-

forms, it is easy to check that the forced version of Lemma 2.1 holds, and thus so too do forced

versions of Theorems 2.14 and 2.13, showing the equivalence of the exact discrete system to the

continuous systems. This is of particular interest because it shows that the variational error analysis

developed in Section 3.3 can also be extended to the case of forced systems in the obvious way, and

that there will be a forced version of Theorem 3.3.

Note that, if Φ : G × Q→Q is a symmetry of L such that 〈fL(q, q̇), ξQ(q)〉= 0, so the forced

Noether’s theorem holds, then the exact discrete forces will satisfy 〈fd, ξQ×Q〉 = 0 and so the forced

discrete Noether’s theorem will also hold, as we would expect. This shows that (4.10) are the correct

choice for the definition of the discrete Lagrangian momentum maps in the presence of forcing.

4.2.5 Integration of forced systems

To simulate a given forced Lagrangian or Hamiltonian system, we can choose a discrete Lagrangian

and discrete forces to approximate the exact quantities given above, and then consider the resulting

discrete system as an integrator for the continuous problem. We now give some simple examples of

how to effect this.

Example 4.1. The natural discrete forces for the discrete Lagrangian Lα
d given in Example 3.1 are

fα+
d (q0, q1, h) = αhfL

(

(1− α)q0 + αq1,
q1 − q0

h

)

,

fα−
d (q0, q1, h) = (1− α)hfL

(

(1− α)q0 + αq1,
q1 − q0

h

)

.

For L = 1
2 q̇T Mq̇ − V (q), the discrete Hamiltonian map is then

q1 − q0

h
= M−1 (αp0 + (1− α)p1) ,

p1 − p0

h
= −∇V ((1− α)q0 + αq1)

+ fH ((1− α)q0 + αq1, αp0 + (1− α)p1) ,

which is the same as the unforced map (3.10) with the Hamiltonian force fH = (FL)−1 ◦ fL added

to the momentum equation. For α = 1/2 this is once again simply the midpoint rule. ♦

A particularly interesting class of Lagrangian forces fL : TQ→ T ∗Q consists of those forces that
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satisfy
〈
fL(q, q̇), (q, q̇)

〉
< 0,

for all (q, q̇) ∈ TQ. Such forces are said to be (strongly) dissipative . This terminology can be

justified by computing the time evolution of the energy EL : TQ→ R along a solution of the forced

Euler-Lagrange equations to give

d

dt
EL(q(t), q̇(t)) =

d

dt

(
∂L

∂q̇

)

· q̇ +
∂L

∂q̇
· q̈ −

d

dt
L

=

(
∂L

∂q
+ fL

)

· q̇ +
∂L

∂q̇
· q̈ −

∂L

∂q
· q̇ −

∂L

∂q̇
· q̈

= fL(q(t), q̇(t)) · q̇(t).

We thus see that dissipative forces are those for which the energy of the system always decreases. If

we only have fL · q̇ ≤ 0, then the force is said to be weakly dissipative .

Because the discrete Euler-Lagrange equations do not, in general, conserve energy, it is unlikely

that, without some time step adaptation, there is a discrete analogue of this result.

Example 4.2. As an example of a dissipative system, consider the movement of a unit mass particle

in the plane with radial potential V (q) = ‖q‖2(‖q‖2 − 1)2 and forcing fL(q, q̇) = −10−3q̇. For this

force we have fL · q̇ = −10−3‖q̇‖2 ≤ 0.

In Figure 1.3 we plot the energy behaviour of the Lα
d method with α = 1/2 for this system. For

comparison, we also plot an extremely accurate benchmark trajectory, showing the true energy of the

system, and the trajectory of the standard fourth-order Runge-Kutta method.

Observe that the variational method dissipates energy due to the discrete forces added to the

Euler-Lagrange equations, but this energy dissipation is of the correct amount to accurately track the

true energy. In contrast, non-conservative methods such as the Runge-Kutta integrator used here

artificially dissipate energy.

These effects are of particular importance when the amount of forcing or dissipation in the

system is small compared to the magnitude of the conservative dynamics and the time period of

integration. For an investigation of the long time behaviour of symplectic methods applied to systems

with dissipation, see Hairer and Lubich [1999]. ♦

Example 4.3 (Composition methods). Consider a sequence of discrete Lagrangians Li
d, discrete

forces f i+
d , f i−

d and time step fractions γi for i = 1, . . . , s satisfying
∑s

i=1 γi = 1. Then we can form

a composition discrete Lagrangian Ld and composition discrete forces f+
d , f−

d in a similar way to the

procedures in Section 3.5.

Given points q0 and qs, define qi for i = 1, . . . , s− 1 to satisfy the forced discrete Euler-Lagrange

equations (4.7) along the sequence q0, q1, . . . , qs. Regarding the qi as functions of q0 and q1, we now
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define the composition discrete Lagrangian and composition discrete forces by

Ld(q0, q1, h) =

s∑

i=1

Ld(qi−1, qi, γ
ih),

f+
d (q0, q1, h) = fs+

d (qs−1, qs, γ
sh)

+

s−1∑

i=1

(
f i+

d (qi−1, qi, γ
ih) + f i−

d (qi, qi+1, γ
i+1h)

)
·

∂qi

∂q1
,

f−
d (q0, q1, h) = f1−

d (q0, q1, γ
1h)

+

s−1∑

i=1

(
f i+

d (qi−1, qi, γ
ih) + f i−

d (qi, qi+1, γ
i+1h)

)
·

∂qi

∂q0
.

With these definitions it can be shown, using a similar derivation to that in Section 3.5, that the

forced discrete Hamiltonian map for Ld and f+
d , f−

d is the composition of the individual forced discrete

Hamiltonian maps, so that

F̃h
Ld

= F̃ γsh
Ls

d
◦ F̃ γs−1h

Ls−1

d

◦ · · · ◦ F̃ γ1h
L1

d

.

In forming composition methods it is often useful to use a sequence consisting of copies of a method

together with its adjoint. It is thus worth noting that the adjoint of a discrete Lagrangian and discrete

forces is given by

L∗
d(q0, q1, h) = −Ld(q1, q0,−h),

f∗+
d (q0, q1, h) = −f−

d (q1, q0,−h),

f∗−
d (q0, q1, h) = −f+

d (q1, q0,−h).

The discrete Hamiltonian map of the adjoint discrete Lagrangian and adjoint discrete forces will be

the adjoint map of the original discrete Hamiltonian map. Observe that the exact discrete Lagrangian

and exact discrete forces (4.11) are self-adjoint. ♦

Example 4.4 (Symplectic partitioned Runge-Kutta methods). Recall that the discrete La-

grangian (3.28) given by

Ld(q0, q1, h) = h

s∑

i=1

biL(Qi, Q̇i)

generates symplectic partitioned Runge-Kutta methods. Reasonable choices of corresponding discrete
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forces are

f+
d (q0, q1, h) = h

s∑

i=1

bifL(Qi, Q̇i) ·
∂Qi

∂q0
, (4.12a)

f−
d (q0, q1, h) = h

s∑

i=1

bifL(Qi, Q̇i) ·
∂Qi

∂q1
, (4.12b)

which approximate the exact forces (4.11b) and (4.11c) in the same way that Ld approximates the

exact discrete Lagrangian (4.11a).

With these choices of discrete forces, it can be shown that the discrete Hamiltonian map defined

by (4.9) is exactly a partitioned Runge-Kutta method for the forced Hamiltonian system (4.3). ♦

In most of the other examples of variational integrators discussed above, discrete forces can be

chosen in a natural way so that the discrete Hamiltonian maps give the expected integrator for the

forced Hamiltonian system. In particular, this can be done for the symplectic Newmark methods

(see Kane et al. [2000]). We can also use alternative splitting-style methods to include forcing (see

Kane et al. [2000] for details).

4.3 Background: Constrained systems

A particularly elegant way to study many systems is to consider them as a constrained version of

some larger system. This can be appealing for both theoretical reasons and, as we shall see, also

on numerical grounds. Here we will only consider so-called holonomic constraints, which are

constraints on the configuration manifold of a system.

More precisely, if we have a Lagrangian or Hamiltonian system with configuration manifold Q,

we consider a constraint function φ : Q → R
d and constrain the dynamics to the constraint

submanifold N = φ−1(0) ⊂ Q. Here we will always assume that 0 ∈ R
d is a regular point of φ, so

that N is truly a submanifold of Q [Abraham et al., 1988].

Observe that, if i : N → Q is the embedding map, then Ti : TN → TQ provides a canonical way

to embed TN in TQ and we will thus regard TN as a submanifold of TQ. There is, however, no

canonical way to embed the cotangent bundle T ∗N in T ∗Q, a fact which has important consequences

for the development of constrained Hamiltonian dynamics. We will see below that, in the special

case when we have a regular Lagrangian or Hamiltonian, we can use this additional structure to

provide a canonical embedding.

As in other areas of mechanics, we may consider constrained systems from both the Hamiltonian

and the Lagrangian viewpoint. We will concentrate on the variational approach, however, as it is

this formulation which readily extends to the discrete setting. The primary tool for constrained

optimization problems is the Lagrange multiplier theorem, which we recall here (see Abraham et al.
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[1988] for the proof).

Theorem 4.3. Consider a smooth manifold C and a function Φ : C → V mapping to some inner

product space V , such that 0 ∈ V is a regular point of Φ. Set D = Φ−1(0) ⊂ C. Given a function

G : C → R, define Ḡ : C × V → R by Ḡ(q, λ) = G(q)− 〈λ,Φ(q)〉. Then the following are equivalent:

(1). q ∈ D is an extremum of G|D;

(2). (q, λ) ∈ C × V is an extremum of Ḡ.

4.3.1 Constrained Lagrangian systems

Given a Lagrangian system specified by a configuration manifold Q and a Lagrangian L : TQ→ R,

consider the holonomic constraint φ : Q → R
d and the corresponding constraint submanifold N =

φ−1(0) ⊂ Q. Now TN is a submanifold of TQ, and so we may restrict L to LN = L|TN . We are

interested in the relationship of the dynamics of LN on TN to the dynamics of L on TQ.

To consider this, we will make use of the following convenient notation. Assume that we are

working on a given time interval [0, T ] ⊂ R, and that we have fixed endpoints q0, qT ∈ N ⊂ Q.

Now set C(Q) = C([0, T ], Q; q0, qT ) to be the space of smooth functions q : [0, T ] → Q satisfying

q(0) = q0 and q(T ) = qT , and C(N) to be the corresponding space of curves in N . Similarly, we set

C(Rd) = C([0, T ], Rd) to be curves λ : [0, T ] → R
d with no boundary conditions. In general C(P ) is

the space of curves from [0, T ] to the manifold P with the appropriate boundary conditions.

Theorem 4.4. Given a Lagrangian system L : TQ→ R with holonomic constraint φ : Q→ R
d, set

N = φ−1(0) ⊂ Q and LN = L|TN . Then the following are equivalent:

(1). q ∈ C(N) extremizes GN and hence solves the Euler-Lagrange equations for LN ;

(2). q ∈ C(Q) and λ ∈ C(Rd) satisfy the constrained Euler-Lagrange equations

∂L

∂qi
(q(t), q̇(t))−

d

dt

(
∂L

∂q̇i
(q(t), q̇(t))

)

=

〈

λ(t),
∂φ

∂qi
(q(t))

〉

, (4.13a)

φ(q(t)) = 0; (4.13b)

(3). (q, λ) ∈ C(Q×R
d) extremizes Ḡ(q, λ) = G(q)− 〈λ,Φ(q)〉 and hence solves the Euler-Lagrange

equations for the augmented Lagrangian L̄ : T (Q× R
d)→ R defined by

L̄(q, λ, q̇, λ̇) = L(q, q̇)− 〈λ, φ(q)〉 .

Proof. We make use of the Lagrange multiplier theorem, Theorem 4.3. To do so, we prepare the

following definitions. The full space is C = C(Q) and the function to be extremized is the action
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G : C(Q) → R. Take V = C(Rd) with the L2 inner product and define the constraint function

Φ : C → V by Φ(q)(t) = φ(q(t)). Clearly Φ(q) = 0, and hence φ(q(t)) = 0 for all t ∈ [0, T ], if and

only if q ∈ C(N). We thus obtain that the constraint submanifold is D = Φ−1(0) = C(N).

Condition (1) simply means that q ∈ C(N) = D is an extremum of the action for LN , which is

readily seen to be the standard action restricted to C(N). Thus q ∈ D is an extremum of G|D and

so, by the Lagrange multiplier theorem, this is equivalent to (q, λ) ∈ C × V being an extremum of

Ḡ(q, λ) = G(q)− 〈λ,Φ(q)〉.

Now C ×V = C(Q)×C(Rd) and so it can be identified with C(Q×R
d). Furthermore, we see that

Ḡ : C(Q× R
d)→ R is

Ḡ(q, λ) = G(q)− 〈λ,Φ(q)〉

=

∫ T

0

L(q(t), q̇(t))dt−

∫ T

0

〈λ(t),Φ(q)(t)〉 dt

=

∫ T

0

[L(q(t), q̇(t))− 〈λ(t), φ(q(t))〉] dt,

which is simply the action for the augmented Lagrangian L̄(q, λ, q̇, λ̇) = L(q, q̇) − 〈λ, φ(q)〉. As

(q, λ) ∈ C(Q × R
d) must extremize this action, we see that it is a solution of the Euler-Lagrange

equations for L̄, which is statement (3).

Finally, we extremize Ḡ by solving dḠ = 0 to obtain the Euler-Lagrange equations. The standard

integration by parts argument gives (4.13a) for variations with respect to q, and variations with

respect to λ imply (4.13b), and thus we have equivalence to statement (2).

If i : N → Q is the embedding, then by differentiating LN = L ◦Ti with respect to q̇ we see that

∂LN

∂q̇
(vq) · wq =

∂L

∂q̇

(
Ti(vq)

)
· Ti · wq, (4.14)

which means that if L is regular, then so is LN and shows that the following diagram commutes.

TQ|N
FL // T ∗Q|N

T∗i

��
TN

Ti

OO

FLN

// T ∗N

(4.15)

Using this together with the fact that πQ ◦ Ti = i ◦ πN for the projections πQ : TQ → Q and
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πN : TN → N , we compute the pullback of the Lagrange one-form ΘL on TQ to be

(
(Ti)∗ΘL

)
(vq) · δvq =

〈
FL
(
Ti(vq)

)
, TπQ ◦ T (Ti) · δvq

〉

=
〈
FL
(
Ti(vq)

)
, T i ◦ TπN · δvq

〉

=
〈
FLN (vq), TπN · δvq

〉
,

and thus we see that (Ti)∗ΘL = ΘLN , and so

(Ti)∗ΩL = ΩLN . (4.16)

Using the projection T ∗i : T ∗Q → T ∗N we can reinterpret statement (2) of Theorem 4.4. Observe

that the span of the ∇φi, i = 1, . . . , d is exactly the null space of T ∗i, and so (4.13) is equivalent to

(T ∗i)q(t)

[
∂L

∂q
(q(t), q̇(t))−

d

dt

(
∂L

∂q̇
(q(t), q̇(t))

)]

= 0. (4.17)

The above relationships hold for any Lagrangian L, irrespective of regularity. Also note that,

although there is a canonical projection T ∗i : T ∗Q → T ∗N , there is no corresponding canonical

embedding of T ∗N into T ∗Q. We will see below that when L is regular we can use the Legendre

transform to define such an embedding.

4.3.2 Constrained Hamiltonian systems: Augmented approach

One can consider the Hamiltonian formulation of constrained systems by either working on the aug-

mented space T ∗(Q×R
d), or working directly on T ∗N , which gives the Dirac theory of constraints.

We consider the former option first.

Given a Hamiltonian H : T ∗Q→ R, we define the augmented Hamiltonian to be

H̄(q, λ, p, π) = H(q, p) + 〈λ, φ(q)〉 ,

where π is the conjugate variable to λ. We now consider the primary constraint set Π ⊂

T ∗(Q × R
d) defined by π = 0. Pulling Ω back to Π gives the degenerate two-form ΩΠ, and the

augmented Hamiltonian vector field X̄H̄ is defined by

iX̄H̄
ΩΠ = dH̄,
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which in coordinates is the set of constrained Hamilton’s equations

X̄qi(q, λ, p, π) =
∂H

∂pi
, (4.18a)

X̄pi
(q, λ, p, π) = −

∂H

∂qi
−

〈

λ,
∂φ

∂qi
(q)

〉

, (4.18b)

φ(q) = 0, (4.18c)

where there is no λ equation owing to the degeneracy of ΩΠ. Note that for nonregular H these

equations will not, in general, uniquely define the vector field X̄H̄ .

Consider now a regular Lagrangian L and its corresponding Hamiltonian H. Observe that the

augmented Lagrangian L̄ is degenerate, owing to the lack of dependence on λ̇, and that the primary

constraint manifold Π is exactly the image of FL̄. The augmented Hamiltonian and Lagrangian

satisfy the equation H̄ ◦ FL̄ = EL̄, but this does not uniquely specify H̄ since FL̄ need not be

invertible. Nonetheless, it is simple to check that the constrained Hamilton’s equations given above

are equivalent to the constrained Euler-Lagrange equations (4.13) when we neglect the π component.

4.3.3 Constrained Hamiltonian systems: Dirac theory

As an alternative to working on the augmented space T ∗(Q × R
d), we can directly compare the

dynamics of the constrained system on T ∗N with those on T ∗Q. The general form of this is the

Dirac theory of constraints [Marsden and Ratiu, 1999], but here we use only the simple case of

holonomic constraints on cotangent bundles.

The main problem with this approach is that there is no canonical way to embed T ∗N within

T ∗Q. For now we will assume that we have an embedding η : T ∗N → T ∗Q such that πQ ◦η = i◦πN

and η∗Ω = ΩN , where Ω and ΩN are the canonical two-forms on T ∗Q and T ∗N respectively, and

we will see below how to construct η given a regular Hamiltonian or Lagrangian.

Given a Hamiltonian H : T ∗Q→ R, we define HN : T ∗N → R by HN = H ◦ η. The constrained

Hamiltonian vector field XHN : T ∗N → T (T ∗N) is then defined by

iX
HN

ΩN = dHN .

Taking πΩ : T (T ∗Q)→ T (T ∗N) to be the projection operator determined by using Ω to define the

orthogonal complement of Tη · T (T ∗N) ⊂ T (T ∗Q), leads us to the following simple relationship

between the Hamiltonian vector field XH and the constrained vector field XHN .

Theorem 4.5. Consider a Hamiltonian system H : T ∗Q → R and the corresponding constrained
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system HN : T ∗N → R as defined above. Then

XHN = πΩ ·XH ◦ η.

Proof. We have that η∗Ω = ΩN . Take an arbitrary V N ∈ T (T ∗N) and compute

i(πΩ·XH◦η)Ω
N · V N = Ω(Tη · πΩ ·XH , T η · V N )

= Ω(XH , T η · V N )

= dH · Tη · V N

= dHN · V N

= iX
HN

ΩN · V N ,

where we used the fact that (Id−Tη ·πΩ) ·XH is Ω-orthogonal to the set Tη ·T (T ∗N). Finally, the

fact that ΩN is nondegenerate gives the desired equivalence.

4.3.4 Legendre transforms

Until this point we have assumed that we are using any symplectic embedding η : T ∗N → T ∗Q

covering the embedding i : N → Q. We now consider a hyperregular Hamiltonian H and the

corresponding hyperregular Lagrangian L. Recall that hyperregularity of H, for example, means

that FH is not only a local diffeomorphism (equivalent to regularity), but is a global diffeomorphism.

Of course, if we only have regularity, these constructions may be done locally. We will show that,

using this additional structure, there is a canonical way to construct η.

To do this, begin from either a hyperregular Lagrangian L or a hyperregular Hamiltonian H, and

construct the corresponding L or H, which is necessarily hyperregular as well and has FL = (FH)−1.

This implies that LN and HN are also hyperregular.

We now define η : T ∗N → T ∗Q by requiring that the following diagram commutes, where

i : N → Q is the embedding as before.

TQ|N
FL // T ∗Q|N

TN

Ti

OO

FLN

// T ∗N

η

OO
(4.19)

Clearly πQ◦η = i◦πN , and from (4.16) we see that η∗Ω = ΩN , and so η gives a symplectic embedding

of T ∗N in T ∗Q. Note that, although TqN is a linear subset of TqQ, the map η is in general not

linear and so T ∗
q N is not a linear subspace of T ∗

q Q. It is true, however, that Tpq
(T ∗N) is a linear

subspace of Tpq
(T ∗Q).
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Regarding T ∗N as a submanifold of T ∗Q by means of η, we have the natural embedding Tη :

T (T ∗N) → T (T ∗Q) and so we can regard XHN as a vector field on η(T ∗N). Using canonical

coordinates (qi, pi) on T ∗Q we can derive a simple coordinate representation of this vector field:

q̇ =
∂H

∂p
,

ṗ = −
∂H

∂q
− λT∇φ(q),

φ(q) = 0.

These equations are clearly equivalent to (4.18) above if we neglect the π variable there.

Consider the projection operator πΩL
: T (TQ)→ T (TN) defined by the ΩL-orthogonal comple-

ment to T (TN) regarded as a subspace of T (TQ) by the map TTi. As ΩL = (FL)∗Ω, elements of

T (T ∗Q) which are Ω-orthogonal pull back under FL to elements of T (TQ) which are ΩL-orthogonal.

It follows that TFLn ◦ πΩL
= πΩ ◦ TFL. In addition, observe that, as both the constrained and

unconstrained systems are regular, we obtain XL = (FL)∗XH and XLN = (FLN )∗XHN . Combining

this with the statement of Theorem 4.5 and regarding TN and T ∗N as submanifolds of TQ and

T ∗Q, respectively, gives the following commutative diagram.

T (TQ)|TN
TFL //

πΩL

��

T (T ∗Q)|T∗N

πΩ

��

TN
FLN

(FL)|T N //

XL

ccGGGGGGGGGG

X
LN

{{ww
ww

ww
ww

ww
T ∗N

X
HN

##GG
GG

GG
GG

GG

XH

;;wwwwwwwwww

T (TN)
TFLN

// T (T ∗N)

(4.20)

This establishes that XLN = πΩL
◦ XL ◦ Ti, which is the Lagrangian analogue of Theorem 4.5.

Note that this only holds for regular Lagrangians, whereas the Hamiltonian result does not require

regularity.

A special case of hyperregular systems is when we have a Riemannian metric 〈〈·, ·〉〉 on Q and the

Lagrangian is of the form

L(vq) =
1

2
〈〈vq, vq〉〉 − V ◦ πQ(vq)

for a potential function V : Q→ R. Computing the Legendre transform gives

FL(vq) · wq = 〈〈vq, wq〉〉 = vT
q M(q)wq,

where we introduce the symmetric positive definite mass matrix M(q) as the coordinate representa-

tion of the metric. In coordinates, the Legendre transform is thus p = M(q)q̇, and we see that the



104

Legendre transform is linear in q̇ and so η(T ∗
q N) is a linear subspace of T ∗

q Q at each q ∈ N . Note

that the constrained subspaces can be expressed as

TN = {(q, q̇) ∈ TQ | φ(q) = 0 and ∇φ · q̇ = 0}, (4.21)

η(T ∗N) = {(q, p) ∈ T ∗Q | φ(q) = 0 and ∇φ ·M−1(q)q̇ = 0}. (4.22)

We define the projection map P : T ∗Q|N → η(T ∗N) by P = η◦T ∗i, and as it must satisfy P(∇φm) = 0

for each m = 1, . . . , d we can calculate the coordinate expression to be

P = I − (∇φ)T [(∇φ)M−1(∇φ)T ]−1(∇φ)M−1, (4.23)

where I is the n×n identity matrix and ∇φ is the d×n matrix [∇φ(q)]mi = ∂φm

∂qi , and all quantities

are evaluated at q ∈ N .

Another way to derive this expression is to define an induced Riemannian metric on T ∗Q by

〈〈pq, rq〉〉 = 〈pq, FH(rq)〉, which has coordinate expression pT M−1(q)r. The projection P is then the

projection onto the orthogonal subspace to the span of {∇φm} in the inner product given by this

metric.

In this case, note that P : TQ|N → TN , and so TP : T (TQ|N )→ T (TN). However, observe that

T (TQ|N ) = {w ∈ T (TQ) | TπQ(w) ∈ TN},

and as XL is a second-order vector field, it satisfies TπQ ◦XL = id, and so we have that XL(vq) ∈

T (TQ|N ) for all vq ∈ TN . In particular, we can now show that, on the intersection of their

domains, πΩL
= TP, which gives an explicit expression for the Lagrangian projection operator.

This development is closely related to the expression of forces of constraint in terms of the second

fundamental form (see Marsden and Ratiu [1999], Section 8.4).

4.3.5 Conservation properties

As we have seen above, the constrained systems on TN and T ∗N defined by LN = L ◦ Ti and

HN = H ◦ η, respectively, are standard Lagrangian or Hamiltonian systems and so have the usual

conservation properties.

In particular, the constrained Lagrangian system LN : TN → R will have a flow map that

preserves the symplectic two-form ΩLN = (Ti)∗ΩL, and the constrained Hamiltonian system HN :

T ∗N → R preserves the canonical two-form ΩN = η∗Ω on T ∗N . For (hyper)regular systems,

the Lagrangian and Hamiltonian two-forms are related by the Legendre transforms on both the

constrained and unconstrained levels, so that ΩL = (FL)∗Ω and ΩLN = (FLN )∗ΩN .
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Suppose that we have a group action Φ : G×Q→ Q that leaves N invariant, that is, there is a

restricted action ΦN : G×N → N satisfying i ◦ΦN = Φ ◦ i. It is now a simple matter to check that

the infinitesimal generators are related by

ξQ ◦ i = Ti ◦ ξN ,

ξTQ ◦ Ti = T (Ti) ◦ ξTN ,

ξT∗Q ◦ η = Tη ◦ ξT∗N ,

and so the momentum maps satisfy

JLN = JL ◦ Ti,

JHN = JH ◦ η.

Since Noether’s theorem holds for both the constrained and unconstrained systems, the above rela-

tionship shows that essentially the same momentum map is preserved on both levels. Note that if

the group action does not leave the constraint submanifold N invariant, however, then in general it

is not possible to define JLN or JHN and there will be no constrained Noether’s theorems.

4.4 Discrete variational mechanics with constraints

We now consider a discrete Lagrangian system Ld : Q × Q → R with the holonomic constraint

φ : Q→ R
d and corresponding constraint submanifold N = φ−1(0) ⊂ Q. As in the continuous case,

the fact that N × N is naturally a submanifold of Q × Q means that we can restrict the discrete

Lagrangian to LN
d = Ld|N×N to obtain a discrete Lagrangian system on N ×N . More precisely, we

define the embedding iN×N : N ×N → Q×Q by iN×N (q0, q1) = (i(q0), i(q1)).

To relate the dynamics of LN
d to that of Ld, it is useful to introduce the notation for discrete

trajectories corresponding to that used in the continuous case. Given times {0, h, 2h, . . . , Nh = T}

and endpoints q0, qT ∈ N we set Cd(Q) = Cd({0, h, 2h, . . . , Nh}, Q; q0, qT ) to be the set of discrete

trajectories qd : {0, h, 2h, . . . , Nh} → Q satisfying qd(0) = q0 and qd(Nh) = qT , and Cd(N) to be

the corresponding set of discrete trajectories in N .

Similarly, we denote by Cd(R
d) = Cd({h, 2h, . . . , (N−1)h}, Rd) the set of maps λd : {h, 2h, . . . , (N−

1)h} → R
d with no boundary conditions. We will see below why we do not include the boundary

points 0 and Nh. In general, Cd(P ) is the space of maps from {0, h, 2h, . . . , Nh} to the manifold

P , and we identify such maps with their images, and write qd = {qk}
N
k=0 for k = 0, 1, 2, . . . , N , and

similarly for λd = {λk}
N
k=0.
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4.4.1 Constrained discrete variational principle

As we have do not use vector fields to define the dynamics in the discrete case, and so cannot project

such objects onto the constraint manifold, we turn instead to constraining the variational principle.

The following theorem gives the result of this procedure.

Theorem 4.6. Given a discrete Lagrangian system Ld : Q × Q → R with holonomic constraint

φ : Q→ R
d, set N = φ−1(0) ⊂ Q and LN

d = Ld|N×N . Then the following are equivalent:

(1). qd = {qk}
N
k=0 ∈ Cd(N) extremizes GN

d = Gd

∣
∣
N×N

and hence solves the discrete Euler-Lagrange

equations for LN
d ;

(2). qd = {qk}
N
k=0 ∈ Cd(Q) and λd = {λk}

N−1
k=1 ∈ Cd(R

d) satisfy the constrained discrete Euler-

Lagrange equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 〈λk,∇φ(qk)〉 , (4.24a)

φ(qk) = 0; (4.24b)

(3). (qd, λd) = {(qk, λk)}Nk=0 ∈ Cd(Q × R
d) extremizes Ḡd(qd, λd) = Gd(qd) − 〈λd,Φd(qd)〉l2 and

hence solves the discrete Euler-Lagrange equations for either of the augmented discrete

Lagrangians L̄+
d , L̄−

d : (Q× R
d)× (Q× R

d)→ R defined by

L̄+
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1)− 〈λk+1, φ(qk+1)〉 ,

L̄−
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1)− 〈λk, φ(qk)〉 .

Proof. The proof of Theorem 4.4 in the continuous case can be almost directly applied in the discrete

case.

We take the full space to be Cd = Cd(Q) and the function we are extremizing is the discrete action

Gd : Cd(Q)→ R. The constraint is specified by setting Vd = Cd(R
d) with the l2 inner product, and

defining the constraint function Φd : Cd → Vd by Φd(qd)(kh) = φ(qd(kh)) = φ(qk). Thus qd ∈ Cd(N)

if and only if φ(qk) = 0 for all k, and hence if and only if Φd(qd) = 0. The constraint submanifold

is therefore Dd = Φ−1
d (0) = Cd(N).

As in the continuous case, statement (1) means that qd ∈ Cd(N) = Dd is an extremum of the

action for LN
d , which is the full action restricted to Cd(N). From the Lagrange multiplier theorem

(Theorem 4.3), qd ∈ Dd being an extremum of Gd|Dd
is equivalent to (qd, λd) ∈ Cd × Vd being an
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extremum of Ḡd(qd, λd) = Gd(qd)− 〈λd,Φd(qd)〉. Computing, this gives

Ḡd(qd, λd) = Gd(qd)− 〈λd,Φd(qd)〉

=

N−1∑

k=0

Ld(qk, qk+1)−

N−1∑

k=1

〈λd(kh),Φd(qd)(kh)〉 .

Extremizing this function with respect to qd now gives (4.24a), and extremizing with respect to λd

recovers (4.24b). We therefore have equivalence to statement (2).

As we only extremize with respect to the internal points, and hold the boundary terms fixed, we

may extend Cd(R
d) to include λ0 and λN . We now identify Cd×Vd = Cd(Q)×Cd(R

d) with the space

Cd(Q × R
d) = Cd({0, h, 2h, . . . , Nh}, Q × R

d), and group the terms in the above expression for Ḡd

to give two alternative functions Ḡ+
d , Ḡ−

d : Cd(Q× R
d)→ R defined by

Ḡ+
d =

N−1∑

k=0

[Ld(qk, qk+1)− 〈λk+1, φ(qk+1)〉] ,

Ḡ−
d =

N−1∑

k=0

[Ld(qk, qk+1)− 〈λk, φ(qk)〉] ,

which have the same extrema as Ḡd when the boundary terms are held fixed. Identifying the terms in

the summations as the augmented discrete Lagrangians L̄+
d and L̄−

d , respectively, gives equivalence

to statement (3).

Note that in Theorem 4.6 one can actually take any convex combination of L̄+
d and L̄−

d , although

this will not substantially alter the result.

We may also use the projection operator T ∗i : T ∗Q|N → T ∗N to act on statement (2) of

Theorem 4.6, showing that (4.24) is equivalent to

(T ∗i)qk
[D2Ld(qk−1, qk) + D1Ld(qk, qk+1)] = 0. (4.25)

This is the counterpart of the continuous equation (4.17).

4.4.2 Augmented Hamiltonian viewpoint

Just as in the continuous case, one can either work on the augmented space T ∗(Q×R
d) or directly

on the constrained space T ∗N .

The problem with trying to form the augmented discrete Hamiltonian maps L̄±
d is the same as

in this continuous case, namely the fact that the augmented discrete Lagrangians L̄±
d are necessarily

degenerate. Nonetheless, we will define the discrete Hamiltonian map F̃L̄−

d
: (q0, λ0, p0, π0) 7→
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(q1, λ1, p1, π1) by the equations

p0 = −D1Ld(q0, q1) + 〈λ0,∇φ(q0)〉 , (4.26a)

π0 = φ(q0), (4.26b)

p1 = D2Ld(q0, q1), (4.26c)

π1 = 0. (4.26d)

Restricting to the same primary constraint set Π ⊂ T ∗(Q × R
d) as in the continuous case, we see

that these equations are the equivalent to (4.24) together with the requirement φ(qk) = 0 and hence

qd ∈ Cd(N), that is, they are equivalent to statement (2) in Theorem 4.6.

Note that the evolution of λ is not well defined, as in the continuous case, so that (4.26) do not

define a map Π → Π, that is, λ0 is not a free initial condition, as it will be determined by (q0, p0).

Note that constructing the alternative map F̃L̄+

d
does not give a well-defined forward map in general.

In fact, to map forward in time it is necessary to use F̃L̄−

d
as defined above, while F̃L̄+

d
can be used

to map backward in time.

4.4.3 Direct Hamiltonian viewpoint

Alternatively, one can neglect the augmented space and directly relate T ∗N and T ∗Q. To do so, we

differentiate LN
d = Ld ◦ iN×N with respect to q0 and q1 to obtain the discrete equivalents of (4.14),

thus establishing that the following diagrams commute.

T ∗Q|N

T∗i

��

Q×Q|{q0∈N}
F
−Ldoo

T ∗N N ×N

iN×N

OO

F
−LN

d

oo

Q×Q|{q1∈N}
F
+Ld // T ∗Q|N

T∗i

��
N ×N

iN×N

OO

F
+LN

d

// T ∗N

(4.27)

We will henceforth assume that Ld is regular, which means that LN
d is also regular and that the

discrete Hamiltonian maps F̃Ld
and F̃LN

d
are well defined. Combining the above diagrams with the

expressions F̃Ld
= F

+Ld ◦ (F−Ld)
−1 : T ∗Q → T ∗Q and F̃LN

d
= F

+LN
d ◦ (F−LN

d )−1 : T ∗N → T ∗N
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gives the following commutative diagram.

N ×N ⊂ Q×Q

F
−Ld

����
��

��
��

��
��

��
��

F
+Ld

��?
??

??
??

??
??

??
??

??

T ∗Q|N
F̃Ld

//

T∗i

��

T ∗Q|N

T∗i

��

N ×N

iN×N

OO

F
−LN

d

����
��

��
��

��
��

��
��

�

F
+LN

d

��?
??

??
??

??
??

??
??

??

T ∗N
F̃LN

d

// T ∗N

(4.28)

This proves the following theorem.

Theorem 4.7. Consider a regular discrete Lagrangian system Ld : Q×Q→ R and the constrained

system LN
d : N × N → R defined by LN

d = Ld ◦ iN×N . Then the discrete Hamiltonian map F̃LN
d

:

T ∗N → T ∗N has the following equivalent formulations:

(1). F̃LN
d

: (q0, p0) 7→ (q1, p1) for (q0, p0), (q1, p1) ∈ T ∗N satisfying

p0 = −D1L
N
d (q0, q1), (4.29a)

p1 = D2L
N
d (q0, q1); (4.29b)

(2). F̃LN
d

: (q0, p0) 7→ (q1, p1) for (q0, p0), (q1, p1) ∈ T ∗N satisfying

p0 = (T ∗i)q0
(−D1Ld ◦ iN×N (q0, q1)), (4.30a)

p1 = (T ∗i)q1
(D2Ld ◦ iN×N (q0, q1)); (4.30b)

(3). F̃LN
d

: η(T ∗N) 7→ η(T ∗N) for (q0, p0) ∈ η(T ∗N) and (q1, p1) ∈ T ∗Q satisfying

p0 = Pq0
(−D1Ld ◦ iN×N (q0, q1)), (4.31a)

p1 = Pq1
(D2Ld ◦ iN×N (q0, q1)), (4.31b)

φ(q1) = 0. (4.31c)
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Here η : T ∗N → T ∗Q is any symplectic embedding covering the identity, so that πQ ◦ η = i ◦ πN ,

and P : T ∗Q|N → η(T ∗N) is the map defined by P = η ◦ T ∗i.

This theorem is the discrete analogue of Theorem 4.5, and shows how the unconstrained Hamil-

tonian equations are related to the constrained equations. If we further assume that η is defined by

(4.19) for some regular Lagrangian L with corresponding Hamiltonian H, then we can use the fact

that the null space of P is the span of the ∇φm and introduce Lagrange multipliers to write (4.31)

as

p0 = −D1Ld(q0, q1) + (λ(0))T∇φ(q0), (4.32a)

p1 = D2Ld(q0, q1)− (λ(1))T∇φ(q1), (4.32b)

φ(q1) = 0, (4.32c)

∇φ(q1) ·
∂H

∂p
(q1, p1) = 0, (4.32d)

defining a map from (q0, p0) ∈ η(T ∗N) to (q1, p1) ∈ T ∗Q which will satisfy (q1, p1) ∈ η(T ∗N). Here

the arbitrary signs on the Lagrange multipliers have been chosen to correspond to the signs for

discrete forces in (4.9).

Now consider the special case when Q is a Riemannian manifold with metric 〈〈·, ·〉〉 having co-

ordinate representation M(q) and η is defined by (4.19) for a Lagrangian with kinetic energy given

by the metric. As we have seen in Section 4.3.4 above, η(T ∗N) and P are now given explicitly by

(4.22) and (4.23), respectively. Using this, we can write (4.31) as

p0 = −
(
I − (∇φ)T

[
(∇φ)M−1(∇φ)T

]−1
(∇φ)M−1

)
D1Ld(q0, q1), (4.33a)

p1 =
(
I − (∇φ)T

[
(∇φ)M−1(∇φ)T

]−1
(∇φ)M−1

)
D2Ld(q0, q1), (4.33b)

φ(q1) = 0, (4.33c)

where ∇φ and M are evaluated at q0 or q1 as appropriate.

4.4.4 Conservation properties

A constrained discrete Lagrangian system on N × N and an unconstrained system on Q × Q will

clearly preserve the standard discrete symplectic two-forms ΩLN
d

and ΩLd
, respectively. Now define

the projections π1
Q : Q × Q → Q and π1

N : N × N → N onto the first components of Q × Q and

N × N . Observe that π1
Q ◦ iN×N = i ◦ π1

N and, together with the left-hand diagram in (4.27), a

similar calculation to that preceding equation (4.16) will now establish that Θ−
LN

d

= (iN×N )∗Θ−
Ld

.

Using the same idea for Θ+
Ld

and taking the exterior derivative of these expressions shows that the
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constrained and unconstrained discrete one- and two-forms are related by

Θ+
LN

d

= (iN×N )∗Θ+
Ld

, Θ−
LN

d

= (iN×N )∗Θ−
Ld

, ΩLN
d

= (iN×N )∗ΩLd
.

Pushing all of these structures forward with the discrete Legendre transforms shows that the con-

strained discrete Hamiltonian map F̃LN
d

, regarded as acting either on T ∗N or η(T ∗N), preserves the

canonical two-form ΩN , while F̃Ld
naturally preserves Ω.

If we further consider a symmetry action Φ : G × Q → Q which leaves N invariant, so that it

covers an action ΦN : G×N → N , then the infinitesimal generators are related by

ξQ ◦ i = Ti ◦ ξN , (4.34a)

ξQ×Q ◦ iN×N = T (iN×N ) ◦ ξN×N . (4.34b)

Using now the above relations between the constrained and unconstrained symplectic one-forms, we

have that the momentum maps for the product action will be related by

J+
LN

d

= J+
Ld
◦ iN×N , (4.35a)

J−
LN

d

= J−
Ld
◦ iN×N . (4.35b)

If the group action is a symmetry of the Lagrangian, then these momentum maps are equal and

Noether’s theorem holds on both the constrained and unconstrained levels with this unique momen-

tum map.

4.4.5 Constrained exact discrete Lagrangians

The exact discrete Lagrangian for a constrained system is not simply the standard exact discrete La-

grangian restricted to the constraint submanifold, as that would be the action along an unconstrained

trajectory. Instead, the constrained exact discrete Lagrangian is the action of the constrained system,

evaluated along the trajectory which lies on the constraint submanifold: that is,

LN,E
d (q0, q1, h) =

∫ h

0

LN (q0,1(t), q̇0,1(t))dt, (4.36)

where q : [0, h]→ N is the solution of the Euler-Lagrange equations for LN : TN → R which satisfies

q(0) = q0 and q(h) = q1. As this discrete Lagrangian is defined on N ×N × R, it satisfies

F
−LN,E

d (q0, q1, h)) = FLN (q0,1(0), q̇0,1(0)),

F
+LN,E

d (q0, q1, h)) = FLN (q0,1(h), q̇0,1(h)).
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We would like, however, to define a function on Q×Q× R whose restriction to N ×N × R would

give LN,E
d . Without introducing additional structure, however, there is no canonical way to do so.

Indeed, let LQ,E
d : Q×Q× R→ R be any smooth extension of LN,E

d . Then from (4.15), (4.27) and

the above relations we have immediately that

(T ∗i)q0

(
F
−LQ,E

d (q0, q1, h)
)

= (T ∗i)q0

(
FL(q0,1(0), q̇0,1(0))

)
,

(T ∗i)q1

(
F

+LQ,E
d (q0, q1, h)

)
= (T ∗i)q1

(
FL(q0,1(h), q̇0,1(h))

)
,

which is a constrained version of Lemma 2.1. The equivalence of the discrete and continuous systems

now follows as in Section 2.5.

Note that this means that the order of accuracy of a discrete Lagrangian constrained to N ×N

will not, in general, be the same as the order of accuracy on Q×Q: that is, if Ld : Q×Q×R→ R

approximates the action on Q to some particular order, then the restriction LN
d = Ld|N×N will

typically approximate the action of constrained solutions in N to some different order. Indeed, to

derive high-order discrete Lagrangians for a constrained system, it is necessary to take account of the

constraints in defining LN
d , since a high-order Ld will typically restrict to only a first- or second-order

LN
d .

4.5 Constrained variational integrators

In this section we consider implementing the integration of a mechanical system with constraints.

First we review standard geometric methods, and then we turn to variational integrators.

4.5.1 Constrained geometric integration

There are a number of standard approaches to the numerical integration of constrained mechanical

systems. These include working in local coordinates on the constraint submanifold (for example,

see Bobenko and Suris [1999b] in the case of Lie groups, or Leimkuhler and Reich [1994]), solving a

modified system on the containing space which has the constraint submanifold as a stable invariant

set (for example, see Leimkuhler and Reich [1994]), and methods based in the containing space

which explicitly enforce the constraints. Constrained mechanical systems are particular examples

of differential algebraic systems, and many of the techniques for the numerical integration of such

systems can also be applied in the mechanical setting (see Hairer and Wanner [1996] and Ascher

and Petzold [1998]).

Unless the system under consideration has a particularly simple structure, working in local

coordinates on the constraint submanifold suffers from a number of problems, including the fact

that changing charts during the integration is not smooth, which breaks many of the nice properties
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of geometric integrators. In addition, local coordinate computations can be very expensive, and the

equations can be very complicated, making the integrator difficult to code. For all of these reasons,

it is often preferable to use integration techniques based on the containing space.

There are a number of different approaches to this, with representative samples being Gonzalez

[1999], Seiler [1999, 1998b,a], McLachlan and Scovel [1995] and Brasey and Hairer [1993]. For a

good overview of this area see Hairer [2000].

4.5.2 Variational integrators for constrained systems

Here we consider a constrained discrete Lagrangian system as an integrator for a continuous system.

Given a continuous system L : TQ→ R and a constraint submanifold N ⊂ Q defined by N = φ−1(0)

for some φ : Q→ R
d, we would like a discrete Lagrangian Ld : Q×Q×R→ R so that its restriction

to N × N × R approximates the exact constrained discrete Lagrangian (4.36). The order of this

approximation is related to the order of the resulting integrator.

Given such an Ld, we can now use any of the equivalent formulations of the constrained Euler-

Lagrange equations from Section 4.4.3 to obtain an integrator. As in the unconstrained case, we

can regard such an integrator as defined on the product N ×N or on the corresponding cotangent

bundle, although the latter interpretation is typically simpler for implementation purposes.

To be explicit, we will henceforth assume that the given continuous system is regular, so that

we have equivalent Lagrangian and Hamiltonian representations, and that the containing manifold

Q is linear, so that it is isomorphic to R
n. We will use (4.32) to define the constrained discrete

Hamiltonian map F̃LN
d

regarded as mapping η(T ∗N) to η(T ∗N), where we recall that η(T ∗N) is the

embedding of T ∗N in T ∗Q defined by

η(T ∗N) =
{

(q, p) ∈ T ∗Q | φ(q) = 0 and ∇φ(q) ·
∂H

∂p
(q, p) = 0

}

. (4.37)

As we are now treating the discrete Lagrangian as the approximation to the exact system, it will be

dependent upon a time step h and thus have the form Ld(q0, q1, h). Given this, we may rescale the

Lagrange multipliers in (4.32) by h so that the constraint terms appear in the same way as discrete

forces, allowing them to be interpreted as discrete forces of constraint. This gives

p0 = −D1Ld(q0, q1) + h(λ(0))T∇φ(q0), (4.38a)

p1 = D2Ld(q0, q1)− h(λ(1))T∇φ(q1), (4.38b)

φ(q1) = 0, (4.38c)

∇φ(q1) ·
∂H

∂p
(q1, p1) = 0. (4.38d)



114

To use these equations as an integrator, we must take an initial condition (q0, p0) ∈ η(T ∗N), so that

q0 and p0 satisfy the conditions given by (4.37). The 2n + 2d system (4.38) must then be solved

implicitly to find (q1, p1) and the accompanying Lagrange multipliers. Iterating this process gives

the integrated trajectory.

Although this is generally the simplest way to implement a variational integrator, note that if the

Lagrangian has a special form, such as being composed of kinetic and potential terms, then we could

also use one of the other equivalent expressions of the discrete Hamiltonian map given previously.

Alternatively, we could also choose to work directly on N × N and to use (4.24) as an integrator

mapping each pair (qk, qk+1) to (qk+1, qk+2).

Using the above theory, we recall that any such methods will always be symplectic, and if the

discrete Lagrangian inherits the symmetries of the continuous system, then the integrator will also

conserve the corresponding momentum maps.

To implement a constrained variational integrator, it is of course necessary to choose a particular

discrete Lagrangian. We give below a number of ways in which this can be done and we explicitly

evaluate the defining equations (4.38) in several cases.

4.5.3 Low-order methods

Given a low-order discrete Lagrangian, such as Lα
d given in Example 3.1, one can simply restrict it

to N ×N to obtain an integrator for the constrained system. As N will generally not be convex, the

points (1−α)q0 +αq1 will not be in N when q0 and q1 are. If the Lagrangian on N is the restriction

of a smooth Lagrangian on Q, then this will not matter for sufficiently small step sizes.

For a Lagrangian which is not defined off N , or which varies quickly compared to the step size,

it is important to only evaluate L and its derivatives on N . Perhaps the simplest examples of such

methods are given by L0
d and L1

d, which give constrained versions of the symplectic Euler methods.

4.5.4 SHAKE and RATTLE

As we saw in Section 3.6.2, the Verlet algorithm is the discrete Lagrangian map FLd
: Q×Q→ Q×Q

generated by the discrete Lagrangian

Ld(q0, q1, h) =
1

2
hL

(

q0,
q1 − q0

h

)

+
1

2
hL

(

q1,
q1 − q0

h

)

, (4.39)

where we assume that the continuous system has the form L(q, q̇) = 1
2 q̇T Mq̇ − V (q). To form a

constrained version of this method, we can simply restrict Ld to N×N and calculate the constrained
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discrete Euler-Lagrange equations (4.24). These give

M

(
qk+1 − 2qk + qk−1

h

)

+ h∇V (qk) + (λk)T∇φ(qk) = 0,

φ(qk+1) = 0,

which is known as the SHAKE algorithm. This was first proposed by Ryckaert et al. [1977] as a

constrained version of Verlet.

A constrained version of the velocity Verlet integrator, RATTLE, was given by Anderson [1983].

This was later shown by Leimkuhler and Skeel [1994] to be a symplectic integrator on T ∗N . In fact,

RATTLE is simply the constrained discrete Hamiltonian map F̃LN
d

: T ∗N → T ∗N associated to

the discrete Lagrangian (4.39). To see this, we calculate the coordinate expressions of (4.38) with

L(q, q̇) = 1
2 q̇T Mq̇ − V (q) to give

pk = M

(
qk+1 − qk

h

)

+
1

2
h∇V (qk) + (λ

(0)
k )T∇φ(qk),

pk+1 = M

(
qk+1 − qk

h

)

−
1

2
h∇V (qk+1) + (λ

(1)
k )T∇φ(qk+1),

0 = φ(qk+1),

0 = ∇φ(qk+1)M
−1pk+1.

Now we subtract the first equation from the second and solve the first equation for qk+1 to obtain

qk+1 = qk + hM−1pk +
1

2
h2M−1(−∇V (qk)) +

1

2
h2M−1(λ

(0)
k )T∇φ(qk),

pk+1 = pk + h

(
−∇V (qk)−∇V (qk+1)

2

)

+ h

(
(λ

(0)
k )T∇φ(qk) + (λ

(1)
k )T∇φ(qk+1)

2

)

,

0 = φ(qk+1),

0 = ∇φ(qk+1)M
−1pk+1,

where we are assuming

(∇φ)ij(q) =
∂φi

∂qj

and where we have scaled λ
(0)
k and λ

(1)
k by − 1

2 . This is exactly the RATTLE method.

This integrator is also the 2-stage member of the Lobatto IIIA-IIIB family [Jay, 1996, 1999],

which is discussed further below.

To summarize, the integrators known as Verlet, velocity Verlet, SHAKE and RATTLE are all



116

derived from the discrete Lagrangian (4.39). Verlet is the discrete Lagrangian map FLd
: Q×Q→

Q×Q, velocity Verlet is the discrete Hamiltonian map F̃Ld
: T ∗Q→ T ∗Q, SHAKE is the constrained

discrete Lagrangian map FLN
d

: N × N → N × N , and RATTLE is the constrained discrete

Hamiltonian map F̃LN
d

: T ∗N → T ∗N .

Thus, the variational formulation shows the natural connection between these methods, and

proves in a unified way that they all conserve both the symplectic structure and quadratic momentum

maps, as linear symmetries of V will be inherited by Ld.

4.5.5 Composition methods

To construct high-order integrators for a constrained system, a simple low-order constraint-preserving

method can be used in a composition rule, as in Section 3.5 [Reich, 1996]. This approach has the

advantage that the resulting method will inherit properties such as symplecticity from the base

method, and will necessarily preserve the constraint.

Composing discrete Lagrangians extends directly to constrained systems. Given discrete La-

grangians Li
d and time step fractions γi for i = 1, . . . , s, we can use any of the three interpretations

of the composition Ld from Section 3.5. For the multiple steps method or the single step, multiple

substeps method, the correct constraint to impose is that all the points qi
k lie on the constraint

submanifold. This implies that the single step constrained composition discrete Lagrangian should

be defined as

Ld(qk, qk+1, h) = ext
qi

k
∈N

Ld(qk, qi
k, qk+1, h),

which denotes the extreme value of the multipoint discrete Lagrangian over the set of interior points

in the constraint submanifold N . The constrained discrete Hamiltonian map for this Ld will then

be the composition of the constrained discrete Hamiltonian maps of the component Li
d.

When composing non-self-adjoint methods, it is common to use a sequence including both

the methods themselves and their adjoints. For this reason, it is worth noting that the adjoint

of a constrained discrete Lagrangian is equal to the constrained version of the adjoint, that is,

(L∗
d)

N = (LN
d )∗. Furthermore, the associated constrained discrete Hamiltonian maps are adjoint as

integrators.
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4.5.6 Constrained symplectic partitioned Runge-Kutta methods

For a Hamiltonian system H : T ∗Q → R with holonomic constraint φ : Q → R
d, a constrained

partitioned Runge-Kutta method is a map T ∗N → T ∗N specified by (q0, p0) 7→ (q1, p1) where

q1 = q0 + h

s∑

j=1

bjQ̇j , p1 = p0 + h

s∑

j=1

b̃jṖj , (4.40a)

Qi = q0 + h
s∑

j=1

aijQ̇j , Pi = p0 + h
s∑

j=1

ãijṖj , i = 1, . . . , s, (4.40b)

Q̇i =
∂H

∂p
(Qi, Pi), Ṗi = −

∂H

∂q
(Qi, Pi)− ΛT

i ∇φ(Qi), i = 1, . . . , s, (4.40c)

0 = φ(Qi), 0 = ∇φ(q1) ·
∂H

∂p
(q1, p1), i = 1, . . . , s. (4.40d)

In addition, it is necessary to place some restrictions on the coefficients to ensure that these equations

do in fact define a map on T ∗N . We begin by imposing the requirement (3.27) of symplecticity to

give

biãij + b̃jaji = bib̃j , i, j = 1, . . . , s,

bi = b̃i, i = 1, . . . , s.

We also require that the method be stiffly accurate : that is, asi = bi for i = 1, . . . , s. This means

that q1 = Qs, and hence q1 ∈ N . Further requiring that bi 6= 0 for i = 1, . . . , s implies that ãis = 0

for each i = 1, . . . , s.

To ensure that the system is not over-determined, we set a1i = 0 for i = 1, . . . , s and so obtain

q0 = Q1. Requiring that bi 6= 0 for i = 1, . . . , s now implies that ãi1 = b̃i for i = 1, . . . , s. Given

that we start from (q0, p0) ∈ T ∗N we thus have that φ(Q1) = φ(q0) = 0 is immediately satisfied.

With these restrictions, (4.40) is a system of s(4n + d) + 2n equations for the same number of

unknowns, defining a map η(T ∗N) → η(T ∗N). It can be shown [Jay, 1996] that this is a well-

defined symplectic map on T ∗N . Such methods are a particular example of the SPARK methods

of Jay [1999], and the subset of these methods which are explicit have been analysed for constrained

systems by Reich [1997].

To see how such constrained symplectic partitioned Runge-Kutta methods can be derived varia-

tionally, we proceed in a similar fashion to the unconstrained case in Section 3.6.5. Given (q0, q1) ∈

Q × Q, we implicitly define p̄0, p̄1, Q̄i, P̄i,
˙̄Qi,

˙̄Pi for i = 1, . . . , s, and Λ̄i for i = 2, . . . , (s − 1) by

the equations

q1 = q0 + h
s∑

j=1

bj
˙̄Qj , p̄1 = p̄0 + h

s∑

j=1

b̃j
˙̄Pj , (4.41a)
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Q̄i = q0 + h
s∑

j=1

aij
˙̄Qj , P̄i = p̄0 + h

s∑

j=1

ãij
˙̄Pj , i = 1, . . . , s, (4.41b)

˙̄Qi =
∂H

∂p
(Q̄i, P̄i), i = 1, . . . , s, (4.41c)

˙̄Pi = −
∂H

∂q
(Q̄i, P̄i)− Λ̄T

i ∇φ(Q̄i), 0 = φ(Q̄i), i = 2, . . . , (s− 1), (4.41d)

˙̄P1 = −
∂H

∂q
(Q̄1, P̄1),

˙̄Ps = −
∂H

∂q
(Q̄s, P̄s). (4.41e)

This is a system of 4sn + (s− 2)d equations in the same number of variables and the restrictions on

the coefficients ensure that it will have a solution for sufficiently small h.

This subset of the equations (4.40) was chosen from the fact that Q̄1 = q0 and Q̄s = q1, so

it is necessary to relax the constraints on these two points. Having done so, the same number of

Lagrange multipliers must also then be disregarded. Given these definitions of the various quantities

in terms of q0 and q1 we define the discrete Lagrangian Ld : Q×Q× R→ R by

Ld(q0, q1, h) = h

s∑

i=1

biL(Q̄i,
˙̄Qi), (4.42)

where we assume that the coefficients satisfy all of the previous requirements. For a given continuous

system (L or H) this is not the same as the corresponding expression (3.28) in the unconstrained

case, as the equations defining Q̄i and ˙̄Qi have been modified here to take account of the constraints.

We now show that the constrained discrete Hamiltonian map corresponding to (4.42) is indeed the

constrained symplectic partitioned Runge-Kutta method.

Theorem 4.8. The constrained discrete Hamiltonian map for the discrete Lagrangian (4.42) is

exactly the integrator defined by the constrained symplectic partitioned Runge-Kutta equations (4.40).

Proof. Differentiating φ(Q̄i) = 0 for i = 2, . . . , s− 1 gives

∇φ(Q̄i) ·
∂Q̄i

∂q0
= 0, i = 2, . . . , s− 1,

and using this together with the definitions (4.41) and the same argument as in Theorem 3.6 shows

that
∂Ld

∂q0
= −p̄0,

∂Ld

∂q1
= p̄1.

We now consider a given initial condition (q0, p0) ∈ T ∗N and recall that the discrete Hamiltonian

map will give (q1, p1) ∈ T ∗N which satisfy (4.38). To see the relation of this mapping to the
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symplectic partitioned Runge-Kutta map, we make the following change of variables:

Qi = Q̄i, Pi = P̄i, i = 1, . . . , s,

Q̇i = ˙̄Qi, i = 1, . . . , s,

Λi = Λ̄i, Ṗi = ˙̄Pi, i = 2, . . . , s− 1,

b̃1Λ1 = λ(0), Ṗ1 = ˙̄P1 − ΛT
1∇φ(Q1),

b̃sΛs = λ(1), Ṗs = ˙̄Ps − ΛT
s ∇φ(Qs).

Recalling that the coefficients are such that Q1 = q0 and Qs = q1, we now see that (4.38c) and

(4.38d), together with the restrictions (4.41d) on Q̄i, give the conditions (4.40d) on the non-overbar

quantities.

Furthermore, (4.38a) and (4.38b) give

p̄0 = p0 − hb̃1Λ
T
1∇φ(Q1),

p̄1 = p1 + hb̃sΛ
T
s ∇φ(Qs).

Substituting these definitions into the equations (4.41) and using the fact that ãis = 0 and ãi1 = b̃i

for i = 1, . . . , s now shows that the non-overbar quantities satisfy (4.40a), (4.40b) and (4.40c).

We thus have that the discrete Hamiltonian map (q0, p0) 7→ (q1, p1) on η(T ∗N) is identical to the

constrained symplectic Runge-Kutta map.

4.5.7 Constrained Galerkin methods

With the insight gained from the definition of the constrained exact discrete Lagrangian (4.36) it is

simple to extend the Galerkin discrete Lagrangians of Section 3.6.6 to include holonomic constraints.

In the particular example of polynomial trajectory approximations and numerical quadrature,

the definition (3.30) of the Galerkin discrete Lagrangian should be modified to

Ld(q0, q1, h) = ext
q∈Cs([0,h],Q)
φ(q(cih))=0

Gs(q), (4.43)

where φ : Q→ R is the constraint function. This constrains the intermediate trajectories to intersect

the constraint submanifold at each quadrature point. For such methods it is typically reasonable to

require that c0 = 0 and cs = 1, so that the endpoints q0 and q1 also satisfy the constraint.

Evaluating the constrained discrete Euler-Lagrange equations for (4.43) shows that the associated

discrete Hamiltonian map is a constrained symplectic partitioned Runge-Kutta method, in the sense

of the preceding section and of Jay [1999]. In particular, choosing the quadrature rule to be Lobatto
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quadrature results in the constrained Lobatto IIIA-IIIB method of Jay [1999].

4.6 Background: Forced and constrained systems

We now consider Lagrangian and Hamiltonian systems with both external forcing and holonomic

constraints. The formulations and equations for such systems are straightforward combinations of

the material in the preceding sections for systems with only forces or only constraints. For this

reason, we will simply state the results without proof.

As before, we assume that we have a system on the unconstrained configuration manifold Q, and

a holonomic constraint function φ : Q → R
d so that the constraint manifold is N = φ−1(0) ⊂ Q.

The inclusion map is denoted i : N → Q, and we have the natural lifts Ti : TN → TQ and

T ∗i : T ∗Q→ T ∗N .

4.6.1 Lagrangian systems

Given a Lagrangian force fL : TQ→ T ∗Q, we restrict it to fN
L = T ∗i ◦ fL ◦ Ti : TN → T ∗N , which

is then a Lagrangian force on TN . Taking the Lagrange-d’Alembert principle and restricting to the

space of constrained curves gives the following theorem.

Theorem 4.9. Given a Lagrangian system L : TQ→ R with Lagrangian force fL : TQ→ T ∗Q and

holonomic constraint φ : Q→ R
d, set N = φ−1(0) ⊂ Q, fN

L = T ∗i ◦ fL ◦ Ti, and LN = L|TN . Then

the following are equivalent:

(1). q ∈ C(N) satisfies the Lagrange-d’Alembert principle for LN and fN
L and hence solves the

forced Euler-Lagrange equations;

(2). q ∈ C(Q) and λ ∈ C(Rd) satisfy the forced constrained Euler-Lagrange equations

∂L

∂qi
(q(t), q̇(t))−

d

dt

(
∂L

∂q̇i
(q(t), q̇(t))

)

+ fL(q(t), q̇(t))

=

〈

λ(t),
∂φ

∂qi
(q(t))

〉

, (4.44a)

φ(q(t)) = 0; (4.44b)

(3). (q, λ) ∈ C(Q × R
d) satisfies the Lagrange-d’Alembert principle, and hence solves the forced

Euler-Lagrange equations, for L̄ : T ∗(Q×R
d)→ R and f̄L : T (Q×R

d)→ T ∗(Q×R
d) defined

by

L̄(q, λ, q̇, λ̇) = L(q, q̇)− 〈λ, φ(q)〉 ,

f̄L(q, λ, q̇, λ̇) = π∗
Q ◦ fL(q, q̇),
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where πQ : Q× R
d → Q is the projection.

One can also project (4.44a) with T ∗i : T ∗Q → T ∗N to obtain a system without λ, as in

Section 4.3.

Observe that in the forced constrained Euler-Lagrange equations (4.44) the forcing and Lagrange

multiplier terms enter in same way. For this reason, the Lagrange multiplier term is sometimes

referred to as the forces of constraint , and we can regard it as being a force which is constructed

exactly so that the solution is kept on the constraint submanifold N .

4.6.2 Hamiltonian systems

Following the development of the unforced constrained case, we can move to the Hamiltonian frame-

work by either taking the Legendre transform of the degenerate augmented system, or by working

directly on T ∗N .

The former approach takes a Hamiltonian force fH : T ∗Q → T ∗Q and forms the augmented

Hamiltonian force f̄H : T ∗(Q × R
d) → T ∗(Q × R

d) by f̄H(q, λ, p, π) = π∗
Q ◦ fH(q, p). The forced

constrained Hamiltonian vector field X̄H on the primary constraint set Π is defined by

iX̄H
ΩΠ = dH̄ − f̄ ′

H ,

where H̄ and ΩΠ are as before, and f̄ ′
H is the horizontal one-form on T ∗(Q× R

d) corresponding to

f̄H . In coordinates this gives the forced constrained Hamilton equations

Xqi(q, λ, p, π) =
∂H

∂pi
,

Xpi(q, λ, p, π) = −
∂H

∂qi
+ fH(q, p)−

〈

λ,
∂φ

∂qi
(q)

〉

,

φ(q) = 0.

Alternatively, we can directly relate the unconstrained Hamiltonian system to the constrained

system as in Section 4.3.3. To do this, we must choose a symplectic embedding η : T ∗N → T ∗Q,

which we will assume covers the embedding i : N → Q. Given such a map, we now define the

constrained Hamiltonian force fN
H : T ∗N → T ∗N by fN

H = T ∗i ◦ fH ◦ η and we let fN
H

′
be

the corresponding horizontal one-form on T ∗N . We assume that all other structures are as in

Section 4.3.3, so that the constrained Hamiltonian is HN = H ◦ η.

The forced constrained Hamiltonian vector field XHN and the forced unconstrained Hamiltonian



122

vector field XH are now defined by

iX
HN

ΩN = dHN − fN
H

′
,

iXH
Ω = dH − f ′

H .

Denoting the Ω-orthogonal projection to η(T ∗N) by πΩ : T ∗Q → T ∗N , we can show that the

projection of the forced unconstrained vector field is just the forced constrained vector field.

Theorem 4.10. Consider a Hamiltonian system H : T ∗Q→ R with forcing fH : T ∗Q→ T ∗Q and

constraint submanifold N ⊂ Q and let the constrained system HN : T ∗N → R and fN
H : T ∗N → T ∗N

be defined as above. Then XHN = πΩ ·XH ◦ η.

Proof. We can use essentially the same proof as for Theorem 4.5 in the unforced case. The only

additional requirement is to check that the one-form fN
H

′
is the pullback under η of f ′

H , so that

f ′
H(η(pq)) · Tη · V N = fN

H
′
(pq) · V

N .

To see this, we recall that η covers the identity and so πQ ◦ η = i ◦ πN . Using the derivative of

this expression we calculate

fN
H

′
(pq) · V

N =
〈
T ∗i ◦ fH ◦ η(pq), TπN · V

N
〉

=
〈
fH ◦ η(pq), T i ◦ TπN · V

N
〉

=
〈
fH ◦ η(pq), TπQ ◦ Tη · V N

〉

=
(
η∗(f ′

H)
)
(pq) · V

N ,

which can then be used to modify the proof of Theorem 4.5, to obtain the desired result.

4.6.3 Legendre transforms

Given a regular Lagrangian system and the corresponding regular Hamiltonian system, we have seen

in Section 4.3.4 that the standard Legendre transforms provide a canonical way to construct a map

η : T ∗N → T ∗Q and so to regard T ∗N as a submanifold of T ∗Q.

Furthermore, as we saw in Section 4.1.3, the forced Lagrangian and Hamiltonian vector fields

are related by the standard Legendre transform, so this will hold for both the constrained and

unconstrained systems. Note that our definitions of constrained Lagrangian and Hamiltonian forces

commute with the Legendre transform, so that if fL = fH ◦ FL, then fN
L = fN

H ◦ FLN . This can be

seen by recalling that η ◦ FLN = FL ◦ Ti and using the definitions of the constrained forces.

We thus have that the constrained and unconstrained forced vector fields on both the Lagrangian

and Hamiltonian sides are related by projection and Legendre transforms, which fully commute. In
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particular, we can write the projected vector field on the Hamiltonian side in coordinates to give

q̇ =
∂H

∂p
,

ṗ = −
∂H

∂q
− λT∇φ(q) + fH(q, p),

φ(q) = 0.

In the special case when the Hamiltonian depends quadratically on p, then this projection is induced

by the metric given on T ∗Q by the kinetic energy, as in Section 4.3.4 above.

4.6.4 Conservation properties

Given a group action Φ : G×Q→ Q, we have seen in Section 4.4.4 that if Φ leaves N invariant, then

it can be restricted to an action ΦN on N and the infinitesimal generators of this restricted action

are related by projection to the generators of the action on Q. This then shows that the momentum

maps of the constrained systems are just the appropriate restrictions of the unconstrained momentum

maps.

In addition, from Section 4.1.4 we know that if the Lagrangian is invariant under the group

action and the forces are orthogonal to the action, then Noether’s theorem will still hold. In the

constrained setting, observe that we have

〈
fN

L (vq), ξN (q)
〉

=
〈
T ∗i ◦ fL ◦ Ti(vq), ξN (q)

〉

=
〈
fL ◦ Ti(vq), T i · ξN (q)

〉

=
〈
fL ◦ Ti(vq), ξQ ◦ i(q)

〉
,

and so if fL is orthogonal to ξQ, then the constrained force fN
L will also be orthogonal to the

constrained infinitesimal generator ξN . This gives us the following Noether’s theorem.

Theorem 4.11 (Forced constrained Noether’s theorem). Consider

a Lagrangian system L : TQ→ R with constraint submanifold N ⊂ Q, forcing fL : TQ→ T ∗Q and

a symmetry action Φ : G × Q → Q such that 〈fL(q, q̇), ξQ(q)〉 = 0 for all (q, q̇) ∈ TQ and ξ ∈ g.

Then the constrained Lagrangian momentum map JLN : TN → g∗ will be preserved by the forced

constrained Lagrangian flow.

Of course, it is only necessary that the constrained force be orthogonal to the group action on the

constraint submanifold and that the reduced action be a symmetry of the constrained Lagrangian.

The above theorem simply gives sufficient conditions for this in terms of the unconstrained quantities.
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4.7 Discrete variational mechanics with forces and constraints

We now combine the previous results for forced and constrained systems to consider discrete La-

grangian systems with both forcing and constraints. The definitions and results are the expected

combinations of the special cases of only forcing or only constraints, and so we will not give detailed

proofs.

4.7.1 Lagrangian viewpoint

Given discrete Lagrangian forces f+
d , f−

d : Q × Q → T ∗Q, we form the restrictions fN+
d , fN−

d :

N × N → T ∗N by fN±
d = T ∗i ◦ f±

d ◦ iN×N , which are then discrete Lagrangian forces on N . As

in the continuous Lagrangian case, we now take the discrete Lagrange-d’Alembert principle from

Section 4.4 and constrain it to N , thus obtaining the following theorem.

Theorem 4.12. Given discrete Lagrangian system Ld : Q × Q → R with discrete Lagrangian

forces f+
d , f−

d : Q × Q → T ∗Q and holonomic constraint φ : Q → R
d, set N = φ−1(0) ⊂ Q,

fN±
d = T ∗i ◦ f±

d ◦ iN×N, and LN
d = Ld|Q×Q.Then the following are equivalent:

(1). qd = {qk}
N
k=0 ∈ Cd(N) satisfies the discrete Lagrange-d’Alembert principle for LN

d , fN+
d and

fN−
d , and hence solves the forced discrete Euler-Lagrange equations;

(2). qd = {qk}
N
k=0 ∈ Cd(Q) and λd = {λk}

N−1
k=1 ∈ Cd(R

d) satisfy the forced constrained discrete

Euler-Lagrange equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1)

+ f+
d (qk−1, qk) + f−

d (qk, qk+1) = 〈λk,∇φ(qk)〉 , (4.45a)

φ(qk) = 0; (4.45b)

(3). (qd, λd) = {(qk, λk)}Nk=0 ∈ Cd(Q×R
d) satisfies the discrete Lagrange-d’Alembert principle, and

hence solves the forced discrete Euler-Lagrange equations, for either of L̄+
d , L̄−

d : (Q × R
d) ×

(Q× R
d)→ R defined by

L̄+
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1)− 〈λk+1, φ(qk+1)〉 ,

L̄−
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1)− 〈λk, φ(qk)〉 ,

with the discrete Lagrangian forces f̄+
d , f̄−

d : (Q× R
d)× (Q× R

d)→ T ∗(Q× R
d) defined by

f̄+
d (qk, λk, qk+1, λk+1) = π∗

Q ◦ f+
d (qk, qk+1),

f̄−
d (qk, λk, qk+1, λk+1) = π∗

Q ◦ f−
d (qk, qk+1),
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where πQ : Q× R
d → Q is the projection.

Using the canonical projection operator T ∗i : T ∗Q→ T ∗N , we can also write (4.45) without the

Lagrange multipliers.

4.7.2 Discrete Hamiltonian maps

We first consider the augmented approach to constructing a discrete Hamiltonian map, despite the

lack of regularity. The forced augmented discrete Hamiltonian map F̃L̄−

d
: (q0, λ0, p0, π0) 7→

(q1, λ1, p1, π1) is defined by the equations

p0 = −D1Ld(q0, q1)− f−
d (q0, q1) + 〈λ0,∇φ(q0)〉 , (4.46a)

π0 = φ(q0), (4.46b)

p1 = D2Ld(q0, q1) + f+
d (q0, q1), (4.46c)

π1 = 0. (4.46d)

Restricting to the primary constraint set Π ⊂ T ∗(Q × R
d) now shows that these equations are

equivalent to the forced constrained discrete Euler-Lagrange equations (4.45) together with the

constraint φ(qk) = 0. As before, the evolution of λ is not well defined.

Rather than considering the augmented systems, we can also directly relate the constrained and

unconstrained systems. Here we must use the forced discrete Legendre transforms (4.8), which we

recall are

F
f+Ld : (q0, q1) 7→ (q1, p1) = (q1,D2Ld(q0, q1) + f+

d (q0, q1)),

F
f−Ld : (q0, q1) 7→ (q0, p0) = (q0,−D1Ld(q0, q1)− f−

d (q0, q1)).

These depend on both the discrete Lagrangian and discrete forces. From (4.27) we have the relations

D2L
N
d = T ∗i ◦D2Ld ◦ iN×N ,

−D1L
N
d = T ∗i ◦ (−D1Ld) ◦ iN×N ,

and, combining these with the definitions of the constrained discrete forces fN+
d and fN−

d , we have

the following commutative diagrams, where the discrete Legendre transforms are those which include

the forcing.

T ∗Q|N

T∗i

��

Q×Q|{q0∈N}
F

f−Ldoo

T ∗N N ×N

iN×N

OO

F
f−LN

d

oo

Q×Q|{q1∈N}
F

f+Ld // T ∗Q|N

T∗i

��
N ×N

iN×N

OO

F
f+LN

d

// T ∗N

(4.47)
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This is the equivalent of (4.27) in the unforced case, and using this we now have the equivalent of

diagram (4.28) for the forced discrete Legendre transforms, proving the following theorem.

Theorem 4.13. Consider a regular discrete Lagrangian system Ld : Q × Q → R with constraint

submanifold N ⊂ Q and forcing f+
d , f−

d : Q × Q → T ∗Q. Then the forced constrained discrete

Hamiltonian map F̃LN
d

: T ∗N → T ∗N has the following equivalent formulations:

(1). F̃LN
d

: (q0, p0) 7→ (q1, p1) for (q0, p0), (q1, p1) ∈ T ∗N satisfying

p0 = −D1L
N
d (q0, q1)− fN−

d (q0, q1), (4.48a)

p1 = D2L
N
d (q0, q1) + fN+

d (q0, q1); (4.48b)

(2). F̃LN
d

: (q0, p0) 7→ (q1, p1) for (q0, p0), (q1, p1) ∈ T ∗N satisfying

p0 = (T ∗i)q0

(
(−D1Ld − f−

d ) ◦ iN×N (q0, q1)
)
, (4.49a)

p1 = (T ∗i)q1

(
(D2Ld + f+

d ) ◦ iN×N (q0, q1)
)
; (4.49b)

(3). F̃LN
d

: η(T ∗N) 7→ η(T ∗N) for (q0, p0) ∈ η(T ∗N) and (q1, p1) ∈ T ∗Q satisfying

p0 = Pq0

(
(−D1Ld − f−

d ) ◦ iN×N (q0, q1)
)
, (4.50a)

p1 = Pq1

(
(D2Ld + f+

d ) ◦ iN×N (q0, q1)
)
, (4.50b)

φ(q1) = 0. (4.50c)

Here η : T ∗N → T ∗Q is any symplectic embedding covering the identity, so that πQ ◦ η = i ◦ πN ,

and P : T ∗Q|N → η(T ∗N) is the map defined by P = η ◦ T ∗i.

These equations are clearly the combination of the constrained equations from Theorem 4.7 with

the forced equations (4.9).

Now assume that η is constructed from the Legendre transforms of some regular Lagrangian

according to (4.19). Introducing Lagrange multipliers allows us to rewrite (4.50) as

p0 = −D1Ld(q0, q1)− f−
d (q0, q1) + (λ(0))T∇φ(q0), (4.51a)

p1 = D2Ld(q0, q1) + f+
d (q0, q1)− (λ(1))T∇φ(q1), (4.51b)

φ(q1) = 0, (4.51c)

∇φ(q1) ·
∂H

∂p
(q1, p1) = 0, (4.51d)

where (q0, p0) are in η(T ∗N). As before, we have chosen the signs on the Lagrange multipliers to
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correspond with the conventions of the discrete forces.

This form of the forced constrained discrete Hamiltonian map shows clearly that one can interpret

the Lagrange multiplier terms as discrete forces of constraint . That is, the additional terms

due to the constraints enter the equations in exactly the same way as the forcing terms. Indeed, the

constraint terms can be regarded as forces which have exactly the correct action to keep the discrete

trajectory on the constraint submanifold N .

If we are working with a particular form of Lagrangian, such as one involving a quadratic kinetic

energy, then we can explicitly write the projection form of the discrete Hamiltonian map as was

done in Section 4.4.3.

4.7.3 Exact forced constrained discrete Lagrangian

Given a Lagrangian system with forces and constraints, we can combine the ideas from Sections

4.2.4 and 4.4.5 to define the appropriate exact discrete Lagrangian and exact discrete forces.

Begin by considering the constrained system LN : TN → R with constrained force fN
L : TN →

T ∗N . Recall that the exact forced discrete Lagrangian LN,E
d : N ×N ×R is the action (4.11a) along

a solution of the forced Euler-Lagrange equations, and that the exact discrete forces fN,E+
d , fN,E−

d :

N × N × R → T ∗N are the integrals of the forces (4.11b), (4.11c) along the variations of such a

solution.

Having constructed these functions on N × N × R, we take any smooth extension to functions

LQ,E
d : Q×Q× R and fQ,E+

d , fQ,E−
d : Q×Q× R→ R, as in Section 4.4.5. The same argument as

used there now shows that

(T ∗i)q0

(
F

f−LQ,E
d (q0, q1, h)

)
= (T ∗i)q0

(
FL(q0,1(0), q̇0,1(0))

)
,

(T ∗i)q1

(
F

f+LQ,E
d (q0, q1, h)

)
= (T ∗i)q1

(
FL(q0,1(h), q̇0,1(h))

)
,

for all q0, q1 ∈ N and the corresponding solutions q : [0, h] → N of the forced constrained Euler-

Lagrange equations.

Using the above definitions, it is clear that to derive high-order discrete Lagrangians and discrete

forces in the presence of constraints, both the discrete Lagrangian and the discrete forces will have

to depend upon the continuous Lagrangian, the continuous forces and also the constraints. We will

see examples of this below.

4.7.4 Noether’s theorem

Consider a group action Φ : G×Q→ Q and assume that it leaves N invariant, so that it restricts to

ΦN : G×N → N . In the presence of forcing we saw in Section 4.2.3 that it is necessary to use the
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forced Legendre transforms to define the discrete momentum maps by (4.10). For the unconstrained

system this gives

Jf+
Ld

(q0, q1) · ξ =
〈
F

f+Ld(q0, q1), ξQ(q1)
〉
, (4.52a)

Jf−
Ld

(q0, q1) · ξ =
〈
F

f−Ld(q0, q1), ξQ(q1)
〉
, (4.52b)

while the constrained forced momentum maps are

Jf+

LN
d

(q0, q1) · ξ =
〈
F

f+LN
d (q0, q1), ξN (q1)

〉
, (4.53a)

Jf−

LN
d

(q0, q1) · ξ =
〈
F

f−LN
d (q0, q1), ξN (q1)

〉
. (4.53b)

Recalling that the forced discrete Legendre transforms satisfy (4.47), we can use the relations (4.34)

between the constrained and unconstrained infinitesimal generators to show that

Jf+

LN
d

= Jf+
Ld
◦ iN×N , (4.54a)

Jf−

LN
d

= Jf−
Ld
◦ iN×N , (4.54b)

which is the forced equivalent of (4.35). If the group action is a symmetry of the discrete Lagrangian

then these momentum maps will be equal. In general Noether’s theorem does not hold in the

presence of forcing, except in the special case when the forces are orthogonal to the group action.

We will now see how this occurs in the presence of constraints.

Recall that, given discrete forces f+
d and f−

d , we can construct a one-form fd on Q×Q by (4.5),

which gives

fN
d (q0, q1) · (δq0, δq1) = fN+

d (q0, q1) · δq1 + fN−
d (q0, q1) · δq0,

fd(q0, q1) · (δq0, δq1) = f+
d (q0, q1) · δq1 + f−

d (q0, q1) · δq0,

and so we have the relation fN
d = T ∗(iN×N ) ◦ fd ◦ iN×N . Using this, we compute

〈
fN

d (q0, q1), ξN×N (q0, q1)
〉

=
〈
T ∗(iN×N ) ◦ fd ◦ iN×N (q0, q1), ξN×N (q0, q1)

〉

=
〈
fd ◦ iN×N (q0, q1), T (iN×N ) ◦ ξN×N (q0, q1)

〉

=
〈
fd ◦ iN×N (q0, q1), ξQ×Q ◦ iN×N (q0, q1)

〉
,

where we have used the fact that ξQ×Q◦i
N×N = T (iN×N )◦ξN×N . This shows that if fd is orthogonal

to ξQ×Q, so that 〈fd, ξQ×Q〉 = 0, then fN
d will be orthogonal to ξN×N . We thus have a Noether’s

theorem in this case.
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Theorem 4.14 (Discrete forced constrained Noether’s theorem). Consider a discrete La-

grangian system Ld : Q × Q → R with constraint submanifold N ⊂ Q, discrete forces f+
d , f−

d :

Q×Q→ T ∗Q and a symmetry action Φ : G×Q→ Q such that 〈fd, ξQ×Q〉 = 0 for all ξ ∈ g. Then

the constrained Lagrangian momentum map Jf

LN
d

: N×N → g∗ is preserved by the forced constrained

discrete Hamiltonian map.

As in the continuous case with forcing and constraints, this only provides a sufficient condition

as it is enough to just have orthogonality and invariance on N .

4.7.5 Variational integrators with forces and constraints

Consider a Lagrangian system L : TQ → R with a constraint submanifold N ⊂ Q specified by

N = φ−1(0) for some φ : Q → R
d and a Lagrangian force fL : TQ → T ∗Q. We would now like

to construct a discrete Lagrangian Ld : Q × Q → R and discrete forces f+
d , f−

d : Q × Q → T ∗Q

which approximate an extension of the exact discrete Lagrangian and exact forces. The discrete

Hamiltonian map will then be an integrator for the continuous system.

We will assume here that the Lagrangian is regular, so that it has an equivalent Hamiltonian

formulation, and also that Q is linear and isomorphic to R
n. Regularity of the Lagrangian also

provides a canonical embedding η : T ∗N → T ∗Q, and we will use the Lagrange multiplier formulation

(4.51) of the forced constrained Hamiltonian map. As in Section 4.5.2, we will rescale the Lagrange

multipliers by the time step to give

p0 = −D1Ld(q0, q1)− f−
d (q0, q1) + h(λ(0))T∇φ(q0), (4.55a)

p1 = D2Ld(q0, q1) + f+
d (q0, q1)− h(λ(1))T∇φ(q1), (4.55b)

φ(q1) = 0, (4.55c)

∇φ(q1) ·
∂H

∂p
(q1, p1) = 0, (4.55d)

where the initial condition (q0, p0) is in η(T ∗N), and we solve over (q1, p1) ∈ T ∗Q. The last two

equations ensure that the solution (q1, p1) will also lie in η(T ∗N). Of course, we could also use one

of the alternative formulations from Theorem 4.13 or we could use the forced constrained discrete

Euler-Lagrange equations (4.45) and work directly on N ×N .

To construct discrete Lagrangians and discrete forces we can use any of the techniques discussed

previously. Here we give a few examples.

Example 4.5 (Low-order methods).For a low-order discrete Lagrangian and discrete forces, such

as the Lα
d and fα,±

d from Example 4.1, we can simply restrict them to N ×N , as in Section 4.5.3.

This yields a simple method that remains on the constraint manifold and includes the forcing. ♦
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Example 4.6 (Composition methods).As we have seen in several examples already, composition

methods provide a particularly elegant method to construct high-order methods from a given low-

order integrator. In the case of systems with both forcing and constraints, the appropriate composed

discrete forces and discrete Lagrangians are given by the combination of the definitions for the forced

and constrained cases. ♦

Example 4.7 (Symplectic partitioned Runge-Kutta methods). Combining the definitions

of the discrete forces (4.12) with the constrained formulation of the discrete Lagrangian (4.42), we

arrive at discrete forces and a discrete Lagrangian for which the discrete Hamiltonian map is a

constrained symplectic partitioned Runge-Kutta method with forcing. ♦
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Chapter 5

Multisymplectic continuum
mechanics

5.1 Multisymplectic continuum mechanics

The basic objects for a material picture of continuum mechanics are a reference configuration

B ⊂ R
n of the body, a time interval [0, T ] ⊂ R and an ambient space S = R

m. We then consider

the configuration map ϕt : B → S which defines the particle placement or configuration at each

time t.

We will now develop this theory in a multisymplectic formulation, both for continuous space-time

and for discretizations. We will construct the AVI (Asynchronous Variational Integrator) methods

as a particular case of the discrete multisymplectic formalism. The material below is formulated

intrinsically in Marsden et al. [2001], but here we will restrict ourselves to Euclidean spaces. For

more on multisymplectic mechanics and multisymplectic discretizations, see Marsden et al. [1998],

Gotay et al. [1997], and Bridges and Reich [2001a]. The differential geometry notation used here

follows Abraham et al. [1988]. We only consider first-order theories, in which both the Lagrangian

and the constraints depend only on first derivatives of the fields. For higher-order formulations see

Kouranbaeva and Shkoller [2000].

5.1.1 Configuration geometry

Base space. The base space X = R×R
3 is defined to be space-time. Coordinates on X are (X0 ≡

t,X1, . . . ,Xn), and we will sometimes write (t,X) to distinguish the time and space coordinates.

Lowercase greek letters range over 0, 1, . . . , n, so that Xµ is all base space coordinates. Alternatively,

lowercase roman letters i, j, k range over 1, 2, . . . , n, and we write t = X0 for time, so (Xµ) = (t,Xi).

We will abuse the notation and use the symbol X to denote points in both the base space and the

reference configuration B, explicitly distinguishing when there is the possibility of confusion.

We introduce the parameter space U = [0, T ]× B. This will allow us to consider variations of
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the base space variables. Coordinates on U are (U0, . . . , Un), corresponding to the coordinates on

X .

Configuration bundle. Above the base space we construct the configuration bundle Y =

X × S, which is the product of the base space X with the ambient space S. This is an example of

a fiber bundle over X ; take πXY : Y → X to be the projection map, and let coordinates on Y be

(X0,X1, . . . ,Xn, x1, . . . , xm). We will use lowercase roman letters a, b, c to range over 1, . . . ,m, so

coordinates on Y can be written either as (t,Xi, xa) or as (Xµ, xa).

A configuration of the system is specified by a map φ : U → Y covering a map φX : U → X .

That is, φ satisfies πXY ◦φ = φX , so that φ(U) = (φµ(U), φa(U)). The map φ is taken to be smooth

and φX is assumed to be a diffeomorphism, so that it is smooth with a smooth inverse. The exact

class of regularity will not be of importance at the moment, but of course such notions are crucial

for analytical studies, including error estimates.

We will frequently be interested in the composition ϕ = φ◦φ−1
X : φX (U) ⊂ X → Y which maps a

time t and a material position X to the corresponding deformed position x. The fiber component of

this map is thus exactly the deformation mapping, and we have the following commutative diagram

Y

U

φ

<<yyyyyyyyy

φX

// φX (U)

ϕ=φ◦φ−1
X

OO

A deformation mapping is thus a section of the configuration bundle, defined over all space and

time, meaning that π ◦ ϕ = id. This is shown graphically in Fig. 5.1, where the section is regarded

as a surface in the fiber bundle over the base space.

Jet bundle. Given a configuration bundle Y over a base space X , we next construct the jet

bundle J1Y over Y with fibers over xX consisting of linear maps γ : TXX → TxY such that

TπXY · γ = idX . This is the space of partial derivatives with respect to space and time (space-

time velocities). Coordinates on J1Y are denoted (Xµ, xa, va
µ) ≡ (t,Xi, xa, va

t, v
a

i). When we are

writing time and space coordinates separately, we will use (t,X, x, vt, vX) to indicate the time and

space partial derivatives.

Given a section ϕ of Y , TXϕ is an element of (J1Y )X , and we define the jet extension of ϕ to be

j1ϕ : X → (X,TXϕ). This is ϕ together with its partial derivatives and in coordinates it is written

j1ϕ(X) = (Xµ, ϕa(X), ϕa
,µ(X)), where we denote the partial derivatives by ϕa

,µ(X) = ∂ϕa

∂Xµ (X).

We use (X,x, v) to refer to a general point in J1Y , and j1ϕ(X) = (X,ϕ(X), ϕ,X(X)) to refer to a

point which comes from the first jet of a section. A jet extension is thus an example of a section of

the fiber bundle J1Y → X.
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X

t

x

ϕ

Figure 5.1: A graphical representation of a section ϕ of a bundle for elastodynamics. The horizontal
axes represent space-time and together they form the base space X = R × R

3. The vertical axis
represents the ambient space, so the entire bundle is S×X . Taking a slice of ϕ with constant X ∈ R

3

gives the trajectory of the particle with material coordinates X for all time. Alternatively, taking a
slice of ϕ with constant t ∈ R gives the configuration of the entire body at a single instant of time.

In the terminology of solid mechanics, the time component of the first jet of a section is the

material velocity and the space components form the deformation gradient. That is,

vt = ϕ̇(X) and vX = F (X),

where (X,x, v) = j1ϕ(X).

Note that J1Y is not the tangent bundle TY of Y . It is also not the tangent bundle TS, as this

would only include one derivative (for example, with respect to time) of a configuration, whereas the

each element of the jet bundle includes the derivatives with respect to all the base space coordinates

(space and time).

Lagrangian. To define a particular system it is necessary to specify a Lagrangian L : J1Y → R,

which maps the first jet bundle to the real numbers. For continuum mechanics the Lagrangian has

the form

L(t,X, x, vt, vX) =
[1

2
ρ(X)‖vt‖

2
]

− [W (X, vX) + ρ(X)V (X,x)] , (5.1)

where ρ : B → R is the (material) density , W : (X, vX) → R is the stored energy function

per unit volume and V : Y → R is the external potential function per unit mass. Different

forms of W determine the different types of continua, such as fluids and solids, while V specifies the

environmental potentials such as gravity. The external potential V specifies body forces of potential

type by B = −∇V . The two terms in the Lagrangian (5.1) correspond to the kinetic and potential

energy, respectively.

Unlike the standard Lagrangians or Hamiltonians used for continuum mechanics, the multisym-
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plectic Lagrangian is purely local. This is an explicit formulation of the fact that classical continuum

theories do not involve long-range dependencies in their constitutive or geometric foundations.

An intrinsic formulation of multisymplectic mechanics of continua (such as that in Marsden et al.

[2001]) is based on the Lagrangian density , which is a map from J1Y to the space Λn+1(X ) of

volume densities on X . To form a Lagrangian density from our Lagrangian, simply take Ldn+1X,

where dn+1X is the standard volume element on R
n+1.

Dual jet bundle. We now briefly consider the Hamiltonian viewpoint of multisymplectic field

theories. The approach taken here is non-intrinsic, and we are thus neglecting much of the geometry

underlying such systems. The interested reader is referred to Marsden and Shkoller [1999] for an

intrinsic formulation of multisymplectic Hamiltonian mechanics and to Marsden et al. [2001] for the

special case of continuum mechanics.

For multisymplectic mechanics, the natural dual to the jet bundle is the affine dual J1Y ?, with

coordinates (Xµ, xa, pa
µ, p), representing the map va

µ 7→ p + pa
µva

µ. Here pa
µ are the space-time

momenta, and p is an additional scalar, which we will see is related to the energy. The need to

consider the affine dual, rather than the linear dual as in classical mechanics, becomes apparent

when one considers Noether’s theorem for multisymplectic mechanics. Note that J1Y ? is not the

cotangent bundle T ∗Y of Y .

Legendre transform. Given a Lagrangian L on a jet bundle J1Y → X , we construct a map from

the jet bundle to the dual jet bundle known as the Legendre transform FL : J1Y → J1∗Y . It is

defined by

FL : (Xµ, xa, va
µ) 7→ (Xµ, xa, pa

µ, p), (5.2)

where

pa
µ =

∂L

∂va
µ
(x, y, v) and p = pa

µva
µ − L(X,x, v).

Calculating the Legendre transform for the continuum mechanics Lagrangian (5.1) gives

pa
t = ρ(x)va

t (5.3a)

pa
i = −Pa

i(X) (5.3b)

p =

[
1

2
ρ(X)‖vt‖

2

]

+ [W (X, vX) + ρ(X)V (X,x)]− F (X) : P (X). (5.3c)

We see here that the time momenta are the classical momentum values, while the space momenta

are the (negative of) the first Piola-Kirchhoff stress tensor.

If FL has maximal rank at some point in J1Y , then the Lagrangian is said to be regular at

that point. Note that this does not imply that FL is a local isomorphism, as the dimension of the
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dual jet bundle is one more than that of the jet bundle, and so the Legendre transform can never

be surjective.

The Legendre transform can also be used to define the energy function EL : J1Y → R associated

to a Lagrangian L by

EL(X,x, v) = pa
tva

t − L(X,x, v)

=

[
1

2
ρ(X)‖vt‖

2

]

+ [W (X, vX) + ρ(X)V (X,x)] ,

where (X,x, p) = FL(X,x, v). This will be important later when we consider conservation laws for

Lagrangian systems.

5.1.2 Variations and dynamics

Configuration space and variations. Take C(Y ) to be the space of all configurations φ. We

will frequently wish to consider variations of solutions, which are tangent vectors to a smooth curve

of configurations. To define these, first consider the tangent bundle TY of Y , which has coordinates

(X,x, δX, δx).

Using this, we see that the tangent space to C(Y ) at a configuration φ is denoted TφC(Y ) and

consists of all maps δφ : U → TY of the form δφ(U) = (φµ, φa, δφµ, δφa). Such tangent vectors are

called variations of the configuration φ. The components δφa are termed vertical variations,

while the δφµ are called horizontal variations. While the definition of a vertical variation is

well defined, selecting a particular direction for horizontal variations requires additional structure

on the configuration bundle. Here we have implicitly assumed this by working in a preferred set

of coordinates. An intrinsic alternative can also be provided by taking horizontal variations to be

those which are tangent to j1(φ ◦ φ−1
X ) (see Marsden and Shkoller [1999]).

Euler-Lagrange equations. Given the configuration space C(Y ) of all possible φ, it is necessary

to determine which of these configurations will be adopted by the system. To do this, we introduce

the action integral S : C(Y )→ R, defined as

S(φ) =

∫

φX (U)

L
(

j1(φ ◦ φ−1
X )
)

dV, (5.4)

where dV is the volume element on X .

Note that S(φ) only depends on φ through ϕ, so that for any diffeomorphism γ : U → U ,

S(φ◦γ) = S(φ). We will see later that this implies that the Euler-Lagrange equations only determine

ϕ uniquely, rather than the full φ.

Hamilton’s principle now states that the physical configurations φ are those which are critical
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points of the action function. More precisely, Hamilton’s principle requires that

dS(φ) · δφ = 0 (5.5)

for all variations δφ ∈ TφC(Y ) which are zero on the boundary ∂U of U . This is the classical weak

form of the equation.

To derive the strong form , we first rewrite the action as

S(φ) =

∫

U

L

(

φµ(U), φa(U),
∂φa

∂U
·

[
∂φX

∂U

]−1
)

det

[
∂φX

∂U

]

dU

and now we compute dS to obtain

dS(φ) · δφ

=

∫

U

[(

∂L

∂Xµ
δφµ +

∂L

∂xa
δφa

+
∂L

∂va
µ

[
∂δφa

∂Uν
Jν

µ −
∂φa

∂Uν
Jν

ρ
∂δφρ

∂Uγ
Jγ

µ

])

det

[
∂φX

∂U

]

+ Ldet

[
∂φX

∂U

]

Jν
µ
∂δφµ

∂Uν

]

dU

=

∫

φX (U)

([
∂L

∂xa
−

d

dXµ

(
∂L

∂va
µ

)]

δφa

+

[
∂L

∂Xν
+

d

dXµ

(
∂L

∂va
µ

∂ϕa

∂Xν

)

−
dL

dXν

]

δφν

)

dX

+

∫

∂φX (U)

(

∂L

∂va
µ
δφaNµ −

[
∂L

∂va
µ

∂ϕa

∂Xν
− Lδµ

ν

]

δφνNµ

)

dA, (5.6)

where

Jν
ρ =

[(
∂φX

∂U

)−1
]ν

ρ

and we have written ϕ instead of φ when taking derivatives with respect to X.

Restricting to variations which are zero on the boundary of U eliminates the boundary term

from the above expression, and then requiring that it is zero for all such variations implies that

both components of the integrand in the above expression must be zero. The first of these is the

Euler-Lagrange equations, which are

∂L

∂xa
(j1ϕ(X))−

∂

∂Xµ

[
∂L

∂va
µ
(j1ϕ(X))

]

= 0 for all X ∈ X . (5.7)

This is a PDE with dependent variables ϕa and independent variables Xµ. Indeed, as we will see
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below, the second term in (5.6) is zero whenever the Euler-Lagrange equations are zero, which is

the reason that the Euler-Lagrange equations are sufficient to describe the motion of the system.

For the continuum mechanics Lagrangian (5.1), the Euler-Lagrange equations are

ρ(X)ϕa
,tt =

∂

∂Xµ

[
∂W

∂va
µ
(X,ϕ,X(X))

]

− ρ(X)
∂V

∂xa
(X,ϕ(X)). (5.8)

Equations of motion. Substituting the definitions for the material velocity and first Piola-

Kirchhoff stress tensor into the Euler-Lagrange equations (5.8) gives the familiar equation

ρϕ,tt = DIVP − ρ∇XV. (5.9)

The term −∇V is simply the external body forces, which is often expressed as B(X, t). If there

are non-potential forces present, these are added to the right hand side of (5.9).

Boundary conditions. For first-order multisymplectic theories we consider only zeroth- or first-

order boundary conditions. That is, we allow boundary conditions of the form

ϕ(φX (U)) = ϕ0(U) for U ∈ ∂0U (5.10a)

∂L

∂va
µ
Nµ(φX (U)) = τa(U) for U ∈ ∂1U , (5.10b)

where ∂0U and ∂1U are subsets of the boundary ∂U , ϕ0 is a given section, τ is a given one-form and

Nµ(X) is the normal one-form to the boundary φX (∂U). We say that (5.10a) is a zeroth-order

boundary condition, whereas (5.10b) is a first-order boundary condition. For the moment, we do

not require that ∂0U and ∂1U be disjoint, nor do we require that their union cover ∂U , although

such conditions on the partitions of ∂U become important for well-posedness.

As in standard Lagrangian theories, we can either impose the boundary conditions (5.10a) and

(5.10b) directly, or we can modify Hamilton’s principle (5.5) and then derive the boundary conditions

from the variational principle. To do this, we say that φ is a solution satisfying the boundary

conditions if

dS(φ) · δφ =

∫

φX (∂1U)

τaδφa dA (5.11)

for all variations δφ which are zero on the set ∂U \∂1U , and where we only consider sections φ which

satisfy (5.10a).

Note that this is only one possible approach. It is also common to include in the potential energy

a term whose derivative gives the traction boundary conditions. That approach is simpler, but the

additional potential term is not intrinsic, whereas the expression (5.11) is intrinsically well defined.

Computing the left-hand side of (5.11) and using integration by parts gives (5.6). The boundary



138

term can be taken only over ∂1U as δφ is zero elsewhere on ∂U , and this matches with the right

hand side of (5.11) to imply the traction boundary condition (5.10b). The displacement boundary

condition (5.10a) is satisfied by assumption. As the set of variations δφ which are zero on all of ∂U

is a subset of those we are using here, we also recover the Euler-Lagrange equations (5.7) from the

variational principle with boundary terms (5.11).

For continuum mechanics we are particularly interested in the case of an initial boundary value

problem. Recall that our parameter space is U = [0, T ] × B and that the boundary is therefore

∂U = ({0} × B) ∪ ({T} × B) ∪ ([0, T ]× ∂B). An initial boundary value problem specifies that

ϕa(φX (0, UX)) = (ϕ0)
a(0, UX) for all UX ∈ B (5.12a)

ϕa
,t(φX (0, UX)) = (ϕ0)

a
,t(0, UX) for all UX ∈ B (5.12b)

ϕa(φX (Ut, UX)) = (ϕ0)
a(Ut, UX) for all Ut ∈ [0, T ], UX ∈ ∂dB (5.12c)

∂L

∂va
i
Ni(φX (Ut, UX)) = −Ta(Ut, UX) for all Ut ∈ [0, T ], UX ∈ ∂τB, (5.12d)

where ϕ0 and Ta are given functions on U and ∂dB and ∂τB are disjoint subsets of ∂B whose union

covers ∂B. The first two conditions (5.12a) and (5.12b) are the initial conditions, while (5.12c)

and (5.12d) are the boundary conditions.

In terms of the conditions (5.10), we identify the zeroth- and first-order boundary conditions as

defined on

∂0U = ({0} × B) ∪ ([0, T ]× ∂dB)

∂1U = ({0} × B) ∪ ([0, T ]× ∂τB).

Note that these sets are neither disjoint nor covering.

5.1.3 Horizontal variations

Requiring stationarity with respect to horizontal variations implies that the second term in (5.6)

must be zero, which gives
∂L

∂Xν
+

d

dXµ

(
∂L

∂va
µ

∂ϕa

∂Xν

)

−
dL

dXν
= 0. (5.13)

While it might initially seem that dS(φ) · δφ = 0 for all δφ zero on ∂U would require that both the

Euler-Lagrange equations (5.7) and the equation (5.13) are satisfied, in fact it is sufficient to require

that only the Euler-Lagrange equations are satisfied. The reason for this is that equation (5.13) is
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implied by the Euler-Lagrange equations, as can be seen by calculating:

∂L

∂Xν
+

d

dXµ

(
∂L

∂va
µ

∂ϕa

∂Xν

)

−
dL

dXν

=
∂L

∂Xν
+

d

dXµ

(
∂L

∂va
µ

)
∂ϕa

∂Xν
+

∂L

∂va
µ

d

dXµ

(
∂ϕa

∂Xν

)

−

[

∂L

∂Xν
+

∂L

∂ϕa

∂φa

∂Xν
+

∂L

∂va
ν

(
∂ϕa

∂Xµ

)]

= −

[

∂L

∂φa
−

d

dXµ

(
∂L

∂va
µ

)]

∂ϕa

∂Xν

and thus we see that whenever the Euler-Lagrange equations are satisfied, so too is equation (5.13).

This can also be understood as a reflection of the symmetry of the action under the transformation

φ 7→ φ ◦ γ. Equation (5.13) is exactly Noether’s theorem for this action. By now considering the

space and time components of (5.13) separately, we will next see that this is in fact a restatement

of very well-known facts about solutions of the equations of motion.

Energy conservation. Considering the special case of the base space X being space-time, the

time component of the equation (5.13) is

∂L

∂t
+

d

dt

(
∂L

∂va
t
ϕ̇a − L

)

+
d

dXi

(
∂L

∂va
i
ϕ̇a

)

= 0,

which is the energy evolution equation. Assuming that φX = id, in the special case that L does not

depend explicitly on t we can integrate over the material body to obtain

d

dt

∫

B

(
∂L

∂va
t
ϕ̇a − L

)

dV = −

∫

B

d

dXi

(
∂L

∂va
i
ϕ̇a

)

dV

= −

∫

∂B

∂L

∂va
i
ϕ̇aNi dA

= −

∫

∂τB

τaϕ̇a dA.

In the particular case of traction-free boundary conditions, when τ = 0 on ∂B, then this reduces to

d

dt

∫

B

(
∂L

∂va
t
ϕ̇a − L

)

dV = 0, (5.14)

which is the statement of global energy conservation. As we will see below, this calculation can also

be recast in the form of Noether’s theorem for horizontal symmetry actions.
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Configurational forces. Having considered the time component of equation (5.13) above, we

now consider the full expression

∂L

∂Xν
+

d

dXµ

(
∂L

∂va
µ

∂ϕa

∂Xν
− Lδµ

ν

)

= 0. (5.15)

In this equation we can recognize the Eshelby Energy-Momentum tensor C (see, e.g., Gurtin [2000])

Cµ
ν =

∂L

∂va
µ

∂ϕa

∂Xν
− Lδµ

ν

and equation (5.15) expresses the balance of the configurational forces. Surface independent in-

tegrals, such as the static and dynamic J-integrals, are obtained from it. These appear whenever

∂L
∂Xi = 0 by integrating over an arbitrary volume and using Stokes’ theorem to transform it into a

boundary integral. In the two-dimensional case, these integrals are path integrals.

5.2 Conservation laws

One of the primary advantages of multisymplectic theories is the clear understanding which can be

gained from the conservation laws satisfied by the system. As we shall see, all conservation laws

considered here can be expressed in either a local divergence form or in a global form.

Space of solutions. To understand both local and global statements of conservation laws it is

necessary to take variations and divergences along solutions.

Recall that we are using C(Y ) to denote the space of all configurations φ : U → Y . The space of

solutions CL(Y ) ⊂ C(Y ) is the subset which is composed of those φ which satisfy the Euler-Lagrange

equations everywhere, for any boundary conditions. That is, CL(Y ) is the set of solutions for all

possible choices of boundary conditions. As we have already remarked, the fact that the action (5.4)

only depends on φ via ϕ means that solutions φ ∈ CL(Y ) are only unique up to reparameterization

φ ◦ γ for diffeomorphisms γ : U → U .

The tangent bundle of the space of solutions is denoted TCL(Y ), and a variation V ∈ TφCL(Y )

is thus the derivative of a curve of solutions, typically having different boundary data. Such V are

known as first variations of φ. In fact CL(Y ) may not be a smooth manifold (see, for example,

Fischer, Marsden, and Moncrief [1980] and Arms, Marsden, and Moncrief [1982]) and so a more

general definition of first variations should be used. Here we will assume smoothness, and we refer

the reader to Marsden et al. [1998] for the details of the general case.
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Local actions. In what follows it will frequently be convenient to consider the action integral

taken over a subset U ′ of U . We will denote this by S′(φ), so that

S′(φ) =

∫

φX(U ′)

L
(

j1(φ ◦ φ−1
X )
)

dV.

5.2.1 Multisymplectic forms

In this section we introduce the multisymplectic structures which give multisymplectic mechanics its

name. This can be done in two ways, either on the Lagrangian side from the variational principle,

or on the Hamiltonian side by direct construction. We will consider only the Lagrangian side of

the picture, and we refer to Marsden and Shkoller [1999] for a comparison of the Lagrangian and

Hamiltonian constructions. For simplicity, the material here is a non-intrinsic version of the theory

developed in Gotay et al. [1997] and Marsden et al. [1998].

Given a variation V : U → TY of a configuration φ we denote by j1V : U → T (J1Y ) its jet

prolongation. If φε is a smooth curve from R to C(Y ) such that

V =
∂φε

∂ε

∣
∣
∣
∣
ε=0

and φ0 = φ,

then the jet prolongation of V is defined by

j1V =
∂j1φε

∂ε

∣
∣
∣
∣
ε=0

.

In coordinates this is given by

j1V (U) =

(

φµ, φa, V µ, V a,
∂V a

∂Xµ
−

∂V ν

∂Xµ
va

ν

)

.

Free action variations. For a variational derivation of the multisymplectic structure, we return

to the variational principle and consider the expression dS(φ) · δφ for arbitrary δφ. That is, we do

not require that δφ vanishes on the boundary ∂U , so we have the full expression (5.6) for action

variations.

Multisymplectic n + 1-form. We now restrict ourselves to configurations φ ∈ CL(Y ) which

are solutions of the Euler-Lagrange equations, and thus also satisfy the horizontal equation (5.13),

and we consider variations V which lie in the tangent space TCL(Y ) of the space of solutions. This

means that the first integral in the above expression is identically zero, and working with an arbitrary

U ′ ⊂ U we can write

dS′(φ) · V =

∫

∂φX (U ′)

(j1(φ ◦ φ−1
X ))∗

(

ij1V ΘL

)

, (5.16)
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where the Lagrangian n + 1-form ΘL on J1Y is defined by

ΘL =
∂L

∂va
µ
dxa ∧ dnXµ −

(
∂L

∂va
µ
va

µ − L

)

dn+1X.

Here we use the notation from Marsden et al. [1998], in which dn+1X is the volume form on X and

dnXµ = i∂/∂µd
n+1X are a set of n-forms. This is related to the previous expression for dS by the

fact that iV dn+1X = V ·NdA on a surface with area element A induced from the volume form.

The fact that ΘL has degree higher than one is one reason for the ‘multi’ in the term ‘multisym-

plectic’. Another interpretation of this term, used in Bridges [1997] and Bridges and Reich [2001a],

arises from defining the vector valued one-forms

Θµ
L =

∂L

∂va
µ
dya

for each µ = 1, . . . , n. For vertical first variations V , we can then write the derivative of the action

as

dS′(φ) · V =

∫

φX (∂U ′)

Θµ
L · j

1V dA,

where we are somewhat loose about the precise meaning of this expression. The fact that there are

n + 1 different one-forms Θµ
L gives a second meaning to the prefix ‘multi’. Note, however, that this

decomposition into n + 1 one-forms depends on the choice of coordinates and so is not intrinsic,

whereas ΘL is.

Multisymplectic n+2-form. Having derived the Lagrangian n+1-form as the boundary terms in

the variations of the actions, we can now take the exterior derivative to obtain the multisymplectic

Lagrangian n + 2-form

ΩL = −dΘL.

We will shortly see why this is an important object. This can be written as

ΩL = dxa ∧ d

(
∂L

∂va
µ

)

∧ dnXµ + d

(
∂L

∂va
µ
va

µ − L

)

∧ dn+1X,

where dnXµ and dn+1X are as defined above. Fully expanded in coordinates, this becomes

ΩL =
∂2L

∂Xµ∂va
µ
dxa ∧ dn+1X +

∂2L

∂xb∂va
µ
dxa ∧ dxb ∧ dnXµ

+
∂2L

∂vb
ν∂va

µ
dxa ∧ dvb

ν ∧ dnXµ +
∂2L

∂xb∂va
µ
va

µdxb ∧ dn+1X

+
∂2L

∂vb
ν∂va

µ
va

µdvb
ν ∧ dn+1X −

∂L

∂xa
dxa ∧ dn+1X.
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5.2.2 Multisymplectic form formula

Now that we have defined the multisymplectic forms, we will derive the conservation properties

associated with them.

Recall that the exterior derivative satisfies d2 = 0. For Euclidean (flat) spaces, this can be

written d2S(V,W ) = D(DS ·W ) · V − D(DS · V ) ·W , where D denotes the Fréchet derivative.

This expression is zero as the partial derivatives commute, although it is also true in more general

non-flat settings as well.

We can now use this fact to take a second exterior derivative of the identity (5.16) restricted to

the space of solutions CL(Y ) and conclude that it must be zero. The intrinsic calculation of this (see

Marsden et al. [1998]) gives the multisymplectic form formula

d2S′(φ)(V,W ) =

∫

∂φX (U ′)

(j1(φ ◦ φ−1
X ))∗

(

ij1W ij1V ΩL

)

= 0 (5.17)

for all first variations V and W of a solution φ. This is the global form of the multisymplectic

conservation law.

Applying Stokes’ theorem and using the fact that U ′ is arbitrary implies that the above statement

is equivalent to the local multisymplectic form formula

d

[

(j1(φ ◦ φ−1
X ))∗

(

ij1W ij1V ΩL

)
]

= 0, (5.18)

where V and W are again first variations of a solution φ. This statement holds at every point in U

or, equivalently, in X .

As mentioned earlier, the above results cannot in fact be obtained simply by taking exterior

derivatives of (5.16), as the space of solutions may not be a smooth manifold. This necessitates

the use of a more general definition of a first variation, and somewhat complicates the proof of the

multisymplectic form formula. We refer to Marsden et al. [1998] for the details.

Note that here we do not appear to have explicitly considered initial or boundary conditions.

This is because the variations V and W implicitly contain variations in the initial or boundary

conditions, as these conditions act as a parameterization of the space of solutions CL(Y ) by distin-

guishing nearby solutions from each other (away from bifurcation points), up to reparameterization

by diffeomorphisms γ : U → U .

In the general case the coordinate expressions for the multisymplectic form formula are very

complicated. If we restrict attention to only vertical variations, however, then we can write (5.17)

explicitly, as we will now see.
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5.2.3 Spatial multisymplectic form formula and reciprocity

We now turn to an explicit interpretation of the global multisymplectic form formula in the case of

static continuum mechanics. As we shall see, in this particular case it is simply a restatement of the

well-known Betti reciprocity theorem, when the variations are restricted to being purely vertical.

Linearized equations. Assume that φX = id. Recall that we say that φ is a solution of the

Euler-Lagrange equations with displacement and traction boundary conditions (5.12c) and (5.12d)

if it satisfies

DS(φ) · V =

∫

∂τB

τ · V dA

for all variations V which are zero on the displacement boundary ∂dB. We now define W to be a

solution of the linearized problem at φ if

D(DS(φ) · V ) ·W = 0

for all V vanishing on the displacement boundary. More generally, we say that W is a solution of

the linearized problem with incremental body force B(W ) and incremental traction τ(W ) if

D(DS(φ) · V ) ·W =

∫

B

B(W ) · V dV +

∫

∂τB

τ(W ) · V dA

for all V vanishing on ∂dB.

We now use the fact that for any two variations V and W , not necessarily vanishing anywhere,

the multisymplectic form formula is simply the statement that D(DS(φ) ·V ) ·W = D(DS(φ) ·W ) ·V .

This implies that

∫

B

B(W ) · V dV +

∫

∂τB

τ(W ) · V dA =

∫

B

B(V ) ·W dV +

∫

∂τB

τ(V ) ·W dA,

which is exactly the statement of Betti reciprocity (see, for example, Marsden and Hughes [1994] or

Truesdell and Noll [1965]).

In words, this means that if B(W ) and τ(W ) are applied forces which produce the linearized

response W , and B(V ) and τ(V ) similarly produce V , then measuring the response V in the direction

of the forces B(W ), τ(W ) gives the same answer as measuring the response W in the direction

B(V ), τ(V ).

In classical mechanics it is also common to write a dynamic reciprocity theorem which holds at a

given instant of time (see, for instance, Marsden and Hughes [1994]). This is done by including the

linear momentum in the body force terms in the above system. This is not the same as a fully space-

time reciprocity theorem, which can be derived exactly as above by simply considering a dynamic
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problem and taking the action over the full space-time base space [0, T ]× B. By taking space-time

slices of the form [t, t+(∆t)]×B and letting ∆t go to zero, the fully space-time reciprocity theorem

then can be used to derive the standard dynamic reciprocity theorem.

In general, reciprocity occurs in any system arising from a potential function. For an elegant

general theory based on Lagrangian submanifolds see Marsden and Hughes [1994].

5.2.4 Temporal multisymplectic form formula and symplecticity

As we have seen above, reducing the multisymplectic form formula to only apply in space recovers

the standard reciprocity theorem of elastostatics. We will now show how to recover the standard

symplecticity relation of Hamiltonian or Lagrangian mechanics in time.

Assume that φX = id. Recall that a Hamiltonian system on the cotangent bundle T ∗Q of

a configuration manifold Q with canonical symplectic structure dqi ∧ dpi will have a flow map

F t
H : T ∗Q→ T ∗Q which preserves this symplectic structure on T ∗Q. The Lagrangian equivalent of

this statement is that the Lagrangian flow map F t
L : TQ→ TQ on the tangent bundle TQ preserves

the Lagrangian two-form dqi ∧ d
(

∂L
∂q̇i

)

.

To see how this is a consequence of the multisymplectic form formula, we first define the instan-

taneous space of solutions to be CB(S) = {ϕ : B → S}, which is the space of configurations at a

given instant of time. The flow map of the system can now be written

F t
L : TCB(S)→ TCB(S), (ϕ0, ϕ̇0) 7→ (ϕt, ϕ̇t),

where ϕt(X) satisfies the Euler-Lagrange equations for some given boundary conditions (5.12c,5.12d)

with τ = 0 and the initial conditions (ϕ0, ϕ̇0).

If we now take the boundary conditions and the Lagrangian to be constant in time, and consider

a variation (δϕ0, δϕ̇0) in the initial condition, then defining

Vt = TπB · TF t
L · (δϕ0, δϕ̇0),

where πB : (ϕ, ϕ̇) 7→ ϕ, we see that V is exactly a particular vertical first variation, in the sense of

the previous sections. Note also that dS(ϕ) · V will only consist of boundary integrals at the initial

and final times, as V is a variation which preserves the boundary conditions and thus is zero on the

displacement boundary of the reference configuration, while τ is zero on the traction boundary.

Constructing two such vertical first variations V and W and applying the multisymplectic form

formula, we obtain

∫

B

Ωt
L(0,X)(j

1V (0,X), j1W (0,X)) dV −

∫

B

Ωt
L(T,X)(j

1V (T,X), j1W (T,X)) dV = 0.
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Recall, however, that Ωt
L = dqa ∧ dpa

t, and so we can rewrite the above expression as

∫

B

Ωt
L(0,X)

(

(V0, V̇0), (W0, Ẇ0)
)

dV =

∫

B

Ωt
L(T,X)

(

TFT
L · (V0, V̇0), TFT

L · (W0, Ẇ0)
)

dV,

where we have used the definition of the variations V and W as being induced from initial variations

(V0, V̇0) and (W0, Ẇ0), respectively.

The left-hand side of the above expression is simply the field-theoretic Lagrangian two form on

TCB(S), which is

ΩFT
L = d

(∫

B

∂L

∂ϕ̇a
dV

)

∧ dϕa,

whereas the right hand side is the pullback of this under the flow map. That is, we have derived the

statement

ΩFT
L = (FT

L )∗ΩFT
L (5.19)

of time-symplecticity of the flow.

5.2.5 Noether’s theorem

An important source of conservation laws in continuum mechanics is when there are symmetries

in the system. Noether’s theorem is the statement which relates a symmetry to the corresponding

conserved quantity, and we will now show how this can be formulated within the context of variational

multisymplectic mechanics, as in Gotay et al. [1997] and Marsden et al. [1998].

Consider a Lie group G with Lie algebra g and identity e which acts on the left on Y according

to Φ : G × Y → Y by diffeomorphisms g : Y → Y covering the action ΦX : G × X → X by diffeo-

morphisms gX : X → X . That is, each element of G can be written as g(X,x) = (gX (X), gY (X,x)).

The prolongation of the group action is ΦJ1Y : G× J1Y → J1Y given by

g · γ = TgY ◦ γ ◦ Tg−1
X ,

which in coordinates is

g · (Xµ, xa, va
µ) =

(

gµ
X (X), ga

Y (X,x),

[
∂ga

Y

∂Xν
+

∂ga
Y

∂xb
vb

ν

]
∂(g−1

X )ν

∂Xµ

)

.

This definition is chosen so that j1(g ◦ ϕ ◦ g−1
X ) = g ◦ j1ϕ ◦ g−1

X . Given a group action and its

prolongation, we next define the infinitesimal generators associated with a Lie algebra element

ξ ∈ g to be ξX : X → TX , ξY : Y → TY and ξJ1Y : J1Y → T (J1Y ), where

ξX (X) =
d

dg

∣
∣
∣
∣
g=e

(

ΦX
g (X)

)

· ξ
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ξY (y) =
d

dg

∣
∣
∣
∣
g=e

(

Φg(y)

)

· ξ

ξJ1Y (γ) =
d

dg

∣
∣
∣
∣
g=e

(

ΦJ1Y
g (γ)

)

· ξ.

Computing the coordinate expressions for the infinitesimal generators gives

ξX (X) =

(

Xµ, ξµ =
∂(ΦX

g )µ

∂gm
ξm

)

ξY (X,x) =

(

Xµ, xa, ξµ, ξa =
∂(Φg)

a

∂gm
(e)ξm

)

ξJ1Y (X,x, v) =

(

Xµ, xa, va
µ, ξµ, ξa, ξa

µ =
∂ξa

Y

∂xb
vb

µ +
∂ξa

Y

∂Xµ
−

∂ξν
Y

∂Xµ
va

ν

)

.

If the symmetry action is purely vertical or purely horizontal, then the above coordinate expressions

simplify somewhat.

We now define the Lagrangian momentum map (sometimes called the multimomentum

map) JL : J1Y → g∗ ⊗ Λn(J1Y ) to be

JL(ξ) = iξJ1Y
ΘL, (5.20)

where g∗ is the dual of the Lie algebra g of G and Λn(J1Y ) is the space of n-forms on J1Y . In

coordinates, this reads

JL(ξ) =

(

∂L

∂va
µ
ξa
Y −

[
∂L

∂va
ν
va

ν − L

]

ξµ
Y

)

dnXµ −
∂L

∂va
µ
ξν
Y dxa ∧ dn−1Xµν , (5.21)

where dn−1Xµν = i∂/∂νd
nXµ. While it is of interest to consider general group actions, we are

particularly interested here in those which are symmetries of the Lagrangian system. To make this

precise, we say that the Lagrangian is equivariant with respect to the prolongation of the group

action Φ if

L(g · (X,x, v))dn+1X = L(X,x, v)(g−1
X )∗(dn+1X).

In such cases we say that G is a symmetry of the Lagrangian.

Observe that equivariance of the Lagrangian is not the same as the Lagrangian being invariant

under the prolonged group action. Invariance would simply mean that L(g · (X,x, v)) = L(X,x, v),

and it turns out that this is not sufficient for g ·φ to be a solution whenever φ is. The reason that it

is necessary to include the transformation of the volume form dn+1X is that invariance of solutions

(that is, solutions map to solutions) relies upon invariance of the action, and invariance of the action

requires equivariance of the Lagrangian, as we will see explicitly below. This distinction is only
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important if the symmetry action has non-zero base space components, such as a time scaling or

reparameterization.

A necessary condition for the Lagrangian to be equivariant is infinitesimal equivariance, which

is simply the derivative with respect to g of the definition of equivariance. That is, the Lagrangian

is infinitesimally equivariant with respect to the prolonged group action if

dL · ξJ1Y = −L div(ξX ).

This is simply the derivative of the above definition of a symmetry with respect to g in the direction

ξ at the identity, and it has coordinate expression

∂L

∂Xµ
ξµ
Y +

∂L

∂xa
ξa
Y +

∂L

∂va
µ

[

∂ξa
Y

∂xb
vb

µ +
∂ξa

Y

∂Xµ
−

∂ξν
Y

∂Xµ
va

ν

]

+ L
∂ξµ

Y

∂Xµ
= 0.

We will now show that whenever the Lagrangian is equivariant under the prolonged group action,

the corresponding momentum map is a conserved quantity.

Theorem 5.1 (Noether’s theorem). Consider a Lagrangian system L : J1Y → R which is

equivariant under the prolongation of a left action Φ : G × Y → Y as described above. Then the

corresponding Lagrangian momentum map JL : J1Y → g∗⊗Λn(Y ) given by (5.20) or (5.21) satisfies

the global conservation law
∫

∂φX (U ′)

(j1(φ ◦ φ−1
X ))∗JL(ξ) = 0 (5.22)

and the equivalent local conservation law

d
[

(j1(φ ◦ φ−1
X ))∗JL(ξ)

]

= 0 (5.23)

for all ξ ∈ g and all subsets U ′ of U .

Proof. The action of G on Y induces an action of G on the space of configurations C(Y ) by point-

wise action, so that Φ
C(Y )
g : C(Y ) → C(Y ) is given by Φ

C(Y )
g (φ)(U) = g(φ(U)). We now see that
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equivariance of L implies

S′(g · φ) =

∫

gX (φX (U ′))

L
(

j1(φ′ ◦ (φ′
X )−1)

)

dn+1X

=

∫

gX (φX (U ′))

L
(

g ◦ j1(φ ◦ φ−1
X ) ◦ g−1

X

)

dn+1X

=

∫

φX (U ′)

L(g · j1(φ ◦ φ−1
X ))(gX )∗(dn+1X)

=

∫

φX (U ′)

L(j1(φ ◦ φ−1
X ))dn+1X

= S′(φ)

and so the action is invariant under the action of ΦC(Y ). If φ is an extrema of the action, then

invariance implies that g · φ is also an extrema, and so the space of solutions is invariant under the

group action. That is, g · CL(Y ) = CL(Y ).

If we now denote the infinitesimal generator of the group action on the space of configurations

by ξC(Y ) : C(Y ) → T (C(Y )), then invariance of the action can be written dS′(φ) · ξC(Y ) = 0 for all

ξ ∈ g, which still holds if we restrict to the space of solutions CL(Y ).

Using (5.16), however, we can also write the derivative of the action in the group direction as

dS′(φ) · ξC(Y ) =

∫

∂φX (U ′)

(j1(φ ◦ φ−1
X ))∗

(

iξJ1Y
ΘL

)

,

where we have used the fact that ξJ1Y = j1ξY . Using the definition of the Lagrangian momentum

map and the above statement of invariance of the action, we now have

∫

∂φX (U ′)

(j1(φ ◦ φ−1
X ))∗JL(ξ) = dS′(φ) · ξC(Y ) = 0,

which is the global statement of Noether’s theorem.

Applying Stokes’ theorem shows that this is equivalent to

∫

φX (U ′)

d
[

(j1(φ ◦ φ−1
X ))∗JL(ξ)

]

= 0

for any U ′ ⊂ U , and thus we can conclude that the integrand itself is zero, giving the local (or

divergence) statement of Noether’s theorem.

The above proof shows that in fact only infinitesimal equivariance is required for Noether’s

theorem, rather that the stronger statement of equivariance itself. This is often useful in examples.

In the above theorem we have not explicitly accounted for boundary conditions, and the assump-

tion of equivariance requires that body forces arising from external potentials in the Lagrangian



150

do not act in the symmetry direction. If we now consider a more general situation, in which the

solution satisfies traction boundary conditions in the sense of equation (5.11) and we do not require

equivariance of the Lagrangian, then for an arbitrary variation V we have

dS(φ) · V =

∫

φX (∂1U)

τ · V dA +

∫

φX (∂U\∂1U)

(j1(φ ◦ φ−1
X ))∗

(

ij1V ΘL

)

and so taking the variation to be V = ξC(Y ) gives us

∫

φX (∂U\∂1U)

(j1(φ ◦ φ−1
X ))∗JL(ξ) = −

∫

φX (∂1U)

τ · ξY dA + dS(φ) · ξC(Y ). (5.24)

5.2.6 Symmetries and momentum maps

We now turn to considering the three main symmetries which arise in continuum solid mechanics

problems. These are translation, rotation and time translation invariance, and they give rise to

conservation of linear momentum, angular momentum and energy, respectively.

Translation invariance. The group of translations is Gtr ∼= YX = R
3, and it acts by ηr(X,x) =

(X,x + r). The infinitesimal generator corresponding to ξr ∈ gtr is thus given by ξr(X,x) =

(X,x, 0, r) for each r ∈ R
3.

The Lagrangian (5.1) is clearly equivariant because it has no explicit dependence on the fiber

spatial coordinate x. Computing the Lagrangian momentum map gives

JL(ξr) =
∂L

∂va
µ
ra dnXµ

and it can be easily seen that the local Noether’s theorem (5.23) recovers the Euler-Lagrange equa-

tions1.

Using the global form of Noether’s theorem with boundary conditions (5.24) and assuming that

φX = id, we compute the various terms to be

∫

∂X\∂1X

(j1(φ ◦ φ−1
X ))∗JL(ξ) =

∫

B

∂L

∂va
t

∣
∣
∣
∣
t=T

dV +

∫ T

0

∫

∂dB

∂L

∂va
i
Ni dAdt

∫

∂1X

τ · ξY dA =

∫ T

0

∫

∂τB

τa dAdt +

∫

B

(p0)a(−dV )

dS(φ) · ξC(Y ) =

∫ T

0

∫

B

∂L

∂xa
dV dt.

If we now substitute in the Lagrangian (5.1) and use the expressions (5.3), then we see that (5.24)

1This can also be predicted from general theory, because the action of Gtr is vertically transitive (see Gotay et al.
[1997])
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becomes

∫

B

pa(T,X) dV −

∫

B

pa(0,X) dV =

∫ T

0

∫

∂dB

Pa
i(t,X)Ni(X) dAdt

+

∫ T

0

∫

∂τB

Ta(X) dAdt +

∫ T

0

∫

B

Ba(t, x) dV dt.

This shows how the whole-body linear momentum changes from time 0 to time T under the influence

of traction boundary forces Ta = −τa, displacement boundary conditions, and body forces Ba =

−∇aV . In the case of free boundary conditions, when ∂τB = B and τ = 0, and zero body forces, we

recover the conservation of whole-body linear momentum.

Rotation invariance. The group of rotations is Grot ∼= SO(3), with action given by ηR(X,x) =

(X, exp(R)x) for each skew matrix R ∈ so(3). The infinitesimal generator for an element ξR ∈ grot

is given by ξR(X,x) = (X,x, 0, Rx).

The assumption of material frame indifference, namely that the stored energy function W in

(5.1) depends only on FT F , means that the Lagrangian itself is invariant under the action of Grot.

The Lagrangian momentum map is

JL(ξR) =
∂L

∂va
µ
Ra

bϕ
b dnXµ

and so the local Noether’s theorem is the statement that Rabσ
ba = 0 for all R, so skew-symmetry

of R implies that the Cauchy stress tensor σ is symmetric. This recovers the standard balance of

moment of momentum. The global Noether’s theorem is simply the statement of global angular

momentum conservation, assuming compatible boundary conditions.

Time translation invariance. The group of time translations is Gtime ∼= R, with action ηα(t,X, x) =

(t + α,X, x) and ξα ∈ gtime for each α ∈ R. The infinitesimal generator for ξα ∈ gtime is

ξα(t,X, x) = (t,X, x, α, 0, 0). The Lagrangian (5.1) is equivariant with respect to the action of

Gtime as it is independent of time and the Lagrangian momentum map gives

(j1(φ ◦ φ−1
X ))∗JL(ξα) =

[

−
∂L

∂va
µ
ϕa

,t dnXµ − ELdnXt

]

α.

The local Noether’s theorem then gives the local energy continuity equation, while the global

Noether’s theorem gives the statement of whole-body energy conservation. In fact, arbitrary time

reparameterizations are a symmetry of the system, and also lead to energy conservation. In consid-

ering such actions it is crucial to distinguish between equivariance and invariance of the Lagrangian.
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Chapter 6

Multisymplectic asynchronous
variational integrators

In this chapter we wish to consider both the abstract theory of multisymplectic discretizations, as

well as the particular example of Asynchronous Variational Integators (AVI). We begin with the

concrete example of AVI in §6.1, and then in §6.2 and §6.3 we consider the abstract theory.

6.1 Asynchronous variational integrators (AVIs)

In this section we describe a class of asynchronous time integrators. This work has appeared in Lew

et al. [2003a] and Lew et al. [2003b].

6.1.1 Systems of particles

Consider a system of Na particles with dynamics described by a Lagrangian of the form

L(x, ẋ) =
∑

a

1

2
ma‖ẋa‖

2 −
∑

K

VK(x), (6.1)

where ma is the mass of particle a at position xa ∈ R
3 and VK is the potential energy of subsystem

K. It is this decomposition of the total potential energy which permits the asynchronicity of the

time discretization.

Example: Molecular dynamics. One common example of systems of the form (6.1) arises in

molecular problems. Here the potentials VK represent the interaction between pairs (or triples) of

particles, so that we have Vab = V (‖xb − xa‖) for all a < b and some given V (r).

Example: Finite elements. Continuum mechanical systems can be specified by considering the

deformation mapping ϕ : B → R
3 which acts on points X in the reference configuration B ⊂ R

3.

The deformation of local or infinitesimal neighborhoods is described by the deformation gradient
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F = ∇Xϕ, where ∇Xϕ denotes only the spatial gradient of ϕ. The time derivative of ϕ is denoted

with ϕ̇, while accelerations are indicated with ϕ̈. The Lagrangian is of the form1

L(ϕ, ϕ̇) =

∫

B

(ρ0

2
‖ϕ̇‖2 −W (∇Xϕ,X)

)

dX, (6.2)

which describes the dynamics of hyperelastic materials. In equation (6.2) ρ0 is the density of the

continuum in the reference configuration and W (F,X) is the free-energy density of the material.

We assume that W (F,X) satisfies the requirement of material frame indifference (see, e.g., Marsden

and Hughes [1994]). Recall that for hyperelastic materials the first Piola-Kirchhoff stress tensor is

given by

P i
I =

∂

∂F i
I

W (F,X). (6.3)

The Euler-Lagrange equations for (6.2) translate into the infinitesimal balance of linear momentum

∇X · P − ρ0ϕ̈ = 0. (6.4)

Consider now the spatial semidiscretization of (6.2) by finite elements. We let T be a triangulation

of B. The corresponding finite-dimensional space of finite-element solutions consists of deformation

mappings of the form

ϕh(X) =
∑

a∈T

xa Na(X), (6.5)

where Na is the shape function corresponding to node a, xa represents the position of the node in

the deformed configuration.

We let ma be the lumped mass associated to node a arising from the discretization (6.5) and

some lumping scheme. The elemental potential energies VK(xK) are given by

VK(xK) =

∫

K

W (∇ϕh,X)dX, (6.6)

where xK is the vector of positions of all the nodes in element K. Of course, terms in the potential

energy resulting from boundary conditions or body forces should be added to the expression in (6.6).

We thus have a finite dimensional system of the form (6.1).

6.1.2 Asynchronous time discretizations

While asynchronous methods can be applied to any Lagrangian system with a decomposed potential

energy, here we use the terminology associated with finite element discretizations. To apply the

1Of course terms representing body forces arising from a potential energy could be added to the Lagrangian
density (6.2). Similarly, the Lagrangian density could depend explicity on time. This cases do not present any
essential difficulties and can be found in Lew et al. [2003a]. For simplicity, we will not consider them here.
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Figure 6.1: Spacetime diagram of the motion of a two-element, one-dimensional mesh. The set of
coordinates and times for a single node is shown in the reference and deformed configuration. Note
that the nodal coordinates and times are labeled according to the interaction of the node with all
elements to which it belongs.

methods to a problem such as molecular dynamics, simply think of “elements” as being “pairwise

potentials”, and “nodes” as being “particles”.

Time discretization. For each element K we choose a time step ∆tK . Different elements could

have different time steps2. We denote with tjK = j∆tK , j = 0, . . . , NK , the time of the j-th time

step for element K, with NK being the smallest integer such that tjK ≥ T . From this, we construct

the space-time discretization as shown in Figure 6.1. As shown in Figure 6.1, we also denote with

tia, i = 0, . . . , Na, the time instant for node a. Nonconstant time step per element are considered in

Lew et al. [2003a].

Discrete action sum. Define the discrete action sum to be

Sd =
∑

a

Na−1∑

i=0

1

2
ma(ti+1

a − tia)

∥
∥
∥
∥

xi+1
a − xi

a

ti+1
a − tia

∥
∥
∥
∥

2

−
∑

K

NK−1∑

j=0

(tj+1
K − tjK)VK(xj+1

K ), (6.7)

which approximates the continuous action over the time interval [0, T ].

Discrete Lagrangians. In the particular case of finite element discretizations, the above action

sum can be realized as the sum of space-time discrete Lagrangians. Let mK,a be the mass of node

2It is straightforward to extend the definition of AVI methods given here to allow each elemental time step to vary
as the integration advances in time, either in response to error driven adaptivity criteria, or to some other information
such as local energy balance laws (see Lew et al. [2003a]).
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a which is due to element K, so that ma =
∑

K mK,a. Then the discrete action is the sum over all

elements K and elemental times j of the discrete Lagrangian

Lj
K =

∑

a∈K

∑

{i : tj
K
≤ti

a<tj+1

K
}

1

2
mK,a(ti+1

a − tia)

∥
∥
∥
∥

xi+1
a − xi

a

ti+1
a − tia

∥
∥
∥
∥

2

− (tj+1
K − tjK)VK(xj+1

K ), (6.8)

where xK is the vector of positions of all the nodes in element K. The discrete Lagrangian Lj
K

approximates the incremental action of element K over the interval [tjK , tj+1
K ]. In general, Lj

K

depends on the nodal positions xi
a, a ∈ K, and such that tia ∈ [tjK , tj+1

K ]3. The discrete action sum

Sd thus depends on all the nodal positions xi
a for all nodes a ∈ T and for all times tia, 0 ≤ i ≤ Na.

Discrete Euler-Lagrange equations. The discrete variational principle states that the discrete

trajectory of the system should be a critical point of the action sum for all admissible variations of

the nodal coordinates xi
a. The discrete Euler-Lagrange equations are

Di
aSd = 0 (6.9)

for all a ∈ T \ ∂dB such that tia ∈ (0, T ). Here and subsequently, Di
a denotes differentiation with

respect to xi
a. The discrete Euler-Lagrange equations (6.9) define the equations of motion of the

discrete problem.

After introducing the definition of the discrete Lagrangian (6.8) under consideration into (6.9),

a straightforward calculation gives the discrete Euler-Lagrange equations explicitly in the form

pi+1/2
a − pi−1/2

a = Ii
a, (6.10)

where

pi+1/2
a ≡ ma

xi+1
a − xi

a

ti+1
a − tia

≡ ma vi+1/2
a (6.11)

are discrete linear momenta and ma are the nodal masses, i.e., ma =
∑

K mK,a . In addition, we

define

Ij
K ≡ −(tjK − tj−1

K )
∂

∂xj
K

VK(xj
K), (6.12)

which may be regarded as the impulses exerted by element K on its nodes at time tjK . In equation

(6.10) Ii
a represents the component of Ij

K corresponding to node a, with tia = tjK . Eq. (6.10) may

be interpreted as describing a sequence of percussions imparted by the elements on their nodes at

discrete instants of time. Thus, the element K accumulates and stores impulses Ij
K over the time

interval (tj−1
K , tjK). At the end of the interval, the element releases its stored impulses by imparting

3If adjacent elements possess coincident elemental times one must derive the correct interpretation by taking the
appropriate limits. See [Lew et al., 2003a, §3.2]
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percussions on its nodes, causing the linear momentum of the nodes to be altered. The resulting

nodal trajectories can be regarded as piecewise linear in time. We note that adjacent elements

interact by transferring linear momentum through their common nodes. Note that the resulting

algorithm is explicit of the central-difference type.

6.1.3 Implementation of AVIs

In this section we turn our attention to discussing the implementation of the AVI corresponding to

the discrete Lagrangian (6.8).

Because of the algorithm’s asynchronous nature, a suitable scheduling procedure which deter-

mines the order of operations while ensuring causality must be carefully designed. One particularly

efficient implementation consists of maintaining a priority queue (see, e. g., Knuth [1998]) containing

the elements of the triangulation.4 The elements in the priority queue are ordered according to the

next time at which they are to become active. Thus, the top element in the queue, and consequently

the next element to be processed, is the element whose next activation time is closest to the present

time.

The general flow of the calculations is as follows. The priority queue is popped in order to

determine the next element to be processed. The new configuration of this active element is computed

from the current velocities of the nodes. Subsequently, these velocities are modified by impulses

computed based on the new element configuration. Finally, the next activation time for the element

is computed and the element is pushed into the queue. A flow chart of the numerical procedure is

given in fig. 6.2. Note that the algorithm allows the time step of each element to change in time.

The use of the priority queues is particularly simple in C++, since these are provided by several

freely available libraries. Also, routines implementing priority queues in C are freely available to

download. Priority queues are frequently implemented through balanced binary trees [Knuth, 1998,

pp.458].

The adaption of existing FE codes to implement the explicit AVI integrator is fairly simple. The

computations at the element level remain untouched, while the driver that assembles the global

internal force vector should be removed, since there is no assembly required. Instead, a driver that

implements the operations in fig. 6.2 should be coded. Notice that apart from the priority queue

and two arrays to store elemental and nodal times respectively, no extra storage nor new arrays are

required over traditional explicit Newmark schemes. To plot the configuration of the continuum,

a short routine computing the positions of the nodes at the time of the most advanced element is

needed. In this case, each node is advanced by following a linear trajectory parallel to its velocity.

It is noteworthy that explicit AVIs allows for the reusage of most of the existing FE structural

4We stress that this is only one possibility for ordering the computation, and is not imposed by the discrete
Euler-Lagrange equations.
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Explicit AVI Algorithm

Input data: T, T ,
{

x0
a, ẋ

1/2
a | a ∈ T

}

. Initialization

. qa ← x0
a, va ← ẋ

1/2
a , τa ← 0 for all a ∈ T

. Do for all K ∈ T

. τK ← 0

. Compute t1K

. Push (t1K ,K) into priority queue

. End Do

. Iterate over the elements in time

. Do until priority queue is empty

. Extract next element: Pop (t,K) from priority queue

. Update positions: qa ← qa + va (t− τa), for all a ∈ K

. Update node’s time: τa ← t, for all a ∈ K

. If t < T

. Update velocities:
va ← va − (t− τK) ∂VK

∂xa
(qK) /ma, for all a ∈ K

. Update element’s time: τK ← t

. Compute tnext
K

. Schedule K for next update:
Push (tnext

K ,K) into priority queue

. End Do

. End

Figure 6.2: Algorithm implementing the discrete Euler-Lagrange equations of the action sum given
by equation (6.8).
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dynamics codes.

6.1.4 Momentum conservation properties

In order to derive the discrete momentum balance equations, we consider a one-parameter group of

trajectories with nodal positions given by (xi
a)ε = exp(εΩ)xi

a + εv, for any vector v ∈ R
3 and skew-

symmetric matrix Ω. We assume that the discrete action sum is translation and rotation invariant,

so that the value of Sd for (xi
a)ε is equal to its value for xi

a.

Differentiating the discrete action sum of the perturbed trajectory with respect to ε gives

0 =
∂

∂ε
Sd

(

(xi
a)ε
)
∣
∣
∣
∣
ε=0

=
∑

a

Na∑

i=0

Di
aSd · v +

∑

a

Na∑

i=0

(xi
a ×Di

aSd) · ω (6.13)

where ω ∈ R
3 is the axial vector of Ω, which in terms of the Hodge star operator is ω = ∗Ω.

We now use the fact that xi
a is a trajectory of the system and so it satisfies the discrete Euler-

Lagrange equations (6.10). Then Di
aSd = 0 for all a and i = 1, . . . , (Na−1). Under these conditions,

equation (6.13) reduces to

0 =

[
∑

a

D0
aSd +

∑

a

DNa
a Sd

]

· v +

[
∑

a

x0
a ×D0

aSd +
∑

a

xNa
a ×DNa

a Sd

]

· ω. (6.14)

As this must hold for all v and all ω we obtain

∑

a

DNa
a Sd = −

∑

a

D0
aSd (6.15)

∑

a

xNa
a DNa

a Sd = −
∑

a

x0
aD0

aSd, (6.16)

which furnishes a precise statement of discrete linear and angular momentum conservation, respec-

tively. Using the particular expression (6.7) for the discrete action sum we can evaluate (6.15) and

(6.16) to give

∑

a

p1/2
a =

∑

a

pNa−1/2
a (6.17)

∑

a

x0
a × p1/2

a =
∑

a

xNa
a × pNa−1/2

a , (6.18)

which clearly shows that both momenta are conserved.

Momentum evolution without symmetry. We assumed above that the discrete action sum

was translation and rotation invariant, which will only be the case if there are no displacement

boundary conditions and no forces or torques are applied to the body. If there are such effects, then
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we can carry out the same calculation but with the left-hand side of (6.13) being nonzero. In fact,

this nonzero term will exactly give the net resultant force and moment and so (6.17) and (6.18)

will give discrete versions of the familiar statements that change in linear and angular momentum

should equal the total impulse and moment of impulse imparted to the system. These expressions

are worked out in general in Lew et al. [2003a].

6.1.5 Numerical examples

In this section we illustrate the performance of an explicit AVI for structural dynamics by simulating

the motion in vacuum of a simplified model of the blades of an Apache AH-64 helicopter. These

and other simulations in this section were performed using code written by Adrian Lew.

The simulation of the dynamics of rotor blades and similar systems has long been a challenge and

a test-bed for time-integration algorithms for structural dynamics (Borri [1986]; Friedmann [1990];

Sheng, Fung, and Fan [1998]; Armero and Romero [2001a,b]; Bottasso and Bauchau [2001]). The

slender geometry of the blades renders the system prone to dynamic instability, and the need to

compute accurate solutions for long periods of time, to conserve linear and angular momentum,

and to accurately distribute the energy across the frequency spectrum place stringent tests on time-

integration methods.

The blade has a span of 7.2 m, a chord of 533 mm and a maximun thickness of 40 mm. The

three-dimensional mesh of the blade is shown in Figure 6.3. It consists of 2089 ten-noded tetrahedral

elements and 4420 nodes. The original geometry of the hub of the blade rotor was replaced by a

simple straight joint. The blades comprise 5 steel spars reinforced with glass fiber. However, for

this example we simply replace the hollow structure by an effective homogeneous material. The

strain-energy density is given by

W (F,X) =
λ0(X)

2
(log J)

2
− µ0(X) log J +

µ0(X)

2
tr
(
FTF

)
, (6.19)

which describes a Neohookean solid extended to the compressible range. In this expression, λ0(X)

and µ0(X) are—possibly inhomogeneous—Lamé constants. The corresponding Piola stress-deformation

relation follows from (6.3) in the form:

P = λ0 log J F−T + µ0

(
F − F−T

)
. (6.20)

As the initial condition at time t = 0, we consider the blade in its undeformed configuration with

a velocity field corresponding to an angular velocity ω = 40 rad/s. Due to the absence of external

forces or dissipation the energy is conserved and the center of mass does not move from its original
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position for all times. We classify cases according to the dimensionless angular velocity

ω̂ =
ωL2

cw
,

where ω is the nominal angular velocity of the blade, L its span, w is the chord of the blade, and

c =

√

λ0 + 2µ0

ρ0
,

is a nominal dilatational wave speed of the material. In all examples, the elemental time steps are

determined from the Courant condition, which provides an estimate of the stability limit for explicit

integration (see, e.g., Hughes [1987]). Specifically, the value of the time step for each element is set

to a fraction of the Courant limit and is computed as

∆t = f
h

c
, (6.21)

where f = 1/10 and h is the radius of the largest ball contained in the element. The time step is

kept constant in each element throughout the computation. We note that the elemental time steps

are not required to be integer-related, and the element trajectories are not synchronized in general.

We proceed to report three test cases which illustrate the performance and properties of the

AVIs. The first case consists of a homogeneous blade with material constants ρ0 = 250 kg/m3,

λ0 = 0.98 GPa and µ0 = 0.98 GPa, and, correspondingly, ω̂ = 1.13. For this choice of parameters

the computed trajectory is close to a rigid rotation, Fig. 6.4, and remains stable both for short

(Fig. 6.4(a)) and long (Fig. 6.4(b)) times.

The second case consists of a homogeneous blade with material constants ρ0 = 2500 kg/m3, λ0 =

4 GPa and µ0 = 4 GPa, and, correspondingly, ω̂ = 1.78. Moderately large amplitude oscillations,

including spanwise torsional modes, develop during the initial transient, Fig. 6.5(a). Remarkably,

after this transient the blade settles down to a fairly stable shape and rotates almost rigidly.

Finally we consider a two-material blade. The central joint consists of a stiff material with

constants ρ0 = 4500 kg/m3, λ0 = 3 GPa and µ0 = 0.75 GPa, while the remainder of the blade is

composed of a softer material with constants ρ0 = 250 kg/m3, λ0 = 0.1 GPa and µ0 = 0.025 GPa.

The contrast between the dilatational wave speeds of the two materials, and therefore between the

stable time steps for elements of the same size in the two different regions, is 1.3. The value of

the dimensionless angular velocity velocity relative to the softer material is ω̂ = 5.02. The initial

transient is characterized by very large-amplitude oscillations in the blade, Fig. 6.6(a), while the

central joint remains essentially rigid. As in the previous case, after this transient the blade settles

down to a stable nearly-rigid orbit.

A first noteworthy feature of the solutions is that, despite their asynchronous character, they
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advance smoothly in time without ostensible jerkiness or vacillation. Note also that the center of

mass of the blade does not move, which is a consequence of the conservation of linear momentum

by the algorithm. The period of rotation for long times is of particular interest. A perfectly rigid

blade would rotate once every 0.157 s. However, a flexible blade increases its span under the action

of the inertia forces induced by the rotatory motion, and its angular velocity slows down in order to

conserve the total angular momentum. This effect is indeed observed in the simulations, as shown

in table 6.1, and is a consequence of angular-momentum conservation.

A measure of performance of the AVIs is shown in Fig. 6.7, which depicts the number of updates

in each of the elements of the mesh for the third numerical example described above. As is evident

from the figure, the larger elements in the mesh are updated much less frequently than the finer

elements. In particular, a small number of slivers are updated very frequently, as required by their

small Courant limit. Also, the elements in the central joint, made of a stiffer material, are updated

more often than the more flexible elements in the blade.

Some relevant statistics are collected in Table 6.2. Overall, in the present example the number

of AVI updates is roughly 15% of the number of updates required by explicit Newmark at constant

time step. It should be carefully noted, however, that in the example under consideration the vast

majority of the elements have similar sizes and aspect ratios, differing only by at most one order

of magnitude. It is easy to set up examples in which the update count of the constant time step

algorithm bears an arbitrarily large ratio to the update count of the AVI. A case which arises in

practice with some frequency concerns a roughly uniform triangulation of the domain which contains

a small number of high aspect-ratio elements. The presence of a single bad element suffices to drive

down the critical time step for explicit integration to an arbitrarily small value. This problem often

besets explicit dynamics, especially in three dimensions where bad elements, or slivers, are difficult

to eliminate entirely. The AVI algorithm effectively sidesteps this difficulty, as bad elements drive

down their own times steps only, and not the time steps of the remaining elements in the mesh. In

this manner, the overall calculation is shielded from the tyranny of the errant few.

Case ω̂ Period [s]

1 1.13 0.1575 ± 0.0005

2 1.78 0.1595 ± 0.0005

3 5.02 0.1845 ± 0.0005

Table 6.1: Period of rotation of the blade for long times. As the value of ω̂ grows, the blade deforms
more increasing its span, and therefore its moment of inertia, to accommodate the centrifugal forces.
Since the discrete angular momentum is conserved, the period rotation should grow accordingly.

In section §1.6.5 we alluded to the excellent energy-conservation properties of variational inte-

grators. Our numerical tests (see also Lew et al. [2003a]) suggest that the AVIs possess excellent
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Case ω̂ Final time [s] Maximum Minimum Total Speed-Up

1 1.13 7.849 266× 106 14× 106 8.7× 1010 6.37

2 1.78 15.015 325× 106 17× 106 42.6× 1010 6.37

3 5.02 27.439 235× 106 12× 106 8.4× 1010 5.80

Table 6.2: Maximum and minimum number of elemental updates for a single element at the final
time. The total column shows the sum of the number of elemental updates in the whole mesh at
the final time. In contrast, traditional time stepping algorithms would have advanced with the same
number of updates on each element, which is equal to the value in the Maximum column. The ratio
between the total number of updates in the whole mesh in these two cases is shown in the Speed-up
column, a direct measure of the cost saving features of AVI.

Figure 6.3: Mesh of the blade. It consists of 2089 ten-noded tetrahedral elements and 4420 nodes.
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t=0.10 s
t=0.30 s

t=0.50 s

t=0.70 s

t=0.90 s

t=1.10 s

(a) Initial steps

t=6.85 s

t=7.05 s

t=7.25 s
t=7.65 s

t=7.45 s

t=7.65 s

(b) Final steps

Figure 6.4: Evolution of the blade for the first and most rigid case. The motion of the blade is
essentially that of a rigid body. The center of mass does not move, a consequence of the discrete linear
momentum conservation, and the period of the blade is very close to the one of a completely rigid
blade, since the spanwise elongation is negligible. The final snapshots correspond to approximately
266 million updates of the smallest element in the mesh.
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t=1.83 s

t=1.86 s

t=1.89 s

t=1.92 s

t=1.95 s

t=1.98 s

(a) Initial steps

t=14.84 s

t=14.87 s

t=14.90 s

t=14.93 s

t=14.96 s

t=14.99 s

(b) Final steps

Figure 6.5: Evolution of the blade for the second case. During the initial phases of the motion,
some fairly large deflections, including torsion along the spanwise direction, occur. However, after a
relatively long time the blade rotates with an almost fixed shape. The period of rotation has changed
slightly with respect to a rigid blade, since there is a non-negligible spanwise elongation inducing a
change in the corresponding moment of inertia. The final snapshots correspond to approximately
325 million updates of the smallest element in the mesh.

t=0.23 s

t=0.23 s
t=0.69 s

t=1.15 s

t=0.46 s

t=0.92 s

t=1.38 s

(a) Initial steps

t=25.37 s

t=25.60 s

t=25.83 s

t=26.06 s

t=26.29 s

t=26.52 s

(b) Final steps

Figure 6.6: Evolution of the blade for the third and softest case. During the initial phases of the
motion, the blade behaves as a very flexible strip. Surprisingly, after a relatively long time the
blade settles to rotate with small amplitude oscillation close to an almost fixed shape. The period
of rotation with respect to a rigid blade has changed considerably, since the spanwise elongation is
large. The final snapshots correspond to approximately 234 million updates of the smallest element
in the mesh.
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7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1

Figure 6.7: Contour plot of the log10 of the number of times each element was updated by the
AVI after 27.439 s of simulation of case 3, in which inertial forces prevail. The picture on the
middle shows an enlargement of the central part of the blade, which is made out of a stiffer material
than the rest. The abrupt change in the number of elemental updates between the two region is
noteworthy. Additionally, the picture on the top shows only those few elements updated more than
108 times. These elements or slivers would drive the whole computation down for a constant time
step algorithm, while AVI circumvents this difficulty gracefully.
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energy-conservation properties as well. Thus, for instance, Figure 6.8 shows the time evolution of the

total energy of the blade in the third case. It is remarkable that the energy remains nearly constant

throughout the calculations, which entail 234× 106 updates of the smallest element in the mesh, or

approximately 150 revolutions of the blade, despite the dynamically unstable initial transient. The

energy behavior is equally good in the remaining numerical examples.
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Figure 6.8: Evolution of the total energy in the blade as a function of the number of revolutions of
the blade, for the third and softest case. Remarkably, the energy remains nearly constant even after
the smallest element in the mesh has been updated more than 200 million times, at the end of the
horizontal axis.

6.1.6 Complexity and convergence

The computational costs involved in the AVI algorithm can be separated into those associated with

the element updates, and the overhead involved in the determination of which element to update

next. It is readily verified, however, that the latter cost is generally much smaller than the former,

as shown next.

Complexity and cost estimates. We proceed to estimate the speedup afforded by AVIs relative

to explicit Newmark, or other similar explicit method, with a time step

∆tmin = min
K

∆tK .

For a fixed final time T the cost CAVI of the AVI method is

CAVI =
(
CEU + CPQ

)

︸ ︷︷ ︸

cost per time step

·
∑

K

T

∆tK
,

︸ ︷︷ ︸

# time steps

(6.22)
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where CEU is the cost per element update and CPQ is the cost of inserting and removing one element

from the priority queue. The corresponding cost for explicit Newmark is

CNM = CEU ·
∑

K

T

∆tmin
. (6.23)

If we neglect the priority queue cost by setting CPQ = 0, then we can calculate the maximum AVI

speedup to be

λ =
CNM

CAVI

∣
∣
∣
∣
CPQ=0

=

∑

K
1

∆tmin
∑

K
1

∆tK

. (6.24)

We now consider the effect on the cost of the priority queue, which we assume to be implemented

using a balanced binary tree. Under these conditions, the cost is CPQ = κ log2(E), where E is the

number of elements in the mesh and κ is the cost per level of the binary tree, which can be taken

to be constant. Specifically, our benchmarks give κ ≈ 0.2µs. By contrast, the cost CEU of an

element update depends sensitively on the type of element and the constitutive model, and can be

substantial for complex constitutive models. Even for relatively simple nonlinear elasticity models,

however, this cost is still greatly in excess of CPQ. For example, for a Neohookean material and six

noded triangles, our numerical benchmarks give CEU ≈ 10µs. We can now estimate the size of the

mesh for which the cost CPQ begins to dominate CEU. The ratio of costs is given by

CPQ

CEU
=

κ

CEU
log2(E) = 0.02 log2(E),

and for CPQ to be greater than CEU would thus require log2(E) > 50, i.e., an inordinately large mesh

containing in the order of 1015 elements. Taking the priority-queue overhead into consideration, true

AVI speedup is
CNM

CAVI
=

λ

1 + κ
CEU

log2(E)
. (6.25)

In the helicopter-blade calculations, the number of elements is E = 2089, the cost of an elemental

update for a ten-node tetrahedral element is CEU ≈ 25µs. and thus

CNM

CAVI
=

6.4

1 + 0.2
25 log2(2089)

= 5.9,

which is close to the optimal speedup λ = 6.4. These estimates demonstrate the relatively modest

impact of the priority queue on the overall performance of the method.

Probabilistic sorting for element updates. In §6.1.3 we considered solving the AVI equations

(6.10) by maintaining a priority queue to track which element has the smallest next time in the

entire mesh. This is an overly strong requirement for solving the equations, however, as we can

update an element whenever all of the adjacent elements have larger next times. This methodology
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also provides a basis for the construction of parallel implementations of AVI methods.

One simple scheme for doing this is to maintain the array of next times for each element. To

perform a time step, we select an element at random and check whether its next time is less than

that of all adjacent elements. If it is, then we update it and start another time step. If not, we move

to the adjacent element with the smallest next time, and proceed to check its adjacent elements,

repeating the test until we find an element with next time less than its neighbors. This procedure

is clearly guaranteed to terminate, and it will always find an element which we can update.

The advantage of this method over the priority queue used earlier is that the cost will be con-

stant in the number of elements in the mesh. To implement the method efficiently requires storing

adjacency information in the mesh data structures, with which the cost of this algorithm will be

very small compared with the other operations necessary to perform an elemental update.

To estimate the cost of this algorithm we note that in the worst case we may need to iterate

over every element in the mesh before finding an element which we can update. This is extremely

unlikely, however, and so it is appropriate to ask how many steps are necessary on average. We can

readily calculate an upper bound for this by assuming an infinite mesh and that each element test

is independent, which is overly pessimistic. For a mesh in which each element is adjacent to r other

elements, the average number of steps before this algorithm finds an appropriate element is bounded

by

Nstep =
∞∑

n=1

n

(

1−

(
1

2

)r
)(

1−

(
1

2

)r−1
)n−1(

1

2

)r−1

= 2r−1 −
1

2
. (6.26)

For tetrahedral elements, such as those used in the numerical simulations in §6.1.5, each element has

r = 4 adjacent elements and so the average number of steps necessary to find an element to update

would be 7.5, irrespective of the size of the mesh. This algorithm would thus add a negligible cost to

the AVI implementation and allow it to achieve almost the maximum speedup factor λ over explicit

Newmark.

Cost/accuracy analysis. We quantitatively demonstrate that asynchronous methods can sub-

stantially lower the cost of a computation without degradation in accuracy by means of the following

numerical test. Consider a two-dimensional plane strain, nonlinear elastic slab clamped on one edge

and free at the other, deflecting under the action of uniform gravity. The material is Neohookean

extended to the compressible range, eq. (6.20). The slab is initially undeformed and at rest. We con-

sider an initial nonuniform mesh composed of 88 six-node quadratic triangles. A schematic picture

of the geometry and the initial mesh are shown in Fig. 6.9.

The initial mesh is refined by uniform quadrisection several times over, resulting in meshes
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Figure 6.9: Schematic diagram of the geometry of the slab and the coarsest mesh for the
cost/accuracy example

containing 88, 352, 1408, 5632 and 22528 elements. For each mesh, the solution is computed up to

a prescribed final time using both AVIs and explicit Newmark. The explicit Newmark calculations

are started as discussed in section §1.5.4. In the AVI calculations, the appropriate initial conditions

at node a are

x0
a = ϕ0(Xa)

v1/2
a =

1

2ma

∑

{K|a∈K}

I0
Ka,

where ϕ0(X) is the initial deformation mapping and

I0
Ka = −∆tK

∂VK(x0
K)

∂x0
Ka

.

Note that this initialization procedure reduces to Newmark’s for a uniform time step. An explicit

Newmark solution computed with an exceedingly fine 90112-element mesh is presumed to be osten-

sibly converged, and used in lieu of the exact solution in order to compute errors.

The L2-norm displacement and deformation-gradient errors are shown in Fig. 6.10 as a function

of the computational cost. It is evident from these plots that the computational cost incurred in the

computation of solutions of equal accuracy is is substantially less for the AVIs.

Convergence of AVIs. The slope of the plots in Fig. 6.10 is also directly related to the rate of

convergence in ∆t. To verify this, we note that the elemental time steps are proportional to the inner

radius of the element, by virtue of the Courant condition. This implies that the rate of convergence

in ∆t is three-times the slope of the plots Fig. 6.10. This gives a displacement rate of convergence

of roughly 1.9, and a deformation-gradient rate of convergence of 1.1, for both methods.

The convergence of AVIs may also be established analytically. To this end, define the maximum

time step

∆tmax = max
K

∆tK (6.27)
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Figure 6.10: L2 errors for the displacement (on the left) and the deformation gradient (on the right)
as a function of the number of elemental updates for the slab problem. As is readily seen from the
plots, AVIs are substantially cheaper than Newmark in computational cost for a desired error value.

and the maximum final time

tmax = max
K

NK∆tK . (6.28)

With these definitions we can state the following result.

Theorem 6.1. Consider a sequence of solutions obtained by the application of asychronous varia-

tional integrators to a fixed spatial discretization with maximum time step ∆tmax → 0 and maximum

final time tmax → T . Then the final discrete configuration converges to the exact configuration of

the semidiscrete problem at time T .

Proof. See §6.4 and Corollary 6.1.

Resonance instabilities in asynchronous methods. It is known that multi-time step methods

ocassionally exhibit resonance instabilities for some combinations of time steps (See, e.g., Izaguirre,

Reich, and Skeel [1999], Bishop, Skeel, and Schulten [1997] and Biesiadecki and Skeel [1993] in the

case of molecular dynamics, and Daniel [1997a] and Daniel [1997b] in the case of finite element meth-

ods in elastodynamics). We have not been able to detect any such instabilities in our simulations;

however, a systematic study has yet to be performed.

6.2 Multisymplectic discretizations

Having investigated the variational multisymplectic structure of continuum mechanics and its as-

sociated conservation properties, we now turn to the general theory of constructing variational

discretizations of such systems. The fundamental idea here is to discretize the variational structure,

and then derive both the equations of motion (an integrator for the system) as well as conservation

properties of the discrete system by using the same variational proofs as in the continuous case.
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In this section we proceed in the same order as for the continuous case in §5. Namely, first we

consider the discrete geometry of the problem, then define a discrete Lagrangian and a discrete varia-

tional principle and use these to derive first the Euler-Lagrange equations and then the conservation

properties.

As we progress through this section we will develop both an abstract theory of variational dis-

cretizations, and simultaneously we will consider the example of AVI algorithms, concentrating on

the geometry of the discrete problem.

6.2.1 Discrete Configuration Geometry

Discrete base spaces. A discrete base space configuration φd,X consists of a set Xd, called

the nodal base space , of points in X and a set Ed of subsets of Xd, called the elemental base

space . Elements in Ed are regarded as encoding the connectivity between sets of nodes X ∈ Xd, and

we assume that we have a map E 7→ XE from elements E ∈ Ed to elemental subsets XE of X . We

write XEd
= ∪E∈Ed

XE for the subset of X covered by the elemental subsets. Given a node X ∈ Xd

we denote by Ed(X) the set of elements containing that node, so that Ed(X) = {E ∈ Ed | X ∈ E}.

Note that the elements and nodes referred to here are space-time elements and nodes. That

is, each elemental subset is a subset of space and time, while each node specifies both a spatial

position and a particular time. This is in contrast to the normal usage in finite elements, where the

terms element and node refer solely to spatial objects. We also do not necessarily consider a set of

basis functions over the elements, as we may wish to use different discretization schemes in some

components, such as finite differences for time derivatives.

For discussing boundary conditions and equations it is necessary to specify the boundary and

interior of the nodal base space. These are, respectively,

∂Xd = {X ∈ Xd | X ∈ ∂XEd
}

int(Xd) = Xd \ ∂Xd.

We denote by Cd(X ) the space of all allowed discrete base space configurations φd,X , which we

will take to all have the same number of nodes and elements. Note that we will generally not be

allowing arbitrary nodal base spaces, but will rather impose some restrictions on the configurations

under consideration.

AVI base spaces. In the particular case of AVI methods, we assume a fixed reference mesh T ,

and so the space of discrete base space configurations is parameterized by the set of elemental times

tjK . We assume that we have a fixed spatial discretization, as in §6.1.1. For given elemental times
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tjK and induced nodal times the corresponding discrete nodal and elemental base spaces are

Xd = {Xi
a = (tia,Xa) | a ∈ T , 1 ≤ i ≤ Na}

Ed =
{

Ej
K = {Xi

a | a ∈ K, tia ∈ ΘK,j}
∣
∣
∣ K ∈ T , 1 ≤ j < NK

}

.

The map from an element E to a subset XE for AVI methods is given by XEj
K

= [tjK , tj+1
K ]×K.

Discrete configuration bundles. Having defined discrete base space configurations, we now

turn to constructing discrete representations of the configuration bundle πXY : Y → X . For a given

φd,X , we define the discrete configuration bundle Yd to be the fiber bundle over Xd with the

fiber over X ∈ Xd being simply the configuration bundle fiber YX itself.

A discrete configuration φd now consists of a discrete base space configuration φd,X and a

section of Yd. Such a section can also be regarded as a map Xd → Y covering the identity. A discrete

configuration φd thus specifies a set of nodes Xd, a set of elements Ed, and a fiber value denoted xX

at each node X ∈ Xd.

AVI configuration bundle. For AVI methods, we have seen above that the discrete nodal and

elemental spaces which make up the discrete base space configuration φd,X are specified by the times

tjK . An AVI configuration φd thus consists of these sets, together with the fiber positions xi
a for each

node Xi
a ∈ Xd.

We denote the set of all allowable discrete configurations by Cd(Y ). This is the space of allowable

discrete base space configuration Cd(X ) together with the product of as many fibers YX as there are

nodes.

Discrete jet bundle. One of the fundamental foundations of the discrete approach is to replace

continuous derivative information with a finite collection of samples of a function. To formulate this

more precisely, for a given discrete base space configuration φd,X we define the discrete jet bundle

to be the fiber bundle J1Yd over Ed where the fiber over E ∈ Ed is the product of the fibers over

each node in E. That is,

(J1Yd)E =
∏

X∈E

YX .

Each point in the discrete jet bundle thus stores the value of the configuration at all nodes of the

given element.

Given a discrete configuration φd we define the discrete jet extension j1φd to be the section

of J1Yd specified by j1φd(E) = (E, {xX | X ∈ E}), which is simply the configuration evaluated at

all nodes within a single element. This is enough information to form discrete approximations to

the derivative.
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AVI discrete jet bundle. For AVI methods, we have seen that the a discrete base space config-

uration consists of nodes Xi
a = (tia,Xa) and elements Ej

K . The discrete configuration bundle then

consists of all possible spatial positions for each material node Xa at each time tia. The corresponding

discrete jet bundle therefore consists of elements Ej
K , specifying a material element K and times tjK ,

tj+1
K , together with the set of possible spatial positions for each node Xa ∈ K at each time tia ∈ ΘK

j .

The discrete jet extension of a discrete configuration φd is thus given by

j1φd(E
j
K) =

(

Ej
K , {xi

a | X
i
a ∈ Ej

K}
)

=
(

Ej
K , {xi

a | a ∈ K, tia ∈ ΘK
j }
)

.

Discrete Lagrangian. To complete the specification of the discrete system, we must now provide

a discrete equivalent of the Lagrangian function, namely a discrete Lagrangian Ld : J1Yd → R.

This should not approximate the continuous Lagrangian, however, but rather should be thought of

as an approximation to the continuous action integral over a single element. That is,

Ld

(
E, {xX | X ∈ E}

)
≈

∫

XE

L(j1ϕ) dn+1X,

where ϕ is an exact solution of the Euler-Lagrange equations for L over the elemental subset XE

which is approximated by the fiber values xX at the nodes X ∈ E. We will frequently use the

shorthand notation Ld(E) = Ld(E, {xX | X ∈ E}) for the arguments of the discrete Lagrangian.

Example of AVI discrete Lagrangian. We have seen that a single point in the AVI discrete jet

bundle consists of an element Ej
K , consisting of the nodes Xi

a = (tia,Xa), together with the spatial

positions xi
a corresponding to each node. The nodal times include the elemental times tjK and tj+1

K ,

so a discrete jet bundle point is precisely the quantities on which the AVI discrete Lagrangian (6.8)

is defined. This clearly approximates the action over the elemental subset XEj
K

= [tjK , tj+1
K ]×K.

6.2.2 Discrete Variations and Dynamics

Discrete variations. We first consider horizontal variations. The space of variations of a discrete

base space configuration φd,X is the tangent space Tφd,X
Cd(X ), with each variation being a map

δφd,X : Xd → TX covering the identity. Here we will assume that the elemental base space does not

alter its connectivity, and thus moves along with the nodes. It will be important below to distinguish

between boundary variations and interior variations. We thus assume that we can write the tangent

space as a direct sum

Tφd,X
Cd(X ) = T i

φd,X
Cd(X )⊕ T ∂

φd,X
Cd(X )
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of interior and boundary components, respectively. We write πi
X and π∂

X for the associated projec-

tions, and for a given variation δφd,X we denote the two components by δiφd,X = πi
X · δφd,X and

δ∂φd,X = π∂
X · δφd,X .

Now we define full (vertical and horizontal) variations. Similarly to the above, the space of

variations of a discrete configuration φd is the tangent space Tφd
Cd(Y ) consisting of variations

δφd : Xd → TY covering the section of Yd. This decomposes naturally into a horizontal base

space component and a vertical component, according to

Tφd
Cd(Y ) = Tφd,X

Cd(X )⊕ TV
φd
Cd(Y )

TV
φd
Cd(Y ) =

⊕

X∈Xd

TxX
YX .

The vertical component of a variation can thus be written as a sum of variations of each fiber

variable, which we denote by δxX ∈ TxX
YX for each X ∈ Xd. We will abuse the notation and also

write δxX and δi,∂φd,X for the relevant projections in Tφd
Cd(Y ). This gives a full decomposition of

a variation into the vertical interior, vertical boundary, horizontal interior and horizontal boundary

components as

δφd =
∑

X∈int(Xd)

δxX +
∑

X∈∂Xd

δxX + δiφd,X + δ∂φd,X . (6.29)

Boundary and interior variations differ in a key property. Interior variations are zero on all X ∈ ∂XEd
,

whereas boundary variations have nonzero components on the boundary.

Variations of AVI configurations. Given an AVI configuration φd and a variation δφd of it, we

can decompose it as above into horizontal components and vertical per-fiber components. We can

also, however, take advantage of the special structure of the AVI configuration bundles to further

decompose the horizontal components.

An AVI base space configuration φd,X is specified by the elemental times tjK , so variations in

the configuration are induced by variations in the times. We denote by δj
Kφd,X the configuration

variation induced by δtjK , and we take the boundary variations to be those associated with times t1K

and tNK

K . This provides a decomposition of any variation of an AVI configuration into

δφd =
∑

Xi
a∈int(Xd)

δxi
a +

∑

Xi
a∈∂Xd

δxi
a +

∑

K∈T

∑

1<j<NK

δj
Kφd,X +

∑

K∈T

(δ1
Kφd,X + δNK

K φd,X ). (6.30)

Discrete Euler-Lagrange equations. To formulate a discrete variational principle, we begin by

defining the discrete action sum Sd : Cd(Y )→ R to be

Sd(φd) =
∑

E∈Ed

Ld

(
(j1φd)(E)

)
. (6.31)
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We can now formulate the discrete Hamilton’s principle, which states that we must seek critical

points of the discrete action function. That is, we say that φ̄ is a discrete solution if

dSd(φd) · δφd = 0

for all variations δφd with zero boundary components. We will write DV and DH for the derivatives

with respect to vertical and horizontal components, respectively, so that using the above decompo-

sition (6.29) of variations gives

dSd(φd) · δφd =
∑

E∈Ed

∑

X∈E

∂Ld(E)

∂xX
δxX + DHSd(φd) · δφd,X

=
∑

X∈int(Xd)




∑

E∈Ed(X)

∂Ld(E)

∂xX



 · δxX + DHSd(φd) · δiφd,X (6.32)

+
∑

X∈∂Xd




∑

E∈Ed(X)

∂Ld(E)

∂xX



 · δxX + DHSd(φd) · δ∂φd,X .

The requirement that this expression be zero for all nonzero interior variations implies that the first

two terms must be zero. The first of these, arising from vertical variations, is termed the discrete

Euler-Lagrange equations:
∑

E∈Ed(X)

∂Ld(E)

∂xX
= 0 (6.33)

for all X ∈ int(Xd). This is a finite set of equations which relate the configuration variables making

up φd. We will investigate the second term in (6.32) below.

Observe that we obtain one discrete Euler-Lagrange equation per fiber configuration variable xX

associated to an internal node X ∈ int(Xd). If we thus regard both the base space configuration φd,X

and the fiber variables variables xX for X ∈ ∂Xd as fixed, then the discrete Euler-Lagrange equations

are sufficient, at least in terms of an equation count, to uniquely solve for a discrete configuration

φd.

Equations for AVI methods. Requiring that the discrete AVI action is stationary with respect

variations in the configuration variables xi
a for internal nodes Xi

a gives the equations

∑

Ej
K
∈Ed(Xi

a)

∂Ld(E
j
K)

∂xi
a

= 0.

For the discrete Lagrangian (6.8) we have already calculated this explicitly in §6.1.4.
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Boundary conditions. As in the continuous problem, we consider zeroth and first-order boundary

conditions of the form

xX = x0(X) for X ∈ ∂0Xd (6.34a)

∑

E∈Ed(X)

∂Ld(E)

∂xa
= τa(X) for X ∈ ∂1Xd, (6.34b)

where ∂0Xd and ∂1Xd are subsets of the discrete nodal space boundary ∂Xd, and x0 and τ are given

functions. We do not require that ∂0Xd and ∂1Xd be disjoint, nor that they cover ∂Xd. Note that

this τ will typically only be an approximation to the τ in the continuous case.

We impose the boundary conditions by modifying the discrete Hamilton’s principle to seek dis-

crete configurations φd satisfying (6.34a) for which

dSd(φd) · δφd =
∑

X∈∂1X

τ(X) · δxX (6.35)

for all variations δφd of φd which are zero on the set ∂Xd \ ∂1Xd. This is exactly analogous to the

way we imposed boundary conditions for the continuous problem in §5.1.2.

AVI boundary conditions. In applications of the AVI method we are generally concerned with

initial boundary value problems (IBVP), for which the boundary conditions are given as

x1
a = (x0)

1
a for all nodes a ∈ T (6.36a)

∑

K∈Ta

∂Ld(E
1
K)

∂x
ia(K,1)
a

= −(p0)a for all nodes a ∈ T (6.36b)

xi
a = (x0)

i
a for all i = 1, . . . , Na, Xa ∈ ∂dB (6.36c)

∑

K∈Ta

∑

j

ti
a∈ΘK,j

∂Ld(E
j
K)

∂xi
a

= τ i
a for all i = 1, . . . , Na, Xa ∈ ∂τB. (6.36d)

In the context of solid mechanics, the first two of these are termed the initial conditions and the

final two are termed boundary conditions. The initial conditions are both zeroth- and first-order

boundary conditions, and so we have the space-time boundaries

∂0Xd =
{

Xia(1,K)
a | a ∈ T , K ∈ Ta

}

∪
{

Xi
a | a ∈ ∂dT , 1 ≤ i ≤ Na

}

∂1Xd =
{

Xia(1,K)
a | a ∈ T , K ∈ Ta

}

∪
{

Xi
a | a ∈ ∂τT , 1 ≤ i ≤ Na

}

.
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6.2.3 Horizontal Variations

In continuous multisymplectic mechanics, we have seen that horizontal variations give equations

which are functionally dependent on the Euler-Lagrange equations derived from vertical variations,

and so they may be considered as conservation laws of the system.

This is not the case once the system has been discretized. Indeed, requiring stationarity with

respect to horizontal variations for the discrete system gives new equations which can be used to

solve for the discrete base space configuration, and thus for the space-time mesh. Both space and

time adaptivity could eventually be driven by this set of discrete equations.

More precisely, from the discrete Hamilton’s principle and equation (6.32) for the action varia-

tions, we see that interior horizontal variations give the equations

DHSd(φd) · δiφd,X = 0 (6.37)

for all δiφd,X ∈ T i
φd,X
Cd(X ). As there is one equation arising from each interior horizontal variation,

these equations are sufficient to solve for φd,X given appropriate boundary conditions.

It is important to be clear that equation (6.37) is not simply a conservation law for a system

satisfying (6.33), but is an independent set of equations. Nonetheless, this equation can also be

regarded as enforcing the conservation of discrete quantities corresponding to continuous horizontal

conserved quantities.

AVI methods and energy conservation. For AVI methods we have seen that the discrete base

space configurations φd,X are parameterized by the space of elemental times tjK , and that these

also parameterize the space of horizontal variations. Requiring that the action be stationary with

respect to the variation δj
Kφd,X associated with each interior time tjK for 1 < j < NK gives a local

energy conservation equation. Summing over all elements K ∈ T then gives a discrete global energy

conservation equation as a consequence, which is the discrete analogue of equation (5.14). We will

also see below how this may be viewed as a consequence of the discrete Noether’s theorem.

In the AVI method of §6.1 we have taken the set of allowed discrete base space configurations to

be those with space-time nodes of the form Xi
a = (tia,Xa) for fixed material nodes Xa. One could

think of taking a larger class of base space configurations, where the spatial coordinates of each

Xi
a were allowed to vary independently. The nodal times would still be induced by the elemental

times tjK , so the set of space-time meshes would be parameterized by the tjK and positions Xi
a ∈ B

for each node a and time tia. Requiring stationarity of the action with respect to the times would

still give discrete energy conservation, and we could additionally require stationarity with respect

to the horizontal spatial nodal variations. This would give discrete configuration forces, in analogy

to §5.1.3.
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We shall see in §6.3.1 and §6.3.2 that the multisymplectic nature of the discrete algorithm does

not depend on requiring stationarity with respect to horizontal variations. A similar statement holds

for the discrete Noether’s theorem.

6.3 Discrete conservation laws

We will now see how the variational derivations of the conservation laws for continuous multisym-

plectic systems carry over directly to variational multisymplectic discretizations.

Discrete space of solutions. Recall that Cd(Y ) denotes the space of discrete configurations φd.

By CLd
(Y ) we denote the discrete space of solutions, which is all configurations φd which

satisfy the discrete Euler-Lagrange equations for some boundary conditions. Tangent vectors Vd ∈

Tφd
CLd

(Y ) are called discrete first variations and are derivatives of a curve of solutions. We

write the decomposition of Vd according to (6.29) as

Vd =
∑

X∈int(Xd)

Vd,xX
+

∑

X∈∂Xd

Vd,xX
+ V i

d,X + V ∂
d,X

into the interior vertical, boundary vertical, interior horizontal, and boundary horizontal compo-

nents, respectively. We will also use the notation V i
d,V and V ∂

d,V to denote the entire interior vertical

and boundary vertical terms above. Given a discrete variation Vd we can construct its jet extension

j1Vd, which takes E to the set of variations Vd(X) for each X ∈ E.

It is often useful to consider different spaces of solutions corresponding to the requirement of

action stationarity with respect to different classes of variations. For example, we could consider

the space of solutions for the AVI algorithm with only the discrete Euler-Lagrange equations arising

from vertical variations satisfied, or we could consider the space of solutions to also have the re-

quirement of stationarity with respect to horizontal variations. In either case we will have a discrete

multisymplectic form formula and discrete Noether’s theorem, but the exact expression of each will

differ for the different solution spaces. Here we will write the expressions in the general case of full

vertical and horizontal variations, so that the expressions for vertical only solutions can be obtained

by dropping the horizontal terms. While this provides the most generality, we should remember that

the numerical examples from §6.1.5 were performed using the AVI algorithm without considering

horizontal variations.

6.3.1 Discrete Multisymplectic Forms

One of the powerful features of variational multisymplectic discretizations is that there is a unique

discrete multisymplectic structure defined by a given discretization. This appears as the boundary
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term in free action variations, just as in the continuous case.

Equations (6.32) and (6.37) show that restricting to the space of solutions eliminates the interior

terms, and so we can write

dSd(φd) · Vd =
∑

X∈∂Xd

∑

E∈Ed(X)

ΘE,X
Ld

(j1φd(E)) · j1Vd + DHSd(φd) · V
∂
d,X (6.38)

for all solutions φd and first variations Vd. Here ΘE,X
Ld

are the discrete Cartan forms defined by

ΘE,X
Ld

=
∂Ld(E)

∂xX
dxX .

As in the continuous case, we now define the discrete multisymplectic Lagrangian forms

ΩE,X
Ld

to be the exterior derivatives of the corresponding discrete Cartan forms with respect to

vertical variables

ΩE,X
Ld

= −dV ΘE,X
Ld

.

Calculating this explicitly gives

ΩE,X
Ld

= −
∑

X′∈E\X

∂2Ld(E)

∂xX′∂xX
dxX′ ∧ dxX .

6.3.2 Discrete Multisymplectic Form Formula

Taking a second exterior derivative of the action derivative expression (6.38) and using d2 = 0 now

immediately gives the discrete multisymplectic form formula

∑

X∈∂Xd

∑

E∈Ed(X)

ΩE,X
Ld

(j1φd(E)) · (j1Vd, j
1Wd) + DV DHSd(φd) · V

∂
d,X ·W

∂
d

+ DHDV Sd(φd) · V
∂
d,V ·W

∂
d,X + DHDHSd(φd) · V

∂
d,X ·W

∂
d,X = 0

for all discrete first variations Vd and Wd. This is a discretization of the expression (5.17) of the

continuous multisymplectic form formula.

If we repeat this calculation for a single element rather than the entire configuration, we obtain

the discrete local multisymplectic form formula

∑

X∈E

ΩE,X
Ld

(j1φd(E)) · (j1Vd, j
1Wd) + DV DHLd(E) · V ∂

d,X ·W
∂
d

+ DHDV Ld(E) · V ∂
d,V ·W

∂
d,X + DHDHLd(E) · V ∂

d,X ·W
∂
d,X = 0

for any element E, and all discrete variations Vd and Wd (not necessarily first variations). This
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expression is a discretization of the divergence form (5.18) of the continuous multisymplectic form

formula, and summing over all elements and using the discrete Euler-Lagrange equations will give

the above global form.

If we are considering only vertical variations, then the global and local discrete multisymplectic

form formulas simplify to give just

0 =
∑

X∈∂Xd

∑

E∈Ed(X)

ΩE,X
Ld

(j1φd(E)) · (j1Vd, j
1Wd)

0 =
∑

X∈E

ΩE,X
Ld

(j1φd(E)) · (j1Vd, j
1Wd)

for solutions φd and first variations Vd and Wd.

6.3.3 Discrete Reciprocity and Time Symplecticity

In the continuous case we have seen that the multisymplectic form formula is a generalization of

the notions of reciprocity for static problems and time-symplecticity for dynamic problems into one

single space-time statement. In the discrete case this is also true, and so by restricting the above

statements to particular classes of variations we can recover exact discrete reciprocity and exact

symplecticity in time for variational discretizations.

Discrete reciprocity. Consider now a discrete problem with only vertical variations. A linearized

solution Wd about φd of the discrete system (6.35) for the incremental body force BW
d and incre-

mental traction τW
d satisfies

DV (DV Sd(φd) · Vd) ·Wd =
∑

X∈Xd

BW
d (X) · Vd(X) +

∑

X∈∂τXd

τW
d (X) · Vd(X)

for all variations Vd which are zero on the displacement boundary. The identity DV (DV Sd(φd) ·

Vd) · Wd = DV (DV Sd(φd) · Wd) · Vd holds for discrete as well as continuous systems, and so we

immediately obtain the relation

∑

X∈Xd

BW
d (X) · Vd(X) +

∑

X∈∂τXd

τW
d (X) · Vd(X)

=
∑

X∈Xd

BV
d (X) ·Wd(X) +

∑

X∈∂τXd

τV
d (X) ·Wd(X).

This is exactly a discrete reciprocity law, as can be seen by comparing it to the continuous version

in §5.2.3.

The interpretation is the same as in the continuous case, with applied forces BW
d and τW

d pro-

ducing the linearized response W , and similarly for V . Then measuring V in the direction of the
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forces BW
d , τW

d gives precisely the same result as measuring the response W in the direction BV
d , τV

d .

This is equivalent to symmetry of the stiffness matrix, which, as is well known, results automat-

ically from a variational discretization.

Discrete time symplecticity. We now turn to considering an initial boundary value problem

such as that specified by (6.35) for the conditions (6.36) with τ = 0, and we restrict ourselves to

vertical variations. Consider a smooth curve of initial conditions (xε
i , p

ε
i) which is (xi, pi) at ε = 0,

and let φε
d be the corresponding solutions for all time. Given a variation in the initial conditions of

the form

(δxi, δpi) =
∂

∂ε

∣
∣
∣
∣
ε=0

(xε
i , p

ε
i),

we induce a variation of the solution by

Vd =
∂

∂ε

∣
∣
∣
∣
ε=0

φε
d.

We also consider a discrete flow map FLd
which maps from initial conditions (xi, pi) to final conditions

(xf , pf ) of the system. The variation (δxf , δpf ) corresponding to (δxi, δpi) then satisfies

(δxf , δpf ) = TFLd
· (δxi, δpi).

Now consider a second variation (δ′xi, δ
′pi) which induces V ′

d and (δ′xf , δ′pf ). We assume a decom-

position of the boundary ∂Xd = ∂iXd∪∂fXd∪∂dXd∪∂τXd into the initial, final, spatial displacement

boundary and spatial traction boundary components, respectively. These sets are all disjoint, and

together they cover ∂Xd. The variations Vd and Wd are zero on ∂dXd and on ∂τXd we have τ = 0,

so the multisymplectic form formula becomes

∑

X∈∂iXd

∑

E∈Ed(X)

ΩE,X
Ld

(j1φd(E)) · (j1Vd, j
1Wd)

+
∑

X∈∂fXd

∑

E∈Ed(X)

ΩE,X
Ld

(j1φd(E)) · (j1Vd, j
1Wd) = 0.

We now define the discrete field theoretic two-forms

Ωi
Ld

(δxi, δpi) = −
∑

X∈∂iXd

∑

E∈Ed(X)

ΩE,X
Ld

(j1φd(E)) · (j1Vd, j
1Wd)

Ωf
Ld

(δxf , δpf ) =
∑

X∈∂fXd

∑

E∈Ed(X)

ΩE,X
Ld

(j1φd(E)) · (j1Vd, j
1Wd)
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and so using the fact that the initial and final variations are related by TFLd
we have

Ωi
Ld

= (FLd
)∗Ωf

Ld
, (6.39)

which is exactly a discretization of the continuous equivalent (5.19).

Note that we could also consider both vertical and time-horizontal variations in the derivation

of the above relationship. This would then give a discrete analogue of extended time-symplecticity,

namely the preservation of the two-form d
(

∂L
∂q̇a

)

∧ dpa + dEL ∧ dt (see Marsden and West [2001]

for the details of this in the case of ODEs).

For AVIs equation (6.39) encodes a generalized type of time symplecticity. Note that this does

not mean that we can use standard backward error methods for analyzing AVIs, as we do not have a

single symplectic form on a space with an iterated symplectic map. Nonetheless, we conjecture that

it is the geometric property (6.39) which is responsible for the excellent energy behavior observed

numerically for AVI methods.

6.3.4 Discrete Noether’s Theorem

We now develop a discrete Noether’s theorem associated to vertical variations. Take a group action

Φ : G × Y → Y , as in §5.2.5, which acts by diffeomorphisms g : Y → Y covering diffeomorphisms

gX : X → X . The corresponding infinitesimal generators are ξY and ξX , as defined previously.

We may also consider G as acting on the discrete configuration bundle by pointwise action on

Yd, so the infinitesimal generators ξXd
and ξYd

are pointwise equal to ξX and ξY . Given a discrete

base space configuration φd,X , we define the action of G on Cd(X ) to be pointwise action on the

nodal positions Xd, and we assume that the elemental topology specified by Ed is left invariant. We

similarly define the action of G on Cd(Y ) by the action on Cd(X ) together with pointwise action

on the fibers. Here we implicitly assume that the action of G is such that it preserves the space

Cd(X ). That is, for any allowed base space configuration φd,X ∈ Cd(X ), the transformed base space

configuration g · φd,X is also an allowed configuration, and thus g · φd,X ∈ Cd(X ).

The action of G on Yd can be prolonged to the discrete jet bundle J1Yd by pointwise action on each

component, which means that the corresponding infinitesimal generator ξJ1Yd
: J1Yd → T (J1Yd) is

a vector

ξJ1Yd

(

E, {xX | X ∈ E}
)

=
(

E, {xX | X ∈ E}, ξX(E), {ξY (xX) | X ∈ E}
)

consisting of pointwise evaluations of ξY . We will denote the vertical components of this by

ξV
J1Yd

(

E, {xX | X ∈ E}
)

=
(

E, {xX | X ∈ E}, 0, {ξY (xX) | X ∈ E}
)

.
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A group action is said to be a symmetry of the discrete Lagrangian Ld if

Ld(E, {xX | X ∈ E}) = Ld

(

g · (E, {xX | X ∈ E})
)

for all point in J1Yd and all g ∈ G, and in such a case the discrete Lagrangian is said to be

equivariant . This implies that the discrete Lagrangian is infinitesimally equivariant , which is

the requirement

dLd · ξJ1Yd
= 0

for all ξ ∈ g. Note that in the discrete case equivariance is the same as invariance, as the discrete

Lagrangian is an approximation to the continuous action, rather than the continuous Lagrangian.

While we will not consider a general discrete momentum map for arbitrary actions, we define

the vertical component to be the discrete Lagrangian momentum map JE,X
Ld

: J1Yd → g∗ for

an element E and base point X, which is

JE,X
Ld

(ξ) = iξV

J1Yd

ΘE,X
Ld

.

We will now see that this is the appropriate definition for a discrete Noether’s theorem.

Theorem 6.2 (Discrete Noether’s theorem). Consider a discrete Lagrangian system Ld :

J1Yd → R which is equivariant under the prolongation of the left action Φ : G× Yd → Yd. Then the

system satisfies the global conservation law

∑

X∈∂Xd

∑

E∈Ed(X)

JE,X
Ld

(ξ)(j1φd(E)) + DHSd(φd) · π
∂
X · ξCd(X)(φd,X ) = 0 (6.40)

and the corresponding local conservation law

∑

X∈E

JE,X
Ld

(ξ)(j1φd(E)) + DHLd(φd) · ξJ1Yd
(j1φd(E)) = 0 for all E ∈ Ed (6.41)

for all solutions φd and all ξ ∈ g.

Proof. As we have already seen, the action of G on Y induces an action on Yd and on J1Yd. This can

then be extended to an action on the discrete configuration space Cd(Y ). We use the equivariance

of Ld to write

Sd(g · φd) =
∑

E∈Ed

Ld(g · j
1φd(E)) =

∑

E∈Ed

Ld(j
1φd(E)) = Sd(φd),

and so equivariance of the Lagrangian immediately implies that the action is also equivariant. Dif-
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ferentiating this expression with respect to g gives

dSd(φd) · ξCd(Y )(φd) = 0.

The group action thus maps solutions to solutions, and so ξCd(Y ) is tangent to the space of solutions

CLd
(Y ). We can therefore use expression (6.38) to write the left-hand side of the previous equation

as

dSd(φd) · ξCd(Y )(φd) =
∑

X∈∂Xd

∑

E∈Ed(X)

ΘE,X
Ld

(j1φd(E)) · ξV
J1Yd

(j1φd(E))

+ DHSd(φd) · π
∂
X · ξCd(X)(φd,X ),

and so equating our two expressions for the derivative of Sd in the group direction and using the

definition of the discrete momentum map now gives the global statement of the discrete Noether’s

theorem. Taking the definition of infinitesimal equivariance of Ld and evaluating the left-hand side

immediately gives the local statement. �

As in the continuous case, infinitesimal equivariance is sufficient for the discrete Noether’s theo-

rem to hold.

If we include the effects of boundary terms, as specified by (6.35), and we do not assume that the

Lagrangian is equivariant (due to body forces, for example), then for arbitrary variations we have

dSd(φd) · Vd =
∑

X∈∂1Xd

τ(X) · Vd,xX

+
∑

X∈∂Xd\∂1Xd

∑

E∈Ed(X)

ΘE,X
Ld

(j1φd(E)) · j1Vd(E) + DHSd(φd) · V
∂
d,X .

If we now take the variation to be the infinitesimal symmetry action V = ξCd(Y ), then we obtain

∑

X∈∂Xd\∂1Xd

∑

E∈Ed(X)

JE,X
Ld

(ξ)(j1φd(E)) = −
∑

X∈∂1Xd

τ(X) · ξY (xX)

−DHSd(φd) · π
∂
X · ξCd(X)(φd,X )− dSd(φd) · ξCd(Y )(φd). (6.42)

This describes the extent to which the exact Noether conservation law is not satisfied due to boundary

conditions and body forces, and is a discretization of (5.24).

Discrete symmetries and momentum maps. The three symmetry actions discussed in §5.2.6

are all linear, and so the linearity of the AVI discrete Lagrangian means that it inherits these

symmetry groups as well. These then imply that linear momentum, angular momentum and energy
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are preserved by the discrete system.

The calculations for linear and angular momentum for the AVI method are as presented in §6.1.4.

Here the group acts vertically on the fibers of J1Yd, and the global form of Noether’s theorem (6.40)

gives whole-body conservation of linear and angular momentum.

For the time translation symmetry, the calculation reduces to the imposition of the horizontal

Euler-Lagrange equation, as in §6.2.3. This then implies the local infinitesimal equivariance of the

discrete Lagrangian and leads to whole-body conservation of energy.

In the case that there are traction boundary conditions or body forces, the exact Noether’s

theorem is not satisfied unless the tractions and body forces are zero in the infinitesimal symmetry

directions. Instead we can use (6.42) to calculate the change in a whole-body conserved quantity

due to the tractions.

6.4 Proof of AVI convergence

In this section we prove that the asynchronous variational integrators discussed in §6.1 converge as

the time steps go to zero. We only consider convergence of the time stepping, and we take the spatial

discretization to be fixed. This analysis applies equally well if AVI methods are applied directly to

an ODE problem. In this section we denote time steps with the symbol h.

There are three key ideas needed for the proof:

1. The generalization of AVI methods to asynchronous splitting methods, which provide a

simple framework to consider convergence of the time stepping. This explicitly discards all

information about the spatial discretization, focussing attention on the time stepping.

2. The formulation of a reasonable proxy system , to which convergence can be proven. For

standard integration techniques, after N steps of size h one proves that the integrator is close

to the true flow map for time T = Nh. For asynchronous methods this is no longer correct,

and in these notes we introduce equation (6.52) below as the proxy.

3. The condition under which convergence occurs. For standard time stepping methods we con-

sider convergence as the timestep goes to zero. For asynchronous methods, however, it is

possible for all time steps to go to zero but for the method to not converge to the true flow.

We introduce the concept of maximum asynchronicity and we prove convergence as this

tends to zero. For AVI methods this translates into a proof of convergence as the maximum

time step goes to zero.

The technical assumptions made in this section are relatively standard. We work on unbounded

Euclidean spaces R
n and assume that all vector fields are globally Lipschitz. Only autonomous

systems are considered, as time dependancy can be included by adding a dimension with uniform
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flow for time. We only consider non-negative time steps here, and leave the general case for future

work.

6.4.1 Asychronous splitting methods (ASMs)

We will be concerned with systems on R
n of the form

ẋ(t) = f(x(t)) =

M∑

i=1

fi(x(t)) (6.43a)

x(0) = x0, (6.43b)

where the vector field f is the sum of M component vector fields fi. We will denote by Φt : R
n → R

n

the flow map of f and by Φt
i : R

n → R
n the flow map of fi.

We assume that the component vector fields fi are Lipschitz with constant L, so that

‖fi(x)− fi(y)‖ ≤ L‖x− y‖ for i = 1, . . . ,M (6.44)

for all x, y ∈ R
n. This implies that f is Lipschitz with constant ML. The flow maps Φi and Φ thus

exist and are continuously differentiable for all t (Abraham et al. [1988]).

An asynchronous splitting method for the system (6.43) consists of M integrators Ψh
i : R

n → R
n

for the component vector fields fi together with a sequence of time steps hk ≥ 0 and indices ik for

k = 1, . . . , N . The method is then defined by

yk = Ψhk

ik
(yk−1) for k = 1, . . . , N (6.45a)

y0 = x0 (6.45b)

We define the cumulative time for component i to be

tik =

k∑

j=1

δi
ij

hj (6.46)

and the global minimum time as

tmin
k = min

i=1,...,M
tik. (6.47)

Observe that

tmin
k+1 − tmin

k ≤ hk+1 for k = 1, . . . , N − 1. (6.48)
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The maximum asynchronicity is the smallest h such that

tik − tmin
k ≤ h for i = 1, . . . ,M, k = 1, . . . , N (6.49a)

hk ≤ h for k = 1, . . . , N. (6.49b)

Note that this implies that

tik+1 − tmin
k ≤ h for i = 1, . . . ,M, k = 1, . . . , N − 1. (6.50)

We will assume that each integrator Ψi is consistent, so that there is a Lipschitz function CΨ :

R
n → R with constant LΨ, and h∗ ∈ R such that

‖Ψt
i(x)− Φt

i(x)‖ ≤ t2CΨ(x) for all t ≤ h∗ (6.51)

for each i = 1, . . . ,M and all x ∈ R
n.

In common with standard synchronous splitting methods, asynchronous splitting methods are

geometric in that conservation properties of the component Ψi are inherited by the overall integrator,

as it is simply a composition. For example, if each Ψi is a symplectic map or if each Ψi preserves

a quantity C(x), then the complete method will also be symplectic or C preserving, respectively.

Note that this does not imply that standard backward error analysis results (Reich [1999a], Hairer

and Lubich [1997]) can be used to analyze the method, as these techniques rely on having repeated

applications of a single map. While it may be possible to define a map Ψ̄ so that yk+1 = Ψ̄(yk) for

some choices of sequences hk and ik, in general such a map does not exist.

The proxy system to which we will show convergence is defined by

zk = Φtmin
k (x0) +

M∑

i=1

(tik − tmin
k )fm

(

Φtmin
k (x0)

)

(6.52a)

z0 = x0. (6.52b)

Observe that as the maximum asynchronicity h tends to zero, the proxy system will converge to the

true flow map Φt.

6.4.2 AVIs as ASMs

Asychronous variational integrators (AVIs) are a special case of asychronous splitting methods

(ASMs). Here we use the notation from §6.1, extended to allow the possibility that the elemen-

tal time steps vary over time. Let Θ be the set of all elemental times, indexed sequentially so that

Θ = {ta}
NΘ

a=0, and modified so that the initial time t1 = t0 only appears once. Thus ta ≥ ta−1 for all
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a = 1, . . . , NΘ. Let {Ka}
NΘ

a=1 be the sequence of element indices and {∆ta}
NΘ

a=1 be the sequence of

element time steps, so that for each a = 1, . . . , NΘ there is a j with 2 ≤ j ≤ NK such that ta = tjKa

and ∆ta = tjKa
− tj−1

Ka
.

The spatially discretized system for AVIs is given by




ẋ

ṗ



 = f(x, p) =




M−1p

−
∑

K∈T
∂VK

∂x



 . (6.53)

We consider the decomposition of f into M = NT + 1 vector fields fi given by

fi(x, p) =




0

−∂Vi

∂x



 for i = 1, . . . , NT (6.54a)

fNT +1(x, p) =




M−1p

0



 . (6.54b)

We now consider N = 2NΘ time steps and indices specified by

hk−1 = ta − ta−1 hk = ∆ta (6.55a)

ik−1 = NT + 1 ik = Ka, (6.55b)

where k = 2a for a = 1, . . . , NΘ. The method thus consists of alternate global “drift” and local

“kick” steps.

The fact that the time sequence Θ is increasing means that the maximum asynchronicity h is

equal to the maximum time step

h = max
K∈T

max
j=2,...,NK

(tjK − tj−1
K ). (6.56)

The maximum asynchronicity will thus tend to zero whenever the maximum elemental time step

tends to zero.

6.4.3 Convergence proof

We first recall variants of Gronwall’s inequality in discrete and continuous time.

Lemma 6.1. Consider a sequence {ek}
N
k=0 of real numbers satisfying

ek ≤ Akek−1 + Bk for k = 1, . . . , N,
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where e0 ≥ 0, Ak ≥ 1 and Bk ≥ 0 for all k = 1, . . . , N . Then

ek ≤

(

e0 +

k∑

i=1

Bi

)
k∏

i=1

Ai.

Lemma 6.2. Consider a continuous real valued function e(t) which satisfies

e(t) ≤ B +

∫ t

0

Ae(τ) dτ for 0 ≤ t ≤ T

for some non-negative constants A,B, T . Then

e(t) ≤ BeAt for 0 ≤ t ≤ T.

Now we recall some standard bounds on flow maps of Lipschitz vector fields.

Lemma 6.3. Given a vector field f on R
n which is globally Lipschitz with constant L and which

has flow map Φ, then

‖Φt(x)− x‖ ≤ t‖f(x)‖eLt (6.57)

‖Φt(x)− Φt(y)‖ ≤ ‖x− y‖eLt (6.58)
∥
∥
∥Φt(x)− [x + tf(x)]

∥
∥
∥ ≤ Lt2‖f(x)‖eLt (6.59)

for all x, y ∈ R
n and all t ≥ 0.

Next we make precise the sense in which the proxy system is close to the true flow.

Lemma 6.4. The proxy system satisfies

‖Φtmin
k (x0)− x0‖ ≤ tmin

k eMLtmin
k

M∑

i=1

‖fi(x0)‖ (6.60a)

‖zk − Φtmin
k (x0)‖ ≤ h(1 + MLtmin

k eMLtmin
k )

M∑

i=1

‖fi(x0)‖. (6.60b)

Proof. The bound (6.60a) follows directly from (6.57), which together with the definition (6.52a)

then gives (6.60b).

Now we are ready to prove convergence of asynchronous splitting methods. We derive a bound

on the incremental error, using the decomposition illustrated in Figure 6.11.

Lemma 6.5. The difference between the computed solution and the proxy system at time step k + 1
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x0

Φt
min
k (x0)

Φt
min
k+1(x0)

zk

yk

yk+1 = Ψ
hk+1

ik+1
(yk)

Φ
hk+1

ik+1
(yk)

Φ
hk+1

ik+1
(zk)

zk + hk+1fik+1
(zk)

zk + hk+1fik+1
(Φt

min
k (x0))

Φt
min
k+1 (x0) +

P

M

i=1
(ti

k+1
− tmin

k+1
)

·fi(Φ
t
min
k (x0))

zk+1 = Φt
min
k+1(x0) +

P

M

i=1
(ti

k+1
− tmin

k+1
)

·fi(Φ
t
min
k+1(x0))

Figure 6.11: Decomposition of the error used in lemma 6.5.

satisfies

‖yk+1 − zk+1‖ ≤ e(L+2LΨ)hk+1‖yk − zk‖

+ hk+1h

[

CΨ(x0) + CB(L,LΨ,M, tmin
k )

M∑

i=1

‖fi(x0)‖

]

, (6.61)

where CB is a smooth function which remains bounded as its arguments tend to zero.

Proof. Using the definitions of yk+1 and zk+1 we decompose the error at step k + 1 as

‖yk+1 − zk+1‖ ≤
∥
∥
∥Ψ

hk+1

ik+1
(yk)− Φ

hk+1

ik+1
(yk)

∥
∥
∥ (6.62a)

+
∥
∥
∥Φ

hk+1

ik+1
(yk)− Φ

hk+1

ik+1
(zk)‖ (6.62b)

+
∥
∥
∥Φ

hk+1

ik+1
(zk)−

[
zk + hk+1fik+1

(zk)
]
∥
∥
∥ (6.62c)

+
∥
∥
∥

[
zk + hk+1fik+1

(zk)
]

−
[
zk + hk+1fik+1

(Φtmin
k (x0))

]
∥
∥
∥ (6.62d)

+
∥
∥
∥

[
zk + hk+1fik+1

(Φtmin
k (x0))

]

−
[
Φtmin

k+1(x0) +

M∑

i=1

(tik+1 − tmin
k+1)fi(Φ

tmin
k (x0))

]
∥
∥
∥ (6.62e)

+
∥
∥
∥

[
Φtmin

k+1(x0) +

M∑

i=1

(tik+1 − tmin
k+1)fi(Φ

tmin
k (x0))

]

−
[
Φtmin

k+1(x0) +

M∑

i=1

(tik+1 − tmin
k+1)fi(Φ

tmin
k+1(x0))

]
∥
∥
∥. (6.62f)
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Now (6.62e) is equal to

∥
∥
∥

[
Φtmin

k (x0) + (tmin
k+1 − tmin

k )f(Φtmin
k (x0))

]
− Φ(tmin

k+1−tmin
k )(Φtmin

k (x0))
∥
∥
∥

and (6.62f) is equal to

∥
∥
∥

M∑

i=1

(tik+1 − tmin
k+1)

[
fi(Φ

tmin
k+1(x0))− fi(Φ

tmin
k (x0))

]
∥
∥
∥

and so using (6.51), (6.58), (6.59), (6.44), (6.49a) and (6.48) we obtain

‖yk+1 − zk+1‖ ≤h2
k+1CΨ(yk) (6.63a)

+ ‖yk − zk‖e
Lhk+1 (6.63b)

+ Lh2
k+1e

Lhk+1‖fik+1
(zk)‖ (6.63c)

+ hk+1L‖zk − Φtmin
k (x0)‖ (6.63d)

+ MLhhk+1e
MLhk+1‖f(Φtmin

k (x0))‖ (6.63e)

+ hhk+1e
Lhk+1

M∑

i=1

‖fi(Φ
tmin
k (x0))‖, (6.63f)

where (6.63a)–(6.63f) are bounds for (6.62a)–(6.62f), respectively.

We now recall that for any Lipschitz function a : R
n → R

m with constant La, we have ‖a(y)‖ ≤

‖a(x)‖ + La‖y − x‖ for all x, y ∈ R
n. Using this we can substitute the bounds in Lemma 6.4 into

(6.63) to compute

‖yk+1 − zk+1‖ ≤(eLhk+1 + h2
k+1LΨ)‖yk − zk‖

+ hk+1h

(

CΨ(x0) +

[

LΨh + LeLhk+1 + L2heLhk+1 + eLhk+1

+ MLeMLhk+1 + L +

(

LΨ(hML + 1) + ML2

+ L2eLhk+1(hML + 1) + M2L2eMLhk+1

+ MLeMLhk+1

)

tmin
k eMLtmin

k

]
M∑

i=1

‖fi(x0)‖

)

.

Finally, we note that eLhk+1 + h2
k+1LΨ ≤ e(L+2LΨ)hk+1 and we use the restrictions h ≤ 1/L and

h ≤ 1/LΨ to see that the function CB depends only on L, LΨ, M and tmin
k and remains bounded as

its arguments tend to zero. This gives the desired result.

Lemma 6.6. The difference between the computed solution and the proxy system at time step k
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satisfies

‖yk − zk‖ ≤ h(tmin
k + h)Me(L+2LΨ)M(tmin

k +h)

[

CΨ(x0)

+ CB(L,LΨ,M, tmin
k )

M∑

i=1

‖fi(x0)‖

]

. (6.64)

Proof. This follows from applying lemma 6.1 to the estimate in lemma 6.5 and observing that from

(6.46) and (6.49a) we have

k∑

j=1

hj =

M∑

i=1

tik ≤

M∑

i=1

(tmin
k + h) = M(tmin

k + h).

Theorem 6.3. Take a sequence of time step and index specifications {iαk , hα
k}

Nα

k=1 for α ∈ Z
+ with

asychronicity bounds hα. Assume that hα → 0 and tmin
N → T as α → ∞. Let {yk}

Nα

k=1 be the

sequence generated by the asychronous splitting method with initial condition y0 = x0. Then

lim
α→∞

‖yNα − x(T )‖ = 0.

Proof. We decompose the global error to give

‖yNα − x(T )‖ ≤ ‖yNα − zNα‖ + ‖zNα − Φtmin
Nα (x0)‖ + ‖Φtmin

Nα (x0) − ΦT (x0)‖.

The three components each tend to zero as α→∞, as can be seen from the bounds in lemmas 6.4

and 6.6, thus giving the result.

Corollary 6.1 (Restatement of Theorem 6.1). Consider a sequence of asychronous variational

integrators for the same spatial discretization with maximum time step h → 0 and maximum final

time tNΘ
→ T . Then the final configuration converges to the exact solution ΦT (x0, p0).

Proof. We have that tNΘ
− h ≤ tmin

NΘ
≤ tNΘ

and so tmin
NΘ
→ T . The result then follows from theorem

6.3.
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