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Abstract 

A configuration of central importance in many areas of engineering application is 

a thin film structure composed of one or more materials deposited on a substrate of yet 

another material.  Stress in the thin film is accumulated during each of the many 

processing steps involved in making such a structure.  It is necessary to be able to 

determine the stress levels and distribution in the thin film, as stress buildup can lead 

directly to failure and as such it is ultimately related to reliability and process yield.  

Examples of stress-induced failure include delamination, voiding, and cracking of the 

thin film.   

The easiest and most common way of inferring film stress in a thin film-wafer 

substrate system due to some process is to measure the curvature of the system before 

and after that process.  The change in curvature then can be directly related to the film 

stress.  The classical relation between film stress and wafer curvature is known as the 

Stoney formula.  The Stoney formula was derived based on a number of fairly restrictive 

assumptions.  These assumptions include, but are not limited to, uniform film thickness 

and an equibiaxial, spatially uniform misfit strain between the film and substrate.  The 

assumption of constant misfit strain leads to the requirement of spatial uniformity in 

curvature and stress that does not allow the components to vary across the wafer surface.  

These assumptions are routinely violated in practice, yet the Stoney formula is still 

arbitrarily applied.  The accuracy of this formula in determining film stress is expected to 

decrease as spatial nonuniformities in the given system grow. 
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Recently an analysis was performed in which the assumptions of spatial 

uniformity in film thickness and misfit strain were relaxed and Stoney-like relations 

between film stress and wafer curvature were derived.  These relations, called the HR 

relations, have not only terms that relate film stress at a given location to the curvature at 

that location, but also include additional terms that relate film stress at a given location to 

integrals of the curvature over the entire wafer surface.  Therefore, full-field curvature 

information is needed in order to accurately determine film stress, even at a single 

location on the wafer. 

The new analysis was validated by comparison with X-ray microdiffraction 

(XRD).  The XRD techniques that were utilized for this validation effort allow both the 

film stress and the substrate curvature to be measured independently.  Since these two 

measurements are not related, the substrate curvature was used as an input to the stress-

curvature relations.  The resulting film stresses, from both Stoney and the new HR 

analysis, were then compared with the film stress data from XRD.  It was found that the 

accuracy of the HR analysis is much greater than that of Stoney, especially near the film 

edges.  Near the edge of the film, the film thickness decreases sharply, which leads to a 

proportional increase in film stress.  This increase is captured by the HR relations but 

completely missed by Stoney, which assumes a constant film thickness.  Within the film 

center, differences as large as 60% were reported. 

Next, a full-field curvature measurement was introduced.  Coherent Gradient 

Sensing is suited to the HR analysis because it produces curvature information over the 

entire wafer surface, which is required for this analysis.  CGS measurements were taken 

of several progressively more interesting test wafers, which feature various geometries of 
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W island films on otherwise bare Si wafer substrates.  Both Stoney and the HR relations 

were then used to determine stress in the film.  The difference in film stresses produced 

by the two methodologies was discussed.  Also, the variations between film stresses of 

the different thin film-wafer geometries were examined.   

It was found that film stress is not a strictly processing-dependent or an intrinsic 

material property, but also depends on the location of a thin film feature on the wafer 

surface.  Also, features that are close to each other interact so as to change the wafer 

deformation and the stress distribution across the film. 

Further studies are underway which also consider an additional source of wafer 

deformation, namely the effects of temperature gradients which can cause permanent 

deformation in a wafer substrate.  This effect is completely separate from those caused by 

film stress. 
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Introduction 

A configuration of central importance in many areas of engineering application is 

a thin-film structure composed of one or more materials deposited on a substrate of yet 

another material.  Integrated electronic circuits, integrated optical devices and 

optoelectronic circuits, compound semiconductors, micro-electro-mechanical systems 

(MEMS) deposited on wafers, three-dimensional electronic circuits, systems-on-a-chip 

structures, lithographic reticles, and flat panel display systems are examples of such thin 

film structures integrated on various types of plate substrates. 

Especially as film thicknesses and other feature dimensions become ever smaller, 

film stress plays an important role in the manufacturing process because of its cumulative 

detrimental effect on process yield [1].  Stress is accumulated during each of the 

hundreds of fabrication and processing steps involved in creating a thin film structure, 

e.g., sequential film deposition, thermal anneal and subsequent cooling, and etch steps.  

Examples of known phenomena and processes that build up stresses in thin films include 

lattice mismatch, chemical reaction, doping by diffusion or implantation, and rapid 

deposition by evaporation or sputtering.  Film stress buildup can lead to failure through 

many mechanisms, including stress-induced film cracking, buckling and delamination for 

brittle dielectric films, and through void nucleation and growth for more ductile metal 

films.  Therefore, the accurate measurement and analysis of the film stress and stress 

distribution associated with each processing step, and modification of the processes as 

needed, is necessary for establishing appropriate product quality control methodologies. 
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The easiest, and probably most common, method to determine film stress due to 

some process is to measure substrate curvature before and after that specific process.  The 

resulting change in curvature is then directly related to the film stress caused by that 

process.  A simple, well-known formula that relates curvature and film stress was derived 

by G. G. Stoney [2].  Stoney used plate theory to describe a system composed of a thin 

film of thickness hf deposited on a much thicker substrate of thickness hs to derive what is 

known as the Stoney relation, or Stoney formula:  

 κ
ν

σ
fs

ssf

h
hE

)1(6

2

−
= . (0.1) 

In this formula the subscripts f and s are used to denote the film and substrate, 

respectively, while E and ν are the Young's modulus and Poisson ratio, respectively [3].  

The film stress, σf, is related directly to the change in system curvature, κ.  This formula 

was derived based on several explicit assumptions.  These include: 

(i) Both the film thickness hf and the substrate thickness hs are uniform and 

hf<<hs<<R, where R is the system radius; 

(ii) The strains and rotations of the plate system are infinitesimal; 

(iii) Both the film and substrate are homogeneous, isotropic, and linearly elastic or 

thermoelastic; 

(iv) The misfit strain state is in-plane isotropic or equi-biaxial (εij = εmδij); and 

(v) The misfit strain state is spatially constant over the plate system's surface. 

The above assumptions naturally result in the following properties of the system: 
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(vi) The film stress states are in-plane isotropic or equi-biaxial while the out-of-

plane direct stress and all shear stresses vanish (σ = σxx = σyy, σxy = σyx = 0); 

(vii) The system's curvature components are equi-biaxial, while the twist 

curvature vanishes in all directions (κ = κxx = κyy, κxy = κyx = 0); and 

(viii) All surviving stress and curvature components are spatially constant over 

the plate system's surface. 

Assumptions (iv) and (v), of equi-biaxial, spatially constant misfit strain, cannot 

be checked directly.  However, the system curvature can be measured. An equi-biaxial, 

spatially constant curvature, as results from these assumptions, corresponds to a substrate 

deformation that is exactly spherical.  That is practically never the case for a real thin 

film-substrate system.  If the deformation is not spherical, the assumptions of 

equibiaxiality (iv) and of spatial uniformity (v) must necessarily not be met.   

In practice, the Stoney formula is often, arbitrarily, applied in cases where these 

assumptions are violated. To deal with this, the Stoney formula is typically applied in a 

local fashion, that is, an average stress at each point is determined from the average 

curvature at that point.  This approximation clearly ignores the assumption of spatial 

uniformity and, therefore, its accuracy is expected to deteriorate as spatial 

nonuniformities increase. 

Over the years, many extensions to the Stoney formula have been derived by 

various researchers who have relaxed different assumptions made by the original Stoney 

analysis.  Such extensions of the initial formulation include relaxation of the assumption 

of equi-biaxiality as well as the assumption of small deformations/deflections.  A biaxial 
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form of Stoney, appropriate for anisotropic misfit strain, including different stress values 

at two different directions and non-zero, in-plane shear stresses, was derived by relaxing 

the requirement of curvature equi-biaxiality [3].  Related analyses treating discontinuous 

films in the form of bare periodic lines [4] or composite films with periodic line 

structures (e.g., bare or encapsulate periodic lines) have also been derived [5-7].  These 

latter analyses have also removed the requirement of equi-biaxiality and have allowed the 

existence of three independent curvature and stress components in the form of two, non-

equal, direct components and one shear or twist curvature component.  However, the 

uniformity requirement of all of these quantities over the entire plate system was retained.  

In addition to the above, single, multiple, and graded films and substrates have been 

treated in various large deformation analyses [8-11].  These analyses have removed both 

the restrictions of an equi-biaxial curvature state as well as the assumption of 

infinitesimal deformations.  They have allowed for the prediction of kinematically 

nonlinear behavior and bifurcations in curvature states which have also been observed 

experimentally [12, 13].  These bifurcations are transformations from an initially equi-

biaxial to a subsequently biaxial curvature state that may be induced by an increase in 

film stress beyond a critical level.  This critical level is intimately related to the system's 

aspect ratio, i.e., the ratio of in-plane to thickness dimension and the elastic stiffness.  

These analyses also retain the requirement of spatial misfit strain, curvature and stress 

uniformity across the entire system.  However, they allow for deformations to evolve 

from an initially spherical shape to an energetically favored shape (e.g., ellipsoidal, 
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cylindrical or saddle shapes) which features three different, yet still spatially constant, 

curvature components [12, 13]. 

The most restrictive requirement of the classical Stoney formulations and its 

extensions discussed above was recently relaxed to derive a more general Stoney-like 

equation [14-17].  This was done by considering deformations due to a non-uniform 

misfit strain distribution, where misfit strain refers to the intrinsic strain in the thin film 

that is not associated with the stress.  Initially the analysis was performed by considering 

a misfit strain due to a non-uniform temperature distribution [14].  The Stoney analysis, 

which assumes spatially constant misfit strain, produces a relation between film stress 

and substrate curvature in which the misfit strain is eliminated; that is, the dependence of 

film stress on substrate curvature is not affected by the origin of the misfit strain.  

However, it was found that when considering misfit strain due to non-uniform 

temperature distributions, the resulting Stoney-like relations which associate film stress 

and substrate curvature did include a term which depended on difference of thermal 

expansion coefficients of the film and substrate. 

The thermoelastic analysis, discussed above, was subsequently repeated for cases 

where the cause of system curvature and film stress was an athermal misfit strain such as 

epitaxial lattice mismatch.  The first case considered was one of axisymmetric system 

geometry and misfit strain distribution [15].  This was followed by a generalization to 

arbitrary misfit strain distributions [16] and finally to both arbitrarily non-uniform film 

thickness and misfit strain variations.  This last analysis is described in detail in chapter 1 

of this thesis. 
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The above analyses produced relations between the dependent variables (film 

stress and system curvatures) and the in-plane misfit strain distribution.  The dependence 

on misfit strain appeared in the form of integrals evaluated over the plate surface 

demonstrating the "non-local" nature of the dependence.  Elimination of the misfit strain 

resulted in Stoney-like relations between film stress and system curvatures (referred to 

here as the HR relations) which also involve surface integrals of curvature evaluated over 

the place surface.  The most interesting feature of the resulting relations is that film stress 

in a given location does not simply depend on the curvature at that location in a "local" 

manner.  Instead, there are additional terms which depend on the curvature distribution 

over the entire plate system.  This implies a "non-local" stress/curvature dependence and 

demonstrates that a simple, "local" curvature measurement is not sufficient for an 

accurate determination of stress in the presence of non-uniform deformations; instead, the 

full-field curvature is required. 

Note that the term "non-local," as used here, applies to the relations between film 

stress and misfit strain, curvature and misfit strain, and stress and curvature.  The 

formulation, however, is strictly local since only linear elasticity is assumed. 

In this thesis, the derivation of the HR relations for both the case of arbitrarily 

varying non-uniform misfit strains and film thicknesses are summarized and are then 

specialized to the axisymmetric case.  Once the stress/curvature relations are established, 

their differences from the "local" Stoney relations are discussed by means of an analytical 

example.  In order to validate the non-local HR relations, a micromeasurement technique, 

X-ray microdiffraction (µXRD), is introduced.  This technique is advantageous because it 



 

 

 

 

7
is able to independently measure both film stress and substrate curvature within the same 

setup.  Measurements of film stress made by µXRD of a highly non-uniform but 

axisymmetric wafer specimen are compared with the stress inferred by using the local 

and non-local formulas with curvature, measured by monochromatic µXRD, as a 

common input.  The comparison provides conclusive validation of the axisymmetric 

version of the non-local stress/curvature relations. 

Next, a full-field, interferometric curvature measurement technique, called 

Coherent Gradient Sensing (CGS), is introduced.  This full-field measurement allows the 

non-local stress formulas, which require knowledge of the entire curvature field over the 

wafer surface, to be used appropriately.  Finally, the full-field CGS technique is used to 

analyze the stress distributions of several interesting thin film-substrate systems.  These 

systems include various non-axisymmetric geometries of W thin film islands deposited 

on single crystal Si substrates.   

An ongoing collaborative study with Northrop Grumman Space Technologies is 

also briefly discussed.  This study is examining the additional thermal effects of certain 

processing techniques on wafer deformation and film stress. 
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1. Theory 

The Stoney formula (Eq. 0.1) is commonly used to relate film stress to system 

curvature.  As mentioned in the introduction, the assumptions of this formula include 

spatial uniformity which does not allow the curvature or stress to vary over the plate 

system surface.  In practice, however, this assumption is rarely met.  In order to measure 

film stress when the system is not spatially uniform, the Stoney formula is often applied 

in a local manner.  This is done by relating the first invariant of the film stress to the first 

invariant of curvature as follows: 

 )(
)1(6

2

yyxx
fs

ssf
yy

f
xx h

hE
κκ

ν
σσ +

+
=+ . (1.1) 

Note that this clearly violates the assumption of a single, constant curvature and a single, 

constant stress over the entire wafer. 

In order to expand the Stoney formula to properly incorporate non-uniform 

deformations, an analysis was performed which considers a case in which a non-uniform 

misfit strain is present in the film [17].  This misfit strain, εm, refers to the intrinsic strain 

in the thin film which is not associated with the stress.   

In this analysis, a thin film of arbitrary thickness hf (r,θ) has been deposited on a 

much thicker substrate of uniform thickness hs, and radius R, such that hf << hs << R (Fig. 

1-1).  The film is modeled as a membrane, since it is too thin to be subject to bending 

forces.  The thin film is subject to a non-uniform and isotropic misfit strain distribution 

ijm
m
ij δεε = , where εm = ε m (r,θ).  The misfit strain provides the "driving force" which is 



 

 

9
ultimately responsible for the creation of both curvature in the system and stress in the 

thin film.  The substrate, which is subject to bending, is modeled as a plate.  A cylindrical 

coordinate system (r,θ,z) is used, with the origin in the center of the substrate (see Fig. 

1-1). 

   
 (a) (b) 

Figure 1-1.  Schematic of the thin film-substrate system, showing the cylindrical coordinates (r, θ, z). 

The film has radial (r) and circumferential )(θ  in-plane displacements of f
ru  and 

fuθ , respectively.  The strains in the film are ru f
rr ∂∂= /θε , θε θθθ ∂∂+= /)/1(/ ff

r urru  

and ruruur fff
rr ///)/1( θθθ θγ −∂∂+∂∂= .  These strains are related to the misfit strain, 

εm, and the film stresses by ( )[ ] ijmijkkfijf
f

ij E
δεδσνσνε +−+= 11 .  The stresses in the 

film can now be expressed in terms of the film displacements as follows: 
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The membrane forces are now defined as 

 f
rrf

f
r hN σ= , f

f
f hN θθθ σ= , f

rf
f

r hN θθ σ= . (1.3) 

For a uniform misfit strain distribution and uniform film thickness (εm, hf 

constant), the normal and shear tractions associated with the thin film-substrate interface 

vanish except near the free edge r = R, i.e., σzz = σrz = σθz = 0 at z = hs/2 and r < R.  

However, for non-uniform misfit strain and film thickness distributions, εm = εm(r,θ) and 

hf = hf (r,θ), the shear stresses σrz and σθz at the interface may no longer vanish, and are 

denoted by τr and τθ, respectively.  The normal stress traction σzz still vanishes (except at 

the free edge r = R) because the thin film cannot be subject to bending.  The equilibrium 

equations for the film are thus 
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The substitution of Eqs. 1.2 and 1.3 into Eq. 1.4 yields the governing equations 

for the thin film, in terms of ( ) ( )ff
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At its neutral axis, z = 0, the substrate has radial (r) and circumferential )(θ  in-

plane displacements of s
ru  and suθ , respectively. Since the substrate undergoes bending, it 

also has a displacement, w, normal to the neutral axis.  The strains in the substrate are 

then denoted by 
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The stresses are 
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The forces and bending moments in the substrate are then found to be 
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The shear stresses rτ  and θτ  at the thin film-substrate interface are equivalent to 

the distributed forces rτ  in the radial direction and θτ  in the circumferential direction, 

and bending moments rsh τ)2/(  and θτ)2/( sh  applied at the neutral axis (z = 0) of the 

substrate. The in-plane force equilibrium equations for the substrate are then 
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and the in-plane bending moment equilibrium equations for the substrate are 
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where rQ  and θQ   are the shear forces normal to the neutral axis.  Substituting Eq. 1.8 

into Eq. 1.10 gives the following governing equation for the substrate, in terms of s
ru  and 

suθ  (and τ), as 
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Similarly, substituting Eq. 1.9 into Eq. 1.10, and eliminating rQ  and θQ  from Eq. 1.11, 

gives the governing equations for the substrate, in terms of w (and τ), as 
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2 11
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Also, from continuity of displacement at the thin film-substrate interface, the 

condition is imposed that 
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Equtions 1.5 and 1.13-1.15 constitute seven ordinary differential equations for 

seven variables, namely f
ru , fuθ , s

ru , suθ ,w, rτ  and θτ .  The following discussion 

explains how to decouple these seven equations under the limit 1<<sf hh  in order to 

solve s
ru  and suθ  first, then w , followed by f

ru and fuθ , and finally rτ  and θτ . 

(i) Elimination of rτ  and θτ  from force-equilibrium equations for the thin film 

(Eq. 1.5) and for the substrate (Eq. 1.13) yields two equations for f
ru , fuθ , s

ru , and suθ .  

Under the limit 1<<sf hh , f
ru  and fuθ  disappear in these two equations, which become 

the following governing equations for s
ru  and suθ  only:  
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 (1.16) 

The substrate displacements s
ru  and suθ  are on the order of hf / hs. 

(ii) Elimination of f
ru  and fuθ  from the continuity condition (Eq. 1.15) and 

equilibrium equation (Eq. 1.5) for the thin film gives rτ  and θτ  in terms of s
ru , suθ  and w 

(and εm).  The substitution of these rτ  and θτ  into the moment equilibrium equation (Eq. 
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1.14) yields the governing equation for the normal displacement w.  For  1<<sf hh , this 

governing equation takes the form  
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This is a biharmonic equation which can be solved analytically.  The substrate 

displacement w is on the order of hf / hs. 

(iii) The displacements f
ru  and fuθ  in the thin film are obtained from Eq. 1.15, 

and they are also on the same order hf / hs as s
ru , suθ  and w.  The leading terms of the 

interface shear stresses rτ  and θτ  are then obtained from Eq. 1.5 as 
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Equations 1.16 - 1.18 show that hf  always appears together with εm.  The interface 

shear stress is only proportional to gradients of hfεm; when the misfit strain and film 

thickness are uniform, as is the case for the Stoney analysis, the interface shear stress 

vanishes. This result holds regardless of boundary conditions at r = R.  

The boundary conditions at the free edge r = R require that the net forces and 

moments vanish: 
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Equations 1.16 - 1.18 and boundary conditions 1.19 - 1.20 are solved in the same 

way as that for uniform thickness and non-uniform misfit strain [16] by replacing εm with 

hfεm.  Then hfεm is expanded to the Fourier series as 
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where ( )∫∫=
A

mfmf dAh
R

h ϕηε
π

ε ,1
2  is the average misfit strain over the entire area A of 

the thin film, ϕηη dddA = , and mfh ε  is also related to 0)( cmfh ε  by  
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h
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The stresses in the thin film are obtained from Eq. 1.2.  Specifically, the sum of 

film stresses, ff
rr θθσσ + , is related to hfεm by 
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=+ . (1.23a) 

The difference between stresses, ff
rr θθσσ − , and the shear stress, f

rθσ , are given by 
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Note that if the film thickness and misfit strain are uniform, the shear stress of Eq. 

1.18 vanishes.  Then the curvatures of Eqs. 1.22 become 
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and the stresses in the thin film obtained from Eqs. 1.23 become 
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For this special case only, both stress and curvature states become equibiaxial.  

The elimination of misfit strain mε  from the above two equations yields a simple relation 
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, which is exactly the Stoney formula in Eq. 0.1.  

In order to extend such a Stoney-like relation for arbitrary non-axisymmetric 

misfit strain distribution, it is necessary to relate curvatures directly to stress.  Currently 
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both curvature and stress are related to the misfit strain distribution in Eqs. 1.22 - 1.23, so 

eliminating misfit strain from these equations will produce an extension to the Stoney 

formula.  

The coefficients nC  and nS  related to the substrate curvatures are first defined by 
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where the integration is over the entire area  A of the thin film, and ϕηη dddA = .  Since 

both the substrate curvatures and film stresses depend on the misfit strain εm and film 

thickness hf, elimination of these parameters gives the film stress in terms of substrate 

curvatures as 
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where  ( ) 2
0 R/πκκκκ θθθθ ∫∫ +==+

A rrrr dAC  is the average curvature over the entire 

area A of the thin film, and Cn and Sn are given in Eq. 1.26.  Equations 1.27, which 

directly relate film stress to substrate curvatures, are known as the HR relations.  It is 

important to note that stresses at a point in the thin film depend not only on curvatures at 

the same point (local dependence), but also on the curvatures in the entire substrate (non-

local dependence) via the coefficients Cn and Sn.  It should also be noted that Eq. 1.27b 

for shear stress f
rθσ  and Eq. 1.27a for the difference in normal stresses ff

rr θθσσ −  are 

independent of the thin film thickness hf, but Eq. 1.27c for the sum or normal stresses 

ff
rr θθσσ +  is inversely proportional to the local film thickness hf at the same point. 

The interface shear stresses rτ  and θτ  are also directly related to substrate 

curvatures via 
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  (1.28) 

which is also independent of the film thickness hf.  Equation 1.28 provides a way to 

estimate the interface shear stresses from the gradients of substrate curvatures.  It also 

displays a non-local dependence via the coefficients nC  and nS . 

Since interfacial shear stresses are responsible for promoting system failures 

through delamination of the thin film from the substrate, Eq. 1.28 has particular 
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significance.  It shows that such stresses are related to the gradients of θθκκ +rr  and not 

to its magnitude as might have been expected of a local, Stoney-like formulation.  

Equation 1.28 provides an easy way of inferring these special interfacial shear stresses 

once the full-field curvature information is available.  As a result, the methodology also 

provides a way to evaluate the risk of and to mitigate such important forms of failure.  It 

should be noted that for the special case of spatially constant curvatures, the interfacial 

shear stresses vanish as is the case for all Stoney-like formulations described in the 

introduction. 

The HR relations (Eq. 1.27) show a non-local dependence of film stress on 

substrate curvature, that is, when a non-uniform misfit strain distribution exists, the stress 

as a given point is related to not just the curvature at that point but also the difference 

between that curvature and the average curvature across the wafer.  The presence of non-

local contributions in these relations has implications regarding the nature of diagnostic 

methods needed to perform wafer-level film stress measurements.  In the presence of 

non-uniform curvatures, a local curvature measurement, i.e., a measurement at a single 

point, simply does not provide sufficient information to determine the local stress, i.e., 

the stress at that point.  The existence of non-local terms in these relations necessitates 

the use of full-field methods capable of measuring curvature components over the entire 

surface of the plate system (or wafer).  Furthermore, measurement of all independent 

components of the curvature field is necessary because the stress state at a point depends 

on curvature contributions (κrr, κθθ, and κrθ) from the entire plate surface. 

The present analysis also provides a very simple way to account for the effect of 

non-uniform film thickness on the Stoney formula.  The most remarkable result is that for 
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arbitrarily non-uniform film thickness, the stress-curvature relations are identical to their 

counterparts for uniform film thickness [16, 17] except that thickness is replaced by its 

local value. 

Axisymmetric HR Relations 

In this section, the HR relations (Eq. 1.27) are simplified for a radially symmetric 

misfit strain [15].  The axisymmetric case is considered because the deformation of actual 

thin film-substrate systems often has radial symmetry, which implies a radially 

symmetric misfit strain.  This is partially due to the circular wafers, and partially to the 

axisymmetric effects from many of the processing steps, such as heating and cooling 

processes.  A full-field curvature measurement of a typical 300 mm patterned wafer, 

which illustrates its axisymmetry, is shown in Fig. 1-2. 

 
Figure 1-2.  Principal curvature, κmax.  This curvature is axisymmetric, implying that the deformation is 

also radially symmetric. 

For the axisymmetric case, much of the analysis is simplified.  For example, the 

radial in-plane displacement becomes u = u(r) for film and substrate.  In the subsequent 

equations, all partial derivatives with respect to θ vanish, as do the cross derivatives.  
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Since a radially symmetric misfit strain has no θ  terms, the Fourier series expansion of 

Eq. 1.21 reduces directly back to hfεm:  the leading term ( ) )2/()(
2
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0 ∫=
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πθεε dhrh mfcmf  is 
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smf   terms both vanish. 

The curvatures of Eq. 1.22 then simplify to 
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where ∫∫∫ =≡ )/()()/2( 2
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The stresses of Eq. 1.23 simplify to 
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The coefficients Cn and Sn of Eq. 1.26 also vanish.  Thus, the relations between 

film stress and substrate curvature (Eq. 1.27) become 
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while the shear stress Eq. 1.28 simplifies to 
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Note that there is still a non-local dependence of film stress on substrate curvature 

through the average curvature term θθκκ +rr . 

Both the full HR relations (Eq. 1.27) and the axisymmetric, simplified HR 

relations (Eq. 1.31) will be used in this thesis. 

An Analytical Example: Stoney vs. HR Relations 

To illustrate the difference between the local Stoney formula and the new HR 

relations, consider a thin film-substrate system which is assumed to feature an out-of-

plane displacement, w, due to some film stress, where 

 θn
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rww
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cos0 ⎟
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⎜
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⎛= , (1.33)  

 w0 is the maximum displacement, and n is an integer.  For n = 2, this displacement 

corresponds to a saddle shape (Fig. 1-3).   
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 (a) (b) 

Figure 1-3.  Wafer deformation from Eq. 1.33, where w0 = 20, n = 2, and R = 37. 

Analytically, such a displacement gives curvatures of 
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which are shown in Fig. 1-4. 
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Since the radial and circumferential curvatures are equal and opposite, the 

localized Stoney formula (Eq. 1.1) predicts a vanishing stress state:  

 ( )

.0

)11(cos1
)1(6

)(
)1(6

2

2
0

2

2

=

−×⎟
⎠
⎞

⎜
⎝
⎛−

−
=

+
−

=+

−

θ
ν

κκ
ν

σσ θθθθ

n
R
r

R
w

nn
h

hE

h
hE

n

fs

ss

rr
fs

ssff
rr

 (1.35) 

The HR relations (Eq. 1.27), however, infer stresses that do not vanish and are 

given by 

 
 (a) (b) 

 
(c) 

Figure 1-4.  κrr, κθθ, and κrθ from Eq. 1.34 



 

 

28

 ( ) ( ) θ
ν

σσ θθ n
R
r

R
wnn

hE n

f

sfff
rr cos1

13
2 2

2
0)()(

−

⎟
⎠
⎞

⎜
⎝
⎛−

+
−=−= , (1.36) 

 ( )

( ) ( ) θ
ν

σ θ n
R
r

R
wnn

hE n

f

sff
r sin1

13
2 2

2
0

−

⎟
⎠
⎞

⎜
⎝
⎛−

+
=  . (1.37) 

These stresses are pictured in Fig. 1-5.   

 
 (a) (b) 

 
(c) 

Figure 1-5.  Radial, circumferential and twist curvature from Eqs. 1.36 and 1.37. 

This simple example demonstrates that for a strongly non-uniform deformation 

(due to, e.g., a non-uniform misfit strain), the difference between the film stress predicted 

by Stoney and by the non-uniform HR relation can be significant.   
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Next, the validity of the axisymmetric HR relations, as compared to Stoney, will 

be established by comparing experimental results to the stresses predicted by each 

analysis.  Then both the axisymmetric and the full HR relations will be used to infer film 

stress in various thin film-wafer substrate systems. 
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2. Measuring Stress: X-ray Microdiffraction (µXRD) 

In order to determine the relative validity of the "nonlocal” stress/curvature 

relations compared to the "local" Stoney formula, it is necessary to employ a technique 

which is able to independently measure both the film stress and the substrate curvature at 

the same place on a wafer.  The curvature can be used to calculate film stress using both 

types of relations (local and nonlocal), and the resulting stresses can be compared.  The 

stresses from curvature can also be compared with the stresses determined from the direct 

measurement.  The various implementations of X-ray microdiffraction (µXRD) provide 

such an opportunity.  In general, X-ray diffraction (XRD) measures the crystalline lattice 

spacing in a material and uses the spacing change as a strain gage. Following the strain 

measurement, a constitutive law is used to infer stress in the film.  In this particular 

project, synchrotron X-ray microdiffraction was used for these measurements.  

Synchrotron µXRD has several advantages over traditional lab X-rays.  These advantages 

include higher flux, smaller spot size, and the ability to quickly change between a 

monochromatic and polychromatic beam.  In our experiment, the monochromatic beam is 

used to measure film stress, and the white (polychromatic) beam to measure substrate 

curvature.  Since the two types of measurements are using different wavelengths, they are 

effectively independent of each other.  These µXRD experiments were performed at 

Beamline 7.3.3 at the Advanced Light Source at Lawrence Berkeley National Lab in 

Berkeley, CA.  
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X-ray Diffraction: An Overview 

In its most basic form, X-ray diffraction consists of an X-ray beam that is shined 

onto a specimen and then bounces off, diffracted by the specimen's crystalline lattice 

(Fig. 2-1). The resulting diffraction pattern, known as a Laue pattern, is captured with a 

detector.  Within this basic framework the specifics of specimen, beam characteristics, 

and detector size can vary widely.  The diffraction process is governed by the well-

known Bragg's Law, d = λ / 2sinθ, which relates the incoming wavelength to the lattice 

spacing and diffraction angle.   In this equation, λ is the beam wavelength, d the lattice 

spacing, and θ the angle between the beam and the plane of interest. 

 

Figure 2-1.  X-ray diffraction schematic 

The diffracted beam forms Laue patterns, which are captured easily when using 

an area detector.  Polychromatic diffraction patterns are composed of spots of high 

intensity (Fig. 2-2a), while monochromatic diffraction patterns, known as Debye rings, 

consist of high-intensity rings (Fig. 2-2b).   

d 

diffracted 
beam 

incoming 
beam, 
λ 

θ θ 
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(a) 

 
(b)

 

Figure 2-2.  Diffraction patterns from (a) white and (b) monochromatic incoming beams. 

In a typical experiment, the specimen is held at a known angle to the incoming 

beam so that the area detector is able to capture as much of the diffracted beam as 

possible (Fig. 2-3).  The resulting patterns are analyzed to obtain the desired 

measurement at that location on the specimen.  The specimen is translated across the 

beam in x and y so that a map is obtained, with images (or datapoints) taken at some 

specified spacing in x and y.  For example, a line scan might have 10 datapoints spaced 

0.1mm apart in x, while an area scan might have 5 of these x-lines spaced 0.5mm apart in 

y.  In this case the total area covered in the line scan is 1mm, and in the area scan is 

2.5mm2.  There are 50 images captured, so after analysis there will be 50 measurements 

across the sample surface (note: these are arbitrary numbers for illustrative purposes 

only.)   

sample 
holder

incoming 
beam 

detector

 
Figure 2-3.  The microdiffraction setup at the Advanced Light Source.  The incoming X-ray beam is 

reflected from the sample surface and captured by the detector. 
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This is a pointwise measurement, which scans over the area of interest but does 

not get information from the entire surface.  Also, it is important to note that the 

monochromatic and white beam measurements, though performed using the same 

experimental setup, use different portions of the incoming X-ray beam and are effectively 

independent measurements. 

Monochromatic µXRD 

Monochromatic XRD uses a beam that is a single wavelength and diffracts into 

patterns called Debye rings.  Each ring on the pattern is made up of many spots, and 

corresponds to a single lattice plane.  Each spot corresponds to a single grain, but not 

every grain illuminated in the beam contributes to the diffraction pattern.  Only the subset 

of grains that are oriented properly, namely whose specific lattice planes are at an angle 

to the incoming beam which corresponds to Bragg's law, will interact with the beam in 

such a way that it diffracts off of the crystal and impacts the area detector to create a spot.  

Therefore, in order to obtain well-populated rings, this technique works best when the 

grain size is much smaller than the beam spot size so that a large number of grains are 

illuminated at each point. 

The average equibiaxial stress in the specimen (e.g., a thin film on some 

substrate) can be determined from the diffraction pattern using what is known as the "d vs 

sin2ψ" method [18].  The coordinate system of the images is made up of 2θ, χ, and ψ, 

where 2θ is across the rings, χ is horizontally across the image, and ψ is aligned along the 

rings (Fig. 2-4). 
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Figure 2-4.  Monochromatic pattern with coordinate system 

The relevant equation for the d vs sin2ψ analysis as shown here is for equibiaxial 

stress (i.e., σxx = σyy = σ, σxy = 0).   

 σνψσν
EEd

dd 2sin1 2

0

0 −
+

=
−

 (2.1) 

This stress is related to the lattice strain (d - d0)/d0 via the isotropic version of 

Hooke's law.  Constitutive isotropy is indeed a very good assumption for certain 

polycrystalline films.  For example, W, which is used in the present study, was chosen for 

its isotropic properties.  Linear elasticity is also a good assumption for a material such as 

W, since its yield stress is very high compared to most commonly used metallic thin film 

materials. 

To find the stress, a plot of d vs. sin2ψ is obtained (thus the technique's name).  

The lattice spacing, d, can be obtained from 2θ via Bragg's Law.  To find 2θ, the rings are 

2θ 

χ 

ψ 
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divided into small compartments of 2θ vs. ψ in a process known as binning.  In each bin, 

i, the intensity is integrated and fit to a Lorentzian function to find 2θ at maximum 

intensity, or 2θ i.  Also, the average ψ  for a bin, iψ , is found as 2/)( minmax ψψψ +=i .    

Assuming the material constants are known, the other variable in this equation 

that must be determined in order to complete the analysis is d0, or the unstressed lattice 

spacing.  In practice, it is almost impossible to obtain this value, and the value at ψ = 0 is 

substituted.  This is allowable because elastic strains introduce, at most, a 0.1% 

difference between the true d0 and the d at any ψ. Since d0 is a multiplier to the slope, the 

total error introduced by this assumption is less than 0.1% and is negligible compared to 

error from other sources [18].   

To determine d0, iψ  vs. 2θ i is plotted and fit to a function (Fig. 2-5).  Then 2θ  is 

found at ψ = 0, and d0 is calculated using Bragg's Law. 
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Figure 2-5.  plot of ψ vs. 2θ 
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Figure 2-6.  plot of d vs sin2ψ 

Finally the plot of d vs. sin2ψ is obtained (Fig. 2-6).  For a truly equibiaxial stress 

state, the plot should be linear.  A linear trend line is fit to the data, and by comparing the 

equation of that line with Eq. 2.1, the stress is easily found as 

 
0)1( d

Es
ν

σ
+

= , (2.2) 

where s is the slope of the linear fit. 

If the stress is not strictly equibiaxial, then this process determines the mean 

stress, or σ = (σxx + σyy)/2.  For a complete analysis, this procedure is performed for each 

ring in each image in a scan.  Each ring corresponds to a given lattice plane in the 

specimen, and so the analysis for one ring determines the stress in that direction.  For an 

isotropic system, such as W, the stress from a single ring is sufficient.   
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Polychromatic (White Beam) µXRD 

A polychromatic, or white, beam incorporates a range of wavelengths into the 

incoming light.  In this case, the Laue patterns consist of many high-intensity spots (Fig. 

2-7a).  Each spot corresponds to a given lattice plane in a given grain.  For a single grain 

of a known material, a known pattern of spots will be diffracted.  If the grain is strained, 

the pattern shifts in a predictable manner.  When there are several grains illuminated, the 

pattern for each grain is superimposed on the image.  A sophisticated software program 

deconvolutes these images and indexes them, identifying individual patterns from each 

grain [19].  The software calculates the orientation matrix for each grain, as well as the 

deviatoric strain tensor in that grain.  (The deviatoric stress is then found using Hooke’s 

law [18].)  This technique is used when very few grains are in the illuminated region, 

since if there are too many superimposed patterns it becomes impossible for even the 

software to match the individual spots with the specific grain that produced them.   

In the case of a single crystal specimen, the orientation matrix that is measured is 

always from the same grain.  Once the crystal orientation is obtained at each location 

across the specimen, the relative slope and curvature are then determined by tracking the 

 (a) 
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Figure 2-7.  (a) Laue pattern from the single crystal Si wafer. (b) Definition of coordinate system and the projection 
angle α; slope in xz plane = tan(α). 
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changes in the vector defining the grain normal with respect to the lab coordinate system.  

For a scan along the x axis (sample diameter), we are only concerned with the slope 

changes in the xz plane.  This slope is equal to tan(α), where α is defined as the angle 

between the projection of the grain normal in the xz plane and the z axis in the lab 

reference frame (Fig. 2-7b).  

For a radially symmetric sample on which the scan is performed along the 

diameter, where y = 0, cylindrical coordinates can be used.  The radial slope, ∂f/∂r = 

tan(α), and the circumferential curvatures κrr and κθθ are then determined from 
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3. Verifying Nonlocal Formulas: Comparison with XRD 

In order to begin to verify the new analytical relations which allow for the 

inference of film stress from nonlocal curvature measurements (nonlocal relations), the 

two different types of µXRD measurements described in Chapter 2 were used to measure 

both substrate slope and film stress across the diameter of an axisymmetric thin film-

substrate specimen composed of a circular W film island deposited in the center of a 

single-crystal Si substrate [20].  The substrate slopes, measured by polychromatic (white 

beam) µXRD, were used to calculate curvature fields and to thus infer the film stress 

distribution using both the "local" Stoney formula and the new, "nonlocal" HR relations.  

The variable film thickness, which was independently measured, was also an input to the 

HR relations.  These stresses were then compared with the film stress calculated from 

lattice distortions measured independently through monochromatic µXRD, to determine 

the validity of the new formula and to quantify the improvement over the commonly 

accepted Stoney analysis. 

Methodology 

The specimen consisted of a circular, 24.8 mm diameter W film island deposited 

on the center of a 100 mm diameter, 525 µm thick Si <001> wafer (Fig. 3-1).  The film 

thickness is variable across the island; the thickest portion, in the center of the island, is 

approximately 1.85 µm.  The Young’s modulus for Si and W are 130 GPa and 410 GPa, 

respectively, while the Poisson’s ratio is 0.28 for both materials [21].  



 

 

40

  

24.8 mm

100 mm 1.85 µm 
525 µm 

W

Si

cross sectiontop view
 

 (a) (b) 
Figure 3-1.  specimen schematic 

Measurements were taken along the specimen diameter, x = 0.  The spacing 

between data points was 0.25 mm for monochromatic beam measurements and 0.1mm 

for white beam measurements.  Both types of µXRD were used in order to obtain 

information about both system orientation (for slope and curvature) and film strain (for 

stress).   

The axisymmetric form of the nonlocal relations (Eq. 1.31) require full-field 

curvature information, in the form of the average of the first curvature invariant, κrr + κθθ, 

of the curvature tensor across the entire specimen, in order to determine film stress.  

However, µXRD is a pointwise measurement, and as such it does not yield a full map.  

Since a circular film is deposited in the center of a circular SI substrate of the 001 type, 

the specimen topography (deformation due to misfit strain induced film stress) is 

expected to be radially symmetric provided that the film thickness profile and the misfit 

strain are also axisymmetric.  If this is the case, then a measurement obtained along the 

specimen diameter can be used to produce a full-field map of the surface topography and 

curvature.  An optical slope measurement technique called Coherent Gradient Sensing 

(CGS), which will be discussed in more detail later, was used to check the symmetry of 

the system.  The Cartesian slopes obtained by CGS are integrated to provide the 

deformed specimen topography (Fig. 3-2) and to demonstrate that the specimen is, in 

fact, radially symmetric.  Therefore, the measurements obtained from µXRD along a 
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wafer diameter are enough to generate both radial and circumferential curvature maps.  

Fig. 3-2b is a cross section of the topography map through the sytem center.  It reveals a 

shape which features a "strong" negative radial curvature at the location covered by the 

film and "weaker" positive curvatures at the uncovered parts. 

 
Figure 3-2. (a) CGS topography (b) topography at x = 0 

After the substrate slope and film stress were measured with µXRD, the specimen 

was broken into pieces so that the film thickness could be measured using a scanning 

electron microscope (SEM).  Several images were taken along the film radius.  Since the 

specimen topography is axisymmetric, the thickness across the island diameter was 

extrapolated from these measurements.  In each image, the film thickness was determined 

by comparing the length of a line drawn through the thickness to the length of the scale 

bar (Fig. 3-3).  Each image covers approximately 8 µm, and five thickness measurements 

within each image were averaged to obtain the film thickness at that image location.  The 

film thickness variation with radial position is shown in Fig. 3-3b.  Near the island edge, 

the thickness drops off precipitously from an approximate level of 1.85 µm in the center 

to approximately 0.8 µm at the edge of the island.  From Eq. 1.31, this is expected to 

correspond with a rapid increase in film stress in that location.  
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(b) 
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Figure 3-3.  SEM images of film cross-section (a) within the central approximately constant thickness 

region and (b) near the film edge; (c) radial film thickness measured from the SEM images 

White Beam µXRD System Slope and Curvature Measurements 

The radial slope, rf ∂∂ / , across the wafer diameter is shown in Fig. 3-4a.  In the 

central part of the film-covered region of the wafer the slope appears to be approximately 

linear, but it substantially deviates from linearity as the film edges are approached from 

within.  At the film edges, the radial gradient of the slope (radial curvature κrr) suffers a 

large but finite jump and changes sign from negative to positive, consistent with the 

topography map of Fig. 3-2 obtained by integration of the CGS slopes.  As the wafer 

edges are approached, the radial curvature decreases gradually to a small but finite value.  

The overall shape of the radial slope is antisymmetric about the wafer origin, as would be 

expected from the axisymmetry of the topography.  To conclusively demonstrate this, the 

data from one side were reflected about the origin and overlayed on the data of the other 

side.  This exercise, shown here in Fig. 3-4b, demonstrates that the reflected slopes from 

either side agree to within 5%.     
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 (a) (b) 

Figure 3-4.  (a) Slope along the sample diameter. (b) Slope from the center, overlapped, to show 
antisymmetry. 

 Since the specimen geometry, shape measured by CGS, and slope measured by 

XRD all suggest radial symmetry, the linear slope measurement from µXRD is used to 

construct full-field slope data.  Indeed, the slope can now be replaced by two piecewise 

fits of two polynomials, one taken within the film portion and the other outside it.  Figure 

3-5 shows the high quality of the polynomial fits of the raw µXRD slope data.  It should 

be noted that the two polynomial fits are required to pass through the same point 

corresponding to the estimated location of the film edge. 
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Figure 3-5.  Polynomial fit of the XRD data 

 Figure 3-6 shows the radial and circumferential curvature distributions obtained 

when the polynomial fit of the slope, shown in Fig. 3-5, was used to determine the two 

independent wafer curvature components through Eqs. 2.3 and 2.4.  The circumferential 

curvature, κθθ, is continuous across the film boundary, but the radial curvature, κrr, 

suffers a finite jump at the island edges.  This is consistent with the observation of Brown 

et al. [20].  What is perhaps more interesting is that even within the area of film coverage, 

both curvature components vary with radial position. 
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Figure 3-6. Curvatures (κrr and κθθ) obtained from the polynomial fit of white beam µXRD slope data 

 By further invoking axisymmetry, we may also use the film thickness 

measurement conducted along the island radius to construct the island thickness profile in 

the absence of full-field thickness measurements.  The film thickness is considered as an 

axisymmetric function of the radial coordinate, r, and can be fitted by the following radial 

distribution: 

 )82.5()82.5(
6.12

49.1100713.085.1)( 2 −−⎟
⎠
⎞

⎜
⎝
⎛

−
++== rHr

r
rhh ff ; mmRr f 4.12=≤ , (3.1) 

where the radius r is in millimeters, the film thickness hf is in micrometers, and H is the 

Heavyside step function.  Figure 3-7 compares the polynomial fit of Eq. 3.1 with the 

actual SEM thickness data and demonstrates their good agreement.  
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Figure 3-7.  Thickness data compared with fit. 

Monochromatic Beam µXRD Film Stress Measurements 

 The absolute magnitude of the mean stress, 2/)( θθσσ +− rr , obtained through the 

monochromatic µXRD measurement of misfit strain is shown in Fig. 3-8.1 
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Figure 3-8.  Average equibiaxial film stress from monochromatic X-ray measurement. 

                                                 
1 Although the mean stress itself is compressive, its absolute magnitude is displayed here for reasons of 
clarity of discussion. 

(Eq. 3.1) 
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The stress varies slowly throughout most of the island diameter. However, near 

the island edge the stress increases very steeply to over five times its central value within 

a small (~2 mm) boundary layer from the film edge.  This is due to the existence of a 

strong thickness gradient near this edge (Fig. 3-3c).  It is also due to the eventual 

existence of a traction-free boundary at the end of the film.  These two geometrical 

effects, which result in a substantial stress concentration gradient (huge compressive 

stresses developing from 1 to 5 GPa over a few millimeters of length), provide a 

substantial prediction challenge to any theoretical model used for the inference of stress 

through substrate curvature measurements.  In the following sections, we will concentrate 

on the ability of various techniques to independently predict this directly measured stress 

amplification. 

Comparison with Various Analyses of Film Stress Inference 

 In this section the results of the mean film stress distribution obtained through the 

monochromatic µXRD measurement are compared with the stress distributions predicted 

via the use of three different analytical stress/curvature relations, one local (Stoney) and 

two nonlocal (HR).  The common input to these relations is the substrate curvatures (Fig. 

3-6) obtained through the independent white beam µXRD substrate slope measurement. 

 Figure 3-9 illustrates this comparison.  The discrete points are the stress 

distribution results of the direct monochromatic beam µXRD measurement.  The dotted 

line shows the prediction of the Stoney equation (Eq. 1.1) with 

2/)]()([)( rrr rr θθκκκ +=  and 2/)]()([)( rrr rr θθσσσ +=  being the mean stress and 

curvature, respectively.  The Stoney relation assumes that the radius of the film, R f , and 
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that of the substrate, R s , are equal and that the film thickness is uniform.  Although the 

Stoney equation was derived strictly for constant κ  and σ, it is used here in a "local" 

sense in which κ (r) as measured (Fig. 3-6) is input into Eq. 1.1 to obtain the dotted stress 

distribution shown.  The Stoney prediction underestimates the discrete stress data by as 

much as 50% in the central portion of the film and completely misses the dramatic 500% 

stress increase at the edges. 
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Figure 3-9.  Monochromatic µXRD stress data compared with calculated stress. 

 The dashed line shows a prediction of a nonlocal model in which the island film 

radius is different from the substrate radius (Rs > Rf) but the film thickness inside the 

island is assumed to be constant.  The stresses are obtained by using Eq. 1.31, specialized 

to the case of constant film thickness h f  = 1.85 µm for r ≤ Rf and zero thickness for 

fRr >  (hf is taken to be the approximate film thickness measured at the island center).  

This is still a nonlocal calculation since it also involves averaging the curvature field over 

the entire wafer (both covered and uncovered parts) to obtain θθκκ +rr .  However, it 

does not take into account the drastic reduction of the film thickness over a distance of a 
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few millimeters from the edge (see Fig. 3-3c).  As is obvious from Fig. 3-9, this 

prediction approaches the discrete monochromatic µXRD measurement much better than 

the result based on Stoney, but still completely misses the severe stress concentration 

near the film edges. 

 Finally, the solid line represents the result of utilizing Eq. 1.31 in its most general 

form, in which thickness and curvatures are both allowed to vary with radial position r. 

The radial profile of the island film thickness h f (r) from Eq. 3.1 was used as input in this 

calculation.  It is evident from Fig. 3-9 that this last calculation, utilizing the most general 

axisymmetric nonlocal relation, agrees very well with the monochromatic µXRD stress 

measurement over the entire film diameter, including the region close to the film edge.  

In particular, the success of the generalized nonlocal stress/curvature relation in capturing 

the dramatic compressive stress increase that has been independently measured provides 

validation to the generalized nonlocal analysis.   

 An important by-product of this analysis is its ability to also estimate interfacial 

shear stresses acting between the film and the substrate.  These shear stresses are a direct 

consequence of in-plane nonuniformities.  For our radially symmetric experiment, the 

only surviving shear stress, τ r , is given by Eq. 1.32 and can readily be evaluated by 

differentiating )()( rrrr θθκκ +  of Fig. 3-6.  This interfacial shear stress, shown here in 

Fig. 3-10, is not nearly as large as the direct film stress, but it climbs to approximately 

400 MPa near the film edges.  The combined presence of huge direct film stresses (σ ~ 

-5 GPa) at the film edge and substantial interfacial shears may be enough to trigger 

interfacial delamination [3].  In fact, careful scrutiny of the film/substrate adhesion 

through SEM has revealed a well-defined, circular delamination front surrounding the 
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island at r = 12.4 mm, very close to its edge.  A local, SEM, view of this delamination is 

shown in Fig. 3-11.  
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Figure 3-10.  Interfacial shear stress. 

 
Figure 3-11.   SEM image showing delamination at film edge. 

 The maximum in-plane shear stress 2/)( ff
rr θθσσ −  can also be calculated from 

Eq. 1.31 and from the curvature distributions (Fig. 3-6) obtained through the white beam 

µXRD measurement.  The in-plane shear stress distribution across the island is shown in 



 

 

51
Fig. 3-12.  The maximum absolute value of this stress is less than 7 MPa or 0.2% of the 

in-plane mean stress, which suggests that the film stress state of this specimen is, to all 

practical purposes, equibiaxial.  This fact justifies the assumptions of equibiaxiality used 

in the analysis of the monochromatic µXRD measurement. 
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Figure 3-12.  In-plane shear stress 
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An Aside: Necessity of Full-Field Measurement 

Thus far, it has been shown that the nonlocal stress/curvature relations introduced 

in chapter 1 do a better job of predicting stress in a thin film than the classical "local" 

Stoney formula does in the presence of strong nonuniformities in film thickness and 

system curvature.  However, these nonlocal relations require a full-field measurement of 

all curvature components.  Consequently, a natural next step is to introduce a 

measurement technique which provides a means of determining the stress tensor across 

the entire system (in full field).  The method of choice in the present thesis is Coherent 

Gradient Sensing interferometry, otherwise known as CGS. 
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4. Coherent Gradient Sensing (CGS) 

The coherent gradient sensing (CGS) method is a self-referencing interferometric 

technique that produces fringe patterns of surface slope by laterally shearing an initially 

planar wave front which has been reflected from a specimen (e.g., wafer).  Figure 4-1 

shows a schematic of the CGS setup in reflection [13, 14, 22].  A coherent, collimated 

laser beam (300 mm or less in diameter) is directed to a specularly reflecting wafer 

surface via a beam splitter.  In general, the wafer is nonplanar and its surface shape, or 

distortion relative to a flat surface, can be described by the equation z = f(x, y).  In this 

relation, z provides the wafer surface height for each in-plane wafer position defined by x 

and y.  The beam reflected from the wafer is distorted by the nonplanar shape of the 

wafer.  After reflection, the resulting distorted wave form is described by a two-

dimensional surface in space whose equation is given by z = S(x, y), where S(x, y) ≈ 

2f(x, y).  This distorted wave front is again passed through the beam splitter and is then 

incident upon a pair of identical high-density gratings, G1 and G2, separated by a distance 

∆.  The gratings act to optically “shear” or “differentiate” the incident wave front to 

produce a series of diffracted beams.  These beams are separated using a filtering lens to 

form distinct diffraction spots on a filter plane.  An aperture placed in this plane serves to 

isolate the diffraction order of interest, which is then imaged onto the photographic film 

plane.  For present purposes, either of the ±1 diffraction orders is of interest, as will be 

clear in the following discussion. 
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Figure 4-1.  CGS schematic 

Figure 4-2 is a two-dimensional schematic illustrating the principles of the CGS 

method. The figure shows the distorted optical wave front, S(x, y), incident on the two 

gratings in which the lines are taken to be oriented along x.  At the first grating, G1, the 

incident wave front is diffracted into several wave fronts, E0, E1, E-1, E2, E-2, etc., of 

which only the first three are drawn in Fig. 4-2.  Each of these wave fronts, in turn, is 

diffracted by the second grating, G2, to generate additional wave fronts, such as E0,0, E0,1, 

and E0, -1. The diffracted beams are combined by a filtering lens to produce diffraction 

spots, such as D0, D+1, and D-1, in the focal plane of lens (filter plane).  One of the 

diffraction spots, typically the first diffraction order, the D+1 spot, is chosen with an 

aperture for imaging onto the film plane. 

 

Beam Splitter 

Collimated  
Laser Beam 

Grating, G1 
Grating, G2 

Filtering Lens 
Filter Plane 

Camera 

x 

∆ 

y 

z 

Specimen Surface, z = f(x,y)  



 

 

55

 
Figure 4-2.  CGS schematic describing the optical differentiation 

The presence of the two gratings in the path of the optical wave front generates a 

lateral shift (or shearing) of the wave front.  For example, the diffracted beam E1,0, whose 

wave front is denoted as S(x, y+ω), is shifted from the beam E0,1, whose wave front is 

denoted as S(x, y), by a distance ω in the y direction.  The shift distance, ω, is expressed 

as ∆tanθ, where θ = arcsin(λ/p) is the diffraction angle and λ and p are the wavelength of 

light and the pitch of the gratings, respectively.  For small angles of diffraction, ω ≈ ∆θ ≈ 

∆(λ/p).  The condition for constructive interference of the original and shifted wave 

fronts is given by 

 λω )2(),(),( nyxSyxS =−+ , K2,1,0)2( ±±=n  (4.1) 

where n(2) is an integer that represents fringes associated with shearing along the y 

direction.  By dividing Eq. 4.1 by ω, taking ω  to be sufficiently small, and substituting ω 

= ∆(λ/p), it is seen that 
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Recalling that S = 2f and repeating the above analysis for gratings aligned along 

the y-direction, it can be shown that the alternating dark and bright interference fringes 

correspond to constant values of components of the in-plane gradient of the wafer surface 

topography as follows: 
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where α, β ∈{x,y}.  A relative rotation of the gratings to the wafer allows for both 

orthogonal components of slope to be recorded in the form of full-field slope maps.  The 

three independent components of curvature tensor field, καβ, can now be determined 

directly from two orthogonal CGS slope maps by partial differentiation along the x- and 

y- directions as 
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In order to determine the full curvature tensor, the gradient fields in two 

orthogonal directions must be recorded. Equation 4.4, which applies to the shear (or 

twist) curvature component, κxy = κyx = ∂2f/∂x∂y = ∂f 2/∂y∂x, as well as the direct (or 

normal) Cartesian curvature components, κxx = ∂2f/∂x2 and κyy=∂2f/ ∂y2, is the equation 

governing the curvature tensor field at any in-plane location (x, y).  It enables the global, 

full-field measurement of the curvature tensor for the film-substrate system.  

It can also be useful to obtain the principal curvature maps, i.e., the maximum and 

minimum values of curvature.  In order to derive the principal curvatures, first the effect 

of an in-plane rotation on the two independent slope and the three independent curvature 
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components is derived, i.e., the transformation equations from the original coordinate 

system to one that is rotated by some arbitrary angle, β.  Once these have been 

established, the two mutually orthogonal directions of the principal curvatures can be 

found by setting the transformed curvature derivative, with respect to the angle of 

rotation, to zero.  These two angles, defining the principal directions, are then plugged 

into the curvature transformation equations to obtain the principal curvatures. 

Consider axes x', y' which are rotated by an angle, β, from the original axes x, y.  

The coordinates of some point, P, with respect to the two sets of axes are then 
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and the equation of the surface (e.g., wafer) with respect to the two coordinate systems is 

z = f(x,y) = g(x',y').  The two independent slope components are related to each other as 

 
.cossin

'''

,sincos
'''

ββ

ββ

y
f

x
f

y
y

y
f

y
x

x
f

y
g

y
f

x
f

x
y

y
f

x
x

x
f

x
g

∂
∂

+
∂
∂

−=
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

∂
∂

+
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

 (4.6) 

The curvature components are found from differentiating the slope components 

according to the first part of Eq. 4.4 and using the identities cos2θ = 1-sin2θ and  

sin2θ = 2sinθ cosθ.  The curvature components, κxx', κyy', and κxy', in the rotated 

coordinate system are then given by: 
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The angles corresponding to the two extrema in direct curvature in the rotated 

coordinate system are found by setting the following derivatives to zero. 
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Both equations result in the same relation for β.  Indeed, the angles defining the 

principal direction of curvature are thus ( ))/(2tan 1
yyxxxy κκκβ −= −  and β+π/2.  This 

clearly shows that the two principal directions are orthogonal.  To find the equations for 

principal curvature, these angles are plugged back into Eq. 4.7 and the identities 

θθθ 2tan1/2tan2sin 2+=  and θθ 2tan1/12cos 2+=  are used.  The principal 

curvatures are then found to be 
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and the curvature maps determined from CGS using Eq. 4.4 can be used to calculate 

principal curvature maps. 

For thin film-thick substrate systems, the full-field recording of all system 

curvature components is crucial since they can be related to the individual components of 

stress acting on the thin film, through analyses of the type presented in chapter 1 or other 

types of plate theory [3, 23-25].  This provides an easy and quick way of film stress 

measurement that can be instantaneously performed across an entire wafer surface.  

Similarly, principal stresses can be related to principal curvatures once these are obtained 

from measurement of individual stress component maps via Eq. 4.9. 

CGS at Caltech 

The method of CGS was initially developed at the Graduate Aeronautical 

Laboratories (GALCIT) and was applied to the study of out of plane deformation 

gradients at the vicinity of dynamically growing cracks in structural solids [26, 27].  The 

first application of CGS to the analysis of film stress is described in references [13, 14, 

22].  The current CGS interferometer used for our experiments is housed in a Class 1 

cleanroom in the subbasement of Firestone at Caltech (Fig. 4-3).  Since the environment 

is quite clean, it is possible to measure wafers in between various steps of processing 

without having problems with wafer contamination.  The current CGS system, called 

ALEX, was a prototype of a production tool donated to GALCIT by Oraxion 

Diagnostics, a Caltech start-up.  

ALEX is enclosed in an outer shell.  This looks quite streamlined, but makes it 

difficult to modify the setup or use large specimen stages (as for heating).  Therefore, the 
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CGS measurements that were performed for our experiments are at room temperature, 

and are all made with the same optical setup, including laser wavelength, lens focal 

length, grating pitch and grating distance, etc.   

Figure 4-3.  Cleanroom in the basement of Firestone at Caltech, with ALEX. 

 

The inner workings of ALEX can be seen in Fig. 4-4.  ALEX uses a red 

collimated laser, expanded to 300 mm in diameter.  The diffraction grating pitch is 
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1/40 mm and the distance between gratings is 60 mm.  A proprietary software program 

called Intelliwave is used to control ALEX and analyze the data. 

 
Figure 4-4.  Inner workings of ALEX. 

 

 

ALEX was intended to be a quality control tool for wafer processing, and 

therefore is configured to allow it to measure very small curvatures, or specimens with an 

average radius of curvature greater than 50 m.  In order for these small curvatures to be 
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measured, the beam path length must be rather long.  Thus, there are many mirrors 

reflecting the beam back and forth to increase the overall path length. 

A schematic of the beam path is shown in Fig. 4-5.  The practical differences 

between this schematic and the one in Fig. 4-1 are to allow for the longer path length.  

Figure 4-6 reproduces the photograph of the inside of ALEX, with the beam path traced.  

The laser is housed on top of the tool, and although shown in the schematic it cannot be 

seen in the images of Fig. 4-6. 

 
Figure 4-5.  Schematic of ALEX. 
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The following explanation can be followed using either the schematic of Fig. 4-5 

or the images in Fig. 4-6.  The beam emitted from the laser is directed down into the tool, 

through a beam splitter, to a mirror that functions as a beam expander (Fig. 4-6a).  From 

here, the beam is reflected up to a collimating mirror (Fig. 4-6b) which directs it down to 

the specimen surface (Fig. 4-6c).  The beam which reaches the specimen is collimated 

and at near-normal incidence.  Once reflected from the specimen surface, the light 

follows the same path in reverse until it reaches the beam splitter which is located in the 

center top of the figure.  The portion of the reflected beam that is deflected by the beam 

splitter (rather than passing through it) is then reflected by another mirror that directs it 

down to the diffraction gratings, where the optical differentiation is performed (Fig. 

4-6d).  The diffracted beams subsequently pass through a focusing lens, which focuses 

the two diffraction orders of interest into one spot, which is allowed to pass through an 

aperture placed at the filter plane.  Finally, the camera records the resulting 

interferograms. 
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Figure 4-6.  ALEX beam path. 
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The data collection process is as follows:  First, the wafer is loaded into ALEX by 

being placed on an extended wafer stage that is then retracted back into the tool.  At this 

point a live image is shown on the computer screen.  When acquiring data, images are 

captured with the wafer stage at 0° and then 90° to get interferograms of x and y slope 

(Fig. 4-7 a,b).   

  
 (a) (b) 

Figure 4-7.  Cu film on a 4" diameter Si wafer:  (a) x-slope (∂f/∂x) and (b) y-slope (∂f/∂y) interferograms. 

A process known as phase shifting is used to increase the resolution.  Five images 

are taken both in x- and y- directions (Fig. 4-8).  The diffraction gratings are shifted in a 

direction parallel each other by ¼ of the grating pitch for each image, so that the first and 

fifth images have the gratings aligned with each other.  Viewing the five images in quick 

succession makes it look as if the fringes are marching across the wafer.  The variation of 

light to dark of each pixel increases the effective resolution.  Also, the direction that the 

fringes march indicates the sign of the curvature.  This is absolutely necessary since a 

single image gives only slope and curvature magnitude, not sign. 
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Figure 4-8.  Phase shifting of ∂f/∂x from Fig. 4-7. 

In order to obtain slope maps from the interferograms, the fringes must be moved 

to the center of the image.  Since the wafer is placed on the sample stage by hand, there is 

no guarantee that the center of the wafer is equal to the center of stage rotation.  To center 

the images, a circular mask with a diameter equaling that of the specimen is 

superimposed on the x-interferogram.  The mask is typically off center with respect to the 

fringes.  First, the mask is moved so that it is centered on the fringes, and the location of 

the mask, in pixels, is noted.  The difference between the mask location and the center of 

the image (in pixels: 512, 512) is subtracted from the fringe location, moving the fringes 

to the image center.  Finally, the mask is moved to the image center.  The same procedure 

is then repeated for the y-interferograms.  

The mask is at the same pixel location on the x and y images.  Intelliwave 

assumes the wafer is also in the same location with respect to the mask in the two images 
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when doing its calculations; the mask is used as the reference for position on the wafer.  

Also, only data points inside the mask are considered when creating the digitized slope 

and curvature maps.  Therefore, this centering process is an important step in minimizing 

error.  Part of a screenshot showing the Intelliwave interface with the blue, circular mask 

on the centered x and y interferograms is shown in Fig. 4-9.  The partial fringes on either 

side of the interferogram are due to the aperture in the filter plane being removed; they do 

not affect the results for a wafer this size, where they do not overlap the image of interest. 

 
Figure 4-9.  Partial screen shot of Intelliwave program, showing the centered blue circular mask on the x-

slope and y-slope interferogram images.  This is the same specimen as in Fig. 4-7. 

The interferograms are subsequently digitized in Intelliwave, using Eq. 4.3, to 

produce slope maps (Fig. 4-10).  During the digitization process, the data are fit to a 

polynomial function by a numerical analysis.  This is done in order to later obtain the 

three curvature components by numerical differentiation of the two slope maps. The 

polynomial fitting uses Zernike polynomials, a 5th order polynomial set with 37 terms.  

While originally designed to characterize optical aberrations, this polynomial set is often 
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used to describe aspheric surfaces from interferometric data.  In most cases, where spatial 

variations of slope and curvature are gradual, this fitting process is advantageous since it 

filters out noise and allows numerical differentiation to be performed.  However, in the 

case of large nonuniformities, this fitting procedure can oversmooth the data (Fig. 4-11), 

and may need to be bypassed and replaced by offline processing.  

  
 (a) (b) 

Figure 4-10.  Slope maps in (a) x and (b) y, digitized from the interferograms in Fig. 4-7. 

 

(b) (c) (a)  

Figure 4-11.  Example of oversmoothing on a specimen consisting of a 1" diameter W film island on the 
center of a 4" diameter Si substrate. (a) x-slope (∂f/∂x) interferogram and digitized slope maps: (b) with 

filtering and smoothing and (c) with no smoothing (raw data). 

From here analysis can proceed in two ways: by either integrating the slope maps 

to get wafer topography, or differentiating to get the Cartesian curvature components.  

The Cartesian curvature maps κxx, κyy, and κxy are calculated by differentiating the slope 
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map through its polynomial fit (Fig. 4-12).  The principal curvatures can also be found by 

using Eq. 4.9 (Fig. 4-13).   

 
 (a) (b) 

 
(c) 

Figure 4-12. Curvature maps (a) κxx, (b) κyy, and (c) κxy, or twist, calculated from the slope maps in Fig. 
4-10.  

 
 (a) (b) 

Figure 4-13.  Principal curvature maps (a) κmax and (b) κmin, calculated from the Cartesian curvature 
components in Fig. 4-12 and Eq. 4.9. 
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Instead of using Intelliwave to calculate curvature, processing can be performed 

offline by using the program Matlab.  In order to do this, the data are first exported from 

Intelliwave by saving the slope and curvature data matrices as text files.  Then, they are 

opened in Matlab and manipulated to remove the headers and to be rotated to the correct 

orientation (the x and y vectors in Intelliwave and Matlab are reversed).  The slope data 

are interpolated to create a much finer map (Fig. 4-14).  Finally, this interpolated slope 

map is differentiated to obtain the κxx, κyy, and κxy curvature maps.   

 
 (a) (b) 

 
 (c) (d) 

Figure 4-14.  Slope maps in (a) x and (b) y from Intelliwave and interpolated in Matlab (c),(d).   
This specimen is a 3" diameter GaAs substrate with a InGaAs film. 
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In many practical cases, the curvature maps calculated using Intelliwave and 

Matlab are the same (Fig. 4-15).  The exception to this is when curvature discontinuities 

are present and the slope maps are oversmoothed, as explained earlier.  When this 

oversmoothing occurs, it is fairly obvious to see by eye by comparing the interferograms 

and digitized slope maps. When this happens, the raw data (before filtering and fitting) 

are exported from Intelliwave and the above procedure is followed in Matlab to obtain 

curvature maps.  Otherwise, since it is easier to obtain curvature maps from Intelliwave 

than it is using Matlab, the curvature data calculated in Intelliwave are used. 

 
 (a) (b) 

 
 (c) (d) 
Figure 4-15.  κxx (a,c) and κyy (b,d) maps from Intelliwave (top) and Matlab (bottom).  The specimen is the 

same as in Fig. 4-14. 
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In order to determine stress, two sets of measurements are taken, one before and 

one after each processing step of interest.  In the present study, this is typically done 

before and after film deposition (Fig. 4-16).  In Intelliwave, the pre-process slope map 

(e.g., bare wafer substrate) is subtracted from the postprocessed map (e.g., wafer with 

deposited film) to obtain delta slope maps (Fig. 4-17).  These new slope maps are then 

differentiated to obtain delta curvatures (Fig. 4-18), which are used as an input to the 

stress equations. 

 
 (a) (b) 

 
 (c) (d) 

Figure 4-16.  Slope maps in x (a),(c) and y (b),(d) of a 3" diameter GaAs wafer.  Bare wafer (top) and with 
an InGaAs film (bottom). 
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 (a) (b) 

Figure 4-17.  Delta slope maps in (a) x and (b) y, post deposition minus bare wafer. 
 

 
 (a) (b) 

 
(c) 

Figure 4-18.  Delta curvature maps obtained from slope maps in Fig. 4-17: (a) κxx, (b) κyy, and  (c) κxy. 

Stress can be inferred from delta curvature in Intelliwave only via the local 

Stoney relation.  In order to use the new nonlocal HR relations, the data must be exported 

from Intelliwave and analyzed using Matlab. 
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5. CGS Measurements of Island Geometries 

Thus far, a methodology which is able to determine film stress in the presence of 

nonuniformities has been introduced and verified by comparison to X-ray diffraction 

measurements.  Since this methodology requires knowledge of curvature information 

over the entire wafer, a full-field curvature measurement technique, CGS, has also been 

introduced.  In this chapter, CGS measurements are taken of several test wafers, and the 

HR methodology stress results are compared to those of Stoney. 

The thin film-wafer substrate geometry used here consists of various 

arrangements of circular film islands on otherwise bare substrates.  This generic type of 

geometry was chosen because it is fairly idealized, yet can easily cause both radially 

symmetric and non-symmetric curvature states in the wafer by just shifting the island 

position.  Our goal is to examine the effect of island position (e.g., near the substrate 

center versus the substrate edge) on the stress state of the film material. 

We first examine the general nature of deformation for a film island-wafer 

substrate geometry, with a central island.  To do so, the radially symmetric specialization 

of the HR relations (Eq. 1.31) are further specialized to the case of film thickness 

described by a step function (i.e., zero film outside the island, and a constant thickness 

within the island) and constant film stress.  These simplified relations are then integrated 

to find the relationship between wafer deformation and film stress. Although the film 

stress is not generally constant for a real system, the correlated slope and curvature 

profiles of the idealized constant stress and thickness case provide useful clues as to the 
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type of deformation that would be present in a "real" island-substrate system where 

neither film stress nor thickness are constant. 

The analysis shows that the wafer curvature within the film-covered region is 

spatially constant and equibiaxial, i.e., κrr = κθθ = κ, where κ is independent of the radial 

position r.  (The radii of the island and substrate are denoted by Rf and Rs, respectively, 

while their respective thicknesses are hf and hs.)  In the film-covered region the sample 

curvatures are given by  
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and the system deforms as a sphere.  

Outside the film covered region, however, the system curvatures κrr and κθθ are 

not equal and are strong functions of the radial position r.  Despite the fact that this 

region is not covered by the film, its curvature components are non-zero and their 

magnitude depends on the magnitude of the stress of the film island as 

 

2

2

2

2

2

2

1
1

1

1
1

1

f

s

s

s

s

s

s

rr

R
R
r
R

r
f

ν
ν
ν
ν

κκ

−
+

+

−
+

−
=

∂
∂

= , 

 

2

2

2

2

1
1

1

1
1

1
1

f

s

s

s

s

s

s

R
R
r
R

r
f

r
ν
ν
ν
ν

κκθθ

−
+

+

−
+

+
=

∂
∂

= , sf RrR   ≤≤  . (5.2) 



 

 

76
Comparison of the expressions for κrr from within and outside the film-covered 

region reveals a finite jump in radial curvature which involves a change of curvature sign 

across the circular interface r = Rf. 

The radial slope component ∂f/∂r can now be computed from Eqs. 5.1 and 5.2 and 

is given by the following relations for the two regions: 

 frr Rrrrr
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≤≤===
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In this idealized case, the theory predicts that within the film-covered region, 

there is a linear variation of slope with position while the variation of slope outside the 

film-covered region is more complex.  At the interface r = Rf, the slopes are, as expected, 

continuous.  Figure 5-1 shows the predicted variations of the two non-zero curvature 

components and the radial slope component, based on the geometry and material 

parameters of the W-Si system described in chapter 3 and an assumed constant film 

stress, σf, of -1.5 GPa.  The theoretically predicted features discussed above are obvious 

from the figure. 
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(a)  

2Rf 

(b) 

∂f
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r 

 
Figure 5-1.  The curvature (a) and slope (b) profiles across the diameter of a wafer with a central film 

island of constant thickness.  The film stress is assumed to be a constant -1.5 GPa. 

An example of the CGS slope-interferograms from a real wafer with a central film 

island is shown in Fig. 5-2.  This wafer was the specimen used in chapter 3 for the 

verification of the HR relations as compared to µXRD measurements.  The film island is 

distinctly visible on the x- and y- interferograms as a circle in the middle of the image.  

The fringe pattern in that region consists of dense, straight, more or less evenly spaced 

lines that correspond to a constant equibiaxial curvature, as predicted by the analysis.  

Outside the film island, there is still a less dense but more complex fringe pattern, since 

there is a non-zero curvature in that area due to the circumferential constraints on the Si 

wafer.  This is also qualitatively consistent with the analysis. 

   
 (a) (b) 

Figure 5-2. CGS slope interferograms of a wafer with a central film island, (a) ∂f/∂x and (b) ∂f/∂y. 
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 (a) (b) 

Figure 5-3.  CGS digitized slope maps of a wafer with a central film island, (a) ∂f/∂x and (b) ∂f/∂y. 

The slope maps are shown in Fig. 5-3.  These maps feature the expected straight, 

evenly spaced lines of constant slope within the island.  Also, the transition between film-

covered and bare substrate regions is quite sharp; the outline of the island can be easily 

traced out on these maps. 

The topography of a wafer with a central film island can be obtained by direct 

integration of the two slope maps of Fig. 5-3 and is shown in Fig. 5-4.  Consistent with 

theory (as visualized in Fig. 5-1), the sign of the radial curvature component κrr changes 

across the film edge.  The film region has a negative, constant curvature; there is a jump 

in curvature from negative to positive at the film edge; and there is a non-zero curvature 

outside the film. 
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Figure 5-4.  Wafer with a central film island. Shape: (a) full map and (b) profile across the wafer 
diameter. 

Although the experimentally obtained wafer slopes and shape have the general 

shape predicted by the idealized case of constant stress and film thickness, the CGS 

measurements vary in detail with the predictions and suggest the presence of a 

nonuniform stress state in the island.  Indeed this was already shown to be the case 

through the µXRD measurements described in chapter 3.  In what will follow, CGS 

measurements will be used to extract the film stress distribution and to study the effect of 

film location on its magnitude and spatial distribution. 

In general, to determine stress from CGS measurements, interferograms are taken 

before and after film deposition, and the delta (difference) slope maps are used to obtain 

delta curvature maps, and then film stress through the stress/curvature relations as 

described in chapter 1.  From here on, the terms "slope" and "curvature" will actually 

refer to the delta slope and curvature, i.e., the difference between the postdeposition and 

predeposition maps. 
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Extracting Stress from CGS Measurements 

The specimens used in this study consist of 1 mm thick, 100 mm diameter <111> 

Si wafer substrates with W film islands.  It is important to note that the deposition was 

performed in a system without active heating or cooling.  The substrate is thus not 

expected to incur deformation due to thermal effects.  This particular orientation Si wafer 

was used because it is in-plane isotropic, as is W.     

The island thickness is approximately 1.8 µm in the central part of the island, and 

decays near the island edge.  The island diameters are all approximately 20 mm.  The 

film and the in-plane substrate Young's moduli are 411 GPa and 160 GPa, and the 

Poisson ratios are 0.28 and 0.27, respectively.   

Three specimens were examined.  The first has a central film island.  This is not, 

however, the same wafer that was examined earlier (Fig. 5-3), since that particular wafer 

was heavily damaged before the measurements could be completed.  Instead, the wafer 

examined here is one of a new batch of wafers which have progressively more interesting 

island film geometries.  The second specimen has an off-center film island, located 

approximately 20 mm from the wafer centerline.  The third specimen consists of an array 

of four islands, equally spaced approximately 25 mm from the wafer center.  All islands 

have an approximate radius of 20 mm. 

For each island, the film thickness is approximately constant over the central 

region.  At about 1.5 mm from the island edge, however, the film thickness begins to 

decrease, until it eventually drops to zero.  The thickness profiles are very similar to that 

of the wafer measured in chapter 3.  
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For each wafer, slope and curvature maps are obtained, from CGS interferometry.  

The curvature maps are then used in conjunction with both the Stoney and the HR 

methodologies to determine film stress in the film islands.   

Central Film Island 

The new specimen featuring a central W film island is considered first.  The slope 

map of this wafer is shown in Fig. 5-5.  The island location and wafer radius are indicated 

in this figure and all of the following CGS maps. 

 
 (a) (b) 

Figure 5-5.  Slope maps of centered island: (a) ∂f/∂x, (b) ∂f/∂y. 

As expected, within the island radius the lines of constant slope are straight and 

evenly spaced.  Since this island lies in the center of the wafer, the wafer has radial 

symmetry.  This is conclusively illustrated by using the Cartesian slope of Fig. 5-5 to 

construct the radial slope map, ∂f/∂r.  The axisymmetric shape of that map, shown here in 

Fig. 5-6, illustrates the axisymmetry of the film/substrate system. 
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Figure 5-6.  Radial slope map, ∂f/∂r, of centered island. 

A dataset corresponding to the straight line running through the diameter of the 

wafer, x = 0, was first extracted from the map of ∂f/∂y.  This diameter was chosen in 

order to compare results with the off-center wafer in a later section, and the resulting 

slope is shown in Fig. 5-7.  Within the film island, the slope is relatively linear.  Outside 

of the island, however, the slope changes direction (curvature changes sign) and then 

drops back to zero, as qualitatively expected based on the highly idealized analytical 

prediction in the first part of this section (Eqs. 5.3 and 5.4). 
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Figure 5-7.  Plot of slope (∂f/∂y) through wafer diameter. 

Curvature maps are displayed in Fig. 5-8.  These include κxx, κyy, and the principal 

curvatures κmax and κmin.  Recall that for the stress analysis both curvature components 

are required for the evaluation of stresses (Eq. 1.31).  As expected, the maximum 

curvature map is also radially symmetric, with a slowly varying negative curvature within 

the film island which jumps to a narrow band of positive curvature just outside the island 

and then drops to zero as the distance from the island edge is increased. 
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Since the wafer is only covered in film within the island, that is obviously the 

only location where film stress exists.  The magnitudes of the sum of stresses (σxx + σyy) 

obtained from the Stoney and HR methodologies are shown in Fig. 5-9.1  As expected, 

the HR stresses are of a higher magnitude than Stoney predicts, since there is curvature 

outside the film that is not considered by Stoney.  Also, only the HR methodology takes 

into account the varying film thickness.  Near the island edge, where the film thickness 

drops drastically, the stress magnitude increases precipitously.  

                                                 

1 The stress sum is compressive, so the negative of the stress is shown for reasons of clarity of discussion. 

 (a) (b) 

 (c) (d) 

Figure 5-8.  Curvature maps for a central film island: (a) κxx, (b) κyy, (c) κmax and (d) κmin. 
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 (a) (b) 

Figure 5-9.  Stoney and HR stress sum (σxx+σyy) maps for a central film island. 

The stress concentration near the film edge is also shown in Fig. 5-10.  This figure 

compares the Stoney and HR stresses along the same diameter as was used to display the 

earlier slope and curvature distributions.  Figure 5-10a shows the actual (raw) data points, 

while Fig. 5-10b displays a smoothed fit to the data, which becomes useful for 

comparison purposes later.  In the center of the island, the two analyses reveal similar 

spatial distributions, though the HR methodology predicts a higher magnitude of stress.  

Near the island edge, the HR methodology captures a strong increase in film stress.  This 

is undetected by the Stoney analysis.  Qualitatively the stress distribution measured by 

CGS is very similar to those measured in a similar wafer through µXRD as discussed in 

Fig. 3-9. 



 

 

86

-15 -10 -5 0 5 10 15
0

0.5

1

1.5

2

2.5

y (mm)

-(σ
xx

+σ
yy

) (
G

P
a)

Stress sum

 

 

Stoney
HR

-15 -10 -5 0 5 10 15
0

0.5

1

1.5

2

2.5

y (mm)

-(σ
xx

+σ
yy

) (
G

P
a)

Stress sum

 

 

Stoney
HR

 
 (a) (b) 

Figure 5-10.  Stoney and HR stress sum (σxx+σyy) line plots through the diameter x = 0 for a 
central film island, (a) data and (b) fit to data, for ease of comparison. 

From the HR analysis, the interfacial shear stresses, τr and τθ, can also be 

calculated, and are shown in Fig. 5-11.  Both shear stresses are extremely small compared 

to the in-plane stresses.  It is interesting to point out, however, that the radial shear stress 

exists mostly near the film edge and is related to the strong radial gradient of κrr + κθθ.  It 

should also be noted at this point that the formula relating this stress to the curvature 

gradients does not explicitly depend on hf. 

 
 (a) (b) 

Figure 5-11.  Interfacial shear stress in a central film island, (a)τr and (b) τθ. 
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Off-center Film Island 

The next specimen to be examined has an off-center W film island, located 

approximately 20 mm below the centerline, y = 0.  The slope maps, ∂f/∂x and ∂f/∂y, are 

shown in Fig. 5-12.   

While the lines of constant slope within this film island are still approximately 

straight and evenly spaced, the global radial symmetry of the first case is now broken.  

This is illustrated by the radial slope map, ∂f/∂r (Fig. 5-13), which no longer has the 

constant slope rings which indicate axisymmetry and were seen in Fig. 5-6. 

 
 (a) (b) 

Figure 5-12.  Slope maps (a) ∂f/∂x and (b) ∂f/∂y of an off-center island wafer. 
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Figure 5-13.  Slope map ∂f/∂r of an off-center island wafer. 

The data from a straight line running through the wafer diameter (x = 0) were 

extracted.  This diameter was chosen so that the line would run though the island 

diameter, and the data are displayed in Fig.5-14.  The film island is centered 

approximately at y = -20 mm, and once again the slope is approximately linear within the 

island.  Outside of the film island, the slope changes direction and goes back toward 

being constant (i.e., zero curvature).  Since this island is near one side of the wafer, the 

slope is able to reach a constant value.  It takes approximately 20 mm for this to happen.  
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Figure 5-14.  Slope line through the diameter, x = 0. 

Curvature maps for this wafer, including κxx, κyy, and the principal curvatures κmax 

and κmin, are displayed in Fig. 5-15.  The maximum curvature map shows that within the 

island, the curvature is approximately constant.  Outside of the island, there is a faint ring 

of high curvature, but then far from the island the curvature drops to zero.  The effects of 

the film island on the wafer deformation are thus qualitatively consistent to those of the 

central film island wafer, even though symmetry is broken and the location of the 

curvature maxima is now changed. 
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 (a) (b) 

 
 (c) (d) 

Figure 5-15.  Curvature maps κxx, κyy, and principal curvature maps κmax and κmin for the off-center film 
island wafer. 

The sum of stresses obtained from the Stoney and HR analyses are shown in Fig. 

5-16.  In Fig. 5-17, the stresses are displayed along the same diameter as the one that was 

used to display the slope in Fig. 5-14.  Once again, near the film edge there is an 

intensification of film stress.  The stress sum predicted by the Stoney analysis is slowly 

varying, while the HR methodology shows stronger variations throughout the film. 
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 (a) (b) 

Figure 5-16.  HR and Stoney stress sum (σxx + σyy) maps. 
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 (a) (b) 

Figure 5-17.  Stress along the diameter x = 0, a) data and b) polynomial fit for ease of comparison. 

The interfacial shear stresses, τr and τθ, were also calculated, and are shown in 

Fig. 5-18. 
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 (a) (b) 

Figure 5-18.  Interfacial shear stress 

Comparison: Central vs. Off-Center Film Islands 

Comparing the results of these two sets of measurements reveals some interesting 

characteristics.  The slopes of the centered and off-center island wafers along the y-

diameter are plotted in Fig.5-19.  Negative y corresponds to points at the bottom of the 

wafer, while positive y corresponds to points at the top.   
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 (a) (b) 

Figure 5-19.  Comparison of slope (∂f/∂y) of centered and off-center islands. 

Although the basic shape of the slope profile is consistent between the two 

wafers, note that the region of linear slope is not in the same location on the two wafers.  

Indeed, the slope linearity occurs where the island film is located, which is in the center 
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of one wafer but near one edge of the other.  Also, the amount of slope change over the 

wafer diameter is much less for the off-center wafer than it is for the central one.   

The maximum curvature maps are shown in Fig. 5-20.  The magnitude of the 

maximum curvature is much larger in the case of the central film island.  Also, there is 

more of a pronounced jump in curvature at the ring located just outside the edge of the 

central island.  By inspecting these maps, and considering that the film thickness profile 

which was used in the analysis is the same for the two wafers, the average stress in the 

central island is expected to be larger than in the off-center island. 

 
 (a) (b) 

Figure 5-20.  Maximum curvature maps for the central (a) and off-center (b) film island wafers. 

The sum of stresses obtained from the HR analysis for the central and off-center 

film island wafers are shown in Fig.  5-21.  As expected, the magnitude of stress is much 

greater for the central film island.   
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 (a) (b) 

Figure 5-21.  HR stress sum maps for the (a) central and (b) off center film island wafers. 

A line through the same diameter (x = 0) was also extracted from both the HR and 

Stoney stress maps.  The comparison is displayed in Fig. 5-22.  As the curvature within 

the island-covered region of the wafer was greater for the central film island than that for 

the off-center island, so is the general level of stress inferred by both analyses.   

However, the stress profile across the island itself varies between the two wafers.  Both 

wafers exhibit strong variations in stress.  This is mostly the case near the film edge, 

where the film thickness decreases quickly.  However, even within the middle portion of 

the film island there is a varying stress distribution.  The differences in average stress 

levels between the two cases (central versus edge islands) could be attributed to the 

location of the island in relation to the substrate boundary.  It can perhaps be 

hypothesized that the higher stresses of the central island are a result of the higher level 

of in-plane constraints experienced by the film in this case. 
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Figure 5-22.  HR and Stoney stresses along x=0 for the central and off-center film island wafers. 

Figure 5-23 displays the difference between the stress states inferred by the 

Stoney and HR stress/curvature relations.  Near the film edge, of course, the difference 

between the two methodologies is quite large and is due to the fact that only the HR 

analysis is capable of including the effects of thickness change.  Over the rest of the film 

island, however, the difference between the Stoney and HR stresses is not simply a fixed 

percentage of the stress magnitude, but also depends on the location of the island on the 

wafer.  Not only is the stress inferred from the HR analysis greater in the central film 

island than in the off-center island, but also the difference between the HR and Stoney 

stresses is greater in this case. 
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 (a) (b) 

Figure 5-23.  Maps of the difference between the stress sum determined by the HR and Stoney analyses, 
for (a) the central and (b) the off-center film island wafers. 

The comparison between these two wafer geometries shows that stress is not 

simply an intrinsic material parameter which is only determined by deposition conditions 

and processing.  Instead, stress is a film/substrate system property and there is an 

additional relationship between the location of a specific feature on the wafer and the 

stress in that feature.  For this reason, it is imperative to have a measurement technique 

such as CGS which can measure full wafer curvatures and can be used in conjunction 

with non-local stress/curvature relations such as the HR relations. 

Examples from a More Complex Film Geometry 

In addition to the effects of the location on a wafer of a single film feature, there 

are additional interactions that may occur when features are placed in proximity to each 

other.  In order to examine these effects, the final idealized specimen geometry chosen 

for this study consists of a wafer with an array of four film islands.  The resulting slope 

maps are shown in Fig. 5-24.   
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 (a) (b) 

Figure 5-24.  Slope maps (a) ∂f/∂x and (b) ∂f/∂y. 

The horizontal slope, ∂f/∂x, of this wafer is displayed in Fig. 5-25, and is overlaid 

with a line that represents the linear dataset which was extracted from this map for 

comparison with the first two wafers.  Since the four islands are not located on either 

centerline of the wafer, a line through the island diameter was chosen.  This slope profile 

is also plotted in Fig. 5-25b.  This line spans two film islands.  The slope of each can 

clearly be identified as the linear portions of the profile.   
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Figure 5-25.  Horizontal slope map, ∂f/∂x, of four island wafer with line indicated where data was 
extracted, and the extracted slope at y = 20 mm. 

The horizontal slope map of the off-center island wafer is shown in Fig. 5-26.  In 

order to compare a linear dataset with the slope plotted in Fig. 5-25b, a line was chosen 
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that is the same distance from the wafer centerline and also goes through the island 

diameter.  Note that in this case the island is in the center of the extracted dataset.  In Fig. 

5-26b, the slope of the off-center island wafer is compared with the slope extracted in 

Fig. 5-26b.   
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 (a) (b) 

Figure 5-26.  Horizontal slope map, ∂f/∂x, of the off-center island wafer and comparison of extracted slope 
line at y = -20 mm with slope from four island wafer. 

The horizontal slope map of the central island film wafer is shown in Fig. 5-27.  

Since this island is in the center of the wafer, a line through the wafer diameter was 

extracted to compare with the four island wafer.  The two datasets are at different 

locations on the wafer, but both pass through their respective film island diameters. 
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 (a) (b) 

Figure 5-27.  Horizontal slope map, ∂f/∂x, of centered island wafer and comparison of extracted slope line 
at y = 0 mm with slope from four island wafer. 

Note that in all cases the shape of the slope profile within each film island is 

similar.  Outside each film island, however, the slopes differ from one geometry to 

another.  For a single film island, the slope at the island edge changes abruptly, and then 

curves back down to a constant value.  In the space between the two islands that lie on 

the line of extracted data from the four island array wafer, however, the slope is not 

allowed to develop in a similar manner.  The slope profile does display the distinctive 

sharp change in direction, and the line begins to curve away from the islands as expected, 

but the slope never reaches a constant value.  Instead, the two islands interfere with each 

other to produce a close to linear region of slope between them. 



 

 

100

-50 0 50
0

0.5

1

1.5

2

2.5

3

x (mm)

-(σ
xx

+σ
yy

), 
(G

P
a)

HR stresss sum

 

 

central island
off-center island
island array

 
Figure 5-28.  Comparison of the HR stress sum for the central island, off-center island, and four island 

array wafers. 

The stresses from the three wafers along the extracted linear datasets are 

compared in Fig. 5-28.  The stress intensifications near the film edge, which exist for all 

the film islands due to the decreasing film thickness in that region, are present in all 

cases.  The stress level and distribution across the middle of the island, however, vary 

with position on the wafer, with the central island always featuring the higher average 

stress levels.     

In this chapter, three wafers with varying geometries of W island films were 

studied using CGS.  The delta slope and curvature maps were first obtained.  From these, 

the stress was determined using both the Stoney and the new HR methodologies.  The HR 

analysis generally produces an intensified stress as compared to Stoney.  Near the film 

edge, where the thickness is greatly reduced, the differences between the Stoney and HR 

analyses are dramatic.  This study shows that there is a noticeable effect of film feature 
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geometry on wafer deformation.  Also, both the stress intensity and film stress profile 

reveal a strong dependence on the location of the feature on the wafer with higher 

stresses developing in islands deposited at the wafer center.  Finally, a more complex 

case was chosen to consider the interactions between features which lead to additional 

changes in wafer deformation and film stress. 
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6. Ongoing Work: Collaboration with Northrop Grumman 
Space Technologies 

 
A study in collaboration with Northrop Grumman Space Technologies, furthering 

the investigation the effects of spatial non-uniformities on the measurement of film stress, 

is currently underway.  The original goal of this study was twofold: to compare CGS 

measurements with the NGST standard measuring techniques, and to utilize the new HR 

relations, instead of just using the classical Stoney formula, to determine the stress 

distribution in "real," industrial standard, wafers.  Ideally, this could also culminate in the 

modification of the standard measurement methodologies to eventually incorporate the 

HR relations in new metrology tools. 

The specimens used in this study consist of 625 µm thick, 3" diameter GaAs 

wafer substrate with blanket InGaAs films deposited on them.  Varying the thickness and 

composition of InGaAs changes the amount of relaxation in the film, and specimens with 

different amounts of film relaxation were produced.   

The initial stress analysis results were quite unexpected and seemed physically 

impossible.  Since the lattice parameter of InGaAs is greater than that of the GaAs 

substrate, the film should only be negatively strained.  The preliminary stress results, 

however, indicated a large variation in film stress across the wafer that ranged from 

negative to positive values.  The specimens and processing conditions were, therefore, 

examined more closely. 

The analysis of film stress due to some process requires full-field delta curvature 

maps, i.e, the difference in curvature before and after that particular process is performed.  
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It is implicitly assumed that the resulting change in curvature is caused solely by the film 

stress. 

However, when temperature gradients exist in a wafer, stresses are induced by the 

uneven thermal expansion within the substrate itself.  If the gradients are large enough, 

the resulting stresses can surpass the yield stress of the material and be locked in, i.e., 

cause permanent deformation in the wafer even without the action of a film.  This effect 

would occur individually in both the film and the substrate even if these two constituents 

were not bonded together, and the resulting wafer deformation is in addition to that 

caused by stresses induced in the film due to a difference in coefficients of thermal 

mismatch between the film and substrate.   

In compound semiconductors, film deposition often occurs at high temperatures.  

There may be non-uniformities in the thermal chambers that result in temperature 

gradients during the heating process.  Even if such non-uniformities in heating do not 

exist, the cooling process is often uncontrolled, and is inherently non-uniform.   

For the GaAs wafers being studied, it was hypothesized that the thermal effects 

due to processing, which were not being considered in the analysis, might be an 

additional cause of substrate deformation.  This would throw off the film stress results, 

since that analysis only allows for deformation caused by film stress.  To determine 

whether this was the case, a bare GaAs wafer was put through the same processing 

conditions (i.e., the same thermal environment) as the other specimens, using the exact 

same equipment, but without actually depositing a film.  The wafer was measured with 

CGS before and after processing to see whether there was deformation of the substrate 

apart from that caused by the film. 
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 (a) (b) 

   
 (c) (d) 

Figure 6.1.  CGS slope interferograms of the bare substrate before and after processing: (a) ∂f/∂x before, 
(b) ∂f/∂y before; (c) ∂f/∂x after, (d) ∂f/∂y after. 

 
 (a) (b) 

Figure 6.1. CGS principal curvature maps of delta curvature, (a) κmax and (b) κmin. 
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The CGS slope interferograms demonstrate that the processing was, in fact, 

causing permanent deformation in the substrate wafer itself.  This permanent deformation 

which is clearly due to thermal gradients must also be considered in determining film 

stress on the affected wafer.   

This study, therefore, has morphed from one examining only the effects of a 

partially relaxed film, i.e., a spatially varying misfit strain, to one that also must consider 

effects of a temperature gradient on the substrate deformation.  Relations between 

curvature and stress have been derived for the case of temperature gradient-induced 

stresses [14].  The ongoing work consists of merging this analysis with the methodology 

considered elsewhere in this thesis, to consider the effects of temperature gradients in 

addition to those of misfit strain in the thin film-wafer substrate system deformation and 

resulting stress distribution. 
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Conclusions 

This thesis has focused on establishing a validated methodology for inferring thin 

film stresses in the presence of spatially non-uniform film thickness and misfit strain.  A 

configuration of central importance in many areas of engineering application consists of a 

thin film structure composed of one or more materials deposited on a substrate of yet 

another material.  Especially as feature sizes continue to grow smaller, buildup of stresses 

in the thin film causes deleterious effects on process yield, since stress can lead directly 

to film failure.  Film stress is accumulated during each of the many processes required to 

build a film structure.  Some mechanisms by which stress causes failure include 

delamination, voiding, and cracking of the film.   

Since stress cannot be measured directly, a common method for quick stress 

inference is to measure the change in substrate curvature due to some process and apply 

appropriate relations that connect curvature to stress in order to determine the film stress 

from that process.  The relation generally used for this is called the Stoney formula, 

which has been derived based on several quite restrictive assumptions.  The assumptions 

include, among others, constant film thickness, and constant misfit strain over the entire 

wafer surface.  A spatially constant film thickness and misfit strain implies spatially 

constant curvature and stress components which are not allowed to vary over the wafer 

surface.  In practice, these assumptions are rarely met, and yet the Stoney analysis is still, 

arbitrarily, applied. 

 Recently an analysis was performed which relaxed the assumptions of spatial 

uniformity, and Stoney-like relations between film stress and system curvature were 
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established.  An interesting outcome of this analysis was that the relation connecting film 

stress and curvature at a given in-plane location depends not only on the curvature at that 

particular location, as expected by the Stoney analysis, but also involves important terms 

that include integrals of curvature across the entire wafer.  Therefore, full-field curvature 

information is absolutely necessary to determine film stress, even at a single location. 

This methodology was validated by comparison with µXRD measurements.  The 

µXRD technique used here involved two independent types of measurements: one that 

estimates film stress from measurements of lattice spacing change, and one that estimates 

substrate curvature.  Since these two measurements are not related to each other, they can 

both be used as both input to the analysis and the benchmark against which to test it.  

Specifically, the µXRD measurement of substrate curvature was used as an input to the 

HR relations, and also to Stoney, to determine film stress based on each of the two 

methodologies.  These film stresses were then compared with the µXRD measurements 

of film stress to determine whether the HR relations were an improvement over Stoney.  

It was found that, indeed, the stresses determined using the HR methodology are much 

closer to the µXRD data, both in predicting general level throughout the film feature and 

in capturing the stress increase near the film edges.  Near the film edges, where the film 

thickness drops drastically, the HR relations were able to capture the resulting increase in 

film stress which Stoney completely misses. 

The HR relations require curvature information over the entire system.  Following 

their validation, Coherent Gradient Sensing, an optical measurement technique, was 

introduced as a convenient alternative to µXRD measurements.  This technique is 



 

108
uniquely suited to the HR methodology since it has the ability of capturing instantaneous 

full-field information.   

Finally, CGS measurements were made of several test wafers with increasingly 

more complex geometries.  The location of a feature in relation to the substrate center or 

boundaries was found to have an effect on the stress level and spatial distribution within 

that feature.  Also, it was found that neighboring film features interfere with each other, 

which has an effect both on the wafer deformation and film stress distribution within the 

features.  This indicates that film stress is not simply an intrinsic material or film 

processing property.  Instead, it depends strongly on details of geometry of the entire thin 

film - substrate system. 

Further studies are underway which also consider an additional source of wafer 

deformation, namely the effects of temperature gradients which can cause permanent 

deformation in a wafer substrate.  This effect is completely separate from those caused by 

film stress.   
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