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Abstract

A series of neutral and cationic group 4 and neutral group 3 model
complexes of the Me2Si(η5-C5H4)(η5-3-(CMe3)-C5H3) (tBuSp) ligand have been
prepared:  tBuSpZrCl2(1), tBuSpZr(CH2SiMe3)2 (8), tBuSpZrMe2 (9),
[tBuSpZrH2]2 (10), tBuSpZrMeCl (11), tBuSpZrMe(CH2CMe3) (12),
tBuSpZrMe(CH2SiMe3) (13), tBuSpScCl(THF) (14), tBuSpScCH(SiMe3)2 (17),
[tBuSpScH] (18), and tBuSpTiCl2 (19).  The kinetically preferred isomers of 12
and 13 have been identified, and in both cases the syn isomer is preferred.
We have obtained solid state structures of [tBuSpZrH2]2 (10), tBuSpZrMeCl
(11), tBuSpZrMe(CH2CMe3) (12), and tBuSpScCl(THF) (14).  Complexes 12
and 13 isomerize to form predominantly the thermodynamically preferred
anti isomers.  The ratio of isomers observed for [tBuSpZrMe]+[MeB(C6F5)3]-

(21) and [tBuSpZrCH2SiMe3]+[Me B(C6F5)3]- (22) suggests that the tBuSp
ligand does not distinguish very well between different groups in the
metallocene wedge (ΔG° = 0.27-0.89 kcal/mol).  The tBu group is not an
effective stereodirector in the ground state structures and the remarkable
stereodirecting capability of this ligand in propylene polymerizations must be
reconciled by its effect on transition state energies.

A series of scandocene tetramethylaluminate have been prepared,
including Ind2Sc(µ-Me)2AlMe2 (1), Cp2Sc(µ-Me)2AlMe2 (2), Cp*CpSc(µ-
Me)2AlMe2 (3), and meso-DpSc(µ-Me)2AlMe2 (4).  These complexes display
characteristic terminal and bridging methyl resonances in solution at room
temperature, indicating static structures.  Complexes 1-4 oligomerize 1-
pentene to form a range of oligomers.  The tetramethylaluminate complexes
initiate oligomerization from a scandium-methyl species after dissociation of
AlMe3, and the primary mechanism of chain transfer is β-hydrogen
elimination.  Complexes 1-4 react with L donors (L = DMAP, THF, PMe3) to
form (RnCp)2ScMe(L) compounds (5-9).
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To study the chromium-based ethylene trimerization catalyst

involving the diphosphine ligand (o-MeO-C6H4)2PN(Me)P(o-MeO-C6H4)2

(PNPOMe (1)), we have synthesized (PNPOMe-d12)CrPh3 (11), (PNPSMe-d12)CrPh3,
(12), and (PNPOMe-d12)CrPh2Cl (14) containing deuterated PNP ligands.
Activation of 11 by protonation with H+(OEt2)2B[C6H3(CF3)2]4

- in the presence
of ethylene provides an active trimerization catalyst that gives similar
selectivity and activity to 1-hexene as the originally reported system and
represents the first examples of an active, well-defined trimerization catalyst
based on chromium.  The trimerization of a 1:1 mixture of C2H4 and C2D4

gives only C6D12, C6D8H4, C6D4H8, and C6H12, the 1-hexene isotopomers
without H/D scrambling, which is consistent with a trimerization mechanism
involving metallacyclic intermediates.
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