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ABSTRACT 

The double-helical structure of deoxyribonucleic acid (DNA) imparts upon this important 

biological molecule both the ability to store genetic information within a cell and also the 

capacity to serve as medium for charge transport.  DNA-mediated charge transport is 

now a very well-studied phenomenon but biological roles for these reactions have not 

been explored.   It has been demonstrated that DNA-mediated charge transport can 

funnel oxidative DNA damage to sites of low oxidation potential in a number of 

biologically relevant environments ranging from reconstituted nucleosome core particles, 

to isolated nuclei and mitochondria from HeLa cells.  DNA-mediated charge transport 

may also play a role in transcriptional activation or repression as modulated by redox-

active transcription factors.  Here we examine how DNA-mediated charge migration 

could also provide a pathway for protein-protein communication among DNA repair 

enzymes, a pathway that might serve as a scheme for rapid lesion detection inside the 

cell. 

 

DNA-mediated charge transport reactions are modulated by the structure and dynamics 

of the double helix.  Particularly important for fast and efficient charge transport is the 

integrity of the base-pair π-stack of DNA.  The presence of even a single mismatched 

base-pair causes a dramatic attenuation in the effectiveness of DNA-mediated charge 

transport.  To examine the scope of base-pair structure perturbations that can hinder 

DNA charge transport, we have investigated a series of duplexes, each containing a 

single altered base, at DNA-modified electrodes.  The efficiency of DNA charge transport 

in these systems is evaluated electrochemically by monitoring the reduction of an 

intercalative probe.  These experiments reveal that a wide variety of damaged bases can 
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diminish charge migration through DNA, including those that result from oxidative 

damage events (8-oxo-guanine, 5-hydroxy-cytosine) and those associated with aberrant 

alkylation (O4-methyl-thymine, O6-methyl-guanine). 

 

The remarkable sensitivity of charge transport reactions in DNA to a broad range of 

damaged bases inspired investigation of the role of DNA-mediated charge transport in 

DNA repair.  A class of base excision repair glycosylases exists that contain [4Fe4S] 

clusters and the function of this cofactor in these enzymes is not well understood, though 

these clusters are often found in proteins involved in electron transfer reactions.  We 

have used DNA-modified gold electrodes to investigate the properties of the [4Fe4S] 

cluster in these enzymes and discovered that MutY and Endonuclease III (EndoIII) are 

redox-active when bound to DNA with midpoint potentials in the 50−100 mV versus NHE 

range, typical of [4Fe4S]2+/3+ processes.  This redox activity furthermore requires a DNA-

mediated path to the [4Fe4S] cluster.  Studies of EndoIII on graphite electrodes show 

that the DNA-bound redox properties of the enzyme are similar to those observed on 

gold, while in the absence of DNA, the potential for the [4Fe4S]2+/3+ couple is shifted 

positive by ~ 280 mV.  This potential shift may indicate a differential binding affinity for 

DNA by the oxidized and reduced forms of EndoIII; the oxidized form could bind DNA as 

much as 3 orders of magnitude more tightly than the reduced form of the enzyme.  The 

DNA-mediated redox activity observed in these proteins has prompted us to propose a 

model for how these proteins might use DNA charge transport as a fast and efficient 

damage detection method.  In this model, a protein binds DNA and becomes oxidized.  If 

the surrounding DNA is undamaged, DNA charge transport will allow another repair 

protein to reduce the first protein from a distance via the DNA base-pair stack.  This 

reduced protein has diminished affinity for DNA and diffuses away; the charge transport 
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reaction has served as a scan of the intervening genomic region.  If, instead, lesion sites 

are present in the vicinity of the initial protein, this protein is more likely to remain 

oxidized and tightly bound in the damaged area.  Thus, this detection scheme would 

allow [4Fe4S] DNA repair enzymes to rapidly eliminate undamaged regions of the 

genome from their search while spending more time bound near lesions. 

 

The DNA-bound redox activity of the [4Fe4S] cluster harbored by MutY has also been 

examined in solution.  DNA-mediated oxidation of the [4Fe4S] cluster via a guanine 

radical intermediate leads to formation of the [4Fe4S]3+ cluster as observed by electron 

paramagnetic resonance (EPR) spectroscopy and transient absorption spectroscopy.  

Furthermore, gel electrophoresis experiments indicate that MutY can quench guanine 

radicals, preventing formation of permanent oxidative guanine lesions.  EPR 

experiments also demonstrate that degraded cluster products (e.g., [3Fe4S]1+) are 

formed both by DNA-mediated oxidation and by oxidants in solution.  In the latter case, 

signal intensities are increased in the presence of DNA.  These results support the idea 

that the DNA-bound form of MutY is more easily oxidized than MutY free in solution.  

The fact that guanine radicals can oxidize MutY may be biologically relevant, as well.  

Guanine radicals are one of the first products of oxidative DNA damage, thus oxidation 

of MutY by a guanine radical could serve to not only directly repair this lesion, but also to 

activate a DNA-mediated charge transport search for damage in the genome in regions 

undergoing oxidative stress. 

 

DNA-mediated charge transport may also be employed in a cooperative fashion among 

different [4Fe4S] cluster DNA repair enzymes, allowing them to help each other 

eliminate undamaged portions of the genome from their search.  To explore this 
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possibility we have calculated that cooperative DNA CT makes possible for MutY, an 

extremely low copy number enzyme, a full scan of the Escherichia coli genome within 

the doubling time of the cell (~ 20 minutes).  The genome scanning time also depends 

on the proportion of protein initially in the oxidized state, thus allowing the DNA repair 

response to adjust according to the conditions present in the cell.  A simple processive 

scanning model for lesion detection by MutY is insufficient.  This cooperativity between 

MutY and EndoIII was also tested experimentally in E. coli.  Inactivation of EndoIII (nth-) 

in a MutY activity reporter strain yields a twofold increase in the mutation rate, indicating 

a loss of MutY activity in the absence of EndoIII.  This loss of activity, or helper function, 

cannot be attributed to an overlapping substrate specificity.  However, investigation of an 

EndoIII mutant (Y82A) that retains this defect in helper function also exhibits a 50% loss 

in signal intensity (compared to wt EndoIII) when examined on a DNA-modified 

electrode.  Thus, helper function by EndoIII could involve DNA-mediated redox activity of 

the [4Fe4S] cluster in EndoIII.  This work demonstrates a connection between in vivo 

cooperativity among DNA repair enzymes and DNA-mediated charge transport as well 

as a biological role for this chemistry in DNA repair. 
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