
TOWARDS MORE EFFICIENT INTERVAL ANALYSIS:
CORNER FORMS AND A REMAINDER INTERVAL NEWTON

METHOD

Thesis by

Marcel Gavriliu

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended May 26, 2005)

ii

c© 2005

Marcel Gavriliu

All Rights Reserved

iii

Acknowledgements

This work was supported by National Science Foundation grants #ASC-89-20219 and #ACI-

9982273; the Office of the Director of Defense Research and Engineering, and the Air Force

Office of Scientific Research (F49620-96-1-0471), as part of the MURI program; and the

JPL/NASA Manifold Approximation project.

iv

Abstract

In this thesis we present two new advancements in verified scientific computing using interval

analysis:

1. The Corner Taylor Form (CTF) interval extension. The CTF is the first interval ex-

tension for multivariate polynomials that guarantees smaller excess width than the natural

extension on any input interval, large or small. To help with the proofs we introduce the

concept ofPosynomial Decomposition (PD).Using PD we develop simple and elegant

proofs showing the CTF is isotonic and has quadratic or better (local) inclusion conver-

gence order. We provide methods for computing the exact local order of convergence as

well as the magnitude of excess width reduction the CTF produces over the natural exten-

sion.

2. The Remainder Interval Newton (RIN) method. RIN methods use first order Taylor

Models (instead of the mean value theorem) to linearize (systems of) equations. We show

that this linearization has many advantages which make RIN methods significantly more

efficient than conventional Interval Newton (IN). In particular, for single multivariate equa-

tions, we show that RIN requires only order of the square root as many solution regions

as IN does for the same problem. Therefore, RIN realizes same order savings in both time

and memory for a significant overall improvement.

We also present a novel application of the two contributions to computer graphics:Beam

Tracing Implicit Surfaces.

v

Table of Contents

Acknowledgements iii

Abstract iv

List of Figures 1

1 Introduction and Motivation 1

1.1 Benefits of Interval Computations .2

1.2 Thesis Overview .4

2 Review of Interval Analysis 7

2.1 A Note About Notation .7

2.1.1 Interval Notation .8

2.1.2 Other Notation .10

2.2 Intervals and Interval Arithmetic .11

2.3 Inclusion Functions and Interval Extensions .15

2.3.1 Interval Valued Functions and the Range Inclusion Function15

2.3.2 Inclusion of the Range of Real Valued Functions16

2.3.3 Interval Extensions .18

2.4 Inclusion of the Solution Set of Nonlinear Systems of Equations20

2.4.1 A Basic Divide and Conquer Algorithm21

2.5 Inclusion of the Solution Set of Nonlinear Optimization Problems26

2.5.1 The Moore-Skelboe Optimization Algorithm26

vi

2.6 Inclusion of the Solution Set of Systems of Differential and Integral Equations

using Interval Picard Iterations .28

2.6.1 Definitions .28

2.6.2 Interval Picard Iteration .29

2.6.3 An Example .30

3 Related Previous Work 33

3.1 Taylor Forms and Taylor Models .33

3.1.1 Taylor Form Interval Extensions .35

3.1.2 Taylor Form Chronology .36

3.2 Methods for the Robust Inclusion of the Range of Multivariate Functions37

3.2.1 Horner Forms .37

3.2.1.1 Summary of Properties .38

3.2.2 Centered and Mean Value Forms .39

3.2.2.1 Summary of Properties .40

3.2.3 Taylor Forms Revisited .41

3.2.4 Bernstein Forms .41

3.2.4.1 Bernstein Forms for Polynomials42

3.2.4.2 Bernstein Forms for Other Types of Functions43

3.2.4.3 Short Chronology .43

3.2.4.4 Summary of Properties .44

3.3 Interval Newton Methods for the Inclusion of the Roots of Nonlinear Systems of

Equations .44

3.3.1 Linear Interval Equations .46

3.3.2 The Interval Newton Operator .47

3.3.3 Preconditioning .48

3.3.4 The Krawczyk Operator .49

3.3.5 The Hansen-Sengupta Algorithm .50

3.3.6 Linear Tightening .52

vii

4 Corner Taylor Form Inclusion Functions 53

4.1 Introduction .53

4.2 Sign-Coherent Intervals .53

4.3 Sign-Coherent Interval Decomposition .55

4.4 Posynomials .56

4.5 The Posynomial Decomposition of a Polynomial57

4.6 Taylor Form Excess Width is Due to One Interval Minus Operation59

4.7 Reduction to the Non-Negative Quadrant .60

4.8 Corner Taylor Forms With Interval Coefficients62

4.8.1 The Corner Taylor Form Always Has Less Excess Width Than the Nat-

ural Extension .62

4.8.2 Isotonicity of the Corner Taylor Form64

4.9 Corner Taylor Forms With Real Coefficients .68

4.9.1 The Magnitude of the Improvement Over Natural Extensions69

4.9.2 Convergence Properties .72

4.10 Examples and Results .74

5 Remainder Interval Newton Methods 91

5.1 The RIN Algorithm for Roots of Multivariate Nonlinear Equations92

5.1.1 Linearization .94

5.1.2 Cropping .96

5.1.3 Subdivision .102

5.1.4 Convergence of the RIN Algorithm .104

5.2 The RIN Algorithm for Roots of Square Systems of Nonlinear Equations105

5.2.1 Linearization .105

5.2.2 Cropping .107

5.2.3 Tightening .108

5.3 RIN vs. Martin Berz’s Inversion .109

5.4 RIN vs. Makino and Berz’s LDB .109

viii

5.5 Examples and Performance .110

5.5.1 Polynomial Equations .110

5.5.2 Polynomial Systems .111

6 An Application: Beam Tracing for Implicit Surfaces 134

6.1 Introduction .134

6.2 Previous Work .137

6.2.1 Review: Ray/Implicit Surface Intersection in One Variable137

6.2.2 Methods that Do Not Guarantee Solutions138

6.2.3 Methods that Guarantee Solutions Along a Ray139

6.2.4 Methods that Guarantee Solutions Inside a Pixel141

6.3 Beam Tracing Implicit Surfaces .141

6.3.1 Beams .141

6.3.2 Beam-Surface Intersection .142

6.3.3 Computing the Illumination .142

6.3.4 Generating Reflected/Refracted Beams143

6.3.5 Making Beam Tracing Work .143

6.4 Results and Conclusions .145

6.5 Future Work .148

7 Conclusion 149

Bibliography 151

ix

List of Figures

2.1 A simple divide and conquer algorithm for solving nonlinear systems of equations

using interval analysis. The values between square brackets listed next to variable

declarations represent initial values. Using a FIFO queue instead of the LIFO

stack usually increases storage requirements. .22

2.2 Plot of an interval covering produced by the divide and conquer algorithm in fig-

ure 2.1, using the natural inclusion function andε = 2−4. The interval covering

contains 12,407 solution intervals and has a quality factor of only 0.0571. The al-

gorithm performed a total of 29,105 iterations which took 84.281 seconds (Math-

ematica 5, P4-2.2GHz). The time/quality cost is 1,474.858 seconds. Compare this

with figure 2.3. .23

2.3 Plot of an interval covering produced by the divide and conquer algorithm in fig-

ure 2.1, using a Midpoint Taylor Form inclusion function andε = 2−4. The interval

covering contains 788 solution intervals and has a quality factor of 0.8997. The

algorithm performed a total of 4,951 iterations which took 63.016 seconds (Math-

ematica 5, P4-2.2GHz). The time/quality cost is 70.038 seconds. Compare this

with figure 2.2. .24

2.4 A simple branch and bound nonlinear optimization algorithm using interval analy-

sis, after Moore and Skelboe. The subroutines used in the algorithm are briefly

described in section 2.5.1. .27

2.5 An example of contracting Taylor Models generated using interval Picard itera-

tion. The degree of the Taylor Models increases from top to bottom.32

x

3.1 The generic Interval Newton algorithm for solving nonlinear systems of equations.

The values between square brackets listed next to variable declarations represent

initial values. .45

3.2 A recursive Interval Newton contraction algorithm for solving nonlinear systems

of equations. This function replaces the genericNewtonContraction in the Inter-

val Newton algorithm in Figure 3.1. .47

3.3 A recursive Krawczyk contraction algorithm for solving nonlinear systems of

equations. This function replaces the genericNewtonContraction in the Inter-

val Newton algorithm in Figure 3.1. .50

3.4 A recursive Hansen-Sengupta contraction algorithm for solving nonlinear systems

of equations. This function replaces the genericNewtonContraction in the Inter-

val Newton algorithm in Figure 3.1. .51

4.1 The range of the polynomialp(x) on the interval[1,2] is R(p)([1,2]). The exact

value of the range on an interval can be difficult to compute.64

4.2 The natural extensionN (p) greatly overestimates the range. Proposition 4.6.1

proves that the width of the computed bound is equal to the sum of widths of the

ranges ofp⊕ andp	, the P and N-posynomials of the MacLaurin form ofp. 65

4.3 The Corner Taylor Form,Tc(p), produces improved bounds as shown in Theo-

rem 4.9.1. The width of the Corner Taylor Form is equal to the sum of the widths

of the ranges ofT p⊕ andT p	, the P and N-posynomials of the Taylor Form of

p(x) expanded atx = 1. Note thatT p⊕ andT p	 have smaller ranges than the P

and N-posynomials,p⊕ and p	, of the MacLaurin form (see figure 4.2). There-

fore, the Corner Taylor Form inclusion function,Tc(p)([1,2]), produces bounds

with significantly less excess width when compared to the natural inclusion func-

tion N (p)([1,2]). .66

4.4 The magnitude of the improvement w(N (p))−w(Tc(p)) can be computed in

closed form. It is twice the width of the range of the posynomialTaylor∆ (p,1)(x). 67

xi

4.5 Regions in gray indicate possible roots of the fifth order Taylor multino-

mial MacLaurin<5,5> (cos2xsin3y+sin3xcos2y−cos2xcos3y+sin3xsin2y) =

0 computed using the natural inclusion function. The search process converges

very slowly due to the large excess width of the natural inclusion function, retain-

ing many superfluous solution regions. The quality factor is only 0.0571.80

4.6 Roots of the same multinomial as in figure 4.5 computed using the Midpoint Tay-

lor Form inclusion function. The search process converges quickly once the size

of the regions fall under a certain threshold. There is still a fair amount of work

being done to eliminate regions where there are no roots as shown, for example,

in the upper right corner. Several subdivisions are needed before the region can be

declared root free. The quality factor is 0.8997. Compare with figure 4.7.81

4.7 Roots of the same multinomial as in figures 4.5 and 4.6 computed using the Corner

Taylor Form inclusion function,Tc(f). Notice that the Corner Taylor Form is

more accurate than the Midpoint Taylor Form for large input regions. The region

in the upper right corner is declared root free very early in the subdivision process.

The quality factor is 0.8821. Compare with figure 4.6.82

4.8 Plot of the solution regions produced by divide and conquer with Midpoint Taylor

Forms on larger domains. The domain is[−100,100]2. The algorithm found 4,950

solution regions in 36,899 iterations which took 514.765 seconds (Mathematica 5

time). Note that there is a considerable amount of work being done away from the

solutions. Compare with figure 4.9. .83

4.9 Plot of the solution regions produced by divide and conquer with Corner Taylor

Forms on larger domains. The domain is[−100,100]2. The algorithm found 5,008

solution regions in 26,115 iterations which took 319.266 seconds (Mathematica 5

time). Away from where solutions are the algorithm eliminates regions at the

maximum speed possible with binary subdivision. Compare with figure 4.8. . . .84

xii

4.10 Plot of the solution regions produced by divide and conquer with Midpoint Taylor

Forms on larger domains for a different function. The domain is[−20,20]2. The

algorithm finished in 1,099 iterations which took 5.016 seconds (Mathematica 5

time). Compare with figure 4.11. .85

4.11 Plot of the solution regions produced by divide and conquer with Midpoint Taylor

Forms on larger domains for a different function. The domain is[−20,20]2. The

algorithm finished in 543 iterations which took 2.531 seconds (Mathematica 5

time). Compare with figure 4.10. .86

4.12 Plot of the solution regions produced by divide and conquer with Midpoint Taylor

Forms on even larger domains. The domain is increased to[−2000,2000]2. The

algorithm finished in 4,503 iterations which took 21.093 seconds (Mathematica 5

time). Compare with figure 4.13. .87

4.13 Plot of the solution regions produced by divide and conquer with Midpoint Tay-

lor Forms on even larger domains. The domain is increased to[−2000,2000]2.

The algorithm finished in 827 iterations which took 3.875 seconds (Mathematica

5 time). Once again we observe the fastest possible convergence of binary subdi-

vision. Compare with figure 4.12. .88

4.14 Logarithmic plot of the number of iterations required by various interval solution

methods versus the size of the solution intervals expressed as a power of 2.89

4.15 Logarithmic plot of the CPU time (Mathematica 5.0) required by various interval

solution methods versus the size of the solution intervals expressed as a power of 2.90

5.1 The Remainder Interval Newton algorithm for solving a single nonlinear equation.93

5.2 The Remainder Interval Newton linearization algorithm for solving a single non-

linear equation. .95

5.3 An example of a solution set of the linearized equation 5.4. The red curve repre-

sents the actual solution of equation 5.1 inside the interval vectorx . The grayed

areaSL is the linearized solution. .96

xiii

5.4 Several ways in which the linearized solutionSL can intersect an intervalx . [[SL]]

is the interval convex hull of the intersection. .97

5.5 The Remainder Interval Newton cropping algorithm for solving a single nonlinear

equation. .98

5.6 The Remainder Interval Newton subdivision algorithm for solving a single non-

linear equation. .102

5.7 The Remainder Interval Newton algorithm for solving square systems of nonlinear

equations. .106

5.8 The Remainder Interval Newton linearization algorithm for solving square sys-

tems of nonlinear equations. .107

5.9 The Remainder Interval Newton cropping algorithm for solving square systems of

nonlinear equations. .108

5.10 The Remainder Interval Newton tightening algorithm for solving square systems

of nonlinear equations. .109

5.11 The solution set of the 5th order bivariate Taylor expansion around the point(1,1)

of the functionf (x,y) = cos3x(sin2y+cos2y)+cos2x(sin3y−cos3y) inside the

interval [−π,π]× [−π,π]. The curves are computed with RIN and are composed

of 3,541 linearized solution regions of width at most 2−10.113

5.12 Logarithmic plot of the number of iterations required by various interval solution

methods versus the size of the solution intervals expressed as a power of 2.114

5.13 Logarithmic plot of the CPU time (Mathematica 5.0) required by various interval

solution methods versus the size of the solution intervals expressed as a power of 2.115

5.14 Logarithmic plot of the number of solution regions produced by various interval

solution methods versus the size of the solution intervals expressed as a power of 2.116

xiv

5.15 Plot of the solution regions produced by Divide and Conquer with Naive Natural

Extension. The solution box width is less than 2−4. The algorithm found 12,407

solution regions in 29,105 iterations which took 84.281 seconds (Mathematica 5

time). Note that it would have taken considerably more time to produce the same

level of solution separation that was possible using the more advanced methods

shown on the following pages. .117

5.16 Plot of the solution regions produced by Divide and Conquer with Midpoint Taylor

Forms. The solution box width is less than 2−4. The algorithm found 788 solution

regions in 4,951 iterations which took 63.016 seconds (Mathematica 5 time). . . .118

5.17 Plot of the solution regions produced by Divide and Conquer with Corner Taylor

Forms. The solution box width is less than 2−4. The algorithm found 807 solution

regions in 4,841 iterations which took 61.312 seconds (Mathematica 5 time). . . .119

5.18 Plot of the solution regions produced by the Interval Newton method with Mid-

point Taylor Forms. The solution box width is less than 2−5. The algorithm found

1,557 solution regions in 5,067 iterations which took 67.656 seconds (Mathemat-

ica 5 time). .120

5.19 Plot of the solution regions produced by the RIN method with Midpoint Taylor

Forms and binary subdivision (not using our special subdivision). The linearized

solution width is less than 2−5. The algorithm found 947 solution regions in 3,039

iterations which took 69.64 seconds (Mathematica 5 time).121

5.20 Plot of the solution regions produced by the RIN method with Midpoint Taylor

Forms and RIN subdivision. The linearized solution width is less than 2−5. The

algorithm found 588 solution regions in 2,382 iterations which took 43.328 sec-

onds (Mathematica 5 time). .122

5.21 Plot of the solution regions produced by the RIN method with Midpoint Taylor

Forms, RIN subdivision, and non-box solutions. The linearized solution width is

less than 2−5. The algorithm found 353 solution regions in 1,836 iterations which

took 26.469 seconds (Mathematica 5 time). .123

xv

5.22 Plot of the solution regions produced by the RIN method with Corner Taylor

Forms, RIN subdivision, and non-box solutions. The linearized solution width

is less than 2−5. The algorithm found 605 solution regions in 2,982 iterations

which took 39.469 seconds (Mathematica 5 time).124

5.23 Plot of the solution regions produced by the RIN method with Corner and Mid-

point Taylor Forms (switch from CTF to MTF when intervals have width less than

1), RIN subdivision, and non-box solutions. The linearized solution width is less

than 2−5. The algorithm found 353 solution regions in 1,704 iterations which took

25.197 seconds (Mathematica 5 time). .125

5.24 Interval Newton without tightening. Solutions of the system of polynomials 5.5.2

over [−π,π]2. Solution interval width is less than 2−4. The algorithm found

96 solution regions in 1,939 iterations which took 72.8 seconds (Mathematica 5,

P4@3.06GHz.) .126

5.25 Interval Newton with tightening. Solutions of the system of polynomials 5.5.2

over [−π,π]2. Solution interval width is less than 2−4. The algorithm found

96 solution regions in 1,651 iterations which took 63.5 seconds (Mathematica 5,

P4@3.06GHz.) .127

5.26 Remainder Interval Newton without tightening. Solutions of the system of polyno-

mials 5.5.2 over[−π,π]2. Solution interval width is less than 2−4. The algorithm

found 96 solution regions in 1,403 iterations which took 46.3 seconds (Mathemat-

ica 5, P4@3.06GHz.) .128

5.27 Remainder Interval Newton with tightening. Solutions of the system of polyno-

mials 5.5.2 over[−π,π]2. Solution interval width is less than 2−4. The algorithm

found 96 solution regions in 1,027 iterations which took 34.6 seconds (Mathemat-

ica 5, P4@3.06GHz.) .129

xvi

5.28 Interval Newton without tightening. Solutions of the system of polynomials 5.5.2

over [−2π,2π]2. Solution interval width is less than 2−4. The algorithm found 96

solution regions in 4,067 iterations which took 157.125 seconds (Mathematica 5,

P4@3.06GHz.) .130

5.29 Interval Newton with tightening. Solutions of the system of polynomials 5.5.2

over [−2π,2π]2. Solution interval width is less than 2−4. The algorithm found 96

solution regions in 3,331 iterations which took 129.75 seconds (Mathematica 5,

P4@3.06GHz.) .131

5.30 Remainder Interval Newton without tightening. Solutions of the system of poly-

nomials 5.5.2 over[−2π,2π]2. Solution interval width is less than 2−4. The al-

gorithm found 96 solution regions in 2,787 iterations which took 95.687 seconds

(Mathematica 5, P4@3.06GHz.) .132

5.31 Remainder Interval Newton with tightening. Solutions of the system of polynomi-

als 5.5.2 over[−2π,2π]2. Solution interval width is less than 2−4. The algorithm

found 96 solution regions in 2,099 iterations which took 71.891 seconds (Mathe-

matica 5, P4@3.06GHz.) .133

6.1 Rendering of a complex implicit model with thin, hair like features.Top,the whole

scene.Bottom,detail views of one of the thin features of the surface.Left, ray

traced images, above, antialiased and below, not antialiased; the rays sometimes

miss the hair like features causing them and their shadows to appear discontinuous.

Right,beam traced images; the thin features and the shadows they cast are always

continuous and free of pixel dropouts. .135

6.2 Applying multiple rotation transformations to a region can artificially increase its

size. This artifact is known as thewrapping effect.144

6.3 Rendering of a blobby flake. The model is comprised of 91 blended elliptic blobby

primitives.Left,Gaussian blobbies.Right,polynomial blobbies.145

6.4 Rendering of a very complex implicit model with thin, hair like features. The

model is composed of 76 super-thin Gaussian blobbies.147

1

Chapter 1

Introduction and Motivation

Over the last decade we have observed an increasing trend towards replacing costly real-life

tests and experiments with computer simulations. From automobile crash tests to spacecraft

trajectory planning to DOE’s Advanced Simulation and Computing project (formerly known

as ASCI) decisions that strategically affect our day to day lives are made based on the results

of computer simulations. This emerging trend prompts the need for reliable and efficient self-

verified computing methods that can guarantee prediction of results one hundred percent.

Traditional numerical computing uses IEEE floating point arithmetic (IEEE 754 standard).

This floating point standard is widely supported in hardware; highly optimized math libraries

(such as Intel’s Performance Libraries) are readily available. Unfortunately, floating point pro-

cedures are not sufficient to guarantee correct results in all cases, as is demonstrated by a classic

example by Rump, which we briefly review in the next section. Rump provides a simple ratio-

nal expression designed so that evaluation using floating point fails to produce the correct result

even when the number of digits of precision is doubled, and doubled again. This simple example

shows that no algorithm using floating point alone can be relied on to make strategic decisions

without risk.

Interval analysiswas formally introduced by R. E. Moore in the 1960’s, see [Moore 1962,

Moore 1966]. It provides a natural framework for self-verified numerical computing with its

ability to correctly and automatically account for errors from many sources, including rounding

errors due to limited precision of the floating point representation of real numbers, approximation

errors due to algebraic manipulation of formulas, and measurement error in the initial data.

2

1.1 Benefits of Interval Computations

Although not new, interval analysis has not found the widespread acceptance its creators had

hoped for. The common belief is that there are faster, more straightforward methods that can

account for rounding and other types of errors. For example, it is common practice to compute

results independently in both single and double precision floating point and compare the digits

of the two results. If the significant digits agree up to a certain precision then the matching

digits are considered correct. However, it is relatively easy to design examples where the above

method breaks. One such case is the classic example by Rump who, in 1988, published an

expression for which numerical evaluation with floating point arithmetic gave erroneous and

misleading results. When evaluating Rump’s expression with increasing numbers of digits the

results seemed stable as they agreed in their first few significant digits. However, as it turns out,

all the digits were incorrect and, although the computed answer was relatively far from zero, it

failed to even capture the correct sign. Rump’s example is not reproducible on modern IEEE

754 computers. Fortunately, the following expression due to Walster and Loh, reproduced from

[Hansen and Walster 2003], produces a similar outcome, this time using IEEE 754 floating point

arithmetic:

f (x,y) = (333.75−x2)y6 +x2(11x2y2−121y4−2)+5.5y8 +
x
2y

For x = 77,617 andy = 33,096 one would obtain the following results:

32 bits: f (x,y) = 1.172604

64 bits: f (x,y) = 1.1726039400531786

128 bits: f (x,y) = 1.172603940053178618588349045201838

In spite of their agreement in the first digits all three results are wrong. The correct answer is:

f (x,y) =−0.827396059946...

3

Evaluation using even the simplest form of interval analysis (natural extension) produces a wide

interval that contains the correct value above. While not directly providing a better (point) an-

swer, interval evaluation alerts us to the numerical instability of the expression and suggests that

higher-accuracy methods need to be employed if the correct answer is to be computed.

Several real world examples of disasters caused by numerical instability of floating point are

documented by Douglas N. Arnold on his website at:

http://www.ima.umn.edu/ ∼arnold/disasters/ ,

as well as in [Hansen and Walster 2003]. All these disasters could have been easily avoided if

interval analysis were used for validation.

Another common complaint is that interval methods are too slow to be useful in practice.

While it is true that computing with intervals is inherently slower than computing with floating

point numbers we have to make certain that we are comparing apples with apples. Often times,

interval methods are the only ones capable of reliably solving the problem at hand. This is

the case, for example, when solving general nonlinear global optimization problems. Another

example is the computation of global solution sets of underdetermined systems of nonlinear

equations. In such cases there is no competing floating point method—interval analysis is the

fastest method available.

In the cases where a competing (non error bounding) floating point method does exist, meth-

ods using interval analysis will naturally be slower. The slowdown factor depends on many

factors and varies greatly. Properly optimized interval algorithms are generally no more than one

order of magnitude slower than their float counterparts. This is often a reasonable price to pay

for the guaranteed error bounds produced by interval analysis. As interest in intervals grows so

will the degree of refinement of implementation and the gap will continue to narrow.

Interval researchers have long argued that Moore’s Law (computer performance doubles

every 18 months) will make interval analysis practical. However, absolute speed is not always

the correct benchmark. Rather, it is the speed differential between interval and floating point

methods that keeps potential users away. Recent evidence seems to suggest we are already at

http://www.ima.umn.edu/~arnold/disasters/

4

the limits of Moore’s Law and we cannot count on CPU speeds doubling every 18 months. As a

result, the intrinsic efficiency of the algorithms used becomes increasingly more important.

Use of the classic natural extension coupled with simple spatial subdivision is slow and

produces unusable results for all but the simplest of problems, as can be seen in the examples

in chapter 4. Such meager performance can be enough to convince people that all of interval

analysis is inefficient and should be avoided. Fortunately, this is not the case with state of the art

methods such as higher order interval extensions (Centered and Taylor Forms, Bernstein Forms,

Taylor Models, etc.) coupled with quadratically convergent Interval Newton—very sharp bounds

can be computed in reasonably fast times at the expense of rather complicated implementation

costs.

The methods introduced in this thesis further improve the efficiency of interval methods.

Corner Taylor Forms are the first interval extensions to guarantee smaller excess width than

the natural extension when evaluated on large intervals while preserving the quadratic conver-

gence properties of the Taylor Form. Remainder Interval Newton improves over classic Interval

Newton with a special subdivision algorithm that extends its applicability to non-square systems

while helping improve efficiency by a factor of the square root (fewer steps).

1.2 Thesis Overview

In this section we give a structural overview of the thesis.

The thesis has two parts. The first part is comprised of chapters 2 and 3. Its main objective

is to provide an easy to read overview of the previous state of the art in interval analysis and to

provide some of the motivation for the contributions we present in the second part of the thesis.

Therefore, we have omitted all the proofs and instead concentrated on the relationships between

the many concepts we discuss.

Chapter 2 reviews the most basic concepts of interval analysis. We purposely leave out the

more advanced methods which will be discussed later in the thesis. The chapter begins with

a short overview of notation in section 2.1; some new notation is introduced here. Intervals

and interval arithmetic are defined in section 2.2 followed by a discussion of interval valued

5

functions and natural interval extensions in section 2.3. Next we take a look at various solution

methods that use interval analysis. Section 2.4 reviews the basic divide and conquer algorithm

for solving nonlinear systems of equations. Finally, section 2.5 presents a simple branch and

bound algorithm for solving general nonlinear optimization problems.

Chapter 3 extends the concepts introduced in the previous chapter and presents the most

important state of the art methods in use in interval analysis today. We begin with a discussion

of Taylor Forms and Taylor Modes in section 3.1. In section 3.2 we review some of the higher

order types of inclusion functions such as the Centered (Slope) Form and the Bernstein Form.

Finally, section 3.3 discusses some of the most important variants of Interval Newton for solving

systems of nonlinear equations.

Part two of this thesis details our contributions to the state of the art. We give proofs of all

the new results as well as some new, more elegant, proofs of results that are already known.

In chapter 4 we introduce our first contribution, theCorner Taylor Forminterval extension.

The Corner Taylor Form is a special case of the more general Taylor Form interval extension. The

majority of the previous research on inclusion functions was concerned primarily with achieving

minimal excess width on small input intervals. Unfortunately, the resulting inclusion functions

often had worse excess width than the natural extension on larger input intervals. Many times the

excess width was so large as to render the results useless. In contrast, the Corner Taylor Form’s

excess width is guaranteed to always be smaller than the excess width of the corresponding

natural extension, for all input intervals, large or small. The Corner Taylor Form has equal

excess width to the natural extension if and only if the natural extension has zero excess width.

Proofs of these properties for Corner Taylor Forms with interval valued coefficients are detailed

in section 4.8. For the special case of Corner Taylor Forms with real valued coefficients we prove

some extended properties in section 4.9. Here we develop a constructive proof and a closed

form polynomial expression for the magnitude of the reduction in the excess width as a function

of the width of the input interval. These formulas can be used in practice to estimate when

the Corner Taylor Form would yield significant benefits—if the benefit is not large enough one

could use the less accurate but more efficient natural extension. In addition, the Corner Taylor

6

Form has many of the desirable properties of the more general Taylor Form interval extension.

In section 4.8.2 we prove isotonicity (the interval analytic equivalent monotonicity). Finally, in

section 4.9.2 we develop a novel proof showing the excess width of the Corner Taylor Form

has at least quadratic order of convergence or better. In particular, we show how to compute

the order of convergence in closed form as a function of the expression of the polynomial and

the input interval under investigation. These formulas can be used once again to make real-time

decisions about which inclusion functions to use. The proofs are facilitated by a new, surprisingly

simple and powerful tool calledPosynomial Decomposition. Posynomial Decomposition (PD) is

described in section 4.5. The chapter concludes with several simple examples.

Chapter 5 details the second contribution of this thesis. We present a new method for solving

systems of nonlinear equations called theRemainder Interval Newtonmethod (RIN for short).

In place of the commonly used mean value theorem, RIN employs a first order Taylor expansion

with interval remainder terms (a.k.a. first order Taylor Models) to linearize the system of equa-

tions, see section 5.1.1. Another important component of the RIN method for underdetermined

systems is a new subdivision method designed to maximize the benefits of the linearization

process, see section 5.1.3. This subdivision scheme allows efficient pruning of regions where

solutions are known not to exist. It also provides the option to enclose the solution set with

solution-aligned polyhedral regions thereby producing a significant reduction in the number of

regions needed to cover a (non point) set of solutions. The new subdivision method further im-

proves the convergence order of the RIN method by a factor of the square root of the original

number of steps. In practice we observe several orders of magnitude reduction in the total num-

ber of steps as well as the number of solution regions returned, see section 5.5. In section 5.2

we discuss the RIN algorithm for solving square systems of nonlinear equations, with examples

shown in section 5.5.

We conclude the thesis with an application of the two contributions to a problem in computer

graphics: rendering of implicit surfaces, see chapter 6. We are particularly interested in robustly

rendering “difficult” implicit surfaces, with very high curvature and fine hair like features which

would be impossible to render using other methods.

7

Chapter 2

Review of Interval Analysis

In this chapter we review some of the fundamental definitions and properties of interval analysis

that will be used throughout this thesis.

For more in depth discussion of topics related to interval analysis we refer the reader to

the books by Moore [Moore 1979], Alefeld and Hertzberger [Alefeld and Herzberger 1983],

Hansen [Hansen 1992] and more recently with Walster [Hansen and Walster 2003], Neumaier

[Neumaier 1990], and Jaulin et al. [Jaulin et al. 2001].

2.1 A Note About Notation

In this thesis we introduce a new system of notation for interval quantities which we feel is

clearer and more convenient than other notation systems currently found in the interval analysis

literature. The reason for introducing new notation is our desire for a system that interferes

as little as possible with currentde factomathematical notation yet is simple, uncluttered and

clearly identifies any interval quantities present in formulas.

We looked for notation that can be easily employed in handwritten text, thus ruling out the

use of typographical enhancements—such as bold letters representing intervals—that have been

previously proposed.

The most commonly used interval notation dates back to Moore and the early days of interval

analysis. It uses capitalized letters to represent interval quantities, i.e.x is a real, whileX is

an interval. Unfortunately, this notation interferes with usual matrix and set notation. It can

8

cause a lot of confusion in formulas where both intervals and matrices (or sets) are present

simultaneously.

Another system identifies interval quantities by enclosing them in square brackets, i.e.x is

a real and[x] is an interval. While this notation avoids confusion with matrix and set notation

and is handwriting friendly, we feel it adds unnecessary bulk to formulas and can be confused

for “just” parentheses.

After many experiments we came to the solution of using simultaneous overbars and under-

bars to represent interval quantities. This notation is consistent with the current use of overbars

and underbars to respectively represent the upper and lower bounds of intervals. Since an inter-

val is composed of both its upper and lower bounds, it was only natural to visually merge the

two into the symbolic representation of the interval.

2.1.1 Interval Notation

In this thesis, real numbers are denoted by lowercase letters, e.g.x,a,u∈R. The set of all closed

real intervals is denoted byIR. Members ofIR are denoted by lowercase letters with over and

underbars, e.g.x = [x0,x1], a , u ∈ IR. For emphasis, vectors are denoted by bold letters, e.g.

x, a,u ∈ Rn are vectors of reals, andx , a , u ∈ IRn are vectors of intervals. The components

of a vector are marked with subscripts, e.g.xi , y j . Matrices are denoted with capital letters as

usual, while interval matrices have over and underbars: A∈ Rm×n, B ∈ IRm×n.

Real valued functions are denoted with small caps, e.g.f (x), g(u), h : Rn → R, while

interval valued functions have over and underbars, e.g.f (x) or g (u), h : IRn→ IR. Inclusion

functions are denoted by calligraphic caps operating on the original function, e.g.I(f)(x).

In general,I(f) is a generic inclusion function off . Specific types of inclusion functions are

denoted with special characters, such asN (f) for the natural extension off .

9

In summary:

Real scalar: x,

Scalar interval (older notations:X, [x],x): x ,

Real vector: x,

Vector interval: x ,

i-th component of real vector: xi ,

i-th component of interval vector: x i ,

Real matrix: M,

Interval matrix: M ,

(i,j)-th component of real matrix: Mi j ,

(i,j)-th component of interval matrix: M i j ,

Real valued function: f (x),

Interval valued function: f (x),

Generic inclusion function off : I(f) ,

Generic inclusion function off (evaluated onx): I(f)(x) ,

Natural extension off : N (f) ,

Natural extension off (evaluated onx): N (f)(x) .

More types of inclusion functions and interval extensions are discussed in the following chapters.

To keep the list above short we will introduce their notations at the time of their first appearance

in the text.

10

2.1.2 Other Notation

In the following chapters we need to clearly distinguish not only between different functions but

also between different expressions of the same function. For the sake of clarity we have chosen a

somewhat verbose notation which uses common English names for the expressions in question.

A generic expression of a functionf will be denoted by:

Generic expression:Expression(f) .

Note that the expression is itself a function. Evaluation of the expression at a pointx is written:

Evaluation of a generic expression:Expression(f)(x) .

When a function has a natural (or canonical) expression we denote it by:

Natural (canonic) expression:Natural(f)(x) .

As an example, we list the names of some common expressions of polynomials (in evaluation

form) below:

Horner factoring: Horner(f)(x) ,

Taylor expansion: Taylor(f ,c)(x) ,

MacLaurin expansion: MacLaurin(f)(x) ,

Horner-Taylor expansion: Horner-Taylor(f ,c)(x) ,

Bernstein expansion: Bernstein(f)(x) ,

Chebyshev expansion: Chebyshev(f)(x) .

11

To facilitate writing expressions of multivariate functions we use the following notation:

Multi-index: i ∈ Nn,

Vector factorial: i! =
n

∏
k=1

ik!,

Vector binomial coefficients:

 n

i

 =
n

∏
k=0

 nk

ik

 ,

Vector power: xi =
n

∏
k=1

xik
k ,

Vector partial derivative: p(i) (x) =
∂i1+...+in

∂i1x1...∂inxn
p(x) .

2.2 Intervals and Interval Arithmetic

A real valued interval represents the closed set of real numbers contained between a lower bound

x and an upper boundx :

Interval: x = [x , x] = {x | x ≤ x≤ x} .

Intervals with x = x are calledthin, point or degenerate intervals, while intervals withx < x

are calledthick or proper intervals.

If 0 ≤ x the interval is called apositive interval, and we writex > 0. Conversely, ifx ≤ 0

we call the interval anegative interval, and writex < 0. Positive or negative intervals are the two

types ofsign coherent intervals. If x = 0 or x = 0 we call the interval azero-bound interval. A

zero-bound positive interval is called azero-positive interval. Similarly, a zero-bound negative

interval is called azero-negative interval.

Positive interval: x > 0 iff x > 0,

Negative interval: x < 0 iff x < 0,

Zero-positive interval: x ≥ 0 iff x = 0,

Zero-negative interval: x ≤ 0 iff x = 0.

12

A metric (distance function) onIR can be defined as follows:

Metric (distance): q
(

x , y
)

= sup
(
| x − y |, | x − y |

)
.

It is straightforward to verify that the above operator satisfies all the requirements of a metric.

Therefore, one can define convergent series of intervals in the usual fashion:

Convergent sequence: lim
i→∞

〈 x i〉= x iff lim
i→∞

q(x i ,x) = 0.

Some common unary operators on a real intervalx are defined as follows:

Midpoint: m(x) =
x + x

2
,

Corner: c(x) =

0 , if 0 ∈ x

x , if x > 0

x , if x < 0

Width: w(x) = x − x ,

Radius: rad(x) =
x − x

2
,

Absolute Value: | x | = {|y| | x ≤ y≤ x} ,

Mignitude: mig(x) = min| x |,

Magnitude: mag(x) = max| x |,

Sign: sgn(x) =

−1 , if x ≤ 0

0 , if x < 0 < x

+1 , if x ≥ 0

,

Interior: int(x) = (x , x) .

13

If S is a set of real numbers we denote its one-dimensional convex hull by[[S]]. Obviously:

Interval Hull: [[S]] = [inf (S) ,sup(S)],

is a closed interval.

The corresponding vector operators are defined component wise. For example, the vector

corner operator is:

Vector Corner: (c(x))k = c(x k) .

We do not define the sign of an interval vector.

The usual unary and binary arithmetic operations are defined as follows:

Negation: − x = [− x ,− x] ,

Addition: x + y =
[

x + y , x + y
]
,

Subtraction: x − y =
[

x − y , x − y
]
,

Multiplication: x y =
[[

x y , x y , x y , x y
]]

,

Division:
x
y

=

[[
x
y

,
x
y

,
x
y

,
x
y

]]
.

Note that for the above definition of division to worky must not contain zero. It is possible to

extend the definition of division to include cases where zero is a member ofy ; examples can be

found in the literature.

We also define:

Positive Integral Power: x n =

 [x n, x n] , if n is odd or x is positive

| x |n, if n is even
,

Negative Integral Power: x−n =
1
x n .

We departed slightly from the usual practice of treating positive integral powers as repeated

14

multiplications in favor of the above definition. The above integral power operator avoids the

excess width introduced by repeated multiplication, as illustrated in the following example:

[−2,3]2 = [0,9] = {y = x2 | x∈ [−2,3]},

[−2,3] [−2,3] = [−6,9] = {y = x1x2 | x1,x2 ∈ [−2,3]}

Note that the power operator (top) returns the exact range of values while the same expression

evaluated through repeated multiplication (bottom) can suffer from significant overestimation.

The overestimation is due to the fact that interval multiplication as defined above assumes there

is no correlation between the two factors being multiplied together.

Interval addition and multiplication exhibit the following algebraic properties:1

Commutativity: x + y = y + x , x y = y x ,

Associativity: (x + y)+ z = x +(y + z), (x y) z = x (y z),

Neutral Element: 0+ x = x , 1· x = x .

Unfortunately, multiplication of intervals is not distributive over addition as it is with real

numbers. A subdistributive law holds:

Subdistributivity: x
(

y + z
)

⊆ x y + x z .

1These properties do not hold in the presence of rounding error.

15

It is useful to identify the special cases where distributivity does hold:

Distributivity

holds:

x
(

y ± z
)

= x y ± x z if x = x (thin factor),

x
(

y + z
)

= x y + x z if y ≥ 0 and z ≥ 0 (non-negative terms),

x
(

y + z
)

= x y + x z if y ≤ 0 and z ≤ 0 (non-positive terms),

x
(

y − z
)

= x y − x z if y ≥ 0 and z ≤ 0 (non-negative terms variation),

x
(

y − z
)

= x y − x z if y ≤ 0 and z ≥ 0 (non-positive terms variation),

x
(

y ± z
)

= x y ± x z if x ≥ 0, y = 0 and z = 0

(positive factor, zero-straddling terms),

x
(

y ± z
)

= x y ± x z if x ≤ 0, y = 0 and z = 0

(negative factor, zero-straddling terms).

The proofs are straightforward and can be found in most texts on interval analysis, such as

[Neumaier 1990].

2.3 Inclusion Functions and Interval Extensions

In this section we review some of the concepts associated with interval valued functions and their

use for computing bounds for the range of real valued functions over interval domains.

2.3.1 Interval Valued Functions and the Range Inclusion Function

An interval valued function is a mapping from a setS to the intervalsIR:

Interval valued function:f : S→ IR.

16

An example of an interval valued function on the reals is thefloating point bound function:

FP-bounds:FP : R→ IR, FP (x) = [x∗,x∗] ,

wherex∗ is the largest floating point number smaller than or equal tox, andx∗ is the smallest

floating point number greater than or equal tox.

Another example of an interval valued function, this time on intervals, is therange inclusion

functionassociated with a continuous real valued functionf : R → R and denoted byR(f) :

IR→ IR:

Range (continuous case):R(f)(x) = {y | (y = f (x))∧ (x∈ x)} .

The range can be defined for discontinuous functions as well, using the interval hull of the range

set, as follows:

Range (discontinuous case):R(f)(x) =
[[
{y | (y = f (x))∧ (x∈ x)}

]]
.

An interval valued function iscontinuousif for any convergent sequence〈 x i〉 (or 〈xi〉 if the

domain isR) the sequence of intervals
〈

f (x i)
〉

(or
〈

f (xi)
〉
) converges as well.

2.3.2 Inclusion of the Range of Real Valued Functions

Using the range inclusion function defined in the previous section it is straightforward to design

algorithms for solving many important problems, such global nonlinear optimization. Unfortu-

nately, the range inclusion function is often not computable.

It turns out that computing a superset of the range inclusion function is usually sufficient,

provided it has certain characteristics. We call these types of interval valued functionsinclusion

functions. As the name suggests, the value of an inclusion function over some intervalx in the

domain is an interval in the codomain that includes the range of the function over the intervalx :

Inclusion function:I(f)(x)⊇ R(f)(x) for ∀ x ⊆ D,

17

or, equivalently:

Inclusion Property:f (x) ∈ I(f)(x) for ∀ x ⊆ D and∀x ∈ x ,

whereD is the domain off . An important class of inclusion functions are theinclusion isotone

inclusion functions which satisfy the following property:

Inclusion Isotonicity:I(f)(x)⊆ I(f)
(

y
)

for ∀ x ⊆ y ⊆ D.

With the above definitions many different classes of inclusion functions can be defined for

any given functionf , the range being the “tightest” and most useful, while the inclusion function

that always returns[−∞,∞] is the “widest” but also not useful at all. We define a metric, called

excess width, for measuring how close a given inclusion function is to the range:

Excess width:∆W(I(f))(x) = w(I(f)(x))−w(R(f)(x)) .

Obviously, the excess width is a non-negative real valued function with interval arguments; the

smaller the excess width is over some intervalx the better the inclusion function overx is.

Another measure of overestimation is theexcess width ratio, which gives information about the

excess width relative to the size of the arguments:

Excess width ratio:∆WR(I(f))(x) =
∆W(I(f))(x)

w(x)
.

Yet another measure for overestimation of the range is theexcess width range ratio, which gives

information about the excess width relative to the size of the range itself:

Excess width range ratio:∆WRR(I(f))(x) =
∆W(I(f))(x)
w(R(f)(x))

.

It is often useful to know the behavior of the overestimation of an inclusion function when

evaluated on a sequence of intervals converging to a point. Of course, we prefer inclusion func-

18

tions whose excess width goes to zero in this case and in fact some authors require this property

in the definition of the inclusion function. If this is the case, we define theinclusion orderof

an inclusion function to be the order of convergence of the excess width when evaluated on a

sequence of intervals convergent to a point:

Inclusion order:O
(
I(f)

)
= O

(
∆W(I(f))(x i)

)∣∣∣
x i→x

.

2.3.3 Interval Extensions

We come to the question of obtaining an expression of an inclusion function from some given

expression of a functionf . If the expression off is formed from compositions of the four basic

arithmetic operations{+,−,×,÷} and integer powers, this turns out to be easy: replace all

occurrences of real variablesxi with interval variablesx i and all the real operations with the

corresponding interval operations and what you get is the expression of an inclusion function.

This is the statement of thefundamental theorem of interval analysis. The process of obtaining

the expression of an inclusion function from the expression of the original function is called

interval extension, see [Moore 1979]. Given some expression we write the interval extension

simply as an evaluation with interval coefficients:

Interval extension:Expression(f)(x) is the interval extension ofExpression(f)(x).

The above definitions cover interval extensions of rational functions. However, interval ex-

tensions can be generalized to include other types of primitives. First, we define some composi-

tion rules:

Function composition 1:Expression(f)(Expression(g)(x)) is an inclusion function off ◦g.

If r is a rational function andf is a function for which an inclusion functionI(f) is known we

19

can obtain an inclusion function ofr ◦ f and f ◦ r as follows:

Function composition 2: Expression(r)(I(g)(x)) is an inclusion function ofr ◦g,

Function composition 3: I(g)(Expression(r)(x)) is an inclusion function ofg◦ r.

We can summarize the composition rules above into the following rule:

Function composition:I(f)(I(g)(x)) is an inclusion function off ◦g.

The proofs are straightforward. Note that the composition rules also allow the computation of

inclusion functions of algorithmically (recursively) defined functions.

Inclusion functions for many elementary functions can be easily defined and are detailed in

the literature. These include square, cubic and higher roots, trigonometric and inverse trigono-

metric functions, logarithms and exponentials, etc. Thus, using the composition rules, inclusion

functions for a large variety of complicated functions can be easily obtained.

Most functions have a standard expression—an expression that is most often used. The

inclusion functions generated from these expressions are callednatural inclusion functions, or

natural extensions. For example, given a multivariate polynomialp, the natural extension2 is

defined as:

Natural extension for polynomials:N (p)(x) = MacLaurin(p)(x) .

The natural extension of cos((x−1)(x−3)) is:

N (cos((x−1)(x−3)))(x) = cos
(

x 2−4 x +3
)
.

In general, inclusion functions obtained through interval extension from different expressions

of the same functionf arenot the same, even when evaluated with infinite precision. This is

unlike the real case where different expressions evaluate to the same value off (x). One of the

2other authors choose to define the natural extension of polynomials asHorner(p)(x). This definition yields
tighter inclusion functions when powers are treated as repeated multiplication, see chapter 3.

20

main interests of interval analysis is in finding expressions of functions that generate “better”

inclusion functions, see chapters 3 and 4.

2.4 Inclusion of the Solution Set of Nonlinear Systems of Equations

In this section we review some basic algorithms for robustly computing roots of nonlinear equa-

tions of the form:

f (x) = 0 (2.1)

using interval analysis. We purposely postpone any discussion of Interval Newton until chapter 3,

so only basic divide and conquer type algorithms are presented here.

First we formalize the problem and the requirements on the solutions. The bold face off in

f (x) = 0 meansf is a vector valued function:

f : Rn → Rm.

Let Sbe the set of all the roots of equation (2.1) inside some domaind ⊂ Rn:

S= {x ∈ d | f (x) = 0}.

We are interested in finding a finite interval covering ofS. A finite interval covering is a finite

set of interval vectorsSε = { s i} with disjoint interiors such that:

1. S⊆ Sε, i.e. given∀x ∈ S then∃i, s i ∈ Sε andx ∈ s i ,

2. int(s i)∩ int(s j) = /0 for ∀i, j,(i 6= j),

3. ∀i,w(s i)≤ ε, with ε ∈ R.

The intervalss i are called solution intervals. The first rule above ensures that we do not miss

any solutions. The second rule ensures that intervals do not cover the same area twice. Finally,

the last rule is a weak measure of the accuracy of the interval covering with respect toS.

21

Note however, that there might besuperfluous solution intervalsin Sε that contain no so-

lutions. We mark superfluous solution intervals bys◦i and their subset byS◦
ε ⊆ Sε. Solution

intervals that contain at least one solution are calledproper solution intervalsand are marked by

s•i . Theproper solution coveringis denoted byS•
ε ⊆ Sε.

We could impose an additional rule that prevents such superfluous solution intervals from

ever appearing in the finite interval covering:

4. ∀i, s i ∩S 6= /0.

However, interval coverings that satisfy these stronger requirements are not as easily computable.

Therefore, we only require the first three rules here. In practice, the number of superfluous

solution intervals (at some fixed value ofε) is directly related to the accuracy of the inclusion

function used to generate them.

Thequality of a finite interval coveringis defined as the ratio between the total area of the

proper solution intervals and the total area of all the intervals in the covering:

Quality of a finite interval covering:Q
(

Sε

)
=

A
(

S•
ε

)
A
(

Sε

) .

The quality is a real number between 0 and 1, with 0 being the worst and 1 being the best.

From now on we will drop the explicit use of the term “finite” and simply write “interval

covering” instead.

2.4.1 A Basic Divide and Conquer Algorithm

The simplest algorithm that can compute finite interval coverings like the one specified in the

previous section is of the divide and conquer type and is shown in figure 2.1. The algorithm

works by adaptively subdividing the domain and eliminating intervals that are guaranteed not to

contain any solutions.

The subdivision step can be implemented in several different ways. The intervals can be

bisected into equal halves along one of its dimensions. This dimension can be chosen to minimize

function variation, or simply be the longest edge. Bisection can also be biased to produce unequal

22

SimpleSolve (
in f: function whose solutions we are seeking
in d : domain interval
in ε: maximum size of a solution interval
out Sε: [empty] interval covering of the solutions of f in d

)
{

createstack: [empty] stack of subintervals to be examined;
put d on stack;
while (stackis not empty) do
{

pop x from stack;
// estimate the range of f on x
compute y = I(f)(x);
if
(

0∈ y
)

// there could be solutions in x
{

if (w(x) < ε)
append x to Sε;

else
{

Subdivide (in x , out x 1, out x 2);
put x 1 on stack;
put x 2 on stack;

}
}

}
return ; // search is exhausted

}

Figure 2.1: A simple divide and conquer algorithm for solving nonlinear systems of equations
using interval analysis. The values between square brackets listed next to variable declarations
represent initial values. Using a FIFO queue instead of the LIFO stack usually increases storage
requirements.

intervals. Multisection is also an option; for example, one could bisect each dimension resulting

in 2n new subintervals at each step.

Any inclusion functionI(f) can be used to bound the range. If the inclusion function used

has nonzero excess width the algorithm may not eliminate all such regions and will return an

interval covering that contains a certain amount of superfluous solution intervals. The larger the

23

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.2: Plot of an interval covering produced by the divide and conquer algorithm in fig-
ure 2.1, using the natural inclusion function andε = 2−4. The interval covering contains 12,407
solution intervals and has a quality factor of only 0.0571. The algorithm performed a total of
29,105 iterations which took 84.281 seconds (Mathematica 5, P4-2.2GHz). The time/quality
cost is 1,474.858 seconds. Compare this with figure 2.3.

24

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.3: Plot of an interval covering produced by the divide and conquer algorithm in fig-
ure 2.1, using a Midpoint Taylor Form inclusion function andε = 2−4. The interval covering
contains 788 solution intervals and has a quality factor of 0.8997. The algorithm performed a to-
tal of 4,951 iterations which took 63.016 seconds (Mathematica 5, P4-2.2GHz). The time/quality
cost is 70.038 seconds. Compare this with figure 2.2.

25

excess width of the inclusion function is, the worse the quality of the interval covering will be

and more superfluous solution intervals will be produced.

In addition, the total running time of the algorithm depends on the amount of excess width

as well since large amounts of extra time can be spent processing and subdividing superfluous

intervals.

This can be best seen by comparing figure 2.2 and figure 2.3. The result in figure 2.2 is

computed using the natural extension and has a quality factor of only 0.0571, much too low to

be of any practical use. The result in figure 2.2 is computed using the Midpoint Taylor Form

interval extension, see section 3.2.2. It has a much better quality factor of 0.8997.

Although running times are similar, a meaningful comparison of the two approaches could

not be made without considering the quality of the interval covering produced. We propose a

new measure called theTime/Quality cost:

Time/Quality cost: TQCost
(

Sε
)

=
time

Q
(

Sε

) .

The Time/Quality cost of the interval covering in figure 2.2 is 1,474.858 seconds, while that of

the interval covering in figure 2.3 is 70.038 seconds.

Within this framework one quickly discovers that naive use of natural extensions routinely

produces interval coverings of very bad quality, so bad that they are virtually useless. Cases like

these are often responsible for the poor reputation interval analysis still has to date. They show

how important it is to use inclusion functions with the smallest excess width available.

In chapters 4 and 5, we make extensive use of the sensitivity of the divide and conquer (and

derived algorithms) to the type of inclusion function used to illustrate and measure the qualitative

differences between several different types of inclusion functions.

26

2.5 Inclusion of the Solution Set of Nonlinear Optimization Prob-

lems

One of the main appeals of interval analysis is its ability to solve very general nonlinear opti-

mization problems which would be impossible to solve using most other methods. The basic

interval algorithm for optimization is due to Moore and Skelboe and is sketched in figure 2.4.

Like we did in the previous section we first formalize the class of problems we are trying to

solve. Letf : Rn → Rm be a multivariate vector valued function andSbe the set of all the global

minima off inside the domaind ⊂ Rn:

S= {x ∈ d | ∀y ∈ d , f (x)≤ f (x)}.

Once again, we are interested in finding a finite interval covering ofS as defined in sec-

tion 2.4. Superfluous and proper solution intervals as well as the quality of an interval covering

are defined as before. The same considerations about the relationship between the inclusion

function used and the quality of the interval covering and the execution efficiency apply to the

Moore-Skelboe algorithm.

2.5.1 The Moore-Skelboe Optimization Algorithm

The pseudocode of the constrained optimization algorithm is shown in figure 2.4. The algorithm

maintains a dynamic estimate of the upper bound to the global (constrained or unconstrained)

minimum value of the function. The upper bound is used to eliminate regions that cannot contain

a global minimum as well as regions that were previously thought to contain a global minimum

but eventually become obsolete. This latest process is done by thePurgeObsoleteMinimarou-

tine.

For unconstrained minimization the routineSatisfiesConstraintsalways returns “true”. For

constrained minimization problems, the routine returns “true” if there is at least one point inside

x where all constrains are satisfied or “false” otherwise. Writing such a routine for all types of

constraints is not easy. Fortunately such routines can be designed for many interesting problems.

27

MooreSkelboeOptimize (
in f: function whose minima we are seeking
in d : domain interval
in ε: maximum size of a solution interval
out Sε: [empty] interval covering of the minima of f over d

)
{

createstack: [empty] stack of subintervals to be examined;
real supMin: [∞] current estimate of the upper bound of min

d
(f);

put d on stack;
while (stackis not empty) do
{

pop x from stack;
// estimate the range of f on x
compute y = I(f)(x);
if
(

(supMin≥ y) and SatisfiesConstraints(x)
)

// there could be a global minimum in x
{

// update global minimum
setsupMin= min(supMin, y);
// eliminate solution intervals s i with inf (I(f)(s i)) > supMin
PurgeObsoleteMinima

(
in supMin, in/out Sε

)
;

if (w(x) < ε)
append x to Sε;

else
{

Subdivide (in x , out x 1, out x 2);
put x 1 on stack;
put x 2 on stack;

}
}

}
return ; // search is exhausted

}

Figure 2.4: A simple branch and bound nonlinear optimization algorithm using interval analy-
sis, after Moore and Skelboe. The subroutines used in the algorithm are briefly described in
section 2.5.1.

28

2.6 Inclusion of the Solution Set of Systems of Differential and In-

tegral Equations using Interval Picard Iterations

In this section, we very briefly describe the interval version of Picard’s algorithm for computing

Taylor form enclosures for the solution of certain differential and/or integral equations. For more

detail refer to [Berz and Hofstätter 1998].

Interval Picard iteration is not the only method for solving ODEs using interval analysis.

Other methods—such as interval versions of Euler’s method—have been studied.

2.6.1 Definitions

Norm: ‖ f (t)−g(t) ‖= maxt | f (t)−g(t)|

Lipschitz condition: A function f (t) satisfies a Lipschitz condition on[a,b] if there is a positive

real numberL[a,b]
f such that for allt1, t2 ∈ [a,b]:

| f (t1)− f (t2)| ≤ L[a,b]
f |t1− t2|.

Cauchy remainder: If f (t) can be expanded in an Taylor series then there existξt ∈ [t0, t] such

that:

f (t) = ∑∞
i=0

1
i!

di f
dti (t0)(t− t0)i

= ∑n
i=0

1
i!

di f
dti (t0)(t− t0)i + 1

(n+1)!
dn+1 f
dtn+1 (ξt)(t− t0)n+1.

The expression:

CR(f , t0,n) =
1

(n+1)!
dn+1 f
dtn+1 (ξt)(t− t0)n+1,

is called thenth order Cauchy remainder off at t0.

Interval Lagrange remainder: ξt is not usually computable in closed form. However, the

following is always true:

ILR(f , t0,n) = 1
(n+1)!

dn+1 f
dtn+1 ([t0, t])(t− t0)n+1,

f (t) ∈ ∑n
i=0

1
i!

di f
dti (t0)(t− t0)i + ILR(f , t0,n).

29

The expressionILR(f , t0,n) is called thenth order interval Lagrange remainder off at t0.

2.6.2 Interval Picard Iteration

Consider the following type of differential equation:

y′ = F(y).

which can be rewritten in integral form as:

y = y(t0)+
Z t

t0
F(y(x))dx.

We further assume thatF is a polynomial and therefore Lipschitz everywhere (bounded deriv-

ative) and that we can produce an initial polynomial enclosurey∗0 for y over the interval

[t0, t0 +1/LF], i.e.

y(t) ∈ y∗0(t),∀t ∈ [t0, t0 +1/LF].

The Picard iteration step

y∗n+1(t) = y(t0)+
Z t

t0
F(y∗n(x))dx,

defines successively better polynomial enclosures fory (i.e. it is a contraction around the solution

y of the differential equation). The integration step can be performed symbolically since all

functions involved are polynomials.

30

The proof that the above Picard iteration step is a contraction is as follows:

‖ y∗n+1(t)−y(t) ‖ = maxt |y∗n+1(t)−y(t)|

= maxt
∣∣y(t0)+

R t
t0 F(y∗n(x))dx−y(t0)−

R t
t0 F(y(x))dx

∣∣
= maxt

∣∣R t
t0 [F(y∗n(x))−F(y(x))]dx

∣∣
≤ maxt

R t
t0 |F(y∗n(x))−F(y(x))|dx

≤ maxt
R t

t0 LF |y∗n(x)−y(x)|dx

≤ maxt [(t− t0)LF |y∗n(x)−y(x)|]

≤ (t0 +1/LF − t0)LF maxt |y∗n(x)−y(x)|

= maxt |y∗n(x)−y(x)|

= ‖ y∗n(x)−y(x) ‖ .

If F is not a polynomial, but it can be expanded in a Taylor series then we use the following

method. LetF∗
n be thenth degree Taylor series with interval Lagrange remainder ofF , i.e.

F(x) ∈ F∗
n (x) =

n

∑
i=0

1
i!

diF
dxi (x0)(x−x0)i + ILR(F,x0,n).

Then the Picard iteration step is as follows:

y∗n+1(t) = y(t0)+
Z t

t0
F∗

n (y∗n(x))dx.

2.6.3 An Example

Let us look at an example of Picard iteration that could be used to solve the differential equation:

y′ = y2,y(0) = 1

Let y∗0 = [1,2]. F(x) = x2 andF ′(x) = 2x. The Lipschitz constant ofF on the interval[1,2] is:

LF = maxF′([1,2]) = max([1,4]) = 4.

31

Therefore, we can expect a Picard iteration to be a contraction for values oft in the interval

[0,1/4]. The first two such Picard iterations are as follows:

y∗1(t) = 1+
R t

0[1,2]2dx

= 1+[1,4]t,

y∗2(t) = 1+
R t

0(1+[1,2]x)2dx

= 1+x+[1,4]x2 +[1/3,16/3]x3.

32

Figure 2.5: An example of contracting Taylor Models generated using interval Picard iteration.
The degree of the Taylor Models increases from top to bottom.

33

Chapter 3

Related Previous Work

In this chapter we review some important state of the art interval algorithms. We begin our dis-

cussion with a short review of the concepts of Taylor Forms and Taylor Models, see Section 3.1.

Next, in Section 3.2 we review the most important methods for the robust inclusion of the range

of multivariate functions. Finally, in Section 3.3 we review some of the state of the art Interval

Newton methods for the inclusion of the global set of solutions of nonlinear systems of equations.

3.1 Taylor Forms and Taylor Models

We begin our review with a discussion of Taylor Forms because they are the principal tool used

to convert nonlinear functions into polynomials, for which all the later methods are developed in

the following sections.

Through the following argumentsf (x) is a generic real-valued multivariate nonlinear func-

tion while p(x) andq(x) are real-valued multivariate polynomials.p (x) and q (x) are interval-

valued multivariate polynomials, i.e. they are polynomials with at least one interval coefficient.

Definition 3.1.1 (Taylor Form). An interval-valued polynomialp (x) is a Taylor Form of f(x)

over the interval boxd if for ∀x ∈ d we have:

f (x) ∈ p (x) .

34

In other words, a Taylor Form is an interval-valued polynomial that bounds the values of the

function f at every point in some given regiond . For example, a Taylor Form ofcos(x) over

the entire real line is:

cos(x) ∈ 1− 1
2

x2 +
1
24

x4− [−1,1]
720

x6.

If all the coefficients of the Taylor Formp (x) are real except for the constant term which

is an interval we have aTaylor Model. For example, a Taylor Model ofcos(x) over the interval

x∈ [−1,1] is:

cos(x) ∈
[

719
720

,
721
720

]
− 1

2
x2 +

1
24

x4.

Taylor Models are the sum of a polynomial and an interval called theinterval remainder

bound. We write:

f (x) ∈ p(x)+ r ,

where r is the interval remainder bound.

Taylor Forms and Taylor Models of analytic functions can be obtained from their Taylor

expansions, hence the names. For example, for a one dimensional functionf (x) we obtain the

nth Taylor Form over the intervald :

f (x) ∈ Taylor<n> (f ,c)(x)+
(x−c)n+1

(n+1)!

[
I

(
dn+1 f
dxn+1

)(
d
)]

,

wherec∈ d andI
(

dn+1 f
dxn+1

)(
d
)

is an inclusion function of the n+1st derivative off evaluated

on d . The corresponding Taylor Model can be obtained by replacing the real variablex with the

interval d in the(x−c)n+1 term:

f (x) ∈ Taylor<n> (f ,c)(x)+
(d −c)n+1

(n+1)!

[
I

(
dn+1 f
dxn+1

)(
d
)]

.

The interval remainder is:

r =
(d −c)n+1

(n+1)!

[
I

(
dn+1 f
dxn+1

)(
d
)]

.

35

The power of the Taylor Model approximation is that the width of the interval remainder

term decreases with order n+1:

w(r) = O

(
w
(

d
)n+1

(n+1)!

)
.

Thus, Taylor Models can be an efficient way of converting nonlinear functions to polynomials

for which interval extensions with higher orders of convergence that the natural extension are

presented in Section 3.2. We explain some important points about interval extensions and Taylor

Models next.

3.1.1 Taylor Form Interval Extensions

It is important to note that Taylor Forms as defined in the previous section are not inclusion

functions because they are defined overRn and not overIRn. However, inclusion functions can

be easily generated from a Taylor Form through interval extension. We call this process the

Taylor Form interval extension.

For example, a Taylor Form interval extension ofcos(x) over the entire real line is:

R(cos)(x) ∈ 1− 1
2

x 2 +
1
24

x 4− [−1,1]
720

x 6.

Similarly, a Taylor Model interval extension ofcos(x) over the intervalx ⊆ [−1,1] is:

R(cos)(x) ∈
[

719
720

,
721
720

]
− 1

2
x 2 +

1
24

x 4.

The differences between a Taylor Form (Model) and a Taylor Form (Model) interval exten-

sion are often not made clear in the literature. For example, it is often stated that Taylor Models

have inclusion orders of arbitrary high orders. In general this is only true for point wise eval-

uation as was shown at the end of the previous section. In order for a Taylor Model interval

extension to be an inclusion function of ordern+ 1 one would need to be able to compute the

range of the polynomial part with inclusion order greater than or equal ton+1. In general, this

36

is not possible (without a priori knowledge about the nature of the function or running global

optimization) even for univariate polynomials.

A Taylor Model interval extension is of the form:

R(f)(x) ∈ I
(
Taylor<N> (f ,c)

)(
d
)
+ r ,

and the inclusion order is equal to the inclusion order ofI
(
Taylor<N> (f ,c)

)
.

3.1.2 Taylor Form Chronology

Taylor Forms date as far back as the original texts by Moore, see [Moore 1962,

Moore 1966, Moore 1979]. Univariate Taylor forms were studies under the name

ultra arithmetic or functoid by Kaucher, Miranker, Rivlin, Epstein and others in

the 1980s, see [Epstein et al. 1981, Epstein et al. 1982, Kaucher and Miranker 1983a,

Kaucher and Miranker 1983b, Kaucher and Miranker 1984a, Miranker 1983]. The multi-

variate case was studied in depth by Eckmann et al., see [Eckmann et al. 1986], and by Kaucher

in [Kaucher and Miranker 1984b]. The methods were used extensively in various computer

assisted proofs. A comprehensive comparison of Taylor Forms interval extensions and other

types of inclusion functions can be found in Stahl’s thesis [Stahl 1996]. For a more detailed

chronology on Taylor Forms and related topics we refer the reader to the paper by Neumaier

[Neumaier 2002].

Taylor Models were introduced by Berz et al. as a means of bounding the solutions of

differential algebraic equations, see [Berz and Hofstätter 1998]. Berz and his collaborators have

written many papers on the subject. A complete repository is available on the web at:

http://bt.pa.msu.edu/pub/ .

More recently, Taylor Model interval extensions using Bernstein expansions were studied by

Nataraj and Kotecha, see [Nataraj and Kotecha 2002].

http://bt.pa.msu.edu/pub/

37

3.2 Methods for the Robust Inclusion of the Range of Multivariate

Functions

In this section we review some of the most important types of interval extensions to date. In light

of our discussion of Taylor Models as a way to treat all analytic functions as polynomials we will

restrict our presentation to bounding the range of the latter.

3.2.1 Horner Forms

In its pure form, the Horner Form interval extension for polynomials is only an enhancement of

the natural extension.1

The Horner Form of a univariate polynomial is:

p(x) = a0 +xi1(a1 +xi2(a2 +xi3(...+xik(ak +xik+1ak+1)))),

and the Horner Form interval extension is:

R(p)(x)⊆H (p)(x) = a0 + x i1(a1 + x i2(a2 + x i3(...+ x ik(ak + x ik+1ak+1)))).

The Horner Form achieves two things:

1. It provides an efficient way of evaluating both the polynomial and the inclusion function

(in fact, Horner Forms are the cheapest interval extensions to compute and evaluate), and

2. It generates somewhat tighter bounds than the natural extension.

The narrower bounds produced are due to the subdistributivity of interval multiplication. Note

however, that subdistributivity does not apply if powers of intervals are computed directly.2

When powers are computed directly, power series evaluation may produce tighter bounds than

the Horner scheme—more research is needed to determine exactly when this happens. For ex-

1Remainder: in this thesis we call the interval extension of the power series expression of a polynomial (MacLaurin
form) the natural extension. Some authors call the Horner Form interval extension the natural extension.

2Instead of using repeated multiplication.

38

ample, Horner evaluation ofx2 +3x on the interval[−1,1] produces the range[−4,4] while the

natural extension with powers evaluated directly produces the tighter range[−3,4]:

[−1,1] ([−1,1]+3) = [−1,1] · [2,4] = [−4,4]

[−1,1]2 +3[−1,1] = [0,1]+ [−3,3] = [−3,4]

Things are slightly more complicated in the multivariate case, as there are many different

ways in which Horner Forms that can be computed. In general, one would choose an ordering of

the variables and write Horner Forms with respect to each variable successively until the whole

expression is suitably factored. The author is not aware of any publications that provide an

optimal ordering of variables.

3.2.1.1 Summary of Properties

The Horner Form interval extension has the following properties (for proofs and added details

we refer the reader to Section 3.1 of V. Stahl’s thesis [Stahl 1996]):

• Inclusion Order: O
(
w
(

d
))

. The Horner Form interval extension has excess width that

decreases linearly with the width of the input interval. Therefore, the Horner form has the

same inclusion order as the natural extension.

• Inclusion Monotonicity: The Horner Form interval extension is isotonic.

• Non-Overestimation: The Horner Form interval extension has zero overestimation3 when

all the intermediate intervals arising during its evaluation do not straddle zero. This is

equivalent to the condition that the natural extension has no overestimation, see Sec-

tion 2.3.3.

The Horner Form can be trivially extended to arbitrary Taylor Forms:

p(x) = a0 +(x−c)i1(a1 +(x−c)i2(a2 +(x−c)i3(...+(x−c)ik(ak +(x−c)ik+1ak+1)))).

3Zero excess width.

39

Once again, many different Horner Forms exist in the multivariate case. We will call the

combination of a Taylor Form with the Horner evaluation the Horner-Taylor Form. The Horner-

Taylor Form can be used to enhance many of the interval extensions presented in the following

chapters with the same benefits listed above (when direct power computations are not used).

3.2.2 Centered and Mean Value Forms

The Centered Form is the simplest of the quadratically convergent interval extensions. Centered

Forms have been studied extensively since the beginning of interval analysis. The initial idea

was published by Moore [Moore 1966]. The Centered Form of a univariate functionf is:

f (x) = f (c)+gc(x,c)(x−c),

wherec is called thecenter. The Centered Form interval extension is:

R(f)(x)⊆ C(f)(x) = f (c)+ I(gc)(x ,c)(x −c),

whereI(gc) is any inclusion function ofgc, and the centerc is usually a point inside the interval

x . The most common choice of center is the midpoint ofx . Thus, the Centered Form interval

extension may require the computation of a new expression ofgc for every input intervalx . The

multivariate case is similar.

Hansen developed the Centered Form for polynomials in [Hansen 1969]. Explicit expres-

sions forg proved difficult to obtain for functions other than polynomials. Centered Forms for

rational functions of the formp/q were discussed by Ratschek in [Ratschek 1980]. Even in this

relatively simple case the computation of an expression ofgc requires all partial derivatives ofp

andq up to their respective degrees, which made the Centered Form computationally expensive.

Expandingf into a suitable Taylor Model and computing the Centered Form of the polynomial

term is a simpler but less accurate solution.

A closely related interval extension is theMean Value Form. The mean value interval exten-

40

sion is nothing else than the interval extension of the well-known mean value theorem:

f (x) = f (c)+ f ′ (ξ)(x−c),

whereξ is some number betweenx andc. While the exact value ofξ cannot be easily computed,

an inclusion function is:

R(f)(x)⊆M(f)(x) = f (c)+ I
(

f ′
)
(x)(x −c).

Although the similarity with Centered Forms is apparent, the Mean Value Form does not fit

the definition of the Centered Form given above. Krawczyk and Nickel were the first to de-

velop a general theory that covered both Moore’s Centered Form and the Mean Value Form in

[Krawczyk and Nickel 1981]. Their paper also gave a proof of the quadratic inclusion order of

the generalized Centered Form.

The excess width of the Mean Value Form can in general be reduced if one uses slope func-

tions instead of derivatives. Slope function are defined as:

Slope function:gc(x) =
f (x)− f (c)

x−c
,

and the Slope Form has the following expression:

R(f)(x)⊆ S(f)(x) = f (c)+ I(gc)(x)(x −c).

Another improvement, due to Baumann, see [Baumann 1988], is theBicentered (Baumann)

Form. Baumann showed how to compute two centersc∗ andc∗ such that the intersection of the

two corresponding Centered Forms produce the smallest bound for the range.

3.2.2.1 Summary of Properties

We summarize the properties of the Centered Form interval extension below (for proofs and

added details we refer the reader to Sections 3.1 and 3.2 of V. Stahl’s thesis [Stahl 1996]):

41

• Inclusion Order: O
((

w
(

d
))2
)

. Centered Form interval extensions have excess width

that decreases quadratically with respect to the width of the input interval. In general,

Centered Forms produce better range inclusions than the natural extension for narrow input

intervals. On wider intervals the natural extension is usually better.

• Inclusion Monotonicity: The Centered Form interval extension is isotonic.

• Non-Overestimation: If the center is not on the boundary of the intervalx the Centered

Form always overestimates the range.

3.2.3 Taylor Forms Revisited

Another way to look at Taylor Forms is as a generalization of the Centered Form. If the interval

extension ofgc (see the previous section for the definition ofgc) is itself a Centered Form then

one obtains the second order Horner-Taylor Form interval extension:

R(f)(x)⊆ f (c)+(g(c)+ I(h)(x ,c)(x −c))(x −c).

Taylor Forms of any order can be obtained by recursion—although we should remember that the

inclusion order will stay quadratic.

3.2.4 Bernstein Forms

The Bernstein Form inclusion function is the interval extension of the expansion of a function

with respect to the (non-orthogonal) basis of Bernstein polynomials. The connections with the

theory of Bezier splines are well known.

The j -th multivariateBernstein polynomialof multi-ordern is defined as:

j -th Bernstein polynomial of degreen: B(j ,n) (x) =

 n

j

xj (1−x)k−j ,

wherex ∈ Rm andj ,n ∈ Nm such thatj i ≤ ni , ∀i ≤m.

42

3.2.4.1 Bernstein Forms for Polynomials

Every multivariate polynomialp : Rm→ R of multi-degreen can be written as a linear combi-

nation of the Bernstein polynomials of ordern and greater:

Bernstein expansion of ordern: p(x) =
n

∑
j=0

b(j ,n)B(j ,n) (x) .

If p is of the form:

p(x) =
n

∑
i=0

aixi ,

then the coefficients of the Bernstein expansion can be computed with the following formula:

j -th Bernstein coefficient (of degreen): b(j ,n) =
j

∑
i=0

ai

 j

i

 n

i

.

Because the Bernstein basis is not orthogonal, Bernstein coefficients of a polynomial of

degreen with respect to a Bernstein basis of higher order are usually not equal to zero. This is an

important property and is related to the process ofdegree elevation, whereby the coefficients of

a Bernstein expansion of higher order can be computed directly from the coefficients of a lower

order expansion.

It is well known that the range ofp on the unit interval box[0,1]m is enclosed between the

smallest and largest values of the Bernstein coefficients. Thus, we can define theBernstein Form

interval extension of ordern as follows:

Bernstein Form:B(p)([0,1]m) =
[
min

j
(b(j ,n)),max

j
(b(j ,n))

]
.

To compute the range over an arbitrary intervalx the polynomial must first be composed

with the appropriate affine translation and scaling that mapsx into [0,1], before computing

the Bernstein expansion. This is equivalent to computing Taylor coefficients with an additional

43

scaling of the variable. Therefore, the Bernstein Form is more expensive to compute than the

Taylor Form; the added cost is that of scaling the Taylor coefficients plus the computation of the

Bernstein coefficients minus the cost of evaluating the range of the polynomial in Taylor Form.

As we mentioned before, a polynomial of degreen can be exactly represented by a Bernstein

expansion of ordern or larger. In general, Bernstein expansions of larger orders produce tighter

inclusion functions. Since the coefficients of the higher order expansion can be computed rela-

tively inexpensively through degree elevation, one could try to dynamically improve enclosures

this way.

3.2.4.2 Bernstein Forms for Other Types of Functions

Bernstein inclusion functions for functions other than polynomials can be generated by first

approximating the function with a Taylor Model or another equivalent polynomial expansion

with interval, and then computing the Bernstein form of the approximation. The mapping to the

interval[0,1] can be done concurrently with the computation of the approximating polynomial.

The classic Bernstein approximation of a functionf is defined as:

Bernstein approximation:B(n) (f ,x) =
n

∑
j=0

f

(
j
n

)
B(j ,n) (x) .

The above approximation can be used to define a Bernstein Form provided that bounds for

| f (x)−B(n) (f ,x) | can be computed. However, this type of Bernstein approximations converge

too slowly to be efficient in practice. Taylor, Chebyshev or minimax approximations should

generate better results.

Of course, higher order Bernstein expansions produce better inclusion functions than lower

order ones, at the expense of more computation. One has to first decide the degree of the approx-

imation polynomial then the order of the Bernstein Form of the polynomial.

3.2.4.3 Short Chronology

The idea of using Bernstein expansions to bound the range of functions dates back to

[Rivlin 1970]. The first generalization to intervals other than[0,1] was given by Rokne in

44

[Rokne 1977]. Rokne went on to publish several papers on the subject, among which we mention

[Rokne 1978] and [Rokne 1981]. The multivariate case was studied by Garloff in [Garloff 1985].

3.2.4.4 Summary of Properties

We summarize the properties of the Bernstein Form interval extension below (for proofs and

added details we refer the reader to Section 3.4 of V. Stahls thesis [Stahl 1996]):

• Inclusion Order: O
((

w
(

d
))2
)

. The excess width of the Bernstein Form interval exten-

sion decreases quadratically with the width of the input interval.

• Inclusion Monotonicity: The Bernstein Form interval extension is isotonic.

• Non-Overestimation: The Bernstein Form interval extension gives the exact range iff

min j(b(j ,n)) ∈ {b(0,n),b(n,n)} and maxj(b(j ,n)) ∈ {b(0,n),b(n,n)}.

3.3 Interval Newton Methods for the Inclusion of the Roots of Non-

linear Systems of Equations

In this section we discuss improvements of the basic divide and conquer algorithm for the inclu-

sion of the roots of nonlinear systems presented in Section 2.4. The methods we discuss here are

versions of Interval Newton—an extension of the familiar Newton’s method to equations with

interval coefficients.

Interval Newton methods are based on the availability of anInterval Newton operator:

Interval Newton operator:IntervalNewtonOperator(x)⊆ x .

The Interval Newton operator is a contraction.

The pseudocode of a generic Interval Newton algorithm is shown in Figure 3.1. TheGener-

icNewtonContraction procedure uses Interval Newton operators to shrink candidate intervals

as much as possible before performing any subdivision. Several possible implementations are

discussed in the next sections.

45

IntervalNewtonSolve (
in f: function whose solutions we are seeking
in d : domain interval
in ε: maximum size of a solution interval
in γ: Interval Newton contraction coefficient
out Sε: [empty] interval covering of the solutions of f in d

)
{

createstack: [empty] stack of subintervals to be examined;
put d on stack;
while (stackis not empty) do
{

pop x from stack;
// estimate the range of f on x
compute y = I(f)(x);
if
(

0∈ y
)

// there could be solutions in x
{

set x = GenericNewtonContraction (in f, in x , in ε, in γ);
if (x 6= /0)
{

if (w(x) < ε)
append x to Sε;

else
{

Subdivide (in x , out x 1, out x 2);
put x 1 on stack;
put x 2 on stack;

}
}

}
}
return ; // search is exhausted

}

Figure 3.1: The generic Interval Newton algorithm for solving nonlinear systems of equations.
The values between square brackets listed next to variable declarations represent initial values.

46

3.3.1 Linear Interval Equations

Interval Newton operators are derived from linearizations of the (system of) equations. Reminis-

cent of the Centered Form, the original nonlinear equations 2.1 can be linearized as follows:

f (x) = 0 ⇔

f (c)+gc(x)(x−c) = 0 ⇔

gc(x)(x−c) =−f (c) ,

wheregc(x) is a slope function off (x):

Slope function:gc(x) =
f (x)− f (c)

x−c
.

By bounding the slope functiongc(x) over x one obtains a linear interval equation:

G c(x−c) =−f (c) ,

where G c = I(gc)(x). All the solutions of the nonlinear equation 2.1 are included in the

solution set of the above linear interval equation.

The Mean Value Form can also be used to linearize the system in much the same way. The

interval matrix G c is replaced by the interval hull of the set of Jacobian matrices off (x) over

x :

{f (x) = 0}⇔
{

f′ (ξ)(x−c) =−f (c)
}

,

resulting in the linear interval equation below:

J (x−c) =−f (c) ,

where J = I(f′)(x). For obvious reasons, the solution set of the linear interval equation above

also includes all the solutions of the original equation.

We reduced the problem of finding an interval covering of the nonlinear equation 2.1 to that

47

of finding a covering of a linear interval equation of the form:

A (x) = b . (3.1)

Following common practice we replaced the real vector on the right hand side of the above

equation with the interval valued vectorb .

3.3.2 The Interval Newton Operator

IntervalNewtonContraction (
in f: function whose solutions we are seeking
in x : initial bounds of solution
in ε: maximum size of a solution interval
in γ: Interval Newton contraction coefficient

)
{

bool continue= true;
while (continue) do
{

set A = I(f′)(x);
set x ∗ = x ∩

(
m(x)− A−1f (m(x))

)
;

if (w(x ∗) > γ w(x)) // not enough improvement
setcontinue= f alse;

if (x ∗ = /0) // no solutions in x
setcontinue= f alse;

set x = x ∗;
}
return x ; // search is exhausted

}

Figure 3.2: A recursive Interval Newton contraction algorithm for solving nonlinear systems
of equations. This function replaces the genericNewtonContraction in the Interval Newton
algorithm in Figure 3.1.

We now describe the original Interval Newton operator, due to Hansen, see [Hansen 1978].

First we need to define some concepts related to interval matrices.

48

A square interval matrixA is calledregular if it does not contain any singular matrices:

Regular interval matrixA : ∀A∈ A , det(A) 6= 0.

The inverse of a regular interval matrixA is defined as the interval hull of the set of inverses of

the real matrices contained inside it:

Inverse of regular interval matrix:A−1 =
[[

A−1 | ∀A∈ A
]]

.

We are now ready to define theInterval Newton operatorfor the linear interval equation 3.1:

Interval Newton operator:NewtonOperator(x) = x ∩
(

A−1 b
)
.

The Interval Newton operator has two very important properties:

1. If NewtonOperator(x)⊂ int(x) then there is auniquesolution insidex , and

2. If NewtonOperator(x) = /0 then there are no solutions insidex .

In the case of a nonlinear equationf (x) = 0 and a mean value linearization, the Interval

Newton operator becomes:

NewtonOperator(x) = x ∩
(
m(x)− I

(
f′
)

x −1f (m(x))
)
.

A recursive algorithm using the Interval Newton operator is shown in Figure 3.2. This algorithm

replaces the genericNewtonContraction function in the Newton solver shown in Figure 3.1.

3.3.3 Preconditioning

Assume the square interval matrixA contains at least one nonsingular matrixA. If we multiply

both sides of 3.1 byA−1 we obtain the equivalent linear interval equation below:

A ∗x = b ∗, (3.2)

49

where we setA ∗ = A−1 A and b ∗ = A−1 b . If A from the original equation is relatively narrow

then A ∗ is likely to be a narrow interval around the identity, meaning the diagonal entries will be

narrow intervals around one, while the rest of the entries will be narrow intervals close to zero.

This can simplify the computation of the solution set of 3.1 as shown in the next two sections.

3.3.4 The Krawczyk Operator

The Krawczyk operator was introduced by Krawczyk in [Krawczyk and Neumaier 1984]. We

describe the main idea below.

Consider the preconditioned linear interval equation 3.2. If we addx to both sides of the

equation we get:

x+ A ∗x = x+ b ∗.

Finally, move A ∗x to the other side and rearrange to get the following fixed point equation:

x = b ∗−
(

A ∗− I
)

x.

If the preconditioned interval matrixA ∗ is sufficiently close to the identity matrix the fixed point

equation above is also a contraction. Thus, theKrawczyk operatoris:

Krawczyk operator:KrawczykOperator(x) = x ∩
(

b ∗−
(

A ∗− I
)

x
)
.

The Krawczyk operator shares the same properties as the interval Newton operator listed in

Section 3.3.2 In addition, when the uniqueness conditions are satisfied, the Krawczyk operator

converges quadratically to the solution.

In the case of a nonlinear equationf (x) = 0 and a mean value linearization, the Krawczyk

operator becomes:

KrawczykOperator(x) = x ∩
(
m(x)−C−1f (m(x))−

(
C−1 A − I

)
x
)
, where

A = I(f′)(x) , and

C = m
(

A
)
.

50

KrawczykContraction (
in f: function whose solutions we are seeking
in x : initial bounds of solution
in ε: maximum size of a solution interval
in γ: Interval Newton contraction coefficient

)
{

bool continue= true;
while (continue) do
{

set A = I(f′)(x);
setC = m

(
A
)
;

set x ∗ = x ∩
(
m(x)−C−1f (m(x))−

(
C−1 A − I

)
x
)
;

if (w(x ∗) > γ w(x)) // not enough improvement
setcontinue= f alse;

if (x ∗ = /0) // no solutions in x
setcontinue= f alse;

set x = x ∗;
}
return x ; // search is exhausted

}

Figure 3.3: A recursive Krawczyk contraction algorithm for solving nonlinear systems of equa-
tions. This function replaces the genericNewtonContraction in the Interval Newton algorithm
in Figure 3.1.

A recursive algorithm using the Krawczyk operator is shown in Figure 3.2. This algorithm

replaces the genericNewtonContraction function in the Newton solver shown in Figure 3.1.

3.3.5 The Hansen-Sengupta Algorithm

Another method for solving the preconditioned linear interval equation 3.2 uses an interval

version of Gauss-Seidel iteration. The method was introduced by Hansen and Sengupta in

[Hansen and Sengupta 1981].

The interval Gauss-Seidel operatoris defined as follows:

Gauss-Seidel operator:GaussSeidelOperator(x , i) = x i ∩

m(x)−
b ∗

i −∑
j 6=i

A ∗
i j x j

A ∗
ii

 .

51

HansenSenguptaContraction (
in f: function whose solutions we are seeking
in x : initial bounds of solution
in ε: maximum size of a solution interval
in γ: Interval Newton contraction coefficient

)
{

bool continue= true;
while (continue) do
{

set A = I(f′)(x);
set A ∗ = m

(
A
)−1

A ;
set x ∗ = x ;

set b ∗ =−m
(

A
)−1

f (m(x));
for (i = 1; i ≤ n; i ++);

set x ∗
i = x ∗

i ∩

m(x i)−
b ∗

i −∑
j 6=i

A ∗
i j x ∗

j

A ∗
ii

;

if (w(x ∗) > γ w(x)) // not enough improvement
setcontinue= f alse;

if (x ∗ = /0) // no solutions in x
setcontinue= f alse;

set x = x ∗;
}
return x ; // search is exhausted

}

Figure 3.4: A recursive Hansen-Sengupta contraction algorithm for solving nonlinear systems
of equations. This function replaces the genericNewtonContraction in the Interval Newton
algorithm in Figure 3.1.

The Gauss-Seidel operator takes in an interval vectorx and an indexi and returns an interval

representing the updatedith component ofx .

The algorithm for the Hansen-Sengupta contraction is shown in Figure 3.4. The Gauss-Seidel

iteration is performed inside the “for” loop. Note that the results of each Gauss-Seidel step are

immediately used in all subsequent computations.

52

3.3.6 Linear Tightening

Linear tightening was introduced by V. Stahl and is described in detail in his Ph.D. thesis, see

[Stahl 1996]. It is similar to the Hansen-Sengupta method without preconditioning, i.e. it per-

forms Gauss-Seidel on the linear interval equation without preconditioning it. This idea is some-

what similar to the ideas we present in Chapter 5, however the linearizations used are different.

In his thesis, Stahl reports that significant speedups can be achieved using tightening.

53

Chapter 4

Corner Taylor Form Inclusion
Functions

4.1 Introduction

In this chapter we present the first contribution of the thesis: theCorner Taylor form inclusion

function.The main benefit of the Corner Taylor Form is that it always produces bounds that are

tighter than those produced by the natural extension. To date, the Corner Taylor Form is the only

quadratically convergent inclusion function with this property.

In this and subsequent chapters we ignore the effects of roundoff errors and assume that

all operations on reals are exact. Of course, roundoff errors will affect the results we present

to a small degree. However, this effect only becomes significant when interval arguments of

expressions are very narrow.

The chapter begins with a discussion of sign coherent intervals and posynomial decomposi-

tions.

4.2 Sign-Coherent Intervals

Sign coherent intervals were introduced in Section 2.2. If 0≤ x the interval is called apositive

interval, and we writex > 0 or x ∈ IR+. Conversely, ifx ≤ 0 we call the interval anegative

interval, and write x < 0 or x ∈ IR−. If x = 0 or x = 0 we say the interval is azero-bound

interval. A zero-bound positive interval is called azero-positive interval. Similarly, a zero-

54

bound negative interval is called azero-negative interval. Positive and zero-positive intervals are

callednon-negative intervals, and we writex ≥ 0 or x ∈ IR∗
+, while negative and zero-negative

intervals are callednon-positive intervals, and we writex ≤ 0 or x ∈ IR∗
−. Non-negative and

non-positive intervals are the two types ofsign coherent intervals. An interval that has both

positive and negative values is called azero-straddling interval.

In summary:

Positive interval: x > 0 iff x > 0,

Negative interval: x < 0 iff x < 0,

Zero-positive interval: x ≥ 0 iff x = 0,

Zero-negative interval: x ≤ 0 iff x = 0,

Zero-straddling interval: x >< 0 iff x > 0 and x < 0.

It is well known that, in general, interval multiplication is not distributive with respect to

addition. However, there are cases when distributivity does hold. As we are going to use these

cases during the course of our proofs, we review them here:

Distributivity

holds:

x
(

y ± z
)

= x y ± x z if x = x (thin factor),

x
(

y + z
)

= x y + x z if y ≥ 0 and z ≥ 0 (non-negative terms),

x
(

y + z
)

= x y + x z if y ≤ 0 and z ≤ 0 (non-positive terms),

x
(

y − z
)

= x y − x z if y ≥ 0 and z ≤ 0 (non-negative terms variation),

x
(

y − z
)

= x y − x z if y ≤ 0 and z ≥ 0 (non-positive terms variation),

x
(

y ± z
)

= x y ± x z if x ≥ 0, y = 0 and z = 0

(positive factor, zero-straddling terms),

x
(

y ± z
)

= x y ± x z if x ≤ 0, y = 0 and z = 0

(negative factor, zero-straddling terms).

55

4.3 Sign-Coherent Interval Decomposition

Any interval x can be decomposed into the difference of two non-negative intervals,x⊕ and

x	, as follows:

Non-negative part: x⊕ =

 x ∩ IR+, if x ∩ IR+ is not empty

[0,0] , otherwise

Non-positive part: x	 =

 − x ∩ IR+, if − x ∩ IR+ is not empty

[0,0] , otherwise

SC decomposition: x = x⊕− x	.

We call the above thesign-coherent (SC) decomposition. If x is a zero-straddling interval then its

SC decomposition will consist of two zero-positive intervals. Ifx does not contain zero the SC

decomposition will be comprised of one positive interval and the zero interval. For example, let

x = [−3,7]. Then x⊕ = [0,7], x	 = [0,3]. If y = [3,7], then y⊕ = y = [3,7], and y	 = [0,0].

SC decompositions of intervals have the following useful properties:

Proposition 4.3.1. Let x be a sign-coherent interval and lety be any interval. Then:

1. (− x) = x	− x⊕,

2. x y = x (y⊕− y) = x y⊕− x y	.

Proof:

1. (− x) = (− x)⊕− (− x)	 = x	− x⊕,

2. If y is a zero-straddling interval then:

x y =
[

x y , x y
]
= x y⊕− x y	.

If y is not zero-straddling then eithery⊕ or y	 is the zero interval[0,0] and the result

56

follows trivially.

4.4 Posynomials

Posynomials are polynomials with non-negative coefficients:

Posynomial:p(x) =
n

∑
i=0

aixi , ai ≥ 0.

We extend this notion to include posynomials with interval-valued coefficients.

Definition 4.4.1. A multivariate interval posynomialp is a multivariate polynomial with all

non-negative interval coefficients:

p (x) = ∑
i∈I

a ix
i , a i ∈ IR∗n

+ .

The following proposition lists a few important properties of interval posynomials and, by

extension, of real posynomials as well:

Proposition 4.4.1. Let p (x) be a multivariate posynomial with interval coefficients. Then:

1) Non-Negativity: p (x) ∈ IR∗
+, for anyx ∈ R∗n

+ .

2) Partial Derivatives: The vector partial derivativep (k) (x) is a posynomial for any integer

vectork.

3) Strict Monotonicity: If x andy are two non-negative real vectors such thatxi ≤ yi for all

integers i, and there exists an integer j such thatx j < y j then:

p (x) < p (y) , and

p (x) < p (y) .

57

4) Range Inclusion Function:The range of a posynomialp (x) over an intervalx ≥ 0 is:

R
(

p
)
(x) =

[
p (x) , p (x)

]
.

5) Taylor Form Inclusion Function: For any non-negative interval vectorx , and any real

vectorc such that0≤ ci ≤ x i for all i, the Taylor Form inclusion function atc is exactly

equal (ignoring roundoff errors) to the range of the posynomialp :

Taylor
(

p ,c
)
(x) = R

(
p
)
(x) .

Proofs are straightforward and follow directly from the definitions.

It is important to remember that the properties of posynomials listed above will not hold if

they are evaluated outside ofIR∗n
+ .

4.5 The Posynomial Decomposition of a Polynomial

The posynomial decomposition is a surprisingly powerful tool for the analysis of various inclu-

sion properties of Taylor Forms. We make use of it extensively in the proofs of the theorems that

follow in the next sections.

Let p (x) be a multivariate polynomial with interval coefficients, and letc be the expansion

point for the exact Taylor Form expansion below:

Taylor
(

p ,c
)
(x) = ∑

i∈I

p (i) (c)
i!

(x−c)i .

We restrict the values ofx such that(x−c)∈R∗n
+ , i.e. xi ≥ ci for all i. We define theP-posynomial

58

and theN-posynomialof the Taylor FormTaylor(p,c)(x) as follows:

P-posynomial: Taylor⊕
(

p ,c
)
(x) = ∑

i ∈ I

p (i) (c)∩R∗
+ 6= /0

(
p (i) (c)

)
⊕

i!
(x−c)i ,

N-posynomial: Taylor	
(

p ,c
)
(x) = ∑

i ∈ I

p (i) (c)∩R∗
− 6= /0

(
p (i) (c)

)
	

i!
(x−c)i ,

where
(

p (i) (c)
)
⊕ and

(
p (i) (c)

)
	 are the non-negative and non-positive parts of the SC decom-

position of p (i) (c) respectively.

We will also use the following shorthand notation:

P-posynomial: p⊕|c(x) = Taylor⊕
(

p ,c
)
(x)

N-posynomial: p	|c(x) = Taylor	
(

p ,c
)
(x) .

Furthermore, ifc = 0 we write:

P-posynomial: p⊕ (x) = MacLaurin⊕
(

p
)
(x)

N-posynomial: p	 (x) = MacLaurin	
(

p
)
(x) ,

where the posynomialsMacLaurin⊕
(

p
)
(x) andMacLaurin	

(
p
)
(x) are defined the natural

way.

With the above definitions, the interval polynomialp can be written as the difference of the

P and N-posynomials in(x−c). This is called theposynomial decompositionof p atc:

Posynomial decomposition:p (x) = p⊕|c(x)− p	|c(x) .

If p is a polynomial with real coefficients then the P-posynomial is comprised of the terms

59

with positive coefficients while the N-posynomial is comprised of all the terms with negative

coefficients in absolute value. For example, let us consider the following bivariate polynomial

and its Taylor Form at the point(1,−1)T :

Taylor
(
p,(1,−1)T

)
(x) = 3(x1−1)2(x2 +1)2− (x1−1)(x2 +1)+3

=
[
3(x1−1)2(x2 +1)2 +3

]
− [(x1−1)(x2 +1)] .

Then the P-posynomial is 3(x1−1)2(x2 +1)2 +3 and the N-posynomial is(x1−1)(x2 +1):

p⊕|(1,−1)T (x) = 3(x1−1)2(x2 +1)2 +3

p	|(1,−1)T (x) = (x1−1)(x2 +1).

4.6 Taylor Form Excess Width is Due to One Interval Minus Oper-

ation

In this section we use the posynomial decomposition to show that the excess width of any nat-

ural or Taylor Form interval extension—ignoring roundoff errors—is due to one interval minus

operation.

Proposition 4.6.1. Let Taylor
(

p ,c
)

be a Taylor Form of the interval polynomialp , and let x

be an interval vector such thatx − c≥ 0. Let T
(

p ,c
)

be the interval extension of the Taylor

Form above. Then:

T
(

p ,c
)
(x) = p⊕|c(x)− p	|c(x) ,

and:

w
(
T
(

p ,c
)
(x)

)
= w

(
p⊕|c(x)

)
+w

(
p	|c(x)

)
,

The proof is a simple application of the posynomial decomposition.

60

4.7 Reduction to the Non-Negative Quadrant

The rest of the chapter uses posynomial decompositions to analyze the inclusion properties of

natural and Taylor Form interval extensions of polynomials. For simplicity, all arguments are

restricted to non-negative intervals. In this section we show that all other cases can be reduced

to the non-negative quadrant without loss of generality.

First we prove that the range over a zero-straddling interval vectorx computed by the natural

extension of a polynomialp is equal to the union of the ranges computed by the same natural

extension over the sign-coherent interval vectorsx ⊕ and− x 	.

Proposition 4.7.1. Let p be a multivariate polynomial with interval coefficients andx = x ⊕−

x 	 be a zero-straddling interval vector. Then:

∑
i≤n

a i x i =

(
∑
i≤n

a i x i
⊕

)
∪

(
∑
i≤n

a i(− x)i

)
.

Proof:

For anya,b > 0 and positive integerk the following holds:

[−a,b]k = ([−a,0]∪ [0,b])k

= [−a,0]k∪ [0,b]k .

Also, for any intervalsx , y , and z the following is true:

(
x ∪ y

)
+ z = (x + z)∪

(
y + z

)
,

(
x ∪ y

)
z = (x z)∪

(
y z
)
.

61

Therefore, if 0∈ x k for all integersk:

∑
i≤n

a i x i = ∑
i≤n

a i

(
x i
⊕∪ (− x)i

)

= ∑
i≤n

(
a i x i

⊕∪ (− a i x)i
)

=

(
∑
i≤n

a i x i
⊕

)
∪

(
∑
i≤n

a i(− x)i

)
.

Finally we show that the range enclosure computed over an interval vectorx with mixed

sign-coherent components is the same as the range enclosure of a properly transformed Taylor

Form over the non-negative interval vector| x |.

Proposition 4.7.2. Let p be a multivariate polynomial with interval coefficients, andx be

a component-wise sign coherent interval vector. Let J be the set of indices of non-negative

components ofx , i.e. x j∈J ∈ IR∗
+, and x j /∈J ∈ IR∗

−. We construct a new interval vector

y = | x |, i.e.:

y
k
=

 x k, if k ∈ J,

− x k, if k /∈ J.

Let q be a polynomial such that:

q (y) = p (x) ,

where:

yk =

 xk, if k ∈ J,

−xk, if k /∈ J.

Then:

1) N
(

q
)(

y
)

= N
(

p
)
(x),

2) T
(

q ,c
(

y
))(

y
)

= T
(

p ,c(x)
)
(x).

62

The proof is straightforward.

4.8 Corner Taylor Forms With Interval Coefficients

In this section we introduce the Corner Taylor Form inclusion function,Tc
(

p
)
, for a multivariate

polynomial p with interval coefficients. We prove that the Corner Taylor Form has less excess

width than the corresponding natural extension and that it is inclusion isotonic.

Let p : Rn → IR be a multivariate polynomial with interval coefficients, with expression:

p (x) = ∑
i∈J⊂Nn

a ix
i .

We define theCorner Taylor Forminclusion functionTc
(

p
)
(x) to be the interval extension of

the Taylor expansion ofp at the cornerx0 = c(x) of the interval vectorx :

Corner Taylor Form:Tc
(

p
)
(x) = Taylor

(
p ,c(x)

)
(x) .

4.8.1 The Corner Taylor Form Always Has Less Excess Width Than the Natural

Extension

Next, we prove the main result of this section.

Theorem 4.8.1.Let p : Rn → IR be a multivariate polynomial with interval coefficients, and

x ∈ IRn be an interval vector. Then

Tc
(

p
)
(x)⊆N

(
p
)
(x) .

Proof:

Assume that the interval vectorx is non-negative, i.e.x ∈ IR∗n
+ . The other cases are reduced to

this one by virtue of the results in Section 4.7.

63

The productsx i are non-negative intervals, for any multi-index vectori in J. By applying

Proposition 4.3.1 term by term and using the associativity of interval addition we can write the

following derivation:

N
(

p
)
(x) = MacLaurin

(
p
)
(x)

= ∑
i∈J⊂Nn

a i x i

= ∑
i∈J⊂Nn

(
a i⊕− a i	

)
x i

= ∑
i∈J⊂Nn

(
x i a i⊕− x i a i	

)
= ∑

i∈J⊂Nn

a i⊕ x i − ∑
i∈J⊂Nn

a i	 x i .

The above expression is the posynomial decomposition ofp :

p⊕ (x) = MacLaurin⊕
(

p
)
(x) = ∑

i∈J⊂Nn

a i⊕xi ,

p	 (x) = MacLaurin	
(

p
)
(x) = ∑

i∈J⊂Nn

a i	xi .

Using Proposition 4.6.1 we can write:

N
(

p
)
(x) = p⊕ (x)− p	 (x)

= Taylor
(

p⊕, x
)
(x)−Taylor

(
p	, x

)
(x)

= ∑
i≤n

1
i!

(
p (i)
⊕ (x)(x − x)i − p (i)

	 (x)(x − x)i
)

.

The coefficientsp (i)
⊕ (x) and p (i)

	 (x) in the expression above are strictly positive (properties

derivatives of interval posynomials). Distributivity doesn’t hold even though(x − x)i is non-

64

Figure 4.1: The range of the polynomialp(x) on the interval[1,2] is R(p)([1,2]). The exact
value of the range on an interval can be difficult to compute.

negative. Using subdistributivity we conclude:

N
(

p
)
(x) = ∑

i≤n

1
i!

(
p (i)
⊕ (x)(x − x)i − p (i)

	 (x)(x − x)i
)

⊇ ∑
i≤n

1
i!

(
p (i)
⊕ (x)− p (i)

	 (x)
)

(x − x)i

= Taylor
(

p , x
)
(x)

= Tc
(

p
)
(x) .

Equality holds if and only if one of the posynomialsp⊕ or p	 is identically zero.

4.8.2 Isotonicity of the Corner Taylor Form

Next we prove that the Corner Taylor Form is interval isotonic.

65

Figure 4.2: The natural extensionN (p) greatly overestimates the range. Proposition 4.6.1
proves that the width of the computed bound is equal to the sum of widths of the ranges ofp⊕
andp	, the P and N-posynomials of the MacLaurin form ofp.

Theorem 4.8.2.Let p (x) be a multivariate polynomial with interval coefficients, and letx ⊆

y be two nested sign-coherent interval vectors. Then:

Tc
(

p
)
(x)⊆ Tc

(
p
)(

y
)
.

Proof:

Case 1.Assume thaty is a non-negative interval vector such that:

x = c(x) = c
(

y
)

= y .

66

Figure 4.3: The Corner Taylor Form,Tc(p), produces improved bounds as shown in Theo-
rem 4.9.1. The width of the Corner Taylor Form is equal to the sum of the widths of the ranges of
T p⊕ andT p	, the P and N-posynomials of the Taylor Form ofp(x) expanded atx= 1. Note that
T p⊕ andT p	 have smaller ranges than the P and N-posynomials,p⊕ and p	, of the MacLau-
rin form (see figure 4.2). Therefore, the Corner Taylor Form inclusion function,Tc(p)([1,2]),
produces bounds with significantly less excess width when compared to the natural inclusion
functionN (p)([1,2]).

The posynomial decomposition of the Corner Taylor Form evaluated on the interval vectory is:

Tc
(

p
)(

y
)

= Taylor⊕
(

p , y
)(

y
)
−Taylor	

(
p , y

)(
y
)
.

67

Figure 4.4: The magnitude of the improvement w(N (p))−w(Tc(p)) can be computed in closed
form. It is twice the width of the range of the posynomialTaylor∆ (p,1)(x).

Because posynomials are strictly monotonic we can write:

Tc
(

p
)(

y
)

= Taylor⊕
(

p , y
)(

y
)
− Taylor	

(
p , y

)
(y)

= Taylor⊕
(

p , y
)
(x) − Taylor	

(
p , y

)
(y)

≤ Taylor⊕
(

p , y
)
(x) − Taylor	

(
p , y

)
(x)

= Taylor⊕
(

p , x
)
(x) − Taylor	

(
p , x

)
(x)

= Tc
(

p
)
(x) .

The inequality for the upper bounds is derived in similar fashion:

Tc
(

p
)(

y
)

≥ Tc
(

p
)
(x) ,

68

and this case is proved.

Case 2.Assume once again thaty is non-negative andx > y so thatx is a proper subset

of y . We make the substitutiont = x− y and define the equivalent polynomialq (t) = p (x).

Then:

Tc
(

p
)
(x) = Tc

(
q
)(

x − y
)

⊆ N
(

q
)(

x − y
)

= Taylor
(

p , y
)
(x)

⊂ Taylor
(

p , y
)(

y
)

= Tc
(

p
)(

y
)
,

and Case 2 is proved. All the other cases reduce to the two cases above.

4.9 Corner Taylor Forms With Real Coefficients

In this section we restrict our attention to Corner Taylor Forms with real coefficients. For this

case we prove some important extended properties.

The first property allows us measure how much tighter the bounds computed by the Corner

Taylor Form are when respect to those computed using natural extensions.

The second provides an algorithm for computing the local inclusion order of a Corner Taylor

Form as a function of the input interval. This local inclusion order can vary for a given polyno-

mial across its range. It is at least quadratic and can be as high at the degree of the polynomial.

In some cases the Corner Taylor Form evaluates the range exactly (up to rounding error). We

show how these cases are easily detected.

Of course, all the theorems for Corner Taylor Forms with interval coefficients apply to this

case as well.

69

4.9.1 The Magnitude of the Improvement Over Natural Extensions

Consider a multivariate polynomialp : Rn →R with real coefficients, whose expression is given

by:

p(x) = ∑
i∈J⊂Nn

aixi , ai ∈ R.

TheCorner Taylor Forminclusion functionTc(p)(x) is defined as:

Tc(p)(x) = Taylor(p,c(x))(x) . (4.1)

We now prove a stronger version of Theorem 4.8.1:

Theorem 4.9.1.Let x ∈ IRn be a vector of sign-coherent intervals. Then there exists a multi-

variate posynomial with positive real-valued coefficients:

p∆|c(x) (x)

such that

N (p)(x) = Tc(p)(x)+ [−1,1] p∆|c(x) (x) .

Proof:

Assume thatx ∈ IR∗n
+ is a vector of non-negative intervals so that c(x) = x . The rest of the

cases are reduced to this one.

The posynomial decomposition of the MacLaurin form ofp is:

MacLaurin(p)(x) = p⊕ (x)− p	 (x) .

70

The corresponding interval evaluation rules are:

N (p)(x) = p	 (x)− p⊕ (x)

= Taylor(p⊕, x)(x)−Taylor(p	, x)(x) .

where the properties of posynomials were used to derive the last two steps, see Proposition 4.4.1.

A similar derivation applied to the Corner Taylor Form ofp yields the following:

Taylor(p, x)(x) = Taylor⊕ (p, x)(x)−Taylor	 (p, x)(x) ,

Tc(p)(x) = Taylor⊕ (p, x)(x)−Taylor	 (p, x)(x) .

Let:

q1(x) = Taylor(p⊕, x)(x)−Taylor⊕ (p, x)(x) ,

q2(x) = Taylor(p	, x)(x)−Taylor	 (p, x)(x) .

We show thatq1 andq2 are equal posynomials.

Consider theith coefficient ofq1:

ai =
1
i!

(
p(i)
⊕ (x)−max

(
0, p(i) (x)

))
=

1
i!

(
p(i)
⊕ (x)−max

(
0, p(i)

⊕ (x)− p(i)
	 (x)

))
=

1
i!

min
(

p(i)
⊕ (x) , p(i)

	 (x)
)

.

Similarly theith coefficient ofq2 is:

bi =
1
i!

(
p(i)
	 (x)−max

(
0, −p(i) (x)

))
=

1
i!

(
p(i)
	 (x)−max

(
0, p(i)

	 (x)− p(i)
⊕ (x)

))
=

1
i!

min
(

p(i)
	 (x) , p(i)

⊕ (x)
)

.

71

Thereforeai = bi ≥ 0. We define the posynomialp∆| x (x) = q1(x) = q2(x). Then:

Taylor(p⊕, x)(x) = p∆| x (x)+Taylor⊕ (p, x)(x)

Taylor(p	, x)(x) = p∆| x (x)+Taylor	 (p, x)(x) .

Finally:

N (p)(x) = Taylor(p⊕,c(x))(x)−Taylor(p	,c(x))(x)

= p∆| x (x)+Taylor⊕ (p,c(x))(x)

−
(
p∆| x (x)+Taylor	 (p,c(x))(x)

)
= Tc(p)(x)+ p∆| x (x)− p∆| x (x)

= Tc(p)(x)+ [−1,1]p∆| x (x) ,

and the theorem is proved.

Theorem 4.9.1 provides a closed form expression for the posynomialp∆|c(x):

p∆|c(x) = ∑
i∈Nn

min
(

p(i)
⊕ (c) , p(i)

	 (c)
)

i!
(x−c)i .

It follows directly from Theorem 4.9.1 that the magnitude of the reduction in excess width

of the Corner Taylor Form over the natural extension, whenx is a non-negative interval vector,

is given by:

w(N (p)(x))−w(Tc(p)(x)) = 2 w
(
p∆|c(x) (x)

)
.

The above expression could be used in algorithms, such as root finding or optimization, to

decide when the extra cost of evaluating the Corner Taylor Form is worth it or not.

72

4.9.2 Convergence Properties

Next we investigate the convergence properties of the excess width of Corner Taylor Forms with

real coefficients.

Theorem 4.9.2.Let p(x) be a multivariate polynomial. The excess width of the Corner Taylor

FormTc(p)(x) has quadratic order or better when the width ofx goes to zero.

Proof:

Once again we prove the result for the casex ⊂ IR∗n
+ so that c(x) = x .

We begin by noticing that the excess width of an inclusion functionI(p) has two compo-

nents, the upper excess width and the lower excess width, each of which is the minimum of the

difference between all possible values of the functionp(y) and the upper and lower bounds of

I(p) respectively, as follows:

∆W(I(p)(x)) = min
y∈ x

{p(y)− inf (I(p)(x))}

+min
y∈ x

{sup(I(p)(x))− p(y)}.

Consider the upper excess width of the Corner Taylor Form:

min
y∈ x

{p(y)− inf (Tc(p)(x))}

= min
y∈ x

{ (
p⊕| x (y)− p	| x (y)

)
−
(
p⊕| x (x)− p	| x (x)

) }
= min

y∈ x

{ (
p⊕| x (y)− p⊕| x (x)

)
−
(
p	| x (y)− p	| x (x)

) }
.

Since the minimum of the above expression is taken over all values ofy ∈ x , its value has to be

smaller than or equal to the value of the expression at any particular values. We choose two such

73

values,y = x andy = x :

min
y∈ x

{p(y)− inf (Tc(p)(x))} =

= min
y∈ x

{ (
p⊕| x (y)− p⊕| x (x)

)
−
(
p	| x (y)− p	| x (x)

) }

≤

(
p⊕| x (x)− p⊕| x (x)

)
−
(
p	| x (x)− p	| x (x)

)
(
p⊕| x (x)− p⊕| x (x)

)
−
(
p	| x (x)− p	| x (x)

)

=

p	| x (x)− p	| x (x)

p⊕| x (x)− p⊕| x (x)

=

w
(
p	| x (x)

)
w
(
p⊕| x (x)

)

By definition, the terms of the posynomialsp	| x andp	| x are mutually exclusive, i.e. only

one of them has nonzero coefficient of multi-indexi. Therefore, the lowest degree term of one

of these two posynomials must be of quadratic (or higher) degree, so the upper excess width of

the Corner Taylor Form must also have quadratic (or higher) order of convergence as well. The

fact that the posynomialsp	| x andp	| x are expressed in terms of(x − x)—an interval vector

containing zero—implies that the convergence rate depends only on the width of the interval

vector x and is independent of its magnitude.

The proof for the lower excess width follows along the same lines.

74

4.10 Examples and Results

Consider the polynomialp(x) and the following expressions associated with it:

MacLaurin(p)(x) = x2−x,

Taylor(p,1.5)(x) = (x−1.5)2 +2(x−1.5)+0.75,

Taylor(p,1)(x) = (x−1)2 +(x−1).

It is easy to check that the range ofp over the interval[1,2] is:

R(p)([1,2]) = [0,2] .

The interval extensions corresponding to each of the above expressions produce the different

results when evaluated over the same interval. The natural extension, corresponding to the first

expression above, evaluates as follows:

N (p)([1,2]) = MacLaurin(p)([1,2])

= [1,2]2− [1,2]

= [1,4]− [1,2]

= [−1,3]

75

The Midpoint Taylor Form, corresponding to the second expression above, evaluates as follows:

Tm(p)([1,2]) = Taylor(p,1.5)([1,2])

= ([1,2]−1.5)2 +2([1,2]−1,5)+0.75

= [−0.5,0.5]2 +2[−0.5,0.5]+0.75

= [0,0.25]+ [−1,1]+0.75

= [−0.25,2]

Finally, the Corner Taylor Form, corresponding to the third expression above, evaluates as fol-

lows:

Tc(p)([1,2]) = Taylor(p,1)([1,2])

= ([1,2]−1)2 +([1,2]−1)

= [0,1]2 +[0,1]

= [0,1]+ [0,1]

= [0,2]

In this example, the Midpoint Taylor Form produced slightly worse bounds that the corre-

sponding Corner Taylor Form. Both inclusion functions produced significantly better bounds

than those produced by the natural extension. However, this is not a consistent behavior. While

the Corner Taylor Form is guaranteed to always have less excess width than the natural exten-

sion, the same is not true of the Midpoint Taylor Form. To illustrate this behavior consider the

76

fourth order polynomialq(x) and the following expressions:

MacLaurin(q)(x) = x4−x3−12x2−4x+16

Taylor(q,0.1)(x) = (x−0.1)4−0.6(x−0.1)3−12.24(x−0.1)2

−6.426(x−0.1)+15.4791

Taylor(q,10.1)(x) = (x−10.1)4 +39.4(x−10.1)3 +569.76(x−10.1)2

+3568.774(x−10.1)+8127.2191

The range ofq on the interval[0.1,20.1] is:

R(q)([0.1,20.1]) = [−50.1944,150191]

Evaluation of the associated inclusion functions on the same interval produces the following

results:

N (q)([0.1,20.1]) = MacLaurin(q)([0.1,20.1]) = [−13033.1,163240]

Tm(q)([0.1,20.1]) = Taylor(q,10.1)([0.1,20.1]) = [−66960.5,150191]

Tc(q)([0.1,20.1]) = Taylor(q,0.1)([0.1,20.1]) = [−9809.04,160015]

Comparing the widths of the ranges computed by the various inclusion functions we see that

the Corner Taylor Form returns the tightest bounds:

w(R(q)([0.1,20.1])) = w([−50.1944,150191]) = 150241

w(N (q)([0.1,20.1])) = w([−13033.1,163240]) = 176273

w(Tm(q)([0.1,20.1])) = w([−66960.5,150191]) = 217151

w(Tc(q)([0.1,20.1])) = w([−9809.04,160015]) = 169825

77

Notice that in this case the Midpoint Taylor Form produced bounds that are significantly

worse than both the Corner Taylor Form and the natural extension.

Evaluation on the interval[5,15] returns similar results. The relevant expressions are:

Taylor(q,5)(x) = (x−5)4−19(x−5)3−123(x−5)2−301(x−5)+196

Taylor(q,10)(x) = (x−10)4 +39(x−10)3 +558(x−10)2 +3456(x−10)+7776

R(q)([5,15]) = [196,44506] ,

and the computed bounds are:

N (q)([5,15]) = MacLaurin(q)([5,15]) = [−5494,50196]

Tm(q)([5,15]) = Taylor(q,10)([5,15]) = [−14379,44506]

Tc(q)([5,15]) = Taylor(q,5)([5,15]) = [196,44506]

w(R(q)([5,15])) = w([196,44506]) = 44310

w(N (q)([5,15])) = w([−5494,50196]) = 55690

w(Tm(q)([5,15])) = w([−14379,44506]) = 58885

w(Tc(q)([5,15])) = w([196,44506]) = 44310

If the above evaluations were performed as part of a root searching algorithm we notice that

only the Corner Taylor Form correctly shows that no roots ofq lie in the interval[5,15], while

the midpoint form and the natural extension require additional subdivisions to reach to the same

conclusion.

78

The same results are obtained with multivariate polynomials as illustrated below. Letf ∗(x,y)

be the following fifth order MacLaurin power series:

f ∗(x,y) = MacLaurin<5,5> (cos2xsin3y+sin3xcos2y−cos2xcos3y+sin3xsin2y) .

The polynomialf ∗ has the following MacLaurin expression:

MacLaurin(f ∗)(x,y) = − 1 + 3 x + 2 x2

− 4.5 x3 − 0.666 x4 + 2.025 x5

+ 3 y + 6 xy − 6 x2y

− 9 x3y + 2 x4y + 4.05 x5y

+ 4.5 y2 − 6 xy2 − 9 x2y2

+ 9 x3y2 + 3 x4y2 − 4.05 x5y2

− 4.5 y3 − 4 xy3 + 9 x2y3

+ 6 x3y3 − 3 x4y3 − 2.7 x5y3

− 3.375 y4 + 2 xy4 + 6.75 x2y4

− 3 x3y4 − 2.25 x4y4 + 1.35 x5y4

+ 2.025 y5 + 0.8 xy5 − 4.05 x2y5

− 1.2 x3y5 + 1.35 x4y5 + 0.54 x5y5

79

If we evaluate the associated inclusion functions on the interval[2,4]× [2,4] we get:

N (f ∗)([2,4] , [2,4]) = MacLaurin(f ∗)([2,4] , [2,4]) =
[
−636480.04,1.377×106

]
Tm(f ∗)([2,4] , [2,4]) = Taylor(f ∗,3)([2,4] , [2,4]) = [−364056,494616]

Tc(f ∗)([2,4] , [2,4]) = Taylor(f ∗,2)([2,4] , [2,4]) = [184.493,718598]

w(N (f ∗)([2,4] , [2,4])) = w
([
−636480.04,1.377×106

])
= 2.014×106

w(Tm(f ∗)([2,4] , [2,4])) = w([−364056,494616]) = 858673

w(Tc(f ∗)([2,4] , [2,4])) = w([184.493,718598]) = 718414

The comparative efficiency of the three inclusion functions is illustrated by the solution sets

computed with a binary search algorithm. Note that the algorithm converges very slowly when

the natural inclusion function is used, see figure 4.5. The Corner Taylor Form inclusion function

allows the algorithm to discard fairly large regions early in the search process, see figure 4.7,

even when compared to the similarly converging Midpoint Taylor Form, see figure 4.6.

80

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 4.5: Regions in gray indicate possible roots of the fifth order Taylor multinomial
MacLaurin<5,5> (cos2xsin3y+sin3xcos2y−cos2xcos3y+sin3xsin2y) = 0 computed using
the natural inclusion function. The search process converges very slowly due to the large excess
width of the natural inclusion function, retaining many superfluous solution regions. The quality
factor is only 0.0571.

81

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 4.6: Roots of the same multinomial as in figure 4.5 computed using the Midpoint Taylor
Form inclusion function. The search process converges quickly once the size of the regions fall
under a certain threshold. There is still a fair amount of work being done to eliminate regions
where there are no roots as shown, for example, in the upper right corner. Several subdivisions
are needed before the region can be declared root free. The quality factor is 0.8997. Compare
with figure 4.7.

82

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 4.7: Roots of the same multinomial as in figures 4.5 and 4.6 computed using the Corner
Taylor Form inclusion function,Tc(f). Notice that the Corner Taylor Form is more accurate
than the Midpoint Taylor Form for large input regions. The region in the upper right corner is
declared root free very early in the subdivision process. The quality factor is 0.8821. Compare
with figure 4.6.

83

-100 -50 0 50 100

-100

-50

0

50

100

Figure 4.8: Plot of the solution regions produced by divide and conquer with Midpoint Taylor
Forms on larger domains. The domain is[−100,100]2. The algorithm found 4,950 solution
regions in 36,899 iterations which took 514.765 seconds (Mathematica 5 time). Note that there
is a considerable amount of work being done away from the solutions. Compare with figure 4.9.

84

-100 -50 0 50 100

-100

-50

0

50

100

Figure 4.9: Plot of the solution regions produced by divide and conquer with Corner Taylor
Forms on larger domains. The domain is[−100,100]2. The algorithm found 5,008 solution
regions in 26,115 iterations which took 319.266 seconds (Mathematica 5 time). Away from
where solutions are the algorithm eliminates regions at the maximum speed possible with binary
subdivision. Compare with figure 4.8.

85

-20 -10 0 10 20

-20

-10

0

10

20

Figure 4.10: Plot of the solution regions produced by divide and conquer with Midpoint Taylor
Forms on larger domains for a different function. The domain is[−20,20]2. The algorithm
finished in 1,099 iterations which took 5.016 seconds (Mathematica 5 time). Compare with
figure 4.11.

86

-20 -10 0 10 20

-20

-10

0

10

20

Figure 4.11: Plot of the solution regions produced by divide and conquer with Midpoint Tay-
lor Forms on larger domains for a different function. The domain is[−20,20]2. The algorithm
finished in 543 iterations which took 2.531 seconds (Mathematica 5 time). Compare with fig-
ure 4.10.

87

-2000 -1000 0 1000 2000

-2000

-1000

0

1000

2000

Figure 4.12: Plot of the solution regions produced by divide and conquer with Midpoint Taylor
Forms on even larger domains. The domain is increased to[−2000,2000]2. The algorithm
finished in 4,503 iterations which took 21.093 seconds (Mathematica 5 time). Compare with
figure 4.13.

88

-2000 -1000 0 1000 2000

-2000

-1000

0

1000

2000

Figure 4.13: Plot of the solution regions produced by divide and conquer with Midpoint Taylor
Forms on even larger domains. The domain is increased to[−2000,2000]2. The algorithm fin-
ished in 827 iterations which took 3.875 seconds (Mathematica 5 time). Once again we observe
the fastest possible convergence of binary subdivision. Compare with figure 4.12.

89

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

D
iv

id
e

&
 C

on
qu

er
 w

/ T
ay

lo
r F

or
m

s
50

7
76

7
91

9
11

11
13

43
16

15
19

75
24

23
29

43
36

39
45

19
55

51
68

95
86

39
10

69
13

34
16

89

D
iv

id
e

&
 C

on
qu

er
 w

/ C
or

ne
r F

or
m

s
55

5
61

5
63

9
66

3
68

7
71

1
73

5
75

9
78

3
80

7
83

1
85

5
87

9
90

3
92

7
95

1
97

5
99

9
10

23
10

47

-2
-3

-4
-5

-6
-7

-8
-9

-1
0

-1
1

-1
2

-1
3

-1
4

-1
5

-1
6

-1
7

-1
8

-1
9

-2
0

-2
1

F
ig

ur
e

4.
14

:
Lo

ga
rit

hm
ic

pl
ot

of
th

e
nu

m
be

ro
fi

te
ra

tio
ns

re
qu

ire
d

by
va

rio
us

in
te

rv
al

so
lu

tio
n

m
et

ho
ds

ve
rs

us
th

e
si

ze
of

th
e

so
lu

tio
n

in
te

rv
al

s
ex

pr
es

se
d

as
a

po
w

er
of

2.

90

010203040506070809010
0

D
iv

id
e

&
 C

on
qu

er
 w

/ T
ay

lo
r F

or
m

s
2.

23
3.

48
4.

27
5.

05
6.

17
7.

38
9.

06
11

.2
13

.8
16

.8
20

.8
25

.7
32

.4
42

54
.3

70
.4

93
.3

D
iv

id
e

&
 C

on
qu

er
 w

/ C
or

ne
r F

or
m

s
2.

48
2.

91
2.

99
3.

06
3.

13
3.

36
3.

45
3.

61
3.

72
3.

77
3.

88
4.

02
4.

16
4.

28
4.

45
4.

52
4.

7
4.

89
4.

95
5.

03

-2
-3

-4
-5

-6
-7

-8
-9

-1
0

-1
1

-1
2

-1
3

-1
4

-1
5

-1
6

-1
7

-1
8

-1
9

-2
0

-2
1

F
ig

ur
e

4.
15

:
Lo

ga
rit

hm
ic

pl
ot

of
th

e
C

P
U

tim
e

(M
at

he
m

at
ic

a
5.

0)
re

qu
ire

d
by

va
rio

us
in

te
rv

al
so

lu
tio

n
m

et
ho

ds
ve

rs
us

th
e

si
ze

of
th

e
so

lu
tio

n
in

te
rv

al
s

ex
pr

es
se

d
as

a
po

w
er

of
2.

91

Chapter 5

Remainder Interval Newton Methods

In this chapter we develop the second contribution of the thesis: theRemainder Interval Newton

method for nonlinear equations (RIN). We show that RIN methods are more effective in isolat-

ing solution regions than conventional Interval Newton methods (IN). For single equations RIN

requires order of the square root as many steps as IN. For square systems, RIN is able to isolate

solutions much faster than conventional IN does and is therefore more efficient overall.

Although RIN algorithms have slightly different forms for solving single equations and

square systems, they follow the general outline below:

1. Selection: Pick the next candidate region from the list of regions to be investigated for

solutions,

2. Linearization: Linearize the function over the candidate region,

3. Solve Linearized Problem (Crop): Yield a smaller, “cropped” region that is a tighter

enclosure for the solution set. If the cropped region is the empty set there are no solutions

anywhere inside our candidate region thus we skip to step 6,

4. Test: If the cropped region satisfies the termination criteria then add it to the solution set

and skip to step 6,

5. Subdivide: (optional) If required, subdivide the cropped candidate region and add the

subregions to the list of regions to be investigated for solutions,

6. Repeat Until Search Is Exhausted.

92

The above generalized algorithm is similar to other Interval Newton algorithms based on

subdivision and cropping. The differences show up in the way RIN performs linearization and

subdivision. Unlike conventional Interval Newton, RIN linearization produces systems of linear

equations with real coefficients which can be solved with simple interval versions of any of the

conventional methods: matrix inversion, Gauss elimination, Gauss-Seidel, etc. In contrast, IN

requires finding solutions of linear equations/systems with interval coefficients which are slower

to converge in the large.

Furthermore, RIN subdivision methods take advantage of the special linearization to produce

solution aligned subdivisionsand improve efficiency. Finally, the linearizations themselves con-

form to non-point solution regions much better than axis aligned boxes. This allows RIN to cover

the solution set with much fewer solution regions. The combination of all these optimizations

yields speed-ups of the order of the square root—both in the number of steps as well as in the

number of solution regions returned which means a smaller memory footprint—when compared

to conventional IN and divide and conquer search methods.

5.1 The RIN Algorithm for Roots of Multivariate Nonlinear Equa-

tions

Let us begin by investigating the problem of finding all the zeroes of a multivariate nonlinear

equation:

f (x) = 0, (5.1)

where f : d ⊆ Rn → R. The RIN algorithm for solving this type of problem is shown in fig-

ure 5.1.

The algorithm performs adepth firstsearch of the domaind and locates all solution subre-

gions. If only one solution is needed the algorithm can be terminated as soon as the first solution

region is located.

We chose the following termination criterion: a candidate region is declared a solution region

if the range off over the candidate region contains zero and:

93

RINSolveEquation (
in f : function whose solutions we are seeking
in d : domain interval
in εs: maximum size of a solution interval
in ε f : maximum width of the linearized solution
out Sε: [empty] interval covering of the solutions of f in d

)
{

createstack: [empty] stack of subintervals to be examined;
put d on stack;
while (stackis not empty) do
{

pop x from stack;
// linearize f on x
// r --- interval remainder
RINLinearizeEquation (in f , in x , c, out ∇ f (c), out r);
// estimate the range of f on x
compute y = I(f)(x);
if
(

0∈ y
)

// there could be solutions in x
{

RINCropEquation (in ∇ f (c), in r , c, in/out x);

if
(

w(x) < εs or
w(r)
‖∇ f (c)‖

< ε f

)
append x to Sε;

else
{

RINSubdivideEquation (in ∇ f (c), in r , in x , out subdivisionList);
foreach x i in subdivisionList
{

RINCropEquation (in ∇ f (c), in r , in/out x i);
if (x i is not empty)

put x i on stack;
}

}
}

}
return ; // search is exhausted

}

Figure 5.1: The Remainder Interval Newton algorithm for solving a single nonlinear equation.

94

1. The width of the candidate region is less than a used specified thresholdεs, or

2. The width of the solution set linearization inside the candidate interval is less than another

user specified thresholdε f .

The second criterion will become clear after we define the linearization process in the next sec-

tion.

5.1.1 Linearization

We linearize equation 5.1 by computing a first order Taylor expansion with interval Lagrange

remainder—hence the name Remainder Interval Newton. This type of Taylor expansions are

known as first order Taylor Models, cf. Berz [Berz and Hofstätter 1998].

If f is as in equation 5.1, x is a sub-interval vector of the interval domaind , andc is a real

vector in x , the following derivation holds for allx ∈ x :

f (x) = f (c)+
n

∑
i=1

∂ f
∂xi

(c)(xi −ci)+
n

∑
u=1

n

∑
v=1

1
2

∂2 f
∂xu∂xv

(ξ)(xu−cu)(xv−cv)

= f (c)+(x−c) ·∇ f (c)+(x−c)H f (ξ)(x−c)T,

(5.2)

whereH f (ξ) is the Hessian off evaluated atξ ∈ [[x,c]]⊆ x . We linearize 5.2 by replacingξ

andx with the interval vectorx :

f (x) ∈ f (c)+(x−c) ·∇ f (c)+(x −c)H f (x)(x −c)T. (5.3)

If we reorganize 5.3 by moving the constant termf (c) at the end we get:

f (x) ∈ (x−c) ·∇ f (c)+(x −c)H f (x)(x −c)T + f (c)︸ ︷︷ ︸
r

,

and the short form of the interval linearization is:

f (x) ∈ L f (x) = (x−c) ·∇ f (c)+ r .

95

RINLinearizeEquation (
in f : function to be linearized
in x : interval over which to linearize f
in c: linearization point (inside x)
out ∇ f (c): gradient of f
out r : remainder interval

)
{

// compute the linear Taylor Model approximation of f :
compute∇ f (c) at c∈ x ;

compute r = (x −c)H f (x)(x −c)T + f (c);
return ∇ f (c), r ;

}

Figure 5.2: The Remainder Interval Newton linearization algorithm for solving a single nonlinear
equation.

Let SL be the solution set of the linear equation:

L f (x) = 0, (5.4)

over the intervalx ∈ d . The solution setSL is comprised of all points between the lines implic-

itly defined by the following equations:

L f (x) = (x−c) ·∇ f (c)+ r = 0

L f (x) = (x−c) ·∇ f (c)+ r = 0.

An example for a two dimensional functionf : R2 → R is shown in figure 5.3.

It is easy to see that the solution setSof equation 5.1 is always a subset of any solution set

SL of the type defined above. Therefore, an interval covering of the solution setSL is also a valid

covering forS.

96

xSL

Figure 5.3: An example of a solution set of the linearized equation 5.4. The red curve repre-
sents the actual solution of equation 5.1 inside the interval vectorx . The grayed areaSL is the
linearized solution.

5.1.2 Cropping

The solution setSL of the linearized equation 5.4 can intersect the intervalx in several ways,

some of which are shown in figure 5.4.

Cropping—also referred to as (linear) tightening—is the process of computing the interval

convex hull of the solutionSL of the linearized equation 5.4 over an intervalx . As we saw in the

previous section, cropping does not lose any of the solutions of the original nonlinear equation.

A nice property of the RIN linearization is the fact that cropping can be done in closed form

97

SL = [SL] = empty

x

SL

x

[SL]

SL

x

[SL]
SL

x

[SL]

SL

x[SL]

SL

x

[SL]

SL [SL] = x SL = [SL] = x

Figure 5.4: Several ways in which the linearized solutionSL can intersect an intervalx . [[SL]]
is the interval convex hull of the intersection.

98

RINCropEquation (
in ∇ f (c): gradient of the function whose solutions

we are seeking
in r : remainder interval
in c: linearization point (inside x)
in/out x : interval to be cropped

)
{

// solve the linear equation:
// ∇ f (c) ·x+ r = 0
// over the interval x .
computeR(L f)(x) = r +(x −c) ·∇ f (c);
foreach componentx i of x

compute x i = x i ∩

ci −
R(L f)(x)	 ∂ f

∂xi
(c)(x i −ci)

∂ f
∂xi

(c)

;

return x ;
}

Figure 5.5: The Remainder Interval Newton cropping algorithm for solving a single nonlinear
equation.

and independently in each dimension using the following formulas:

[[SL]]i = x i ∩

ci −
r + ∑

k6=i

∂ f
∂xk

(ck)(x k−ck)

∂ f
∂xi

(ci)

i=1..n

.

Efficient component-wise evaluation of the cropping formulas can be done using theinverse

interval minusoperation. Let the range ofL f (x) be:

R(L f)(x) = r +(x −c) ·∇ f (c) .

99

Then the cropping formula becomes:

[[SL]]i = x i ∩

ci −
R(L f)(x)	 ∂ f

∂xi
(ci)(x i −ci)

∂ f
∂xi

(ci)

i=1..n

,

which no longer requires computing the sum for each component. We introduce some simplify-

ing notation:

R(L f)(x){	,i} = R(L f)(x)	 ∂ f
∂xi

(ci)(x i −ci),

R(L f)(x){	,i, j} = R(L f)(x)	 ∂ f
∂xi

(ci)(x i −ci)	
∂ f
∂x j

(c j)(x j −c j).

With the above notation, the cropping formula is:

[[SL]]i = x i ∩

ci −
R(L f)(x){	,i}

∂ f
∂xi

(ci)

i=1..n

,

The next theorem proves that the order in which the components of the interval hull[[SL]]

are computed is irrelevant and the same result (excluding any roundoff errors) is produced for all

permutations.

Theorem 5.1.1.Let f : Rn → R be twice differentiable over the interval vectorx . For any

arbitrary pair of indices i, j ≤ n, i 6= j, define the cropped intervalsx ∗i and x ∗j as:

x ∗i = x i ∩

ci −
R(L f)(x){	,i}

∂ f
∂xi

(ci)

 x ∗j = x j ∩

c j −
R(L f)(x){	, j}

∂ f
∂x j

(c j)

 .

Furthermore, definex ∗∗i as:

x ∗∗i = x i ∩

ci −
R(L f)(x){	,i, j}+

∂ f
∂x j

(c j)(x ∗j −c j)

∂ f
∂xi

(ci)

 .

100

x ∗∗i is different fromx ∗i in that it is cropped using the croppedx ∗j in place of the originalx j .

Then:

x ∗i = x ∗∗i .

Proof:

The following chain of derivations holds:

∂ f
∂x j

(c j)(x ∗j −c j) =
∂ f
∂x j

(c j)

(x j −c j)∩

−R(L f)(x){	, j}
∂ f
∂x j

(c j)

=
(

∂ f
∂x j

(c j)(x j −c j)
)
∩

− ∂ f
∂x j

(c j)
R(L f)(x){	, j}

∂ f
∂x j

(c j)

=

(
∂ f
∂x j

(c j)(x j −c j)
)
∩
(
−R(L f)(x){	, j}

)
If we use the above to rewrite the fraction in the expression ofx ∗∗i we can derive the follow-

101

ing:

R(L f)(x){	,i, j}+
∂ f
∂x j

(c j)(x ∗j −c j)

∂ f
∂xi

(ci)
=

=
R(L f)(x){	,i, j}+

((
∂ f
∂x j

(c j)(x j −c j)
)
∩
(
−R(L f)(x){	, j}

))
∂ f
∂xi

(ci)

=

(
R(L f)(x){	,i, j}+

∂ f
∂x j

(c j)(x j −c j)
)
∩
(
R(L f)(x){	,i, j}	R(L f)(x){	, j}

)
∂ f
∂xi

(ci)

=
R(L f)(x){	,i}∩

(
− ∂ f

∂xi
(ci)(x i −ci)

)
∂ f
∂xi

(ci)

=
R(L f)(x){	,i}

∂ f
∂xi

(ci)
∩ (ci − x i).

Then, x ∗∗i is equal to:

x ∗∗i = x i ∩

ci −

R(L f)(x){	,i}
∂ f
∂xi

(ci)
∩ (ci − x i)

= x i ∩

ci −
R(L f)(x){	,i}

∂ f
∂xi

(ci)

∩ x i

= x ∗i ,

which proves our theorem.

Thus, the RIN cropping formula computes the interval hull ofSL exactly—up to roundoff

errors. Note that the cropping operation is usually much cheaper than the computation of a new

linearization. We will make use of this fact in our subdivision strategy, which is described in the

102

next section.

5.1.3 Subdivision

Although cropping can sometimes reduce the size of the interval significantly, often times the

reduction is small, and sometimes there is no reduction at all. The bottom two examples in

figure 5.4 illustrate this case. We notice, however, that the area of the linearized solutionSL is

usually much smaller than the area of the interval, such as in the bottom left example in the same

figure. The bottom right example occurs only whenx is large and the remainder is large as well.

As the size of the interval decreases through subdivision the remainder decreases with quadratic

order and becomes very small very quickly, see section 5.1.4.

RINSubdivideEquation (
in ∇ f (c): gradient of the function whose solutions

we are seeking
in r : remainder interval
in x : interval to be cropped
out subdivisionList:list of subintervals of x

)
{

// subdivide x with the gradient of f

compute indexi corresponding tomaxi

(
x i

∂ f
∂xi

(c)
)

;

computesubdivSize=
w(r)
∂ f
∂xi

(c)
;

computenumSubdivisions= Max
(

2,
w(x i)

subdivSize

)
;

subdivide x into numSubdivisionssubintervals alongith dimension;
add the subintervals tosubdivisionList;
return subdivisionList;

}

Figure 5.6: The Remainder Interval Newton subdivision algorithm for solving a single nonlinear
equation.

The subdivision algorithm shown in figure 5.6 allows us to crop away much of the area of

the interval hull[[SL]] outside of the linearized solutionSL. The key steps are as follows:

103

1. Subdivision Axis Selection:Choose thekth coordinate axis to subdivide along.

2. Subdivision: Subdivide[[SL]] into n subintervals along thekth component.

3. Crop Each Subdivision: Each subinterval is cropped using the same linearization.

4. Return the List of Subintervals.

There are many different ways to choose the subdivision axis and the number of subdivisions,

depending on the desired characteristics of the final interval covering of the solution. If we desire

a covering with the smallest number of intervals then the following criteria for selection produce

good results:

• Subdivision Axis Selection:k is the coordinate axis closest to perpendicular to the gra-

dient of f . This particular choice ensures the maximum reduction of the remainder in the

following linearization step. Thus,k corresponds to the maximum

max
k

(
x k

∂ f
∂xk

(c)
)

.

• Subdivision: The number of subdivisions is chosen such that the size of the subintervals

produced is almost equal to but less than the size of the linearized solutionSL along thekth

coordinate axis:

n = max

(
2,

w(x i)
w(r)

∂ f
∂xi

(c)
)

,

wheren has to be at least two.

The subdivision process is illustrated graphically in figure 5.1.3. The top left image shows a

typical configuration. The top right image shows the subintervals generated after the subdivision

step. The bottom left image shows the cropped subintervals. Finally, the bottom right image

shows the cropped subintervals and the newly recomputed linearizations. Note the accelerated

convergence.

Most interval root finding algorithms employ termination criteria based on the size of the

subdivided boxes. RIN methods can use the same criteria. However, they can also use the width

104

[SL]

SL

[SL]

SL

[SL]

x2

x3

x4

x5

x1
SL

x2

x3

x4

x5

x1

The RIN subdivision process.Top left image:a typical configuration.Top right image: the
subintervals generated after the subdivision step.Bottom left image:the cropped subintervals.
Bottom right image:the cropped subintervals and the newly recomputed linearizations. Note the
accelerated convergence.

of the linearized solutionSL as a termination criterion, since the polygon representing it can

easily be computed in closed form.

A simple analysis shows that the number of rectangular boxes of widthε needed to tile a

curve of lengthl is of orderO
(

l
ε
)
. The same curve requires only order

√
O
(

l
ε
)

linearized

solution regions of widthε. The same reduction in order occurs in more than two dimensions.

The examples shown in section 5.5 confirm that significant savings do occur in practice.

5.1.4 Convergence of the RIN Algorithm

In this section we show that the width of the cropped and subdivided intervals decreases with

quadratic order of convergence.

105

The RIN remainder of a functionf over an interval vectorx was defined as:

r = (x −c)H f (x)(x −c)T + f (c)

Thus, the width of the remainder is:

w(r) = w
(
(x −c)H f (x)(x −c)T

)
,

and the order is:

O (w(r)) = mag(H f (x))O2(w(x)) .

The width of the remainder is quadratic with respect to the width of the interval regionx . The

subdivision algorithm produces intervals of width proportional to the width of the remainder, thus

the size of the subdivided intervalsx i is also quadratic with respect to the size of the original

interval x . Therefore, the RIN algorithm has quadratic order of convergence to the solution set

S.

5.2 The RIN Algorithm for Roots of Square Systems of Nonlinear

Equations

We now consider the problem of finding all the zeroes of a square nonlinear system of the form:

f (x) = 0, (5.5)

wheref : d ⊆ Rn → Rn. The RIN algorithm for solving this type of problem is shown in fig-

ure 5.7.

5.2.1 Linearization

Each equation of the system is linearized using the methods presented in the previous sections.

Of course, the collection of gradients is the Jacobian off, and the interval remainderr is now a

106

RINSolveSquareSystem (
in f: vector of functions whose solutions we are seeking
in d : domain interval
in ε: maximum size of a solution interval
in I(·): interval extension operator
out Sε: [empty] interval covering of the solutions of f in d

)
{

createstack: [{ d }] stack of subintervals to be examined;
while (stackis not empty) do
{

pop x from stack;
setshrunk= True;
while (shrunk) do
{ // Jf (c) - Jacobian of f evaluated at c

// r - interval remainder
RINLinearizeSystem (in f, in x , c, outJf (c), out r); // linearize f
compute y =

T
i I(f i)(x); // estimate the ranges of f i on x

if
(

0∈ y
)

{ // there could be solutions in x
if (w(x) < ε)

append x to Sε; // found a solution
else
{

RINCropSquareSystem (inJf (c), in r , c, in/out x , in/out shrunk);
if (shrunk== False)
{

RINTightenSystem (inJf (c), in r , c, in/out x); // optional
BinarySubdivide (in x , out x 1, out x 2);
put x 1 on stack;
put x 2 on stack;

}
}

}
}

}
return ; // search is exhausted

}

Figure 5.7: The Remainder Interval Newton algorithm for solving square systems of nonlinear
equations.

107

RINLinearizeSystem (
in f: functions to be linearized
in x : interval over which to linearize f
in c: linearization point (inside x)
in I(·): interval extension operator
out Jf (c): Jacobian of f evaluated at c
out r : vector of remainder intervals

)
{

foreach component fi of f
{

// compute the linear Taylor Model approximation of f i :
compute∇f i (c) at c∈ x ;

compute r i = I
(
(x−c)Hf i (x)(x−c)T

)
(x)+ f i (c);

}
return Jf (c), r ;

}

Figure 5.8: The Remainder Interval Newton linearization algorithm for solving square systems
of nonlinear equations.

vector of intervals withn components:

f (x) ∈ Lf (x) = Jf (c) · (x−c)+ r .

Note that the Jacobian is a real valued matrix.The pseudocode for the linearization algorithm

is shown in figure 5.8.

As before, the solution setSof the original system 5.5 is a subset of the solution setSL of the

linearization defined above. Therefore, an interval covering of the solution setSL is also a valid

covering forS.

5.2.2 Cropping

Let A = Jf (c). Then, the cropping formulas are:

x ∗ = c−A−1 r ,

108

RINCropSquareSystem (
in Jf (c): Jacobian of f evaluated at c
in r : remainder interval
in c: linearization point (inside x)
in/out x : interval to be cropped
in/out shrunk: true if x shrunk, i.e. isolated a solution

)
{

// solve the linear system:
// Jf (c) ·

(
x−c)T =− r T

// over the interval x .
setA = Jf (c); // matrix of the system
compute x ∗ = c−A−1 · r T;
computeshrunk= (x ∗ ⊂ x);
set x = x ∩ x ∗;
return x , shrunk;

}

Figure 5.9: The Remainder Interval Newton cropping algorithm for solving square systems of
nonlinear equations.

and:

[[SL]] = x ∩ x ∗.

If x ∗ ⊂ x then there is at most one solution off inside x , a property similar to conventional

Interval Newton. The cropping algorithm is shown in figure 5.9.

5.2.3 Tightening

Tightening is an optional step. We found tightening to be a worthwhile optimization (both for

RIN and conventional IN) as it often reduces running time by a significant percentage, see sec-

tion 5.5.

The RIN tightening algorithm is shown in figure 5.10. It is nothing more than successive

cropping of each individual equation in the system by the algorithm discussed in section 5.1.2.

Of course, if the cropping method presented in the previous section is successful at reducing

the size ofx there is no need to perform tightening.

109

RINTightenSystem (
in Jf (c): Jacobian of f evaluated at c
in r : remainder interval
in c: linearization point (inside x)
in/out x : interval to be cropped

)
{

// solve the linear system:
// Jf (c) ·

(
x−c)T =− r T

// over the interval x .
foreach component fi of f

RINCropEquation (in ∇f i (c), in r i , c, in/out x (i));
return x ;

}

Figure 5.10: The Remainder Interval Newton tightening algorithm for solving square systems of
nonlinear equations.

5.3 RIN vs. Martin Berz’s Inversion

Martin Berz proposed a method that computes a Taylor Model of high degree of the inverse

of a square system, see [Berz and Hoefkens 2001]. This inverse can then be evaluated at 0 to

obtain an inclusion of the solution set of the original system. However, Taylor Model inversion

is limited to square systems while RIN is not. Of course, the system must be invertible in over

the region considered, so solutions must first be isolated by some other means. Isolating the

solutions is probably the difficult part of solving systems in the first place.

In addition, RIN is much easier to implement and use and has lower costs per iteration.

5.4 RIN vs. Makino and Berz’s LDB

The Linearly Dominated Bounder(LDB) was proposed by Makino and Berz as a method for

computing tight inclusion functions over a given interval, see [Makino and Berz 2003]. The

method is in effect performing a simplified optimization procedure to isolate the maxima and

minima of the function in a given interval.

Some of the cropping formulas used by RIN are similar to formulas used by LDB. How-

110

ever, LDB has not been described as a method for isolating zeroes of functions, but only as a

method for improving upper and lower bound estimates of the range. Moreover, RIN provides

a special subdivision method that is vital in ensuring quadratic convergence in the presence of

non-point solutions. Without this subdivision method convergence is much slower as shown by

the following illustrations.

LDB is useful when very accurate bounds on a fixed interval are needed. Its usefulness

diminishes when the bounds are only used as part of a root solving or optimization algorithm.

5.5 Examples and Performance

In this section we give some examples and compare the performance of RIN with other state of

the art methods, particularly conventional Interval Newton.

5.5.1 Polynomial Equations

We evaluate the Remainder Interval Newton method on the following bivariate function:

f (x,y) = cos3x(sin2y+cos2y)+cos2x(sin3y−cos3y) .

For simplicity of implementation, we replacedf with its 5th order bivariate Taylor expansion

f ∗ around the point(1,1) whose expression was given in section 4.10.

The solution set of the equationf ∗ (x,y) = 0 restricted to the interval[−π,π]× [−π,π] is

shown in figure 5.11.

We compared the performance of seven solution algorithms:

1. Divide and Conquer with Natural Extensions: The most basic interval solution method

using binary subdivision and naive interval evaluations.

2. Divide and Conquer with Taylor Form Interval Extensions: Binary subdivision with

Taylor Forms (centered form) interval evaluation for the range.

111

3. Divide and Conquer with Corner Form Interval Extensions: Same as above but using

Corner Taylor Forms.

4. Interval Newton with Taylor Form Interval Extensions: Binary subdivision with Inter-

val Newton cropping and Taylor Form range evaluation.

5. Remainder Interval Newton with Binary Subdivision: RIN with Corner Forms and

binary subdivision - the subdivision scheme described in section 5.1.3 was not used.

6. RIN with Special Subdivision: Uses the subdivision scheme described in section 5.1.3.

All solutions are axis aligned boxes.

7. RIN with Non-Box Solutions: Same as above but solutions are polygons representing the

linearized solution regions.

Graphs for the number of iterations required (see figure 5.12), the CPU time required (see fig-

ure 5.13), and the number of solution regions produced (see figure 5.14), are shown.

Finally, plots of the solution regions computed by algorithms 1, 2, 3, 4, and 7 are shown in

figures 5.15 through 5.23.

5.5.2 Polynomial Systems

To evaluate the performance of the RIN method for square systems we use the system of poly-

nomial equations below: p(x,y) = 0

q(x,y) = 0
,

where p(x,y) = (x + 2.5)(x + 1.5)(x + 0.5)(x− 0.5)(x− 1.5)(x− 2.5)(y + 2.5)(y + 1.5)(y +

0.5)(y−0.5)(y−1.5)(y−2.5) andq(x,y) = (x+ 3)(x+ 2)(x+ 1)(x)(x−1)(x−2)(x−3)(y+

3)(y+2)(y+1)(y)(y−1)(y−2)(y−3).

We compare the performance of four solution algorithms:

1. Interval Newton: Interval Newton without tightening. Uses Taylor Forms for range eval-

uation.

112

2. Interval Newton with Tightening: Interval Newton with tightening and Taylor Forms for

range evaluation.

3. Remainder Interval Newton: RIN without tightening. Uses Taylor Forms for range

evaluation.

4. Remainder Interval Newton with Tightening: RIN with tightening and Taylor Forms

for range evaluation.

Plots of the solution regions computed by each method are shown in figures 5.24 through

5.27. Note that RIN with tightening is the fastest method.

113

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.11: The solution set of the 5th order bivariate Taylor expansion around the point
(1,1) of the function f (x,y) = cos3x(sin2y+cos2y)+ cos2x(sin3y−cos3y) inside the inter-
val [−π,π]× [−π,π]. The curves are computed with RIN and are composed of 3,541 linearized
solution regions of width at most 2−10.

114

10
00

10
00

0

10
00

00

10
00

00
0

D
iv

id
e

&
 C

on
qu

er
 w

/ N
at

ur
al

 E
xt

en
si

on
20

35
78

53
29

10
5

99
07

1
30

81
67

D
iv

id
e

&
 C

on
qu

er
 w

/ T
ay

lo
r F

or
m

s
15

45
29

07
49

59
89

47
16

44
1

31
18

1
60

46
5

11
86

97
23

50
37

D
iv

id
e

&
 C

on
qu

er
 w

/ C
or

ne
r F

or
m

s
12

67
26

53
48

41
89

73
16

70
3

31
63

1
61

12
1

11
95

81
23

61
17

In
te

rv
al

 N
ew

to
n

w
/ T

ay
lo

r F
or

m
s

15
45

29
07

49
53

83
85

14
28

7
24

13
5

40
37

9
67

49
3

11
37

47
19

82
57

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

B
in

ar
y

S
ub

di
vi

si
on

12
25

20
49

34
71

50
67

77
57

12
75

9
22

63
7

42
47

3
82

19
1

16
16

13

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

S
pe

ci
al

 S
ub

di
vi

si
on

15
69

22
61

27
90

36
50

46
74

64
06

89
21

13
67

4
22

20
7

37
73

9
70

05
0

13
43

61

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

N
on

 B
ox

 S
ol

ut
io

ns
15

69
19

69
24

29
29

82
35

81
43

67
51

96
65

55
84

13
11

02
6

15
10

9
22

71
6

36
22

8

-2
-3

-4
-5

-6
-7

-8
-9

-1
0

-1
1

-1
2

-1
3

-1
4

F
ig

ur
e

5.
12

:
Lo

ga
rit

hm
ic

pl
ot

of
th

e
nu

m
be

ro
fi

te
ra

tio
ns

re
qu

ire
d

by
va

rio
us

in
te

rv
al

so
lu

tio
n

m
et

ho
ds

ve
rs

us
th

e
si

ze
of

th
e

so
lu

tio
n

in
te

rv
al

s
ex

pr
es

se
d

as
a

po
w

er
of

2.

115

11010
0

10
00

10
00

0

10
00

00

D
iv

id
e

&
 C

on
qu

er
 w

/ N
at

ur
al

 E
xt

en
si

on
3.

20
3

16
.5

15
8.

75
13

94
.9

11
78

7

D
iv

id
e

&
 C

on
qu

er
 w

/ T
ay

lo
r F

or
m

s
20

.0
63

37
.8

13
64

.6
56

12
1.

89
23

9.
47

52
6.

7
12

78
.4

35
59

.8
10

62
4

D
iv

id
e

&
 C

on
qu

er
 w

/ C
or

ne
r F

or
m

s
16

.3
59

34
.1

09
62

.6
72

12
1.

59
24

7.
53

52
8.

38
12

84
.1

35
69

.9
10

61
3

In
te

rv
al

 N
ew

to
n

w
/ T

ay
lo

r F
or

m
s

24
.3

59
47

.3
28

84
.2

97
15

7.
78

31
1.

89
66

4.
42

14
21

.8
33

46
81

73
.1

23
19

5

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

B
in

ar
y

S
ub

di
vi

si
on

16
.4

69
30

.7
34

48
.4

53
74

12
7

23
2.

78
53

6.
42

14
11

.4
43

36
.9

14
87

3

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

S
pe

ci
al

 S
ub

di
vi

si
on

21
.1

41
27

.5
78

38
.1

25
51

.5
69

.6
72

99
.1

25
15

1.
97

25
7.

19
51

1.
47

11
85

.1
35

25
.4

11
92

1

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

N
on

 B
ox

 S
ol

ut
io

ns
21

.0
62

26
.4

38
32

.8
28

41
.1

72
49

.7
81

64
.6

56
77

.4
37

10
1.

14
13

5.
75

19
1.

81
29

7.
48

54
4.

17
11

73
.8

-2
-3

-4
-5

-6
-7

-8
-9

-1
0

-1
1

-1
2

-1
3

-1
4

F
ig

ur
e

5.
13

:
Lo

ga
rit

hm
ic

pl
ot

of
th

e
C

P
U

tim
e

(M
at

he
m

at
ic

a
5.

0)
re

qu
ire

d
by

va
rio

us
in

te
rv

al
so

lu
tio

n
m

et
ho

ds
ve

rs
us

th
e

si
ze

of
th

e
so

lu
tio

n
in

te
rv

al
s

ex
pr

es
se

d
as

a
po

w
er

of
2.

116

10
0

10
00

10
00

0

10
00

00

10
00

00
0

D
iv

id
e

&
 C

on
qu

er
 w

/ N
at

ur
al

 E
xt

en
si

on
98

6
36

92
12

40
7

38
11

0
10

59
77

D
iv

id
e

&
 C

on
qu

er
 w

/ T
ay

lo
r F

or
m

s
30

2
41

5
78

8
14

04
27

40
54

29
10

78
9

21
54

6
43

02
1

D
iv

id
e

&
 C

on
qu

er
 w

/ C
or

ne
r F

or
m

s
29

1
45

5
80

7
14

50
27

78
54

73
10

83
2

21
58

5
43

06
5

In
te

rv
al

 N
ew

to
n

w
/ T

ay
lo

r F
or

m
s

30
2

41
7

80
7

15
08

31
44

62
84

12
39

2
24

04
2

45
39

2
86

46
3

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

B
in

ar
y

S
ub

di
vi

si
on

29
0

48
1

88
2

15
57

28
33

52
99

10
22

8
20

14
2

40
00

1
79

71
2

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

S
pe

ci
al

 S
ub

di
vi

si
on

35
0

40
2

55
9

80
2

12
33

21
30

36
61

68
93

13
25

7
25

73
7

51
93

8
10

55
38

R
IN

 w
/ C

or
ne

r F
or

m
s

an
d

N
on

 B
ox

 S
ol

ut
io

ns
35

0
39

4
47

8
60

5
75

1
10

46
14

62
22

86
35

41
55

23
88

60
15

53
6

27
99

0

-2
-3

-4
-5

-6
-7

-8
-9

-1
0

-1
1

-1
2

-1
3

-1
4

F
ig

ur
e

5.
14

:
Lo

ga
rit

hm
ic

pl
ot

of
th

e
nu

m
be

r
of

so
lu

tio
n

re
gi

on
s

pr
od

uc
ed

by
va

rio
us

in
te

rv
al

so
lu

tio
n

m
et

ho
ds

ve
rs

us
th

e
si

ze
of

th
e

so
lu

tio
n

in
te

rv
al

s
ex

pr
es

se
d

as
a

po
w

er
of

2.

117

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.15: Plot of the solution regions produced by Divide and Conquer with Naive Natural
Extension. The solution box width is less than 2−4. The algorithm found 12,407 solution regions
in 29,105 iterations which took 84.281 seconds (Mathematica 5 time). Note that it would have
taken considerably more time to produce the same level of solution separation that was possible
using the more advanced methods shown on the following pages.

118

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.16: Plot of the solution regions produced by Divide and Conquer with Midpoint Taylor
Forms. The solution box width is less than 2−4. The algorithm found 788 solution regions in
4,951 iterations which took 63.016 seconds (Mathematica 5 time).

119

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.17: Plot of the solution regions produced by Divide and Conquer with Corner Taylor
Forms. The solution box width is less than 2−4. The algorithm found 807 solution regions in
4,841 iterations which took 61.312 seconds (Mathematica 5 time).

120

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.18: Plot of the solution regions produced by the Interval Newton method with Midpoint
Taylor Forms. The solution box width is less than 2−5. The algorithm found 1,557 solution
regions in 5,067 iterations which took 67.656 seconds (Mathematica 5 time).

121

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.19: Plot of the solution regions produced by the RIN method with Midpoint Taylor
Forms and binary subdivision (not using our special subdivision). The linearized solution width
is less than 2−5. The algorithm found 947 solution regions in 3,039 iterations which took 69.64
seconds (Mathematica 5 time).

122

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.20: Plot of the solution regions produced by the RIN method with Midpoint Taylor
Forms and RIN subdivision. The linearized solution width is less than 2−5. The algorithm found
588 solution regions in 2,382 iterations which took 43.328 seconds (Mathematica 5 time).

123

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.21: Plot of the solution regions produced by the RIN method with Midpoint Taylor
Forms, RIN subdivision, and non-box solutions. The linearized solution width is less than 2−5.
The algorithm found 353 solution regions in 1,836 iterations which took 26.469 seconds (Math-
ematica 5 time).

124

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.22: Plot of the solution regions produced by the RIN method with Corner Taylor Forms,
RIN subdivision, and non-box solutions. The linearized solution width is less than 2−5. The al-
gorithm found 605 solution regions in 2,982 iterations which took 39.469 seconds (Mathematica
5 time).

125

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.23: Plot of the solution regions produced by the RIN method with Corner and Midpoint
Taylor Forms (switch from CTF to MTF when intervals have width less than 1), RIN subdivision,
and non-box solutions. The linearized solution width is less than 2−5. The algorithm found 353
solution regions in 1,704 iterations which took 25.197 seconds (Mathematica 5 time).

126

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.24: Interval Newton without tightening. Solutions of the system of polynomials 5.5.2
over [−π,π]2. Solution interval width is less than 2−4. The algorithm found 96 solution regions
in 1,939 iterations which took 72.8 seconds (Mathematica 5, P4@3.06GHz.)

127

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.25: Interval Newton with tightening. Solutions of the system of polynomials 5.5.2 over
[−π,π]2. Solution interval width is less than 2−4. The algorithm found 96 solution regions in
1,651 iterations which took 63.5 seconds (Mathematica 5, P4@3.06GHz.)

128

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.26: Remainder Interval Newton without tightening. Solutions of the system of poly-
nomials 5.5.2 over[−π,π]2. Solution interval width is less than 2−4. The algorithm found 96
solution regions in 1,403 iterations which took 46.3 seconds (Mathematica 5, P4@3.06GHz.)

129

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 5.27: Remainder Interval Newton with tightening. Solutions of the system of polynomi-
als 5.5.2 over[−π,π]2. Solution interval width is less than 2−4. The algorithm found 96 solution
regions in 1,027 iterations which took 34.6 seconds (Mathematica 5, P4@3.06GHz.)

130

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 5.28: Interval Newton without tightening. Solutions of the system of polynomials 5.5.2
over [−2π,2π]2. Solution interval width is less than 2−4. The algorithm found 96 solution
regions in 4,067 iterations which took 157.125 seconds (Mathematica 5, P4@3.06GHz.)

131

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 5.29: Interval Newton with tightening. Solutions of the system of polynomials 5.5.2 over
[−2π,2π]2. Solution interval width is less than 2−4. The algorithm found 96 solution regions in
3,331 iterations which took 129.75 seconds (Mathematica 5, P4@3.06GHz.)

132

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 5.30: Remainder Interval Newton without tightening. Solutions of the system of polyno-
mials 5.5.2 over[−2π,2π]2. Solution interval width is less than 2−4. The algorithm found 96
solution regions in 2,787 iterations which took 95.687 seconds (Mathematica 5, P4@3.06GHz.)

133

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 5.31: Remainder Interval Newton with tightening. Solutions of the system of polyno-
mials 5.5.2 over[−2π,2π]2. Solution interval width is less than 2−4. The algorithm found 96
solution regions in 2,099 iterations which took 71.891 seconds (Mathematica 5, P4@3.06GHz.)

134

Chapter 6

An Application: Beam Tracing for
Implicit Surfaces

In this chapter we present an application of the methods introduced in the previous chapters to a

computer graphics problem: reliable beam tracing of implicit surfaces.

6.1 Introduction

Over the past 20 years, ray tracing has become a popular computer graphics rendering method

with many desirable characteristics. The ray tracing framework allows the creation of images

with multiple light sources, hard and soft shadows, reflections, refractions and other important

optical effects.

The ray tracing approach is based on the principles of geometric optics. It reduces to the

problem of intersecting straight lines, or rays, with each of the objects in the scene.

Typically, several such rays are traced from the eye through each pixel on the screen. The

first intersection point with an object in the scene is recorded. Rays connecting this intersection

point with each of the light sources are traced to determine if the point is lit or is shadowed by

other objects in the scene. The light intensity at the intersection point is then computed using one

of several lighting models. Reflected and refracted child rays can be generated from this point

and traced recursively, with their contributions added to the final result. The approach produces

attractive images.

Like any method, however, ray tracing has its limitations. One source of problems is that ray

135

Figure 6.1: Rendering of a complex implicit model with thin, hair like features.Top,the whole
scene.Bottom,detail views of one of the thin features of the surface.Left, ray traced images,
above, antialiased and below, not antialiased; the rays sometimes miss the hair like features
causing them and their shadows to appear discontinuous.Right, beam traced images; the thin
features and the shadows they cast are always continuous and free of pixel dropouts.

136

tracing creates a point-sampling of an image function. We do not trace all of the mathematically

possible rays (an infinite number) that go through the eye and reach the image plane, but only

select a small finite subset to represent the image.

When the scenes contain objects with very thin features, thinner than the spacing between

the rays we chose to sample, it is likely that we will miss some of the thin features. This is a well

known limitation of any point sampling process. The resulting images will exhibit pixel dropouts,

resulting in unpleasant visual artifacts, see figure 6.1. This effect does not fully anti-alias away,

and the artifacts can be even more unpleasant if they occur in the frames of an animation, causing

pixels to randomly flicker and distract the viewer.

The problem is made worse when the numerical methods used are not guaranteed to find the

correct ray-object intersections.

To overcome some of these limitations, researchers have developed an approach which re-

places the infinitely thin rays with thicker regions calledbeams([Heckbert and Hanrahan 1984,

Amanatides 1984]). Because the set of beams covers the image plane completely with no gaps,

beam tracing avoids most of the sampling problems mentioned above. The geometric optics

algorithm that uses beams has a very similar structure to the ray tracing algorithms.

We extend the original beam tracing approach and present a guaranteed interval method for

intersecting beams with nonlinear implicit surfaces. By tracing beams instead of rays we cover

the whole set of rays that go through the image plane and replace the sampling process with

an averaging process. Beam tracing guarantees that the rendered images will be free of pixel

dropouts, independently of the complexity of the scene.

In our current implementation, the intervals areunivariate, with intervals just for the single

variable of the ray parametert which measures the distance from the eye.

Any of the previous interval root finding methods, such as conventional interval analysis,

Interval Newton, centered forms, or affine arithmetic, can be used to perform beam tracing. The

choice of method determines the overall efficiency of the beam tracer. Therefore, we use the RIN

method with Corner Taylor Forms.

The RIN methods described here can also be used to perform basic ray tracing showing im-

137

proved performance over conventional interval methods and state of the art ray tracing algorithms

for implicit surfaces, such as the well known LG-method.

An example of a particularly complex (very fine features) object rendered with our algorithm

is shown in figure 6.1. For comparison, ray tracing the same image with the LG-method would

have taken almost two years; our algorithm took less than six hours.

6.2 Previous Work

Beam tracingfor polygonal objects was introduced by Heckbert and Hanrahan in 1984,

see [Heckbert and Hanrahan 1984]. Simultaneously, Amanatides introduced a similar technique

calledcone tracing, see [Amanatides 1984]. Our algorithm extends these to intersect beams with

any differentiable implicit surfaces.

We are not aware of any previous implementations of beam tracing for implicit surfaces.

Beam tracing for polygonal models has been a subject of investigation by other researchers;

see [Shinya et al. 1987, Watt 1990].

There are many algorithms for ray tracing implicit surfaces. We summarize a few that are

most closely related to this work.

The algorithms are classified into two categories with respect to their ability to converge

to the correct solution. The first category is comprised of algorithms that do not provide any

guarantees, such as ray marching and straight applications of Newton-like methods, see 6.2.2.

The second category is comprised of algorithms that guarantee the correct finite-precision ray

surface intersection values, including the LG-method, interval analysis and affine analysis based

methods, sphere tracing, and interpolatory methods, see 6.2.3.

6.2.1 Review: Ray/Implicit Surface Intersection in One Variable

Implicit surfaces are defined as the set of points in 3D where a scalar-valued functionf of three

variables takes on the value zero.

138

Mathematically, the surface is expressed as:

f : R3 → R, f (x) = 0 (6.1)

A ray in three dimensions can be expressed in its parametric form

r : R→ R3, r (t) = (p−c)t +c. (6.2)

wherec is the 3D location vector of the camera andp is the 3D location vector of the pixel

in world coordinates. The problem of determining intersection points between the rayr and

the implicit surfacef (x) = 0 reduces to that of “plugging” the ray equation into the implicit

equation, and solving for the smallest non-negative value oft that makesf be zero.

In other words, we are finding the smallest root of the univariate equation

(f ◦ r)(t) = f ((p−c)t +c) = 0 (6.3)

that is closest toc and beyondp.

Very often these equations are nonlinear and do not have a closed form solution. A finite-

precision numerical solution must be used in this case. It is important to be sure that the numer-

ical solution method can always find the correct roots, within a satisfactory error tolerance.

6.2.2 Methods that Do Not Guarantee Solutions

The simplest method,Ray Marching, was introduced by Tuy and Tuy in 1984,

see [Tuy and Tuy 1984]. It evaluates the implicit function at points along the ray, for succes-

sive values oft. The surface is detected when a change of sign occurs in equation 6.3. Ray

marching is very general, only requiring a method for evaluating the value of the equation 6.3,

the generating function at points in space, but may miss the first intersection or the whole surface

entirely if the distance between the sampling points is too big. Reducing this distance improves

accuracy at the cost of severely increasing the running time.

139

Another simple approach is to useNewton’s methodto find a root of equation 6.3. However,

the convergence of Newton’s method is notoriously dependent on the choice of starting point and

it may converge to any of the solutions of equation 6.3 and not be able to locate the one we seek,

or it may even diverge. There are other more stable relatives of Newton’s method, such asregula

falsi, but they require special initial conditions that are not easily achievable. (The LG-method

provides the correct setting in which regula falsi can be used reliably.)

6.2.3 Methods that Guarantee Solutions Along a Ray

These are methods that reliably compute the solutions of the ray/surface equations. Note how-

ever, that this guarantee, even though desirable, does not prevent pixel dropouts from occurring

in the rendered images. Dropped pixels can still occur because the guarantee only applies to

the ray/surface intersection. If the ray “misses” the surface then the corresponding pixel will be

colored with the background color. In the case of surfaces with fine detail, the rays can miss or

hit in an inconsistent manner thus creating visually disturbing aliasing artifacts.

The first method that guarantees ray/surface intersections was described by Kalra and Barr

in 1989, [Kalra and Barr 1989], and is know as theLG-method. It is still one of the standard

algorithms for directly rendering implicit surfaces.

The LG-method is an interval analytic method in disguise. It requires the computation of

guaranteed upper Lipschitz bounds: L, the upper bound of the Lipschitz constant ofF in a region,

and G, the upper bound of the Lipschitz constant of the gradient ofF in a region. The L and G

constants are used to robustly bound the function variation in those regions. The method uses

binary subdivision to isolate the regions where only one solution is guaranteed to exist, followed

by regula falsi to converge to that unique solution. The main problem with the LG-method is its

lack of automatic generation of expressions for L and G — the user is required to provide the

expressions of L and G for every primitive.

Interval analysis was first used to ray trace implicit surfaces by Mitchell in 1990,

see [Mitchell 1990]. The method is similar to the LG-method, but it uses inclusion functions

to bound the range of the ray/object functions without requiring the L and G constants. These

140

early applications of interval analysis suffered from the use of non-optimal inclusion functions

which slowed down convergence considerably.

Affine arithmetichas been proposed as a replacement to conventional interval analysis,

see [Stolfi and de Figueiredo 1997]. Applications to ray tracing implicit surfaces were shown

in [de Cusatis Jr. et al. 1999]. The reported improvements over conventional interval methods

have not been uniform — recent investigations show that affine arithmetic is a special case of the

centered form.

We show that the combination of CTF inclusion functions and RIN solution methods can

significantly improve the performance of interval based ray tracers, especially when rendering

“difficult” surfaces.

Sphere tracing is a variant of the ray marching algorithm, see [Hart et al. 1989,

Hart and DeFanti 1991, Hart 1993b]. It uses a signed distance function to the implicit surface

to guarantee that the steps taken along the ray are always small enough not to penetrate the

surface. Like the LG-method, this guarantee is achieved through the computation of Lipschitz

bounds. It can be used with any surface for which the user can provide a signed distance function

and the normal, including fractals and some surfaces without continuous derivatives.

Closed form solutions to equation 6.3 are desirable but usually unavailable. One approach is

to approximate the functionF ◦r with a simpler function(F ◦r)∗ for which closed form solutions

exist. One such method has been introduced by Sherstyuk in 1998, see [Sherstyuk 1998]. The

method uses interpolatory approximation with Hermite polynomials of 3rd degree and closed

form solutions to achieve speedup. The accuracy of the rendered images can be somewhat limited

by the accuracy of this approximation. Error can be reduced by increasing the number of Hermite

patches used by the approximation, but no automatic method is provided. The algorithm achieves

an approximate speedup factor of 3 when compared to the LG-method. Extending this algorithm

to beam tracing requires the ability to compute with 4D Hermite approximations.

141

6.2.4 Methods that Guarantee Solutions Inside a Pixel

To completely and reliably eliminate all pixel dropout problems one needs to search for surface

intersections for the set of all possible rays defined within the span of a pixel. This requirement

can be accomplished through the use of beam tracing. Beam tracing for implicit surfaces has not

been explored to date. In this paper we present a beam tracing method based on higher order

interval analysis.

Although all variants of interval methods can be converted to perform beam tracing, the con-

ventional methods may be unbearably slow. Higher order interval analysis is orders of magnitude

faster than binary search based methods, and makes the approach much more tractable.

6.3 Beam Tracing Implicit Surfaces

6.3.1 Beams

Conventional rays are directed 3D lines defined by two points: the camera position (ray-origin)

c, and the pixel position (ray-intercept)p:

r : R→ R3, r(t) = (p−c)t +c. (6.4)

Beamsare generalized bundles of rays defined by two 3D intervals: A 3D interval for the

camera position (beam-origin)c , and a 3D interval for the pixel position (beam-intercept)p :

b : IR→ IR3, b (t) = (p−c)t +c. (6.5)

Beams are classified in several categories.Camera beamshave the origin in the camera

location and the intercept on the image plane.Shadow beamshave the origin at a light source and

the intercept at a previously computed beam-surface intersection.Reflected and refracted beams

have their origins at a beam-surface intersection and their intercepts are computed according to

the rules of geometrical optics as a function of the surface normals at the origin and the direction

interval of the incoming beam.

142

6.3.2 Beam-Surface Intersection

The beam casting equation is a generalization of the ray casting equation 6.3:

(
I(f)◦ b

)
(t) = I(f)

(
(p − c)t + c

)
= 0. (6.6)

The beam parametert is restricted to an intervalt that depends on the beam type. For cam-

era beams, the interval used ist = [1,∞], while shadow beams use an intervalt = [0,1], and

reflected and refracted beams use the intervalt = [0,∞].

The RIN root finding algorithm described in the previous section is used to locate the “first”

root t s of the beam casting equation 6.6. Ift s is empty, no solutions exist. Otherwise the

beam-surface intersection regionr s is computed by the equation:

r s = b (t s) = p t s+(1− t s) c . (6.7)

Beams are rotated into the frame of the object prior to computing the intersection to keep the

expressions simple.

6.3.3 Computing the Illumination

The range of normalsn s to the surface in the regionr s is computed by dividing the range of the

gradientg s by the norm of the average gradient off within r s, using the following formulas:

g s = I(∇ f)(r s) (6.8)

n s =
g s

‖m
(

g s
)
‖
. (6.9)

Note that not all the vector elements inn s are of unit length since it is impossible to represent a

set of unit length vectors by simple intervals (boxes) in Euclidean space.

The illumination is computed in the form of interval values for each of the R, G, B compo-

nents using interval versions of any of the standard illumination models and the interval vector

n s. The contributions of all the beams in the tree are added and the average values are assigned

143

to the corresponding pixels.

6.3.4 Generating Reflected/Refracted Beams

Outgoing reflected/refracted beams are produced by plugging in the range of the normals at the

beam-surface intersection regionr s into the interval form of the classic formulas of geometrical

optics. The resulting beams can be very wide if the range of the normals is big. In this case the

range of the normal is subdivided into a number of smaller intervalsn i
s and several outgoing

beams are generated.

In cases where the user is not concerned with guaranteed reflections the outgoing beams can

be narrowed or even be completely replaced with rays. We have opted for this optimization in

our implementation, using beams for the camera and shadow rays, and conventional rays for the

reflected rays. The reflected rays are computed with respect to the midpoint of the intersection

region, m(r s), and the average normal m(n s).

6.3.5 Making Beam Tracing Work

There are a number of issues that should be considered when implementing our algorithm.

Rotations, a very common operation in all ray tracing algorithms, should only be applied

once to expressions and objects that are defined using intervals. The reason for this is that each

application of a rotation matrix to a higher (2 or more) dimensional interval can increase its size,

sometimes by up to 100 percent, see figure 6.2. If a series of transformations need to be applied

to such a higher dimensional interval it is imperative that the transformations be first composed

together and the resultant applied only once. Some increase in size is unavoidable, for example

when rotating the beams into the frame of the objects, thus artificially widening the beams. This

effect is visible in the final images, as shadows are sometimes thicker than one might expect, see

figure 6.1 bottom right. Such artifacts can be reduced by subdividing the beams appropriately, at

the expense of increased computation.

It is important to use high quality inclusion functions - such as Taylor Forms - not only to

speed up convergence but also to ensure the quality of the rendered images is high. As shown in

144

Figure 6.2: Applying multiple rotation transformations to a region can artificially increase its
size. This artifact is known as thewrapping effect.

the previous chapters, too much excess width can produce solution sets with bad quality factors.

When ray tracing a surface we pick only one of the solution boxes found along a ray; due to the

omnipresent excess width, a single infinite precision solution may be covered by some number of

adjacent boxes. How far the chosen box is from the exact solution depends on the quality factor,

which in turn depends on the local amount of excess width. Therefore, use of inclusion functions

with non-optimal excess width can result in the surfaces and their shadows becoming visibly

distorted. In fact, use of the natural extension often produces images that are unrecognizable.

Finally, it is well known that interval arithmetic is correct and guaranteed only when the

appropriate rounding modes are used in its implementation. The IEEE floating point standards

guarantee that the floating point units on most current microprocessors implement the correct

145

rounding modes. These should always be used if any guaranteed results are to be expected.

Frequently switching rounding modes, however, can be an expensive operation. There are tech-

niques for computing the correct upper and lower bounds without ever changing rounding modes.

In fact, when the fastest rendering time is desired, one may drop the use of directed rounding

altogether. Of course, in doing so one loses the absolute guaranteed nature of interval analysis

— however, the probability of pixel dropouts occurring in the rendered images is still very low.

6.4 Results and Conclusions

We implemented the beam tracing algorithm and the LG method in the same ray tracing program.

This approach lets us compare the beam performance to the LG-method for computing beam-

surface and ray-surface intersections.

Figure 6.3: Rendering of a blobby flake. The model is comprised of 91 blended elliptic blobby
primitives.Left,Gaussian blobbies.Right,polynomial blobbies.

For thin objects, the beams produced significantly improved results. Not only were pixel

dropouts eliminated when we rendered with beams, as shown in figure 6.1, but the much-

improved rate of convergence of the second order interval solver caused our algorithm to beat the

rendering time of the LG-method by many orders of magnitude. This is expected to take place

whenever rendering models with thin features and high curvature, such as the one shown in fig-

ure 6.4. The model is comprised of 76 blended elliptic Gaussian blobbies, 4 implicit planes, and

3 point light sources. Our method was able to ray trace the model in less than 20 hours, and beam

146

trace it in less than 50 hours, at a resolution of 2,880 by 1,944 with one ray/beam per pixel. We

were not patient enough to render the same image using the LG-method, and rightly so, since we

estimated it would have taken approximately 6 years to complete. We have done this estimation

by rendering an 18 by 12 image of the model, which took 36 minutes, and multiplying by the

ratio in resolutions (to simulate a 2,880 by 1,944 image). Ray tracing the same 18 by 12 image

with our algorithm took less than a second.

For models with larger features and lower curvature, such as those shown in figure 6.4, the

savings were not as significant. Times with beams were roughly equivalent to those of the LG-

method. This is true because for those types of models the LG-method is able to find intervals

that contain only one solution very quickly, at which point it switches to the regula falsi solver

which has quadratic convergence. However, the beam tracing program is more robust near the

boundaries and silhouette edges of the objects and is still much faster than conventional interval

analysis.

147

F
ig

ur
e

6.
4:

R
en

de
rin

g
of

a
ve

ry
co

m
pl

ex
im

pl
ic

it
m

od
el

w
ith

th
in

,
ha

ir
lik

e
fe

at
ur

es
.

T
he

m
od

el
is

co
m

po
se

d
of

76
su

pe
r-

th
in

G
au

ss
ia

n
bl

ob
bi

es
.

148

These results are encouraging and we envision applications of the method to render

geometrically-modeled hair and other highly curved surfaces. The absence of pixel dropouts

will be especially useful when making animations of these models.

6.5 Future Work

Replacing the current univariate interval solver with a multivariate version should improve both

efficiency and quality by enabling adaptive spatial and temporal antialiasing. The multivariate

framework could also be used to render caustics and simulate various wave phenomena, such as

wavelength dependent scattering.

149

Chapter 7

Conclusion

Interval analysis is not as inefficient as some believe it to be. However, as the examples in this

thesis show, efficient interval analysis requires consistent use of the most sophisticated methods

available.

In this thesis we presented two new advancements in verified scientific computing using

interval analysis that offer considerably improved efficiency:

1. The Corner Taylor Form (CTF) interval extension. We introduced the CTF, the first in-

terval extension for multivariate polynomials that guarantees smaller excess width than the

natural extension on any input interval, large or small, and has quadratic or better inclusion

order. To help with the proofs we introduced the concept ofPosynomial Decomposition

(PD). Using PD we developed simple and elegant proofs showing the CTF is isotonic

and has quadratic or better (local) inclusion convergence order. We also developed closed

form methods for computing the exact local order of convergence as well as the magni-

tude of excess width reduction the CTF produces over the natural extension. We presented

practical examples and compared the CRF with other inclusion function types.

2. The Remainder Interval Newton (RIN) method. We also introduced the RIN method,

which uses first order Taylor Models (instead of the Mean Value Theorem) to linearize

nonlinear equations and systems. We showed that this linearization has many advantages,

making RIN significantly more efficient than conventional Interval Newton (IN). In par-

ticular, for single multivariate equations, we introduced a new subdivision method based

150

on the RIN linearization. For this case, we showed that RIN requires only order of the

square root as many solution regions as IN does. For square systems, we showed that RIN

is able to isolate solutions faster than IN. For both types of problems, we presented exam-

ples where RIN methods realized savings in both time and memory for a sizable overall

improvement.

As an application to computer graphics, we presented a novel algorithm forBeam Tracing

Implicit Surfaces.We showed that beam tracing eliminates some of the shortcoming of conven-

tional ray tracing, particularly the problem ofdroppedpixels due to its inherent sampling nature.

We also showed that use of RIN can reduce running times significantly, both in the beam tracing

and the conventional ray tracing settings.

151

Bibliography

[Alander 1985] Alander, J., 1985. “On interval arithmetic range approximation methods of poly-

nomials and rational functions,”Computers and Graphics, 9(4):365–372.

[Alefeld and Herzberger 1983]Alefeld, G. and Herzberger, J. 1983.Introduction to Interval

Computations. Academic Press Inc., New York, USA. Transl. by J. Rokne from the original

German ‘Einf̈uhrung in die Intervallrechnung’. 7

[Amanatides 1984]Amanatides, J., 1984. “Ray tracing with cones,”Computer Graphics,

18(3):129–135. 136, 137

[Bao and Rokne 1988]Bao, P. G. and Rokne, J. G., 1988. “Low complexityk-dimensional

Taylor forms,” Applied Mathematics and Computation, 27(3 (part I)):265–280.

[Barth et al. 1994]Barth, W., Lieger, R., and Schindler, M., 1994. “Ray tracing general para-

metric surfaces using interval arithmetic,”Visual Computer, 10(7):363–371.

[Baumann 1988]Baumann, E., 1988. “Optimal centered forms,”BIT, 28(1):80–87. 40

[Berz and Hoefkens 2001]Berz, M. and Hoefkens, J., 2001. “Verified high-order inversion of

functional dependencies and interval newton methods,”Reliable Computing, 7(5):379–398.

109

[Berz and Hofsẗatter 1998]Berz, M. and Hofsẗatter, G., 1998. “Computation and application of

Taylor polynomials with interval remainder bounds,”Reliable Computing, 4(1):83–97. 28,

36, 94

152

[Bolin and Meyer 1995]Bolin, M. R. and Meyer, G. W., 1995. “A frequency based ray tracer,”

Computer Graphics, 29(Annual Conference Series):409–418.

[Corliss and Rall 1984]Corliss, G. F. and Rall, L. B. 1984. “Automatic generation of Taylor

series in Pascal-SC: Basic operations and applications to differential equations,” inTrans.

of the First Army Conference on Applied Mathematics and Computing (Washington, D.C.,

1983), pages 177–209. ARO Rep. 84-1, U. S. Army Res. Office, Research Triangle Park,

N.C.

[Csendes and Ratz 1997]Csendes, T. and Ratz, D., 1997. “Subdivision direction selection in

interval methods for global optimization,”SIAM Journal on Numerical Analysis, 34(3):922–

938.

[de Cusatis Jr. et al. 1999]de Cusatis Jr., A., de Figueiredo, L. H., and Gattas, M. 1999. “Inter-

val methods for ray casting implicit surfaces with affine arithmetic,” inSIBGRAPI ’99, pages

65–71. IEEE Computer Press. 140

[De Figueiredo and Stolfi 1996]De Figueiredo, L. H. and Stolfi, J., 1996. “Adaptive enumera-

tion of implicit surfaces with affine arithmetic,”Computer Graphics Forum, 15(5):287–296.

[Duff 1992] Duff, T. 1992. “Interval arithmetic and recursive subdivision for implicit func-

tions and constructive solid geometry,” inSIGGRAPH ’92: 19th International Conference on

Computer Graphics and Interactive Techniques, Chicago, Illinois, July 26–31, 1992, Catmull,

E. E., editor, volume 26, pages 131–138, New York, NY 10036, USA. ACM Press.

[Eckmann et al. 1986]Eckmann, J.-P., Malaspinas, A., and Kamphorst, S. O. 1986. “A software

tool for analysis in function spaces,” Rep. Ugva-Dpt 1986/11-524, Department Theor. Phys.,

University Geneva, Geneva, Switzerland. 36

[Epstein et al. 1981]Epstein, C., Miranker, W. L., and Rivlin, T. J. 1981. “Ultra-arithmetic part

2: Intervals of polynomials,” Research Report RC 8743, IBM Thomas J. Watson Res. Cent.,

Yorktown Heights, New York. Published In: Math. Comput. Simulation 24, 19–29, 1982. 36

153

[Epstein et al. 1982]Epstein, C., Miranker, W. L., and Rivlin, T. J., 1982. “Ultra-arithmetic I:

function data types,”Mathematics and Computers in Simulation, 24(1):1–18. 36

[Garloff 1985] Garloff, J. 1985. “Convergent bounds for the range of multivariate polynomials,”

in Proceedings of the International Symposium on Interval Mathematics, Nickel, K., editor,

volume 212 ofLNCS, pages 37–56, Freiburg, FRG. Springer. 44

[Garloff and Krawczyk 1986]Garloff, J. and Krawczyk, R., 1986. “Optimal inclusion of a so-

lution set,” SIAM Journal on Numerical Analysis, 23(1):217–226.

[Gascuel 1995]Gascuel, J.-D. 1995. “Implicit patches: An optimised and powerful ray inter-

section algorithm,” inImplicit Surfaces’95, pages 143–160, Grenoble, France. Proceedings

of the first international workshop on Implicit Surfaces.

[Hanrahan 1983]Hanrahan, P., 1983. “Ray tracing algebraic surfaces,”Computer Graphics,

17(3):83–90.

[Hansen 1969]Hansen, E. 1969. “The centered form,” inTopics in Interval Analysis, Hansen,

E., editor, pages 102–106. Oxford University Press. 39

[Hansen 1978]Hansen, E., 1978. “Interval forms of Newton’s method,”Computing, 20(2):153–

163. 47

[Hansen and Sengupta 1981]Hansen, E. and Sengupta, S., 1981. “Bounding solutions of sys-

tems of equations using interval analysis,”BIT, 21(2):203–211. 50

[Hansen 1988]Hansen, E. R. 1988. “An overview of global optimization using interval analy-

sis,” in Reliability in Computing, Moore, R. E., editor, pages 289–307. Academic Press, New

York.

[Hansen 1992]Hansen, E. R. 1992.Global Optimization Using Interval Analysis. Marcel

Dekker, New York. 7

[Hansen 1993]Hansen, E. R., 1993. “Computing zeros of functions using generalized interval

arithmetic,” Interval Computations = Interval’nye vychisleniia, 3:3–28.

154

[Hansen 1997]Hansen, E. R., 1997. “Preconditioning linearized equations,”Computing,

58(2):187–196.

[Hansen and Greenberg 1983]Hansen, E. R. and Greenberg, R. I., 1983. “An interval Newton

method,”Applied Mathematics and Computation, 12(2–3):89–98.

[Hansen et al. 1990]Hansen, E. R., Patrick, M. L., and Wang, R. L. C., 1990. “Polynomial

evaluation with scaling,”ACM Transactions on Mathematical Software, 16(1):86–93.

[Hansen and Walster 2003]Hansen, E. R. and Walster, G. W. 2003.Global Optimization Using

Interval Analysis. Marcel Dekker, New York. 2, 3, 7

[Hart 1993a] Hart, J. 1993. “Ray tracing implicit surfaces,” inModeling, Visualizing and

Animating Implicit Surfaces. SIGGRAPH Course Notes 25.

[Hart 1993b] Hart, J. 1993. “Sphere tracing: Simple robust antialiased rendering of distance-

based implicit surface,” inModeling, Visualizing and Animating Implicit Surfaces. SIG-

GRAPH Course Notes 25. 140

[Hart and DeFanti 1991]Hart, J. C. and DeFanti, T. A., 1991. “Efficient antialiased rendering

of 3-D linear fractals,”Computer Graphics, 25(4):91–100. 140

[Hart et al. 1989]Hart, J. C., Sandin, D. J., and Kauffman, L. H., 1989. “Ray tracing determin-

istic 3-D fractals,”Computer Graphics, 23(3):289–296. 140

[Heckbert and Hanrahan 1984]Heckbert, P. S. and Hanrahan, P., 1984. “Beam tracing polygo-

nal objects,”Computer Graphics, 18(3):119–127. 136, 137

[Herbison-Evans 1994]Herbison-Evans, D. 1994. “Solving quartics and cubics for graphics,”

Technical Report TR-94-487, Basser Department of Computer Science, University of Sidney,

Sidney, Australia.

[Ito 1989] Ito, H., 1989. “Ray tracing meta-balls,”Pixel, (77):76–80. In Japanese.

[Jaulin et al. 2001]Jaulin, L., Kieffer, M., Walter, O., and Didrit, O. 2001.Applied Interval

Analysis. Springer Verlag. 7

155

[Kalra and Barr 1989]Kalra, D. and Barr, A. H., 1989. “Guaranteed ray intersections with

implicit surfaces,”Computer Graphics, 23(3):297–306. 139

[Kaucher and Miranker 1983a]Kaucher, E. and Miranker, W. L. 1983. “Iterative residual cor-

rection and self-validating numerics in functoids,” Research Report RC 10260, IBM Thomas

J. Watson Res. Cent., Yorktown Heights, New York. 36

[Kaucher and Miranker 1983b]Kaucher, E. and Miranker, W. L. 1983. “Numerics with guar-

anteed accuracy for function space problems,” Research Report RC 9789, IBM Thomas J.

Watson Res. Cent., Yorktown Heights, New York. 36

[Kaucher and Miranker 1984a]Kaucher, E. and Miranker, W. L., 1984. “Residual correction

and validation in functoids,”Computing. Supplementum, 5:169–192. 36

[Kaucher and Miranker 1984b]Kaucher, E. W. and Miranker, W. L. 1984.Self-Validating Nu-

merics for Function Space Problems — Computation with Guarantees for Differential and

Integral Equations. Academic Press, New York. 36

[Kay and Kajiya 1986]Kay, T. L. and Kajiya, J. T., 1986. “Ray tracing complex scenes,”Com-

puter Graphics, 20(4):269–278.

[Kearfott 1996] Kearfott, R. B. 1996.Rigorous Global Search: Continuous Problems. Kluwer

Academic Publishers, Dordrecht, Netherlands.

[Krawczyk and Neumaier 1984]Krawczyk, R. and Neumaier, A. 1984. “An improved interval

Newton operator,” Freiburger Intervall-Ber. 84/4, Universität Freiburg, Freiburg, Germany.

Published in: J. Math. Anal. Appl. 118, 194–207, 1986. 49

[Krawczyk and Neumaier 1985]Krawczyk, R. and Neumaier, A., 1985. “Interval slopes for

rational functions and associated centered forms,”SIAM J. Numer. Anal., 22:604–616.

[Krawczyk and Nickel 1981]Krawczyk, R. and Nickel, K. 1981. “Die Zentrische Form in der

Intervallarithmetik, Ihre Quadratische Konvergenz und Ihre Inklusionsisotonie,” Freiburger

156

Intervall-Ber. 81/9, Universiẗat Freiburg, Freiburg, Germany. Published in: Computing 28,

117–137, 1982. 40

[Makino and Berz 2003]Makino, K. and Berz, M., 2003. “Taylor models and other validated

functional inclusion methods,” International Journal of Pure and Applied Mathematics,

4(4):379–456. 109

[Mayer 1992] Mayer, G., 1992. “Some remarks on two interval-arithmetic modifications of the

Newton method,”Computing, 48(1):125–128.

[Miranker 1983] Miranker, W. L. 1983. “Ultra-arithmetic: The digital computer set in function

space,” inParallel and Large-Scale Computers: Performance, Architecture, Applications,

Ruschitzka, M., Christensen, M., Ames, W. F., and Vichnevetsky, R., editors, volume 2 of

IMACS, pages 275–279. North Holland, Amsterdam, Netherlands. 36

[Mitchell 1990] Mitchell, D. P. 1990. “Robust ray intersection with interval arithmetic,” in

Graphics Interface 90, Halifax, Nova Scotia, 14–18 May 1990: proceedings, pages 68–74,

Toronto, Ont., Canada. Canadian Inf. Process. Soc. 139

[Mitchell and Hanrahan 1992]Mitchell, D. P. and Hanrahan, P. 1992. “Illumination from curved

reflectors,” inSIGGRAPH ’92: 19th International Conference on Computer Graphics and

Interactive Techniques, Chicago, Illinois, July 26–31, 1992, Catmull, E. E., editor, volume 26,

pages 283–291, New York, NY 10036, USA. ACM Press.

[Moore 1962] Moore, R. E. 1962.Interval arithmetic and automatic error analysis in digital

computing.PhD thesis, Dept. of Mathematics, Stanford University. 1, 36

[Moore 1966] Moore, R. E. 1966.Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA.

1, 36, 39

[Moore 1979] Moore, R. E. 1979.Methods and Applications of Interval Analysis. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA. 7, 18, 36

157

[Nataraj and Kotecha 2002]Nataraj, P. S. V. and Kotecha, K., 2002. “An algorithm for global

optimization using the taylor-bernstein form as inclusion function,”Journal of Global Opti-

mization, 24(4):417–436. 36

[Neumaier 1983]Neumaier, A. 1983. “An interval version of the secant method,” Freiburger

Intervall-Ber. 83/10, Universität Freiburg, Freiburg, Germany. Published in: Bit 24, 366–372,

1984.

[Neumaier 1990]Neumaier, A. 1990.Interval Methods for Systems of Equations, volume 37 of

Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,

UK. 7, 15

[Neumaier 2002]Neumaier, A. 2002. “Taylor forms - use and limits,”. 2002. 36

[Owen and Rockwood 1989]Owen, J. C. and Rockwood, A. P., 1989. “Intersection of general

implicit surfaces,”ACM Transactions on Graphics.

[Ratschek 1980]Ratschek, H., 1980. “Centered forms,”SIAM Journal on Numerical Analysis,

17(5):656–662. 39

[Ratschek and Rokne 1984]Ratschek, H. and Rokne, J. 1984.Computer Methods for the Range

of Functions. Ellis Horwood Ser.: Math. Appl. Ellis Horwood.

[Ratschek and Rokne 2003]Ratschek, H. and Rokne, J. 2003.Geometric Computations with

Interval and New Robust Methods. Horwood Series in Computer Science. Horwood Publish-

ing.

[Rivlin 1970] Rivlin, T. J., 1970. “Bounds on a polynomial,”J. Res. Nat. Bur. Standards Sect.

B, 74B:47–54. 43

[Rokne 1977]Rokne, J., 1977. “Bounds for an interval polynomial,”Computing, 18(3):225–

240. 44

[Rokne 1978]Rokne, J. 1978. “A note on the Bernstein algorithm for bounds for interval

polynomials,” Technical Report 78/29/8, University of Calgary. 44

158

[Rokne 1981]Rokne, J. 1981. “Optimal computation of the Bernstein algorithm for the bound

of an interval polynomial,” Freiburger Intervall-Ber. 81/4, Universität Freiburg, Freiburg,

Germany. Published in: Computing 28, 239–246, 1982. 44

[Savchenko and Pasko 1995]Savchenko, V. and Pasko, A. 1995. “Collision detection for func-

tionally defined deformable objects,” inImplicit Surfaces’95, pages 217–222, Grenoble,

France. Proceedings of the first international workshop on Implicit Surfaces.

[Shary 1999]Shary, S. P. 1999. “Interval Gauss-Seidel method for generalized solution sets to

interval linear systems,” inMISC ’99 — Workshop on Applications of Interval Analysis to

Systems and Control (Girona, Spain, February 24-26, 1999), pages 51–65. Universidad de

Girona.

[Sherstyuk 1998]Sherstyuk, A. 1998. “Fast ray tracing of implicit surfaces,” inImplicit Sur-

faces ’98, pages 145–153. 140

[Shinya et al. 1987]Shinya, M., Takahashi, T., and Naito, S., 1987. “Principles and applications

of pencil tracing,”Computer Graphics, 21(4):45–54. 137

[Snyder 1992]Snyder, J. M., 1992. “Interval analysis for computer graphics,”Computer Graph-

ics, 26(2):121–130.

[Stahl 1996] Stahl, V. 1996. “Interval Methods for Bounding the Range of Polynomials and

Solving Systems of Nonlinear Equations,” Technical Report 96-17, RISC-Linz, Johannes

Kepler University, Linz, Austria. Published in Ph.D. thesis. 36, 38, 40, 44, 52

[Stolfi and de Figueiredo 1997]Stolfi, J. and de Figueiredo, L. H. 1997. “Self-validated numer-

ical methods,” inMonograph for the 21st Brazilian Mathematics Colloquim. IMPA, Rio de

Janeiro. 140

[Tonnesen 1989]Tonnesen, D. 1989. “Ray-tracing implicit surfaces resulting from the sum-

mation of bounded polynomial functions,” Technical Report TR-89003, Rensselaer Design

Research Center, Rensselaer Polytechnic Institute, Troy, Ney York.

159

[Tuy and Tuy 1984]Tuy, T. H. and Tuy, L. T., 1984. “Direct 2-d display of 3-d objects,”IEEE

Computer Graphics and Applications, 4(10):29–33. 138

[Walster et al. 1985]Walster, G. W., Hansen, E. R., and Sengupta, S. 1985. “Test results for a

global optimization algorithm,” inNumerical Optimization 1984, Boggs, P. T., Byrd, R. H.,

and Schnabel, R. B., editors, pages 272–287, Philadelphia. SIAM.

[Watt 1990] Watt, M., 1990. “Light-water interaction using backward beam tracing,”Computer

Graphics, 24(4):377–385. 137

[Wyvill and Trotman 1990]Wyvill, G. and Trotman, A. 1990. “Ray-tracing soft objects,” in

Computer Graphics International ’90, pages 469–475.

	Acknowledgements
	Abstract
	 List of Figures
	1 Introduction and Motivation
	1.1 Benefits of Interval Computations
	1.2 Thesis Overview

	2 Review of Interval Analysis
	2.1 A Note About Notation
	2.1.1 Interval Notation
	2.1.2 Other Notation

	2.2 Intervals and Interval Arithmetic
	2.3 Inclusion Functions and Interval Extensions
	2.3.1 Interval Valued Functions and the Range Inclusion Function
	2.3.2 Inclusion of the Range of Real Valued Functions
	2.3.3 Interval Extensions

	2.4 Inclusion of the Solution Set of Nonlinear Systems of Equations
	2.4.1 A Basic Divide and Conquer Algorithm

	2.5 Inclusion of the Solution Set of Nonlinear Optimization Problems
	2.5.1 The Moore-Skelboe Optimization Algorithm

	2.6 Inclusion of the Solution Set of Systems of Differential and Integral Equations using Interval Picard Iterations
	2.6.1 Definitions
	2.6.2 Interval Picard Iteration
	2.6.3 An Example

	3 Related Previous Work
	3.1 Taylor Forms and Taylor Models
	3.1.1 Taylor Form Interval Extensions
	3.1.2 Taylor Form Chronology

	3.2 Methods for the Robust Inclusion of the Range of Multivariate Functions
	3.2.1 Horner Forms
	3.2.1.1 Summary of Properties

	3.2.2 Centered and Mean Value Forms
	3.2.2.1 Summary of Properties

	3.2.3 Taylor Forms Revisited
	3.2.4 Bernstein Forms
	3.2.4.1 Bernstein Forms for Polynomials
	3.2.4.2 Bernstein Forms for Other Types of Functions
	3.2.4.3 Short Chronology
	3.2.4.4 Summary of Properties

	3.3 Interval Newton Methods for the Inclusion of the Roots of Nonlinear Systems of Equations
	3.3.1 Linear Interval Equations
	3.3.2 The Interval Newton Operator
	3.3.3 Preconditioning
	3.3.4 The Krawczyk Operator
	3.3.5 The Hansen-Sengupta Algorithm
	3.3.6 Linear Tightening

	4 Corner Taylor Form Inclusion Functions
	4.1 Introduction
	4.2 Sign-Coherent Intervals
	4.3 Sign-Coherent Interval Decomposition
	4.4 Posynomials
	4.5 The Posynomial Decomposition of a Polynomial
	4.6 Taylor Form Excess Width is Due to One Interval Minus Operation
	4.7 Reduction to the Non-Negative Quadrant
	4.8 Corner Taylor Forms With Interval Coefficients
	4.8.1 The Corner Taylor Form Always Has Less Excess Width Than the Natural Extension
	4.8.2 Isotonicity of the Corner Taylor Form

	4.9 Corner Taylor Forms With Real Coefficients
	4.9.1 The Magnitude of the Improvement Over Natural Extensions
	4.9.2 Convergence Properties

	4.10 Examples and Results

	5 Remainder Interval Newton Methods
	5.1 The RIN Algorithm for Roots of Multivariate Nonlinear Equations
	5.1.1 Linearization
	5.1.2 Cropping
	5.1.3 Subdivision
	5.1.4 Convergence of the RIN Algorithm

	5.2 The RIN Algorithm for Roots of Square Systems of Nonlinear Equations
	5.2.1 Linearization
	5.2.2 Cropping
	5.2.3 Tightening

	5.3 RIN vs. Martin Berz's Inversion
	5.4 RIN vs. Makino and Berz's LDB
	5.5 Examples and Performance
	5.5.1 Polynomial Equations
	5.5.2 Polynomial Systems

	6 An Application: Beam Tracing for Implicit Surfaces
	6.1 Introduction
	6.2 Previous Work
	6.2.1 Review: Ray/Implicit Surface Intersection in One Variable
	6.2.2 Methods that Do Not Guarantee Solutions
	6.2.3 Methods that Guarantee Solutions Along a Ray
	6.2.4 Methods that Guarantee Solutions Inside a Pixel

	6.3 Beam Tracing Implicit Surfaces
	6.3.1 Beams
	6.3.2 Beam-Surface Intersection
	6.3.3 Computing the Illumination
	6.3.4 Generating Reflected/Refracted Beams
	6.3.5 Making Beam Tracing Work

	6.4 Results and Conclusions
	6.5 Future Work

	7 Conclusion
	Bibliography

