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oh the excitement, the drama, the insights.

Thank you U. of Toronto DGP: Eugene Fiume, Karan Singh et al.; you are generous hosts.

Thank you Admins: Elizabeth Forrester, Diane Goodfellow, Christopher Malek, Jeri Chittum; you have saved me.

Thank you Dear Colleagues: Matthew Hanna, Joe Kiniry, Mika Nyström; I cannot start to count the things

you have taught me. You cannot start to count the ways in which they have influenced my work.

Thank you Producer: Steven Schkolne; who will make it happen?



v

Thank you Gang for Interactive Graphics: Paul Kry, Bob Sumner, Victor Zordan;

you keep things interesting, very interesting.

Thank you Friends, Old and New: Sascha Matzkin, Alexander Nicholson, Zoë Wood, Matthew Hanna,
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Abstract

Finite element solvers are critical in computer graphics, engineering, medical and biological application ar-

eas. For large problems, the use of adaptive refinement methods can tame otherwise intractable computational

costs. Current formulations of adaptive finite element mesh refinement seem straightforward, but their imple-

mentations prove to be a formidable task. We offer an alternative point of departure which yields equivalent

adapted approximation spaces wherever the traditional mesh refinement is applicable, but proves to be signif-

icantly simpler to implement. At the same time it is much more powerful in that it is general (no special tricks

are required for different types of finite elements), and applicable to novel discretizations where traditional

mesh refinement concepts are not of much help, for instance on subdivision surfaces.

For classical finite-elements, adaptive refinement is typically carried out by splitting mesh elements in

isolation. While so-called mesh refinement is well-understood, it is considered cumbersome to implement

for unstructured three-dimensional meshes, among other settings, in particular because mesh compatibility

must be explicitly maintained. Furthermore, element-splitting does not apply to problems that benefit from

higher-order B-spline discretizations and their more general counterparts, so-called subdivision elements. We

introduce a simple, general method for adaptive refinement which applies uniformly in all these settings and

others. The basic principle of our approach is to refine basis functions, not elements. Our method isnaturally

compatible: unlike mesh refinement, basis refinement never creates incompatible meshes. Our contributions

are (a) a minimal mathematical framework, with (b) associated algorithms for basis refinement; furthermore,

we (c) describe the mapping of popular methods (finite-elements, wavelets, splines and subdivision) onto this

framework, and (d) demonstrate working implementations of basis refinement with applications in graphics,

engineering, and medicine.

Our approach is based on compactly supported refinable functions. We refine by augemnting the basis

with narrowly-supported functions, not by splitting mesh elements in isolation. This removes a number

of implementation headaches associated with element-splitting and is a general technique independent of

domain dimension, element type (e.g., triangle, quad, tetrahedron, hexahedron), and basis function order

(piecewise linear, quadratic, cubic, etc..). The (un-)refinement algorithms are simple and require little in

terms of data structure support. Many popular disretizations, including classical finite-elements, wavelets

and multi-wavelets, splines and subdivision schemes may be viewed as refinable function spaces, thus they

are encompassed by our approach.
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Our first contribution is the specification of a minimal mathematical framework, at its heart a sequence

of nested approximation spaces. By construction, the bases for these spaces consist of refinable functions.

From an approximation theory point of view this is a rather trivial statement; however it has a number of

very important and highly practical consequences. Our adaptive solver frameworkrequires onlythat the

basis functions used be refinable. It makesno assumptionsas to (a) the dimension of the domain; (b) the

tesselation of the domain, i.e., the domain elements by they triangles, quadrilaterals, tetrahedra, hexahedra,

or more general domains; (c) the approximation smoothness or accuracy; and (d) the support diameter of

the basis functions. The specification of the nested spaces structure is sufficiently weak to accomodate many

practical settings, while strong enough to satisfy the necessary conditions of our theorems and algorithms.

Our second contribution is to show that basis refinement can be implemented by a small set of simple

algorithms. Our method requires efficient data structures and algorithms to (a) keep track of interactions

between basis functions (i.e., to find the non-zero entries in the stiffness matrix), and (b) manage a tesselation

of the domain suitable for evaluation of the associated integrals (i.e., to evaluate the entries of the stiffness

matrix). We provide a specification for these requirements, develop the relevant theorems and proofs, and

invoke these theorems to produce concrete, provably-correct pseudo-code. The resulting algorithms, while

capturing the full generality (in dimension, tesselation, smoothness, etc.) of our method, are surprisingly

simple.

Our third contribution is the mapping of finite-elements, wavelets and multi-wavelets, splines and subdi-

vision schemes onto our nested spaces framework. No single discretization fits all applications. In our survey

of classical and recently-popularized discretizations we demonstrate that our unifying algorithms for basis

refinement encompass a very broad range of problems.

Our fourth contribution is a set of concrete, compelling examples based on our implementation of ba-

sis refinement. Adaptive basis refinement may be profitably applied in solving partial differential equations

(PDEs) useful in many application domains, including simulation, animation, modeling, rendering, surgery,

biomechanics, and computer vision. Our examples span thin shells (fourth order elliptic PDE using a Loop

subdivision discretization), volume deformation and stress analysis using linear elasticity (second order PDE

using linear-tetrahedral and trilinear-hexahedral finite elements respectively) and a subproblem of electrocar-

diography (the generalized Laplace equation using linear tetrahedral finite elements).
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Preface

This work is about basis refinement. This is a simple, natural, general way to transform a continuous problem

into a discrete problem, capturing all (and only) the essential features of the continuous solution. It is an

alternative to mesh refinement, focusing on basis functions instead of mesh elements. We will explain the

advantages (and limitations!) of this method. For finite element discretizations, its adoption is optional (and

often desirable). For a broader class of discretizations, its adoption is almost unavoidable. There are already

concrete, compelling applications of this method, such as those illustrated in the figure below.

Figure 1: Example problems solved adaptively using basis refinement. A variety of physical simulations
benefit from our general adaptive solver framework: crushing cylinder, medical planning, surgery simulation,
and pillows. For details see Chapter5.
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In this preface we develop a motivating example. Many of the key ideas will show up. Starting with

Chapter 1 we will explain everything again, in more detail. In this preface, we assume that the reader is

familiar with the method offinite elements(FEs) [Strang and Fix 1973].

Piecewise Linear Approximation in One Dimension

We consider a simple example to elucidate the difference between finite-element and basis-function refine-

ment. As a canonical example of a second order elliptic PDE consider the Laplace equation with an essential

boundary condition,

∇2u(x) = 0, x ∈ Ω, u|∂Ω = ū .

To keep things simple, consider for now a one dimensional domain,Ω ⊂ R, with boundary conditions

u(0) = u(1) = ū. An FE method typically solves the weak form of this equation, selecting from thetrial

spacethe solutionU which satisfies

a(U, v) =
∫

Ω

∇U · ∇v = 0 ,

for all v in sometest space. We write the solutionU = g + u as a sum of the functiong that satisfies

the inhomogeneous essential boundary condition, and of thetrial functionu that satisfies the homogeneous

boundary conditionu(0) = u(1) = 0. In the Galerkin method, which we adopt in this preface, these test and

trial spaces coincide.

Since the bilinear forma(·, ·) contains only first derivatives, we may approximate the solution using

piecewise linear, i.e.,C0 basis functions for both spaces. The domain is discretized into a disjoint union of

elements of finite extent. Each such element has an associated linear function (see Figure2). This results in

a linear system,

Ku = b ,

where thestiffness matrixentrieskij describe the interaction of degrees of freedom (DOFs) at vertexi andj

under the action ofa(·, ·); the right hand sideb incorporates the inhomogeneous boundary conditions; andu

is the unknown vector of DOFs.

We shall discuss the discretization from two perspectives, which we will refer to as the (finite)element

point of view and thebasis(function) point of view respectively.

Finite Elements In the element point of view, the approximation function is described by its restriction

onto each element (see Figure2-left).

Basis Functions In the basis point of view, the approximation function is chosen from the space spanned

by the nodal basis functions (see Figure2-right).



xvi

Figure 2: Illustration of the finite-element(left) and basis-function (right) points of view using linear B-
splines. In the element point of view, the solution is described over each element as a linear function interpo-
lating the function values at the endpoints of the element. In the basis point of view, the solution is written as
a linear combination of the linear B-spline functions associated with the mesh nodes.

Adaptive Refinement

We consider adaptive refinement. The two perspectives lead to very different strategies! Anadaptive solver,

guided by anerror indicator, refines the solution process bylocally adjusting the resolution of the discretiza-

tion: in the element perspective, this isrefinement of the domain partition;in the basis perspective, this is

enrichment of the approximation space.

Element Refinement In the most simple scheme, we bisect an element to refine, and merge a pair of el-

ements to unrefine. In bisecting an element, the linear function over the element is replaced by a piecewise

linear function comprised of linear segments over the left and right subelements. The solution remains un-

changed if the introduced node is the mean of its neighbors. This style of refinement is very attractive since

it is entirely local:each element can be processed independently of its neighbors(see Figure3, left).

Basis Refinement Alternatively, we may reduce the error by enlarging the approximation space with addi-

tional basis functions. To refine, we augment the approximation space withfiner (more spatially-localized)

functions; conversely to unrefine we eliminate the introduced functions. One possibility is to add a dilated

basis function in the middle of an element to effect the same space as element bisection (see Figure3-

middle). The solution remains unchanged if the coefficient of the introduced function is zero. We refer to

suchdetail or odd coefficients in deliberate analogy with the use of these terms in the subdivision litera-

ture [Zorin and Schr̈oder 2000]. Bases constructed in this fashion are exactly the classicalhierarchical bases

of the FE literature [Yserentant 1986]. Note that in this setup there may be entries in the stiffness matrix

corresponding to basis functions with quite different refinement levels.

Alternatively we use therefinabilityof the linear B-spline basis functions:

Refinement relation

Thehat function can be written as thesum of three dilated hats(see Figure3).
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Figure 3: Comparison of element refinement (left), and basis refinement withdetails(middle) orsubstitution
(right). Observe that for linear B-splines, each introduction of a finer odd basis function (middle) effects the
same change as element bisection (left). Element refinement does not change the current approximation if the
introduced coefficient is chosen as the mean of its neighbors; likewise for detail refinement if the coefficient
of the detail function is zero, and for substitution refinement if the even and odd coefficients are chosen asui
and 1

2ui respectively, whereui is the coefficient of the removed function.

We maysubstituteone of the basis functions by three dilated versions,following the prescription of the

refinement relation.. Once again with appropriately chosen coefficients the solution is unaltered. Here too we

will have entries in the stiffness matrix which correspond to basis functions from different levels. In contrast

to refinement withdetails, this refinement usingsubstitutionin practice leads to little disparity between

(coarse and fine) levels, since coarser functions areentirely replaced by finer functions.

Higher Order Approximation in One Dimension

Because piecewiselinear functions were sufficient for the discretization of the weak form of Laplace’s equa-

tions we have seen very few differences between the element and basis points of view, excepting differing

approaches to adaptive refinement. Things are dramatically different when we work with a fourth order

elliptic problem! Consider the biharmonic equation with interpolation and flux boundary conditions,

∇4u(x) = 0 , x ∈ [0, 1] , u|∂Ω = ū ~n · ∇u|∂Ω = 0 .

This kind of functional is often used, e.g., in geometric modeling applications. Its weak form involves second

derivatives, necessitating1 basis functions which are inH2.

As before, we begin with a one dimensional example:Ω ⊂ R, u(0) = u(1) = ū, andu′(0) = u′(1) = 0.

One of the advantages of the element point of view was that each element could be considered in isolation

from its neighbors. To maintain this property and satisfy theC1 condition a natural approach is to raise

the order of the local polynomial over each element. The natural choice that maintains symmetry is the

1Even though the biharmonic equation requires derivatives of fourth order to vanish, any solution to it can beapproximatedby
functions which are onlyC1.
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Hermite cubic interpolant (see Figure4). Two degrees of freedom (DOFs), displacement and derivative, are

now associated with each vertex. The resulting piecewise cubic function is clearlyC1 since the appropriate

compatibility conditionsare satisfied between elements incident on a given vertex (see Figure4). Note that

in using Hermite interpolants the dimension of our solution space has doubled and non-displacement DOFs

were introduced—these are quite unnatural in applications which care about displacements, not derivatives.

Figure 4: Basis functions of cubic Hermites (top row) and quadratic B-splines (middle row) giveC1 ap-
proximations (bottom row). The Hermite basis functions are centered at nodes and supported over adjacent
elements hence allow either element or basis refinement, but they require non-displacement DOFs (red ar-
rows denoting tangents) as well as displacement DOFs (red circles) and do not easily generalize to higher
dimensions. The B-splines have only displacement DOFs (blue diamonds) but the curve is non-interpolating.
There are two kinds of Hermite basis functions (associated to displacement and derivative coefficients, re-
spectively); there is one kind of B-spline basis function. The B-spline basis functions have larger support
hence allow only basis refinement.

As an alternative basis we can use quadratic B-splines (see Figure4). They satisfy theC1 requirement,

require only displacement DOFs, and lead to smaller linear systems. If this is not enough motivation for

B-splines, we will soon learn that in the bivariate, arbitrary topology setting, Hermite interpolation becomes

(considerably!) more cumbersome, while generalizations of B-splines such as subdivision methods continue
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to work with no difficulties.

We again compare the element and basis approaches to adaptive refinement, and learn that basis refine-

ment outruns element refinement:

Element Refinement Using Hermite cubic splines it is easy to refine a given element through bisection.

A new vertex with associated value and derivative coefficients is introduced in the middle of the element

and the single cubic over theparentelement becomes a pair ofC1 cubics over the twochild elements. This

refinement can be performed without regard to neighboring elements.

For quadratic (and higher order) B-splines refinement of an elementin isolation, i.e., without regard to its

neighbors,is impossible!B-spline basis functions of degree two or higher overlap more than two elements;

this is trouble for isolated element refinement.

Basis Refinement Hermite basis functions are refinable thus admit basis refinement. The picture is the

same as in the hat function case, except that two basis functions are associated with each vertex, and a

different (matrix) refinement relation holds. Quadratic (and higher order) B-splines, which do not admit

isolated element refinement, do admit basis refinement since they all observe a refinement relation. So long

as a refinement relation holds, basis refinement doesn’t care what discretization we use, be it linear, Hermite,

quadratic B-Spline, etc..

Piecewise Linear Approximation in Two Dimensions

In the two dimensions, we find new differences between the element and basis perspectives that were not

apparent in one dimension. We return to Laplace’s equation with an essential boundary condition, this time

with Ω ⊂ R2.

Again we may approximate the solution using a piecewise linear, i.e.,C0 function this time over atri-

angulation(or some othertesselation) of the domain. The DOFs live at the vertices and define a linear

interpolant over each triangle. As before, we view the discretization alternating between the (finite)element

andbasis(function) points of view. The element point of view definesu(x) by its restriction over each ele-

ment, whereas the basis function point of view definesu(x) as a linear combination of basis functions, each

of which spansseveral elements.

Comparing the two perspectives in two dimensions sheds new light on the simplicity of basis refinement:

Element Refinement One possibility is to quadrisectonly those triangles that areexcessively coarse(as

determined by some error indicator). A new problem appears that did not reveal itself in one dimension:

this approach produces anincompatiblemesh, i.e., incompatibly placed nodes (known asT-verticesafter

the T shape formed by incident edges), shown in Figure5. Such nodes are problematic since they in-

troduce discontinuities. Introduction of conforming edges (e.g.,red/greentriangulations) can fix these in-
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compatibilities [Bey 2000]. Alternatively one may use bisection of the longest edge instead of quadrisec-

tion [Rivara and Inostroza 1997]. This approach is limited to simplices only and becomes very cumbersome

in higher dimensions [Arnold et al. 2001].

Figure 5: Refinement of an elementin isolationproduces T-vertices, or incompatibilities with adjacent ele-
ments. In the case of 2D triangulations (left) incompatibilities may be addressed by introducing conforming
edges; in other settings, e.g.. quadrilateral meshes, 3D tetrahedral meshes or hexahedral meshes (right), the
analogy to insertion of conforming edges is more involved. Basis refinement never causes such incompati-
bilities.

Basis Refinement Alternatively, we may augment the approximation space with finer, more compactly

supported functions. Consider refining the original mesh globally via triangle quadrisection, which preserves

all the existing vertices and introducesodd vertices on the edge midpoints. Every node in this finer mesh

associates to a (finer) nodal basis function supported by its (finer) incident triangles. We may now augment

our original approximation space (induced by the coarser triangulation) with any of the nodal basis functions

of the finer mesh. As such, the result is simply an expanded linear combination with additional functions.

With this approach compatibility is automatic; we don’t deal with problematic T-vertices.

As before, we mayaugmentthe current basis withodd finer basis functions (i.e.,details), or instead we

maysubstitutea coarser function with all finer (evenandodd) functions of its refinement relation.

Higher Order Approximation in Two Dimensions

The weak form for the Laplace equation requires onlyC0 basis functions (integrable first derivatives). This

changes as we consider fourth order elliptic equations, which appear in thin plate and thin shell problems. For

example, thin plate energies are used extensively in geometric modeling. The weak form of the associated

membrane and bending energy integrals involves second derivatives, necessitating basis functions which are

in H2.

In this setting the element point of view has a serious handicap. Building polynomials over each element

and requiring that they match up globally withC1 continuity leads to high order and cumbersome Hermite

interpolation problems. On the other hand, constructing basis functions over arbitrary triangulations using,

for example, Loop’s [1987] subdivision scheme is quite easy and well understood (and is one of the methods
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we pursue). Such basis functions are supported on more than a one-ring of triangles. Consequently, locally

refining the triangulation induces a new function space which does not in general span (a superset of) the

original space. In the basis point of view, the original space is augmented, thus the original span is preserved.

Summary and Preview Element refinement becomes cumbersome, intractable or even impossible as the

number of dimensions or approximation order is increased. In contrast, basis refinement applies naturally

to any refinable function space. We invite the reader to fill whichever details interest them most: Chapter1

presents a background and overview, Chapter2 lays out the basic theory which leads naturally to the simple

algorithms presented in Chapter4; these apply to a general class of discretizations (Chapter3) and have

compelling applications (Chapter5) in graphics, engineering, and medicine.
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Chapter 1

Background and Motivation

Partial differential equations (PDEs) model fascinating problems; they are the foundation of critical applica-

tions in computer graphics, engineering, and medical simulation [Eriksson et al. 1996]. Although adaptive

solvers for PDEs and integral equations promise to reduce computational cost while improving accuracy,

they are not employed broadly. Building adaptive solvers can be a daunting task, evidence the large body of

literature onmesh refinementmethods. We argue for a paradigm shift: our method refines basis functionsnot

mesh elements. This removes several implementation headaches associated with other approaches and is a

general technique independent of domain dimension and tesselation as well as approximation space smooth-

ness and accuracy. Our approachunifiesearlier ideas from the wavelets and hierarchical splines literature; it

generalizesthese approaches to novel settings via the theory and structure ofsubdivision.
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1.1 Introduction

Many computer applications involve modeling of physical phenomena with high visual or numerical ac-

curacy. Examples from the graphics literature include the simulation of cloth [House and Breen 2000], wa-

ter [Foster and Fedkiw 2001], human tissue [Wu et al. 2001] and engineering artifacts [Kagan and Fischer 2000],

among many others. Examples from the mechanics literature include elasticity of continuous media such as

solids, thin-plates and -shells [Malvern 1969], conductive thermal transfer [Hughes 1987, Lewis et al. 1996],

and turbulent fluid flow [Bernard and Wallace 2002]. Typically the underlying formulations require the solu-

tion of partial differential equations (PDEs). Such equations are also at the base of many geometric model-

ing [Celniker and Gossard 1991] and optimization problems [Lee et al. 1997]. Alternatively the underlying

formulation is in terms ofintegral equations, e.g., Kajia’s rendering equation [1986] and boundary integral

equations for heat conduction [Divo and Kassab 2003], or ordinary differential equations (ODEs) which ap-

pear, e.g., in control problems [Dullerud and Paganini 2000].

Most often the continuous equations are discretized with the finite difference (FD) or Galerkin, e.g., fi-

nite element (FE), method before a (non-)linear solver can be used to compute an approximate solution to

the original problem [Strang and Fix 1973, Eriksson et al. 1996]. For example, Terzopoulos and cowork-

ers described methods to model many physical effects for purposes of realistic animation [1987b, 1988].

Their discretization was mostly based on simple, uniform FD approximations. Later Metaxas and Terzopou-

los did employ finite element (FE) methods since they are more robust, accurate, and come with more

mathematical machinery [1992]. For this reason, human tissue simulations have long employed FE meth-

ods (e.g., [Gourret et al. 1989, Chen and Zeltzer 1992, Keeve et al. 1996, Koch et al. 1996, Roth et al. 1998,

Azar et al. 2001]).

To reduce computation and increase accuracy we useadaptivediscretizations, allocating resources where

they can be most profitably used. Building such adaptive discretizations robustly is generally very difficult

for FD methods and very little theoretical guidance exists. For FE methods many different approaches exist.

They all rely on the basic principle that the resolution of the domain discretization, ormesh, should be

adjusted based on local error estimators [Babǔska et al. 1986]. For example, Debunne et al. superimposed

tetrahedral meshes at different resolutions and used heuristic interpolation operators to transfer quantities

between the disparate meshes as required by an error criterion [2001]. Empirically this worked well for

real-time soft-body deformation, though there exists no mathematical analysis of the method. A strategy

based on precomputed progressive meshes (PM) [Hoppe 1996] was used by Wu et al. [2001] for surface

based FE simulations. Since the PM is constructed in a pre-process it is unclear how well it can help adapt

to the online simulation. O’Brien and Hodgins followed a more traditional approach by splitting tetrahedra

in their simulation of brittle fracture (mostly to accommodate propagating cracks) [1999]. Suchrefinement

algorithms have the advantage that they come with well established theory [Cohen et al. 2001] and result

in nested meshes and by implication nested approximation spaces. Since the latter is very useful for many
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multi-resolution techniques (e.g., for multigrid solvers [Bank et al. 1988, Wille 1996]) we have adopted a

generalized form of refinement (and unrefinement) as our basic strategy.

Typical mesh refinement algorithms approach the problem of refinement as one of splitting meshel-

ementsin isolation. Unfortunately this leads to a lack ofcompatibility (also known ascrackscaused by

T-vertices); to deal with this issue one may: (a) constrain T-vertices to the neighboring edge; (b) use La-

grange multipliers or penalty methods to numerically enforce compatibility; or (c) split additional elements

through insertion of conforming edges as inred/green triangulationsor bisection algorithms (the technique

used by O’Brien and Hodgins [1999], for example). Each one of these approaches works, but none is

ideal [Carey 1997]. For example, penalty methods lead to stiff equations with their associated numerical

problems, while red/green triangulations are very cumbersome to implement in 3D because of the many

cases involved [Bey 1995, Bey 2000]. As a result various different, specialized algorithms exist for different

element types such as triangles [Rivara and Iribarren 1996, Bank and Xu 1996, Rivara and Inostroza 1997],

tetrahedra [Wille 1992, Liu and Joe 1995, Liu and Joe 1996, Plaza and Carey 2000, Arnold et al. 2001] and

hexahedra [Langtangen 1999].

This lack of a general approach coupled with at times daunting implementation complexity (especially

in 3D) has no doubt contributed to the fact that sophisticated adaptive solvers are not broadly used in com-

puter graphics applications or general engineering design. The situation is further complicated by the need

of many computer graphics applications for higher order (“smooth”) elements. For example, Celniker and

co-workers [1991, 1992] used higher order finite elements for surface modeling with physical forces and geo-

metric constraints (see also [Halstead et al. 1993] and [Mandal et al. 1997] who used Catmull-Clark subdivi-

sion surfaces and [Terzopoulos and Qin 1994] who used NURBS). None of these employed adaptivity in their

solvers: for B-spline or subdivision bases, elementscannotbe refined individually without losing nestedness

of the approximation spaces. Welch and Witkin, who used tensor product cubic B-splines as their constrained

geometric modeling primitive, encountered this difficulty [Welch and Witkin 1992]. To enlarge their FE solu-

tion space they added finer-level basis functions, reminiscent of hierarchical splines [Forsey and Bartels 1988],

instead of refining individual elements. Later, Gortler and Cohen used cubic B-spline wavelets to selectively

increase the solution space for their constrained variational sculpting environment [Gortler and Cohen 1995].

Contributions The use of hierarchical splines and wavelets in an adaptive solver are specialized instances

of basis refinement, in which basis functionsnot elements are refined. From an approximation theory point

of view this is a rather trivial statement; however it has a number of very important and highly practical con-

sequences. Our adaptive solver frameworkrequires onlythat the basis functions used be refinable. It makes

no assumptionsas to (a) the dimension of the domain; (b) the tesselation of the domain, i.e., meshes made

of triangles, quadrilaterals, tetrahedra, hexahedra or more general meshes; (c) the approximation smoothness

or accuracy; and (d) the support diameter of the basis functions. The approach isalways globally compat-

ible without requiring any particular enforcement of this fact. Consequently, all the usual implementation
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headaches associated with maintaining compatibility are entirely eliminated. What does need to be managed

are tesselations of the overlap between basis functions, possibly living at very different levels of the refine-

ment hierarchy. However, we will show that very short and simple algorithms, based on simple invariants,

keep track of these interactions. Our method applies whenever a finite-basis discretization is suitable (e.g.,

this is the case for Ritz, Galerkin, or collocation methods), and accommodates both ODE, PDE and integral

formulations. We demonstrate its versatility by applying it to several different PDEs, involving both surface

and volume settings (see Figure1 and Chapter5).

1.2 Background and Overview

PDEs appear frequently in graphics problems including simulation, modeling, visualization, and animation.

Integral equations are less common but very important in problems including global illumination, orradios-

ity [Greenberg et al. 1986]. In Chapter5 we survey these applications as well as others, spanning graphics,

mechanics, medicine, vision and control of dynamical systems.

The continuous problem must be madediscretebefore it is numerically solved by the computer. Our

work builds on the idea of afinite-basis discretization, in which the unknown continuous solutionu(x) is

projected onto thetrial spaceof linear combinations of a fixedfinite set ofbasisfunctions, i.e.,PNu(x) =

{
∑
N uiϕi(x)}, wherePN is the projection ordiscretizationoperator (see Section2.1). Chapter3 de-

scribes different finite-basis discretizations including wavelets, multiwavelets, finite elements, and subdivi-

sion schemes. Discretizations which do not explicitly use basis functions, e.g.,finite-differences, are beyond

the scope of this work and their description we leave to the literature [Strang and Fix 1973, Mickens 2000].

In mesh-basedapproaches, the basis functions are defined piecewise over some tesselation of the domain.

There is a large body of literature, [Field 1995, Carey 1997, Thompson et al. 1999], on the theory and practice

of mesh generation; it remains a costly component of mesh-based approaches, because (a) the domain of

the underlying problem may have complex geometry, (b) the domain may change over time, e.g., when

Lagrangian coordinates are used, and (c) adaptive computations repeatedly modify the mesh. The cost of

managing meshes motivates recent developments inmesh-lessmethods. Here the basis functions are defined

without reference to a tesselation. Babuška et al. [2002] recently presented a unified mathematical theory and

review of meshless methods and the closely relatedgeneralized finite elements.

Having chosen a particular mesh-based or mesh-less method, the discrete problem must be posed, typi-

cally as acollocated, weak(e.g., Galerkin, Petrov-Galerkin), orvariational formulation (see Section3.1.2),

and the appropriate numerical solver invoked. In general the discrete formulation may belinear, in which

case a numerical linear-system solver is used [Press et al. 1993], or non-linear, in which case a specialized

solver or numerical optimizer is required [Eriksson et al. 1996].

In all cases, functions in the approximation space are interrogated —most oftenintegrated— via exact or

approximatenumerical quadrature(see Section2.3and [Richter-Dyn 1971, Atkinson 1989]). This involves
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evaluating the approximate solution over an appropriate tesselation of the domain, which in the mesh-based

case may (or may not!) be the same as the function-defining mesh.

An adaptivesolver modifies the discretization over the course of the computation,refining to increase

precision, andunrefiningto economize computation. Theerror indicator guides these decision to (un)refine

[Eriksson et al. 1996]. Although error criteria continue to be an active and interesting area for improvement,

they are not our focus here: we use standard and widely-accepted error indicators in all our examples, as our

approach is compatible with existing error indicators.

The solver may refine the discretization in astructuredor unstructuredmanner. In structured refine-

ment the discretization, at any instant of the computation, may be reconstructed in a systematic way from

some fixed underlyingmulti-resolution structure(see Chapter2). For example, wavelet bases are always

a subset of the complete multi-resolution set of wavelets (see Section3.2 and [Strang 1989]). A key con-

sequence is that the solver may arrive at a particular adapted discretization through various permutations

of a sequence of local refinements. In contrast,unstructured approaches are free of an underlying multi-

resolution structure; this gives freedom of refinement, at some costs. For example, an unstructured dis-

cretization might carry no record, orhistory, of the sequence of refinements that it experienced. A straight-

forward example of unstructured approaches with no history areremeshingmethods, which adapt the dis-

cretization by reconstructing from scratch the entire tesselation [Thompson et al. 1999]. Structured meth-

ods inherit much of the approximation and multi-resolution theory that has been developed over the past

decades [Méhaut́e et al. 1997, DeVore 1998, Cohen 2003a]; that is our primary motivation for adopting a

structured approach.

For mesh-based discretizations, most approaches to adaptivity focus either onmeshor basisrefinement,

the former increasing the resolution of the tesselation and consequently the basis, the latter increasing the

resolution of the basis directly. In either case, once the resolution of the basis is increased, the resolution

with which numerical quadrature is performed must be appropriately adjusted. This is automatic for mesh

refinement in the typical case that the function-defining mesh is also the quadrature mesh; that is so, e.g., for

finite elements.

Among the most popular mesh-based discretizations arefinite elements, which produce piecewise poly-

nomial trial spaces; they are featured in many graphics applications, most recently in real-time anima-

tion [Halstead et al. 1993, Müller et al. 2002, Kry et al. 2002, Capell et al. 2002a], simulation of ductile frac-

ture [O’Brien et al. 2002], human tissue [Snedeker et al. 2002], and the sound of vibrating flexible bod-

ies [O’Brien et al. 2001]; also in global illumination [Troutman and Max 1993, Szirmay-Kalos et al. 2001],

computer-aided design (CAD) applications [Qian and Dutta 2003], as well as computer-aided modeling (CAM)

applications such as procedural modeling [Cutler et al. 2002], interactive surface design [Halstead et al. 1993,

Terzopoulos and Qin 1994, Mandal et al. 2000, Mandal et al. 1997], and so forth [Celniker and Gossard 1991,

Celniker and Welch 1992, Terzopoulos et al. 1987b, Terzopoulos and Fleischer 1988],

[Metaxas and Terzopoulos 1992, Welch and Witkin 1992, Gortler and Cohen 1995].
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State of the artadaptivefinite-elements use element-centric discretizations: the basis functions are defined

piecewise over each element, with somecompatibility conditionfor the interfaces between element subdo-

mains, e.g., the function must be continuous on the edge between two elements, alternatively its mean value

must be the same on both sides of the edge, and so forth; for examples of compatibility conditions please see

Section3.4and [Crouzeix and Raviart 1973, Rannacher and Turek 1992, Raviart and Thomas 1977],

[Brezzi and Fortin 1991].

For finite-element approaches, refinement isgeometric division of mesh elements.Unfortunately, lo-

cal element splitting does not in general ensure global compatibility of the modified mesh. As mentioned

earlier, several number of approaches (constraints, Lagrange multipliers, etc.) are used to resolve this is-

sue [Carey 1997]. Local element splitting appears simple at first. But it does not generalize easily, evi-

dence an abundance of algorithms specialized to particular tesselations, e.g., [Wille 1992, Liu and Joe 1995,

Liu and Joe 1996, Plaza and Carey 2000, Arnold et al. 2001, Langtangen 1999, Rivara and Iribarren 1996],

[Bank and Xu 1996, Rivara and Inostroza 1997]. A critical review of the existing mesh-based adaptive algo-

rithms suggests they tend to be complex (adding constraints or splitting neighboring elements), or lead to

undesirable algorithmic features (Lagrange multipliers or penalty methods). A general, flexible, and robust

mesh refinement algorithm should at the same time besimpleto implement.

Mesh-lessdiscretizations discard the function-defining mesh thus avoiding these difficulties. Here the trial

spaces are again linear combinations of basis functions with either global or local support, but the basis func-

tions no longer have simple forms over domain elements, e.g., in contrast to the piecewise polynomial basis

functions of the finite elements. In mesh-less methods, numerical integration is not straightforward: the func-

tion supports are not aligned to (geometrically simple) mesh elements, hence numerical quadrature might re-

quire a more involved tesselation builtnot from simple shapes such as triangles, simplices, etc.. Furthermore,

these methods require special care in the presence ofessentialboundary conditions [Strang and Fix 1973].

Finally, the resulting linear systems may be singular, preventing the use of (among others) multigrid solvers.

These difficulties can (and have been) overcome [Babǔska et al. 2002], but at the loss of some of the simplic-

ity of the mesh-less idea.

Since for these methods the mesh is absent, the natural approach to adaptivity isbasis-refinement. Typ-

ically, this meansaugmenting the basis with more basis functions: such a processby constructionstrictly

enlarges the approximation space; consequently a sequence of refinements producesnestedapproximation

spaces. Recall that for numerical quadrature, mesh-less approaches still require tesselation. But it isin the

background.It is modified as aconsequenceof changes to the basis.

Our work is inspired by this idea: the basis leads, the structures for numerical quadrature follow. Our

method isnot mesh-less. That is its simplicity. Meshes lead to simple basis functions thus simple algorithms

and quadrature schemes. Our basis functions are made of simple forms over simple mesh elements. But we

learn from the mesh-less paradigm:focusing on the mesh elements is harmful; focusing of the basis functions

is conceptually desirable. We demonstrate that it is alsoalgorithmicallydesirable.
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Chapter4 presents simple algorithms for implementing basis refinement on mesh-based discretizations.

We implemented these algorithms and applied them to several pragmatic problems5. We begin, in the

following chapter, by laying down the basic structure that unifies mesh-based multi-resolution finite-basis

discretizations.
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Chapter 2

Natural Refinement

Finite-basis discretization are a basis for many popular approximation strategies. When it is used to approxi-

mately solve a variational or boundary-value problem, two distinct concepts must collaborate:approximation

space and numericalintegration. If we begin with a hierarchy ofnested approximation spaces, then adaptive

refinement follows naturally. The remaining goal is to make numericalintegrationeasy for this class of ap-

proximations. We present a lightweight framework to make this possible, first (in this chapter) in the abstract,

then (in the following chapter) using concrete examples.
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2.1 The Finite-Basis Discretization

Consider some variational problem in a Hilbert spaceH over a parametric domainΩ—we wish to find

a functionu(x) ∈ H(Ω) minimizing some expression of potential energy. Alternatively, consider some

boundary value problem—we wish to find au(x) satisfying some partial differential equation (PDE) and

boundary conditions. In either case, computing the exact solution is often impossible or intractable, and we

settle for an approximate solution.

The finite-basis discretization is to choose a finite linearly-independent1set of basis functionsB0 =

{ϕ1(x), . . . , ϕN (x)}, and to approximateu(x) ∈ H(Ω) as a linear combination of these basis functions.

The weighted residual method is to choose among the basis functions of thetrial spaceS0 = {
∑
N uiϕi(x)}

the minimizing function; in the variational case minimizing refers to potential energy, in the PDE case mini-

mizing refers to some measure of the residual. This minimizing function is the best approximation tou(x) for

the given finite-basis discretization—that is the principle of the weighted residual method2. Specializations

of this approach include the Ritz, Galerkin, Petrov-Galerkin and collocation methods [Strang and Fix 1973].

In general, the weighted residual method forms asequenceof trial spaces,S0, S1, S2, . . . , which in the

limit is dense in the solution space, i.e.,

lim
n→+∞

‖u− Pnu‖H = 0 ,

wherePn is the orthogonal projector ontoSn. The above property ofdiminishing errorsis the necessary

and sufficient condition for convergence of the weighted residual method: for every admissibleu ∈ H, the

distance to the trial spacesSn should approach zero asn→∞. 3

The weighted residual method turns a search for a continuous functionu into a search for a finite set

of coefficients{ui|1 ≤ i ≤ N} which correspond to a given finite-basis discretization. In many cases the

search may be formulated as a system ofN discrete algebraic equations—a tractable and well-understood

computational problem.

2.2 Refinement

The choice of trial space determines the approximation error as well as the computational cost of finding the

approximate solution. The former and latter can be traded-off by employingunrefinement.

In the broadest sense, refinement is an alteration of a given approximation space to reduce the approxi-

1In many applications we relax this requirement and use a set of linearly-dependent “basis” functions (in an abuse of terminology,
here we write “basis” but mean “spanning set”). For the remainder of this discussion we will use this relaxed definition, explicitly
treating linear-independence only in Section2.4.

2In general, the test functions of the weighted residual method may also be constructed by a finite-basis discretiza-
tion [Strang and Fix 1973]. We elaborate on this in Section3.1.2. For simplicity, we discuss only the trial spaces in this chapter,
however basis refinement applies also to the test spaces.

3A sufficient, but not necessary, condition for diminishing errors is the construction ofnestedspaces,S0 ⊂ S1 ⊂ S2 ⊂ . . . , which
assures that approximation error is never increasing; this is stronger than required for the weighted residual method.
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mation error—at the expense of increased computational cost. Conversely,unrefinement is an alteration to

reduce computational cost—at the expense of increased approximation error.

More precisely,refinement ofSn creates a larger trial spaceSn+1 ⊃ Sn. Conversely, unrefinement

creates a smaller trial spaceSn+1 ⊂ Sn. The difficulty lays in imposing sufficient structure, simplifying

implementation on a computer, while keeping the idea and its implementation broadly applicable in many

settings.

2.2.1 Nested Spaces

We build our structure over a given sequence of nested function spaces4.This sequence, when combined with

associated Riesz bases, make up our refinementscheme.

Nested Spaces We are given an infinite sequence of nested spaces,V (0) ⊂ V (1) ⊂ V (2) ⊂ . . . , which in

the limit is dense in the solution space.

Detail Spaces We define an associated sequence,D(0), D(1), D(2), . . . ,where thedetail spaceD(p) is the

complement ofV (p+1) ontoV (p), i.e., thefinerspaceV (p+1) may be expressed as the direct sumV (p)⊕D(p)

of the immediately coarserspace and its details.

Riesz Bases A Riesz basisof a Hilbert spaceH is defined as any set{φi|i ∈ Z} such that

1. {φi|i ∈ Z} spansH, i.e., finite linear combinations
∑
uiφi are dense inH, and

2. there exist0 < C1 ≤ C2 such that for all finitely supported sequence{ui|i ∈ Z},

C1

∑
i

|ui|2 ≤ ||
∑
i

uiφi||2H ≤ C2

∑
i

|ui|2 .

We associate with every spaceV (p) a Riesz basis{φ(p)
i } consisting ofscaling functions, likewise with

every detail spaceD(q) a Riesz basis{ψ(q)
i } consisting ofdetail functions5. For some applications, it is

convenient to have every level-q detail,ψ(q)
i , orthogonal to every level-q scaling function,φ(q)

j , however in

generalorthogonality is not essential6.

In the next chapter we will examine various practical discretization schemes (among them subdivision

schemes, wavelets, and multiscaling functions) which naturally give us a hierarchy of nested spacesV (p).

Any of these discretization schemes are fertile ground for applying our approach.

4This approach can be generalized to the broaddiscrete frameworkintroduced by Harten in 1993. This framework is summarized in
Section2.5

5In some special settings,{ψ(p)
i } ⊂ {φ(p+1)

j }, i.e., the level-p details are level-p + 1 scaling-functions. Here one might be eager
to blur the lines between scaling-functions and details; do not succumb to this temptation.

6A stable basis can be orthogonalized in a shift-invariant way [Strang and Fix 1973]. However, the orthogonalized basis may be less
convenient; hence our adoption of the weaker Riesz requirement.
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2.2.2 Natural Refinement

Suppose that initially the basis functions are thecoarsest-levelscaling functionsB0 := {φ(0)
i }, i.e.,S0 :=

Span(B0) = V (0).

To refineS0, we might choose as the new set of basis functions the level-1 scaling functions{φ(1)
i }; this

satisfies our definition of refinement, i.e.,S1 := V (1) ⊃ V (0) = S0.

However, we wish to make the refinement process as gradual as possible—each refinement step should

enlarge the approximation space but only a little bit.

This is critical. Gradual control of refinement, oradaptiverefinement, leads to improved convergence

under fixed computational budget.

There are two natural ways to make a gradual transition to the finer spaceV (1): augmentingB0 with a

detail function, orsubstitutingin B0 several level-1scalingfunctions in place of one level-0 scaling function.

Augmentation with Details We can refineS0 by introducing to its spanning set a single detail function,

i.e.,B1 := {φ(0)
1 , . . . , φ

(0)
N , ψ

(0)
j } for some chosen indexj.

In general, we may refine someSn with the detailψ(p)
j 6∈ Sn, forming the spaceSn+1 spanned by

Bn+1 := Bn ∪ {ψ(p)
j }.

Substitution With Scaling Functions Another approach refinesS0 using only scaling functions: start with

B0, remove a particular level-0 scaling functionφ(0)
j ∈ B0, and replace it with just enough level-1 scaling

functions such that the new space containsS0. Which functions ofV (1) are necessary to ensure thatS1 ⊃ S0?

The key is thenestingof the spacesV (n): sinceV (p) ⊂ V (p+1), any level-n scaling function can be uniquely

expressed in the level-(n+ 1) basis:

φ
(p)
j =

∑
a
(p)
jk φ

(p+1)
k . (2.1)

This is therefinement relationbetween aparentφ(p)
j and its childrenC(φ(p)

j ) := {φ(p+1)
k |k ∈ Z∧ a(p)

jk 6= 0}.

Note that in general every function has multiple children—it also hasmultipleparents given by the adjoint

relationC?(·).

Responding to our question above: if we removeφ
(1)
k , then we addC(φ(1)

k ), so that the refined space is

spanned byB1 := B0\φ(0)
j ∪ C(φ

(0)
j ).

In general, we refine someSn by substituting some scaling function,φ(p)
j ∈ Bn, by its children, forming

the spaceSn+1 spannedBn+1 := Bn\φ(p)
j ∪ C(φ

(p)
j ).

Both the augmentation and substitution operations are atomic, i.e., they cannot be split into smaller, more

gradual refinement operations.
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2.2.3 Bookkeeping

With repeated application of these atomic operations we can gradually effect a change of trial space. As a

concrete example consider the transition fromS0 = V (0) to SM = V (1) via application ofM augmentation

operations. Each refinement introduces a detail chosen fromD(0), and afterM = Dim(D(0)) = Dim(V (1))−

Dim(V (0)) steps we haveSM = V (0) ⊕ D(0) = V (1). Consider instead the same transition effected via

repeated substitution operations. Each step replaces a scaling function ofV (0) by its children inV (1); in this

case at most Dim(V (0)) steps are required.7

At any stagen of the weighted residual method the approximation spaceSn is spanned by theactive

functions,

Bn ⊂
⋃
p

V (p) ∪D(p) ,

i.e.,Sn =
{∑

ϕi∈Bn
uiϕi

}
. We will refer to a scaling or detail function asactivewhenever it is inB. With

that we can succinctly summarize the two kinds of refinement:

detail-refinement activates a single detail function;

substitution-refinement deactivates a scaling function and activates its children.

Note that in generalSn is spanned by active functions from multiple (possibly not consecutive!) levels

of the nesting hierarchy. Further refinements ofSn may introduce details atany level of the hierarchy.

Substitution refinements always replace an active function by functions from the next-finer level, however

one may apply substitution recursively, replacing a function by its grandchildren.

2.2.4 Compact Support Gives Multiresolution

The theory and algorithms presented herein do not make assumptions about the parametric support of the

scaling- and detail-functions. Despite this, our discussions will focus on refinement schemes that give rise to

basis functions obeying two properties:

Compact Support every scaling- or detail-functionf has an associated radiusε(f), such that its parametric

support is contained in someε(f)-ballQε ⊂ Ω of the domain, i.e.,Supp(f) ⊂ Qε, and

Diminishing Support there is a single constantK < 1 such that for each scaling- or detail-functionf the

support of every childg ∈ C(f) is geometrically smaller, i.e.,Supp(g) ≤ KSupp(f). Thus for every

level-p scaling function,φpi , the support of all level-q descendants is bounded byK(q−p)Supp(φpi ).

Combined, these two properties imply that (i) a refinement operation does not affect the approximation space

except in some (parametrically-)localized region of the domain, and (ii) inside that region theresolution

7For some refinement schemes, the parent-children structure is such that replacing some but not all level-0 functions results in the
introduction of all level-1 functions. In this case less than DimV (0) steps are required.
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of the approximation space is enhanced. Property (i) follows from the compact support, and (ii) follows

from the diminishing support. Together these properties recast adaptive refinement as a means to selectively

and locally enhance the resolution of the approximation space. Concretely, the refinement directly from

V0 to V1 is refinement over the entire domain, whereas the gradual refinement using details or substitution

(parametrically-)locally-delimited steps.

Scaling- and detail-functions with compact and diminishing support form amultiresolution analysis: the

solutionu may be decomposed into parametrically- and spectrally-localized components. Put in the context

of a physical simulation, these two kinds of locality give each scaling function a physically-intuitive role

(e.g., representing oscillations at some frequency band in a specific piece of the material) and give rise to

techniques for choosing specific refinements over others. For more on multiresolution analyses the interested

reader may refer to the text by Albert Cohen [2003a].

For the remainder of this thesis, we will make references tolocal refinement, i.e., refinement in the context

of a multiresolution analysis. Although the theory and algorithms do not require compact or diminishing

support89, discussions in the context of a multiresolution analysis are more intuitive and lead to pragmatic

observations. All of the applications that we implemented (see Chapter5) use a multiresolution analysis.

2.3 Integration

The weighted residual approximation of our variational formulation requires our finding in the trial spaceSn

the minimizing functionPnu(x). For this reason among others, we must have the facility to integrate over

the domain integrands involving functions from the trial space. In our discussion we will focus on integrands

involving only functions from the trial spaceSn. Some useful formulations require integrands involving both

functions from a trial spaceSn and from atestspaceTn; the framework presented here is easily extended to

such settings.

2.3.1 Domain Elements

The trial space is in general spanned by functions from several levels of the nesting hierarchyV (p). The

compact support of these functions permits an economical means to integration using the following construc-

tion: to every level of the nesting hierarchy we associate a partition of the domain, i.e., a set of subdomains

(=elements) which together comprise the entire domain; progressively finer levels have finer (and more nu-

8The exception is our algorithm for building a basis given a sequence of nested subdomains (see Section2.4.2)—the problem
addressed by that algorithm inherently tied to locality in the parametric domain.

9 From a theoretical point of view, many of the theorems of multiresolution can be proved (albeit not as easily) without reference
to compact support, so long as a notion oflocality still holds [Cohen 2003a, Cohen 2003b], i.e., the basis function,ϕi(x), is localized
aboutxi ∈ Ω whenever we have an estimate of the type

|ϕi(x)| ≤ Cm(1 + |x− xi|)−m , ∀m > 0 .

However, from a computational perspective,compact supportleads (for our algorithms) to significantly better performance than a weaker
notion of locality.
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merous) elements. Given a set of active functions spanning the trial space, we assemble an integration scheme

gathering appropriate elements from the various levels (see Figure2.1).

three active functions

level 0 active functions

level 0 elements

level 1 active functions

level 1 elements

parametric domain

Figure 2.1: Given a set of active functions (top row, hat functions), for numerical quadrature the domain
(top row, horizontal line) must be partitioned into elements. We partition the domain into progressively finer
elementsassociated to the nested spaces (middle and bottom rows, horizontal line segments). Given a set of
active functions spanning the trial space, we assemble an integration scheme gathering appropriate elements
from the various levels. The dashed lines encircle the elements gathered to intergrate bilinear forms given
these three active functions.

A (disjoint-)partition of a domain is a set of (subdomain) elements whose disjoint union is the domain. To

every nested spaceV (p) we associate a partition of the domain into (the level-p) elements,E(p) = {ε(p)i |0 <

i ≤ N}.

Our partitions are chosen by construction to have the following critical property: every function inV (p)

has asimple formover every element. A simple form is one that is easy to (approximately or exactly) integrate

over the element, e.g., the functions are piece-wise cubic polynomials over the elements—the restriction of a

function over any element is a piece of a cubic polynomial. It is sufficient that every scaling function,φ
(p)
i ,

has a simple form over every same-level element,ε
(p)
j . Then every function inV (p) will have a simple form

over the same-level elements. Furthermore, since the level-p details,D(p) ⊂ V (p+1), are spanned by the

level-(p+1) scaling functions, every detail,ψ(p+1)
i , has a simple form over every immediately-finer element,
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ε
(p+1)
j .

Thenatural support set,S(φ(p)
i ), of a scaling function is the minimal set of level-p elements which contain

the parametric support of the function10. Similarly, the natural support set,S(ψ(p)
i ), of a detail function is

the minimal set of level-(p+ 1), i.e., immediately-finer,elements which contain the parametric support of the

detail. In integrating a basis function, its natural support set is the coarsest valid partition at our disposal: (a)

by construction of the level-m domain elements,φ(p)
i is simple over every member ofS(φ(p)

i ), and (b) its

support is fully contained inS(φ(p)
i ). The adjoint operationS?(ε(p)j ) returns the set of basis functions whose

natural support contains the elementε
(p)
j .

Thedescendants of an element, D(ε(p)i ), are all elements at levels finer thanm which in the parametric

domain have non-zero intersection with the given element. Theancestorrelation is defined through the

adjoint,D?(ε(p)i ).

To numerically resolve the active functions we gather the appropriate elements. We define the set of

active elements, E =
⋃
f∈B S(f), as the union of the natural support sets of the active functions.

2.3.2 Domain Tiles

In general the integration must be carried out over a partition of the domain. Since trial space has functions

from different levels, we need a partition that will resolve these different resolutions (see Figure2.2). We

construct a minimal set ofactive tilessuch that (i) the tiles partition the domain, and (ii) the partition has

sufficient resolution: every active element is a disjoint union of tiles. Consequently every basis function has a

simple form over every tile. To carry out the integration, we consider every basis function only on the active

tiles which partition its natural support set, i.e., over every tile we consider only those basis functions whose

parametric support overlaps the tile.

We have two kinds of tiles. Theelement tiles,associated to every levelp, are the level-p elements. The

resolving tiles,associated to every levelp, form the minimal set of tiles which (i) partitions the domain, (ii)

contains a unique partition for every level-p element, and (iii) contains a unique partition for every level-

(p + 1) element (see Figure2.3). Observe that the intersection between any level-p tile and any level-p + 1

element can be expressed (resolved) as a disjoint union of level-p resolving tiles11. With this construction in

place, a simple and general algorithm can translate a set of active elements into an optimal domain tiling.

Links We need words to refer to the relationship between a level-p element tile and its overlapping level-

(p − 1) and level-p resolving tiles, i.e., a child-parent relationship. We already have a word (descendant) to

describe finer-level elements which overlap a given element. To avoid abiguity, when we describe relation-

ships between tiles we will use the termsfiner link andcoarser link. Tiles of one type (elementor resolving)

10For some schemes, but not all, a function’s support is the disjoint union of its natural support set. In other exotic but practical
settings this is not the case.

11In the special case where the element partitions of levels1, 2, . . . are nested (i.e., whenever the level-(p + 1) elements contain a
unique partition for every level-p element), the level-p resolving tiles are by construction the level-(p+ 1) elements. The resolving tiles
figure in more exotic settings such as the

√
3-Subdivision Scheme.
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three active functions

level 0 active functions

level 0 elements

level 1 active functions

level 1 elements

parametric domain,

level 0 resolving tiles

partitioned into tiles

Figure 2.2: The domain is partitioned into a minimal set ofactive tiles, chosen from a set ofelement tiles
(solid) andresolving tiles(dashed). Apartition made oftiles (unlike aset of elements) must be disjoint,
i.e., the tiles must not overlap. The partition, comprised of element and resolving tiles, must be sufficiently
and necessarily fine to resolve every active function. For the three active functions, we have indicated the
appropriate partition by encircling elements and resolving tiles with a black curve; the resulting partition is
reproduced on the top row.

are only linked to tiles of theother type(see Figure2.3):

• The finer-link,L(t), of resolving-tile,t, is the single overlapping element-tile at the next-finer level.

• The adjoint relationship gives the coarser-link,L∗(t), i.e., the single overlapping element tile at the

same level ast.

• L(ε) is the finer-link ofε, i.e., the set ofpotentially multipleoverlapping resolving tiles at the same

level asε.

• L∗(ε) is the coarser-link ofε, i.e., the set of overlapping resolving tiles at the next-coarser level fromε.
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Figure 2.3: There are two kinds of tiles.Element tiles(top and bottom rows) are simply elements. Their new
name serves as a reminder that those chosen to be active should not overlap.Resolving tiles(middle row)
for level-p live “in between” level-p and level-(p+ 1): they exist to resolve gaps between regions partitioned
with level-p tiles and others partitioned with level-(p+ 1) tiles. Note that in general, the level-1 elements are
not nested in the level-0 elements: this is depicted here, using the triangle meshes of

√
3 subdivision.

Links are parent/child relations between element tiles and resolving tiles. Every level-p element tile (one
triangle in solid blue) is the disjoint union of some level-p resolving tiles (thefiner link of the blue triangle
are the two triangles in solid red). Furthermore, every level-p resolving tile overlaps exactly one level-(p)
element tile (thecoarser linkof a solid red triangle is the solid blue triangle).

2.3.3 Multiple Approximation Spaces

In some formulations (such as the Galerkin method) the integrand involves functions from two or more

approximation spaces. We do not address these formulations in detail. However we claim that the structures

constructed herein accommodate such settings. Briefly:

Multiple approximation spaces, single nested-space sequenceIf several approximation spaces, con-

structed from the same nested-spaces structure, appear simultaneously in the integrand, our theory and al-

gorithms apply without modification.

Multiple approximation spaces, multiple nested-space sequencesIf the approximation spaces appearing

in the integrand are constructed from various nested-space structures, there are two options. First, one can

choose the domain elements such that they give simple forms for all the spaces; from there the theory and
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algorithms apply without modification.

Alternatively, one can use different sets of domain elements for each of the nested-spaces structures,

and introduce new kinds of resolving tiles to resolve intersections between tiles and elements of the different

spaces, following closely the approach taken above for resolving intersections between level-p tiles and level-

(p+ 1) elements.

2.3.4 Bilinear Forms

In the special case where the integrand is a bilinear forma(·, ·) with argumentsv(x), w(x) chosen from the

same trial space (e.g., this is the case for linear Galerkin formulations), we can forgo tiling the domain and

integrate directly over the active elements. In this case it does not matter that the integration is not carried

out strictly over a partition of the domain—although they always cover the domain, in generalsome active

elements overlap. Sincev(x) =
∑
i vifi(x) andw(x) =

∑
j wjfj(x) the integrand is bilinear, we rewrite our

integral as a double summation of integrals of pairs of particular basis functions:
∑
i

∑
j viwj

∫
a(fi, fj).

Each of these integrals considers interactions between a pair of basis functions and it is carried outat the

coarsest level that captures the interaction:if coarser functionf1 overlaps finer functionf2, we evaluate the

bilinear form over cells in the natural support set off2 which also supportf1: {ε | ε ∈ S(f2) ∧ D?(ε) ∩

S(f1) 6= ∅}. With this approach every interaction is considered exactly once, at a necessarily and sufficiently

fine resolution. Please note: here the integration isnot carried out over a partition of the domain! Although

they always cover the domain, and although the active elements are chosen from partitions,E(p), of the

domain, in generalthe active elements overlap, with elements from different levels covering overlapping

subdomains.

2.4 Basis

In some settings, it is important that the active functions are linearly independent, i.e., they from a basis for

the trial space.12Here we lay out additional structure that, as we see in the next Chapter, paves the way to

efficient algorithms for ensuring that the active functions are linearly independent.

Our discussion of linear-dependence differs from the preceding sections of this chapter in thathere we

assume compact and diminishing supportand rely heavily on this assumption in developing efficient basis-

maintenance algorithms. It is possible to lift this assumption by reducing the linear-independence problem

to a linear-algebra matrix problem. However, if this assumption is not replaced by another, then resulting

linear-algebra problem is computationally expensive.

12This is the case, for example, in classical FE applications, as a linear dependency in the basis leads to a singular stiffness matrix.
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2.4.1 Refinement With Details

When we restrict ourselves to only refine by adding details, the active set of basis functions is always, by

construction, a basis for the trial space. To prove this, consider the following. Since the spaces,

V (0), D(0), D(1), . . . , D(M), the union of their bases, the so-calledmultiresolution analysis, is the basis of

HM := V (0)⊕D(0)⊕D(1)⊕· · ·⊕D(M). The active set consists of the coarsest-level scaling functions and

details from the firstM levels (for someM ), i.e., the active set is a subset of the basis ofHM , consequently

it is also linearly independent.

2.4.2 Refinement by Substitution

Instead of working with detail functions, we might work with bases built of scaling functions, i.e.choosing for

the active set functions from each of the bases ofV (0), V (1), . . . , V (M). We are motivated to use such bases

because they often lead to increased system sparsity thus better performance. This is because subdivision

refinement produceslocally single-resolutionbases. Consider, for instance, starting with the trial spaceS0 =

V (0), and refining by substitution everywhere over the domain. The resulting trial space,S1 = V (1), is

single-resolution, i.e., choose any point on the domain; only level-1 functions overlap this point. In contrast,

if S0 = V (0) is refined by adding the level-1 details, every point on the domain is overlapped by level-0

as possibly level-1 functions. Typically, we will not refine the domain everywhere to the same depth (that

defeats adaptivity!), however, to the extent that the error indicator is in some neighborhood smooth, then

over that neighborhood substitution-refinement produces a single resolution of basis functions. The locally

single-resolution property of substitution-refinement is often advantageous for computational performance.

In the case of detail functions, we argued that the basis functions are linearly independent because the

spaces (of the multiresolution analysis) are disjoint. Here the spaces,V (p) ⊂ V (p+), are nestednot disjoint;

linear independence is not guaranteed.

Suppose that we wish to refine by substituting scaling functions with their children. In general this will

not produce a linearly independent active set. Here we describe additional structure, introduced previously

by Kraft in the context of multilevel B-splines, that allows us to easily build a linearly independent active set

given a sequence of substitution refinements [Kraft 1997]. This approach may be generalized to refinements

with a mix of substitution and details.

We can summarize Kraft’s construction very simply in our framework, and consequently implement it

easily and efficiently: after every substitution refinement,we automatically refine by substitution every func-

tion with natural support set covered by the active elements from finer levels(see Figure2.4). It is possible

to show that this iterative process eventually halts.

Kraft’s construction is as follows. We are given a list of indices of scaling functions to be refined by

substitution, grouped per level:R(0),R(1), . . . ,R(M). Such a sequence makes sense only if every finer-level

function that we are asked to refine was introduced at some earlier point when one of its parents was refined,
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(a) (b)

(c) (d)

Figure 2.4: Kraft developed a construction for linearly-independent B-splines. We interpret his construction
within our framework as follows: every substitution refinement consists of two steps: first, we activate the
children of the basis function (a→b); second, we automatically refine by substitution every function with
natural support set covered by the active elements from finer levels (b→c). These two steps, combined (a→c,
likewise c→d), form a substitution refinement operation that preserves the linear independence of the basis.
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i.e., i ∈ R(p+1) ⇒ ∃j ∈ R(p) ∧ ϕ(p+1)
i ∈ C(φ(p)

j )

From this list of substitution refinements we construct a sequence of nested subdomains,Ω := Ω(0) ⊆

Ω(1) ⊆ · · · ⊆ Ω(M+1), where every subdomain contains exactly the supports of the immediately-coarser

refined functions,

Ω(p+1) =
⋃

j∈R(p)

Supp(φ(p)
j ) , p ≥ 0 .

We interpret the level-p subdomain as follows: insideΩ(p) we wish to approximate with at least the resolution

of spaceV (p), and outside with only coarser resolutions.

More precisely, we will choose those level-p scaling functions which are supported completely overΩ(p)

and at least partially overΩ(p)\Ω(p+1):

I(p) := {k ∈ Z|Supp(φ(p)
k ) ⊆ Ω(p) ∧ Supp(φpk) 6⊆ Ω(p+1)} .

In other words, we throw away every level-p function that is not completely in the designated zone for level

p, Ω(p); and we throw away every level-p function that can be fully represented by level-p+ 1 functions, i.e.,

it is completely inside the designated zone for levelp+ 1, Ω(p+1).

The resulting multilevel, hierarchical spaceS := Span{φ(p)
k |p ≥ 0 ∧ k ∈ I(p)}. It is multilevel in that

is can appear locally-flat, in regions where the refinement has been applied uniformly, while at the same time

functions from different levels participate. It is hierarchical, over regions where the refinement depth is not

uniform, in that functions from different levels overlap at a point.

One can give a “physical” interpretation to Kraft’s original description of this construction (let us reinter-

pret Figure2.4). Kraft begins with a sequence of nested subdomains,Ω := Ω(0) ⊆ Ω(1) ⊆ · · · ⊆ Ω(M+1),

corresponding to regions of desired minimum detail at each level of the nesting hierarchy. Stack all the do-

mains, with the coarsest at the top (Figure2.4d). Every domain creates a hole in those above it. Thus every

domain appears as a region—with holes induced by the domains below. Start with all scaling functions at the

coarsest level (Figure2.4a), and let them fall “downward under gravity” (Figure2.4, a→c, c→d). A function

stops falling if it can’t fit completely though a hole. Every time a function falls to the level below, it splits

into its children (Figure2.4b), and they continue the fall.

2.5 Harten’s Discrete Framework

Many popular discretizations, among them point samples, finite-volume/average-samples, and finite-elements,

after being extended to an adaptive, multi-scale setting, may be viewed as specific instances of adiscrete

framework, introduced by Harten [1993, 1996], which generalizes our nested spaces structure.

Definition A a generalized discrete multiresolution approximationis13

13We take the liberty to adapt Harten’s notation to more clearly delineate the parallels between our frameworks.
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1. a sequence of index setsΓ(p), p ≥ 0,

2. equipped with arestriction operator, P (p)
(p+1), acting froml∞(Γ(p+1)) to l∞(Γ(p)),

3. and aprolongation operator, P (p+1)
(p) , acting froml∞(Γ(p)) to l∞(Γ(p+1)),

4. such that the restriction operator is a left inverse to the prolongation operator, i.e.,P
(p)
(p+1)◦P

(p+1)
(p) = I .

Intuitively, the sequence of (discrete) index sets,Γ(p), is similar to our concept of a sequence of scaling-

function bases; the prolongation operator is similar to a refinement relation mapping one level-p scaling

function to its level-(p+1) children, and condition (4) corresponds to a nesting of the spaces,V (p) ⊆ V (p+1) .

It is straightforward to derive for this framework the details between consecutive levels,Γ(p), and con-

sequently a multiscale decomposition of a function into a coarse representation and multiple levels of de-

tails. Similarly to our observation in Section2.2.4that efficient implementations make use of assumptions

of locality, Cohen notes that for efficiency Harten’s framework must be specialized with notions of local-

ity [Cohen 2003a].

It would be worthwhile to fully explore the connections between Harten’s discrete framework and our

framework.

2.6 Summary and Preview

What are needed in the basis refinement strategy are efficient data structures and algorithms to (1) keep track

of non-zero entries in the stiffness matrices and (2) manage a tesselation of the domain suitable for evaluation

of the associated integrals.

In traditional, piecewise-linear elements, non-zero entries in the stiffness matrix are trivially identified

with the edges of the FE mesh. When using higher order B-splines or subdivision basis functions their

enlarged support implies that there are further interactions, which must be identified and managed. Addition-

ally, interactions induced between active members of the refinement hierarchy lead to inter-level interactions.

Similarly, for numerical integration, the cells of the FE mesh are a suitable tesselation when using piecewise

linear elements, while for the basis refinement methods suitable tesselations must be explicitly constructed.

Some of these issues were confronted by earlier researchers who wished to enrich cubic B-spline tensor

product surfaces with finer functions in selected regions. This was done by enforcingbuffer regionsof control

points which were not allowed to move [Forsey and Bartels 1988, Welch and Witkin 1992] or through explicit

wavelets which were resolved into B-splines based on the refinement relation [Gortler and Cohen 1995].

In Chapter4 we will explore these issues. First, however, we illustrate the ideas of nested spaces and

basis refinement using popular as well as recently-introduced approaches to discretizing PDEs.
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Chapter 3

Discretization Zoo:
Constructions for Nested Spaces

We build a trial space by activating scaling and detail function from the nested spaces; we evaluate integrals

using elements and tiles. As a whole these structures—scaling functions, details, elements, and tiles—form

a multiresolution discretization.Until now we have presented these ideasin general. Now we are concrete.

We describe well-established as well as more recent discretizations (finite- or spectral-elements, wavelets,

etc.), and discuss the properties which characterize them (symmetry, locality, etc.). We examine several

discretizations in more depth, mapping them onto the multiresolution structures of Chapter2.
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3.1 Overview

We discuss only discretizations constructed explicitly from basis functions, i.e., the unknown functionu(x) is

approximated by a finite linear combination,
∑
uiφi(x), where the basis functionsφi(x) are a subset of some

larger (infinite) set of scaling and detail functions which are determineda priori. Particular discretizations

use particular families of functions, e.g.,

spectral discretizations polynomials or sinusoids

finite element discretizationspiecewise polynomials

spline discretizations spline basis functions

subdivision discretizations subdivision basis functions

wavelet discretizations scaling functions and wavelets

There are many possible discretizations. Each has strengths and weaknesses; each is appropriate for some

problems and not others. How to choose one? Consider the ideal characteristics,for a particular application,

of the discretization. No discretization is ideal: trading one desirable property for another is part of the game.

3.1.1 Characterizing Discretizations

A discretization is characterized by many properties. These are the most important:

Single- vs. Multi-resolution A discretization may display the data insingle-or multi-resolution, e.g., so-

callednodalfinite-element bases display data at a single resolution, whereas wavelets display data at multi-

resolution. Some single-resolution discretizations can be easily generalized to multi-resolution, perhaps in

more than one way, e.g., nodal finite-elements generalize to hierarchical finite-elements or to multiscaling

bases. Single-resolution methods may suffice for applications which don’t require (the implementation and

computational overhead of) adaptivity.

Coefficients Characterize the coefficients of a discretization with a qualitative description, e.g., the coef-

ficients,ui, control: the spectral components,û(wi), as in Fourier’s method; or, the function values,u(xi),

at specific points,xi, as in interpolating discretizations; or, the derivatives,Du(xi), at specified points, as

in Hermite splines [Foley et al. 1995]; or, the mean value of the function,‖Ωi‖−1
∫
Ωi
u(x)dx, over specific

subdomains,Ωi, as in Finite Volumes [Versteeg and Malalasekera 1996]. Some schemes have more than one

kind of coefficient: Hermite splines have coefficients,u1, . . . , uN andv1, . . . , vN , which control function

values and derivatives respectively.

In the context of a particular physical PDE the coefficients carry physical meanings. Function values are

displacements in elasticity, and temperatures in thermal conduction. Derivatives are strains and forces, and

thermal gradients. Engineers choose discretizations which carry meaningful and control-able coefficients.
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Elasticity practitioners prefer discretizations with displacements. The most easily understood (but not always

most desirable!) set of coefficients belongs to interpolating discretizations.

Interpolation In an interpolating discretizationthe coefficients,u1, . . . , uN , associate to domain points,

xi ∈ Ω, and thereat fix the function value, i.e.,u(xi) := ui. Some interpolating discretizations also carry

other coefficients,v1, . . . , vN , which may for instance specify the derivatives at the points,xi. Interpolation

comes when the basis functions satisfy theKronecker Delta property, i.e.,ϕi(xj) := δij .

In contrast, anapproximating discretizationdoes not have the Kronecker Delta property and does not (in

general) interpolate its coefficients. Generally, interpolating methods introduce undesirable oscillations into

the approximate solution,PNu(x), whereas approximating approaches tend to avoid this.

Locality A method hasparametric locality(or spatial locality) if it associates the finite-basis coefficients,

ui, to localized regions of the domain,Ω. For example, point-sampling methods associate theui to points

xi ∈ Ω; finite-element methods associate theui to mesh nodesxi ∈ Ω and to their incident mesh elements;

meshless methods associate theui to (e.g., radial basis-)functions centered atxi ∈ Ω. In all these examples,

theui inherit the locality of their associated basis functions (here we view point-sampling as a finite-basis

discretization using as basis functions the Dirac distributions centered atxi). A basis function,ϕi(x), is

localized aboutxi ∈ Ω whenever we have an estimate of the type

|ϕi(x)| ≤ Cm(1 + |x− xi|)−m , ∀m > 0 .

Similarly a method hasspectral localityif it associates theui to localized bands of the spectral domain,

e.g., Fourier methods associate everyui to a single frequency. The Heisenberg principle states that we

must trade spatial- for spectral-locality. Wavelets carry coefficients with (a compromise between) spatial and

spectral locality.

Locality gives efficient algorithms. When it comes in the form of multiresolution, it also gives sparse,

spatially- or spectrally-adaptive, representations of multiscale data, with double benefit: first, multiresolution

representations of data often provoke novel insight into the modeled phenomena; second, they are compu-

tationally economic. The second point cannot be stressed enough: it is the secret to the efficiency of the

algorithms in Chapter4.

Sampling Uniformity A method with parametric locality hasparametrically-uniform samplingwhenever

the coefficients,ui, are localized at equal intervals over the parameter domain, e.g., if thexi are equidistant

from their mesh neighbors. Similarly spectrally-localized coefficients, uniformly distributed over the spectral

domain, givespectrally-uniform sampling.

Consider, for example, wavelet and subdivision methods (see Sections3.2 and3.5 respectively). Both

give multiresolution discretizations, with consequent spatial- and spectral-locality at each level of resolution.
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Wavelets are typically pursued in the regular setting, i.e., over regular meshes with uniform samples. In

contrast subdivision discretizations are usually semiregular and non-uniform.

In some settings uniform sampling introduces additional symmetries with consequent numericalsu-

perconvergence.

Dimension A discretization may bedimension-specific, e.g., bivariate quartic box splines are appropriate

for two-dimensionaldomains. Alternatively, it isdimension-independent, e.g., tensor product quadratic B-

splines of dimensionD are appropriate forD-dimensionaldomains.

Tessellation A meshlessmethod does not tesselate the domain; amesh-basedmethod partitions (an ap-

proximation of) the domain into simple pieces, e.g., intervals of the real line in one dimension; rectangles,

triangles, etc.. in two dimensions; tetrahedra, hexahedra, etc.. in three dimensions; etc.. By design, mesh-

based methods have spatial locality: they associate the finite-basis coefficients,ui, to mesh entities, e.g.,

coefficients may “live” at mesh faces, edges, or vertices(=nodes). In contrast, there are meshless meth-

ods with and without spatial locality, e.g., Radial Basis Function [Buhmann 2003] and Fourier discretiza-

tions [Strang and Fix 1973] respectively.

Some meshes arerefinable tilings: they can be repeatedly refined into finer, nested, self-similar refinable

tilings. Lave proved thatR2 has only eleven refinable tilings; each is isohedral and at each vertex equiangled.

Connectivity Mesh-based methods may be characterized by the incidence relations between mesh ele-

ments. In two dimensions, a mesh isregular if all like vertices are equivalenced, e.g., a triangle mesh is

regular if all interior vertices have valence six and all boundary vertices have valence four;semireqularor

quasiregular1 if the mesh is regular away from some (small) set of isolated vertices; otherwise the mesh is

irregular. Regular connectivity invites economy of computation and storage at the expense of flexibility of-

fered by irregular connectivity, e.g., regular connectivity meshes cannot tesselate domains of arbitrary genus;

semi-regular connectivity strikes a compromise.

Parametric Support A discretization is characterized by the parametric support,Supp(ϕi(x)) ⊆ Ω, of its

basis functions. Is it compact? Is the boundary,∂Supp(ϕi(x)), open or closed? Is the support fractal, i.e.,

of finite measure but with boundary of unbounded length? What is the diameter of the parametric support?

Sometimes the diameter for coefficientui is expressed as ann-ring2 around the mesh entity associated toui.

Consider, for example, Loop’s triangle subdivision and Kobbelt’s
√

3 triangle subdivision [Kobbelt 2000a,

Loop 1987]. In both schemes, each coefficient,ui, associates to a vertex,xi, and the corresponding paramet-

ric support ofϕi(x) is compact, centered aroundxi, and has an open boundary. In Loop’s scheme the basis

1 While less popular, some preferquasiin direct analogy to crystalline structures.
2Theone-ringof faces around a mesh vertex are the mesh faces incident to the vertex. In general, then-ring of faces around a vertex

are the faces in or incident to then− 1-ring. One may also refer to theone-ringof vertices around a vertex; usually the context makes
the writer’s intention clear.
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functions,ϕi(x), are supported on the two-ring of the associated vertex. In Kobbelt’s scheme their parametric

support is a fractal subset of the two-ring.

For discretizations that define a hierarchy of mesh levels, we may ask whether the support is diminishing

(recall Section2.2.4). Compact diminishing support leads tocontrolled overlapping: a pointx ∈ Ω is

contained in at mostM ∈ Z supports of basis functions from levelp, with M independent ofx andp.

Controlled overlapping gives a bound on per-coefficient computation and storage.

Smoothness A discretization is characterized by thesmoothnessof its basis functions, equivalently by

the smoothness of the generated trial spaces,Si. There are different measures of smoothness, including

Cs (parametric continuity),Gs (geometric continuity), and tangent-plane continuity. The commonest is

parametric smoothness: a function is piecewiseCs over a partition of the domain whenever its restriction

onto each partition-subdomain hass continuous derivatives [Strang and Fix 1973], e.g., aC0-everywhere

function is continuous over its domain; Loop’s basis functions areC2, except at irregular vertices A particular

PDE, coupled with particular numerical method, will rule out discretizations that do not have some sufficient

smoothness.

Approximation Power A discretization is characterized by itsaccuracy, i.e., fixing the number,N , of

coefficients,u1, . . . , uN , what is the approximation error,‖u(x) − PNu(x)‖, for this compared to other

discretizations? Typically, accuracy is measured aspolynomial exactness: a discretization whichlocally

reproduces polynomials of orderp is said to haveapproximation powerp. Write the Taylor series ofu(x)

about a point,xi: the polynomial with exponentp is the first to give an error. Expressions of this form are

common in specifying the accuracy of a discretization:

‖u(x)− PNu(x)‖ ≤ C(∆x)p‖∂
pu(x)
∂xp

‖ ,

whereC is a constant and∆x describes the parametric distance between coefficients, e.g., in one dimension,

∆x = max1≤i<N (xi+1 − xi). When the details are orthogonal to the scaling functions, the Strang-Fix

condition is thatthe details havep vanishing moments. We will say more in Section3.2.

Local Boundedness A mesh-based discretization satisfies theconvex hull propertywhenever the function

value over a subdomain,Ωi, is bounded by neighboring coefficient values,uj , . . . , uk, e.g., the value over a

Linear Finite Element is bounded by the coefficients incident to the element. An interpolating discretization

that has the convex hull property must haves ≤ p ≤ 1, i.e., it cannot have high-order smoothness nor

accuracy. This can be a severe limitation for interpolating methods! In contrast, approximating approaches

may be smooth, high-order accurate, and have the convex hull property.
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Symmetry A discretization may be characterized by the symmetries of its basis functions. For example,

the Fourier method’s basis functions,ϕi(x) := sin(ix), are invariant under the translations·− 2πk. In mesh-

based methods, symmetries are often tesselation-dependent, e.g., a regular grid with uniform sampling will

have translational symmetries which are lost with non-uniform sampling.

Multi-resolution discretizations may have symmetries in scale, e.g., the set of Haar scaling functions

(Section3.2.3), ∪pV (p), is closed under dyadic scaling, i.e.,ϕi(x) ∈ ∪pV (p) ⇒ ϕi(2x) ∈ ∪pV (p).

The projection operator,PN , is invariant under the action of the symmetry group of the discretization,

i.e., symmetries inu(x) which exist also in the trial space arepreservedduring discretization. For example,

the symmetries of a cylindrical surface are preserved by some two-dimensional quadrilateral-tesselations but

not triangular-tesselations.

Orthogonality A discretization may have orthogonal basis functions, i.e.,< ϕi, ϕj >= 0 wheneveri 6= j.

This gives an obvious space of dual basis functions, which are required for projecting (analyzing) into the

trial space, i.e.,u(x) 7→ PNu(x). Having a simple dual space is important forunrefinement, which usesPN .

Practitioners often use an approximate dual space when the true dual is impractical, as is sometimes (but not

always!) the case when orthogonality is lost.

3.1.2 Formulations

Having established a discretization, there are several methods to find the best approximation,
∑
uiφi(x), to

the unknown solution,u(x), of the posed PDE. The most popular formulations are:

Collocation [Prenter 1975] Apply the PDE atN points on the domain to formulate a system ofN equations

with N unknowns,u1, . . . , uN , e.g.,∇u(x) = b(x), x ∈ Ω ⊂ R2 (with appropriate boundary conditions

matching the basis functions), becomes

∑
i

ui∇φ(xj) = b(xj) , xj ∈ Ω ⊂ R2 1 ≤ j ≤ N .

Weak Formulation [Strang and Fix 1973, Eriksson et al. 1996] We choose atest spacedefined by atest

basis, w1(x), . . . , wN (x), and formulate anN × N system ofweighted residual equationsby taking inner

products of the left and right hand sides of the PDE, e.g.,∇u(x) = b(x), x ∈ Ω ⊂ R2 (with appropriate

boundary conditions matching the test and basis functions), becomes

∑
i

ui

∫
∇φi(x)wj(x)dx =

∫
b(x)wj(x)dx , 1 ≤ j ≤ N .

Usually the integrals are approximated via numerical quadrature. Note that the weak form simplifies to

collocation when the test functions are the Dirac delta distributions, i.e.,wi(x) = δ(x− xi).
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For clarity, our presentation of basis refinement in Chapter2 focused on the trial space, however for

methods which use separate trial and test spaces the refinement framework may be applied independently to

both the trial and the test space.

Variational Formulation [Strang and Fix 1973, Prenter 1975] We express the solution,u(x), as a critical

point of a (nonlinear) functional,E[u(x)], and minimize‖DE [
∑
i uiφi(x)] ‖ numerically over the coeffi-

cients,ui, aided by theN partial derivatives,

∂E [
∑
i uiφi(x)]
∂uj

, 1 ≤ j ≤ N .

If E[·] is (approximated by a) quadratic in theui then the partial derivatives are linear and the search for the

(unique) critical point is expressed as anN ×N linear system (again!). Note that the variational formulation

is often used for highly non-linear problems; however it is not uncommon to temporarily approximateE[·]

by a quadratic form inside the loop of a non-linear solver.

Having formulated a discrete problem, we invoke the appropriate numerical solver. In the case of

the linear problem of the collocated, weak, or (linearized) variational formulations, we use a numerical

linear-system solver [Press et al. 1993]; otherwise we use the appropriate numerical optimizer or non-linear

solver [Press et al. 1993, Eriksson et al. 1996]. Because we havenestedapproximation spaces, a large body

of multi-resolution techniques is at our disposal, for instance multigrid solvers [Bank et al. 1988, Wille 1996].

There are other popular methods which do not explicitly approximateu(x) with basis functions. Finite-

difference [Strang and Fix 1973] and discrete-operator [Meyer et al. 2003] methods deal directly with point

samples,ui. They do not make explicit the value of the function in between the point samples, although

downstream applications often associate (interpolating) basis functions to the coefficients,ui, e.g., to portray

an approximate (piecewise) smooth solution to the user. Here we are concerned only with methods which use

finite-basis discretizations; our techniques are not immediately applicable to finite-difference and discrete-

operator formulations.

3.1.3 Summary and Preview

No single discretization fits all applications. Some problems inherently involve non-uniform samples, e.g.,

when the boundary conditions are given non-uniformly. Other problems crucial symmetries which must

not be lost, e.g., compressing an elastic cube from two ends gives compressive- but not shear-deformation.

Choose the discretization and formulation which best fit the application.

We turn now to various popular discretizations. We examine wavelets, multiwavelets, finite elements,

splines and subdivision schemes, and frame each within our framework.
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3.2 Wavelets

Wavelets (Fr.ondelettes, little waves) emerged in the 1980’s as a formalization of multiscale methods devel-

oped earlier in the century [Strang and Nguyen 1996b, Cohen 2003a]. Traditionally, the theory of wavelets

(e.g., Strang and Nguyen [1996b]) is pursued in theregular Euclidean setting, i.e., with scaling- and detail-

functions mappingΩ ⊆ Rd to R, coupled with aregular, e.g., integer lattice, tessellation.

3.2.1 Introduction

Consider the nested spacesV (0) ⊂ V (1) spanned by translates and dilates, over a regular tessellation of

the domain, of a singlescaling functionφ(x). Furthermore, consider awavelet subspaceD(0) with special

properties: (1) it completes the coarser space:V (0) + D(0) = V (1); (2) it is spanned by the translates and

dilates of a single, localized, zero-mean function called themother wavelet.

More generally, we can have a (possibly infinite) sequence of nested spacesV (0) ⊂ V (1) ⊂ V (2) ⊂ . . . ,

and associated wavelet subspacesD(k) ⊂ V (k+1), such thatV (k) +D(k) = V (k+1). Consequently, we can

express a spaceV (k) in multiresolution:

V (0) +D(0) + . . . +D(k−1) = V (k) ,

that is as the sum of a coarse representation and progressively finer details. Because the spacesV (k)

are nested, their basis functions must obey refinement relation (2.1). In the wavelets literature this rela-

tion is known as thedilation equationand it is written out in a form that explicitly shows the dilation

and translation; for example Daubechies scaling function satisfies the dilation equation [Daubechies 1992,

Strang and Nguyen 1996b]

φ(x) =
√

2
∑
k

akφ(2x− k) .

3.2.2 Theory

We interpret wavelet theory as a specialization of our (Chapter2) nested-spaces structure. Traditionally,

wavelet theory deals with nested function spaces constructed over regular tessellations and subject tofour

additional requirements.First, the nesting of the spaces is characterized byscale-invariance:

Requirement 1: Scale Invariance The spaces are rescaled copies of the coarsest space.V (p+1) consists

of all dilated functions inV (p),

u(x) ∈ V (p) ⇔ u(2x) ∈ V (p+1) .

Since the basis forV (p+1) has roughly twice as many functions as that ofV (p), then every space and its

associated detail space have roughly the same dimensions, i.e., Dim(V (p)) ≈ Dim(D(p)).
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Consider, for example, the sequence of nested spaces formed by progressively adding a single term to the

Fourier series. The spaces are nested, butnot scale invariant.The frequencies must double.The Littlewood-

Paley decomposition, which splits the Fourier series into frequency octaves, gives nested scale-invariant

spaces.

Second, every space is characterized byshift-invariance:

Requirement 2: Shift Invariance A function is accompanied by its integer translates,

u(x) ∈ V (p) ⇒ u(x− k) ∈ V (p) , k ∈ Z .

This means that we must work with the whole line,−∞ < x <∞, or with a periodic interval; alternatively,

we may adjust this requirement at the boundaries to allow for finite, non-periodic, intervals.

Combined, scale- and shift-invariance mean that any function,u(x) ∈ V (0), is accompanied by its dilates,

u(2px) ∈ V (p), and their integer translates,{u(2px − k)|k ∈ Z} ⊆ V (p). In particular, we require that a

singlefunction, accompanied by its translates and dilates, form a stable basis for the nested spaces:

Requirement 3: Canonical Scaling Function There exists a scaling function,φ(x), with {φ(x−k)|k ∈ Z}

a Riesz basis for the coarsest space,V (0).

Consequently scale- and shift-invariance give a Riesz basis,{φ(p)
k := 2p/2φ(2px − k)|k ∈ Z}, for every

spaceV (p). The canonical scaling function obeys adilation equation,

φ(x) =
√

2
∑
k

akφ(2x− k) (3.1)

which is just another way of writing our refinement relation,

φ(p)(x) =
∑
k

akφ
(p+1)
k (x)

in this context also called thetwo-scale equationin explicit reference to the scale invariance of the spaces. If

(and only if) the scaling function is compactly supported, the set of non-zero coefficients,ak, is finite. In that

case, each scaling function has support of diameterO(2−j) and satisfies a property ofcontrolled overlapping:

a pointx ∈ Ω is contained in at mostM ∈ Z supports of basis functions from levelp, with M independent

of x andp. If (and only if) the scaling function is symmetric aboutx = 0, the coefficients are likewise

symmetric, i.e.,ak = a−k, k ∈ Z.

Similarly, the detail spaces are spanned by translates and dilates of themother wavelet:
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Requirement 4: Mother Wavelet With Vanishing Moments The detail functions, orwavelets, are defined

as translated dilates,ψ(p)
k (x) = ψ(2px− k), of themother wavelet,

ψ(x) =
√

2
N∑
0

dkφ(2x− k) , dk := (−1)ka(N−k) . (3.2)

This is thewavelet equation.The level-p details are expressed by combining linearly the level-(p+1) scaling

functions with weightsdk, obtained by analternating flipof the refinement relation coefficients,ak. Wavelets

always have integral zero. In general, they haveP > 0 vanishing moments:

∫
xiψ(x)dx = 0 , 0 ≤ i ≤ P .

Wavelets withP vanishing moments come from scaling functions with approximation orderP , i.e., the

spacesV (q) reproduce perfectly piecewise polynomials up to degreep−1. See also the Strang-Fix condition,

Section3.4.

These four requirements characterize the subclass of nested-spaces structures which arewavelet systems.

Our theory (Chapter2) and algorithms (Chapter4) do not rely on these four characteristics.

There are other (very useful) properties that are interesting but not required. Typically, (anti)symmetries

in the shape of a wavelet mean better performance near the boundaries of the domain. Sometimes the spaces

D(p) are orthogonal to the spacesV (p). These areorthogonal wavelets. Here the direct sum,V (p) ⊕D(p) =

V (p+1), is an orthogonal sum, and the algorithms for analysis and synthesis ofu(x) are simplified. Orthog-

onality is not a requirement. Other settings includebiorthogonal wavelets[Strang and Nguyen 1996a]. Here

orthogonality ofD(p) to V (p) is lost, but the two spaces intersect only at zero, hence it remains true that a

function inV (p+1) is uniquely decomposable into components inV (p) andD(p). The structure of the direct

sum is preserved. Sometimes, we sacrifice orthogonality in exchange for other desirable properties, e.g.,

compact support, symmetry, smoothness, and approximation power.

3.2.3 Example: The Haar System

The Haar system defines a piecewise constant approximation tou(x) at scale2−p by measuring its mean

value over each interval3I
(p)
k := [k2−p, (k + 1)2−p[,

u(p)(x) = 2p
∫
I
(p)
k

u(x)dx , ∀x ∈ I(p)
k , k ∈ Z .

3Closed on the left, open on the right.
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This is theL2-orthogonal projection ofu(x) onto the space

V (p) = {u(x) ∈ L2 | u(x) is constant overI(p)
k , ∀k ∈ Z} ,

spanned by the orthogonal basis induced by the canonical Haar scaling functionφ(x) := χ[0,1], whereχ[s,t]

is the box function defined as unity over[s, t] and zero elsewhere.

The Haar scaling function satisfies the dilation equation, (3.1), with two non-zero coefficientsa0 = a1 =

1/
√

2. Equivalently, it satisfies the refinement relation with two non-zero coefficientsa
(p)
ij = 1/

√
2, j ∈

{2i, 2i+ 1}. Following (3.2), we flip signs of odd-indexed coefficients, arriving at the wavelet equation

ψ(x) = φ(2x)− φ(2x− 1) = χ[0, 12 ] − χ[ 12 ,1]
,

or equivalently, a definition of the details in terms of finer scaling functions:

ψ
(p)
i = φ

(p+1)
2i − φ(p+1)

2i+1 .

The Haar scaling functions are constructed over a tesselation: the construction of the elements follows

naturally. To every nested spaceV (p) we associate a partition of the domain into elements,

E(p) := {ε(p)i := I
(p)
i | i ∈ Z} .

The restriction of any scaling functionφ(p)
i ∈ V (p) onto any element ofE(p) is constant, i.e., averysimple

form! The natural support set of a Haar scaling function is a single element:S(φ(p)
i ) = {ε(p)i }. Similarly, the

restriction of any detailψ(p)
i ∈ D(p) onto any element of the finer partition,E(p+1), is constant. The natural

support set of a Haar wavelet has two elements:S(ψ(p)
i ) = {ε(p+1)

2i , ε
(p+1)
2i+1 }.

Finally, we define the tiles. Only the resolving tiles require clarification (the element tiles are always the

elementsε(p)i ). In this case, the elements satisfy a nesting relation:ε
(p)
i = ε

(p+1)
2i ∪ ε(p+1)

2i+1 . Our job is easy.

The level-p resolving tiles are the level-(p+ 1) elements.

With these definitions in place, we have everything we need to apply the algorithms of Chapter4 to the

Haar system.

3.3 Multiwavelets

Haar’s wavelets are orthogonal, antisymmetric, compactly supported, and piecewise constant. Often we want

similar smootherwavelets. Daubechies proved that we won’t find them. Higher-order wavelets cannot be

simultaneously orthogonal, (anti)symmetric, and compactly supported. This is too much to ask from asingle

mother wavelet. These properties can peacefully coexist if we turn to the theory ofmultiscaling functions and

multiwavelets.



34

3.3.1 Theory

We start withmultiplecanonical scaling functions,φ1(x), . . . φL(x). With careful design,all these functions

have both symmetry, orthogonality, vanishing moments (smoothness), and compact support[Strela et al. 1999].

Furthermore, the support diameter of single wavelets grows with the number of vanishing moments and the

smoothness; multiwavelets typically have shorter supports than single-wavelets thus offering another design

parameter to control support diameter.

Each canonical function is accompanied by its translated and dilated “clones,”φ
(p)
i,j , 1 ≤ i ≤ L, j ∈

Z, p ≥ 0. Every spaceV (p) has as its basis the level-p clones of theL different canonical scaling functions:

V (p) :=


L∑
i=1

∑
j

u
(p)
i,j φ

(p)
i,j

∣∣∣∣∣∣ u(p)
i,j ∈ R

 ,

We have amatrix dilation equation,

Φ(x) =
√

2
∑
k

AkΦ(2x− k) ,

whereΦ = [φ1 φ2 · · ·φL]T , and the scalar coefficients,ak, of (3.1) have been replaced by matrices,Ak.

Equivalently, the refinement relation is

Φ(p)(x) =
∑
k

AkΦ
(p+1)
k (x) .

In general, for a particular1 ≤ i ≤ L, the children ofφ(p)
i,j (x) are a mix ofall L kinds of clones ofφ1 . . . φL

not just clones ofφi(x).

Now there areL kinds of wavelets,

Ψ(x) =
√

2
N∑
0

DkΦ(2x− k) ,

whereΨ = [ψ1 ψ2 · · ·ψL]T and the scalar coefficients,dk, of (3.2) have been replaced by “high-pass”

matrices,Dk. Every mother wavelet is expressed as a linear combination of allL canonical scaling functions.

3.3.2 Example: Haar’s Hats

Building on the exercises in Strang and Nguyen, we present a simple example of multiwavelets based on

Haar’s scaling functions.

We extend Haar’s space of discontinuous piecewise constants to the space of discontinuous piecewise
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linears,

V (p) :=
{
u(x) linear overI(p)

i | i ∈ Z
}

=

∑
j

u
(p)
1,jφ(x)(p)1,j +

∑
j

u
(p)
2,jφ(x)(p)2,j

∣∣∣∣∣∣ u(p)
i,j ∈ R

 .

spanned by translates and dilates of two canonical scaling functions (see Figure3.1):

Mean: φ1(x) = χ[0,1] =

 1 0 ≤ x < 1

0 otherwise
(the usual Haar box)

Slope: φ2(x) =

 2x− 1 0 ≤ x < 1

0 otherwise
(antisymmetric line with 1 vanishing moment).
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Figure 3.1: The “Haar’s Hats” system hastwocannonical scaling functions, corresponding to (left) mean and
(right) slope.

There are two mother wavelets, orthogonal to each other as well as to the canonical scaling functions, and

piecewise linear overI(1)
0 andI(1)

1 (see Figure3.2):

Symmetric: ψ1(x) =


4x− 1 0 ≤ x < 1

2

3− 4x 1
2 ≤ x < 1

0 otherwise

(a hat with 1 vanishing moment)

Antisymmetric: ψ2(x) =


4x− 1 0 ≤ x < 1

2

4x− 3 1
2 ≤ x < 1

0 otherwise

(a zig-zag with 1 vanishing moment).

The two canonical scaling functions satisfy the matrix dilation equation φ1(x)

φ2(x)

 =

 1 0

− 1
2

1
2

 φ1(2x)

φ2(2x)

 +

 1 0
1
2

1
2

 φ1(2x− 1)

φ2(2x− 1)

 ,
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Figure 3.2: The “Haar’s Hats” system hastwomother wavelets, (left) symmetric and (right) antisymmetric.

and the two mother wavelets satisfy the matrix wavelet equation, ψ1(x)

ψ2(x)

 =

 0 1

0 1

 φ1(2x)

φ2(2x)

 +

 0 −1

0 1

 φ1(2x− 1)

φ2(2x− 1)

 .

Following the pattern for the original Haar system: the two scaling functions are constructed over a

tesselation, leading naturally to a partition of the domain into elements,

E(p) := {ε(p)i := I
(p)
i | i ∈ Z} ,

associated to every spaceV (p). Note that these are the elements of the original Haar system. The restriction

of any scaling functionφ(p)
1,i ∈ V (p) or φ(p)

2,i ∈ V (p) onto any element ofE(p) is linear hence simple (butnot

constant like the original Haar function). Similarly, the restriction of any detailψ
(p)
i ∈ D(p) onto any element

of the finer partition,E(p+1), is linear.

The natural supports of the scaling and detail functions are the same as in the original Haar system. The

natural support set of either kind of scaling function has one element,S(φ(p)
i ) = {ε(p)i }. The natural support

set of either kind of detail has two elements:S(ψ(p)
i ) = {ε(p+1)

2i , ε
(p+1)
2i+1 }. Since the elements are the same as

for the original Haar system, then so are the tiles. The level-p resolving tiles are the level-(p+ 1) elements.

With these definitions in place, we have everything we need to apply the algorithms of Chapter4 to the

multi wavelet “Haar’s Hats” system.

3.4 Finite Elements

Consider a tesselation of the domain, e.g., a two-dimensional triangle mesh. The finite element space consists

of all functions which are piecewise polynomials of some orderp, i.e., the restriction ofPNu(x) onto any

element is a polynomial of degreep− 1.

The mesh elements arefinite: the restriction ofPNu(x) onto an element is determinedonly by coefficients

contained in the element, i.e.,{ui|xi ∈ Ωelem, 1 ≤ i ≤ N}. The approximation is locally determined. Its



37

value depends only on coefficients on the interior of the element (hence unique to that element) and the

boundary of the element (thus shared with incident elements).

Equivalently, the basis functions are chosen such that they have a small support, covering at most all the

elements incident on a mesh vertex. Each basis function is defined by its restriction (theshape function) over

each element in its domain of support, with somecompatibility conditionfor the interfaces between element

subdomains, e.g., continuity along a face between two volume elements (forH1-conforming elements in

R3), equality of the mean value of the shape function on both sides of a face [Crouzeix and Raviart 1973,

Rannacher and Turek 1992] or its normal component [Raviart and Thomas 1977, Brezzi and Fortin 1991].

In general there are two kinds of coefficients, corresponding to (a) function values (interpolated points),

with associated basis functions satisfying the Kronecker Delta property, and (b) function derivatives (inter-

polated tangent points, curvature points, etc..), with partial derivatives of the basis function satisfying the

Kronecker Delta property. The finite element space consists of continuous functions if (and only if) every

mesh node(=vertex) carries an interpolated coefficient. This is the typical compatibility condition for the

most common flavor of finite elements. Similarly, the space consists ofC1 functions if the nodes carry also

the appropriate tangent coefficients. Thus, by choosing to place coefficients on nodes, boundaries between

elements, or the interior of an element, one may introduce some independence between the element-local

accuracy versus the global smoothness.

A finite element mesh, on its own, is single-resolution. Of the various strategies for introducing multi-

resolution,element splitting—mesh division—is the commonest. Consider an element on its own, i.e., let

Ωelem be temporarily the entire domain. Divide dyadically the element into progressively finer regular uni-

form tesselations: each sub-element carries dilations of the original polynomial basis. The coarsest element’s

basis functions are the multiscaling functions of a multiwavelet system! This multiwavelets are local to (and

different for) every element. In summary, for every elementin isolationwe have a complete construction of

multiresolution finite elements.

Considering elements in isolation leads to problematic (lack of) smoothness and accuracy at the element

boundaries duringadaptiverefinement. The theory of subdivision extends multi-scaling functions to irregular

domains; with this theory in place we will return to this topic, consideringall the elementsnot in isolation.

3.5 Subdivision

Until now we have pursued the theory of refinable functions in theregularEuclidean setting, i.e., as functions

from Rd to R, coupled with a regular tesselation. In this case functions are linear combinations of their

own dilates. In contrast, we pursue here a more general formulation: consider arbitrary topology surfaces

and subsets ofR3; in both settings the domain will in general not admitregular tesselations. We need a

broader context: the theory and algorithms ofsubdivisionprovide such a framework [Lounsbery et al. 1997,

Zorin 2000, Zorin and Schr̈oder 2000, Dyn and Levin 2002]. In this case the finer level functions are not all
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strict dilates of a coarser level function, but the subdivisionstencilsstill supply the basic ingredients for the

refinement relation.

3.5.1 Theory

The basic ingredients aretopological-andcoefficient-refinement operators, acting on thetopological entities

andcoefficients, respectively, of amesh:

Mesh A meshconsists of sets of topological entities together with the usual incidence relations:vertices,

V = {vi}; edges, E = {ej}; faces, F = {fk}; and (in 3D)cells, C = {cl}. We assume that the incidence

relations define a manifold (with boundary). Typical examples include triangle, quad, tetrahedra, and hexa-

hedra meshes. The term (mesh-)elementrefers to a highest-dimensional topological entity, i.e., face in the

bivariate and cell in the trivariate setting.

Coefficients The mesh carriescoefficientsassociated with basis functions. These coefficients may describe

the geometric shape, e.g.,(x, y) ∈ R2 or (x, y, z) ∈ R3 or functions defined over the shape such as dis-

placement, density, force, etc. Coefficients may “live” at any of the topological entities (and more than one

coefficient may live on a given entity). Most of the time coefficients will be associated with vertices; some

schemes have coefficients associated with elements. Similarly, polynomials over individual elements will

often result in coefficients associated with elements.

Topological Refinement A topological refinementoperator describes how topological entities are split and

a finer mesh constructed with them. In developing our theory, we considerglobal refinement (all entities are

split); in practice we implement adaptive refinement aslazy evaluationof a conceptually global and infinite

refinement hierarchy. Most topological refinement operators4split elements or vertices (Fig.3.3). Less typical

(but accommodated here) are 4-8 [Velho and Zorin 2001] and
√

3 [Kobbelt 2000a] schemes.

Figure 3.3: Examples of topological refinement operators: quadrisection for quadrilaterals and triangles.

Coefficient Refinement A coefficient refinementoperator associated with a given topological refinement

operator describes how the coefficients from the coarser mesh are used to compute coefficients of the finer

4 Note: Yannis Ivrissimitzis at MPI Saarbrücken (http://www.mpi-sb.mpg.de/∼ivrissim/) is doing work on decomposing the topo-
logical operators into atomic operations. Topological refinements and associated refinement relations may consequently be constructed
as repeated simple atomic operators.
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mesh. We assume that these operators are linear, finitely supported, of local definition, and depend only on

connectivity. Typically these are specified assubdivision stencils(see Figure3.4).

Subdivision Scheme A subdivision schemeis a pairing of topological- and coefficient-refinement opera-

tors. Examples of common subdivision schemes include linear splines over triangles or tetrahedra; bilinear or

trilinear tensor product splines over quadrilaterals and hexahedra; Doo-Sabin [1978], Catmull-Clark [1978]

and their higher order [Zorin and Schr̈oder 2001, Stam 2001] and 3D [Bajaj et al. 2002b, Bajaj et al. 2002a]

generalizations; Loop [1987], Butterfly [Dyn et al. 1990, Zorin et al. 1996], and
√

3 [Kobbelt 2000a] schemes

for triangles. In the case ofprimal subdivision schemes, i.e., those with coefficients at vertices and splitting

of faces/cells as their topological refinement operator, we distinguish betweenevenandoddcoefficients. The

former correspond to vertices that the finer mesh inherits from the coarser mesh, while the latter correspond

to newly created vertices.
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Figure 3.4: Examples of stencils for coefficient refinement. Here the case of quartic box splines with the odd
stencil on the left and the even stencil on the right, indicating how the highlighted points in the center are
computed as weighted averages (not normalized here) of neighboring points.

Basis Function A basis functionis the limit of repeated subdivision beginning with a single coefficient set

to unity and all others set to zero. In this way a basis function is associated in a natural way with each entity

carrying a coefficient, such as vertices in the case of linear splines (both triangles and tetrahedra) or Loop’s

scheme, and faces in schemes such as Doo-Sabin5 or Alpert’s multi-scaling functions [1993].

Refinement Relation A refinement relationis observed by all functions defined through subdivision. It

states that a basis function from a coarser level can be written as a linear combination of basis functions from

the next finer level

φ
(j)
i (x) =

∑
k

a
(j+1)
ik φ

(j+1)
k (x) (3.3)

wherej indicates the level of refinement (j = 0 corresponding to the original, coarsest mesh), andi, respec-

tively k index the basis functions at a given level. The coefficientsa
(j+1)
ik can be found by starting with a

single 1 at positioni on levelj, applying a single subdivision step and reading off all non-zero coefficients.

5This is not the usual way Doo-Sabin (or other dual schemes) are described, but our description can be mapped to the standard view
by dualizing the mesh [Zorin and Schr̈oder 2001]. From a FE point of view this turns out to be more natural as it ensures that elements
from finer levels are strict subsets of elements from coarser levels.
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Note that thea(j+1)
ik generally depend oni, but for stationary schemes they do not depend onj. Since we

assume that the subdivision scheme is finitely supported only a finite number ofa
(j+1)
ik will be non-zero. In

the case of multi-scaling functions we will have matrix valueda(j+1)
ik . Thechildren of a basis functionare

given by

C(φ(j)
i ) = {φ(j+1)

k |a(j+1)
ik 6= 0},

while theparentsfollow from the adjoint relation

C?(φ(j)
i ) = {φ(j−1)

k |φ(j)
i ∈ C(φ

(j−1)
k )}.

Natural Support Set Recall that thenatural support set, S(φ(j)
i ), of a basis function is the minimal set of

elements at levelj, which contain the parametric support of the basis function. For example, linear splines,

φ
(j)
i are supported on the triangles (tetrahedra) incident tovi at mesh refinement levelj; a Loop basis function

has the 2-ring of triangles surrounding the given vertex as its natural support set (Fig.3.5); and a Doo-Sabin

basis function, which is centered at an element in our dualized view, has a natural support set containing

the element and all elements that share an edge or vertex with it. The adjoint,S?(εjl ), returns the set of

basis functions whose natural support contains the elementεjl . Thedescendants of an element,D(εji ), are all

elements at levels> j which have non-zero intersection (in the parametric domain) with the given element.

Theancestorrelation is defined through the adjoint,D?(εji ).

Figure 3.5: Examples of natural support sets. Left to right: linear splines, Loop basis, bilinear spline, and
Catmull-Clark basis.

3.5.2 Example: The Loop Scheme

In 1987, Loop proposed a primal subdivision scheme for manifold triangle meshes, generalizing the quartic

Box-Splines [Loop 1987, de Boor et al. 1993]. We summarize the salient features of Loop’s subdivision

scheme and describe the constructions necessary to use this scheme as part of our adaptive solver framework.

Description Loop uses simplicial complexes, or “triangle meshes,” with vertices,V = {vi}, edges,E =

{ej}, and triangular faces,F = {fk}. The incidence relations define a 2-manifold (with boundary). The

initial (coarsest-level) mesh is denoted byM (0).

The topological refinement operator bisects edges and quadrisects faces, as shown in Figure3.6. This

operator maps the level-p mesh to the level-(p + 1) mesh, thus constructing an infinite sequence of meshes
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Figure 3.6: Loop’s subdivision scheme is based on triangle meshes. Topological refinement, using edge
bisection and face quadrisection, produces a sequence of progressively finer meshes,M (0),M (1),M (2), . . . .

M (0),M (1),M (2), . . . . The associated topological entities corresponding to every meshM (p) are denoted

V (p), E(p), F (p), etc.. This is aprimal scheme, i.e.,V (p+1) ⊂ V (p). The introduced verticesV (p+1)\V (p)

are theoddvertices at level-(p+ 1); the other vertices areeven.
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Figure 3.7: Coefficient refinement given by stencil. Note this is linear, finitely supported, of local definition,
and depend only on connectivity.

Loop’s meshes carry coefficients assigned to the vertices,V (p). Consequently, every basis function is

associated to (and centered about) a vertex, as shown in Figure3.8. The coefficient refinement operator is a

linear map from the coefficients ofV (p) to those ofV (p+1). Its action is easily summarized by stencils for

even and odd vertices, shown in Figure3.7.

For numerical quadrature we require a means to evaluate exactly the limiting value of subdivision at

specific points on the domain, i.e., at some given point on or inside a mesh entity. Zorin [2002] has re-

cently demonstrated a particularly flexible approach to exact evaluation; building on the pioneering work of
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Figure 3.8: The control mesh for Loop’s subdivision scheme carries coefficients assigned to vertices. Shown
is the basis function associated to the indicated vertex.

Stam [Stam 1998], Zorin shows how to define evaluation operators for parametric families of rules without

considering an excessive number of special cases.

This completes our description of Loop’s subdivision scheme. We turn to the additional structure required

to implement algorithms for natural refinement.

Additional Structure The level-p scaling functions are the basis functions associated to the level-p ver-

tices,V (p). The level-p details are the level-(p + 1) odd basis functions. It is straightforward to show that

consequentlyV (p) ⊕D(p) = V (p+1); here⊕ denotes a directnot orthogonal sum. The natural support set of

a scaling or detail function associated to vertexv
(p)
i is thetwo-ringaroundv(p)

i , i.e., theone-ringaroundv(p)

are the level-p faces incident tov(p)
i , and the two-ring adds also the faces incident to the one-ring.

The integration elements associated toV (p) are the level-p faces,F (p). The restriction of any scaling

function onto anyregular element is a quartic box spine with well-established rules for numerical quadra-

ture [de Boor et al. 1993], i.e., the scaling functions take on a simple form over every (regular) element. An

element is regular if its three incident vertices have valence six. In practice, our experimentation has shown

that, for purposes of numerical integration,all elements may be treated as regular without destroying conver-

gence or accuracy.

Finally, we define the tiles. Only the resolving tiles require clarification (the element tiles are always

the elementsε(p)i ). Since our elements are constructed by quadrisection, there is a natural nesting relation

between every level-p element and its four subelements on level-(p + 1). Whenever such a nesting relation

holds, we define the resolving tiles trivially. The level-p resolving tiles are the level-(p+ 1) elements.

With these constructions we are equipped to apply the algorithms of Chapter4 to Loop’s subdivision

scheme.
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3.5.3 Example: The Doo-Sabin Scheme

In 1978 Doo and Sabin presented a subdivision scheme generalizing bi-quartic B-Spline refinement to the

setting of irregular meshes [Doo and Sabin 1978].

Duals In contrast to our previous examples of primal schemes, the Doo-Sabin is usually presented as adual

scheme. The namedual comes from the observation that subdivision is performed on the faces of thedual

mesh.

The dual of anN -dimensional mesh is constructed by associating eachd-dimensional entity of the origi-

nal primal meshto an(N − d)-dimensional entity of thedual mesh,keeping all the incidence relations, i.e.,

two vertices incident (connected by an edge) in the primal mesh have two corresponding dual faces incident

(along an edge) in the dual mesh, and vice versa.

Description The Doo-Sabin scheme starts with a polygonal mesh with vertices,V = {vi}, edges,E =

{ej}, and polygonal faces,F = {fk}. The incidence relations define a 2-manifold (with boundary). The

initial (coarsest-level) mesh is denoted byM (0). The dual mesh hasfacesV̂ = {v̂i} corresponding to the

primal verticesV ; edgesÊ = {êj} corresponding butnot identical to the primal edgesE; and vertices

F̂ = {f̂k}.

Doo-Sabin’s topological refinement operator acts on the dual facesV̂ , splitting every dual facêvi into

K dual faces, whereK is the valence ofvi, i.e., the number of sides to the facev̂i identically the number

of edges incident tôvi. Other descriptions of Doo-Sabin (equivalently) represent topological refinement as

splitting everyprimal vertex intoK primal vertices. In describing the constructions needed for our natural

refinement algorithms we will find the dual face-split view more useful than the primal vertex-split view.

Repeated application of the refinement operator produces a sequence of primal meshesM (0),M (1),M (2), . . .

with corresponding duals.

Like the two previous primal examples6, Doo-Sabin’s meshes carry coefficients assigned to the vertices,

V . Equivalently, the coefficients are assigned to the dual faces,V̂ . Every basis function is associated to a

dual face (equivalently a primal vertex).

The coefficient refinement operator is a linear map from the coefficients ofV̂ (p) to those ofV̂ (p+1). Its

action is easily summarized by a single stencil [Doo and Sabin 1978].

With this basic description of Doo-Sabin’s scheme, we turn to the additional structure needed for our

refinement algorithms.

Additional Structure As usual, the level-p scaling functions are the basis functions associated the level-p

dual faces,̂v(p). Unlike the earlier primal schemes, which gave us “odd” and “even” and a natural choice for

details, the dual schemes do not inherit vertices from the coarser mesh. We lack an obvious way to define

6This is a coincidence: in general both primal and dual schemes may carry coefficients associated toanytopological entity.
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the details. Since the spacesV (p) are nested, and we have proper (scaling function) bases, we can surely

find bases for the detail spaces,D(p) := V (p+1)\V (p). Since we do not see an obvious choice, We shall

not explicitly declare a detail basis. This does not prevent us from continuing and applying our algorithms,

although refinement by adding details will remain undefined until we choose some basis forD(p). Meanwhile,

we may refine by substitution.

In contrast to the previous primal examples, here we choose as the level-p elements thedual faces,V̂ .

Consider a basis function associated to a regular vertex (i.e., a vertex with valence four): its restriction onto

any element is a quadratic polynomial. For primal schemes, basis functions have simple forms over primal

faces. For dual schemes, basis functions have simple forms over dual faces.

The natural support set of a scaling function associated tov̂(p) is the one-ring of̂v(p), i.e., v̂(p) and all

dual faces incident tôv(p) along a dual edge; equivalently, the dual of the one-ring ofv(p).

As in our previous examples, the level-(p + 1) elements are nested in the level-p elements, i.e., the

parametric support of a level-p dual face may be expressed as the disjoint union of the parametric supports of

some level-(p+ 1) dual faces. As before, the level-p resolving tiles are the level-(p+ 1) elements,̂V (p+1).

This structure allows us to apply our natural refinement approach to Doo-Sabin’s dual scheme.

3.5.4 Finite Elements, Revisited

Recall that considering finite elements in isolation leads to problems at the element boundaries during adap-

tive refinement.

Consider the basis functions associated to finite element coefficients. Those coefficients internal to an

element associate to basis functions which vanish outside the node, i.e., their parametric support is contained

in the element. Those coefficients on the boundary of the element associate to basis functions which are

supported over (multiple) incident elements. To these basis functions dividing an element in isolation is

anathema!

Follow the framework of subdivision: divide dyadically each andeveryelement. The multiscaling func-

tions will obey a matrix refinement relation. It will not be the dilation and translation of the traditional regular

setting, rather the more general relation of subdivision theory. Locally at every element, the subdivision is

dyadic as before; globally the concept is meaningless—we are not in the regular setting anymore, Toto! Ob-

serve that the generated children functions are always the locally-supported locally-defined basis functions

of afinite-element mesh.

Having produced a multiresolution basis by considering subdivision of the meshas a whole, never turn

back. Adaptive refinement will come from choosing basis functionsnot isolating and splitting individual

elements.
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Conclusion We reviewed the theories of wavelets, multiscaling functions, finite elements, and subdivision.

These far-reaching techniques all serve as constructions for multiresolution discretizations. With so many

variations in properties such as locality, smoothness, accuracy, and symmetry, the application must guide the

choice.
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Chapter 4

Data Structures and Algorithms

What are needed in the basis refinement strategy are efficient data structures and algorithms to (a) keep

track of non-zero entries in the stiffness matrices and (b) manage a tesselation of the domain suitable for

evaluation of the associated integrals. We provide a semi-formal specification for these requirements, develop

the relevant theorems and proofs, and invoke these theorems to produce concrete, provably-correct pseudo-

code.
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4.1 Preview

In traditional, piecewise-linear elements, non-zero entries in the stiffness matrix are trivially identified with

the edges of the FE mesh. When using higher order B-splines or subdivision basis functions their enlarged

support implies that there are further interactions, which must be identified and managed. Additionally,

interactions induced between active members of the refinement hierarchy lead to inter-level interactions.

Similarly, for numerical integration, the cells of the FE mesh are a suitable tesselation when using piecewise

linear elements, while for the basis refinement methods suitable tesselations must be explicitly constructed.

Some of these issues were confronted by earlier researchers who wished to enrich cubic B-spline tensor

product surfaces with finer functions in selected regions. This was done by enforcing “buffer regions” of con-

trol points which were not allowed to move [Forsey and Bartels 1988, Welch and Witkin 1992] or through ex-

plicit wavelets which were resolved into B-splines based on the refinement relation [Gortler and Cohen 1995].

These earlier approaches are specialized instances of our algorithms and we now present our general

treatment which relies solely on refinability.

4.2 Specification

To ground our preliminary discussion, we put down a framework that might be used in an animation applica-

tion to adaptively solve a nonlinear initial value problem using basis refinement.

4.2.1 Context

IntegratePDE

1 While t < tend

2 predict: measure error and construct setsB+ andB−

3 adapt:

4 B := B ∪ B+\B−

5 maintain basis: remove redundant functions fromB

6 solve:Rt(ut) = 0

7 t := t+ ∆t

Each simulation step has three stages: predict, adapt and solve. First, an oracle predicts which regions of

the domain require more (resp. less) resolution, and constructs a set of basis functions to be introduced to

(resp. removed from) the approximation space (line 2). Next, the approximation space is adapted: the set of

active basis functions is updated (line 4), functions redundant to the basis are removed (line 5). The removal

of redundant functions ensures that the setB is linearly independent; in certain settings this is important for

numerical stability, in others this step may be skipped. The solution at timet is found by solving a system

of linear or nonlinear equations (line 6). For a nonlinear systemRt(·) we linearize and solve with Newton’s
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method; therefore, the Jacobian matrixKt and the “load” termbt need to be assembled. Note that the

structure ofKt depends on which basis functions are active.

The framework above is one of many that could be adopted; all will have an adaptation stage, and our

discussion focuses on laying out definitions and then algorithms for managing the data structures which

represent the approximation spaceB and quantities depending onB, e.g.,K.

Now we develop a specification for our system. First the interface. How does the system interact with

its environment? What questions can the system and environment ask each other? What commands can

each place on the other? Then we specify each interaction. The goal is to make sure that the system (or

environment) does what is expected of it; always; not more, not less. Later we will explain the algorithms

and data-structures that make up our system, and show that they satisfy the specification.

Correctness = Safety + Progress A correct system has provablesafety–it does not do unexpected things

or reach invalid states– andprogress–it eventually achieves what is expected. For each interaction, we will

include safety and progress specifications. We will also have a global safety specification that applies at all

times to entire system. We examine the safety and progress specifications for our system in Sections4.2.4

and4.2.5, respectively. First, however, we lay out the key data structures.

4.2.2 Data Structures

Every datum is eithersystem-global(instantiated once),element-local(instantiated with every active ele-

ment), orfunction-local(instantiated with every active basis function).

In practice the local data for an element or function exists only when it is active. Here we don’t make this

distinction so carefully; instead, when deactivating an element or function, we clear its associated data.

Globals At the global scope we instantiate a set of basis functions, a set of elements, and a set of tiles:

B is the set of active basis functions. Recall from section2.2.3 that the active functionsφ ∈ B span the

current trial space.

E is the set of active domain elements. Recall from section2.3.1 that the active elementsε ∈ E are the

domain elements which support active functions.

T is the set of active domain tiles. Recall from section2.3.2that the active tilest ∈ T form the minimal

partition of the domain that resolves the active elements.

Element Locals With every active elementε(r)k we instantiatenativeandancestral integration tables. Each

table lists the active functions which should be considered when integrating over the element:

Bs(ε(r)k ) is the native table ofε(r)k . The table lists allsame-levelactive functionsφ(r)
i ∈ B with parametric

support overlapping the element,S(φ(r)
i ) ∩ ε(r)k 6= ∅.
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Ba(ε(r)k ) is the ancestral table ofε(r)k . The table lists allcoarser-levelactive functionsφ(p)
i ∈ B, p < r with

parametric support overlapping the element,S(φ(p)
i ) ∩ ε(r)k 6= ∅.

Function Locals With every active basis functionφ(p)
i we instantiate the coefficientu(p)

i of the finite-

basis approximation
∑
u

(p)
i φ

(p)
i (x) (recall section2.1). To approximate another functionv(x) we store its

associated coefficientsv(p)
i .

System Snapshots Thesnapshotof the system,S, is the entirety of (global and local) state at some instant.

Snapshots give us the semantics to describe the effect of an algorithm: we can compare the snapshots,S̄,

immediately before and,S, immediately after an algorithm executes. In comparing snapshots, we can refer

to particular global or local data structures by prepending the snapshot label, e.g.,S.B is the set of active

functions at snapshot̄S. When there is no ambiguity we may drop the prefix and writeB̄.

0

0

1

0

0

1

1

2

2

3

Figure 4.1: Illustrative example of a snapshot. Shown in bold are a pair of active basis functions on mesh
levels 0 and 1. The associated data structures are:B = {φ(0)

0 , φ
(1)
2 }, E = {ε00, ε12, ε13}, S(φ(0)

0 ) = {ε00, ε01},
S(φ(1)

2 ) = {ε12, ε13}, Bs(ε00) = {φ(0)
0 }, Ba(ε00) = ∅, Bs(ε12) = {φ(1)

2 }, Ba(ε12) = {φ(0)
0 }, Bs(ε13) = {φ(1)

2 },
Ba(ε13) = {φ(0)

0 }.

4.2.3 System Invariants

Our data structures must embody a consistent, usable description of the trial space and its associated nu-

merical integration scheme. In particular, having chosen some trial space, the element- and tile-related data

structures should describe an integration scheme that is appropriate for integrating the approximate solution

over the domain, and the element-local integration tables should be up to date. We develop the notion of

consistency by assuming a given set of active functions,B, and ensuring that all other data structures are

consistent with the assumed set.

Consistency A snapshot isconsistentiff the following invariants hold:

Invariant I1 (active elements) Every active function is fully supported by active elements, and every active

element is in the natural support of an active function.

E =
⋃
φ∈B

S(φ)
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Invariant I2 (native integration-table) Every element’s native table lists all and only same-level active

functions with parametric support overlapping the element.

Bs(ε) = B ∩ S?(ε)

Invariant I3 (ancestral integration-table) Every element’s ancestral table lists all and only coarser-level

active functions with parametric support overlapping the element.

Ba(ε) =


⋃
ε′∈D?(ε) Bs(ε′) Bs(ε) 6= ∅ active hence valid

∅ Bs(ε) = ∅ inactive hence uninitialized

The third invariant explicitly clears the ancestral table for inactive elements. In contrast, in the second invari-

ant, there is no need to explicitly clear the native integration table, it is already empty whenever the element

is inactive.

4.2.4 Safety of Algorithms

The effect of every algorithm can be expressed as predicates on the snapshots before and after the algorithm,

so-calledpre-andpost-conditions. Every condition is classified as checking eithersafetyor progress.

Safety Predicates may check that the algorithm maps the space of consistent snapshots onto itself. These

aresafety conditions.If it starts in a safe state, a safe algorithm terminates in a safe state. In our setting, pre-

and post-conditions for any safe algorithm are always

< S̄ is consistent> pre-condition

S ← Algorithm (S̄) algorithm execution

< S is consistent> post-condition.

4.2.5 Progress of Refinement Algorithms

The empty algorithm is a trivially safe algorithm. But it is boring. The progress condition checks that the

algorithm is useful.

Progress Predicates that check for useful work areprogress conditions. Below are the progress specifica-

tions for each algorithm.

In the formal description, we explicitly denote each algorithm as taking an entire system snapshot,S̄, as

input and producing a modified snapshot,S ← Algorithm(S̄, a, b, . . .). In the accompanying narrative we

informally omit the references to the snapshots, writingAlgorithm(a, b).

Observe that the progress conditions specify precisely what happens to the active set. The remaining data

structures are consequently (uniquely) determined by the safety condition.



51

Activation of Basis Function The algorithmActivate(φ̂) adds some inactive basis function̂φ to the

active set; that is the only modification made to the active set.

< φ̂ 6∈ S.B > φ̂ is inactive

S ← Activate(S, φ̂) activation

< S.B = S.B ∪ {φ̂} > φ̂ is active

Deactivation of Basis Function The algorithmDeactivate(φ̂) removes some specified active basis func-

tion φ̂ from the active set; that is the only modification made to the active set.

< φ̂ ∈ S.B > φ̂ is active

S ← Deactivate(S, φ̂) deactivation

< S.B = S.B\{φ̂} > φ̂ is inactive

Refinement by Substitution The algorithmRefine(φ̂) removes some specified active basis functionφ̂

from the active set, and adds the inactive children ofφ̂ to the active set; the is the only modification made to

the active set.

< φ̂ ∈ S.B > φ̂ is active

S ← Refine(S, φ̂) substitute refinement relation

< S.B = S.B\{φ̂} ∪ C(φ̂) > φ̂ is inactive and its children are active

4.2.6 Progress of Integration Algorithms

The integration algorithms do not alter the state of the data structures. They are trivially safe, and their

progress is not evident in comparing the snapshots. Here progress is specified in terms of anevaluation list

produced by the algorithm.

Integration Over Bilinear Forms (mixed-levels) In the solution of linear (or linearized) problems, a key

component of the solver is the evaluation of integrals of some bilinear form,a(·, ·), which takes as arguments

two functions,u(x) andw(x), both discretized with the same finite basis. Algebra gives more insight here:

∫
Ω

a (Pnu(x), Pnw(x)) dx (4.1)

=
∫

Ω

a

 ∑
φ

(p)
i ∈B

u
(p)
i φ

(p)
i ,

∑
φ

(q)
j ∈B

u
(q)
j φ

(q)
j

 dx

=
∑

φ
(p)
i ∈B

∑
φ

(q)
j ∈B

u
(p)
i u

(q)
j

∫
Ω

a
(
φ

(p)
i , φ

(q)
j

)
dx .
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We need to consider the action ofa(·, ·) on every pair of active basis functions. For efficiency, we should

avoid considering pairs which do dot have overlapping parametric support, as their term in the summation is

zero. For every pair of active functions,φ(p)
i andφ(q)

j , we carry out the integration over elements of the finer

level,q (without loss of generality assumeq ≤ p). We now show that very level-q element that is required to

carry out this integral is active, and has integration tables which list bothφ
(p)
i andφ(q)

j . Sinceφ(p)
i andφ(q)

j

are active, by the the consistency requirements (by I1) the elements in their natural support sets,S(φ(p)
i ) and

S(φ(q)
j ), are active. Furthermore, the local integration tables of every elementε

(q)
k ∈ S(φ(q)

j ) contain both

φ
(p)
i andφ(q)

j , if and only if the parametric supports ofφ(p)
i andφ(q)

j overlap overε(q)k (by I2 and I3). Thus

every level-q element that should be involved in the evaluation of the integral,
∫
Ω
a

(
φ

(p)
i , φ

(q)
j

)
dx, is active

and properly initialized. To evaluate (4.1), we iterate over every active element, and consider all interactions

between functions overlapping that element, as recorded by the element’s integration tables.

The algorithmIntegrateBilinearForm evaluates the bilinear form,a(·, ·), many times. To analyze

the behavior of this algorithm, let us pretend that the algorithm keeps a list of all the evaluations. We la-

bel each evaluation as the 3-tuple(φ(p)
i , φ

(q)
j , ε

(r)
k ) indicating the integration ofa(φ(p)

i , φ
(q)
j ) over ε(r)k . In

generala(·, ·) is not invariant to permutations of its two arguments, therefore every 3-tuple is unique, i.e.,

(φ(p)
i , φ

(q)
j , ε

(r)
k ) 6= (φ(q)

j , φ
(p)
i , ε

(r)
k ).

With this notation, we requireIntegrateBilinearForm to return the evaluation list

⋃
ε
(q)
k ∈E

⋃
φ

(q)
j ∈Bs(ε

(q)
k )

⋃
φ

(p)
i ∈Bs(ε

(q)
k )∪Ba(ε

(q)
k )

(φ(p)
i , φ

(q)
j , ε

(q)
k ) . (4.2)

Integration Over Finest Cells The algorithmIntegrate evaluates the (potentially non-linear) integral

using a partition of the domain into tiles. The integrand is evaluated once per tile, thus specifying the set of

active tiles fixes the specification of the algorithm.

Recall that the trial space is spanned by functions from different nesting levels, consequently we need a

partition that will resolve these different resolutions.Integrate evaluates over the minimal set of element-

and resolving-tiles such that (a) the tiles partition the domain, and (b) the partition has sufficient resolution:

every leaf element is a tile, whereleaf means an active element with all descendants inactive.

Observe that while the set of active elementsalwayscovers the domain, the set of leaves in general does

not cover the entire domain (see Figure4.2). With this, we will designate every leaf as an active tile, and in

the remaining gaps we will introduce resolving tiles.

Consider the followingtile coloring problem(TCP). We color every tile in the infinite hierarchy black,

red, or white:black if the tile is too coarseto resolve some finer active descendant,whiteif the tile is too fine,

or red if the tile fits. The coarser black and finer white tiles will form a “sandwich” around a thin sheet of red

tiles—these red tiles form our partition.

Tile coloring problem The tile coloring problem is defined as follows. The color of an element tile is
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three active functions

level 0 active functions

level 0 active elements

level 1 active functions

level 1 active elements

parametric domain

  descendant
relation

leaf element

Figure 4.2: Three active functions (top row, hat functions) induce five active elements (thick horizontal
bars). Both of the level 0 active elements have active descendants (as shown by the arrows), hence they are
not leaves. The level 1 active elements are leaves, and by construction they occupy disjoint pieces of the
domain. Furthermore, in general they do not cover the entire domain: for the illustrated case, only 3/4 of the
domain are covered by the leaves.

(TCP1) black if any of its descendants are active,

(TCP2) elsered if it is active,

(TCP3) elsewhite.

The color of a resolving tile is

(TCP4) red if its coarser-link is black and its finer-link is white,

(TCP5) elseblack if its coarser-link is black,

(TCP6) elsewhite.

Recall from Section2.3.2that the finer-link,L(t), of resolving-tile,t, is the single overlapping element-tile at

the next-finer level; the adjoint relationship gives the coarser-link,L∗(t), i.e., the single overlapping element
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tile at the same level ast. The link mapping may also be applied to element-tiles:L(ε) is the finer-link ofε,

i.e., the set ofpotentially multipleoverlapping resolving tiles at the same level asε; L∗(ε) is the coarser-link

of ε, i.e., the set of overlapping resolving tiles at the next-coarser level fromε.

The evaluation-list ofIntegrate consists of all red tiles, each one accompanied by a table of overlapping

active functions.

We shall see that the nature of TCP is that an incremental change in the active setB leads to an incremental

change in the tile coloring: this invites an incremental approach to coloring with consequent economy in

refinement and integration.

4.2.7 Maintaining Linear Independence (The Basis Property)

In certain settings, it is important that the active functions are linearly independent. This is the case, for

example, in classical FE applications, as a linear dependency in the basis leads to a singular stiffness matrix. If

only detail refinement is applied then the active set is always a proper basis. If other refinement strategies are

used (e.g., substitution, and selective (de)activation of individual functions) then maintaining a proper basis

requires special care. Our paper [Krysl et al. 2003] treats the specific case of classical FEs, i.e., a setting in

which basis functions are supported on a 1-ring. There we present efficient algorithms for maintaining linear

independence of the active setB during (un)refinement. In more general settings, approaches such as those

used by Kraft may be adopted [Kraft 1997]. Finally, in some settings, such as our explicit time-integration

of non-linear thin-shells (see Chapter5), we observe that the solution process remains well-behaved even

without linear independence of the active set.

4.3 Theorems

Guided by the above specification, we present and prove theorems that translate fluently into implementable

algorithms.

The proofs for activation and deactivation are constructive. While these proofs may be more verbose than

those based on contradiction, constructive proofs act as prescriptions for programs.

4.3.1 Activation of Basis Function

Suppose we are in consistent stateS, and we activate some function̂φ. What does the new stateS look like?

This theorem answers that question. The theorem is easily transcribed into implementable instructions; the

associated proof provides insight into the algorithm.
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Theorem 1 (activation) Suppose: (1)S is consistent, (2)̂φ 6∈ B, and (3)B = B + φ̂. S is consistent

iff three conditions hold:

1. E = E ∪ S(φ̂)

In activatingφ̂, we might activate elements.

2. Bs(ε) =

 Bs(ε) + φ̂ ε ∈ S(φ̂) update required

Bs(ε) ε 6∈ S(φ̂) not affected

In activatingφ̂, we might update some native integration-tables.

3. Ba(ε) =


⋃
ε′∈D?(ε) Bs(ε′) Bs(ε) = ∅ ∧ ε ∈ S(φ̂) initialize

Ba(ε) + φ̂ Bs(ε) 6= ∅ ∧ Bs(ε) 6= ∅ ∧ ε ∈
⋃
ε′∈S(φ̂)D(ε′) update

Ba(ε) Bs(ε) = ∅ ∨
(
Bs(ε) 6= ∅ ∧ ε 6∈

⋃
ε′∈S(φ̂)D(ε′)

)
not affected

In activatingφ̂, we might update ancestral integration-tables.

Proof Please refer to this chapter’s Appendix for the formal proof.

4.3.2 Deactivation of Basis Function

Suppose we are in consistent stateS, and we deactivate some function̂φ. What does the new stateS look

like?

Theorem 2 (deactivation) Suppose: (1)S is consistent, (2)̂φ ∈ B, and (3)B = B− φ̂. S is consistent

iff three conditions hold:

1. E = E −
{
ε ∈ S(φ̂) | Bs(ε) = ∅ : ε

}
In deactivatingφ̂, we might deactivate elements.

2. Bs(ε) =

 Bs(ε)− φ̂ ε ∈ S(φ̂) update required

Bs(ε) ε 6∈ S(φ̂) not affected

In deactivatingφ̂, we might update some native integration-tables.

3. Ba(ε) =



∅ Bs(ε) = ∅ ∧ ε ∈ S(φ̂) clear

Ba(ε)− φ̂ Bs(ε) 6= ∅ ∧ ε ∈
⋃
ε′∈S(φ̂)D(ε′) update

Ba(ε) Bs(ε) 6= ∅ ∧ ε 6∈
⋃
ε′∈S(φ̂)D(ε′)∨(

Bs(ε) = ∅ ∧ ε 6∈ S(φ̂)
)

not affected

In deactivatingφ̂, we might update ancestral integration-tables.

Proof Please refer to this chapter’s Appendix for the formal proof.
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4.3.3 Refinement by Substitution

With theorems for activation and deactivation in place, we can easily prove theorems for compound opera-

tions, such as substitution refinement.

Theorem 3 (substitution) An application ofDeactivatecomposed with multiple applications ofActivate, as

shown below, is safe and effects a refinement ofφ̂ by substitution:

< S̄ is consistent∧ φ̂ ∈ B̄ > φ̂ active, state is consistent

< {ϕ1, . . . , ϕN} = C(φ̂)\B̄ > give names to the inactive children ofφ̂

S1 ← Activate(S̄, ϕ1) activate first inactive child

. . . . . .

SN ← Activate(SN−1, ϕN ) activateN th inactive child

S ← Deactivate(SN , φ̂) deactivateφ̂

< S is consistent> state is consistent

< φ̂ 6∈ S.B ∧ C(φ̂) ⊂ S.B > φ̂ was replaced by its children

Proof sketch Compose the deactivation theorem withN applications of the activation theorem.

4.3.4 Integration of Bilinear Forms

The specification of the evaluation list, (4.2), maps directly into an efficient algorithm, presented in Section

4.4.5.

4.3.5 Integration over Tiles

Lemma 1 (black tiles) Every ancestor element of a black element-tile is black.

Proof We prove that every elementt2, ancestor of black element-tilet, is black. Sincet is black, then it

has an active descendant (by TCP1 ont). Any descendant oft is a descendant oft2, thust2 has an active

descendant, andt2 is black (by TCP1 ont2).

Lemma 2 (red tiles) Every descendant tile of a red tile is white.

Proof sketch Case 1: Red element tilet. Consider any particular element descendantt1. It is inactive (by

TCP1 ont) thus it is not red (by TCP2 ont1). None of its descendants are active, sinceD(t1) ⊂ D(t), thus it

is not black (by TCP1 ont1). Therefore it is white. Consider any particular resolving-tile descendantt2. Its

parent is not black (proof: chooset1 to be the parent). Thereforet2 is white (by TCP6 ont2).

Case 2: Red resolving tilet. Its child, the elementt3, is white (by TCP4 ont). Every descendant oft3 is

white (by the same argument as Case 1).
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Lemma 3 (white tiles) The coarser-link of a white tile is not black.

Proof sketch Case 1: White element tilet. Assume its resolving-tile parentt1 is black. Then the parent of

t1 is black (by TCP5 ont1). But thent1 is red (by TCP4 ont1) which is a contradiction. Therefore the parent

of t is not black.

Case 2: White resolving tilet. Assume its element-tile parentt2 is black. Thent is either red (by TCP4

on t) or black (by TCP5 ont), which is a contradiction. Therefore the parent oft is not black.

Theorem 4 (tile coloring produces minimal valid partition) The red tiles, specified by the tile coloring

problem, form a minimal partition of the domain that resolves every active element.

Proof sketch In Part I, we prove that the red tiles form a valid tiling. In part II, we show that the tiles are

not excessively fine.

Part I The red tiles form a valid tiling, i.e., (1) the red tiles do not overlap, (2) every leaf element is a red

tile, and (3) the red tiles cover the domain. Together (1) and (3) guarantee that the red tiles are a partition of

the domain, and (2) guarantees that they resolve the finest active elements.

Assume two red tiles overlap, then one must be a descendant of the other. But by the Lemma2 the

descendants of a red tile are white. Therefore, (1) red tiles do not overlap.

By definition, a leaf element does not satisfy TCP1, therefore, by TCP2, (2) every leaf element is a red

tile.

Pick any pointP on the domain. We show how to find the red tile that containsP . Choose the coarsest-

level element tile containingP . By construction that element tile is red or black, since the active elements

cover the domain. If it is red, QED; assume it is black. Traverse down the hierarchy of tiles as follows:

arriving at an element tile, proceed to the resolving tile containingP ; arriving at resolving tile, proceed to

its child tile. At every step of the traversal, examine the color of the tile. It must be black or red: it cannot

be white by Lemma3. If it is red, QED. If it is black, continue the traversal. Assume that the finest element

is at levelq. Then there are no black tiles at levels≥ q. Consequently the traversal must reach a red tile.

Therefore, (3) the red tiles cover the domain.

Part II The red tiles are not excessively-fine in the following sense: choose any element which has no

active descendants. That element tile has no red descendants.

By construction the element is not black. If it is red then, by Lemma2, QED. If it is white, then all of its

descendants (element- and resolving-tiles) are white. To see this: observe that each of its element-descendants

also has no active descendants hence is also white; consequently all its resolving-tile descendants are also

white.
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4.4 Algorithms

4.4.1 Initialization

Initially, B := {φ(0)
i } is the set of level-0 scaling functions,E := E(0) is the set of level-0 elements, and the

integration tables of every active element,ε ∈ E = E(0), are initialized (by the consistency requirement) to

Ba(ε) = ∅ andBs(ε) = S?(ε).

4.4.2 Activation of Basis Function

During the course of the solution process, basis functions are (de)activated (lines 4-5 ofIntegratePDE) and

the data structures described above must be updated. When a basis functionφ is activatedB andE as well as

Bs andBa must be updated, following the prescription of Theorem1 (activation):

Activate(φ)

1 B ∪= {φ}

2 ForEach ε ∈ S(φ) do

3 Bs(ε) ∪= {φ}

4 // upon activation initialize ancestral list

5 If ε /∈ E thenBa(ε) ∪= AncestralList(ε) ; E ∪= {ε} fI

6 // add to ancestral lists of active descendants

7 ForEach γ ∈ (D(ε) ∩ E) doBa(γ) ∪= {φ}

AncestralList(ε)

1 ρ := ∅

2 ForEach γ ∈ D?(ε) ∩ E do

3 ρ ∪= Bs(γ) ∪Ba(γ)

4 return ρ

Activate first augments the set of active functions (line 1), and then iterates over each cell in the natural

support set ofφ (lines 2-7). Sinceφ is active, it belongs in the table of same-level active functions of every

supporting cell (code line 3, theorem condition 2). Furthermore sinceφ is active its supporting cells are active

(code line 5 and theorem condition 1): they are activated (if inactive) by adding them to the set of active cells

and initializing their table of ancestral active-functions (theorem condition 3-initialize). Note here the call

to Ancestor(ε), which returns all active coarser-level basis-functions whose natural support set overlapsε.

Finally, all active descendants of the supporting cell also supportφ, hence we update their tables of ancestral

active-functions (code line 7 and theorem condition 3-update).
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4.4.3 Deactivation of Basis Function

When a basis functionφ is deactivatedB and E as well asBs andBa must be updated, following the

prescription of Theorem2 (deactivation):

Deactivate(φ)

1 B \= {φ}

2 ForEach ε ∈ S(φ) do

3 Bs(ε) \= {φ}

4 // deactivate element?

5 If Bs(ε) = ∅ then E \= {ε},Ba(ε) := ∅ fI

6 // update ancestor lists of active descendants

7 ForEach γ ∈ D(ε) ∩ E doBa(γ) \= {φ}

We first update the set of active functions (line 1) and then iterate over the supporting cells (lines 2-7). Since

φ has become inactive, it is removed from the table of same-level active-functions of every supporting cell

ε (code line 3 and theorem condition 2) and from the table of ancestral active-functions of every active

descendant ofε (code line 7 and theorem condition 3-update). Furthermore if the supporting cell is left with

an empty active-function table then it is deactivated and its ancestral table is cleared (code line 5 and theorem

conditions 1 and 3-clear).

4.4.4 Refinement by Substitution

Assuming that an appropriate error estimator is at hand we can consider a wide variety of adaptive solver

strategies built on top ofActivate. Two example strategies are detail- and substitution-refinement. The former

is simply activating a detail function. The latter is implemented via compound applications ofActivate

and Deactivate. The following algorithm refines an active basis function,ϕi ∈ B, using the method of

substitution:

Refine(ϕi)

1 ForEachϕj ∈ C(ϕi) do

2 If ϕj /∈ B then Activate(ϕj) ; uj := 0 fI

3 uj+= aijui

4 Deactivate(ϕi) ; ui := 0

Here eachuj is the coefficient associated withϕj , andaij is the weight ofϕj in the refinement relation of

ϕi (Eqn.3.3). Note that the algorithm is semantically a reproduction of Theorem3 (substitution), garnished

with updates to the DOF coefficientsuj .
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4.4.5 Integration of Bilinear Forms

To evaluate the stiffness matrix, we need to be able to compute the action of the operator on pairs of basis

functions. Traditionally this is done by iterating over all active elements, computing local interactions and

accumulating these into the global stiffness matrixK. With the data structures described above, we have all

necessary tools at hand to effect this computation. We interpret (4.2) (see Section4.2.6) as a literal description

of the following algorithm:

ComputeStiffness(E)

1 ForEach ε ∈ E do

2 ForEach φ ∈ Bs(ε) do

3 kφφ+= Integrate(φ,φ,ε)

4 ForEachψ ∈ Bs(ε) \ {φ} do

5 kφψ+= Integrate(φ,ψ,ε)

6 kψφ+= Integrate(ψ,φ,ε)

7 ForEachψ ∈ Ba(ε) do

8 kφψ+= Integrate(φ,ψ,ε)

9 kψφ+= Integrate(ψ,φ,ε)

Here we used+ = (and later ∪ = and \ = ) in C-language fashion to indicate a binary operation with

the result assigned to the left hand side.ComputeStiffnessconsiders interactions between every pair of

overlapping basis functionsat the coarsest level that captures the interaction:if coarser functionφc overlaps

finer functionφf , we evaluate the bilinear form over cells in the natural support set ofφf which also support

φc: {ε | ε ∈ S(φf ) ∧ D?(ε) ∩ S(φc) 6= ∅}. With this approach every interaction is considered exactly once,

at a sufficiently fine resolution. To implement this approach, we iterate over each active cell (line 1), and

consider only interactions between every same-level active function (line 2) and every active function either

on the same level (lines 3-6) or ancestral level (lines 7-9). For symmetricK appropriate calls toIntegrate

can be omitted. In practice, we do not callComputeStiffnessevery time the basisB is adapted, rather we

make incremental modifications toK.

4.4.6 Integration over Tiles

While the simple specification of TCP can be translated directly into pseudo-code, for better performance it is

desirable to use anincrementalalgorithm, locally updating to the tile coloring whenever an element becomes

(in)active. Here we present one approach to incremental coloring. The functionUpdateTilesOnElementAc-

tivation should be called immediately after an element is activated.
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UpdateTilesOnElementActivation(ε)

1 //if element tile was black, we’re done

2 If GetColor (ε) 6= black

3 //element tile changes from white to red

4 SetColor(ε, red)

5 //all ancestors are black

6 ForEach γ ∈ D?(ε) do SetColor(γ,black)

We derived this algorithm from the rules TCP1–TCP3 by tracing the consequence of a single elementε

becoming active. The consequent effect on any element-tileε2 is as follows. Ifε2 is black, it remains black

(by TCP1 onε2, noting that no descendant has beendeactivated). Otherwise, ifε2 is an ancestor ofε, then it

becomes black (by TCP1 onε2). Finally, if ε2 = ε, then it becomes red (it was not previously black, hence

by TCP1 it has no active descendants; it is active, thus by TCP2 it is red).

Note above that the color of every element stays the same ormoves upward in the ladder of colorsgiven

by TCP1–TCP3, i.e., from top to bottom: black, red, white. In contrast, when we update colors after an

element is deactivated, colors which change do so “downward.”

Recall from TCP4–TCP6 that the color of a resolving tile depends on the color of its linked element-tiles.

For this reason, when an element-tile changes color, we update its linked resolving tiles:

SetColor(ε, c)

1 //proceed only if new color differs from current

2 If GetColor (ε) 6= c

3 ε.color := c

4 //update the linked resolving-tiles

5 ForEach γ ∈ L(ε) ∪ L∗(ε) do UpdateResolvingTile(γ)

To compute the color of a resolving-tile, we apply rules TCP4–TCP6 directly:

UpdateResolvingTile(t)

1 If GetColor (L∗(t)) = black

2 t.color := (GetColor(L(t)) = white) ? red : black

3 elset.color := white; fI

Following the same pattern as above, when an element is deactivated, we callUpdateTilesOnElemen-

tActivation :
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UpdateTilesOnElementDeactivation(ε)

1 //if element tile was black, we’re done

2 If GetColor (ε) 6= black

3 //element tile changes from red to white

4 SetColor(ε,white)

5 //update ancestors

6 ForEach γ ∈ D?(ε) do

7 //update only black ancestors with no active descendants

8 If GetColor (γ) = black ∧ D(γ) ∩ E = ∅ then

9 //ancestor becomes red if active, white otherwise

10 SetColor(γ, (γ ∈ E) ? red : white); fI

If ε was black, it remains black (code line 2, by TCP1 onε, since no descendant ofε has been deactivated),

and none of its ancestors are affected (by Lemma1). Otherwiseε was red (by TCP2 onε, since it was active),

and changes to white (code line 4, by TCP3 onε, since it is now inactive). The consequent effect on any

element-tile ancestorε2 of ε is as follows. Ifε2 is red, it is unchanged (by TCP2 onε2, since no descendant

of ε2 has been activated, andε2 continues to be active). Ifε2 was black, then it is effectively re-evaluated

from scratch (code lines 6–10, following rules TCP1–TCP3).

The above algorithms maintain incrementally the coloring of the tiles under arbitrary (de)activations of the

elements. In many applications, we have more information about when elements may become (in)active, and

we can put that information to effect by simplifying the above algorithms. In particular, applications which

enforce aone level difference, or restriction criterion, can simplify line 6 ofUpdateTilesOnElementActiva-

tion and lines 6 and 8 ofUpdateTilesOnElementDeativationby replacing the ancestor (resp. descendant)

expression with a parent (resp. child) expression. If this convenient simplification cannot be made, then

implementation of line 8 ofUpdateTilesOnElementDeativationrequires special care: each element should

maintain a local counter of its active descendants, thus permitting rapid evaluation ofD(γ) ∩ E = ∅.

The above code is just one approach to incrementally solving the tile coloring problem. Other incremental

approaches may be used instead.

The evaluation-list ofIntegrate consists of all red tiles, each one accompanied by a table of overlapping

active functions. This table in constructed as follows. For an element tile, concatenate its two integration

tables. For a resolving tile, concatenate its coarser-link’s integration tables. The set of red tiles, together with

their associated integration tables, provides sufficient information to carry out the integration.
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4A: Appendix to Chapter 4

4.5 Overview

In this appendix to Chapter4 we prove the correctness of the (de)activation algorithms. We have chosen to use

the hierarchical proof style advocated by Lamport [Lamport 1993] and by Gries [Gries and Schneider 1993].

Although some proofs are more verbose in this style, it is much harder to prove something which is false—

this observation is at the heart of Lamport’s argument for using this proof style to prove the correctness of

algorithms. In a hierarchical proof, each proof step is itself proved by a nested sub-proof. The best way to

read such a proof is breadth-first, from coarsest- to finest-level proofs.

We now recall and prove the (de)activation theorems and lemmas.

4.6 Correctness of Activation

Theorem 1 (activation) Suppose: (1)S is consistent, (2)̂φ 6∈ B, and (3)B = B + φ̂. S is consistent

iff three conditions hold:

1. E = E ∪ S(φ̂)

In activatingφ̂, we might activate elements.

2. Bs(ε) =

 Bs(ε) + φ̂ ε ∈ S(φ̂) update required

Bs(ε) ε 6∈ S(φ̂) not affected

In activatingφ̂, we might update some native integration-tables.

3. Ba(ε) =


⋃
ε′∈D?(ε) Bs(ε′) Bs(ε) = ∅ ∧ ε ∈ S(φ̂) initialize

Ba(ε) + φ̂ Bs(ε) 6= ∅ ∧ Bs(ε) 6= ∅ ∧ ε ∈
⋃
ε′∈S(φ̂)D(ε′) update

Ba(ε) Bs(ε) = ∅ ∨
(
Bs(ε) 6= ∅ ∧ ε 6∈

⋃
ε′∈S(φ̂)D(ε′)

)
not affected

In activatingφ̂, we might update ancestral integration-tables.

PROOF SKETCH: We write out invariants I1, I2, and I3, then substituteB = B + φ̂, and finally collect and

isolate the quantities of the consistentS by using its invariantsI1, I2, andI3.

The proof of condition 3 is more elaborate (see step 3) and we sketch it here. We examine three separate
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cases: (step 3.2) newly-activated elements (their ancestral integration-table must be initialized), (step 3.3)

already-active elements (they require an update if their ancestor supportsφ̂), and (step 3.4) inactive elements

(they remain untouched). First, (step 3.1) we establish two ways of referring to newly-activated elements—

one way is better suited for implementation and the other for proofs.

ASSUME: 1. S is consistent,

2. φ̂ 6∈ B,

3. B = B + φ̂.

〈1〉1. I1⇔ E = E ∪ S(φ̂)

To preserve I1, we might activate elements.

PROOF: I1⇔ E =
⋃
φ∈B S(φ) [invariant I1]

=
⋃
φ∈(B+φ̂) S(φ) [by assumption〈0〉.3]

=
⋃
φ∈B S(φ) ∪ S(φ̂) [simple algebra]

= E ∪ S(φ̂) [by invariantI1 and assumption〈0〉.1]

〈1〉2. I2⇔ Bs(ε) =

 Bs(ε) + φ̂ ε ∈ S(φ̂) update required

Bs(ε) ε 6∈ S(φ̂) not affected
To preserve I2, we might update native integration-tables.

PROOF: I2⇔ Bs(ε) = B ∩ S?(ε) [invariant I2]

= (B + φ̂) ∩ S?(ε) [by assumption〈0〉.3]

= B ∩ S?(ε) + {φ̂} ∩ S?(ε) [by assumption〈0〉.2]

= Bs(ε) + {φ̂} ∩ S?(ε) [by invariantI2]

=

 Bs(ε) + φ̂ ε ∈ S(φ̂) update required

Bs(ε) ε 6∈ S(φ̂) not affected
[by def. of adjoint]

〈1〉3. I3⇔ Ba(ε) =


⋃
ε′∈D?(ε) Bs(ε′) Bs(ε) = ∅ ∧ ε ∈ S(φ̂) initialize

Ba(ε) + φ̂ Bs(ε) 6= ∅ ∧ Bs(ε) 6= ∅ ∧ ε ∈
⋃
ε′∈S(φ̂)D(ε′) update

Ba(ε) Bs(ε) = ∅ ∨
(
Bs(ε) 6= ∅ ∧ ε 6∈

⋃
ε′∈S(φ̂)D(ε′)

)
not affected

To preserve I3, we might update ancestral integration-tables.

〈2〉1. Bs(ε) = ∅ ∧ ε ∈ S(φ̂) ≡ Bs(ε) 6= ∅ ∧ Bs(ε) = ∅

All previously-inactive elements in the natural support ofφ̂ will be activated and initialized.

〈3〉1. ASSUME: Bs(ε) = ∅ ∧ ε ∈ S(φ̂)

PROVE: Bs(ε) 6= ∅ ∧ Bs(ε) = ∅

〈4〉1. Bs(ε) 6= ∅

PROOF: ε ∈ S(φ̂) by assumption〈3〉

⇒ Bs(ε) = Bs(ε) + φ̂ [by step〈1〉2]

6= ∅ [sinceφ̂ 6∈ ∅ ∧ φ̂ ∈ Bs(ε)]
〈4〉2. Q.E.D.

PROOF: by assumption〈3〉 and step〈4〉1.
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〈3〉2. ASSUME: Bs(ε) 6= ∅ ∧ Bs(ε) = ∅

PROVE: Bs(ε) = ∅ ∧ ε ∈ S(φ̂)

〈4〉1. ε ∈ S(φ̂)

PROOF: Bs(ε) 6= ∅ ∧ Bs(ε) = ∅ [by assumption〈3〉]

⇒ Bs(ε) 6= Bs(ε) [by algebra]

⇒ ε ∈ S(φ̂) [by step〈1〉2]
〈4〉2. Q.E.D.

PROOF: by assumption〈3〉 and step〈4〉1.

〈2〉2. CASE: Bs(ε) = ∅ ∧ ε ∈ S(φ̂)

PROVE: I3⇔ Ba(ε) =
⋃
ε′∈D?(ε) Bs(ε′)

To preserve I3, we might initialize some ancestral-integration-tables.

〈3〉1. Bs(ε) 6= ∅ [by assumption〈2〉 and step〈2〉1]

〈3〉2. Q.E.D.

PROOF: by 〈3〉1 and invariant I3.

〈2〉3. CASE: Bs(ε) 6= ∅ ∧ Bs(ε) 6= ∅

PROVE: I3⇔ Ba(ε) =

 Ba(ε) + φ̂ ε ∈
⋃
ε′∈S(φ̂)D(ε′)

Ba(ε) ε 6∈
⋃
ε′∈S(φ̂)D(ε′)

To preserve I3, we might update some integration tables.

PROOF: I3⇔ Ba(ε) =
⋃
ε′∈D?(ε) Bs(ε′) [def’n of I3, assumption〈2〉]

=
⋃
ε′∈D?(ε)

(
Bs(ε′) + {φ̂} ∩ S?(ε′)

)
[by step〈1〉2]

= Ba(ε) +
⋃
ε′∈D?(ε){φ̂} ∩ S?(ε′) [by invariantI3]

= Ba(ε) + {φ̂} ∩
⋃
ε′∈D?(ε) S?(ε′) [by algebra]

=

 Ba(ε) + φ̂ ε ∈
⋃
ε′∈S(φ̂)D(ε′)

Ba(ε) ε 6∈
⋃
ε′∈S(φ̂)D(ε′)

[by definition of adjoint]

〈2〉4. CASE: Bs(ε) = ∅

PROVE: I3⇔ Ba(ε) = Ba(ε)

To preserve I3, some integration tables must remain unchanged.

〈3〉1. Bs(ε) = ∅

PROOF: Bs(ε) ⊆ Bs(ε) [by 〈1〉2]

= ∅ [by assumption〈2〉]
〈3〉2. Q.E.D.

PROOF: I3⇔ Ba(ε) = ∅ [by assumption〈2〉 and invariant I3]

= Ba(ε) [by step〈3〉1 and invariantI3]
〈2〉5. Q.E.D.

〈3〉1. Steps〈2〉2, 〈2〉3, 〈2〉4 cover all possible cases.
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PROOF: [case〈2〉2 or 〈2〉3 or 〈2〉4](
Bs(ε) = ∅ ∧ ε ∈ S(φ̂)

)
∨

(
Bs(ε) 6= ∅ ∧ Bs(ε) 6= ∅

)
∨ Bs(ε) = ∅

≡
(
Bs(ε) 6= ∅ ∧ Bs(ε) = ∅

)
∨

(
Bs(ε) 6= ∅ ∧ Bs(ε) 6= ∅

)
∨ Bs(ε) = ∅ [by step〈2〉1]

≡ Bs(ε) 6= ∅ ∨ Bs(ε) = ∅

≡ true
〈3〉2. Q.E.D.

PROOF: by steps〈2〉2, 〈2〉3, 〈2〉4, and〈3〉1.

〈1〉4. Q.E.D.

PROOF: by steps〈1〉1, 〈1〉2, and〈1〉3.

4.7 Correctness of Deactivation

Lemma 4 (active elements)Given any systemS, if invariant I2 holds, then

I1 ≡ Bs(ε) 6= ∅ ⇔ ε ∈ E .

Invariant I1: an element is activeiff its native integration-table is populated.

PROOF: ε ∈ E ⇔ Bs(ε) 6= ∅

= B ∩ S?(ε) 6= ∅ [by assumed Invariant I2]

= 〈∨ φ : B ∩ S?(ε) | ε ∈ S(φ)〉 [axiom of choice]

Lemma 5 Given setS and predicatesR,R,{
ε : ∼S | R

}
∪

({
ε : S | R

}
− {ε : S | R}

)
=

{
ε | R

}
− {ε : S | R}

Partition (of
{
ε | R

}
) then excision(of {ε : S | R}) is the same as unpartitioned excision.

PROOF:
{
ε : ∼S | R

}
∪

({
ε : S | R

}
− {ε : S | R}

)
=

{
ε : ∼S | R

}
∪

({
ε : S | R

}
∩ ∼{ε : S | R}

)
[def’n of minus]

=
{
ε : ∼S | R

}
∪

({
ε : S | R

}
∩ (∼S ∪ {ε : S | ¬R})

)
[def’n of ∼]

=
({
ε : ∼S | R

}
∪

{
ε : S | R

})
∩

({
ε : ∼S | R

}
∪ ∼S ∪ {ε : S | ¬R}

)
[distrib. ∪ over∩]

=
{
ε | R

}
∩ (∼S ∪ {ε : S | ¬R}) [def’n of ∪]

=
{
ε | R

}
∩ ∼{ε : S | R} [def’n of ∼]

=
{
ε | R

}
− {ε : S | R} [def’n of minus]
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Theorem 2 (deactivation) Suppose: (1)S is consistent, (2)̂φ ∈ B, and (3)B = B− φ̂. S is consistent

iff three conditions hold:

1. E = E −
{
ε ∈ S(φ̂) | Bs(ε) = ∅ : ε

}
In deactivatingφ̂, we might deactivate elements.

2. Bs(ε) =

 Bs(ε)− φ̂ ε ∈ S(φ̂) update required

Bs(ε) ε 6∈ S(φ̂) not affected

In deactivatingφ̂, we might update some native integration-tables.

3. Ba(ε) =



∅ Bs(ε) = ∅ ∧ ε ∈ S(φ̂) clear

Ba(ε)− φ̂ Bs(ε) 6= ∅ ∧ ε ∈
⋃
ε′∈S(φ̂)D(ε′) update

Ba(ε) Bs(ε) 6= ∅ ∧ ε 6∈
⋃
ε′∈S(φ̂)D(ε′)∨(

Bs(ε) = ∅ ∧ ε 6∈ S(φ̂)
)

not affected

In deactivatingφ̂, we might update ancestral integration-tables.

〈1〉1. I2⇔ Bs(ε) =

 Bs(ε)− φ̂ ε ∈ S(φ̂) update required

Bs(ε) ε 6∈ S(φ̂) not affected

In deactivatingφ̂, we might update some native integration-tables.

PROOF: I2⇔ Bs(ε) = B ∩ S?(ε) [def’n of invariant I2]

=
(
B − φ̂

)
∩ S?(ε) [by assumption〈0〉.3]

=
(
B ∩ ∼ {φ̂}

)
∩ S?(ε) [by def’n of minus op.]

= B ∩
(
S?(ε) ∩ ∼ {φ̂}

)
[by assoc., commut. of∩]

=

 B ∩ S?(ε)∩ ∼ {φ̂} φ̂ ∈ S?(ε)

B ∩ S?(ε) φ̂ 6∈ S?(ε)
[φ̂ 6∈ S?(ε)⇒ S?(ε) ⊆∼ {φ̂}]

=

 Bs(ε)− φ̂ φ̂ ∈ S?(ε)

Bs(ε) φ̂ 6∈ S?(ε)
[by invariantI2, def’n of minus op.]

=

 Bs(ε)− φ̂ ε ∈ S(φ̂)

Bs(ε) ε 6∈ S(φ̂)
[by def’n of adjoint op.]

〈1〉2. ASSUME: invariant I2 holds

PROVE: I1⇔ E = E −
{
ε ∈ S(φ̂) | Bs(ε) = ∅ : ε

}
In deactivatingφ̂, we might deactivate elements.

〈2〉1.
{
ε : S(φ̂) | Bs(ε) 6= ∅ : ε

}
=

{
ε : S(φ̂) | Bs(ε) 6= ∅ : ε

}
−

{
ε : S(φ̂) | Bs(ε) = ∅ : ε

}
〈2〉2. Q.E.D.
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PROOF: I1≡ E = {ε | Bs(ε) 6= ∅ : ε} [by Lemma4]

=
{
ε :∼ S(φ̂) | Bs(ε) 6= ∅ : ε

}
∪

{
ε : S(φ̂) | Bs(ε) 6= ∅ : ε

}
[by union of complements]

=
{
ε :∼ S(φ̂) | Bs(ε) 6= ∅ : ε

}
[by step〈1〉1]

∪
({
ε : S(φ̂) | Bs(ε) 6= ∅ : ε

}
[step〈2〉1]

−
{
ε : S(φ̂) | Bs(ε) = ∅ : ε

})
= E −

{
ε : S(φ̂) | Bs(ε) = ∅ : ε

}
[by Lemma5]

〈1〉3. ASSUME: invariant I2 holds

PROVE:

I3⇔ Ba(ε) =



∅ Bs(ε) = ∅ ∧ ε ∈ S(φ̂) clear

Ba(ε)− φ̂ Bs(ε) 6= ∅ ∧ ε ∈
⋃
ε′∈S(φ̂)D(ε′) update

Ba(ε) Bs(ε) 6= ∅ ∧ ε 6∈
⋃
ε′∈S(φ̂)D(ε′)∨(

Bs(ε) = ∅ ∧ ε 6∈ S(φ̂)
)

not affected

In deactivatingφ̂, we might update ancestral integration-tables.

〈2〉1. CASE: Bs(ε) = ∅

PROVE: I3⇔ Ba(ε) =

 ∅ ε ∈ S(φ̂) clear

Ba(ε) ε 6∈ S(φ̂) not affected

〈3〉1. ε 6∈ S(φ̂)⇒ Ba(ε) = ∅

PROOF: ε 6∈ S(φ̂) ⇒ Bs(ε) = Bs(ε) [by assumption〈1〉 and step〈1〉1]

= ∅ [by assumption〈2〉]

⇒ Ba(ε) = ∅ [by assumption〈0〉.1 (I3) and case〈2〉]
〈3〉2. Q.E.D.

PROOF: I3⇔ Ba(ε) = ∅ [by def’n of I3 with assumption〈2〉]

=

 ∅ ε ∈ S(φ̂)

Ba(ε) ε 6∈ S(φ̂)
[by step〈3〉1]

〈2〉2. CASE: Bs(ε) 6= ∅

PROVE: I3⇔ Ba(ε) =

 Ba(ε)− φ̂ ε ∈
⋃
ε′∈S(φ̂)D(ε′) update

Ba(ε) ε 6∈
⋃
ε′∈S(φ̂)D(ε′) not affected

PROOF: I3⇔ Ba(ε) =
⋃
ε′∈D?(ε) Bs(ε′) [I3 & as.〈2〉]

=
⋃
ε′∈D?(ε)

 Bs(ε′)− φ̂ ε′ ∈ S(φ̂)

Bs(ε′) ε′ 6∈ S(φ̂)
[〈1〉1 & as.〈1〉]

=


(⋃

ε′∈D?(ε) Bs(ε′)
)
− φ̂ ε ∈

⋃
ε′∈S(φ̂)D(ε′)(⋃

ε′∈D?(ε) Bs(ε′)
)

ε 6∈
⋃
ε′∈S(φ̂)D(ε′)

[def’n: adjoint]

=

 Ba(ε)− φ̂ ε ∈
⋃
ε′∈S(φ̂)D(ε′)

Ba(ε) ε 6∈
⋃
ε′∈S(φ̂)D(ε′)

[〈2〉 & as.〈0〉.1]

〈2〉3. Q.E.D.
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PROOF: by proofs of cases〈2〉1 and〈2〉2.

〈1〉4. Q.E.D.

〈2〉1. ASSUME: invariants I1, I2, and I3 hold.

PROVE: conditions 1, 2, and 3 hold.

PROOF: by steps〈1〉2, 〈1〉1, and〈1〉3.

〈2〉2. ASSUME: conditions 1, 2, and 3 hold.

PROVE: invariants I1, I2, and I3 hold.

〈3〉1. I2 holds.

PROOF: by step〈1〉1.

〈3〉2. I1 and I3 hold.

PROOF: by steps〈3〉1, 〈1〉2, and〈1〉3.

〈3〉3. Q.E.D.

PROOF: by steps〈3〉1 and〈3〉2.

〈2〉3. Q.E.D.

PROOF: by steps〈2〉1 and〈2〉2.
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Chapter 5

Applications

Adaptive basis refinement may be profitably applied to many application domains, including simulation, an-

imation, modeling, rendering, surgery, biomechanics, and computer vision. We present concrete, compelling

examples based on our implementation of basis refinement. Our examples span thin shells (fourth order

elliptic PDE using a Loop subdivision discretization), volume-deformation and stress-analysis using linear

elasticity (second order PDE using linear-tetrahedral and trilinear-hexahedral finite elements) and a subprob-

lem of electrocardiography (the generalized Laplace equation using linear tetrahedral finite elements).
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Figure 5.1: A sequence of frames from our adaptive simulation: time evolution of a rapidly inflating a metal-
foil balloon. The initial model contains 50 basis functions. Over the coarse of the simulation, substitution
refinement is used in regions of high bending energy. By the end of the simulation, 1000 basis functions are
active across six levels of the hierarchy.

5.1 Overview

Adaptive basis refinement may be profitably applied to many application domains. Here are just a few:

Simulation Many mechanical simulation problems are posed as PDEs or integral equations and then ap-

proximated using a particular weighted residual method. The problem domains include thermodynamics

(e.g., convective heat transfer) [Hughes 1987, Lewis et al. 1996], electromagnetism [Humphries 1997], quan-

tum mechanics [Ram-Mohan 2002], and mechanics of continuous media [Malvern 1969, Kagan and Fischer 2000]

including fluid flow as well as elasticity of solids, thin plates and thin shells (see Figure5.1.

In computer graphics, research on elasticity traces back to the early work of Terzopoulos et al. [1987a],

who introduced tensorial PDE treatments of elasticity to the graphics community. Later researchers devel-

oped treatments of thin plates such as cloth textiles [House and Breen 2000]. Recently, novel numerical

treatments of thin shells, significantly more robust than earlier approaches, have been introduced in graph-

ics [Green et al. 2002, Grinspun et al. 2002, Grinspun et al. 2003] and mechanics [Cirak et al. 2000a]. The

computer graphics community has developed rapid techniques for fluid simulation based on the Navier-Stokes

PDE for incompressible flow [Stam 1999], likewise the shallow water equations [Layton and van de Panne 2002]

as well as level-set methods [Foster and Fedkiw 2001]. Attention has been given to thevisualizationof fluid

flows and vector fields in general [Diewald et al. 2000]. These approaches to elasticity, fluid flow, and visual-

ization are all based on PDE formulations; many of these approaches use finite-basis discretizations and thus

easily accommodate basis refinement.
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Animation We distinguish betweensimulation, which aims topredict physical behavior, andanimation,

which aims atartistic control of physical motion, often (but just as often not) with a secondary goal of

physical plausibility. Animation problems are commonly formulated as PDEs. In his pioneering work on

spacetime constraintsWitkin [Witkin and Kass 1988] presented a variational formulation for constrained an-

imation. These kinds of variational formulations benefit greatly (in performance and quality) by discretizing

the spacetime ODE in multi-resolution and optimizing adaptively, as was demonstrated by [Liu et al. 1994]

We return to this in our discussion of future research directions; see in particular the discussion ofmulti-

resolution model reductionin Section6.2. Recently, Capell et al. [2002a, 2002b] presented an interactive

skeleton-based animation tool based on PDEs for linearized elasticity; they discuss their implementation of

basis refinement, referring to our earlier work in this area [Grinspun et al. 2002].

Modeling An important class of shapes used in modeling are so-calledvariationally optimal, i.e., they mini-

mize some energy functional corresponding to a variational formulation of some PDE. Welch and Witkin [1992]

introduced variational formulations to the graphics modeling community; later Gortler and Cohen [1995]

showed that such formulations can be solved efficiently using spline wavelet bases. In retrospect, we view

Gortler and Cohen’s work as a particular instance of basis refinement; our framework extends the imple-

mentation of these ideas, beyond the range of traditional wavelets, to arbitrary-topology surfaces based

on multi-resolution subdivision discretizations. Geometric modeling continues to be an active research

area [Terzopoulos et al. 1987b, Terzopoulos and Fleischer 1988, Celniker and Gossard 1991],

[Metaxas and Terzopoulos 1992, Celniker and Welch 1992, Welch and Witkin 1992, Gortler and Cohen 1995,

Kobbelt 2000b, Friedel et al. 2003].

Rendering In 1986 Kajia presented theRendering Equationunifying the different models of rendering,

e.g., ray-tracing [Foley et al. 1995], radiosity [Greenberg et al. 1986], etc. [Kajiya 1986]. Kajia showed that

different discretizations of this integral equation lead to specific instances of earlier formulations, such as the

radiosityequation which models radiative transport phenomena, leading under a finite-element discretization

to a linear system. Gortler et al. [1993] demonstrated that wavelet discretizations of the radiosity equation

enable adaptive solution radiosity. This earlier work fits neatly within our framework; with the tools presented

herein we can generalize these ideas and their implementation from the setting of linear finite-elements and

wavelets to the setting of high-genus surfaces with accompanying subdivision discretizations. Smoother

discretizations offer potentially more compact representation of lighting; however, a critical issue to address

would be sharp discontinuities in the radiance function. To that end, a complete treatment of adaptive radiosity

computations based on subdivision discretizations should include a treatment ofedge tagsand their associated

non-smooth basis functions [Biermann et al. 2000, DeRose et al. 1998, Zorin and Schr̈oder 2000]; for further

discussion of edge tags please see Section6.2.
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Surgery Problems in computational medicine are rapidly finding their way to the operating room. PDE for-

mulations are everywhere. Consider, for example, PDE models of biological tissues such as the liver, blood,

bones, tendons and grey matter [Roth et al. 1998, Cotin et al. 1996, Warfield et al. 2000, Wu et al. 2001];

PDE models of electromagnetism in the context of MRI (magnetic resonance imaging [Warfield et al. 2000]),

CT (computerized tomography) [Christensen et al. 1997] and ECG (electrocardiogram [Johnson 2001]) scans.

These models serve medical examination, training as well as surgery. Some examination applications analyze

electromagnetic data obtained from ECG scans: this analysis may involve solving an inverse problem (see

Section5.5). Training and surgery applications are typically focused on modeling the deformation of body

tissues due to external forces (see Section5.3).

Biomechanics Similarly, engineers can consider interactions between their mechanical design and the

body’s tissues in a quantitative manner by measuring the stress and strain on the skeleton and muscles. This

requires solving PDEs based on constitutive models of bones, muscles, ligaments and tendons. Applications

include ergonomic design, construction of orthotics, design of sporting equipment, sports injury research.

Vision The field of computer vision is very broad; PDEs appear in problems from template matching to

shape reconstruction. Most recently, Favaro presented a variational approach toshape from defocus, solving a

PDE to globally reconstruct three-dimensional shape and radiance of a surface in space from images obtained

with different focal settings [Jin and Favaro 2002].

We now turn to concrete examples, covering assorted application domains and discretizations, with: two-

and three-dimensional domains; triangular, tetrahedral, and hexahedral tessellations; linear and trilinear

finite-element as well as Loop subdivision bases; refinement by details as well as by substitution.

Together with Dr. Petr Krysl, we implemented these applications and demonstrated the efficacy of basis

refinement. The author implemented and documented mainly the subdivision examples; Dr. Krysl imple-

mented and documented mainly the finite-element examples; together both contributed to the software design

and initial publications.

Although we have implemented these examples, our aim here is to provide a survey of the applications;

to that end we have omitted those details which are best left to the original literature. The two-dimensional

examples employ subdivision basis functions to simulate thin flexible structures including a balloon, a metal-

lic cylinder, and a pillow. The three-dimensional examples employ linear tetrahedra and trilinear hexahedra

to address bio-medical problems: (1) brain volume deformation during surgery; (2) stress distribution in a

human mandible; and (3) potential fields in the human thorax for electrocardiography (ECG) modeling.
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Figure 5.2: Thin shell simulation of inflating metal-foil balloon (left); red spheres represent active scaling
functions (right). Note the concentration of finer functions near wrinkles and folds.

5.2 Non-Linear Mechanics of Thin Shells

The thin shell equations describe the behavior of thin flexible structures. Examples include aluminum cans,

cloth, Mylar, and paper among others. The underlying PDEs, based on the classic Kirchhoff Love the-

ory [Timoshenko and Woinowsky-Krieger 1959], describe the mechanical response of the surface to external

forces in terms of the first and second fundamental forms of the original and deformed surfaces. Thinshells

are closely related to thinplates, which are useful for variational geometric modeling and intuitive direct

manipulation of surfaces. Thin plate equations assume that the undeformed geometry is flat: the resulting

equations are easier to solve but cannot capture subtleties of the nonlinear dynamic behavior of more complex

shapes (Figs.1 and below). Thinshell equations accommodate arbitrary initial configurations and capture

nonlinearities important for accurate modeling of stability phenomena, e.g., complex wrinkling patterns,

buckling and crushing (Figs.5.1, 5.2and5.4).

Subdivision bases are ideal for discretizing thin shell PDEs. For example, Loop basis functions (a) nat-

urally satisfy theH2 smoothness requirement of these fourth order PDEs; (b) are controlled by displace-

ments (not derivative quantities); and (c) easily model arbitrary topology. Cirak introduced the discretiza-

tion of thin shells using a single-resolution Loop basis, the so-calledSubdivision Element Method(SEM),

and presented (non-adaptive) simulations supporting the claimed benefits of smooth subdivision discretiza-

tions [2000b, 2001].

Adaptivity is essential for efficiently modeling complex material phenomena such as wrinkling and buck-

ling; such simulations were the original motivation behind the development of our framework. Here we

present one static and two dynamic simulations that demonstrate the application of basis refinement to thin

shells using Loop basis functions (please refer to our original publication [Grinspun et al. 2002] for videos

of these simulations). Following our original publication of these results, Green [2002] demonstrated yet an-

other benefit to using multi-resolution Loop discretizations of thin shell PDEs:preconditioninglarge systems,

making tractable the simulation of highly complex models.

Inflating Balloon We simulated the dynamic behavior of a rapidly inflating metal-foil balloon (Fig.5.2).

The initial flat configuration has 50 nodes, and the fully-inflated configuration has 1000 active nodes. We
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applied internal pressure to the balloon and used substitution refinement over the course of the 5ms simulated

inflation.

Figure5.3 shows the distribution of active nodes and elements near the end of the simulation; note the

sparsity at the finest levels. Non-adaptive approaches require a very fine grid throughout this simulation, in

contrast our adaptive approach begins with a coarse mesh and adds only necessary detail.

Poking Balloon We poked the inflated balloon with a “finger” and used substitution as well as detail re-

finement to adapt the basis near the contact region.

Figure 5.3: Visualization of the active nodes and elements at the end of inflation. The second through fourth
levels of the six-level hierarchy are shown (left to right); the fourth and finer levels are sparsely populated.

Pillow Using the balloon-inflation technique we modeled a pillow (Fig.1). Starting with two rectangular

pieces of fabric, we applied internal pressure and solved for the equilibrium state. The adapted solution

captures the fine wrinkles of the fabric. The pillow uses a thicker material (cloth) than the balloon (metal-

foil), thus it forms characteristically different wrinkling patterns.

Crushing Cylinder We animated the dynamic behavior of an aluminum cylinder under compression (Fig.5.4).

The crushing was applied as follows: the bottom rim of the cylinder was fixed; the vertical velocity (only)

of the top rim was prescribed using a linear ramp. The final animation shows the rapid buckling patterns in

slow-motion.

5.3 Volume Deformation as Surgery Aid

Surgeons plan a brain operation based on landmarks from a time-consuming, pre-operative, high-resolution

volume scan of the patient [Warfield et al. 2000]. After opening the skull, the surgeons may acquire additional

low-resolution volume scans, which show the deformation of the brain boundary surface, e.g., collapsing un-

der gravity. However, these rapid scans do not encode landmarks. Warfield uses physical simulation with

(single-resolution) tetrahedral finite elements to infer the volume deformation from the position of the brain

boundary [2000]. He maps the high-resolution scan via the computed volume deformation, and shows sur-

geons the shifted landmarks. We extend this work by introducing amulti-resolution tetrahedral discretization

and solvingadaptivelyto maintain high accuracy.
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Figure 5.4: Thin shell simulation of a crushing cylinder. Refinement by substitution is used to introduce finer
scaling functions: (left) regions with high bending force density are indicated in red; (middle) these regions
have a high concentration of finer scaling functions, (right) consequently the animation captures the buckling
mode and its sharp folds.

We modeled the volumetric deformation of the brain following the removal, orresection, of cancerous tis-

sue in the left hemisphere. Our material model is an isotropic elastic continuum [Zienkiewicz and Taylor 2000];

as the deformations are small we adopted linearized equations of equilibrium.

Figure 5.5: The initial (left) and refined (right) models of a brain after resection. Top row shows side view;
bottom row shows dorsal view cross-section passing through the cavity of the resection.

The initial model has 2,898 nodes (5,526 DOFs) and 9,318 tetrahedral elements. We first solve for the

coarse displacement field, and then refine by substitution to 64,905 DOFs, aiming for error equidistribution.

Our error metric is the strain energy density. Figure5.5shows the initial and refined meshes side by side. For

comparison, a uniformly finer mesh with the same precision as the finest regions of the adapted grid would

involve approximately 300,000 DOFs. Solving the volume deformation problem for the refined mesh takes
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38s on a 600MHz PI II laptop with 256MB: with a two- or four- CPU PC our simulation is fast enough for

actual surgical interventions.

Figure5.6shows the refined FE model viewed in the caudal direction (left). The cavity after resection is

visible in this view. Note that very little refinement is introduced next to the cavity itself. The deformation

Figure 5.6: Refined FE model of the brain in a caudal view with color coded displacement amplitude (zero=
purple; maximal= red). Notice the cavity resulting from the surgical resection of tissue in the left hemisphere.
On the right color coded lateral displacement amplitude displayed on a dorsal cutting plane.

of the brain due to sagging under gravity is visualized in Fig.1 (color coded displacement amplitude with

zero=red and maximum=purple), where the skull has been included as a visual aid.

5.4 Stress Distribution in Human Mandible

Numerical simulations are widely used in biomechanics to visualize response of skeletal structures to me-

chanical loads, as planning aid for operative treatments, design of implants, and exploration of ostheosynthe-

sis methods [Kober and Muller-Hannemann 2000].

Here we present an adaptive simulation of the response of the human mandible to the pressure involved in

biting on a hard object. The internal structure of the bone is very complex, but for this proof-of-concept sim-

ulation we consider the bone to be homogeneous and isotropic. The initial model is a coarse approximation

of the geometry of the human mandible. Figure5.7shows the original and refined FE model.

As our topological refinement operation we use octasection of each cube in the[−1, 1]3 reference con-

figuration with odd vertices placed at edge, face, and cell barycenters. The initial mesh consists of 304

hexahedral, trilinear cells (1,700 DOFs; Figure5.7, left). After refinement, placing details where strain-

energy is high, the model captures the stress concentration immediately underneath the pressure point and in

the thinner extremities of the mandible. It has approximately 4,200 DOFs (Fig.5.7, right). We also ran this

simulation with substitution-refinement with practically identical results. Figure5.8shows a close-up of the

(detail-)refined model. Active basis functions are shown as green dots, and are supported on the cells sharing

that vertex. The refined basis consists of functions on three levels in the mesh hierarchy.
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Figure 5.7: Adaptive refinement in response to stress. Unstressed mandible composited with skull (left);
chewing on hard candy exerts a force on the jaw (right). The model (1,700 DOFs) is refined (4,200 DOFs) in
the vicinity of the applied force as well as near the corner and attachment points.

Figure 5.8: Mandible FE model with a multi-resolution basis of coarse-level scaling functions and finer-level
details. Green dots indicate nodes associated with active basis functions. Top row: (integration) elements
from all levels with active nodes; elements supporting detail functions on level 1 are colored blue. Bottom
row: elements supporting detail functions on level 2 and 3 are respectively colored purple and tan. Note that
elements at different levels overlap in space, and the detail functions active on the finer levels vanish along
the internal boundaries of their supporting elements, thereby guaranteeing compatibility.

5.5 Potential Field in the Human Torso

Inverse problems, in which heart surface potentials are determined from measurements on the outer surfaces

of the upper torso, are of particular importance in computer-assisted electrocardiography (ECG). An adaptive

procedure for this problem has been outlined by Johnson [2001]. Here we show how basis refinement can be
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Figure 5.9: ECG field analysis example. On the left the initial grid; in the middle the refined discretization
(four levels of substitution refinement). Red balls indicate active scaling functions, elements of different
colors indicate the support of scaling functions on different levels. On the right, isocontours of the (adaptive)
solution. Initial surface grid courtesy of the Center for Scientific Computing and Imaging, University of Utah.

applied to a subproblem of inverse ECG, the adaptive solution of the generalized Laplace equation,

∇ · σ∇φ = 0 , (5.1)

whereσ is the conductivity tensor, with the boundary conditions

φ = φ0 on Σ ⊂ ΓT and σ∇φ · n = 0 on ΓT \Σ ,

whereΓT is the surface of the thorax, andφ0 is given.

Figure5.9 shows the initial grid with roughly 900 nodes and one of the refined grids with three levels

of substitution refinement and a total of 8,500 nodes. The computed field is visualized through isopotential

surfaces of a dipole located on the epicardial surface (assuming isotropic, homogeneous conductivity) in

Figure1.

Summary We demonstrated adaptive basis refinement using concrete example application drawn from

engineering, surgical, and biomedical applications. For each example, we chose the multi-resolution dis-

cretization that best fit the problem; our choices spanned: two- and three-dimensional domains; triangular,

tetrahedral, and hexahedral tesselations; linear and trilinear finite-element as well as Loop subdivision bases;

refinement by details as well as by substitution.
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Chapter 6

Conclusion

We have presented a natural method for adaptive refinement. Our mesh-based approach parallels mesh-less

methods: the focus is the basisnot tesselation, It unifies earlier instances of basis refinement, and generalizes

these early works to the arbitrary topology, smoothness and accuracy setting. This chapter summarizes and

further motivates our work, then describes exciting avenues for exploration, including links to asynchronous

variational integration, model reduction, control systems, subdivision schemes with tags, novel error estima-

tors, smoother unrefinement operators, traveling wavelets, hierarchical and multigrid preconditioners.
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6.1 Summary and Closing Arguments

Many systems governed by PDEs havesingularities, or nonsmooth solutions. For PDEs modeling physi-

cal phenomena this lack of smoothness isinherently unavoidable: we wish to capture phenomena such as

wrinkles, buckles, boundary layers, shock waves and cracks. Two widely applicable classes of PDEs, elliptic

equations on domains with re-entrant corners, and nonlinear hyperbolic systems of conservation laws, among

others, in general have solutions exhibiting singularities.

Lack of smoothness is a severe obstacle to the convergence of numerical approximation methods, i.e.,

achieving a prescribed accuracy typically requires a finer discretization thus more computation in comparison

with same same target accuracy solving for a smooth solution. In the context of wavelets, this observation

has been made precise [Cohen 2003a]: a variety of smoothness classes can be characterized by the rate of

decay of the multiscale approximation error:

dist(u(x), V (r))Lp
<∼ 2−sr , (6.1)

if and only if u(x) hass derivatives inLp, wherep is the polynomial exactness (see Chapter3) andV (r)

is the level-r space of a multi-resolution wavelet discretization. We learn from this that the convergence of

approximations tou(x) at a prescribed rate,2−sr, as the discretization sampling rateuniformly increases,

requiresu(x) to everywherehave smoothness≥ s. Convergence rate depends on smoothness; for uniform

refinements, smoothness is measured by the lower bound on smoothness everywhere over the domain. For

uniform refinement, a rough patch or singularity can be acomputational catastrophe.For wavelet systems,

DeVore has shown that for the same convergence rate, adaptive refinement (with appropriate error indicator)

has asignificantly weaker smoothness requirement[Cohen 2003a]. Thus we are motivated to implement

adaptivesolvers, which,locally refine the discretization, guided by a measurement of error. According to

(6.1), error decays slowly in nonsmooth neighborhoods, consequently in striving to equidistribute error the

solver naturally introduces a finer discretization in rough regions.

Existing adaptive approaches for mesh-based discretizations typically split mesh elements in isolation,

violating compatibility conditions and then dealing with this problem using one of several techniques includ-

ing constraints, Lagrange multipliers, or temporary irregular splitting of incident elements. These techniques

must be specialized to different discretizations. This is in generalcumbersomeand in some casesimpossible:

• For standard finite element basis functions, approaches to correcting incompatibility fail in higher

dimensions. Consider refinement of a single element in a hexahedral mesh: it is impossible to split

incident elements into finer hexahedra satisfying the compatibility conditions.

• Even when it is theoretically possible, element refinement can be so daunting that it is avoided albeit

direly needed: consider, for example, refinement of four (or more!) dimensional spacetime discretiza-

tions, where one cannot easily visualize the (many!) permutations of incompatibilities that must be
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corrected.

• For discretizations carrying basis functions with support diameter greater than one-ring, among them

the Subdivision Element Method, element refinementdoes not lead to nested spacesthus breaking

refinement theory.

Mesh-less discretizations do not have such problems because there is no mesh thus no compatibility condi-

tions! Without a mesh, the clear method for mesh-less (nested) refinement is to augment the spanning set.

Bring this idea back to mesh-based discretizations: this is the key to avoiding the headaches associated with

incompatibility.

Refining either a mesh-based or mesh-less discretization by augmenting the basis is, from a theorist’s

standpoint, an obvious idea. Starting with a finite-basis discretization, it is arguably the most direct means

to nested spaces, and it does not require knowledge of whether the discretization is mesh-based or mesh-

less. The question is how to carry this simplicity (and this enthusiasm!) to theimplementationof adaptive

mesh-basedsolvers.

Wavelets and hierarchical splines practitioners are familiar with building adaptive solvers that introduce

basis functions. We view these earlier implementations as specific instances of basis refinement. Our contri-

bution is a minimal structure whichunifiesspline, finite-element, (multi)wavelet, and subdivision discretiza-

tions among many others, laying outgeneral, provably-correctalgorithms that apply uniformly over any

number of dimensions, formesh-baseddiscretizations with arbitrary smoothness, accuracy, tesselation, sym-

metry, etc.. Our algorithms maintain the set of basis functions which span (thus define) the approximation

space, together with the associated structures required for numerical quadrature. For those applications which

require a basis, we give additional structures which ensure linear independence of the spanning set.

The generality of the algorithms means easier implementation and debugging. While we were originally

motivated by the need to find a refinement strategy for higher order basis functions, our method has significant

advantages even when only piecewise linear basis functions are used. Building on his existing finite element

solver software, Dr. Petr Krysl implemented and debugged our basic algorithms within a day. Due to the

dimension independence of the algorithms,extending the implementation to 2D and 3D problems took three

hours each.Althoughmeshrefinement is popular for many kinds of finite elements, we learned that (a) finite-

elementbasisrefinement is very easy to implement, (b) existing finite element code is easily reused, and (c)

spending time to implement basis refinement for a particular class of discretizations (e.g., finite elements)

has the advantage thatonce these data structures and algorithms are mastered they apply in a very broad

setting. The impact of basis refinement is conveyed in compelling applications spanning simulation of thin

shells, biomechanical systems, and human tissue undergoing a surgical procedure. This forcefully attests to

the simplicity and generality of the underlying framework.
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6.2 Future Work

The work presented herein immediately invites exploration of:

Links to Asynchronous Variational Integration Explicit time-steppers for ODEs (with a time variable)

and elliptic PDEs (with time and space variables) must respect astability limit on the length of the time step;

typically, this is theCFL condition, named after the three co-authors of [Courant et al. 1928], which checks

that the temporal sampling frequency captures the highest frequencies of the discretized solution. For many

spacetime PDEs, overlocalizedregions of the domain thespatial frequency is proportional to the maximum

local temporalfrequency. Thus spatially adaptive discretizations do not in general have a spatially uniform

stability limit. This motivates theasynchronousadvancement of time over the domain, locally adopting

shorter time intervals where the discretization is finer and larger time intervals where it is coarser.

Novel developments ofasynchronous variational integrators(AVIs) are particularly promising

[Lew et al. 2003a, Lew et al. 2003b]. This family of time-steppers improve both computationalperformance

(via asynchrony) as well asaccuracy: they are based on variational principles which guarantee that conserved

quantities (e.g., energy, momentum) remain constant over the course of the simulation.

Explicit synchronoustime-steppers for multi-resolution discretizations are limited by the highest spatial

frequency: as refinement proceeds during the course of the simulation, this limit can beglobally crippling.

Fortunately, the adaptive discretizations produced by basis refinement are the ideal setting for demonstrating

the power of AVIs. Preliminary investigations into, and discussions with the authors of, [Lew et al. 2003a]

suggest that basis refinement and AVIs arealgorithmically and theoretically orthogonal: we believe that these

two techniques can (and should!) be used in conjunction.

Links to Model Reduction and Control Systems Control of physical systems is critical to many engineer-

ing and graphics applications [Dullerud and Paganini 2000, Hodgins et al. 1995]. In designing controllers

for complex systems, the control problem is made tractable bymodelingthe target system at a sufficiently

coarsegranularity. Model reductionis the problem of capturing the salient, coarse features of a model

faithfully, discarding the remainder. This problem has been studied extensively in the setting oflinear input-

output systems, where techniques such asbalanced truncation(also known asprinciple component analysis)

are employed [Moore 1981]. Recently, Lall and co-workers [2002] extended these techniques tononlinear

input-output systems. Their approach uses empirical (or simulated) data to identify the dynamic behavior

most relevant to the input-output map of the system, i.e., they identify those states of the system which are

not affected by actuators (i.e., feedback) and which most affect the sensors. They then apply a Galerkin

projection to capture at a coarse grain the identified input-output map, producing anonlinearreduced-order

model with inputs and outputs especially suited for control applications.

Model reduction has exciting applications in many fields. For example, Popovic has demonstrated the

use of variationallyoptimizedcontrollers in animation. We believe that these approaches could benefit from
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basis refinement. The model reduction and control optimization stages could be repeated after an adaptive

refinement of the Galerkin discretization, using the performance evaluation of the optimized controller to

design an error indicator. This could potentially create multi-resolution reduced-models with very few inputs

and outputs at the coarsest level.

Novel Error Estimators In our implementation we adopted well-establisheda posteriorierror indicators.

Since these give per-elementerrors, and we need to make (de)activation decisions per-function, we must con-

vert: welumpthe element error onto the basis functions, e.g., the error associated toφi(x) is
∫
Ω
φi(x)γ(x)dx,

whereγ(x) is the piecewise constanterror density, computed via equidistribution of elemental error over the

elemental subdomain. This appears to be an effective technique, and it has the benefit that we may adopt any

element-based error measure. However, we would be more satisfied with a posteriori error estimators which

focus directly on the basis functions, i.e., estimate the change in error due to (de)activating a particular basis

function. Later, it would be very desirable to build a mathematical framework for transforming per-element

derivations into per-function derivations.

Links to Hierarchical and Multigrid Preconditioners Preconditioning techniques are critical for accel-

erating the convergence of iterative solvers. Recently Green demonstrated the preconditioning of problems

which use Cirak’s subdivision elements [Cirak et al. 2000a]; Green exploits the multi-resolution of subdivi-

sion discretizations to great effect, reporting encouraging results for the preconditioning of an elliptic PDE

based on the Kirchoff-Love formulation of thin shells [Green et al. 2002]. Since multi-resolution discretiza-

tions lie at the heart of our method, the necessary structure exists to accommodate multigrid [Bank et al. 1988,

Briggs et al. 2000] or wavelet [Cohen and Masson 1997] preconditioning following the example presented by

Green.

Advances in Interpolated Unrefinement Unrefinement is inherentlylossy. It requires projection onto a

smaller approximation space. In general, this leads to undesirable artifacts in simulation applications, in

particular temporal discontinuities in the configuration at the point in time that unrefinement occurs. One

way to resolve this is to permit unrefinement only when the current approximated solution is contained in

the smaller, unrefined trial space. This is lossless, but performance crippling —we might never be allowed to

unrefine!— in general we expect there to besome(small but non-zero) error during refinement.

To remedy this, our implementation usesinterpolated unrefinement. A basis function issmoothly deac-

tivated: the deactivation ofφi(x) is separated into two steps: (a) the solver no longer considers as unknown

the associated coefficient,ui, and (b) the coefficient is set to zero, i.e.,ui → 0. In immediate(nonsmooth)

deactivation, both of these steps are performed instantaneously. In smooth deactivation, (a) the unknown,

ui, is (as always)immediatelyremoved from the solver’s reach, i.e., it is considered a prescribed boundary

condition, and (b) the value of the coefficient is prescribed by asmoothly decayingfunction over some finite

time interval. e.g.,ui(t) → 0 ast → t0 + ∆tdd, wheret0 is the time at which deactivation commences and
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∆tdd is thedeactivation delay. In our implementation we chose a simple linear decay, leading to continuity

over time of a configuration butnot its velocity. This removed the visual “blips” from the animation; how-

ever keen observers note that the discontinuity in velocity is noticeable and undesirable—human observers

are naturally trained to recognize sudden changes invelocitysince these are associated with impulses. To

that end, it may be desirable to use decay curves which have zero initial and final time derivatives, such that

continuity of velocity is preserved during interpolated unrefinement. In contrast, we believe that continuity

of acceleration is not equally important, since many physical systems have discontinuous accelerations.

Links to Advected Bases and Traveling Wavelets Adaptive basis refinement may be of benefit in the

simulation of turbulent fluid flows. These problems are characterized byadvectionphenomena, i.e., the

solution’s features are moving over the domain with some velocity. Consider that an advection operator, to

first order, locallytranslatespieces of the solution from one region of spatial domain to another. There is

beauty in approximating the advected solution usingadvected basis functions, i.e., let the advection operator

be a map from one approximation spacenot onto itself, rather to anadvected space. This space is formed as

follows. Place particles at the center of the original approximation space. Advect the particles, and build a

set of advected basis functions centered at the advected particles. This approach is inspired by earlier work

on traveling wavelets[Perrier and Basdevant 1991].

Links to Tagged Subdivision: Multi-nesting Relations An attractive attribute of subdivision schemes is

their support fortagged meshes, which associate descriptivetagsto each mesh entity, e.g.,sharp creaseedge,

corner vertex, flat face (see, e.g., Biermann’s use of tags with Loop subdivision [Biermann et al. 2000]).

Tags modify the subdivision stencilin the vicinity of the tagged entity. For example,sharp creasetags

modify the subdivision stencil to prevent smoothing (or otherwise propagating information) across the two

surface patches incident to the tagged edge. This gives significant control over the shape of the limit function,

most often over itssmoothness. Sharp creases, for example, induce discontinuous derivatives across the

associated patch boundaries. Recently DeRose introduced more generalsemi-sharp creases, which under

the control of a real-valuedsharpness indexinduce arbitrarily large but bounded derivatives across patch

boundaries [DeRose et al. 1998].

The possibility of decorating a mesh with tags creates an expanded family of subdivision scaling functions

associated to every (local) permutation of tags. With the introduction of parameterized tags (e.g., sharpness

indices) aninfinite set of scaling functions (corresponding to different values of the parameter) associates to

a single mesh entity. Every spaceV (p) is now richer; subdivision theory guarantees that the nesting relation

still holds, i.e.,V (p) ⊂ V (p+1). Furthermore, we may be able to generalize the nesting relation, defining

a multi-dimensional nesting (multi-nesting) relation: let the spaceV (p,s) be spanned by all level-p scaling

functions associated to meshes with arbitrary sharpness indices< s. We view this space as a point in a two

dimensional space-of-spaces, i.e.,V (p,s) ∈ V, with a discrete first dimension (p ∈ Z∗) and continuous second
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dimension (s ∈ R, s ≥ 0). ThenV (p,s) is nested in its first dimension, i.e.,V (p,s) ⊂ V (p+1,s), as well as its

second, i.e.,V (p,s) ⊂ V (p,t), s < t. Refinement may naturally extend the current approximation space along

any of the nesting directions, e.g., addingfiner functions, or addingsharperfunctions.

Simulations of crushing, buckling and wrinkling benefit from adaptive approaches because they have

phenomenological singularities. When the only approach to capturing these singularities is to make the dis-

cretization locally finer (i.e., so-calledh-refinement [Eriksson et al. 1996]), the result is the introduction of

numerous extremely fine scaling functions. Whileadaptivityavoidsglobally switching to a finer discretiza-

tion, there is still a computational penalty near sharp (less smooth) features of the solution. Our hope is that

the ability to introduce better-suited (e.g., sharper) scaling functions fitted to the features of the solution may

significantly reduce the need for exceedingly-fine discretizations.

Links to Tagged Subdivision: Scaling Functionals Alternatively, mesh tag parameters (such as the sharp-

ness index) may be viewed asparametersof a scaling functional, i.e., the trial space consists of all functions∑
φi(ui, si)(x), where the scalingfunctionals, φi(ui, si) ∈ H(Ω), are linear in their first argument (e.g.,

displacement) but not their second (e.g.,sharpness). In general, the functional may take several sharp-

ness arguments, i.e.,φi(ui, si,1, si,2, . . . , si,N ), corresponding to theN edges within its support. In this

approach there aremultiple coefficients associated to a single scaling functional. Of all formulations, it

may be that the variational form is best-suited for dealing with this setting. It remains to be seen whether

this is a useful construction; for both applications of tagged subdivision, we are inspired by the success of

p-refinement [Eriksson et al. 1996], ridgelets[Cand̀es 1998] andcurvelets[Cand̀es and Donoho 2000].

6.3 Conclusion

Our contributions are (a) a mathematical framework with (b) associated algorithms for basis refinement; fur-

thermore, we (c) describe the mapping of popular methods —finite-elements, wavelets and multiwavelets,

splines and subdivision schemes— onto this framework, and (d) we demonstrate working implementations

of basis refinement with applications in graphics, engineering, and medicine, including in particular adap-

tive computation of thin shell problems using subdivision elements, for which classical finite element mesh

refinement does not apply.

The core idea is to refine basis functions, not elements. This idea is made concrete by starting with a

hierarchyof nested approximation spaces, equivalently a refinement relation. By construction, this idea leads

to methods which are naturallyconforming: unlike mesh refinement, basis refinement never creates incom-

patible meshes. Together, the hierarchical structure and natural compatibility give rise to simpleadaptive

refinementalgorithms which make no assumptions as to (a) the dimension of the domain; (b) the tessela-

tion of the domain; (c) the approximation smoothness or accuracy; and (d) the support diameter of the basis

functions. This simple idea, basis refinement, is at the heart of a unifying, general class ofconforming,

hierarchical, adaptive refinement methods, briefly CHARMS.
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Paradigm for Thin-Shell Finite-Element Analysis.Internat. J. Numer. Methods Engrg. 47, 12, 2039–

2072.

[Cirak et al. 2000b]CIRAK , F., ORTIZ, M., AND SCHRÖDER, P. 2000. Subdivision Surfaces: A New
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