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Chapter 4

Robustness in Feed-Forward

Loops: Clustering of Responses

Even for models of very simple networks, like those in Chapters 2 and 3, describing the system

requires many parameters. These parameters are often unknown or uncertain. Consequently, pre-

dicting the response of a gene circuit may require infering gene circuit function from data on circuit

structure alone. By using the feed-forward loop as a model system, this chapter introduces a tech-

nique for classifying gene circuit function given a set structure. Temporal responses of a comprehen-

sive set of feed-forward loop models are calculated for a range of parameter values. The responses

are clustered, and the relation between clusters and circuit types is analyzed. Some designs are

robust, producing one unique type of response regardless of parameter selection. Other designs may

exhibit a variety of responses, depending upon parameter values.

4.1 Background

As discussed in the Introduction, certain patterns of genetic regulatory interactions occur more

frequently than would be expected in randomized networks with similar connection statistics [11].

The feed-forward loop is one such design; an example is regulation of araBAD by both the local

transcription factor AraC and the global transcription factor CRP in E. coli (see review [45] and

references therein). Two other naturally occurring feed-forward loops are introduced in Chapter 5.

Given that there are recurring structural designs found in genetic regulatory networks, it is logical

to ask: (1) What is the function of a design and (2) why might one design be preferred over others?

First, even once a particular circuit configuration is selected, the function of the circuit is not

necessarily transparent. For the feed-forward loop, Mangan and Alon [12] explored several possible

circuit functions by using a mathematical model of the feed-forward loop where a signal Sx interacts

with X , and a different signal Sy interacts with Y . For a constant level of Sy, they noticed pulsing,

ON/OFF, and OFF/ON behaviors in gene expression levels in response to a step input in Sx.
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Their efforts produced a preliminary classification of responses for feed-forward loops, but in order

to thoroughly characterize feed-forward loop function, it is desirable to explore a larger range of

parameters, and to consider circuit types in which the same signal can interact with both X and Y .

Answering the second question—why some designs are preferred—requires an understanding of

performance criteria relevant to natural selection in gene circuits [46]. Broad classification of possible

circuit functions can eventually help clarify why certain circuit designs are better than others.
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Figure 4.1: Feed-forward loop network motif. X and Y represent transcription factors. Z is the
target gene. Activator connections are drawn as normal arrows and repressor connections are drawn
as arrows with T-shaped ends. Signal effects are shown with characters {+, -, 0}.

The feed-forward loop network motif, shown in Fig. 4.1, has two transcription factors, X and

Y , which control expression levels of a target gene Z. X additionally regulates transcription of Y .

Here, the response of the feed-forward loop refers to the expression level of Z as a function of time.

Signaling molecules also play a significant role in gene expression. Signals may be small-molecule

metabolites or other molecules that bind to the transcription factor, enabling or blocking its activity.

As in [12], we consider feed-forward loop models in which each of three genetic regulatory inter-

actions can take on one of two possible values (activator, repressor). Unlike their study, which only

considers changes in a signal that enables the global activity of X , we consider models in which a

signal may have one of three effects (+, -, 0, described below) on each genetic regulatory interaction.

Instead of considering just 8 (= 23), we consider 216 (= 2333) different ways of wiring a feed-forward

loop. Fig. 4.1 is just one example.

4.2 Mathematical Models

The general feed-forward loop is modeled using a pair of nonlinear differential equations:

Ẏ = αy
1

1 + (
SyxX
Kyx

)nyx

− βyY (4.1)

Ż = αz
1

1 + (
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Kzy

)nzy

1

1 + (SzxX
Kzx

)nzx

− βzZ. (4.2)

X is treated as a constitutively expressed protein, modeled here as a constant. αi is the regulatable

transcription rate and βi is the decay rate through degradation and dilution. Sij , discussed in further
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detail below, is a binary value that describes the signal effect. Kij is a threshold value, and the Hill

coefficient, nij , is negative if the connection is an activator and positive if it is a repressor.

Signal interactions are modeled by inserting a binary term, Sij ∈ {0, 1}, in the Hill function

argument. Sij takes on different values depending upon the level of signal in the environment and

the type of signal interaction. Table 4.1 is used to determine Sij .

Signal < Threshold Signal > Threshold
+ 0 1
- 1 0
0 1 1

Table 4.1: Sij Values

The nonlinear dynamics described in Eqns. (4.1)-(4.2) have a single equilibrium point
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Linearizing the system and moving the equilibrium point to the origin we find
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where y = Y − Yeq, z = Z − Zeq. Since the Jacobian matrix is lower triangular, the eigenvalues are

the diagonal matrix elements (−βy and −βz). For realistic biological systems βy, βz > 0, thus the

system has a stable equilibrium point with two real eigenvalues.

4.3 Simulations

The initial conditions for all simulations are the steady state values of Y and Z when the signal is

below the threshold level. We are interested in the dynamical behavior that results from changing

signal levels.

Fig. 4.2 shows the response of one representative feed-forward loop to changing signal levels. The

level of transcription factor Y increases to its steady-state value following a decaying exponential

curve. Nonlinear effects cause overshoot in Z before it reaches steady state.

There are seven parameters in Eqns. (4.1)–(4.2) that can be varied. The values of αi and βi

are selected randomly from a specified range ([0.1, 10] for data shown in the following section). To
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Figure 4.2: Sample response. Simulation results for levels of X , Y , and Z expression as a function of
time. The input signal and threshold are shown in the top plot. The configuration of the simulated
system is (X-Y, Y-Z, X-Z) = (activator, repressor, activator) and (Signal X-Y, Signal Y-Z, Signal
X-Z) = (+, +, +). Parameter values shown here are: αi = βi = Kij = 1, X = 10, |nij | = 2.

ensure log-uniform parameter selection, for each parameter, a random number, r, is mapped using

10(2r−1)log10Mαβ ,

where Mαβ is the maximum value αi or βi can take on (10 for this example). This mapping ensures

that we are equally likely to assign values less and greater than 1 to the parameters.

Additionally, the threshold parameters, Kij , are varied. The ratio of transcription factor con-

centration to the threshold value is the relevant quantity (e.g., X
Kyx

). These three ratios are allowed

to take on values less than 1, equal to 1, and greater than 1. All 27 possible combinations are

considered.

Recognizing symmetry in signaling effects reduces the size of this problem and decreases compu-

tation time. A circuit with signaling interaction type + will respond to an ON pulse in the signal

in the same way type − will respond to an OFF pulse.

4.4 Clustering Feed-Forward Loop Responses

Large numbers of feed-forward loops can be modeled with these techniques. For each of the 216

wiring patterns there are multiple threshold and rate parameters that are either unknown or un-

certain in biological systems. Broad range limits on parameter values can be assumed to make the

problem tractable, but the number of systems remains large.

Although a great number of feed-forward loops can be modeled, many of the feed-forward loop
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responses appear to be similar. We use an automated clustering algorithm to classify responses into

different categories based upon their similarity.

4.4.1 Clustering Algorithm

A greedy approximation algorithm was used to cluster responses [47]. The algorithm uses a metric

d(x, y) that characterizes the distance between x and y. Given an input of a set X of n points

x1, ... xn and a metric d on X , we want to find a set C of K points c1, ... cK ∈ X that minimizes

max
1≤i≤n

d(xi, C). In other words, we want to cluster the points into K different groups where the size

of the largest cluster is as small as possible.

This K-center clustering problem is NP-hard in general, but the approximation algorithm can

quickly compute clusters where the maximum error is within a factor of two of the actual solution

[47]. Thus, the maximum radius of all clusters is, at worst, two times larger than it needs to be.

The clustering algorithm is performed as follows: First, K points must be selected as cluster

centers. The first center, c1, is chosen at random. After that (i = 2, ... K) let ci be the point x of

X that maximizes d(x, {c1, ... ci−1}). This is equivalent to assigning all the remaining non-center

points to clusters, determining which is furthest from its center point, assigning that point as a new

center, and throwing the rest of the points back into the pool of non-centers. After all K centers

have been assigned, the remaining points xK+1, ... xn are assigned to clusters.

This algorithm is used to cluster feed-forward loop responses. Defining a distance measure, d, is

the primary complication in extending the clustering algorithm to the present task. Each response

is a vector z ∈ R
N where the vector contains the values of Z running from t = 0 to t = N − 1.

A correlation coefficient is used to measure the distance between two response vectors, z1 and

z2:

d(z1, z2) =
1

2
− 〈z1 − z̄1, z2 − z̄2〉

2 ‖z1 − z̄1‖2 ‖z2 − z̄2‖2
, (4.3)

where z̄ is the mean of z, brackets denote the dot product, and ||.||2 is the 2-norm. This distance

function is designed so that d(z1, z2) = 0 if z1 = z2 and d(z1, z2) = 1 if the two signals are very

different. Note that the distance function evaluates to zero for responses that differ only by a

multiplicative scaling factor and an offset.

4.4.2 Maximum Error versus Number of Clusters

The maximum error is defined as the largest cluster “radius,” max
1≤i≤n

d(xi, C). As the number of

clusters is increased, the maximum error goes down (Fig. 4.3). This value can be plotted as a

function of K, the number of clusters. At K = 1, we will have a large maximum error value unless



49

the feed-forward loop responses are all nearly identical. For K = total # of responses, we will have

no error since every response is associated with its own individual cluster. If the intermediate curve

drops quickly then a small number of clusters can describe almost all of the data.

K = 4

Max Error

K = 5

a b

Max Error

Figure 4.3: Schematic diagram of maximum error for (a) K = 4 and (b) K = 5. As the number of
clusters increases, the maximum cluster error decreases.
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Figure 4.4: Maximum error versus the number of clusters. The results of clustering on two distinct
data sets are shown.

Fig. 4.4 shows that, even for large numbers of feed-forward loop responses, the maximum error

drops off rapidly with increasing cluster numbers.

4.4.3 Singular Value Decomposition

Since each cluster may contain a large number of responses – thousands in some cases – it would be

convenient to have a simple way to represent data. Singular value decomposition is used to generate

a representative trace that describes the most significant principal component of all of the responses

in a cluster.

Singular value decomposition has been used in other biological applications to compress data

into a simplified, more understandable form [48]. In this work the singular value decomposition of
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a matrix A ∈ R
M×N is taken:

A = USV T .

M is the number of feed-forward loop responses we are comparing and N is the number points in

time. S, U, and V come from the standard definition of singular value decomposition.

The first right singular vector (the first column of V ) is the singular vector associated with the

largest singular value. This vector describes the principal component of all of the response data

listed in the A matrix and provides a single representative response to associate with a cluster.

a

b

Time

Figure 4.5: Singular value decomposition example. a) Three representative Z(t) responses from one
cluster. b) The first right singular vector of a matrix containing all responses from that cluster.

An example of how singular value decomposition can be used to represent many responses is

shown in Fig. 4.5. Fig. 4.5a shows 3 responses plotted on top of each other. In reality, this is a small

subset of all responses that fall into this cluster type. The primary singular vector associated with

the complete set of responses is shown in Fig. 4.5b.

4.5 Results

The clustering approach associates the responses of the 216 feed-forward loop models with a small

number of distinct patterns. These patterns can be used to classify the behavior of an individual

circuit over a range of parameter values. The number of clusters it takes to describe a particular

circuit configuration can be used as a measure of how robust a circuit is to parameter variation.

4.5.1 Representative Cluster Traces

A relatively simple example is presented to illustrate the utility of clustering. The data shown in

Fig. 4.7 are the result of clustering on a set of 3,456 responses. All 216 possible circuit configurations
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are represented. Within each configuration only parameters αi and βi from Eqns. (4.1)–(4.2) are

varied.

K = 11 clusters is chosen as a cutoff point because the maximum error is acceptably small (see

Fig. 4.4). Beyond this point additional cluster types represent similar responses but with differing

temporal characteristics. For example, the rise times, settling times, and overshoot behavior may

be different for the additional cluster types. The utility of clustering lies in its ability to segregate

responses into broad class types, allowing for a qualitative understanding of possible circuit function-

ality. In particular, this method will be useful for considering circuits that have more complicated

responses (e.g., responses to input signals that are more complicated than a step function).

Fig. 4.7 shows representative singular vectors from each of the 11 clusters. These are the re-

sponses, Z(t), to the input signal shown in Fig. 4.6.

 

Threshold

Figure 4.6: Signal level as a function of time.

Figure 4.7: Representative responses (Z versus time) from each of 11 clusters. Letter labels are used
for reference in Table 4.2.

When the threshold values, Kij , are varied in addition to αi and βi the result is a large set

of functional responses that do not segregate as logically into individual clusters. Even when this

is the case, the clustering technique can still be applied to yield a qualitative picture of possible

responses. The case with 16,848 responses shown in Fig. 4.4 corresponds to a widely explored range
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of parameters, but the maximum error still drops off rapidly. If an acceptable error value is chosen,

clustering can be performed to within this margin of error.

In an exploration of the more complete parameter space, the cluster types seen in Fig. 4.7 are

preserved, but several additional clusters are added. For example, selecting K = 15 clusters produces

the four additional cluster types shown in Fig. 4.8.

Figure 4.8: Representative responses for cluster types added when additional parameters are varied.

Even when exploring the complete parameter space, some system configurations fall into the

same cluster type regardless of the parameter values selected for αi, βi, and Kij . The responses of

these genetic regulatory configurations are particularly robust to parameter changes.

4.5.2 Distributions of Responses

Table 4.2 lists cluster types for various system configurations. Each row corresponds to one particular

configuration: a set of genetic regulatory and signal interaction types. The columns labeled A–O

correspond to the cluster types labeled in Figs. 4.7 and 4.8. The numbers in the row tell which

cluster this system’s responses fall into. For some system configurations, varying parameter values

causes the response to fall into different clusters. The rows are normalized by the total number

of cases that were run. The entries shown in Table 4.2 are a subset from a larger table, given in

Appendix C.

Table 4.2’s entries do not indicate how “different” responses are within a cluster. Selecting the

number of clusters (Fig. 4.4) sets the upper bound on the error within each cluster. For the 15

cluster case, all responses within a cluster are within a distance of 0.18 of each other, as measured

by Eqn. (4.3).

The entropy of each response distribution in Table 4.2 is calculated by using the standard defi-

nition of Shannon entropy:

−
15
∑

i=1

p(i) log2 p(i),

where p(i) is the percentage of responses that fall into cluster i.

Rows which have a 1 associated with one cluster type and 0s for all the rest (entropy = 0) are



5
3

SignalSignalSignal
X-YY-ZX-Z X-Y Y-Z X-Z A B C D E F G H I J K L M N O Entropy
act rep rep + + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + + - 0.41 0 0.51 0.02 0 0 0 0 0.01 0 0 0 0 0.06 0 1.41
act rep rep + 0 + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + 0 - 0.38 0 0.51 0.03 0 0 0 0 0.01 0 0 0 0 0.07 0 1.49
act rep rep + - + 0.90 0 0 0 0.09 0 0 0 0 0 0 0 0.01 0 0 0.52
act rep rep + - 0 0 0.11 0 0 0.06 0 0 0 0 0 0.50 0 0.33 0 0 1.61
act rep rep + - - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + - 0.48 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 1.00
act rep rep 0 0 + 0.99 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05

Table 4.2: Percentage of cluster types exhibited by circuit configurations. Subsection of a larger table, given in Appendix C. act = activator, rep =
repressor.
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particularly robust because parameter variations do not change the function of the system. Exact

entries in the table are dependent upon the details of parameter selection and the distance measure

used to cluster data.

Clustering provides a logical grouping of response types without prior knowledge of the behavior

that a network may exhibit. The response pattern of a cluster can then be interpreted in a biologically

meaningful way. For example, cluster A (Fig. 4.7) is associated with repressible circuits, where gene

expression decreases upon an increase in signal level. Similarly, cluster C is associated with inducible

circuits, where gene expression increases upon signal increase. For circuits associated with cluster

B, gene expression is unresponsive to changes in signal. Pulsed gene expression responses, both with

and without steady state changes, are seen in the remaining cluster types.

This chapter presents a method for identifying functional capabilities of a genetic network given

its structure. In our analysis of feed-forward loop models, responses were organized into a relatively

small number of clusters. Some feed-forward loop types show non-robust behavior, suggesting that

these circuits do not have unique information processing roles. This clustering technique allows

for such quick, qualitative intuition into the function of a system. Insight from clustering will be

particularly helpful if the state space and parameter space are even larger than those presented in

the feed-forward loop example here.

Although we consider models of feed-forward loops in isolation, in nature gene circuits are em-

bedded within the context of the entire molecular network of the cell. Nevertheless, considering

isolated gene circuit models can reveal insights into the cellular response to signals. Such models

have already proved to be useful in design of synthetic gene circuits, for example, in the design of

a toggle switch [49], an oscillator [40], and a circuit whose design may be selected to exhibit either

toggle switch or oscillatory behavior [50]. The present technique can help to narrow down which

system types and parameter ranges exhibit a desirable behavior, given a broad class of possible

designs.

In the future it will be interesting to explore the implications of robustness of responses in real

biological systems. In particular, is robustness necessarily a desirable trait for a genetic circuit? If

the circuit is locked into one role it may not be capable of evolving in alternative environments.

In addition, natural selection can act to enhance the populations of organisms that are sensitive,

rather than robust, to mutations in gene circuits. This process has been used previously to explain

patterns in the use of activator and repressor control in natural genetic regulatory interactions [51].

It would be interesting to consider tradeoffs involving robustness in the context of the evolution of

feed-forward loop configurations and other aspects of gene circuit design.


