Appendix A

Theoretical Estimation of Diffusion Coefficients for Binary Gas Mixtures

The diffusion coefficient D_{12} for the isothermal diffusion of species 1 through constantpressure binary mixture of species 1 and 2 is defined by the relation

$$
\begin{equation*}
J_{1}=-D_{12} \nabla c_{1} \tag{A.1}
\end{equation*}
$$

where J_{1} is the flux of species 1 and c_{1} is the concentration of the diffusing species.
Mutual-diffusion, defined by the coefficient D_{12}, can be viewed as diffusion of species 1 at infinite dilution through species 2 , or equivalently, diffusion of species 2 at infinite dilution through species 2. Self-diffusion, defined by the coefficient D_{11}, is the diffusion of a substance through itself.

There are different theoretical models for computing the mutual (self) diffusion coefficient of gases. For non-polar molecules, Lennard-Jones potentials provide a basis for computing diffusion coefficients of binary gas mixtures [30]. The mutual diffusion coefficient, in units of $\mathrm{cm}^{2} / \mathrm{s}$ is defined as

$$
\begin{equation*}
D_{12}=0.001858 T^{3 / 2} \sqrt{\frac{M_{1}+M_{2}}{M_{1} M_{2}}} \frac{f_{D}}{p \sigma_{12}^{2} \Omega_{D}} \tag{A.2}
\end{equation*}
$$

where T is temperature of the gas in units of Kelvin; M_{1} and M_{2} are molecular weights of species 1 and 2; p is the total pressure of the binary mixture in units of atmospheres; f_{D} is the second-order correction, usually between 1.00 and $1.03 ; \sigma_{12}$ is the Lennard-Jones force constant for the gas mixture, defined by $\sigma_{12}=1 / 2\left(\sigma_{1}+\sigma_{2}\right) ; \Omega_{D}$ is the collision integral
defined by

$$
\begin{equation*}
\Omega_{D}=\frac{1.06036}{\left(T^{*}\right)^{0.15610}}+\frac{0.19300}{\exp \left(0.47635 T^{*}\right)}+\frac{1.03587}{\exp \left(1.52996 T^{*}\right)}+\frac{1.76474}{\exp \left(3.89411 T^{*}\right)} \tag{A.3}
\end{equation*}
$$

where $T^{*} \equiv k T / \epsilon_{\circ 12}, k$ is the Boltzman gas constant, $\epsilon_{\circ 12}=\left(\epsilon_{\circ 1} \epsilon_{\circ 2}\right)^{1 / 2}$ and $\epsilon_{\circ 12}=\sqrt{\epsilon_{\circ 1} \epsilon_{\circ 2}}$.
Values of $\sigma_{1(2)}, \Omega_{D}$ and $\epsilon_{\circ 1(2)}$ are tabulated for most naturally occurring gases [30].
The self-diffusion coefficient of a gas can be obtained from Eq. A.2, by observing that for a one-gas system: $M_{1}=M_{2}=M, \epsilon_{\circ 1}=\epsilon_{\circ 2}$ and $\sigma_{1}=\sigma_{2}$. Thus,

$$
\begin{equation*}
D_{11}=0.001858 T^{3 / 2} \sqrt{\frac{2}{M}} \frac{f_{D}}{p \sigma_{11}^{2} \Omega_{D}} \tag{A.4}
\end{equation*}
$$

It is useful to define observable diffusion, $D_{o b s}$, which is diffusion that one observes in an experiment. Observable diffusion os species 1 in the binary mixture of species 1 and species 2 is

$$
\begin{align*}
\frac{1}{D_{o b s, 1}} & =\frac{p_{1} /\left(p_{1}+p_{2}\right)}{D_{11}(p=1 a t m) /\left(p_{1}+p_{2}\right)}+\frac{p_{2} /\left(p_{1}+p_{2}\right)}{D_{12}(p=1 a t m) /\left(p_{1}+p_{2}\right)} \\
& =\frac{p_{1}}{D_{11}(p=1 a t m)}+\frac{p_{2}}{D_{12}(p=1 a t m)} \\
& =\frac{1}{D_{11}\left(p=p_{1}\right)}+\frac{1}{D_{12}\left(p=p_{2}\right)} \tag{A.5}
\end{align*}
$$

Equation A. 5 has a simple physical explanation when applied to gases. The observable diffusion rate of gas 1 in the mixture of gases 1 and 2 is equal to the diffusion rate of one atom of gas 1 through the rest of atoms of gas 1 , plus the diffusion rate of one atom of gas 1 through the atoms of gas 2. Equation A.5 enables the estimation of the diffusion coefficient for the binary mixture of ${ }^{129} \mathrm{Xe}$-nitrogen and ${ }^{3} \mathrm{He}$-nitrogen.

A.0.1 Observable Diffusion Constant for a Mixture of Xe-129 and Nitrogen

The relevant parameters [30] are:

$$
\begin{aligned}
& \sigma_{X e}=4.047 \quad \epsilon_{\circ} X e / k=231.0 \quad M_{X e}=130.4 \\
& \sigma_{N 2}=3.798 \quad \epsilon_{\circ N 2} / k=71.4 \quad M_{N 2}=28
\end{aligned}
$$

At $T=(303 \pm 10) \mathrm{K}$ and $p=\left(p_{X e}+p_{N 2}\right) \mathrm{atm}$,

$$
\begin{array}{llll}
\sigma_{X e-N 2}=3.9225 & \frac{\epsilon_{0} X e-N 2}{k}=128.42 & \frac{k T}{\epsilon_{0} X e-N 2}=2.398 & \Omega_{D}=1.0183 \\
\sigma_{X e-X e}=4.047 & \frac{\epsilon_{0} X e-X e}{k}=231 & \frac{k T}{\epsilon_{0} X e-X e}=1.333 & \Omega_{D}=1.2696 . \tag{A.6}
\end{array}
$$

The above parameter values yield

$$
\begin{align*}
& D_{X e-N 2}=\frac{0.1303 \times 10^{-4}}{\left(p_{X e}+p_{N 2}\right)} \mathrm{m}^{2} / \mathrm{s} \tag{A.7}\\
& D_{X e-X e}=\frac{0.0584 \times 10^{-4}}{\left(p_{X e}+p_{N 2}\right)} \mathrm{m}^{2} / \mathrm{s} \tag{A.8}
\end{align*}
$$

The observable diffusion rate for a mixture of ${ }^{129} \mathrm{Xe}$ and Nitrogen gas is therefore

$$
\begin{equation*}
\frac{1}{D_{o b s}}=\frac{p_{X e}}{0.0584 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}}+\frac{p_{N 2}}{0.1303 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}} . \tag{A.9}
\end{equation*}
$$

The cell used in Xenon experiments had the following pressures: $p_{X e}=(0.48 \pm 0.01) \mathrm{atm}$ and $p_{N 2}=(0.14 \pm 0.01) \mathrm{atm}$. The theoretical estimation of the observable diffusion constant is thus $D_{o b s}=(1.08 \pm 0.08) \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.

A.0.2 Observable Diffusion Constant for a Mixture of $\mathrm{He}-3$ and Nitrogen

 The relevant parameters [30] are:$$
\begin{array}{lll}
\sigma_{H e}=2.551 & \epsilon_{\circ} \mathrm{He} / k=10.22 & M_{H e}=4 \\
\sigma_{N 2}=3.798 & \epsilon_{\circ N 2} / k=71.4 & M_{N 2}=28
\end{array}
$$

At $T=(308 \pm 10) \mathrm{K}$ and $p=\left(p_{H e}+p_{N 2}\right) \mathrm{atm}$,

$$
\begin{array}{llll}
\sigma_{H e-N 2}=3.1745 & \frac{\epsilon_{\mathrm{oHe}-\mathrm{N} 2}}{k}=27.013 & \frac{k T}{\epsilon_{\mathrm{OHe}-N}}=11.587 & \Omega_{D}=0.7260 \tag{A.10}\\
\sigma_{H e-H e}=2.551 & \frac{\epsilon_{\mathrm{OHe}-\mathrm{He}}}{k}=10.22 & \frac{k T}{\overline{\epsilon_{\mathrm{o}} H e-H e}=30.626} & \Omega_{D}=0.6231 .
\end{array}
$$

The above parameter values yield

$$
\begin{align*}
D_{H e-N 2} & =\frac{0.7337 \times 10^{-4}}{\left(p_{H e}+p_{N 2}\right)} \mathrm{m}^{2} / \mathrm{s} \tag{A.11}\\
D_{H e-H e} & =\frac{1.7513 \times 10^{-4}}{\left(p_{H e}+p_{N 2}\right)} \mathrm{m}^{2} / \mathrm{s} . \tag{A.12}
\end{align*}
$$

The observable diffusion rate for a mixture of ${ }^{3} \mathrm{He}$ and Nitrogen gas is therefore

$$
\begin{equation*}
\frac{1}{D_{o b s}}=\frac{p_{H e}}{1.7513 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}}+\frac{p_{N 2}}{0.7337 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}} . \tag{A.13}
\end{equation*}
$$

The cell used in Helium experiments had the following pressures: $p_{H e}=(0.75 \pm 0.01) \mathrm{atm}$ and $p_{N 2}=(0.10 \pm 0.01) \mathrm{atm}$. The theoretical estimation of the observable diffusion constant is thus $D_{o b s}=(1.77 \pm 0.12) \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$.

Appendix B

Supplement on Fourier Transforms

The Fourier Transform of $e^{-2 \pi k_{\circ}|x|}$, where $2 \pi k_{\circ}=1 / T_{2}^{*}$, is given by:

$$
\begin{aligned}
F\left[e^{-2 \pi k_{o}|x|}\right]= & \int_{-\infty}^{\infty} e^{-2 \pi k_{o}|x|} e^{-2 \pi i k x} d x \\
= & \int_{-\infty}^{0} e^{-2 \pi i k x} e^{2 \pi k_{o} x} d x+\int_{0}^{\infty} e^{-2 \pi i k x} e^{-2 \pi k_{o} x} d x \\
= & \int_{-\infty}^{0}[\cos (2 \pi k x)-i \sin (2 \pi k x)] e^{2 \pi k_{o} x} d x \\
& +\int_{0}^{\infty}[\cos (2 \pi k x)-i \sin (2 \pi k x)] e^{-2 \pi k_{o} x} d x
\end{aligned}
$$

Let $u \equiv-x$ so that $d u=-d x$, then:

$$
\begin{aligned}
F\left[e^{-2 \pi k_{\circ}|x|}\right]= & \int_{0}^{\infty}[\cos (2 \pi k u)+i \sin (2 \pi k u)] e^{-2 \pi k_{\circ} u} d u \\
& +\int_{0}^{\infty}[\cos (2 \pi k u)-i \sin (2 \pi k u)] e^{-2 \pi k_{\circ} u} d u \\
= & 2 \int_{0}^{\infty} \cos (2 \pi k u) e^{-2 \pi k_{\circ} u} d u \\
= & \frac{1}{\pi} \frac{k_{\circ}}{k^{2}+k_{\circ}^{2}},
\end{aligned}
$$

which is a Lorentzian function, with: $\mathrm{FWHM}=2 k_{\circ}=1 / \pi T_{2}^{*}$.

Appendix C

Imaging Parameters

The following are the descriptions of some of the most common parameters in MR imaging:

1. Bandwidth ($B W$): Anti-aliasing filter bandwidth of the receiver.
2. Sampling Period (Δt) : Sampling period of the A/D converters.
3. Acquisition Time or Readout Interval ($T_{\text {AcqTime }}$): Time interval during which the signal is acquired.
4. Field-of-View $\left(F O V_{x}, F O V_{y}\right)$: Image size along the x and y -coordinates.
5. Matrix Size $\left(N_{x} \times N_{y}\right)$: Number of pixels along the readout and phase-encode directions.
6. Spatial Resolution $(\Delta x, \Delta y)$: Resolution in image space.
7. Raw Data Resolution $\left(\Delta k_{x}, \Delta k_{y}\right)$: Resolution in k-space.
8. Readout Amplitude $\left(G_{x}\right)$: Amplitude of the readout gradient.
9. Maximum Amplitude in Y-Gradient $\left(G_{y}^{\max }\right)$: Maximum amplitude of y-gradient used in imaging.
10. Incremental Amplitude in Y-Gradient $\left(\Delta G_{y}\right)$: Incremental amplitude of y gradient used in imaging.
11. Phase Encode Interval $\left(t_{G y}\right)$: Time interval during which the phase encode gradient is applied.

Below, is a set of formulas which define and connect these parameters:

$$
\begin{align*}
\Delta t & =1 / B W \tag{C.1}\\
T_{\text {AcqTime }} & =\Delta t * N_{x} \tag{C.2}\\
G_{y}^{\text {max }} & =\Delta G_{y} * N_{y} \tag{C.3}\\
F O V_{x} & =1 / \Delta k_{x} \tag{C.4}\\
F O V_{y} & =1 / \Delta k_{y} \tag{C.5}\\
\Delta x & =F O V_{x} / N_{x} \tag{C.6}\\
\Delta y & =F O V_{y} / N_{y} \tag{C.7}\\
\Delta k_{x} & =\frac{\gamma}{2 \pi} G_{x} \Delta t \tag{C.8}\\
\Delta k_{y} & =\frac{\gamma}{2 \pi} \Delta G_{y} t_{G y} \tag{C.9}
\end{align*}
$$

