
Chapter 2

Ultra-high Q microtoroid

2.1 Microtoroid resonator overview

The silica microtoroid is an ultra-high Q (UHQ) and ultra-small mode volume microcavity fabricated

on silicon using standard microelectronics techniques. Although silica microspheres have shown

higher quality factors than microtoroids (8×109 compared to 5×108), their geometry and fabrication

method present practical limitations [32]. The physical dimensions of a microsphere are difficult

to control during melting, since there is no physical stop for the surface-tension induced reflow.

Secondly, the microsphere’s mode spectrum is more dense and complicated than the microtoroid,

because the optical mode is not restricted in azimuthal and vertical degrees of freedom as the

microtoroid is [33]. These challenges, and lack of planar integration of the microsphere in a compact

package, led to the invention of the microtoroid [10]. The microtoroid is the first microcavity that

offers ultra-high quality factor on silicon. The highest Q factor recorded in a microtoroid to date

is 4 × 108, which corresponds to a cavity finesse (F = λQ
πnD ) of 1 × 106. Also, the microtoroid’s

cavity dimensions can be accurately controlled during fabrication to produce the desired resonator.

For instance, small diameter toroids are needed for cQED experiments, where as larger toroids are

important for laser operation in water.

A SEM image of a typical silica microtoroid is shown in Figure 2.1, with 60 µm major diameter

(D) and 5 µm minor diameter (d). After fabrication, the microtoroid can be described as a glass ring

cavity with a dumbbell-like cross section, suspended over a silicon pillar by a silica membrane. In

microtoroids, like optical fiber and microspheres, the silica is amorphous. Alternatively, crystalline

quartz rods have been carefully polished into WGM resonators with ultra-high Q (5 × 109) [34].

The advantage of amorphous silica is that it can easily be melted or drawn into the desire shape,

though care should be taken not to freeze significant refractive index variations in the glass that

cause scattering loss. Input light, for example from a fiber taper, orbits the microtoroid confined by

TIR until it is absorbed, scattered out, or coupled out by another waveguide.
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Figure 2.1. SEM image of a UHQ microtoroid resonator with 60 µm major diameter (D) and 5 µm

minor diameter (d)

2.1.1 Whispering-gallery mode structure

The spatial confinement of microtoroids supports less transverse and radial modes than microspheres.

These are whispering-gallery modes, so named because the photons circulate at the surface of the

glass microcavity in a similar manner as sound waves do around the dome in St. Paul’s Cathedral

in London. Unlike the complete theory developed for microspheres, analytical expressions for the

microtoroid mode structure are not possible because only one coordinate of the wave equation

is separable. Therefore, the two-dimensional Helmholtz equation must be solved numerically, or

by semi-analytical methods [35]. Sean Spillane developed a model of the 2D cross section of the

microtoroid including rotational symmetry using a finite element eigenmode solver (Femlab). This

full-vectorial model gives accurate solutions of the toroid’s electromagnetic field distribution. The

model can also calculate cavity mode volume, radiation Q, and resonance wavelengths. Figure 2.2

is a cross-sectional plot of two microtoroid cavity modes.
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Figure 2.2. Plot of the electric field intensity profile |Eφ|2 of a 120 µm diameter toroid, showing

the fundamental mode (left) and a higher-order mode (right). The field profiles are calculated by a

FEM simulation of the microtoroid

To give a theoretical overview of the microtoroid cavity, the equations describing the microtoroid’s

mode structure are briefly detailed. To determine the proper description, start with Maxwell’s

equations in an isotropic charge free medium following Yariv [36].

∇×H = ε
∂E
∂t

(2.1)

∇×E = −µ∂H
∂t

(2.2)

∇ · (εE) = 0 (2.3)

After taking the curl of Equation (2.2) and substitution, the expression becomes

∇2E− µε∂
2E
∂t2

= −∇(
1
ε
E · ∇ε) (2.4)

Next, write the field components (Hr, Hφ, Hz, Er, Eφ, Ez) in cylindrical coordinates, which is

logical because of the microtoroid’s rotational symmetry. For instance, the electric field E is written

E(r, φ, z, t) = Re[E(r, φ, z)eiwt] (2.5)

The coordinate axis with respect to the toroid are shown in Figure 2.3.
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Figure 2.3. Diagram of a toroid with field components in cylindrical coordinates for the TM-type

whispering-gallery modes
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Next, set the right side of Equation (2.2) equal to zero, since the permittivity of the medium is

constant over one wavelength. After taking the double partial differential of E, one produces the

famous wave equation:

(∇2 + µεw2)E = 0 (2.6)

Now, the scalar wave equation approximation can be applied because the refractive index is

constant over a wavelength in the microtoroid, and the whispering-gallery mode polarization is

preserved. Also, apply the substitution of µε = µ0ε0n
2 = n2/c2. The resulting expression is the

scalar wave equation for propagation in a dielectric medium, also known as the Helmholtz equation.

(∇2 +
w2n2

c2
)E = 0 (2.7)

The microtoroid modes, solutions to Equation (2.7), have either transverse-electric (TE) or

transverse-magnetic (TM) polarization in the cavity. In TE modes, the electric field oscillates in

the (r, z) plane, transverse to the propagation direction (along φ), and hence Eφ = 0. Likewise, in

TM modes the magnetic field oscillates in the (r, z) plane and Hφ = 0. The four remaining field

components can be expressed with two field components (Hφ for TE modes, and Eφ for TM modes).

After expanding the Laplacian operator, the scalar wave equation in terms of Eφ is

[
∂2

∂r2
+

∂

r∂r
+

∂2

r2∂φ2
+

∂2

∂z2
+
w2n2

c2

]
Eφ = 0 (2.8)

Next, separate variables and express the electric field as Eφ = Eφ(r, z)e( ± ilφ), where l is the

angular mode number.

[
∂2

∂r2
+

∂

r∂r
− l2

r2
+

∂2

∂z2
+
w2n2

c2

]
Eφ(r, z) = 0 (2.9)

After arranging the terms, one reaches the Helmholtz equation in partial differential format.

(
∂

∂r

1
r

∂

∂r
+ r

∂2

∂z2

)
Eφ +

(
w2n2

c2
− l2

r2

)
rEφ = 0 (2.10)

The whispering-gallery mode profiles can be calculated by using a FEM solver, like Femlab, to

simulate the partial differential equations describing the optical field in a microtoroid. In addition

to mode profiles, it is possible to calculate the mode volume and radiation Q of specific microtoroid

resonators. Figure 2.2 is a plot of the fundamental WGM for a 120 µm major diameter and 3 µm

minor diameter toroid generated by Femlab.
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2.2 Microtoroid fabrication

2.2.1 Photolithography and wet etching

Microtoroids are easily fabricated using standard microelectronic fabrication techniques in a process

developed by Armani [10]. A diagram showing the fabrication steps is given in Figure 2.4.

Figure 2.4. Diagram of the fabrication steps of silica microtoroids. (a) First, a photoresist layer is

deposited on a SiO2-on-Si wafer. (b) After photolithography, an HF wet etch creates silica pads. (c)

A high-selectivity XeF2 dry etch isolates silica microdisks from the silicon substrate. (d) Finally,

CO2 laser reflow produces a microtoroid.

First, start with a (100) prime silicon wafer with a 2 µm layer of thermally grown oxide (SiO2)

on top. If necessary, clean the wafer with acetone and isopropyl-alcohol, and dry with nitrogen gas.

After the surface is treated with HMDS for 2 minutes to promote surface adhesion, spin coat a

uniform layer of Shipley 1813 photoresist onto the wafer at 3,000 rpm. Soft-bake the wafer at 90◦C

to remove solvents. Next, use a mask aligner (Carl Zuss MJ-BA3) to expose the photoresist with
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a mask containing arrays of disks (40−180 µm diameter). Stir the exposed wafer in developer until

the developing process is complete, normally 30 seconds. For positive resists like S1813, exposed

photoresist becomes soluble in developer and is washed away. Left behind are crisp circular pads

of photoresist covering the oxide layer. Next, a hard bake is performed at 110◦C to reflow the

photoresist pads and prepare for wet etching. The photoresist disk pattern is transferred into the

oxide layer by a 19 minute buffered-oxide etch (BOE), in a 2% hydrofluoric acid (HF) solution. The

HF etch undercuts the photoresist by a controllable amount, depending on the adhesion strength of

resist to the oxide, and any extra etching time added. The HF undercut produces a bevel on the

edge of the circular microdisks of the oxide (SiO2). Normally, this bevel has an angle of 45◦ with

respect to the disk plane, but the angle can be reduced to less than 10◦. Small bevel angles are key

to high Q in microdisks, which will be discussed in Chapter 5.

At this stage in the fabrication, the silica microdisks cannot support whispering-gallery modes

because any circulating optical radiation will leak into the higher index silicon substrate. Therefore,

a pulsed XeF2 isotropic dry etch is used, which selectively etches the silicon approximately 1,000

times faster than silica. The etch rate (∆D/∆T ) for 4 chips (5×20 mm size) with 100 µm diameter

disks is measured to be 0.01 µm per minute for sequential 90 s pulses, depending on the total silicon

surface area and pillar diameter. The etch rate is inversely proportional to the pillar diameter as

shown in Figure 2.5.

Figure 2.5. Plot of the etch rate of silicon (∆D/∆T ) as a function of pillar diameter observed for

one microdisk. The etch rate is inversely proportional to the pillar diameter.
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The chemical reaction during XeF2 etching is described by 2XeF2 + Si → 2Xe + SiF4. The dry

etch should continue until the desired diameter of the silicon pillar is reached, for instance a 40 µm

pillar for a 100 µm diameter disk. It is important to note that the silicon chip must be dry before

etching. Otherwise, any water on the chip will react with the xenon difluoride gas to produce HF,

which etches oxide rapidly and produces surface roughness on the microdisk [37]. After the dry etch,

the undercut silica microdisk is supported on a silicon pillar. Microdisks normally have Q factors

near 1×106, limited by scattering from lithographic and etching roughness. Since the microdisks are

fabricated on silicon by standard lithography techniques, they can be easily integrated with other

devices on chip, like modulators or detectors.

2.2.2 CO2 laser reflow

While lasers [9] and plasmonic resonators [29] have been developed using microdisks, the benefits of

higher quality factor are well known [38]. Higher Q leads to lower threshold lasers, more sensitive

detectors, higher resolution filters, and higher strong coupling coefficients for cQED. After care has

been taken to preserve high Q in microdisks by eliminating all contaminants and defects, the quality

factor can be increased by an order of magnitude or more by CO2 laser reflow.

At the CO2 laser wavelength, 10.6 µm, the absorption cross section of silica is 100 times larger

than silicon. Hence, the thermally conductive silicon pillar functions as a circular heat sink, and

the silica microdisk is melted to form the toroid geometry. The newly minted glass microtoroid has

nearly atomic smooth finish due to surface-tension, like microdroplets [39] and microspheres [6].

A 10 Watt CO2 laser (Synrad Corp.) is controlled either manually for continuous-wave (cw)

power, or by a function generator for pulsing. The author performed laser reflow in three different

manners on almost identical microdisks on the same silicon chip to determine the optimum reflow

setting. In the first method, the laser is operated in quasi-cw mode, and the laser power is increased

steadily until the silica microdisk melts into a microtoroid. In the second method, a single square

pulse with 100 ms duration is sent from a function generator to the laser. In the third method, the

laser is also controlled with the function generator, but the single 100 ms pulse waveform follows

a linearly increasing ramp function. After testing the toroids fabricated according to these three

methods, the Q factors were highest for method three. Therefore, the author chose to reflow all

microtoroids in the future using the ramp waveform and a single pulse with 100 ms duration. If

the laser power (controlled by the peak-to-peak voltage from the function generator) is too low,

then the reflow will not be complete and the toroid may be asymmetric. On the other hand, if the

laser power is too large, then silicon material can be sputtered onto the toroid and cause absorption

loss. For each initial disk diameter and pillar size, there is an optimum reflow power that must be

experimentally determined.
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2.3 Experimental testing of microtoroids

The standard experimental measurements performed on silica microtoroids for the research presented

in this thesis are discussed in detail here. The main elements of toroid testing include: optical

excitation of the microcavity by a fiber-coupled tunable laser, coupling of light into and out of the

microtoroid with an adiabatic fiber taper, and finally any post-processing of the output light (e.g.,

wavelength filtering) and optical detection (i.e., conversion from optical to electrical power).

Fiber-coupled semiconductor laser diodes generate optical radiation at 970 nm or 1550 nm for

the experiments presented in this work. The lasers are single-frequency and have a bandwidth of

less than 300 kHz. The lasers are optically isolated to prevent reflected light from causing laser

instability, and the laser is tuned over a wavelength range of more than ten nanometers. Light

can be coupled into a microcavity in several ways, including prisms [6], end polished fibers [40],

free-space coupling, or fiber tapers [41].

2.3.1 Low-loss optical fiber coupling to microcavities

Tapered optical fibers can excite whispering-gallery resonators with higher efficiency and ideality

than any other coupling mechanism [13]. Fiber taper coupling to cavities was first demonstrated with

microspheres [42]. Coupling between a taper and any microcavity relies upon the physical overlap

and vector phase matching of the evanescent field components of the fiber taper and the microtoroid.

With proper phase matching for critical coupling, it is possible to excite the resonator with 100%

of the input radiation, made possible by the tapered optical fiber’s record ideality (99.999%) [13].

With low transmission loss, low scattering during coupling, and flexible phase-matching, there is no

better laboratory tool for probing microcavities than fiber tapers.

2.3.1.1 Fiber taper fabrication

A straight fiber taper is made by pulling a standard single-mode fiber (SMF) at a constant speed

(using motors attached to both sides of the fiber) over a hydrogen flame. As the fiber heats up and

melts, its diameter is adiabatically reduced until the desired diameter is reached, usually 1−2 µm.

The taper length and final diameter are controlled by adjusting the gas flow rate, the pulling speed,

and the flame location. Single-mode tapers can be fabricated with extremely low transmission losses,

enabling efficient and ideal coupling to ultra-high Q microtoroids.

Straight fiber tapers are only well phase-matched to a specific microtoroid over a modest wave-

length range, roughly 100 nm. For wavelengths outside of this phase-matching range, the optical

field phase fronts inside the straight taper is mismatched from the optical field inside the curved

resonator. Therefore, the author helped develop a bent fiber taper with a circular twist in the middle

[43]. If the radius of curvature of the bent taper fiber matches the microtoroid, coupling is observed
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Figure 2.6. Image of a bent fiber taper coupled to a microtoroid. The taper diameter is as small as

5 µm in the center, and the loop diameter is 50 µm.

between the taper and microtoroid over an 900 nm wavelength range from 670 nm to 1570 nm.

To make a bent tapered fiber, a straight taper is first pulled from standard SMF. Next, the two

sides of the taper are pushed toward one another, forming a circular loop as the taper crosses itself.

The fiber positions are carefully controlled to create the desired bent taper diameter, and the loop

is frozen into place with gentle heating. The result is a tapered fiber, shown in Figure 2.6 with a

circular loop in the center, that can be used to couple optical radiation to a microtoroid over a large

bandwidth.

2.3.1.2 Fiber taper phase matching

The taper and toroid must be phase matched to allow efficient optical coupling from one to the

other. Therefore, the effective mode indices of the taper (ntap) and toroid (ntor) must be equal.

First, the effective mode index of the toroid (ntor) is determined using the previously mentioned

finite-element model. Then, the fiber taper mode index is calculated by solving for the propagation

constant (β) of light in the fiber. Key physical constants include the fiber core’s index of refraction

(n), the taper radius (a), and the propagation constant of light (k0 = 2π/λ). To simplify the final

expression to be solved, several dependent variables can be defined [36].

q =
√
β2 − k2

0

h =
√
n2k2

0 − β2

R =

√
−
(
n2 − 1

2n2

)2( K2(qa)
qa ·K1(qa)

)2

+
(

β

nk0

)2(
l

q2a2
+

1
h2a2

)2

(2.11)

After solving the wave equation for the dielectric fiber taper with no cladding, a transcendental
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Figure 2.7. Top view image showing coupling between a microtoroid (D = 50 µm) and fiber taper

equation is derived that can be graphically solved for β, the propagation constant.

J0(ha)
ha · J1(ha)

=
1

h2a2 − R
−
(
n2 + 1

2n2

)(
K2(qa)

qa ·K1(qa)

)
(2.12)

After solving for β, the taper mode index is easily calculated as ntap = β/k0. To achieve phase

matching between the taper and toroid, ensure that ntap = ntor. The fiber taper index is matched to

the toroid mode by choosing the correct fiber taper radius, a. Normally, the fiber taper is pulled to

a minimum diameter less than optimum for phase matching, and the taper position is adjusted with

respect to the microtoroid until the phase matched diameter is found. A coupling setup showing the

fiber taper waveguide and microtoroid resonator is shown in Figure 2.7.

2.3.2 Quality factor

Silica microcavities can be classified by the optical Q of their WGM resonances−lithographically

defined micro-rings (Q ∼ 105), microdisks (∼ 106), microtoroids (∼ 108), and microspheres (∼ 109).

The Q factor can be expressed in terms of the linewidth (in frequency or wavelength) of the cavity

resonance.

Q =
λ

∆λ
(2.13)

Where ∆λ is the full-width at half-maximum (FWHM) of the resonance lineshape. Or alterna-

tively, the cavity Q can be calculated in terms of the photon lifetime.

Q = wτ (2.14)

These different but equivalent expressions for Q highlight the two methods that can be used to
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quantify the intrinsic Q. The first and simplest measurement of cavity Q is quantified in Equa-

tion (2.13). This method requires a measurement of the cavity linewidth (∆λ) with the taper and

toroid in the undercoupled regime. The injected optical power is kept low (P < 10 µW) to avoid

thermal broadening of the cavity linewidth, which will be discussed in Section 2.3.3. To make the

measurement, the tunable laser wavelength is linearly scanned at 10 Hz. The taper transmission,

which exhibits a dip at the cavity resonance, is measured using a low noise optical detector. Finally,

the toroid’s resonance lineshape is captured with an oscilloscope, and fit to a Lorenzian function to

calculate the width (∆λ) as presented in Figure 2.8. Surface roughness or internal scattering (e.g.,

index modulation) cause back-scattering in the microtoroid, which splits the previously degenerate

cavity resonance into a doublet (two Lorenzian resonances) as shown [44].

If a series of measurements of the linewidth are made and plotted as a function of the taper-

toroid gap width, then the intrinsic Q (approached asymptotically) can be calculated by fitting

the lineshape. Though the cavity linewidth measurement is the quickest way to estimate Q, this

technique is only accurate for cavity linewidths larger than the tunable laser’s linewidth (300 kHz).

Therefore, the resonance linewidth measurement is only accurate for Q less than 3× 108.

Alternatively, the toroid intrinsic Q can be accurately determined by a cavity ringdown mea-

surement, a technique that is unaffected by thermal distortion of the cavity linewidth and the laser

linewidth. The fiber taper is aligned in critical coupling with the toroid (i.e., T = 0) while the laser

wavelength is scanned in time like the previous method. At precisely the point when maximum

power is coupled into the toroid, the laser excitation is gated off using a high speed, external phase

modulator. Afterwards, the taper output power is due entirely to the exponential decay of energy

stored in the toroid resonator. The taper output power is recorded in time using a high speed

detector and oscilloscope. The cavity lifetime is measured by fitting an exponential to the taper

transmission. The result of a cavity ringdown measurement is shown in Figure 2.9. It is important

to note that this lifetime for critical coupling (τcc) is smaller than the intrinsic lifetime (τ0) due to

cavity loaded by the fiber taper. To calculate the intrinsic Q factor, it is necessary to account for

taper loading and back-scattering in the resonator that couples the clockwise and counterclockwise

modes.

The frequency splitting (2γ−1) between the doublet modes is proportional to the amount of

back-scattering. With measurements of the loaded lifetime and splitting, the intrinsic Q can be

calculated using the following equation.

Q0 = wτ0 =
2w

τcrit

(
1

τ2
crit
− 1

γ2

) (2.15)

The record microtoroid Quality factor is currently 4× 108, observed by Tobias Kippenberg in a

70 µm toroid [12]. The author’s research into the upper limit of Q factor in microtoroids is discussed
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Figure 2.8. Plot of the taper transmission versus laser detuning frequency, showing a characteristic

doublet mode of a microtoroid (D = 55 µm). The resonance lineshape of each mode (black) is fit to

a Lorenzian (red). The sub MHz linewidth (∆ν) of one resonance and the splitting frequency (γ−1)

are also marked.

Figure 2.9. Plot of the power emitted from a critically coupled microtoroid during cavity ringdown

measurement. The cavity output is recorded after the input is gated off by a modulator. The

intensity decay in time is fit to an exponential, and the cavity ringdown lifetime (τcc) at critical

coupling is calculated.
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in Chapter 6.

2.3.3 Thermal broadening

Microtoroids exhibit thermal broadening of ultra-high Q resonances for moderate input powers due

to the low thermal conductivity of silica and the toroid’s small mode volume. Resonant buildup of

cavity energy can create large amounts of circulating power. For instance, 1 mW of input power

critically coupled into a microtoroid with Q = 1× 108 can produce 100 W of circulating power (see

Equation (2.16))! For a 50 µm diameter toroid, 100 W of internal power corresponds to a circulating

intensity of 1 GW/cm2, sufficient to observe many nonlinear phenomena.

Pcirc =
(

4λQ0

9π2nD

)
Pin (2.16)

The temperature of the microtoroid cavity will increase with such a large amount of power is

circulating inside the glass. As a result, the microtoroid’s resonance location will red-shift (towards

longer wavelengths), due to the positive thermal coefficient of the refractive index of silica ( dndT =

1.3 × 10−5K−1) [45]. Also, the thermal expansion coefficient of silica (αT = 5.5 × 10−7) induces a

smaller red-shift of the resonance location.

The normal red-shift of the cavity resonance is illustrated in Figure 2.10, where the normal

Lorenzian lineshape has broadened into a triangle. The broadening occurs as the laser wavelength

is swept upwards in time, shown by the plot of the laser piezo voltage. The laser wavelength

is linearly increased in time, and as the taper-cavity coupling approaches critical coupling, the

circulating power in the toroid increases linearly. As a result, the resonance location moves towards

longer wavelengths, lengthening the amount of time required to reach critical coupling and thereby

broadening the resonance. At critical coupling, the cavity power is maximum, and therefore the

resonance location cannot move further. Finally, the laser wavelength (still increasing in time)

moves past the cavity’s shifted resonance wavelength, and the taper transmission snaps quickly back

to 100%. But, when the laser wavelength is scanned downwards in time (shown on the left side of

Figure 2.10), the cavity resonance width is artificially compressed as the resonance red-shifts against

the blue-tuning laser. In summary, the positive thermal coefficients (thermal and expansion) of

silica at room temperature cause thermal broadening of the resonance when the pump wavelength

is tuned upwards, and contraction for negative tuning. A helpful review of the thermal effects in

silica microtoroids has been written by Carmon [46].
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Figure 2.10. Plot of the taper transmission in time (shown in blue) and the laser piezo voltage (shown

in red) when critically coupled to a microtoroid exhibiting thermal broadening due to +δn/δT . The

normal Lorenzian mode is broadened when the laser wavelength is increased in time (positive slope

for laser piezo−right side), and the resonance is narrowed in time when the laser wavelength is swept

downwards (negative slope for laser piezo−left side).
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2.3.4 Inverse thermal broadening

Thermal broadening can be exploited to stabilize the taper and toroid coupling. If the laser frequency

is detuned to the blue-shifted side of the broadened resonance (left side of triangle), then any

perturbations such as temperature, coupling, or frequency jitter of the laser will be compensated

by the thermal effect. However, blue-shifted photons (lower wavelength) cause heating of the toroid

mode. If the total thermal coefficient of silica could be made negative, then a pump laser could be

stabilized on the red-side of a toroid cavity resonance, which would cool the toroid mode. Laser

cooling of microcavities is very important, for it would aid researchers in reaching the quantum

mechanical ground state of a macroscopic object [47]. Kippenberg has demonstrated side-band

resolved cooling of a microtoroid, using a state-of-the-art feedback system for stabilizing the laser

wavelength on the red-side of the cavity resonance [48].

The author has successfully demonstrated stabilized laser coupling on the red-side of a mi-

crotoroid resonance. The thermal coefficient of refractive index of the cavity mode was changed

from positive to negative with a thin polymer coating. Polymethyl Methacrylate (PMMA) has a

negative thermal coefficient of refractive index ( dndT = −1.2 × 10−4C−1) [49], however its optical

loss (α = 23 m−1) is greater than silica’s at λ = 1550 µm [50]. To demonstrate a microtoroid

with negative thermal broadening, a high Q microtoroid was first tested and its Q factor recorded

(Q0 = 1 × 107). Then, a drop of 4% PMMA polymer was applied to the microtoroid, and the

microtoroid was spun at 2,000 rpm for 30 seconds, resulting in a 0.4 µm thick PMMA coating on

the toroid. The silicon chip, on which the silica toroid resides, was baked at 170◦C for 10 minutes

to cure the polymer. Finally, the thermal broadening characteristics of the polymer coated toroid

were measured using a tunable laser, and the final Q was measured to be 4× 105, which is 25 times

lower than the Q before coating. Figure 2.11 demonstrates that the cavity mode thermal coeffi-

cient is now slightly negative, since the thermal broadening occurs when the the laser wavelength

is scanned downwards (left side). As the power stored in the microtoroid resonator increases, the

resonance wavelength blue-shifts to lower wavelengths. With this novel microcavity, a pump laser

can be stabilized on the red-shifted side of the cavity mode, which in turn can cool the microtoroid

mode.

Following the author’s work, a colleague showed a similar effect for a microtoroid coated with

PDMS. The final Q factor (1.5×106) is higher than for PMMA due to the lower absorption coefficient

of PDMS (α = 4 m−1) [51]. However, any polymer coating will reduce the Q of the microtoroid

since its loss cannot match that of silica, possibly limiting the application of this technique. Future

experiments can study the use of other thin film materials (e.g., Cytop, α = 0.2 m−1) with lower

absorption loss [50].
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Figure 2.11. Plot of the taper transmission in time (shown in blue) and the laser piezo voltage

(shown in red) when critically coupled to a microtoroid exhibiting inverse thermal broadening due

to the cavity mode’s effective −δn/δT . The normal Lorenzian resonance broadens in time when

the laser wavelength is swept downwards in time−negative slope for laser piezo, and the resonance

narrows when the laser wavelength is decreased in time−positive slope for laser piezo.
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2.4 Summary

In this chapter, the ultra-high Q microtoroid resonator was discussed. Microtoroid’s have extremely

low cavity loss and ultra-small mode volumes, making them unique resonators with applications in

low-threshold lasers and nonlinear optics to name just a few. The whispering-gallery mode structure

of microtoroids was analyzed with a finite element model. The evanescent field component of WGMs

is an important element of the work presented in this thesis, and enables long duration and efficient

interaction of optical radiation with different environments.

Also, the fabrication process for creating optical microtoroids was discussed. Microtoroids can be

made quickly and inexpensively on silicon. The selective laser reflow of microdisks into microtoroids

endows them with ultra high quality factors. The experimental testing of microtoroids was described,

including fiber taper coupling. Finally, the thermal broadening effect in silica microtoroids was

investigated. The author coated microtoroids with a polymer to change the sign of the thermo-

optical coefficient, which made stable coupling on the red-shifted side of cavity resonance possible.
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