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Abstract

Recent experiments showing reaction-driven propulsion at nanoscales have appeared as a

possible mechanism for the transport of particles that may help us to not only understand

chemo-mechanical transduction in biological systems, but also to create novel artificial mo-

tors that mimic living organisms and which can be harnessed to perform desired tasks.

Reaction-driven propulsion consists of the generation of a localized potential gradient by an

on-board surface chemical reaction. In this study, we propose and investigate a model for

self-propulsion of a colloidal particle — the osmotic motor — immersed in a dispersion of

“bath” particles. The non-equilibrium concentration of bath particles induced by a surface

chemical reaction creates an osmotic pressure imbalance on the motor causing it to move.

The departure of the bath particle concentration distribution from equilibrium is governed

by the Damköhler number Da — the ratio of the speed of reaction to that of diffusion —

which is employed to calculate the driving force on the motor, and from which the self-

induced osmotic velocity is determined via application of Stokes drag law. To illustrate

the significant physics in osmotic propulsion, a first-order surface reaction on a portion of

the motor’s surface is assumed, for the most part, in this work. The implications of these

features for different bath particle concentrations and motor sizes are discussed. Further-

more, we investigate the role played by the distribution of reactions on the motor’s surface.

Different responses are expected depending on the amount of reactive surface in the limiting



vii

behaviors of the reaction speed. Lastly, we consider a motor with constant production of

particles on a hemisphere as a model that resembles actin-based motility of biological cells

and organelles.

This research demonstrates that such an osmotic motor is possible and addresses such

questions as: How fast can the motor move? How large of a force can it generate? What

is the efficiency of such an osmotic motor? All motor behaviors discussed in this work

are shown, after appropriate scaling, to be in good agreement with Brownian dynamics

simulations.
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Chapter 1

Introduction
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1.1 Introduction

What is a machine? And why do we need them? The scientific definition of a “machine” is

any device that transmits or modifies energy. In common usage, the meaning is restricted

to devices that have rigid moving parts that perform, or assist in performing some work

(see Concise Oxford Dictionary), although animals, including humans, and plants can also

be considered machines; even though they are a product of evolution rather than of design.

Machines usually require some energy source (“input”), and always achieve some sort of

work (“output”). A machine has a design and it is constructed following some processes. It

also uses power and it operates according to information built into it when it is fabricated.

Some machines are even used to construct or to replicate other machines.

There is no doubt that machines are an integral part of our daily lives. For centuries we

have conquered the “human-scale” world by fabricating large machines (e.g., cars, comput-

ers, house appliances, telephones) that have facilitated global communication, transporta-

tion, and scientific advances, just to name a few. However, in the past decades we have paid

considerable attention to the endless possibilities that the nano and molecular world have

to offer. On December 29, 1959, physicist Richard Feynman in his famous lecture “There’s

Plenty of Room at the Bottom” considered the possibility of direct manipulation of individ-

ual atoms as a more powerful form of synthetic chemistry than used at the time. Feynman

suggested that it should be possible, in principle, to do chemical synthesis by mechanical

manipulation, and he presented the possibility of building a tiny, swallowable surgical robot

by developing a set of one-quarter-scale manipulator hands slaved to the operator’s hands

to build one-quarter scale machine tools analogous to those found in any machine shop.

This set of small tools would then be used by the small hands to build and operate ten
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sets of one-sixteenth-scale hands and tools, and so forth, culminating in perhaps a billion

tiny factories to achieve massively parallel operations. As the sizes got smaller, they would

have to redesign some tools because the relative strength of various forces would change.

Gravity would become less important, while Brownian motion, surface tension, Van der

Waals interactions, etc., would become more important. Feynman’s lecture at that moment

in history was partly responsible for the beginning of a collective dialogue that explored the

potential of manipulating the molecular world.

Since then, scientists and engineers have sought nanotechnology as an alternative medium

to solve many current problems in medicine (i.e., blood diseases, cancer, drug delivery), air

and water pollution, sensors to detect molecules or particles, and to make devices smaller to

conserve space, energy, materials, and money. But perhaps the most important challenge

that nanotechnology faces is the creation of useful work by an object in a world dominated

by randomness and uncertainty. Directed motion or propulsion is a difficult challenge that

must be overcome in order to make many of these devices “come to life”.

Nanoscale machines already exist in the form of functional molecular components in

living cells — such as molecules of protein or ribonucleic acid, aggregates of molecules, and

organelles — in enormous variety and sophistication. In fact, some cells include molecular

machines that seem similar to familiar human-scale machines; for example, a rotary motor

fixed in the membrane of a bacterium turns a shaft and superficially resembles an electric

motor. Enzymes such as myosin, kinesin, dynein, and their relatives are linear motors,

which convert the energy of adenosine triphosphate (ATP) hydrolysis into mechanical work

along polymer substrates. Motion derives from a mechano-chemical cycle during which the

motor protein binds to successive sites along the substrate in a manner used by the motor to

move. Some of these molecular motor proteins and their application in biological processes
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and nanotechnology have been studied by Vale and Milligan (2000) and Feringa (2007).

The remarkable solutions that nature has found to control molecular motion has served

as an inspiration for researchers to conceptualize, design, and build entirely molecular ma-

chines — an assembly of a distinct number of molecular components that are designed to

perform machinelike movements as a result of an appropriate external stimulation (Browne

and Feringa 2007). These molecular machines can be operated using photons or electrons

supplied by photochemically and electrochemically driven reactions that are commonly

found in biological cells and can be easily mimicked artificially. Recent efforts in both

molecular biology and nanofabrication technology established the potential for building

functional nanoelectromechanical systems that are powered by biological motors and chem-

ical energy sources (Montemagno and Bachand 1999). Li and Tan (2002) proposed a single

deoxyribonucleic acid (DNA) molecular nanomotor. Vicario et al. (2006) designed a syn-

thetic, light-driven molecular motor that is embedded in a liquid-crystal film that exceeds

the size of the motor molecule by a factor of 10,000. The changes in the shape of the mo-

tor during the rotary steps cause a rotational reorganization of the liquid-crystal film and

its surface relief, which ultimately causes the rotation of microscale particles on the film.

Morin et al. (2006) described the synthesis of a nanocar that bears a light-powered molec-

ular motor in its central portion for an eventual paddlewheel-like propulsion action along

a substrate surface for motion of the vehicles. Numerous other molecular machines have

been proposed, however, major challenges in their development remain, such as directional

movement along specified trajectories.

Microfabrication has developed as an extraordinarily successful technology for manufac-

turing small, electronically functional devices. The development of these so-called micro-

electromechanical systems (MEMS) is proceeding rapidly, but the functions of the machines
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are still elementary (Hassan 2006; Ko 2007). Many interesting problems and technical chal-

lenges are common in the fabrication of nanodevices with moving parts (Jeng et al. 2007).

A crucial one is friction and sticking. Small devices have large ratios of surface to volume

and surface effects, such as electrostatics and wetting, which become much more important

for them than for large devices. This critical fact could potentially hinder the fabrication

of MEMS to operate under realistic environments where surface interactions could damage

the structure and function of these devices.

Perhaps the greatest promise for nanotechnology lies in the potential of biotechnological

advances (Mulhall 2002). At present, biotechnology refers to the use of living organisms or

nature-inspired devices to modify human health and the human environment. However, its

definition has been stretched to address other fields such as agriculture and waste treatment.

Prospective nano-level manipulation of DNA offers the opportunity to radically expand the

horizons of genomic medicine and immunology. Tissue-based biosensors may unobtrusively

be able to monitor and regulate site-specific medicine delivery or regulate physiological

processes (Edelberg et al. 2002). Nanosystems might serve as highly sensitive detectors of

toxic substances or be used by inspectors to detect traces of biological or chemical weapons

(Sanders et al. 2001). In a similar way, many challenges in the implementation and operation

of biotechnological devices continue to be unanswered, specifically the inevitable question

of how to operate these devices without its dependence on external inputs.

Can autonomous, self-controlled, self-replicated, and multi-tasking nanomotors be cre-

ated? There are numerous limitations for small-scale objects to overcome. At this length

scale, Brownian forces usually dominate over other forces (e.g. gravity, interparticle forces)

and inertial terms are relatively unimportant (low Reynolds number). Thus, any effort

to steer a purposeful course would be hindered by the relentless collisions of surrounding
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molecules. Navigators at the nanoscale would have to self-regulate constantly to correct

a path deviated by erratic motions or circumstances. This is a fundamental problem that

makes sophisticated tasks that require the detection of specific targets complicated. An

interesting feature at low Reynolds number is that whatever these objects are doing at

the moment is entirely determined by the forces that are exerted on the object at that

moment, and not by any previous forces (time independent). Swimming for a device at

this scale could be achieved by deforming its body. For propulsion, the device must break

any symmetric motions in order to take advantage of its surrounding environment. If the

environment is constantly evolving, the device must be able to change its mechanism for

motion.

By today’s standards, expensive and large external equipment is required to operate

nanodevices. Imagine a nanomotor injected into your body fighting cancer cells, and its

operation depends on another machine that is of the size of a room! This illustration

is not far from reality, which makes it impossible, in some conditions, to achieve all-in-

one devices that could operate in multitasking environments autonomously and at high

efficiency. Another issue is the source of energy for these devices. How is the energy

to be supplied to nanomachines? And, by which method? One important advantage of

nanomachines is that the individual units require only a tiny amount of energy to operate.

In spite of all these limitations, some progress has been made in the last few years. New

and creative ideas from multiple research groups, some of which are addressed below, have

surfaced to overcome these issues in order to move towards the goal of creating autonomous

nanodevices.

Self-movement can be found in many systems and in different physical conditions. Stud-

ies of autonomous motors under isothermal conditions may help us to not only understand
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chemomechanical transduction in biological systems, but also to create novel artificial mo-

tors that mimic living organisms. Scientists and engineers have paid attention to the latest

advances in biology to understand, fundamentally, what drives microorganisms and other

biological machines. Genetic engineering is already processing down this path. All motor

organs or organelles in living systems work through the dissipation of chemical energy un-

der almost isothermal and nonequilibrium conditions. It is hard for nanoscience to compete

with the flagella biological motor in bacteria like Escherichia coli — an assembly of proteins

embedded in cell membranes that decompose ATP for energy, and, through whip-like rotary

motion, provide motility to bacteria in a liquid. A flagellum is a propulsive organelle that

includes a reversible rotary motor embedded in the cell wall and a filament that extends into

the external medium. These microorganisms could potentially be used to power microflu-

idic devices. A new type of propulsion inspired by the motility mechanism of bacteria with

peritrichous flagellation, such as Escherichia coli, Salmonella typhimurium, and Serratia

marcescens was constructed by Behkam and Sitti (2007). The flagella of these bacteria are

randomly distributed over the cell surface and each flagellar motor rotates independently of

the others. Hydrodynamic interactions among flagella cause them to coalesce and bundle

behind the cell during swimming. The work by Behkam and Sitti (2007) intends to exploit

the potential of flagellar motion for microrobot propulsion.

The design and construction of nanoengines that convert stored chemical energy into

motion has become an important discovery by nanotechnology, especially those that can op-

erate autonomously (Ozin et al. 2005). Although biomolecular motors (Soong et al. 2000)

and phoretic mechanisms (Anderson 1989) have been the focus of research as a means

for powering nanodevices, many of the proposed techniques and theoretical models rely

on external forcing or signaling, which adds complexity, not to mention the macro-scale
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size required for some driving mechanisms. In simple terms, phoretic transport describes

the motion of a particle when an external field (e.g., concentration, temperature, electro-

magnetic) is applied. The resultant particle velocity is proportional to the field gradient.

Consider a colloidal particle placed in a solution in which the concentration of some solute

is not uniform. The particle may spontaneously migrate towards regions of higher or lower

concentrations as a result of physical interactions between the solute molecules and the

surface of the particle (Anderson 1989). Derjaguin et al. (1993) and Dukhin and Derjaguin

(1974) first called this transport diffusiophoresis; a mechanism that has been applied for

the formation of surface coatings (Dukhin et al. 1982). The actual action that induces

motion occurs in an interfacial region separating the particle and the fluid. The dynamics

of interfacial layers are related to the length scale in consideration and the state of matter

in each of the phases. It can be shown that the velocity and stresses are continuous on the

length scale of the thickness of the interfacial region, but appear discontinuous on the scale

of the size of the particle. Similar phenomena occurs at fluid/fluid interfaces where now

a flow is induced by surface tension gradients — the so-called Marangoni effect (Velarde

et al. 2003). Evidently, a gradient such as concentration and surface tension is sufficient for

particle motion. While external fields have been used to sort and separate particles based

on their response, this type of transport does not afford the flexibility of moving objects

autonomously.

Autonomous motion not only occurs in nature, but also in man-made settings at dif-

ferent scales and by different mechanisms. Schmid et al. (2000) observed that shortly after

deposition of Sn in Cu (111), two-dimensional crystal islands proceed to move spontaneously

along the surface in a systematic fashion. Self-propulsion of camphor crystals placed on an

air/water interface occurs by the preferential dissolution of camphor from one side of the
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crystal; dissolution creates a surface tension gradient which induces crystal island motion

(Nakata et al. 2002). Ismagilov et al. (2002) described the behavior of small hemicylindrical

plates with a small area of platinum on one surface that floats at the interface of an aqueous

solution of hydrogen peroxide. These plates move under the impulse of bubbles generated

by the platinum-catalyzed decomposition of hydrogen peroxide. Liquid pumping by chem-

ically tunable nanoscopic propellers designed with molecular-scale blades was realized by

molecular dynamics simulations, demonstrating a novel method for the selective pumping

of hydrophobic and hydrophilic liquids, an important application for the potential design

and assembly of molecular pumps and motile devices (Wang and Kral 2007). Effective

designs of small scale swimming robots have come from a variety of sources. One of the

first swimming microrobots was introduced by Fukuda et al. (1994). This microrobot has

a pair of fins with undulatory motion. Another propulsion method, theorized by Sendoh

et al. (1999), uses an external magnetic field to rotate a small screw in liquid, attractive for

medical surgery and catheter purposes.

The idea that anisotropic forces can be created on a small object by an on-board chemical

motor that recognizes the use of thermal fluctuations and changes in chemical equilibrium

increases the possibility of discovering whole new classes of entirely synthetic nanomachines.

Recently, Paxton et al. (2004) and Howse et al. (2007) demonstrated that it is possible

to power the motion of nanoscale objects by using surface catalytic reactions — so-called

catalytic nanomotors. In the Paxton et al. (2004) experiments, a nanorod with one end made

of platinum and the other end of gold was immersed in a hydrogen peroxide solution and

autonomous motion was observed. In an independent work, Howse et al. (2007) constructed

a polystyrene microsphere with one side coated with platinum. Similarly, autonomous

motion was observed when the microsphere was placed into a hydrogen peroxide solution. A
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number of mechanisms have been suggested for nanomotor propulsion (Paxton et al. 2006;

Howse et al. 2007), including: bubble propulsion (as observed in Ismagilov et al. (2002)

experiments), diffusiophoresis, electrophoresis, surface-tension gradients, etc., all of which

rely on the establishment of a gradient to provide the driving force for motion. Although

both researchers (Paxton et al. 2004; Howse et al. 2007) have stated that their mechanisms

for propulsion, if compared, are different, this clearly shows that the potential and diversity

of reaction-driven motility remains unexplored.

Creation of such a gradient requires an on-board power source — chemical energy. But,

How exactly does a local chemical reaction generate motion? Or, what is the simplest motor

one can envision? What mechanism would it use for propulsion? How fast could it move?

How large of a force could it generate? Golestanian et al. (2005) proposed a simple model

for the reaction-driven propulsion of a small device based on an asymmetric distribution

of reaction products and motivated by the experiments of the catalytic nanorod. Their

propulsion mechanism is based on the thin-interfacial limit expressions for phoretic motion

(Anderson 1989). Another model for autonomous propulsion was proposed by Ruckner

and Kapral (2007) for the self-propelled motion of a chemically powered nanodimer com-

prised of two linked spheres, one of which has equal interactions with A and B solvent

species but catalyzes the reaction A → B. The other sphere is not chemically active but

interacts differently with the two species. The nonuniform solvent interactions with the

nanodimer causes an asymmetric distribution of solvent species that the nanodimer utilizes

for propulsion. Both the motor and the solvent were described at the particle level using

hybrid mesoscopic-molecular dynamics scheme. These two models do not cover some of the

questions raised above which are important issues for the motor’s behavior. However, this

suggests that a fundamental or unifying description to what is observed experimentally is
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needed.

In this thesis we propose a very simple mechanism: osmotic propulsion. It is well known

that when a semi-permeable membrane separates a fluid that contains colloidal particles, a

fluid flow is produced from the side of low particle concentration to the side of high particle

concentration. The flow may be stopped, or even reversed, by applying external pressure

on the side of higher concentration. The pressure that stops the flow is called the osmotic

pressure. Particle movement is determined by fluctuations of thermal collisions with nearby

fluid molecules. Whenever a wall blocks a particle’s motion, it will transfer momentum to

it and, therefore, generate a pressure on it. If we now stop holding the membrane, the

osmotic pressure difference between the two sides of the system will push the membrane

until thermodynamic equilibrium is reached. Therefore, the process of collisions with a

moving wall is a mechanism by which the microscopic kinetic energy of the (Brownian)

particles is transformed into macroscopic mechanical work. Experimentally, Nardi et al.

(1999) demonstrated that osmotic permeation of solvent across a spherical semipermeable

membrane in a concentration gradient can lead to a pumping action: solvent is pumped

from the low to the high concentration side of the sphere. Autonomous motion can be

achieved by a chemical reaction at a particle’s surface generating a local imbalance in the

osmotic pressure of the surrounding medium.

As shown in the experiments of Paxton et al. (2004) and Howse et al. (2007), the possi-

bility of extracting mechanical work from Brownian motion using surface chemical reactions

delivers a new propulsion mechanism for colloidal particles suspended in a continuous phase.

Colloidal particles tend to move freely and randomly, but if the structure in the vicinity

of the particle is disturbed, for example, as a result of a surface chemical reaction, some

average directional movement can be obtained, which is often needed for nanotechnological
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devices in operations that require net displacement. Similar osmotic motion occurs in the

problem of multicomponent diffusion (Batchelor 1983), where a gradient in concentration

of one species can drive the flux of another. Batchelor showed that in a multicomponent

suspension of colloidal particles accompanied by spatial gradients of concentration as a

consequence of Brownian motion (thermal fluctuations), the mean flux down a small con-

centration gradient due to diffusion is identical, as if each of the particles is acted on by a

steady applied force (thermodynamic force) that represents a departure from an isotropic

equilibrium state. Similarly, depletion flocculation occurs when small particles (e.g., poly-

mers, salts) are excluded from a zone separating two nearly touching colloidal particles and

the imbalanced osmotic pressure of the small particles causes an entropic attractive force

(Asakura and Oosawa 1954). But now consider a concentration distribution of colloidal

particles that is created locally by a surface chemical reaction on another particle. The

resulting imbalanced osmotic force will induce autonomous motion — an osmotic motor.

This is a simple means by which random entropic motion can be harnessed by a surface

chemical reaction to create directed motion.

The author’s work presented in this thesis has focused on developing theoretical models

for osmotic propulsion by studying possibly the simplest scenario: a suspension of hard-

spheres consisting of an osmotic motor particle of radius a creating local asymmetric concen-

tration disturbances to a surrounding dispersion of “bath” particles of radii b via a nonuni-

form surface chemical reaction. In this work we describe a simple model for self-propulsion

that takes into consideration the on-board properties of the motor and its ability to harness

the surrounding medium to create a net driving force. This device, or motor, illustrates

in simple terms the conversion of chemical/free energy into useful work. Our mechanism

shares the idea of concentration gradient driving the motion but appears to be different
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from, and it is not restricted to a thin-interfacial limit, as in the work by Golestanian et al.

(2005).

The rest of the thesis is organized as follows. In Chapter 2 (published previously,

Córdova-Figueroa and Brady 2008) we present a simple model for self-propulsion of a col-

loidal particle — the osmotic motor — immersed in a dispersion of “bath” particles. The

non-equilibrium concentration of bath particles induced by a surface chemical reaction cre-

ates an osmotic pressure imbalance on the motor causing it to move. We explicitly consider

the mass balance associated with the chemical reaction at the motor surface by having re-

actants, R, go to products, P , via R→ sP , where “s” is the stoichiometry of the reaction.

The ratio of the speed of reaction to that of diffusion governs the bath particle distribution,

which is employed to calculate the driving force on the motor, and from which the self-

induced osmotic velocity is determined. We show that what determines the magnitude and

sign of the osmotic force is the combination (1− sDR/DP ), where DR and DP are the dif-

fusivities of the reactants and products, respectively. For slow reactions, the self-propulsion

is proportional to the reaction velocity. When surface reaction dominates over diffusion

the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications

of these features for different bath particle volume fractions and motor sizes are discussed.

Theoretical predictions are compared with Brownian dynamics simulations based on the

algorithms presented by Foss and Brady (2000) for sheared colloidal dispersions and by

Carpen and Brady (2005) for active particle-tracking microrheology.

In Chapter 3 we give a formal statistical mechanical model for self-propulsion of the

osmotic motor. The pair-level Smoluchoswki equation for the distribution of bath particles

surrounding the osmotic motor subject to a nonuniform first-order surface chemical reaction

on half motor is derived in the absence of hydrodynamic interactions and rotary Brownian
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motion. From this, we solve for the pair-distribution function g(r) — the probability of

finding a bath particle relative to the osmotic motor. The departure of the bath particle

concentration distribution from equilibrium is governed by the Damköhler number Da:

the ratio of the speed of reaction to that of diffusion. We describe two possible scenarios

for the osmotic motor: One, in which the motor is held fixed by an external force (e.g.,

optical tweezers) and a second case where the motor is free to translate. The computed

microstructure about the motor is employed to calculate the net driving force on the motor,

from which the self-induced “osmotic” velocity is determined via application of Stokes drag

law. The motor velocity has to be found self-consistenly as it influences the concentration

distribution and thus the driving force. No mention of such a self-regulation has appeared

in prior work. The ratio of the motor velocity U to that of diffusion, D/(a + b), is known

as the Péclet number Pe, which is a function of the Damköhler number, the product β =

φb(1+a/b)2 (φb is the bath particle volume fraction and a/b is the size ratio of motor to bath

particle), and the bath particle concentration gradient generated at contact. The product

β corresponds to the number of bath particles within a bath particle radius of the motor

surface. Increasing Da drives the suspension away from equilibrium, and thus generates a

gradient in bath particle concentration, which is utilized by the motor. For small Da, when

Brownian motion dominates over reaction, the motor velocity is proportional to the speed

of reaction and becomes independent of the bath particle concentration and the particle’s

size in the limit of high β. For finite Da but high β, the motor velocity saturates, resulting

in U ∼ D/(a + b) — the relative diffusive speed. In the limit of high Da and β, when

reaction and advection dominate over diffusion, it is observed that the gradient in bath

particle concentration driving propulsion decays to zero as the motor velocity increases.

As a consequence, the motor velocity diverges and becomes dependent of bath particle
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concentration and size ratio in this limit. The behavior of the motor for arbitrary bath

particle volume fractions and motor sizes are discussed.

In addition to the theory, we performed a Brownian dynamics simulation (Foss and

Brady 2000; Carpen and Brady 2005), which allows us to test the theoretical framework

and understand at a particle-level description the mechanism of osmotic propulsion. The

surface reaction is emulated by using a reaction probability Ps defined as the probability in

which a bath particle that collides with the reactive surface has reacted. By analogy with

previous work on microrheology, we propose methods to scale up the theory to account

for more concentrated suspensions. Finally, a simple formula for the energy conversion

efficiency from free chemical energy to mechanical work is derived.

In Chapter 4 we extend and examine our theoretical framework for propulsion of the

osmotic motor immersed in a dispersion of bath particles to other distributions of reactive

sites (in Chapter 3 all calculations were performed solely to half-reactive motors). In this

work, hydrodynamic interactions between particles and rotary Brownian diffusion are also

neglected. Also, we assume that bath particles only interact with the motor thus behaving

as an ideal gas. These assumptions enable us to have a simple model system to allow a clear

analysis towards the understanding of many features unique to osmotic motors with different

distributions of reactive sites. This also permits an easy introduction to optimizing self-

propulsion. Our main goals are to understand the behavior of the motor for other reaction

distributions and to provide a guide for optimizing the design of osmotic motors, which

could be broadened to other types of transport mechanisms. We consider the size of the

reactive site at the motor’s surface to be determined by the polar angle θs — the angle that

locates the transition from reactive to passive surface and is measured from the front of

the motor. The distribution of bath particles relative to the osmotic motor is employed to
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calculate the osmotic force on the motor, from which the motor velocity is determined via

application of Stokes drag law. The motor behavior is controlled by the Damköhler number

Da, the product β, and the angle θs. Once again we consider two possible scenarios for

the motor: one consisting of a motor held fixed and another one where the motor is free to

diffuse. We investigate the net osmotic force created by the fixed motor and its dependence

on the angle θs. We compute the optimal angle θs necessary to obtain maximum osmotic

force as a function of the Damköhler number. For the free motor scenario, the velocity

of the motor for various θs and its implications for different bath particle concentrations

and motor sizes are discussed. The behavior of the free motor is maximized by finding the

optimal angle θs needed to create maximum velocity according to the Damköhler number

and the properties of the suspension. Our theoretical results are compared to Brownian

dynamics simulations based on the method described in Chapter 3 and modified to consider

other distributions of reaction.

In Chapter 5 we propose a model for self-propulsion of an osmotic motor creating a

constant flux of product particles j0 on a hemisphere. The net driving force is investigated

in the limits of slow and fast product particle flux (relative to the diffusive flux of bath

particles) for different bath particle concentrations and motor to bath particle size ratios.

In addition, we develop a Brownian dynamics simulation (Foss and Brady 2000; Carpen

and Brady 2005) that emulates the creation of particles at the motor’s surface applying

a simple algorithm that considers stochastic variations to the constant flux via a Poisson

distribution as the simulation time progresses. A relationship between the particle level

interpretation of the flux and the macroscopic quantity that is the Damköhler number was

derived enabling us to compare the simulation results with the theory. We also propose

ideas for a problem that consists of a reversible reaction on a portion of the motor. This
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type of reaction unifies the recent work done considering a first-order surface reaction and

the constant flux proposed in Chapter 5.

Finally, Chapter 6 offers some general conclusions and directions for future research.

Before continuing, the author wishes to make one point. The chapters that follow were

written as individual papers and are thus entirely self-contained. The reader may, therefore,

read them in whichever order desired. Neverthless, note that there is a certain amount of

repetition in the introductory sections and in the theoretical framework of each chapter.
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Chapter 2

Simple model of osmotic
propulsion
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2.1 Abstract

A model for self-propulsion of a colloidal particle — the osmotic motor — immersed in

a dispersion of “bath” particles is presented. The non-equilibrium concentration of bath

particles induced by a surface chemical reaction creates an osmotic pressure imbalance on

the motor causing it to move to regions of lower concentration. The ratio of the speed

of reaction to that of diffusion governs the bath particle distribution which is employed to

calculate the driving force on the motor, and from which the self-induced osmotic velocity is

determined. For slow reactions, the self-propulsion is proportional to the reaction velocity.

When surface reaction dominates over diffusion the osmotic velocity cannot exceed the

diffusive speed of the bath particles. Implications of these features for different bath particle

volume fractions and motor sizes are discussed. Theoretical predictions are compared with

Brownian dynamics simulations.

2.2 Osmotic propulsion: the osmotic motor

The design of nanoengines that convert stored chemical energy into motion is a key challenge

of nanotechnology, especially for engines that can operate autonomously (Ozin et al. 2005).

Although biomolecular motors (Soong et al. 2000) and phoretic mechanisms (Anderson

1989) have been the focus of intense research as a means for powering nanodevices, many

of the proposed techniques rely on external forcing or signaling, which adds complexity, not

to mention the macro-scale size required for some driving mechanisms. Recently, Paxton

et al. (2004) demonstrated that it is possible to power the motion of nanoscale objects by

using surface catalytic reactions — so-called catalytic nanomotors.

A number of mechanisms have been suggested for nanomotor propulsion (Paxton et al.
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2006; Howse et al. 2007), including: bubble propulsion, diffusiophoresis, electrophoresis,

surface-tension gradients, etc., all of which rely on the establishment of a gradient to provide

the driving force for motion. Creation of such a gradient requires an on-board power source

— chemical energy. But exactly how does a local chemical reaction generate motion? Or

asked differently, what is the simplest motor one can envision? What mechanism would it

use for propulsion? How fast can it move? How large of a force can it generate?

Here we propose a very simple mechanism: osmotic propulsion. When a semipermeable

membrane separates a fluid containing colloidal particles, a flow is induced from the low

to the high particle concentration side. The pressure that stops the flow is the osmotic

pressure. If the membrane is released, the osmotic pressure difference between the two sides

will cause it to move until equilibrium is established. In this way the microscopic kinetic

energy of the (Brownian) particles is transformed into macroscopic mechanical motion and

work.

But one does not need a membrane. A colloidal particle in solution moves randomly,

but if the distribution of other colloidal particles in its vicinity is perturbed, some average

directional movement can be obtained. Such is the case in multicomponent diffusion where a

gradient in concentration of one species drives the flux of another (Bird et al. 1960; Batchelor

1983). Similarly, depletion flocculation occurs when small particles (e.g., polymers) are

excluded from a zone separating two nearly touching colloidal particles and the imbalanced

osmotic pressure of the small particles causes an entropic attractive force (Asakura and

Oosawa 1954). Consider now a nonuniform concentration distribution of colloidal particles

created locally by a surface chemical reaction on another (larger) particle. The resulting

imbalanced osmotic force will induce autonomous motion — an osmotic motor. This is a

simple means by which random entropic motion can be harnessed by a chemical reaction
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to create directed motion. Just how large a force can be generated and how fast an object

can move is the subject of this chapter.

Consider a single spherical motor particle of size a immersed in a fluid and surrounded

by a sea of spherical “bath” particles of size b. Both the motor and bath particles are large

compared to the solvent molecules so that their behavior can be described by the equations

of colloidal dynamics (Russel et al. 1989). The suspension of bath particles generates an

osmotic pressure Π = nbkT , where kT is the thermal energy and nb is the number density

of bath particles. (For simplicity, the bath particles are modeled as an ideal gas.) The

bath particles exert an entropic or osmotic force on the motor, which is the integral of

the osmotic pressure over the surface of the motor: F osm = −kT
∫

nnb(x)dS, where n is

the outer normal to the surface located at the sum of the radii of the motor and the bath

particles.

At equilibrium the bath particle concentration is uniform and the net osmotic force

is zero. However, if there is a nonuniform concentration of bath particles, either caused

by an externally imposed concentration gradient or by the motor itself via a chemical

reaction on its surface, there will be a net osmotic force on the motor. This force must be

balanced by an externally imposed force (via, eg., optical tweezers) to hold the motor fixed,

or by the hydrodynamic Stokes drag force from the solvent F hyd = −6πηaU , where η is

the viscosity of the solvent and U is the motor velocity. (A formal statistical mechanical

derivation is discussed in Chapter 3 which follows the work on single particle motion in

colloidal dispersions and microrheology (Squires and Brady 2005; Khair and Brady 2006))

An externally imposed concentration gradient gives rise to diffusiophoresis (Anderson 1989),

whereas a surface chemical reaction alters the local concentration of bath particles and

results in autonomous motion — namely, the osmotic motor.
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Reaction-driven propulsion was discussed recently by Golestanian et al. (2005) and

Howse et al. (2007). Their propulsive mechanism is based on the thin-interfacial-limit

expressions for phoretic motion (Anderson 1989). Our mechanism shares the idea of a con-

centration gradient driving the motion but appears to be different, and is not restricted to a

thin-interfacial limit, e.g., not limited to large motors. Furthermore, these authors did not

discuss the conservation of mass (or volume) associated with the chemical reaction, nor did

they identify the maximum velocity obtainable by a motor, two issues that are important

for the motor’s behavior.

To compute the osmotic force, the concentration distribution of bath particles about the

motor is needed. The bath particles are divided into reactants, labeled R, and products P .

On the reactive portion of the motor surface: R→ sP , where for each reactant particle “s”

product particles are produced; s can take any value greater than or equal to zero. Con-

servation of mass requires that mR = smP , where mR is the mass of the reactant particle

and mP that of the products. For spherical particles of the same density conservation of

mass is equivalent to conservation of volume and therefore bR = s1/3bP , where bR and bP

are the radii of the reactants and products, respectively. The rate of consumption of R on

the reactive surface is rR, and the production of P is rP = −srR.

We first consider a fixed motor. Since the reaction only takes place at the motor surface,

the reactants and products diffuse in the surrounding fluid with translational diffusivities

DR and DP , respectively, and their concentrations satisfy Laplace’s equation. For the

reactant: ∇2nR = 0, subject to the imposed concentration far from the motor, n∞R , and

the flux to the motor is balanced by the reaction on the motor surface: n · ∇nR = rR(a+

bR)/DR. All lengths have been nondimensionalized by the sum of the motor and reactant

radii: a + bR. The products satisfy a similar equation with the subscript R replaced by
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P . However, the osmotic force is proportional to the total concentration of bath particles

nb = nR+nP , which satisfies ∇2nb = 0, subject to n∞b = n∞R +n∞P , and at the motor surface

n · ∇nb = rR(a + bR)/DR × (1 − sDR/DP ). Defining the scaled concentration differences:

n̄′R = (nR − n∞R )/n∞R and n̄′b = (nb − n∞b )/n∞R (1 − sDR/DP ) it is easy to see that n̄′R and

n̄′b satisfy the same Laplace equation and boundary conditions. Thus, only the reactant

concentration profile is needed to completely solve the problem for all stoichiometries and

diffusivity ratios. The osmotic force is

F osm = −n∞R kT (a+ bR)2
(

1− sDR

DP

)∫
r=1

n n̄′b(x)dΩ, (2.1)

where dΩ = dS/(a+ bR)2 is the solid angle1.

The stoichiometry/diffusivity factor, (1 − sDR/DP ), tells how many products are pro-

duced per reactant, s, and how fast the products diffusive relative to the reactants, DR/DP .

And it is this combination that governs the behavior. If we had simply R → P (or s = 1)

and the product had the same diffusivity as the reactant, the net osmotic force would

be identically zero, as it must be. However, if the reactants and products have different

diffusivities, say because the reaction changes the “shape” of the particle, or perhaps its

interactions with the solvent (hydrophilic/hydrophobic), then even if only one product is

produced for each reactant there will still be a net osmotic force on the motor. The sign of

the force will depend on which diffuses faster. And similar arguments apply for s 6= 1.

As a first analysis consider a first-order reaction with rate constant κ (units of velocity),

i.e., rR = κnR. The reactant concentration profile is governed by the ratio of the speed of

reaction to that of diffusion — the Damköhler number Da = κ(a+ b)/D. We have dropped
1Technically, for spherical reactants and products of different radii, the integral should be over the

“contact” surfaces at a + bR and at a + bP . However, this introduces a negligible error, especially in the
large motor limit a� bR,P .
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the subscript R for the reactant and will simply refer to the reactant as a bath particle.

The boundary condition at the motor surface now becomes: n ·∇n̄′ = Da(n̄′+1)h(n). The

distribution of reaction on the surface is determined by the dimensionless function h(n),

which we take to be 1 on the reactive half and 0 on the passive half. Since the detailed

stoichiometry/diffusivity appears as a scale factor in the net osmotic force (2.1), we discuss

below the case when sDR/DP → 0, which would occur if the products are much more

diffusive than the reactants or when the reactant is consumed (s = 0) by the motor2.

The concentration distribution of bath particles can be found analytically by separation

of variables, and Figure 2.1 shows the nondimensional osmotic force (expressed as a Stokes

velocity) as a function of Da. The open symbols in the figure are the results of conventional

hard-sphere Brownian dynamics (BD) simulations (Foss and Brady 2000; Carpen and Brady

2005), modified to allow for surface reaction. As the theory predicts, the scaled osmotic

force is independent of the size ratio of motor to bath particles, a/b, the bulk concentration

of the bath particles expressed as their volume fraction, φb = n∞b b
3 4π/3, and from the

time step ∆t used in the simulations. Bath particles are consumed on the reactive side

decreasing their local concentration near the motor. Thus, there are more collisions with

bath particles on the passive side, resulting in an imbalanced osmotic pressure and a force on

the motor in the direction of the decreasing bath particle concentration. For slow reactions,

the osmotic force is linear in Da: F osm ∼ n∞R kT (a + b)2(1 − sDR/DP )Da = n∞R (a +

b)3(1− sDR/DP )6πηbκ, where we have used the Stokes-Einstein-Sutherland expression for

the bath particle diffusivity D = kT/6πηb. This has a simple physical interpretation: each

bath particle reacting with the motor strikes the motor with speed κ and thus hydrodynamic
2Actual consumption of reactants may indeed occur if the reactant particles irreversible adsorb on the

motor’s surface or are absorbed in the interior of the motor. In either case, the motor’s size would change
over time and this effect would need to be included in the analysis.
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force 6πηbκ and there are n∞R (a+b)3 colliding bath particles. The stoichiometry/diffusivity

factor, (1−sDR/DP ), then gives the net osmotic force. At the other extreme of high Da, or

fast reaction, the concentration on the reactive half is zero as the reaction is now diffusion

limited. The osmotic force saturates and simply scales as the jump in concentration from

the passive (nR ≈ n∞R ) to reactive (nR = 0) side times the area: F osm ∼ n∞R kT (a+ b)2(1−

sDR/DP ). The transition from reaction to diffusion controlled occurs, appropriately, at a

Damköhler number of unity.

It is instructive to ask what is the magnitude of the force that must be exerted on

the motor to keep it fixed? The maximum force occurs in the large Damköhler number

limit for large motors (a � b). For a motor of a = 1µm with a 0.1 molar bath particle

concentration, the osmotic force is of order 0.2µN, an easily measurable force. In fact, it is

rather large, as optical tweezers typically exert nano-Newton forces and biological motors

exert pico-Newton forces. Indeed, if the motor were released it would travel with a speed

of order 10 m/s! This surprising and aphysical result is resolved by noting that the motor

cannot travel any faster than the bath particles can diffuse — that is, no faster than their

diffusive velocity vbath ∼ D/(a + b). If the motor were to move faster than this velocity,

the bath particles could not keep up, and the motor would loose the propulsive force that

caused it to move in the first place.

The resolution of this paradox is to recognize that, in a frame of reference traveling with

the free motor, there will be an advective flux of bath particles towards the motor that

will alter the concentration distribution about the motor and consequently, the propulsive

osmotic force. The strength of the advective flux compared to the diffusive motion is given

by a Péclet number Pe = U(a+ b)/D, where U is the as yet unknown free motor velocity.

And now there will be Péclet numbers for both the reactants, PeR = U(a + bR)/DR,
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Figure 2.1: The scaled osmotic velocity for a motor with a first-order reaction on half of its
surface plotted against Da for various values of φb(1 + a/b)2. Here, Da = kT/6πηa is the
Stokes-Einstein-Sutherland “diffusivity” of the motor (see Eq. (2.2)). The theoretical pre-
dictions (curves) are compared with BD simulations (symbols). The solid curve corresponds
to the fixed motor shown for comparison.

and products, PeP = U(a + bP )/DP , and they differ by the diffusivity ratio. The scaled

reactant concentration distribution now satisfies the advection-diffusion equation: ∇2n̄′R =

−PeR∂n̄′R/∂z, where the direction of motion is taken to be the z-direction. The products

also satisfy the same equation with R replaced by P . The total concentration n̄′b does not

satisfy the same equation as the reactants, unless PeR = PeP , which will be true in the

small and large Péclet number limits. The osmotic force is still scaled as before, however,

and the unknown velocity is found from balancing the Stokes drag on the motor with the

osmotic force:

U = − kT

6πηa
n∞R (a+ b)2

(
1− sDR

DP

)∫
n n̄′b(x)dΩ, (2.2)

where the total concentration n̄′b(x) now depends on the Damköhler and Péclet numbers.

Note that the motor velocity, and thus the Péclet numbers, are unknown and must be
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Figure 2.2: Density profiles in the symmetry plane of the osmotic motor at Da = 100. The
four panels correspond to the four curves (from top to bottom) in Figure 2.1. Red is low
bath particle concentration and blue the uniform level far from the motor. The right half
of the motor is reactive and its motion is from left to right.

determined self-consistently along with the coupled concentration distributions n̄′b and n̄′R

from the advection-diffusion equations. This is somewhat involved, and here we discuss the

limiting case of sDR/DP → 0 for which the product distribution drops out and the bath

particle concentration is the same as that of the reactants.

Figure 2.1 shows the predictions for the free motor velocity as a function of Da from

the analytical solution. In contrast to the fixed motor case (the solid line), the speed of the

motor now does depend on a/b and on φb (even though the bath particles form an ideal

gas). As before, the open symbols correspond to BD simulations for the same conditions of

volume fraction and size ratio as in the theory and show excellent agreement. The curves

correspond to increasing the product φb(1 + a/b)2, which follows directly from (2.2) and

corresponds to the number of bath particles within a bath particle radius of the motor

surface.
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Figure 2.2 shows density plots of the bath particle concentration near the motor at

Da = 100, but for different values of φb(1 + a/b)2, corresponding to each of the four curves

in figure 2.1. Also shown on the plots are the resulting Péclet numbers corresponding to the

motor velocities. As the Péclet number increases the advection of the bath particles past the

motor distorts the bath particle concentration, shrinking the bath-particle-depleted region

in front of the motor and leaving a trailing “wake” of reduced bath particle concentration.

At even modest motor velocities (modest Pe) most of the rear of the motor has a very low

bath particle concentration, which reduces the osmotic force and thus limits the speed of

the motor. This self-regulation results in a maximum motor velocity of order the diffusion

velocity of the bath particles Umax ∼ vbath ∼ D/(a + b). For a 1-µm-sized motor and

nanometer-sized bath particles the maximum motor velocity is now of order 10 µm/s, a much

more reasonable velocity, and one that is in fair agreement with the motivating experiments

of Paxton et al. (2004).

The results in Figure 2.1 show that the fixed motor is the limit as φb(1 + a/b)2 → 0

(Pe = 0) of the free motor, corresponding to an infinitely dilute suspension of bath particles.

This is as it should be, because whether the motor is fixed or free is just a change of reference

frame. For a fixed motor there will be an advective flux at infinity to supply reactive bath

particles to the motor. This also implies that the motor will induce a fluid flow to supply

the bath particles and can be used as a pump — a novel microfluidic pump (and mixer).

In this analysis we neglected rotary Brownian motion3 and hydrodynamic interactions

between particles. Hydrodynamics would quantitatively (not qualitatively) affect the motor

speed and can be included via the well-known low-Reynolds number hydrodynamic mobility

expressions (Russel et al. 1989) for the bath particle diffusivity and the advective velocity.
3For our analysis to hold, the time scale for rotary Brownian motion of the motor, 1/DR = 8πηa3/kT ,

must be long compared to that for the establishment of the bath particle concentration, a2/D, i.e., b/a� 1.
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Also, the entropic Brownian force on the motor contains an additional term that is the

integral of the spatial variation of the relative hydrodynamic mobility (see Khair and Brady

(2006) for the analogous microrheology problem).

Clearly, neither the motor nor the bath particles need be spherical, nor must the bath

particles form an ideal gas. And a variety of behaviors is possible depending on the nature

of the chemical reaction at the motor surface, the number of motors present, etc. Rotary

motion is also possible by having reactive patches strategically located about the motor

surface (Paxton et al. 2005).

Osmotic propulsion provides a simple means to convert chemical energy into mechanical

motion and work, and can impact the design and operation of nanodevices, with applications

in directed self-assembly of materials, thermal management of micro- and nanoprocessors,

and the operation of chemical and biological sensors. Studies of autonomous motors may

also help to understand chemomechanical transduction observed in biological systems (The-

riot 2000) and to create novel artificial motors that mimic living organisms and which can

be harnessed to perform desired tasks.
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Chapter 3

Directed motion of colloidal
particles by chemical reaction:
derivation, maximum force/speed,
fluctuations, efficiency



38

3.1 Introduction

The emerging era of molecular engineering has had a great impact for the design and

development of nanotechnology. Nanomachines, individually or assembled into complex

architectures, may be useful for monitoring and interacting with harmful microorganisms

in fluids, transporting medicine in the human body, conducting operations in cells, moving

cargo around microfluidic chips, managing light beams, agitating liquids close to electrode

surfaces, and searching for and destroying toxic organic molecules in polluted water streams

(Ozin et al. 2005). Overall, a nanorobot’s dimensions are comparable to those of biological

cells and organelles. In this regime, also known as the Stokes regime, inertia of the system is

negligible and motion is mainly dominated by diffusion. A consequence of the lack of inertia

is that symmetric motions cannot achieve propulsion and therefore a fundamental problem

arises as to how to move nanomachines in order to perform useful tasks. Recently, the

research community has paid considerable attention to biomolecular motors as a possible

option to power nanodevices (Soong et al. 2000; Montemagno and Bachand 1999). As an

example, Morin et al. (2006) described the synthesis of a nanocar that bears a light-powered

molecular motor in its central portion for an eventual paddlewheel-like propulsion action

along a substrate surface for motion of the vehicles. But still, many of these techniques are

subject to external forcing or signaling, which adds complexity to the problem. The design

of nanoengines that can convert stored chemical energy into motion has become one of the

challenges of nanotechnology, especially for motors that can act autonomously.

Studies of autonomous motors under isothermal conditions may help us to not only

understand chemo-mechanical transduction in biological systems, but also to create novel

artificial motors that mimic living organisms. Motor organs or organelles in living sys-
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tems work through the dissipation of chemical energy under almost isothermal conditions

(Yoshikawa and Noguchi 1999). Although scientists have recognized that it is hard to design

better motors than those found in nature, ideas have been taken from biological systems,

such as flagellated microorganisms that could be used to power microfluidic devices.

Autonomous motion not only occurs in nature, but also in man-made settings at differ-

ent scales. A variety of recent experiments have shown surprising autonomous and directed

behaviors that come into play without external inputs (e.g., forces). All of which have in

common the self-creation of a gradient. Schmid et al. (2000) observed that shortly after de-

position of Sn in Cu (111), two-dimensional crystal islands proceed to move spontaneously

by free energy gradients along the surface in a systematic fashion. Self-propulsion of cam-

phor crystals placed on an air/water interface occurs by preferential dissolution of camphor

from one side of the crystals; dissolution creates a surface tension gradient which induces

motion (Nakata et al. 2002). Ismagilov et al. (2002) described the behavior of small hemi-

cylindrical plates with a small area of platinum on one surface that float at the interface of

an aqueous solution of hydrogen peroxide. These plates move under the impulse of bubbles

generated by the platinum-catalyzed decomposition of hydrogen peroxide. Mano and Heller

(2005) showed that a carbon fiber is propelled rapidly at the water–O2 interface when built

with a terminal glucose oxidizing microanode and an O2 reducing microanode. The flow of

current through the fiber is accompanied by the transport of ions, which due to their speed

at the interface, where the viscous drag is small, carries the fiber at ∼ 1 cm/s. In order to

move nanorods in the Stokes regime using on-board or off-board energy-rich chemical fuels,

large forces will have to be applied to the nanorods because of the opposing large viscous

drag.

An important breakthrough in reaction-driven motility of artificial systems was achieved
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by Paxton et al. (2004). They showed that it is possible to power the motion of nanoscale

and microscale objects by using catalytic reactions — so-called catalytic nanomotors. It

was observed that rod-shaped nanoparticles prepared with Au and Pt segments move au-

tonomously in aqueous hydrogen peroxide solutions by catalyzing the formation of oxygen

at the Pt surface. The motion of the nanoparticles occurred in the direction opposite

to those in Ismagilov et al. (2002), towards the Pt end of the rod. A number of mecha-

nisms have been suggested for nanomotor propulsion (Paxton et al. 2006), including: bubble

propulsion, diffusiophoresis, electrophoresis, surface-tension gradients, etc., all of which rely

on the establishment of a gradient to provide the driving force for motion. The catalytic

nanomotor experiments were expanded by showing that an external magnetic field could

enable guided motion of gold/nickel/platinum nanorods in an aqueous solution of hydrogen

peroxide, whereby, mobility of the nanorod is directed by the magnetic lines of force acting

on the ferromagnetic nickel segment of the nanorod (Kline et al. 2005). These experiments

provide an important insight of how chemical reactions could be used to operate devices

and to pump fluids at nanoscales.

Following the above motivating experiments on autonomous motion, we propose a very

simple mechanism for directed motion of colloidal particles: osmotic propulsion. It is well

known that when a semi-permeable membrane separates a fluid that contains colloidal

particles, a fluid flow is produced from the side of low particle concentration to the side of

high particle concentration. The colloidal particle’s movement is determined by fluctuations

of thermal collisions with nearby fluid molecules. The generated fluid flow may be stopped,

or even reversed, by applying external pressure on the side of higher concentration. The

pressure that stops the flow is called the osmotic pressure. Whenever a wall blocks a

particle’s motion, it will transfer momentum to it and, therefore, generate a pressure on
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it. If we now stop holding the membrane, the osmotic pressure difference between the

two sides of the system will push the membrane until thermodynamic equilibrium is re-

established. Therefore, the process of collisions with a moving wall is a mechanism by which

the microscopic kinetic energy of the (Brownian) particles is transformed into macroscopic

mechanical work. This simple principle was demonstrated experimentally by Nardi et al.

(1999) in their work on osmotic permeation of solvent across a spherical semipermeable

membrane in a concentration gradient leading to a pumping action: solvent is pumped from

the low to the high concentration side of the sphere. Osmotic action is the basis of survival

and reproduction of biological cells and a mechanism which could be used for propulsion.

However, one does not need a membrane. Autonomous motion can be achieved, instead,

by a reaction at a particle surface generating a local imbalance in the osmotic pressure of

the surrounding medium.

The possibility of extracting mechanical work from Brownian motion using surface reac-

tions delivers a new propulsion mechanism for colloidal particles suspended in a continuum

phase. Colloidal particles tend to move freely and randomly, but if the concentration of

surrounding species in the vicinity of the particle is disturbed, for example, as a result of

a surface chemical reaction, some average directional movement can be obtained, which

is often needed for nanotechnological devices in operations that require net displacement.

Similar osmotic motion occurs in the problem of multicomponent diffusion (Batchelor 1983),

where a gradient in concentration of one species can drive the flux of another. Batchelor

showed that in multicomponent suspensions of colloidal particles accompanied by spatial

gradients in particle concentration, as a consequence of Brownian motion (thermal fluctu-

ations), the mean flux down a small concentration gradient due to diffusion is identical as

if each of the particles is acted on by a steady applied force (thermodynamic force) that
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represents a departure from an equilibrium state with an isotropic environment. Similarly,

depletion flocculation occurs when small particles (e.g., polymers, salts) are excluded from a

zone separating two nearly touching colloidal particles and the imbalanced osmotic pressure

of the small particles causes an entropic attractive force (Asakura and Oosawa 1954).

But now consider a concentration distribution of colloidal particles that is created locally

by a surface chemical reaction on another particle. The resulting imbalanced osmotic force

will induce autonomous motion — an osmotic motor. This is a simple means by which

random entropic motion can be harnessed by a chemical reaction to create directed motion.

In this work, a simple theoretical model for osmotic propulsion of a colloidal particle —

the osmotic motor — immersed in a dispersion of “bath” particles is presented. We specify

half the motor surface to be reactive in which reactants in the suspension are transformed

into products by an irreversible first-order reaction. The non-equilibrium concentration of

bath particles induced by the surface chemical reaction creates an “osmotic pressure” im-

balance on the motor causing it to move to regions of lower bath particle concentration.

This model is simple enough to permit a clear study and to admit analytical and numerical

analysis that may provide a general picture of how particles could obtain directionality in

stochastic environments commonly found in bio- and technological arrangements. This will

be done for hard-spheres, where the particle evolution equation is derived from statistical

mechanical principles in the absence of hydrodynamic interactions and rotational diffusive

motion following the work on single particle motion in colloidal dispersions and microrheol-

ogy (Squires and Brady 2005; Khair and Brady 2006). A physical statement of the driving

force of the motor is presented in Section 3.2. The considered non-uniform surface reaction

balances the particle flux to the pair-level Smoluchowski equation in order to characterize

the particle interactions. Theoretically, the problem is simplified in order to determine the
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pair-distribution function g(r), which relates to the probability of finding bath particles

as a function of the position of the motor experiencing net osmotic force. The departure

of the bath particle concentration from equilibrium is governed by the Damköhler number

Da: the ratio of the speed of reaction to that of diffusion. The density distribution of bath

particles about the motor is employed to calculate the driving force on the motor, from

which the self-induced osmotic velocity is determined via application of Stokes drag law.

We shall describe two possible scenarios for the osmotic motor: one, in which the motor

is held fixed by an external force (no motion) and a second case, where the motor is free

to translate. The theoretical framework will be described in detail in Section 3.3. The

steady-state pair-distribution function g(r) for slow and fast reactions as well for arbitrary

Damköhler numbers is solved. The implications of these features for different bath par-

ticle concentrations and motor sizes are discussed. We compare the fixed and free motor

scenarios and show their implications on the local microstructure.

In addition to the theory, we propose in Section 3.4 the study of the osmotic motor

behavior using Brownian dynamics (BD) simulations, which are particle-level simulations,

where the dispersion is treated as a collection of spheres in a Newtonian fluid. The algo-

rithm for simulating Brownian particles is well established and has been investigated and

expanded by various researchers. Recently, Carpen and Brady (2005) investigated the forced

motion of a particle through a colloidal suspension, which is affected by both the viscous

drag and the force resulting from the microstructure deformation. Magan et al. (2003) used

BD simulations to investigate the influence of the surface reaction rate on the development

of size dispersion of interfacial nanostructures that form by irreversible deposition of non-

interacting particles onto surfaces with randomly distributed nucleation sites. It has also

been used for calculating the steady-state bimolecular rate constants of diffusion-influenced
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reactions (Northrup et al. 1984; Allison et al. 1990). These studies were relevant in order to

suggest a simple algorithm that emulates the irreversible first-order reaction on the motor’s

surface. We describe the two possible scenarios for the motor as well. We calculate the

driving force on the motor, and, in the case of the free motor, the osmotic velocity. BD

simulations provide a means of checking and extending our theoretical analyses and allow

us to design and analyze experimental systems in which different effects can be cleanly sep-

arated. Theoretical predictions are compared with BD simulation and reported in Section

3.5.

In Section 3.6 we suggest how the dilute results can be scaled up to higher concentra-

tions. We examine in Section 3.7 the force fluctuations resulting from random collisions

between the motor and bath particles and its behavior as the speed of reaction, the bath

particle concentration, and particle size are changed. In Section 3.8 we propose a formula

to determine the energy conversion efficiency of chemical energy (supplied by the reactants)

into motion via the dissipation of mechanical energy. Lastly, some concluding remarks are

presented in Section 3.9.

3.2 Derivation of the osmotic force

Consider a suspension of N spherical Brownian particles: one particle is the osmotic motor

of radius a, and the other N − 1 “bath” particles of radii b surround the motor in an

incompressible Newtonian fluid of density ρ and viscosity η (see Figure 3.1). Both the

motor and bath particles are taken to be large compared to the solvent molecules so that

their behavior can be described by the familiar equations of colloidal dynamics (Russel

et al. 1989), but small enough to be affected by the thermal fluctuations of the solvent and

are thus Brownian. The Reynolds number Re = ρUa/η (with U a typical velocity scale),
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Figure 3.1: Model system for osmotic propulsion. A motor particle of radius a with a first-
order reaction on half its surface (located in the z-axis) surrounded by bath particles of
radii b induces an osmotic force F osm that points towards low bath particle concentration
regions. Particle interactions are modeled with a hard-sphere potential.

that describes the fluid inertia is small, thus enabling the use of the Stokes equations. The

suspension of bath particles generates an osmotic pressure in the system Π = nbkT , where

kT is the thermal energy and nb is the number density of bath particles. Our goal is to

develop a theory that models the microstructural evolution of the suspension that is driven

out of equilibrium by a chemical reaction on the motor surface.

Because asymmetric deformations of the suspension microstructure are of primary im-

portance to obtain a “driving” force, we must solve for the distribution of bath particles

surrounding the osmotic motor. Our point of departure is the N -particle Smoluchowski

equation governing the spatio-temporal evolution of the N -particle probability density func-

tion PN (xN , t) for finding the N particles at position xN in the fluid:

∂PN
∂t

+
N∑
i=1

∇i · ji = 0, (3.1)

where ji is the probability flux of particle i and the sum is over all the particles in the
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suspension. The motion of an individual particle is governed by a balance among hydrody-

namic, Brownian, and interparticle forces. Thus, the probability flux carried by particle i

is given by

ji = U iPN −
N∑
j=1

DijPN ·∇j(logPN + VN/kT ), (3.2)

where U i is the velocity of particle i, Dij is the relative Brownian diffusivity tensor, and

VN is the N -particle interaction potential, which is assumed to be central. There is no

uniform flow at infinity in the “laboratory” frame. For simplicity, we neglect hydrodynamic

interactions and rotary Brownian motion. To model the interactions among the particles,

it is assumed that VN is a hard-sphere potential so that the colloidal particles do not

interact until their hard-sphere radii touch. The hard-sphere potential generates a force

that prevents the hard-sphere radii, a and b of the motor and bath particles, respectively,

from overlapping. The instantaneous thermal or Brownian force on the motor due to random

collisions with solvent molecules is given by FB = −kT∇ logPN . This expression for the

instantaneous Brownian force is exact for all bath particle volume fractions, φb = 4πb3nb/3.

At equilibrium the absence of any external (e.g., optical tweezers) or self-induced (e.g.,

swimming bacteria, catalytic nanomotor) forces implies that U i = 0 for each particle and

the probability distribution is independent of time. This results in a balance between the

interparticle potential and thermal forces, which is solved by the well-known Boltzmann

distribution function P eqN ∼ exp(−VN/kT ). Application of an external force or gradient, or

a reaction-induced force, will cause relative motion among the particles in the suspension,

drive the system away from equilibrium, and PN away from the Boltzmann distribution

P eqN .

To proceed analytically, it is necessary to restrict the analysis to the limit where bath
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particles do not interact with each other and therefore behave as an ideal gas. Thus, only

the motor interacts with the bath particles. We proceed by integrating Eq. (3.1) over the

configurational degrees of freedom of N − 2 bath particles, neglecting interactions between

bath particles. The neglect of such higher-order couplings could also be interpreted as

our theory is restricted to low bath particle volume fractions, φb � 1, for which only

one bath particle interacts with the motor. Similarly, averaging the balance between the

instantaneous Brownian and the hard-sphere force over the positions of the N − 2 bath

particles and integrating by parts, results in an exact formula for the “osmotic” force on

the motor due to collisions with bath particles,

F osm = −nbkT
∮
r=a+b

ng(r) dS. (3.3)

In (3.3) the integral is over the surface of contact between the osmotic motor and bath

particles, r = a + b, and n is the normal pointing out of the motor particle. The pair-

distribution function g(r) defined as n2
bg(r) = ((N − 2)!)−1

∫
PN (rN , t)dr3...drN is the

probability density for finding a bath particle at r relative to the motor. The interested

reader can find a detailed derivation of the above equations in Squires and Brady (2005).

Eq. (3.3) is nothing more than the osmotic pressure Π sensed by the motor times the

surface area available for collisions between the motor and bath particles. In the absence

of any disturbance to the surrounding medium, no structural deformation is present; thus,

g(r) is isotropic and the integral in (3.3) is zero, resulting in no net osmotic force. However,

if there is a non-uniform concentration of bath particles, either caused by an externally

imposed concentration gradient or by the motor itself via a chemical reaction on its surface,

there will be a net osmotic force on the motor. This osmotic force must be balanced by an
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externally imposed force F ext (via, e.g., optical tweezers, magnets) to hold the motor fixed,

or by the hydrodynamic Stokes drag force F hyd = −6πηaU . A similar observation was

pointed out by Batchelor (1983) in the problem of multicomponent diffusion. The approach

here produces precisely the result for the flux of one species due to a concentration gra-

dient of another species as derived by Batchelor (1983) when hydrodynamics interactions

are neglected. The surface integral of g(r) at contact in Eq. (3.3) represents the local con-

centration of bath particles. And independently of what mechanism or input is responsible

for producing a variation, a nonuniform distribution can drive the motor. An externally

imposed concentration gradient gives rise to what is known as diffusiophoresis (Anderson

1989), whereas a surface chemical reaction alters the local concentration of bath particles

and results in autonomous motion — namely, the osmotic motor.

3.3 Microstructural deformation by chemical reaction

In order to compute the osmotic force, we need to determine the pair-distribution function

g(r) about the motor. The bath particles are divided into reactants, labeled R, and products

P . We consider one half the motor surface to be reactive (as illustrated in Figure 3.1) such

that the reactant bath particles undergo an irreversible first-order reaction of products

according to:

R→ sP, (3.4)

where for each reactant particle “s” product particles are produced; s can take on any

value greater than or equal to zero. For example, if two reactants are joined to form a

product, then s = 1/2, while if two products are produced for each reactant, s = 2, and

so forth. Conservation of mass requires than mR = smP , where mR is the mass of the



49

reactant particle and mP that of the products. For spherical particles of the same density

conservation of mass is equivalent to conservation of volume and therefore bR = s1/3bP ,

where bR and bP are the radii of the reactants and products, respectively. The rate of

consumption of R on the reactive surface is RR and the production of P is RP = −sRR.

In this problem, changes in g(r) are produced by the reaction on the reactive half of

the motor, not by any external field or force. We have assumed that the pair-distribution

function g(r) is conserved and time-independent, which needs to be examined in light of

the chemical reaction. This reaction occurs on the surface and not in the space available to

g(r); the reaction does not occur in the fluid phase.

The assumptions made allow a simple and clear analysis that captures and illustrates

many of the significant physics important in osmotic propulsion. We proceed to formulate

a physically motivated derivation of the microstructural deformation equation from which

we intend to examine two scenarios for the osmotic motor: one, in which the motor is held

fixed by an external force F ext and another, where it is free to move.

3.3.1 Fixed motor

We first consider the fixed motor scenario as it is easiest to describe. Since the reaction

only takes place at the motor surface (heterogenous reaction), the reactants and products

diffuse in the fluid surrounding the motor with relative translational diffusivities DR and

DP and number densities nR and nP , respectively. (In this case, the motor does not move,

thus the relative diffusivities are just the diffusivities of the reactants and products.) In

a frame fixed on the osmotic motor, each reactant and product particle moves diffusively.
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Therefore, the probability flux for the reactant is

jR = −DR∇gR. (3.5)

Conservation of reactant particles at steady state requires that ∇ · jR = 0. The probability

of finding a reactant particle relative to the motor, gR, satisfies a pair-level diffusion equation

∇2gR = 0. (3.6)

To fully determine the pair-distribution function gR, Eq. (3.6) must be accompanied by

appropriate boundary conditions. The reactant microstructure is undisturbed far from the

osmotic motor particle, giving

gR ∼ 1 as r →∞. (3.7)

Collisions at the motor/reactant boundary give rise to the heterogeneous reaction, mathe-

matically stated as

n · ∇gR =
RR h(n)
nRDR

at r = a+ bR. (3.8)

The products satisfy a similar equation with the subscript R replaced by P . However,

the osmotic force in (3.3) is proportional to the total probability density of bath particles

g = (nRgR +nP gP )/nT , where nT = nR +nP is the total number density of bath particles,

which satisfies

∇2g = 0, (3.9)

g ∼ 1 as r →∞, (3.10)

n · ∇g =
RR h(n)
nRDR

nR
nT

(
1− sDR

DP

)
at r = a+ bR. (3.11)
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The distribution of reactions on the surface is determined by the dimensionless function

h(n), which we take to be 1 on the reactive half and 0 on the passive half. The model

can be easily extended for particles with different reactive surfaces (different forms for h(n)

see Chapter 4). The nonuniform reaction causes an anisotropic environment of reactant

particles around the motor. The surface reaction rate is modeled as a first-order reaction:

RR = κnRgR, where κ is the speed of reaction. Defining the microstructural deformation

functions fR = gR−1 and f = (g−1)/(nR/nT (1−sDR/DP )) that represents the deviation

from equilibrium for the reactant and the bath particle distributions, respectively, and all

lengths nondimensionalized by the sum of the motor and reactant radii: a + bR, it is easy

to see that fR and f satisfy the same Laplace’s equation and boundary conditions. For the

total probability density of bath particles,

∇2f = 0, (3.12)

f ∼ 0 as r →∞, (3.13)

n · ∇f = Da h(n) (1 + fR) at r = 1, (3.14)

which also describes the reactant distribution if f is substituted by fR. We have defined a

Damköhler number

Da =
κ (a+ bR)

DR
, (3.15)

that describes the ratio of the speed of reaction κ to Brownian motion, DR/(a + bR).

In general, increasing Damköhler number corresponds to driving the system away from

equilibrium. Thus one need only to determine the reactant probability density to completely
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solve the problem. The net osmotic force (3.3) becomes

F osm = −nRkT
∮
r=a+bR

ngR(r)dS − nPkT
∮
r=a+bP

ngP (r)dS

= −nRkT (a+ bR)2
(

1− sDR

DP

)∮
r=1

nf(r) dΩ, (3.16)

where dΩ is the solid angle of integration and the total microstructural deformation func-

tion f depends on the Damköhler number. For spherical reactants and products of dif-

ferent radii, the integral should be over the “contact” surface at a + bR and at a + bP .

However, this introduces a negligible error, especially in the limit a � bR,P . The net os-

motic force is proportional to the thermal energy, kT , times the area of contact, (a + b)2,

times the jump in concentration of the reactant across the motor, nR
∫

nf(r)dΩ, times

the stoichiometric/diffusivity factor (1− sDR/DP ), which tells how many product particles

are produced per reactant, s, and how fast the products diffuse relative to the reactants,

DR/DP . Thus, the osmotic force is larger for relatively large motor particles and scales

as F osm ∼ nRkBTa
2(1 − sDR/DP ). For bath particles that are much larger than the mo-

tor, the available free space of self-propulsion is reduced, and consequently the entropic

force of the bath particles is reduced. When bath particle collisions with the motor are

uniform around the surface, as in the case of an inert or an uniformly reactive particle,

the motor/bath boundary gives rise to the no-flux condition from the impenetrability of

the motor particle and the Neumann boundary condition, respectively. In both cases, the

microstructural deformation function f(r) is symmetric and uniform everywhere, and thus

the osmotic force (3.16) reduces to zero.

The correctness of the factor (1 − sDR/DP ) can be appreciated by considering some

special cases. If we had simple R → P (or s = 1) and the product had the same dif-
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fusivity as the reactant, the net osmotic force would be zero. This would correspond, if

you will, to simply changing the “color” of the reactant which cannot produce any net

force. However, if the reactants and products have different diffusivities, say because the

reaction changes the “shape” of the particle, or perhaps its interaction with the solvent

(hydrophilic/hydrophobic), then even if only one product is produced for each reactant

there will still be a net osmotic force on the motor. The sign of the force will depend

on which diffuses faster. As another example, suppose that s = 2, but the products and

reactants have the same diffusivity. There will be now a net increase of bath particles

on the reactive side and the osmotic force will be to the left in Figure 3.1 rather than to

the right. If we restrict ourselves to strictly hard-sphere particles of the same density, then

DR/DP = bP /bR = s−1/3 from conservation of mass, and thus the stoichiometric/diffusivity

factor becomes (1 − sDR/DP ) = (1 − s2/3). Since one needs only to solve (3.14) in any

situation, all cases can be treated at the same time and the precise details of stoichiometry

and diffusivity, an be addressed later in the final scaling factor, (1− sDR/DP ), for the net

osmotic force. And, of course, Eq. (3.16) correctly gives zero osmotic force in the absence

of any reactive particles: nR = 0.

3.3.2 Free motor

A second scenario is investigated that corresponds to a motor free to diffusive with a diffu-

sivity Da and to advect at velocity U due to the reaction-driven osmotic force. No external

forces (F ext = 0) or imposed particle gradients act on the motor. In a frame fixed on the

osmotic motor, which translates at velocity U , each reactant and product particle is ad-

vected with velocity −U and moves diffusively. For dilute reactant particles the probability
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flux has diffusive and “advective” terms,

jR = −UgR −DR∇gR, (3.17)

where DR is now the sum of the osmotic motor diffusivity and the reactant particles.

Then, conservation of reactant particles at steady-state requires that ∇ · jR = 0. The

microstructural deformation function fR(r) satisfies a pair-level Smoluchowski or advection-

diffusion equation made dimensionless by scaling lengths with the contact distance a + bR

and the velocity with the yet unknown motor velocity U , which we must finally determine.

Thus,

∇2fR = −PeRẑ · ∇fR, (3.18)

and we have taken the motion to be along the z-axis (ẑ is a unit vector in the z-direction).

Far from the motor, the reactant microstructure is undisturbed, giving fR ∼ 0. At contact,

the boundary condition becomes

n · ∇fR = (Da h(n)− PeR n · ẑ) (1 + fR) . (3.19)

Again, the products satisfy a similar equation with the subscript R replaced by P . The

above expression reflects the competition between motion due to self-propulsion of the

motor in driving the environment away from equilibrium and Brownian motion attempting

to restore the disturbed microstructure. The Péclet numbers PeR and PeP , which appear

from the scaling, may be considered as a ratio of the motor velocity U to the relative

Brownian velocity DR,P /(a + bR). The scaled total microstructural deformation function
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f(r) now satisfies

∇2f = −

(
PeR − PeP

1− sDR
DP

)
ẑ · ∇fR − PeP ẑ · ∇f. (3.20)

The nondimensional versions of the boundary conditions become: f ∼ 0 as r →∞, and

n · ∇f + PeP n · ẑ

f +
1

nR
nT

(
1− sDR

DP

)
 =

(
Dah(n)−

(
PeR − PeP

1− sDR
DP

)
n · ẑ

)
(1 + fR) at r = 1. (3.21)

Note that equations (4.10) and (4.12) diverges in the special case sDR/DP ≡ 1, for which

there is no osmotic force. The osmotic force is still scaled as before, however, and the

unknown velocity is found from balancing the hydrodynamic Stokes drag force F hyd on the

motor with the osmotic force. The osmotic velocity of the motor is

U = − kT

6πηa
nR(a+ b)2

(
1− sDR

DP

)∮
r=1

nf(r;Da,PeR, P eP ) dΩ, (3.22)

where the microstructural deformation function f now depends on the Damköhler and

Péclet numbers. Note that the motor velocity, and thus the Péclet numbers, are unknown

and must be found self-consistently along with the microstructural deformation functions

f and fR from the advection-diffusion equations.

Since now the reactant and the total microstructural deformations are coupled, two

simultaneous equations need to be solved to compute the osmotic force and thus the motor

velocity. Therefore, the detailed stoichiometry/diffusivity is not just a scale factor as in the

osmotic force for the fixed motor case. This is somewhat involved and is taken up in the
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proposed work, so we discuss below the case in which the reactants are “consumed” upon

reaction. This corresponds to sDR/DP → 0, which would occur if the products are much

more diffusive than the reactants or when the reactant is indeed consumed (s = 0) by the

motor. Thus, the product distribution drops out and the total microstructural deformation

function is the same as the reactants. Actual consumption of reactants may indeed occur

if the reactant particles irreversibly adsorb on the motor’s surface or are absorbed into the

interior of the motor. In either case, the motor’s size would change over time and this effect

would need to be included in the analysis. We have not done so here. The reader should

note that this is just the language we choose to discuss the basic physics of the osmotic

propulsion. The reader may wish to think instead of two specific cases: i) 2R → P , in

which two reactant particles are joined to form a single product particle, corresponding to

s = 1/2 and scale factor (1 − sDR/DP ) = (1 − (1/2)1/3) > 0. There will now be a net

depletion of bath particles on the reactive side and a propulsive force to the right as sketched

in Figure 3.1. ii) R → 2P , in which one reactant is split into two product particles, with

corresponding scale factor (1 − sDR/DP ) = (1 − (2)1/3) < 0. Now there are more bath

particles on the reactive side, leading to a propulsive force to the left in Figure 3.1. With

this understanding in mind, we shall discuss the physics of the problem as if the reactant

was consumed, s = 0.

From (4.9) the implicit equation for the Péclet number is

Pe = − kT

6πηa
(a+ b)3

D
nb

∮
r=1

nzf(r;Da,Pe) dΩ = φb

(
1 +

a

b

)2
F(Da,Pe), (3.23)

where F(Da,Pe) = − 3
4π

∫
r=1 nzf(r)dΩ is a nondimensional function of the Damköhler

and Péclet numbers, and must be solved in order to get a final expression for the motor
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velocity. Note that in this and what follows we have dropped the subscript R for the

reactant and will simply refer to the reactant as a bath particle. The Péclet number is not

an independent parameter, but rather is set by the Damköhler number, the bath particle

volume fraction φb, and the size ratio a/b. The term φb(a+ b)2 in Eq. (3.23) is defined to

be a new parameter β, such that β and Da determine the motor behavior. The product

β corresponds to the number of bath particles within a bath particle radius of the motor

surface: β ∼ nb(a+b)2b. Clearly, at Pe = 0 (or β → 0) the free motor problem becomes the

fixed motor, giving identical microstructural deformation for non-equilibrium conditions.

Therefore, for the fixed motor F(Da) is a function of the Damkóhler number only. The

fixed motor corresponds to an infinitely dilute suspension of bath particles. Whether the

motor is fixed or free to move is just a change of reference frame. For a fixed motor there

will be an advective flux at infinity to supply reactive particles to the motor.

The problem of osmotic propulsion consists of determining the microstructural defor-

mation function (f = g − 1) and then the dimensionless function F , which can also be

interpreted as the dimensionless self-generated concentration gradient, for different physical

parameters relevant to the motor and the suspension characteristics. In addition to the dis-

cussed theory, we extend this study by using Brownian dynamics simulations, which allow

us to build a different method to check our proposed theoretical framework and expand it

to more complex systems.

3.4 Osmotic propulsion by Brownian dynamics simulations

The Brownian dynamics method is well established and has been investigated and ex-

panded by various researchers. Brownian dynamics (BD) simulations can be described as

a simplified version of Stokesian dynamics (Brady and Bossis 1988) that simulate colloidal
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particles in the absence of hydrodynamic interactions. BD was used for the study of the

rheology of sheared colloidal dispersions by Foss and Brady (2000) and recently by Carpen

and Brady (2005) to investigate active particle-tracking microrheology in a colloidal disper-

sion. A further description of BD and relevant references are given in Allen and Tildesley

(1989). Here, we present a simulation method similar to that used for passive microrheol-

ogy measurements, but modified to consider a reaction on the surface of one particle of the

suspension designated the osmotic motor. We shall see below that the BD method provides

an insightful physical interpretation of surface reactions and a particle-level description of

osmotic propulsion.

The system of N particles that we address in BD is exactly the one presented theoreti-

cally in Section 3.2: a colloidal dispersion of hard-spheres consisting of the osmotic motor of

radius a surrounded by bath particles of radii b immersed in an incompressible Newtonian

fluid of viscosity η and density ρ (see Figure 3.1). In the colloidal dispersion there is a clear

separation of time and length scales between the particles and the fluid molecules, therefore,

the fluid can be treated as a continuum. No hydrodynamic interactions nor rotary Brownian

motion were included in the simulations. Our main goal is to provide a simulation method

that describes the dispersion microstructure about the osmotic motor configuration subject

to the self-created osmotic force. We assume that the osmotic motor has a first-order reac-

tion on half its surface that consumes bath particles (s = 0). (BD simulations can also be

extended to motors with different distributions of reactive surface, but, as stated earlier, our

intention in this work is to illustrate the general and fundamental observations in osmotic

propulsion. The later will be discussed in Chapter 4.) Consumption of bath particles on

one side of the motor, which is responsible for creating the imbalance in osmotic pressure,

must be simulated. The macroscopic balance at motor-bath contact is incorporated into
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BD simulations by considering a reaction probability Ps — the probability with which a

bath particle that collides with the reactive surface is consumed. A similar approach was

taken to investigate the influence of surface reaction rate on the development of size dis-

persion of interfacial nanostructures (Magan et al. 2003). Other approaches for stochastic

modeling of reaction-diffusion problems are discussed in Erban and Chapman (2007). The

two theoretical scenarios for the osmotic motor (fixed and free) discussed in Section 3.3 are

also considered in the simulations. From this, we examine the time-averaged osmotic force

created by the fixed motor and the time-averaged velocity of the free motor.

3.4.1 Simulation method

A detailed derivation of the simulation method has appeared in the literature (Ermak and

McCammon 1978; Fixman 1978), so we shall proceed quickly. The BD method is used to

describe the motion of the individual particles governed by the Langevin equation:

mi ·
dU i

dt
= FH

i + F P
i + FB

i , (3.24)

where mi is the mass of particle i, U i is the ith particle translational velocity vector, and

the force vectors F i represent: (i) the hydrodynamic forces FH
i exerted on particle i due to

their motion relative to the fluid, (ii) the deterministic nonhydrodynamic forces F P
i , which

may be either interparticle or external (e.g., hard-sphere, optical tweezer, magnetic, etc),

and (iii) the stochastic forces FB
i that give rise to Brownian motion (i = 1 refers to the

motor and i = 2, ..., N the bath particles, respectively). For colloidal systems, inertia is

neglegible compared to viscous forces (small Reynolds number), and Eq. (3.24) reduces to

0 = FH
i + F P

i + FB
i . (3.25)
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Since we are studying a system of particles with no hydrodynamics interactions, the hydro-

dynamic force FH
i only consists of the Stokes drag on an isolated particle given simply by

FH
i = −6πηaiU i. The stochastic or Brownian force FB

i results from the thermal fluctua-

tions in the fluid and is characterized by

FB
i = 0 (3.26)

and

FB
i (0)FB

i (t) = 2kT (6πηai)Iδ(t). (3.27)

The overbars in Eq. (3.26) and (3.27) denote an ensemble average over the thermal fluc-

tuations in the fluid, where 6πηaiI is the hydrodynamic resistance tensor in the absence

of hydrodynamic interactions, I is the unit isotropic tensor and δ(t) is the delta function.

The amplitude of the correlation between Brownian forces at time 0 and at time t results

from the fluctuation-dissipation theorem for the N -body system. The deterministic or non

hydrodynamic force F P
i is simply the sum of any external forces F ext

i and the interparticle

hard-sphere force FHS
i . No external forces act on the bath particles, thus F ext

2,...,N = 0.

The particle evolution equation is obtained by integration of Eq. (3.24) over a time step

∆t that is small compared to the time over which the configuration changes. The evolution

equation for the particle positions with an error of o(∆t) is given by

∆Xi = ∆XHS
i + F ext

i ∆t+ XB
i (∆t), (3.28)

where XB
i is characterized by

XB
i = 0 (3.29)
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and

XB
i (∆t)XB

i (∆t) = 2
(
b

ai

)
I∆t. (3.30)

In Eq. (3.28), ∆Xi is the change in particle position during the time step ∆t, XB
i (∆t) is a

random displacement due to Brownian motion, and ∆XHS
i is a hard-sphere displacement.

Here, length has been nondimensionalized by the characteristic bath particle size b, time

by the diffusive time scale b2/Db = 6πηb3/kT , and the external and interparticle forces by

kT/b.

For each ∆t, all particle configurations are updated first by adding the displacements due

to the Brownian forces, XB
i (∆t), and second by an iterative method which corrects collisions

by applying the hard-sphere force/displacement ∆XHS
i . This hard-sphere collision scheme

is based on the “potential-free” algorithm of Heyes and Melrose (1993) in which the overlap

between pairs of particles is corrected by moving the particles properly distributed amounts

along the line of center back into contact. This algorithm is “potential free” in that it does

not require a specific declaration of a pair potential, although it implements the hard-sphere

potential which is infinite if the particles are overlapping and zero otherwise. The algorithm

displaces bath particles overlapping with the motor along their lines of centers according to

∆XHS
2,...,N =

a

a+ b
(∆r − a− b)H(a+ b−∆r), (3.31)

where ∆r is the interparticle separation after the Brownian displacements. The Heaviside

step function is included to ensure that the displacement is only for the overlapped particles.

The factor a
a+b is chosen to return the particles back to contact. The collisions are considered

to be elastic, thus the sum of interparticle forces at contact is zero. Therefore, the hard-
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sphere displacement for the osmotic motor ∆XHS
1 is given by

∆XHS
1 = − b

a
∆XHS

2,...,N . (3.32)

In order to proceed analytically in the theory, it was assumed that bath particles do not

collide with each other and so behave as an ideal gas. A direct comparison can be made

with the dilute theory neglecting collisions between bath particles. This is easily simulated

in BD by imposing

∆XHS
2,...,N =

1
2

(∆r − 2b)H(2b−∆r) = 0 (3.33)

for collisions between bath particles. Thus bath particles only collide with the motor. Al-

though, we also consider simulations relaxing the ideal gas assumption (Eq. (3.33) is not

zero) enabling us to provide ideas on how to scale up the theory to higher bath particle con-

centrations. This topic will be addressed in Section 3.6. The hard-sphere collision scheme

checks for bath particle overlaps with the motor one bath particle at a time. Therefore,

the resulting hard-sphere displacement for the motor could cause new overlaps with sur-

rounding bath particles. The algorithm resolves this issue by checking again for overlaps

and correcting the position of the particles until none are found. Then, a new simulation

time step ∆t is taken.

The above simulation method is used to examine the dispersion dynamics surrounding

the osmotic motor held fixed by an external force and the case when it is free to move. In

the fixed motor case, a constant external force F ext is applied on the motor to keep it fixed

at a given configuration, meaning that its displacement ∆X1 must be zero. Hard-sphere

collisions between particles fall into two categories: collisions between bath particles and

collisions between a bath particle and the osmotic motor. The first collision type is the
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same as before: one has the option to treat the bath particles as an ideal gas or not. The

second collision type needs to take into account the fact that since the motor is fixed, it

is the bath particle that needs to be displaced the entire amount back to contact position.

It is then straightforward to calculate the time-averaged osmotic force exerted on the fixed

motor, giving

F osm = F ext = −kT
b

〈∆XHS〉
∆t

, (3.34)

where the average 〈·〉 is defined as the average over a time period. Note that in this equation

and what follows we have dropped the subscript 1 for the motor.

In the free motor case, no external forces are applied on the motor; thus, F ext = 0 and

the hard-sphere force is balanced by the hydrodynamic force. The time-averaged motor

velocity is given by

U =
Db

b

〈∆X〉
∆t

=
Db

b

(
〈∆XB〉

∆t
+
〈∆XHS〉

∆t

)
. (3.35)

Noting that the average Brownian displacement is zero, 〈∆XB〉 = 0, one obtains

U =
Db

b

〈∆XHS〉
∆t

. (3.36)

The Peclét number, Pe = U(a + b)/D, is calculated from the resulting time-averaged

velocity.

We performed conventional hard-sphere BD simulations where if a bath particle collides

with the motor on the passive half, it simply gives the motor a hard-sphere kick, while

if it collides on the reactive half, it has a probability Ps to undergo reaction. A random

number between 0 and 1 is chosen and compared with the reaction probability Ps (0 no
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reaction, 1 complete reaction). If no reaction occurs, then the bath particle collides with

the motor just as it does on the nonreactive half. If the bath particle reacts, then it is

simply removed from the system. We examined the cases when hard-sphere kicks of bath

particles occur before or after reaction, however, both gave the same results. Overtime, all

bath particles will be consumed by the motor, so to achieve a steady state (for which the

theory has been developed), each time a bath particle reacts a new bath particle is inserted

at random somewhere within the unit cell. In this way the bath particle concentration

remains uniform over time and mimics an infinite system. The unit cell was chosen large

enough (typically 500 to 5,000 bath particles) so that periodic effects are minimized. For

large control volumes, the random bath particle insertion should not significantly affect the

time-averaged measurements.

In the simulations, the motor is included in the definition of the volume fraction, and

therefore there is a O(1/N) error in determining φb. However, the number of bath particles

N in the box was chosen by making sure that the volume fraction of the motor is small,

φa = (a/b)3φb/N � 1, therefore, this deviation is not significant. All runs were started

from a random hard-sphere configuration by allowing the system to equilibrate for volume

fractions below the hard sphere phase boundary φb ≈ 0.494 (Fasolo and Sollich 2003), even

though the bath particles form an ideal gas. The simulation run for very dilute solutions

(φb � 1) has to be longer than those for concentrated solutions. A longer duration allows

for more bath particles to collide with the osmotic motor in a regime where bath particles

are far from each other. Systems were allowed to reach a steady state before averaging

began. We varied the number density of bath particles by a factor of 10, the ratio of

motor to bath size by a factor of 12 and the time step in the simulations by three orders of

magnitude in order to examine the fixed motor force and the free motor velocity. While the
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BD simulations should correspond to the analytical model, note that the force imparted to

the motor comes directly from the hard-sphere collisions with the bath particles, not from

any integration of the concentration distribution over the surface as in (3.16). Multiple runs

were performed in order to determine the statistical variation in properties.

As mentioned previously, the irreversible first-order reaction on half motor is introduced

in BD simulations by the reaction probability Ps, which relates to the number of reacted

(or consumed) bath particles. One of the central issues in this problem is the relation be-

tween the reaction probability Ps and the speed of reaction κ. This problem is resolved

by examining the probability of finding Brownian particles in the proximity of a boundary.

Lamm and Schulten (1983) derived a solution for the particle density distribution for the

cases of an imperfect reactive (where not every collision leads to reaction), reflecting, and

absorbing boundary in the presence of an external force. They also proposed some very use-

ful one-dimensional Brownian algorithms for generating the displacement of particles near

reactive and reflecting boundaries based on the exact probability distribution for diffusion

near such surfaces. In fact, it was extended by Lamm (1984) to treat three-dimensional

spherically symmetric diffusion cases. From these investigations, an optimized BD method

was constructed, which considers issues near boundaries and was used for calculating the

steady-state bimolecular rate constants of diffusion-influenced reactions (Northrup et al.

1984) with an efficiency never achieved with primitive methods. As Northrup et al. (1984)

noted, a survival probability ω is computed from the ratio of the distribution for the case

of an imperfect reactive boundary and the distribution for the case of a reflecting surface.

Thus the reaction (non-survival) probability Ps is given by 1− ω,

Ps = 1−

1−
(
Da− Pe

2

)√
π∆t exp

((
Da− Pe

2

)2 ∆t
)

erfc
(

(Da− Pe
2 )
√

∆t
)

1 + Pe
2

√
π∆t exp

(
Pe2

4 ∆t
)

erfc
(
−Pe

2 ∆t
)

 . (3.37)
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We made Eq. (3.37) dimensionless by scaling time with the relative diffusive time (a+b)2/D.

For more details on the reaction probability derivation we refer to Lamm and Schulten

(1983) and Northrup et al. (1986). The reaction probability Ps approaches unity in the

case of diffusion-limited consumption, or very fast reactions. On the other hand, in the

limit of Ps � 1 (slow reactions) the whole process is controlled by the reaction. In this

work, the formula for Ps (3.37) could be used to find the corresponding Damköhler number

Da required to compare simulation results with the theoretical solutions.

Here we propose a simpler formula for the reaction probability Ps that approximates Eq.

(3.37) and satisfies the limiting cases for slow and fast reactions. To construct this formula,

first we examine all mechanisms acting on the motor and their corresponding characteristic

velocities as stated in the boundary condition at contact: D∂g/∂r = (κh(n) − U)g. On

the right-hand side we combined the two non-Brownian processes, reaction and advection,

into one. Note the speed of reaction κ is limited by the relative advection velocity U . The

non-Brownian part has effective velocity κ − U and balances Brownian motion (left-hand

side). The characteristic Brownian velocity is given by UB ∼ ∆XB/∆t ∼
√
D∆t/∆t, where

we have considered the Brownian process broken in discrete steps. Consider the ratio of the

non-Brownian part with effective velocity κ−U to the Brownian velocity UB, which is given

by (κ−U)
√

∆t/D. After scaling time by the relative diffusive time scale (a+b)2/D, the ratio

results in (Da− Pe)
√

∆t, which approximates to the relevant parameter (Da− Pe/2)
√

∆t

observed in (3.37). We construct the reaction probability Ps by a rational function made

up of this parameter:

Ps ∼
(Da− Pe)

√
∆t

1 + (Da− Pe)
√

∆t
. (3.38)

Even though Eq. (3.38) is simple in comparison with (3.37), it allows us to get the
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Figure 3.2: The reaction probability Ps as a function of Da for various Pe and ∆t (scaled
by the relative diffusive time (a+ b)2/D). Label A is Eq. (3.37) and label B is Eq. (3.38).

Damköhler number. The resulting Peclét number must be calculated from multiple sim-

ulation runs to properly obtain an average Da, and the resulting Damköhler number is

accompanied by error bars.

In Figure 3.2, we plot (3.37) (labeled A) and (3.38) (labeled B) as a function of Da

for various Pe and ∆t. At Pe = 0, both equations are in good agreement in the limits of

low and high Da for all ∆t. From (3.38), it is clear that for positive reaction probability

(Ps > 0), which must always be the case, Pe cannot be greater than Da. (This restriction is

physical and it is demonstrated theoretically in Section 3.5.2.) Thus, the reaction probability

resulting from (3.37) is only valid when Da ≥ Pe. Note that for intermediate values of Da

the reaction probability (3.37) is greater than the simple constructed formula (3.38). By

using the proposed formula (3.38) some accuracy in Da (specifically at intermediate Da) is

sacrificed in order to make progress; however, it surprisingly shows in the results to work



68

very well for the values considered in the simulations (see BD simulation results in the next

section).

3.5 Results

We proceed to examine the microstructural deformation caused by the surface reaction for

both osmotic motor scenarios (fixed and free), adopting an axisymmetric spherical polar co-

ordinate system with origin at the center of the osmotic motor (Figure 3.1). After analyzing

the microstructure relative to the motor, a solution for the osmotic force can be obtained.

For the fixed motor case, the problem can be solved for all stochiometric/diffusivity factor

(1 − sDR/DP ). But for the free case only the case of sDR/DP → 0 is considered. The

effect of nonzero sDR/DP (apart from the scale factor in force (3.16)) will be quantitative,

not qualitative.

Theoretical results shall be compared to Brownian dynamics simulations. Because we are

interested in measuring the time-averaged osmotic force and thus the motor velocity, and we

only have one motor per simulation, long and multiple runs are required to obtain accurate

results. All simulation results are accompanied by error bars. Although the particles do

not interact hydrodynamically, a free motor can affect itself due to the periodicity of the

simulation cell through a long-range deformation of the surrounding microstructure. The

motor can leave a “trail” that is almost free of particles whose length increases with faster

speeds. This was also observed in the microrheology problem discussed by Carpen and

Brady (2005). It is important to be aware of this effect to size the simulation cell accordingly.
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3.5.1 Fixed motor

As described in Section 3.3, the disturbed microstructure for the fixed motor is governed

by the Laplace’s equation subject to no disturbance (g ∼ 1) far away from the motor and

at contact the bath particle flux j balances the nonuniform reaction. It is well know that

the solution of the diffusion equation obtained via separation of variables is

f(r, µ) =
∞∑
m=0

Amr
−(m+1)Pm(µ), (3.39)

where Pm(µ) is the Legendre polynomial of order m and argument µ = cos θ and Am are

unknown constants to be determined from the boundary condition at contact (Abramowitz

and Stegun 1965). All Am are only functions of Da. Although the microstructural de-

formation function (3.39) can be fully specified analytically for all Da by calculating the

coefficients Am, it is instructive to first examine the microstructural deformations that arise

in the low- and high-Da regimes for the fixed osmotic motor. The nondimensional function

F(Da) is computed from the pair-distribution function at contact and then the osmotic

force. Both asymptotic limits are computed from (3.39) and their corresponding boundary

conditions.

3.5.1.1 Limiting cases

At small Damköhler numbers when the ratio of the speed of reaction to the diffusive velocity

is much less than unity, the suspension is only slightly disturbed from its equilibrium state,

enabling the calculation of the pair-distribution function via a perturbation series expan-

sion in Da, based on the general non-uniformity criterion proposed by van Dyke (1975).

At Da = 0, the only valid solution for g is simply 1, corresponding to an undisturbed mi-



70

crostructure. The perturbation to g is illustrated by the density plot in Figure 3.3, where

the microstructure is nearly isotropic. Bath particles are consumed on the reactive side

decreasing their local concentration near the motor. Thus, there are more collisions with

bath particles on the passive side of the motor, resulting in an imbalanced osmotic pressure

and a force on the motor in the direction of the decreasing bath particle concentration. In

this limit, it is simple to show that the first term of O(Da) for the nondimensional function

F(Da) is given by

F(Da� 1) =
3
8
Da. (3.40)

The resulting osmotic force is linear in Da: F osm ∼ nRkT (a+b)2(1−sDR/DP )Da = nR(a+

b)3(1− sDR/DP )6πηbκ, where we have used the Stokes-Einstein-Sutherland expression for

the bath particle diffusivity Db = kT/6πηb. This has a simple physical interpretation:

Each bath particle reacting with the motor strikes at speed κ and thus hydrodynamic force

6πηbκ and there are nR(a + b)3 colliding bath particles. The stoichiometric/diffusivity

factor, (1− sDR/DP ), then gives the net osmotic force.

In the limit as Da → ∞ (very fast reaction), the diffusion of bath particles towards

the reactive surface is slow in comparison to the speed of reaction. In this limit, one finds

that the concentration of bath particles on the reactive half is zero; the microstructure

experiences total deformation (g = 0). On the passive half the impenetrability condition

continues to hold (∂g/∂r = 0). As shown in (3.39), an exact analytical description of the

microstructure is only obtained in the limit as m→∞ (all Am coefficients are needed). To

overcome this analytical limitation, we approximate g by truncating the series at m = mmax

such that its contact value for all µ at mmax and at mmax+1 is within an accepted error of

0.1 percent. Having considered this criteria, we found that at mmax = 150 so that Am = 0 ∀



71

(a) (b)

Figure 3.3: Low- and high-Da microstructural deformation in the plane of symmetry of
the fixed osmotic motor. Red is low bath particle probability density and blue is the
uniform level far from the motor. (a) Diffusion dominates at low Da, giving F osm ∼
nRkT (a+ b)2(1− sDR/DP )Da. (b) High Da, giving F osm ∼ nRkT (a+ b)2(1− sDR/DP ).
The right half of the motor is reactive and its net osmotic force is from left to right.

m > mmax and the microstructure is accurately represented in this limit. Figure 3.3 shows

the density plot in the high Da limit, where no bath particles can be found near the reactive

surface. Therefore, the value of F(Da) in the Da→∞ limit was found to be ∼ 0.4515. In

this regime of fast reaction, the osmotic force saturates and simply scales as the jump in

bath particle concentration from the passive (g ∼ O(1)) to reactive (g = 0) side times the

area: F osm ∼ nRkT (a+ b)2(1− sDR/DP ).

3.5.1.2 Arbitrary Da

Having studied the two limiting cases for the fixed motor, we proceed to obtain the mi-

crostructure for arbitrary values of Da, and from there we move on to the osmotic force.

Figure 3.4 shows the pair-distribution function at contact for various Damköhler numbers.

As expected, the pair-distribution function at the reactive surface goes to zero as Da is

increased. The concentration of bath particles jumps to higher values near π/2 (µ = 0),

clearly showing the two distinctive surfaces. Note that at the passive suface, g(r) also de-

creases as Da is increased, suggesting that bath particles migrate from this region to the

reactive surface. This is occurring because the reactive half is a sink for bath particles. In
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Figure 3.4: Pair-distribution function at contact for the fixed motor as a function of θ for
various Da. The reactive and passive surfaces are located from 0 to π/2 and π/2 to π,
respectively.

the limit as Da→∞, the pair-distribution function at contact in the passive side scales as

O(1), which is independent of the speed of reaction.

The major limitation of the general solution (3.39) is that as Da is increased, a consider-

able number of coefficients Am in the expansion (3.39) are necessary to accurately represent

the perturbed microstructure, making its implementation less practical. Even though we

found that 150 terms in the series was good enough to properly represent the microstructure

at high Da numbers, it is not entirely computationally feasible to calculate F(Da) for all

Da using a symbolic mathematics program. It did work quickly and accuratly in the limit

as Da → ∞ because its corresponding boundary conditions are simple and independent

of Da, which allows us to compute many coefficients Am in a reasonable amount of time.

Therefore, we compute the pair-distribution function with fewer terms (or coefficients) in

the series (24 to be exact) and its value at contact to calculate F(Da). At first, the solution



73

of F(Da) agrees with the low-Da limit, but diverges at high Da numbers as expected. A

more accurate solution for F(Da) is obtained by a (9-9) Padé approximant used to ex-

trapolate F(Da) to higher Da numbers. A (9-9) Padé approximant, plotted in Figure 3.5,

shows that F(Da → ∞) = 0.4485, quite close to the expected value of 0.4515 from the

asymptotics. We expect Figure 3.5 to represent a universal curve for the fixed osmotic force

which has been made nondimensional by kT/(a + b), the fraction of bath particles in the

motor volume, φ = nb(a+b)3 4π/3, and the stoichiometric/diffusivity factor (1−sDR/DP ).

The open symbols in the figure are the results of Brownian dynamics simulations for various

conditions. We have used the proposed formula for Ps in order to find Da and construct this

figure; it shows the formula works fine for the studied values. Clearly, the scaled osmotic

force does not depend on the bath particle volume fraction φb, size ratio a/b, and from the

time step ∆t used in the simulations. The transition from reaction- to diffusion-controlled

regimes occurs approximately at a Damköhler number of unity.

It is instructive to ask now what would be the magnitude of the force that must be

exerted on the motor to keep it fixed? And what would happen to the local microstructure

and the osmotic force if the motor were allowed to move? As described earlier, the maximum

force occurs in the limit as Da→∞ for large motors (a� b), F osm ∼ nbkBTa2, where the

force saturates. (For the benefit of this illustration, we have assumed s = 0.) Consider a

motor of a = 1µm with a 0.1 M bath particle concentration. The resulting osmotic force

is of order 0.2µN, a respectable and easily measured force. In fact, it is rather large, as

optical tweezers typically exert nano-Newton forces (Faucheux et al. 1995) and biological

motors exert pico-Newton forces (Montemagno and Bachand 1999). Similar disagreement

holds when compared to depletion forces that lead to depletion flocculation (Jenkins and

Snowden 1996). Indeed, if the motor was released, it would start to move at a speed of
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Figure 3.5: The osmotic force F osm scaled nRkT (a+ b)2(1− sDR/DP )4π/3 plotted against
Da for various bath particle volume fractions, φb, size ratios a/b, and simulation time
steps ∆t. The theoretical prediction (curve) is compared with Brownian dynamics (BD)
simulations (symbols).

order 10 m/s. This surprising and aphysical result is resolved by noting that the motor

cannot travel any faster than the bath particles can diffuse — that is, no faster than their

diffusive velocity Ubath ∼ D/(a + b). If the motor were to move faster than this velocity,

bath particles would accumulate in front of the motor on the reactive side and a deficit

would appear behind the motor, as the bath particles could not keep up. The motor would

thus loose the propulsive force that caused it to move in the first place or even reverse

the direction of motion. The resolution of this paradox is to recognize that in a frame of

reference traveling with the free motor, there will be an advective flux of bath particles

towards the motor that will alter the bath particle probability distribution about the motor

and consequently, the propulsive osmotic force. In what follows, we shall see a detailed

picture of the microstructure as the osmotic motor moves freely (and with directionality)

and how that compares to the fixed motor problem. We also show that the velocity of the
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free motor for any Damköhler number is limited by the parameter β — the number of bath

particles within a bath particle radius of the motor surface.

3.5.2 Free motor

When the osmotic motor moves, bath particles may accumulate on the reactive side and

some could react. As the motor travels forward eliminating the bath particle concentration

deficit, another one would appear on the passive side. As mentioned earlier, here we only

consider the limiting case of sDR/DP → 0 for which the product distribution drops out

and the total pair-distribution function is the same as that of the reactants. The pair-

distribution function g = 1 + f is governed by the advection-diffusion Eq. (3.18) with asso-

ciated boundary conditions (3.13) and (3.19). The pair-distribution function must be solved

simultaneously with the implicit formula for the Péclet number, Pe = βF(Da,Pe), that

also depends on the pair-distribution function via the nondimensional function F(Da,Pe).

It is clear from Eq. (3.19) that the advective flux of bath particles towards the motor limits

the concentration gradient created at the reactive surface. In addition to the Damköhler

number, the other parameter in the free motor problem is the product β acting together

to establish the non-equilibrium microstructure relative to the osmotic motor, and conse-

quently, the motor velocity. After solving for Pe, we shall obtain an expression for the motor

velocity U as a function of Da and β. First, we proceed to study the microstructure for

small Da numbers, which can be computed analytically via separation of variables, and from

here, F(Da,Pe). Although the problem could be solved analytically for small departures

from equilibrium, it becomes challenging for increasing Da (and also β) when you have an

implicit equation for Pe that must be solved conjointly with the advection-diffusion equa-

tion. Therefore, a numerical method is employed to solve for the pair-distribution function
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g, the nondimensional function F(Da,Pe), and thus the motor velocity for all Damköhler

numbers, including the limit as Da → ∞, and all values of β. The Péclet number — the

ratio of osmotic velocity to diffusion D/(a+b) — that arises in the small and large β regimes

is also examined.

3.5.2.1 Small departures from equilibrium (slow reaction)

At Pe = 0 the free motor simply reduces to the fixed motor problem discussed in Section

3.5.1 with osmotic force shown in Figure 3.5. Here we examine the microstructural defor-

mation for the free motor at small Damköhler numbers, where diffusion dominates over the

speed of reaction, in order to obtain a solution of the osmotic velocity under these condi-

tions. This slight deviation from equilibrium enables us to calculate the pair-distribution

function via a perturbation series expansion in Da, similar to the one employed for the

microstructure in the fixed motor problem. The O(Da) perturbation turns the advection-

diffusion Eq. (4.10) into Laplace’s equation and its general solution is given by (3.39). Like

in the fixed motor problem, to fully represent the microstructure, the coefficients Am must

be determined from the corresponding boundary conditions. Now all the coefficients are

functions of Da and Pe. For small departures from equilibrium (Da � 1), it is easy to

show that the first term of O(Da) for the nondimensional function F is given by

F(Da� 1, P e) =
3
8
Da− 1

3
Pe. (3.41)

Note that the first term in the right-hand side of (3.41) is identical to F(Da� 1) obtained

in the fixed motor problem (Pe = 0 case). This quantity is reduced by a dimensionless

concentration gradient of O(Pe) created by the advective flux of bath particles toward the
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motor. Clearly, Eq. (3.41) proves that the resulting osmotic force required for propul-

sion is less than the one created by the fixed motor, an observation expected for all Da.

Substituting Eq. (3.41) into the implicit formula for Pe (3.23), we obtain

Pe =
3
8βDa
1
2β + 1

. (3.42)

This shows that for small β, the Péclet number scales as Pe ∼ βDa. Near equilibrium,

the osmotic velocity is linear in Da: U ∼ nbDa(a + b)2Da = nbb(a + b)2κ. In the limit as

β →∞ (large motors), Eq. (3.42) reduces to Pe = 3
4Da, giving the motor velocity U = 3

4κ,

which is independent of bath particle concentration and particle size.

3.5.2.2 Scaling behavior in the limit as Da→∞ (fast reaction)

In the opposite (high Da) limit, the concentration of bath particles on the reactive surface

is zero (g = 0). On the passive half of the motor the boundary condition becomes

∂g

∂r
+ Peµg = 0. (3.43)

The influence of β in the free motor behavior is the following. In the case of β � 1, we found

that the dimensionless function F(Da→∞, P e) is independent of β. This suggests that Pe

is linear in β at low β and high Da. Thus, the motor velocity becomes U ∼ nbDa(a+ b)2.

We proceed to examine the case of the dual limits: Da→∞ and β →∞. These limits

represent the theoretical case where the motor moves the fastest (high Pe). Indeed, we

mentioned earlier that the motor cannot move faster than the diffusive velocity of the bath

particles D/(a + b). Surprisingly, this is not the case in the dual limits: the motor moves

faster and faster as β is increased. This apparent conflict is resolved by investigating the



78

microstructural deformation surrounding the motor and the scaling arguments present in

these two limits (high Da and β). Bath particles can not accumulate in front of the motor

because they are rapidly consumed by a thin region of zero bath particle concentration

created by the diffusion-limited reaction. The fast moving motor leaves behind a long

depleted wake into which bath particles diffuse from the sides. Although finding bath

particles near and at the passive surface is improbable, there still is a region downstream

of µ = 0 where g > 0. Most importantly it is the disappearance of this region or jump in

concentration that occurs near µ = 0 that controls the velocity of the motor.

On the reactive portion, there is radial boundary layer of thickness δ ∼ O(Pe−1(a+ b)).

In this region the boundary layer looks locally planar, and gradients along the boundary

layer are small compared with those across it. Radial diffusion balances the perpendicular

component of advection, giving an approximate equation

∂2g

∂Y 2
= −µ ∂g

∂Y
, (3.44)

where Y = Pe(r − 1) is a coordinate perpendicular to the surface of the motor. This has

solution g = 1− exp(−µY ), only valid in the region 0 < µ ≤ 1.

The boundary-layer solution breaks down when µPe ≤ O(1) because there are rapid

variations in µ. We have also studied the behavior near µ = 0 and there are two regions:

µPe ∼ O(1) and Pe(r − 1) ∼ O(1). Here we have diffusion in both radial and µ directions

with advection only in the µ direction, giving an approximate equation

∂2g

∂Y 2
+
∂2g

∂s2
= −∂g

∂s
, (3.45)

where s = µPe is a coordinate parallel to the surface of the motor. The solution of Eq.
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(3.45) must match g ∼ 1 − exp(−sY/Pe) as s → ∞ and g ∼ 1 as s → −∞. Since

this is only over a region of O(Pe−1) about µ = 0, this gives a contribution to the integral∫
gµdµ ∼ O(Pe−2). Similar scaling arguments at high Pe are observed in the microrheology

problem discussed by Squires and Brady (2005) and Khair and Brady (2006).

But there appears to be a larger region downstream of µ = 0 where µPeα ∼ O(1) and

Peδ(r − 1) ∼ O(1) in which there is diffusion in the radial direction and advection in both

radial and µ directions. In this region it seems that g will be O(1) at contact and since

this is over the region µdµ ∼ O(Pe−2α), it dominates over the region above. At first, it is

unclear how this region scales with Pe (the values of α and δ, specifically). One may predict

the exponents α and δ by a boundary-layer analysis of the Smoluchowski equation in the

limit Pe→∞. We propose a new set of spatial coordinates for this region: t = µPeα and

z = Peδ(r − 1). These are then substituted into the boundary condition at contact (3.43),

giving

Peδ
∂g

∂z
+ Pe1−αtg = 0. (3.46)

Clearly, this equation states that δ = 1− α in order to balance radial diffusion with radial

advection at contact. A second and final condition can be obtained by substituting the

angular and radial transformations into Eq. (3.18), and finding the right balance among

the dominant contributions:

Pe2δ
∂2g

∂z2
= −

(
Pe1−α+δt

∂g

∂z
+ Pe1+α∂g

∂t

)
. (3.47)

Thus, the second condition is 2δ = 1 + α. After solving these two equations with two

unknowns, the theoretical values for the two exponents are given by α = 1/3 and δ = 2/3.
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Figure 3.6: High-Pe microstructural deformations. An advection-diffusion boundary layer
of width ∼ (a + b)Pe−1 forms at high Pe near the reactive surface, within which the
deformation is g = 0. The upstream microstructure is unchanged (g = 1) outside of the
boundary layer, and a wake with no bath particles (g = 0) trails the motor. There is also a
small region downstream of µ = 0, where Pe1/3µ ∼ O(1) and Pe2/3(r − 1) ∼ O(1). In this
region, g ∼ O(1).

The governing Eq. (3.47) reduces to

∂2g

∂z2
= −

(
t
∂g

∂z
+
∂g

∂t

)
. (3.48)

The general solution of (3.48) must match g ∼ 1− exp(−tz) as t→∞ and also be bounded

by (3.46) in the zone −∞ < t < 0 at z = 0. The region µdµ is then O(Pe−2/3). Since

we know that β ≈ −Pe/
∫
gµdµ, we now know that

∫
gµdµ goes like Pe−2/3. Thus, the

product β ≈ −Pe5/3/
∫ 0
−∞ g(0, t)tdt, resulting in Pe ∼ β3/5 as β → ∞. A picture of the

various regions formed at high Pe near the osmotic motor is shown in Figure 3.6.
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Figure 3.7: Sample finite difference grid in (transformed) spherical coordinates r, µ. Here,
there are 60× 60 grid points. The computational domain is the entire Cartesian [x > 0, z]
half space.

3.5.2.3 Arbitrary Da

The perturbation analysis presented in section 3.5.2.1 provides information on the mi-

crostructural deformation in the case of small departures from equilibrium. Attempting

to continue the expansion to higher orders in Da to find the right scaling conditions in this

limit is unwise. Numerically, solving the advection-diffusion equation accurately at high Da

and β is a demanding task as well. The main challenge is to capture the pair-distribution

function at and near contact whilst maintaining sufficient resolution in the far-field to rep-

resent the growing wake region behind the free motor. A finite difference scheme is used

which accurately captures the action near the reactive surface, near µ = 0, and near the

passive surface. This is accomplished by implementing a grid spacing that decreases in a

geometric progression towards areas of large bath particle concentration gradients. The

numerical method distributes on a two-dimensional grid a dense collection of nodes close

to µ = 0, where the transition between reactive to passive surfaces gives large gradients in

bath particle concentration. As Pe increases, one requires a greater number of grid points
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Figure 3.8: Pair-distribution function at contact for the free motor as a function of θ at
β = 10 for various Da. The resulting Péclet number is included for each curve. The reactive
and passive sides are located from 0 to π/2 and π/2 to π, respectively.

closely packed near contact (r = 1) and distributed sparsely far from the motor for the

method to represent the properties of the suspension correctly. A typical grid discretization

is shown in Figure 3.7.

In the limit as Pe→∞ (a consequence of fast reactions and high β), the pair-distribution

function at contact is zero, except in a small region downstream of µ = 0, where there is a

slight jump in bath particle concentration mainly caused by the diffusion of bath particles

perpendicular to the direction of motion, resulting in F(Da,Pe) → 0. For this case, we

have assured in this region a numerical resolution (grid spacing) in the µ and r direction

such that Pe1/3∆µ < 1 and Pe2/3∆r < 1, respectively. Note that this criteria is based on

the scaling arguments presented in Section 3.5.2.2 for the limit at high Da and β. Further

details of finite difference methods can be found in LeVeque (2007).

In Figure 3.8 we plot the contact value for the pair-distribution function as a function
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Figure 3.9: Pair-distribution function at contact for the free motor as a function of θ at
Da = 10 for various β. The resulting Péclet number is included for each curve. The reactive
and passive surfaces are located from 0 to π/2 and π/2 to π, respectively.

of the polar angle θ (scaled by π) for β = 10 and several Da resulting from the numerical

solution. As expected, the pair-distribution function near the reactive surface (0 < θ < π/2)

decreases for increasing Da. On the passive side (π/2 < θ < π), the pair-distribution

function also decreases due to the motion of the motor, which leaves behind bath particles.

In Figure 3.9 we show the pair-distribution function at contact as a function of the polar

angle θ (scaled by π) for Da = 10 plotted for various β. Keeping Da constant and increasing

β results in an increased concentration of bath particles on the reactive side, and a decreased

concentration of bath particle on the passive side. For comparison, the pair-distribution

function at contact that resulted for the fixed motor is included in the Figure 3.9. Also

shown on the plots are the resulting Péclet numbers corresponding to the motor velocities.

Physically, on the reactive side there is an inward radial flux of bath particles from upstream

towards the motor (in a frame moving with the motor) due to advection by the relative
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Figure 3.10: The motor velocity U scaled nbDa(a+ b)24π/3 plotted against Da for various
values of β. The theoretical predictions (curves) are compared with Brownian dynamics
(BD) simulations (symbols).

velocity. At finite Da, this flux of particles is hindered (or neutralized/partially consumed)

by the surface reaction, resulting in an increased probability of finding a bath particle in

close proximity to the motor as β is increased. On the other hand, in the passive side, the

action of the relative velocity is to advect bath particles away from the motor, resulting in

a decrease in the probability of finding a bath particle in this region. The resulting pair-

distribution function at contact enables us to compute F(Da,Pe), thus simultaneously

determining the Péclet number.

Figure 3.10 shows the results for the motor velocity U as a function of Da from the

numerical method. The curves in Figure 3.10 correspond to increasing β. Simulation

results are also included in the figure for same values of β. We show also, for comparison,

the hypothetical (and nonphysical) osmotic velocity obtained by balancing the fixed motor

force with Stokes drag force. The motor velocity has been made nondimensional by the
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Figure 3.11: The resulting Péclet number Pe as a function of Da for various values of β

relative diffusive velocity of the bath particles, Ubath = D/(a+ b), and the fraction of bath

particles in the motor volume, φ = nb(a + b)3 4π/3. In contrast to the fixed motor, the

scaled motor velocity now depends on the size ratio a/b and on the bath particle volume

fraction φb, but it continues to be independent of the chosen time step ∆t in the simulations.

The scaled motor velocity decreases with increasing β, showing that the advection of bath

particles indeed disturbs the bath particle concentration gradient needed for propulsion. At

small Da, the motor velocity curves are linear in Da agreeing with the analytical solution

obtained for all β in Section 3.5.2.1. In the limit of high Da and intermediate values of β,

the figure shows that all curves approach asymptotic values independent of Da, thus the

motor velocity saturates and simply scales as U ∼ nbDa(a+ b)2.

The Péclet number Pe as a function of Da for various β is plotted in Figure 3.11. It

shows again for Da� 1, that Pe ∼ O(Da), while in the limit as Da→∞ and finite β, the

motor velocity saturates, implying that Pe→ Pemax ∼ O(1), where Pemax is a maximum
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Figure 3.12: The maximum contact value of the pair-distribution function, gmax, as a
function of Pe in the limit Da→∞

Péclet number independent of the speed of reaction. Thus the motor velocity scales as

U ∼ D/(a + b). However, for extremely high β the Péclet number scales as Pe ∼ Da3/5,

showing that the motor velocity scales as U ∼ D/(a + b)(κ(a + b)/D)3/5 = (Da/b)5/2κ3/5.

Thus, the Péclet number diverges as Da→∞. Initially we suggested in the limit Pe→∞,

g ∼ O(1) in the small region downstream of µ = 0. To resolve this question, we plot in

Figure 3.12 the maximum contact value of the pair-distribution function, gmax, as a function

of Pe in the limit as Da→∞. The plot shows that g is in fact O(1) in the limits of small

and large Pe, corresponding to slow and fast motor velocities, respectively.

In Figure 3.13 we examine the influence of β on Pe for various Damköhler numbers

(complementary behavior of Figure 3.11). In the limit of large motors, β → ∞, there also

exists a maximum Péclet number, Pemax, independent of bath particle concentration and

particle size for any finite Da. Each asymptotic value represents the saturation between

the motor velocity and the diffusive speed of bath particles, U ∼ D/(a+ b). At saturation,
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Figure 3.13: The resulting Péclet number Pe as a function of β for various values of Da

no matter how many additional bath particles are added to the suspension, the number

of collisions between each side of the motor remains unchanged. We now investigate the

influence of the product β on the Péclet number in the limit as Da → ∞ also plotted in

Figure 3.13. Although in the high-Da limit all bath particles colliding with the reactive

surface are consumed (total microstructural deformation, f = −1), the self-created bath

particle concentration gradient is limited by the advective flux of bath particles toward the

reactive side and away from the passive side. This plot shows that the proposed scalings

for Pe in the limit as Da → ∞ are correct: the scaling condition for the Péclet number

at small β is Pe ∼ β and in the limit as β → ∞ it is Pe ∼ β3/5. When β � 1, the

advective flux of bath particle is weak, thus the motor velocity scales linearly with β:

U ∼ nbb(a + b)2D/(a + b). On the other hand, in the limit as β → ∞, the motor velocity

becomes U ∼ n
3/5
b (a + b)6/5D/(a + b). The transition from weak to strong advection

(observed at the change in slope) in the limit as Da → ∞ is near β ≈ 1 and Pe ≈ 1.
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Figure 3.14: Density profiles in the symmetry plane of the osmotic motor at Da = 10. From
left to right: Top row: Pe = 0 (β = 0), Pe = 0.281 (β = 0.8), Pe = 1.058 (β = 5); second
row: Pe = 1.967 (β = 20), Pe = 2.348 (β = 39.2), Pe = 3.00 (β = 2040.2). Red is low bath
particle probability density and blue is the uniform level far from the motor. The right half
of the motor is reactive and its motion is from left to right.

In conclusion, the combined scaling condition for the Péclet number at high Da and β is

Pe ∼ (βDa)3/5.

Figure 3.14 shows density plots of the pair-distribution function about the motor at the

same Damköhler number, Da = 10, but for different values of β. Also shown on the plots are

the resulting Péclet numbers corresponding to the motor velocities. As the Péclet number

increases, the advection of the bath particles past the motor distorts the bath particle

concentration, shrinking the bath-particle-depleted region in front of the motor and leaving

a trailing “wake” of reduced bath particle concentration. At even modest motor velocities

(modest Pe), most of the rear of the motor has a very low bath particle concentration, which

reduces the osmotic force and thus limits the speed of the motor. As shown above, this

self-regulation results in a maximum motor velocity not greater than the diffusion velocity

of the bath particles Umax ∼ Ubath, unless the motor is subject to the dual limits as β →∞
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and Da→∞ where Pe diverges and the motor moves infinitely fast.

In the next sections, we have assumed, for simplicity, that sDR/DP = 0 (e.g., consump-

tion of reactant particles, fast diffusion of product particles). However, for the fixed motor

problem, the osmotic force can be scaled by (1 − sDR/DP ) to account for other reaction

stoichiometries and reactant/product diffusivities.

3.6 Scale-up to higher bath particle concentrations: relaxing

ideal gas assumption

Another important aspect to consider is the excluded volume interactions among the bath

particles — that is, relaxing the ideal gas assumption. This is a challenge for analytical

modeling, but can easily be incorporated in BD simulations. It is not immediately obvious

whether this effect will enhance or decrease the osmotic force. Although we have considered

the ideal case of a suspension of hard-spheres, previous work in microrheology (Squires and

Brady 2005; Carpen and Brady 2005) has shown that the results for such a model can be

scaled up to predict the behavior of concentrated dispersions. It is desirable to obtain an

universal curve that is independent of φb (if possible), as this would eliminate the necessity

of making measurements at different bath particle volume fractions. In this section, we

follow the reasoning proposed in microrheology to offer suggestions as to how our results

may be extended to higher bath particle concentrations.

At small Pe, Brady (1994) showed that the microviscosity is inversely proportional to

the long-time self-diffusivity Ds
∞. Further, Brady (1994) proposed a simple model for Ds

∞:

Ds
∞ ' Ds

0[1 + 2φbgeq(1;φb)]−1, (3.49)
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whereDs
0 is the short-time self-diffusivity, which in the absence of hydrodynamic interactions

is just the isolated particle Stokes-Einstein-Sutherland diffusivity D, and geq(1;φb) is the

equilibrium value of the pair-distribution function at particle-particle contact, which can

be found from the Carnahan-Starling equation of state for hard-spheres (Carnahan and

Starling 1969):

geq(1, φb) =
1− 1

2φb

(1− φb)3
, (3.50)

and it is only valid for φb ≤ 0.50. At high φb, the long-time self-diffusivity behaves as

Ds
∞/D

s
0 ∼ [φbgeq(1;φb)]−1. This expression is valid when the motor and bath particles are

comparable in size.

The inclusion of the excluded volume interactions among the bath particles increases the

number of collisions between the motor and bath particles. Physically, the term φbg
eq(1;φb)

that appears in (3.49) gives the number of particles contacting the motor. We shall use this

as our scaling for the osmotic force, suggesting F osm ∼ kTnbg
eq(1;φb)(a+ b)2F(Da). The

motor velocity is just the force times the mobility of the motor, so the same scaling is

applicable. In addition to scaling the force and the velocity for the fixed and free motor,

respectively, we must also consider scaling the Damköhler number, which was defined based

on the speed of reaction κ and Brownian speed D/(a+b), and may therefore also be affected

by the volume fraction. The time scale for the microstructural response is inversely pro-

portional to the concentration-dependent long-time self-diffusivity τ ∼ (a+ b)2/Ds
∞. From

our previous discussion, the Brownian speed scales as Dr
∞(φb)/(a+ b), thus the appropriate

Damköhler number is Da = κ(a + b)/Dr
∞, where Dr

∞ is the relative diffusivity at long

times. (For the fixed motor case, Dr
∞ is simply the long-time self-diffusivity of the bath

particles). We define the scaled Damköhler number by Da∗ ∼ Da[1 + 2φbgeq(1;φb)]. Now,
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Figure 3.15: The osmotic force scaled by kTnb(a+ b)24π/3 as a function of Da. The dilute
theory (solid line) is compared to Brownian dynamics (BD) simulations (symbols) relaxing
the ideal gas assumption for various φb. All particles in the suspension have same size and
the simulation time step is ∆t = 0.001.

the nondimensional function F(Da∗) depends on Da∗.

We also examine the resulting scaling for Pe, which now is based on the motor velocity

U and relative Brownian speed Dr
∞/(a + b). The proposed “scaled” motor velocity is

given by U ∼ Dr
∞/(a+ b)βgeq(1;φb)F(Da∗, P e∗), where the scaled Péclet number becomes

Pe∗ ∼ βgeq(1;φb)F(Pe∗, Da∗). Note that Pe∗ and Da∗ in the function F(Pe∗, Da∗) are

their scaled representations to account for higher bath particle concentrations. At low Pe,

the dimensionless function F(Pe∗, Da∗) is independent of Pe, thus Pe∗ ∼ Pegeq(1;φb). At

high Pe, where the motor moves very fast, since the action is in the boundary layer there

should be no scaling for the diffusivity. Thus, the Péclet number is independent of φb at

high Pe (and Pe∗ ∼ Pe). Additional details and suggestions to scale-up the dilute theory

to higher bath particle concentrations can be found in Squires and Brady (2005).
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Figure 3.16: The osmotic force scaled by kTnbg
eq(1;φb)(a + b)24π/3 as a function of the

scaled Damköhler number Da∗ = Da[1 + 2φbgeq(1;φb)]. The dilute theory (solid line) is
compared to scaled Brownian dynamics (BD) simulations (symbols) relaxing the ideal gas
assumption for various φb. All particles in the suspension have same size and the simulation
time step is ∆t = 0.001.

BD simulations relaxing the ideal gas assumption were performed. Figure 3.15 shows

the osmotic force resulting from BD simulations made nondimensional by kT/(a + b)φ for

various bath particle volume fractions compared to the dilute theory as a function of the

Damköhler number, Da. The symbols in the figure are independent of the simulation time

step ∆t. At low φb, the simulation results are in good agreement with the dilute theory as

expected. But as φb is increased, the simulation results deviate away from the theory. The

scaled results based on the proposed ideas are shown in Figure 3.16, where now the osmotic

force is scaled by kT/(a+ b)φgeq(1;φb) and plotted against the scaled Damköhler number,

Da∗. The plot shows that the ideas proposed to scale up the theory to higher bath particle

concentrations are in close agreement with the simulation results. Indeed, the BD results do

not perfectly overlap with the theory at high Da as observed for the “dilute limit” results
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in Figure 3.5; however, the results are of the same order.

The above arguments apply equally well for the motor velocity, however, it is based

on ideas that may only be valid when the motor and bath particles are comparable in

size; outside this range other estimates may apply and (3.49) should be used with caution

for large size ratios (or high β). The present scale-up conditions are only intended to be

suggestions based on reasonable assumptions and previous works in microrheology (Squires

and Brady 2005) rather than exact analytical modeling, which could be done for future

investigations.

3.7 Fluctuations

When the osmotic motor is much larger than the typical length scale of the surrounding

medium, the force fluctuations induced by the surrounding suspension may not be notice-

able. However, if the motor size is comparable to the medium length scale, such fluctuations

are important and can be considered as a type of noncontinuum effect. The work described

above was intended to measure the steady (or mean) motion of the motor. The “steady”

force it can exert may be much less then the peak fluctuating force, and the peak force may

be all that is necessary to cause some desired action. Since the osmotic force arises from

random collisions between the motor and bath particles, the motor experiences a fluctuating

force and, in some cases, these fluctuations may provide a more important role than the

averages, as in the case for living cells, heterogeneous colloidal systems, and nanotechno-

logical applications. Surface reactions on colloidal particles not only provide an alternative

for propulsion, but also could contribute by inducing/reducing and controlling these fluc-

tuations for desirable purposes. Here we investigate the force and velocity fluctuations for

the fixed and free motor, respectively, and their dependence on the Damköhler number Da
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and β. The osmotic force fluctuates both in the direction of net force and in the transverse

directions. Similar fluctuations are expected for the velocity of the moving motor.

With the N -particle distribution function PN any statistical quantity may be calculated.

Here, we examine the fluctuations about the mean. The force increment for a particular

microstructural configuration is given by

∆F = −kT∇ lnPN . (3.51)

As calculated in previous sections, an average gives the ensemble-averaged relative force

increment. The difference between the force increment due to a particular microstructure

and the average increment is given by

∆F ′ = ∆F − 〈∆F 〉, (3.52)

and fluctuations follow from the mean-square force variation,

〈∆F ′∆F ′〉 = 〈∆F 2〉 − 〈∆F 〉2. (3.53)

For dilute systems, the term 〈∆F 〉2 from the right-hand side can be neglected because it is

of O(φ2
b). Nondimensionalizing, we obtain

〈∆F ′∆F ′〉 = −
(
kT

b

)2

φb

(
1 +

a

b

) 3
2

∫ ∞
r=1

∫ 1

−1

∇g∇g
g

r2drµdµ. (3.54)

Before determining the fluctuations, we discuss briefly their scaling. For small Da

numbers, g ∼ O(1) and ∇g ∼ O(Da), giving an O(Da2) integral: the force fluctuations
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scales as 〈∆F ′∆F ′〉 ∼ (kT )2nb(a + b)Da2 = nb(a + b)3(6πηbκ)2. In the large-Da limit,

g = 0 on the reactive surface and g ∼ O(1) elsewhere. Thus, ∇g ∼ O(1), giving an O(1)

integral and 〈∆F ′∆F ′〉 ∼ (kT )2nb(a+ b).

For the free motor case, we compute the velocity fluctuations by transforming the force

into velocity via Stokes drag. Thus, the nondimensional velocity fluctuations are given by

〈∆U ′∆U ′〉 = −
(
kT

6πηa

)2 1
b2
φb

(
1 +

a

b

) 3
2

∫ ∞
r=1

∫ 1

−1

∇g∇g
g

r2drµdµ. (3.55)

For finite β the integral in (3.55) scales similar to the force fluctuations: at small Da,

∇g ∼ O(Da) and g ∼ O(1), giving an O(Da2) integral; and in the limit as Da→∞, ∇g ∼

O(1) and g ∼ O(1), resulting in an O(1) integral. Thus, for slow reaction 〈∆U ′∆U ′〉 ∼

D2
anb(a+ b)Da2 = (Da/D)2nb(a+ b)3κ2, while as Da→∞ the velocity fluctuations scales

as 〈∆U ′∆U ′〉 ∼ D2
anb(a + b). Now, for finite Da the integral in (3.55) is O(1) in both

low and high β limits, thus 〈∆U ′∆U ′〉 ∼ D2
anb(a + b). In this case the motor experiences

diffusion, and D is the relative (motor and bath) diffusivity, while for the fixed motor, D is

simply the bath particles diffusivity.

In the absence of external forcing and non-uniform reaction at the motor surface, the

theory predicts 〈∆F ′∆F ′〉 = 0 as expected. It is important to comment that as nb → 0,

when collisions are infrequent due to the high separation between particles, the fluctuations

tend to zero. In contrast, the fluctuations increase in the same way the motor becomes

larger by the fact that more bath particles can collide with the surface of the motor.

From Eq. (3.54) and (3.55), the parallel and perpendicular components of the force and

velocity fluctuations are calculated, respectively. The nondimensional force fluctuations

as a function of Da are shown in Figure 3.17. Here, 〈∆F||∆F||〉 is the fluctuation in the
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Figure 3.17: The osmotic force fluctuations on the fixed motor scaled by 3/2(kT/b)2φb(1 +
a/b) plotted against Da: 〈∆F||∆F||〉 is the fluctuation in the force component parallel to
the net force; 〈∆F⊥∆F⊥〉 is the fluctuation in the force component transverse to the net
force.

force component parallel to the direction of the osmotic force, given by 〈∆Fz∆Fz〉, and

〈∆F⊥∆F⊥〉 is the fluctuation in the force component transverse to the direction of the

osmotic force. In the case of the transverse fluctuations, there is an additional average over

the two identical transverse directions, i.e., 〈∆F⊥∆F⊥〉 = (〈∆Fy∆Fy〉+〈∆Fx∆Fx〉)/2. The

increasing anisotropy with increasing Da is clear in Figure 3.18, which shows the ratio of

parallel to perpendicular force fluctuations, 〈∆F||∆F||〉/〈∆F⊥∆F⊥〉 as a function of Da.

Both low and high Da give the force fluctuations ratio independent of Da. At high Da,

there is a decreased probability of collisions on the reactive surface on the front of the motor.

Although these will contribute to the parallel fluctuations, they will mainly contribute to

perpendicular fluctuations — reaching an O(1) asymptote in the limit as Da→∞.

Naturally, for the free motor we expect the same behavior for the velocity fluctuations

plotted against Da at β = 0 (Pe = 0). In this case, 〈∆U||∆U||〉 is the fluctuation in
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Figure 3.18: The ratio of parallel to perpendicular force fluctuations 〈∆F||∆F||〉/〈∆F⊥∆F⊥〉
for the fixed motor plotted against Da

the velocity component parallel to the direction of motion and 〈∆U⊥∆U⊥〉 is the fluctu-

ation in the velocity component transverse to the direction of motion, which is given by

〈∆U⊥∆U⊥〉 = (〈∆Uy∆Uy〉+ 〈∆Ux∆Ux〉)/2. The nondimensional parallel and perpendicu-

lar components of the velocity fluctuations as a function of Da for various β are shown in

Figures 3.19 and 3.20. For small Da, the nondimensional velocity fluctuations are O(Da2)

independently of β. At high Da, the fluctuations are independent of Da as predicted. The

ratio 〈∆U||∆U||〉/〈∆U⊥∆U⊥〉 is plotted in Figure 3.21 as a function of Da for the same

values of β. In contrast with the solution at β = 0 (included in the figure for comparison),

the ratio at small Da decreases as β is increased due to the increment in advective forces

(increasing directed motion). At high Da, the ratio increases for increasing β. The velocity

fluctuations are more prominent in the parallel component because no bath particles are

found at the surface at high Pe except in the region near µ = 0 described earlier where

g ∼ O(1).
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Figure 3.19: The free motor velocity fluctuation in the velocity component parallel to the
net motion 〈∆U||∆U||〉 scaled by 3/2(Da/b)2φb(1+a/b) plotted against Da for various values
of β

The nondimensional parallel and perpendicular velocity fluctuations as a function of

β for low and high Da are investigated in Figure 3.22. The plot shows that both the

nondimensional parallel and perpendicular velocity fluctuations are O(1) at small and high

β, independently of Da. Figure 3.23 shows the ratio 〈∆U||∆U||〉/〈∆U⊥∆U⊥〉 as a function

of β for various Da. For the values considered in this figure, note that at high β the

ratio decreases as Da is increased. This information combined with Figure 3.21 suggests

a more complete picture: for increasing Da the velocity fluctuations ratio increases, which

is a consequence of having zero bath particle concentration at contact that exists at high

Pe except in a region downstream of µ = 0 that contributes with bath particle collisions

perpendicular to motion. It is clear from the figures that the ratio is independent of β in

the limit of low and high (but finite) Da.
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Figure 3.20: The free motor velocity fluctuation in the velocity component perpendicular to
the net motion 〈∆U⊥∆U⊥〉 scaled by 3/2(Da/b)2φb(1 + a/b) plotted against Da for various
values of β
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Figure 3.21: The ratio of parallel to perpendicular velocity fluctuations
〈∆U||∆U||〉/〈∆U⊥∆U⊥〉 for the free motor plotted against Da for various values of
β
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Figure 3.22: The motor velocity fluctuations scaled by 3/2(Da/b)2φb(1+a/b) plotted against
β for various Da: 〈∆U||∆U||〉 is the fluctuation in the velocity component parallel to the
net motion; 〈∆U⊥∆U⊥〉 is the fluctuation in the velocity component transverse to the net
motion.
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Figure 3.23: The ratio of parallel to perpendicular velocity fluctuations
〈∆U||∆U||〉/〈∆U⊥∆U⊥〉 for the free motor plotted against β for various values of
Da
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3.8 Efficiency

It is relevant to ask how efficient the osmotic motor is. Energy conversion efficiency is

the ratio between the useful output (mechanical work) of an energy conversion machine

and the input, in energy terms. Energy conversion efficiency is not defined uniquely, but

instead depends on the usefulness of the output. We suggest below an interpretation for

the efficiency of conversion of chemical energy (free energy in this case) into motion via the

dissipation of mechanical energy.

For ideal gas particles the amount of free energy of the suspension that changes if an

additional particle were introduced is just the chemical potential given by

µ = µ0 + kT ln g, (3.56)

where µ0 is a reference value. Thus, the change in chemical potential of a reactant relative

to its equilibrium probability density is ∆µ = kT ln g. In particular, at the motor surface

the change in chemical potential is ∆µ = kT ln g(r = 1). The rate at which the reactants

supply free energy is therefore (n · j)∆µ. The total rate of free energy supplied is

Ȧ =
∮
r=a+b

n · j∆µdS = −
∫
r=a+b

∇ · (j∆µ)dV +
∮
r=a+b

n · j∆µdS

= −
∮

n · j∆µdS, (3.57)

since ∇ · j = 0 at steady state. At the motor surface we have the flux boundary condition

n · j = −RR, so that (3.57) becomes

Ȧ =
∮
r=a+b

RR∆µdS. (3.58)
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This is the entropy production, which is appropriate for an ideal gas. And there will be a

similar expression for the products if created. For a first-order reaction rate, RR = κnbg,

the free energy production is defined as

Ȧ = kTnb (a+ b)2 2πκ
∫ 1

−1
g(r) ln g(r)h(µ)µdµ, (3.59)

where the radial coordinate was nondimensionalized by the contact distant a+ b.

Now, the motor has a net osmotic force exerted on it by the reactants given by F osm =

−kTnb
∮

ng(r)dS. From this force, the motor will have a Stokes velocity U = F osm/(6πηa).

Thus, the rate of energy dissipation Φ is defined as

Φ = U · F osm =
1

6πηa
(F osm)2 =

kT

6πηa

(
2πnb (a+ b)2

)2
[∫ 1

−1
g(r)µdµ

]2

. (3.60)

We define an efficiency of conversion of free energy into mechanical motion via the dissipa-

tion of mechanical energy by

ξ =
Φ
Ȧ

=
β

Da

3
2

(∫ 1
−1 g(r)µdµ

)2

∫ 1
−1 g(r) ln g(r)h(µ)µdµ

. (3.61)

In Figure 3.24 we plot the efficiency of the fixed motor scaled by β as a function of

Da (solid line). Earlier, we described that at small Damköhker numbers, where Brownian

diffusion dominates over reaction, the microstructure deviates slightly from its equilibrium

state proportional to Da enabling us to represent the pair-distribution function into a series

expansion up to O(Da), given by g = 1+Daf . Substituting this two-term expansion into the

efficiency formula (3.61), it is easy to show that the integral in the numerator is O(Da2) and

the integral in the denominator is O(Da). Thus, the efficiency is linear in β and independent
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Figure 3.24: The motor efficiency scaled by β as a function of Da for various intermediate
values of β

of Da in the limit as Da → 0: ξ ∼ β, as observed in Figure 3.24. In the opposite limit

of high Da, the pair-distribution function scales as g(1) ∼ 1/Da; therefore, the integral in

the numerator is O(1) and that in the denominator is O(Da−1 lnDa). Consequently, the

efficiency of the fixed motor is ξ ∼ β/(lnDa), which decays to zero as Da→∞. It is evident

from these scaling arguments that the most efficient fixed motor (under the proposed energy

conversion) is one that operates with slow reactions and that the most inefficient fixed motor

is in the limit as Da→∞.

Also in Figure 3.24, we plot the efficiency of the free motor scaled by β as a function

of Da for various β. The plot shows that the scaled motor efficiency decreases as β is

increased, which is caused by the increment in advection (increasing Pe). Figure 3.25 is a

plot of the free motor efficiency scaled by β as a function of β for various Da. For small Da,

the efficiency behaves similar to the fixed case that is ξ ∼ β, which is independent of the

speed of reaction. But this is only reached if βDa� 1 so that Pe� 1. We have shown that
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Figure 3.25: The motor efficiency scaled by β as a function of β for various Da

for any finite Da, no matter how large, there is a Pemax observed in the limit as β → ∞.

This means that
∫
gµdµ must go as 1/β. The denominator in (3.61) has g(1) ∼ 1/Da where

the reaction occurs and h(µ) is zero elsewhere. Thus the integral in the denominator goes

as 1/(Da lnDa). Combining this together we have ξ ∼ 1/(β lnDa) for β � 1 and Da� 1.

The efficiency goes to zero as Da → ∞, which is true for all β. The maximum efficiency

for the free motor is observed at small Da and β, ξ ∼ β.

Implications of this efficiency formula for other mechanisms involving chemically induced

motion is unclear and further studies are needed, although this provides an exploitable and

interesting perspective on how the motor could take advantage of its reaction speed and the

surrounding microstructure properties to maximize the energy conversion.
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3.9 Conclusions and discussion

The work presented in previous sections attempts to offer a theoretical framework for the

osmotic motor. The core of our approach involves determining the reaction-induced per-

turbation to the suspension microstructure in order to calculate the driving force on the

motor, from which the motor velocity is determined via application of Stokes drag law. We

have derived an equation for the microstructure and solved it in the simplest limiting case of

hard-sphere interactions in the absence of hydrodynamic interactions and rotational motion.

The model was restricted to the limit where bath particles do not interact with each other

and therefore behave as an ideal gas. Whilst being sufficiently simplistic to allow analytical

and numerical analysis, the model nevertheless exhibits significant non-trivial properties. In

addition to the theory, we developed a Brownian dynamics (BD) simulation that provided

a means of verifying our theoretical results and also suggested ideas to scale up the dilute

theory to higher bath particle concentrations. We examined two scenarios for the osmotic

motor: one, in which the motor is held fixed by an external force F ext, and another where

it is free to move.

Once the microstructural perturbation is known, relevant statistical quantities can be

computed. We have calculated the fixed motor force for all values of Damköhler number, Da,

bath particle volume fraction, φb, motor/bath size ratios, a/b, and stoichiometry/diffusivity

factors, (1−sDR/DP ). This results in a universal curve, onto which we expect a wide range

of measurements will collapse. We showed that BD simulations agree with the theoretical

predictions proving that the proposed simple formula for the reaction probability, Ps, is ap-

propriate for the values considered in this work. For small perturbations to the microstruc-

ture, we found the osmotic force is linear in the Damköhler number Da. In the limit of
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high Da, the force saturates and simply scales as F osm ∼ nRkBT (a+b)2(1−sDR/DP ). We

found this force to be large compared to typical colloidal forces indicating that this mecha-

nism could be useful for self-propulsion (or for pumping fluids). It was shown that when the

motor is set free, it moves rapidly toward the self-created low bath particle concentration

region (g � 1) located near the reactive surface. Eventually (almost instantaneously) the

motor catches up with bath particles reducing the gradient in bath particle concentration.

Thus, the osmotic force is balanced by the viscous force acting on the moving motor.

For the free motor case, we assumed that the stoichiometry value s is zero, which

simplifies greatly the governing equations. This assumption is unnecessary in the limit

of small Péclet numbers, i.e., the fixed motor, and in the limit of large Péclet numbers

where the effects of advection are the same for the reactants and products. The effect of

nonzero sDR/DP apart from being a scalar factor in the motor velocity will be quantitative,

not qualitative. Thus, the osmotic velocity was calculated as a function of Da for various

β = φb(1+a/b)2. Also we demonstrated again that BD simulations are in agreement with the

theoretical results. In general, we showed that the physical properties of the microstructure,

a/b and φb (or the product β), directly contribute to the speed of the motor, an observation

not shared by the fixed motor problem. For small Damköhler numbers, we showed the

osmotic velocity scales as U ∼ κ. In the limit of high Da, the free motor velocity saturates

and scales as U ∼ nbDa(a + b)2. The advective flux of bath particles toward the motor

alters the bath particle probability distribution relative to the motor and consequently, the

propulsive force.

We also examined the influence of the product β on the osmotic velocity. The results in

Figure 3.10 showed that the fixed motor is the limit as β → 0 (Pe = 0) of the free motor;

the fixed motor corresponds to an infinitely dilute suspension of bath particles. This is,
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as it should be, because whether the motor is fixed or free it is just a change of reference

frame. For a fixed motor there will be an advective flux at infinity to supply reactive bath

particles to the motor. This also implies that the motor will induce a fluid flow to supply

the bath particles and can be used as a pump — a novel microfluidic pump (and mixer).

In the limit as β →∞ (very large motors) and for finite Da, the Péclet number also scales

as Pe ∼ O(1), giving the motor velocity U ∼ D/(a+ b). But at high Da and β, we found

that the Péclet number goes to infinity as Pe ∼ (βDa)3/5. In general, we observed that at

βDa� 1 the Péclet number is small (slow propulsion). In the limit of βDa� 1, advection

dominates over diffusion in the local microstructure, thus Pe is large (fast propulsion).

The reader should not be confused that these results are specific to the assumed reaction

rate (heterogenous irreversible first-order reaction) and the size of the reactive area (half-

reactive motor). Other scaling conditions and interesting features could arise for motors

with different distributions of reactive area.

For a 1-µm-sized half-reactive motor and nanometer-sized bath particles (large β) the

motor velocity U ∼ D/(a + b) is now of order 20 µm/s, a much more reasonable velocity,

and one that is in fair agreement with the motivating experiments of Paxton et al. (2004).

Although the mechanism suggested for the catalytic nanomotor is different from that for

osmotic propulsion (Paxton et al. 2006), this result shows the significance of the speed

magnitudes created by the osmotic motor for processes at nanoscale that require directed

motion.

We have proposed methods to modify this theory to account for less dilute systems.

Comparisons with measurements and (more) simulations will be necessary to determine

whether these ideas are applicable. This could be helpful to understand the disagreement

between the simulation results and the dilute theory at high Da and to extend this ideas to
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cases when the osmotic motor and bath particles are different in size. Also, we computed the

fluctuations resulting from the collisions between the motor and bath particles as a function

of the Damköhler number and the product β. It was found that the scaled fluctuations are

O(Da2) at small Da, and are independent of Da in the limit as Da → ∞. For small and

high β, we found that the scaled velocity fluctuations are independent of β. In addition, we

calculated the ratio of parallel to perpendicular fluctuations for various Da and β, giving a

better picture of how the fluctuations relate to the microstructural deformation relative to

the motor.

We have derived an expression for the efficiency of conversion of free energy into mechan-

ical energy, which measures the ability of the motor in harnessing its environment to create

useful work. For an irreversible first-order reaction rate (consumption of bath particles),

the motor efficiency ξ goes to zero as Da→∞. We found the efficiency of the fixed motor

to be independent of Da for Da � 1. For fast reactions, the fixed motor efficiency scales

as ξ ∼ β/(lnDa). On the other hand, the efficiency of the free motor also scales as ξ ∼ β

for slow reactions, but scales as ξ ∼ 1/(β lnDa) for high Da and β. Many questions arise

from investigating the motor efficiency. Can we define other types of efficiency? How does

the motor efficiency compare to other reaction-driven transport mechanisms? Is it possible

to design an osmotic motor as efficient as biological machines? There are many variables

that could be manipulated to improve the efficiency that require further analysis, such as

different portions of reactive surface on the motor and other types of reaction rate.

This work opens up many questions and future extensions for the theory and the sim-

ulations. Clearly, neither the motor nor the bath particles need to be spherical. A variety

of behaviors are possible depending on the nature of the chemical reaction at the motor

surface. We have considered only the simplest of chemical reactions, the irreversible first-
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order reaction of product particles. And simplified to consumption of reactant particles for

analytical application. How is the osmotic force modified for other chemistries? A reversible

reaction? Production of bath particles rather than consumption at the free motor surface?

What if there are enthalpic effects — specific interactions between the motor and the reac-

tive species — in addition to entropic? One obvious question to ask is what is the optimal

distribution of the reactive site on the motor surface? We considered one half of the motor

surface to be reactive. Is this the best? Or is there an optimum for a different fraction?

How does that optimum vary with the Damköhler number and the nature of the chemical

reaction? What fraction of the limiting bath particle diffusion velocity can be obtained by

a motor? Just how fast can it move?

In the analysis we have ignored the fact that a small motor will also be subject to

its own Brownian motion, and in particular its rotary Brownian motion. As the motor

rotates in response to Brownian torques the reactive side will no longer be in the same

direction and this may limit the extent of its directed motion. The time scale for the

establishment of the concentration profile about the motor is the diffusive time of the bath

particles τb ∼ a2/D. The time scale for rotary Brownian motion of the motor is its rotary

diffusivity Dr = kT/8πηa3. Thus, rotary motion of the motor will not be important as

long as τbDr ∼ b/a � 1, which is the case when the motor is much larger than the bath

particles. Thus, the work described above is restricted to this limit. If this restriction is

relaxed a large motor could travel at its osmotic velocity U for a time 1/Dr after which

it could establish a new bath particle concentration profile and travel again at U but in a

new (random) direction. Thus, for long times compared to 1/Dr the motor will undergo a

random walk with a step length U/Dr.

In addition, we neglected hydrodynamic interactions between particles which would



110

affect the motor speed. Hydrodynamics would be expected to slow the motor’s motion, but

to what extent? At the pair level (one motor, one bath particle) hydrodynamics can be

included analytically (following the work on microrheology, Khair and Brady (2006)), while

for more concentrated systems, Stokesian dynamics (Brady and Bossis 1988; Banchio and

Brady 2003) can be adapted to simulate reacting bath and motor particles.

The analysis can be generalized to have more than one solute (bath particle) species,

and more than one motor. How will two or more motors act when they compete for the

same reactant? Will a group of motors swarm together? Can this have relevance for the

swarming of biological organisms?

Our investigation has demonstrated that autonomous motion can be generated quite

simply by exploiting the ever-present thermal fluctuations via a chemical reaction at the

motor surface. Osmotic propulsion provides a simple means to convert chemical energy

into mechanical motion and work, and can impact the design and operation of nanodevices,

with applications in directed self-assembly of materials, thermal management of micro- and

nanoprocessors, and the operation of chemical and biological sensors. This opens up many

possibilities for exploiting autonomous motion to ether propel particles and/or pump fluid,

some of which are outlined in this work. Studies of autonomous motors may also help

to understand chemomechanical transduction observed in biological systems (Theriot 2000)

and to create novel artificial motors that mimic living organisms and which can be harnessed

to perform desired tasks.
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Osmotic propulsion: optimal
reaction distribution
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4.1 Introduction

An important task that nanotechnology faces today is the design and synthesis of nanoma-

chines that can work in a controlled and desired manner in environments dominated by

viscous forces, especially, if the device can operate without external forcing or signaling.

Recently, the idea that anisotropic forces can be created on the body of a small object by

an on-board chemical motor that recognizes the use of thermal fluctuations and changes in

chemical equilibrium increases the possibility of discovering whole new classes of entirely

synthetic nanomachines. These devices can be pre-programmed by synthesis and designed

through surface chemistry to perform specific tasks. In practice, a variety of external fields

have been used for colloidal transport in fluids such as electrophoresis, thermophoresis, and

diffusiophoresis (Anderson 1989). While external fields have been used to sort and separate

particles based on their response (i.e., DNA separation), this type of transport does not

afford the flexibility of moving objects independently.

Autonomous motion at nanoscale requires the generation of a localized potential gra-

dient. However, this proves rather challenging to achieve with macroscopic methods, espe-

cially when the location of interest is internal in a large object. Living organisms constantly

generate localized gradients to achieve motion utilizing biochemical reactions. Most forms

of movement in the living world are powered by protein machines known as biomolecular

motors, which convert chemical energy to affect stepwise linear or rotary motion, and are

essential in controlling and performing a wide variety of biological functions including intra-

cellular transport, signal transduction, and muscle contraction (Soong et al. 2000; Yokokawa

et al. 2004). These motors transport a wide variety of cargo, power cell locomotion, drive

cell division and, when combined in large ensembles, allow organisms to move. Although bi-
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ological motors are capable of complex and intricate functions, a main disadvantage is their

inherent instability and constraints in the environmental conditions they work in, which

makes it difficult to control their operation, specifically their directionality. Another exam-

ple found in nature is membrane translocation proteins (e.g. flagella motor) that enables

bacterial movement (Berg 2000). Understanding and harnessing such biological systems

provides a strong motivation to design active nanostructures that can operate as molecular

machines.

A catalytic reaction can be introduced to an inorganic nanosystem to achieve desirable

motions. In principle, catalytic motors can be constructed from nanoscale building blocks

having a myriad of compositions, sizes, and shapes with different surface structures and

functionalities, and are powered by a diversity of environmentally friendly on-board fuels

(Schliwa and Woehlke 2003). Paxton et al. (2004) observed that rod-shaped nanoparticles

prepared with equal-length gold and platinum segments move autonomously in aqueous

hydrogen peroxide solutions by catalyzing the formation of oxygen at the platinum surface.

Directed motion at nanoscale objects is the first step to achieve integrated nanomachinery

systems that can enable breakthrough applications in nanoelectronics, photonics, bioengi-

neering, drug delivery, and disease treatment. Fournier-Bidoz et al. (2005) observed several

kinds of rotational behavior with constant speed for the self-propelled nanorotors based

on silicon wafer-tethered barcoded bimetal nanorods. Preliminary studies indicate that by

varying the concentration of hydrogen peroxide as well as the length of the nickel segment,

it is possible to control the angular velocity of the rotating nanorods. Paxton et al. (2006)

demonstrated that controlled, continuous, and directed rotational motion of microscale ob-

jects can be achieved by using spatially defined catalytic regions. There have been attempts

to synthesize nanostructures for catalytic applications or to examine the dependence of cat-
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alytic properties on the size and shape of nanosize materials. Paxton and co-workers have

discussed other variations and potential applications for the catalytic nanomotor. They also

demonstrated the ideas of micropumps, microgears, and controlled motion of nanomotors

using magnetic layers. One can imagine extending these ideas to include the sliding of

one surface over another. However, to resemble many complicated motions that occur in

biological motors in a controlled fashion, such as rotation, rolling, shuttling, delivery, etc.,

requires one to design the nanomotor to perform different motions or to design components

that have the ability to achieve those motions once they are integrated together. The de-

sign should maximize the device’s performance by considering its geometry and surrounding

environment.

It is of interest to explore and understand how to optimize nanodevices driven by chemi-

cal reactions. Many remarkable and important questions are raised when designing catalytic

motors. Most importantly, What is the optimal distribution of the reactive side on the mo-

tor surface? Some studies have considered one half of the motor to be reactive (Paxton

et al. 2004). Is this the best? Or, is there an optimum for a different fraction? How

does that optimum vary with the speed of reaction? Just how fast can it move? What

information is learned about the surrounding medium? How can it be exploited for more

complex operations or motions? Recently Golestanian et al. (2007) studied self-phoretic

motion, where the “swimmer” generates gradients of a quantity (i.e., concentration, electric

potential, temperature) through its surface activity, which induces motion through classical

interfacial phoretic processes. In addition, they proposed ideas for optimizing the design of

swimmers based on shape and patterns of surface properties.

In our previous work, we proposed osmotic propulsion as a simple mechanism for au-

tonomous motion (Córdova-Figueroa and Brady 2008). Colloidal particles in solution move
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freely and randomly, but, if the microstructure in the vicinity is disturbed by a surface

chemical reaction, a resulting imbalance in osmotic pressure will induce autonomous mo-

tion — an osmotic motor. A simple theoretical model was constructed based on a formal

statistical mechanical derivation starting from the N -particle probability density for finding

bath particles surrounding the motor (see details in Chapter 3). It was applied for motors

with a first-order reaction on half its surface. Other questions were discussed, such as, how

large a force can be generated and how fast a half-reactive motor can move.

In this work, we extend and examine our theoretical framework for propulsion of the

osmotic motor immersed in a dispersion of bath particles to other distributions of reactive

sites. Our main goal is to provide a guide for optimizing the design of osmotic motors, which

could be broadened to other types of mechanisms. We consider the size of the reactive site

at the motor’s surface to be determined by the polar angle θs — the angle that locates the

transition from reactive to passive surface and measures from the front of the motor. In

this analysis, we neglect hydrodynamic interactions between particles and rotary Brownian

diffusion. Also, we assume that bath particles only interact with the motor thus behaving

as an ideal gas. These assumptions enable us to have a simple model system to allow a

clear analysis towards the understanding of many features unique to osmotic motors with

different distributions of reactive sites. This also permits an easy introduction for optimizing

self-propulsion.

The probability of finding bath particles relative to the osmotic motor is employed to

calculate the driving force on the motor, from which the self-induced velocity is determined

via application of Stokes drag law. The parameter that governs the motor behavior is the

ratio of the speed of reaction to that of diffusion — the so-called Damköhler number Da.

Increasing Da drives the suspension away from equilibrium, and thus generates a gradient
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in bath particle concentration, which is utilized by the motor. Two possible scenarios for the

motor are studied: one consisting of a motor held fixed and another one where the motor

is free to move. We discuss the theory of osmotic propulsion in Section 4.2. In Section 4.3,

we investigate the net osmotic force created by the fixed motor and its dependence on the

angle θs. We compute the optimal angle θs necessary to obtain maximum osmotic force as

a function of the Damköhler number. For the free motor scenario, the velocity of the motor

for various θs and its implications for different bath particle concentrations and motor sizes

are discussed. The behavior of the free motor is maximized by finding the optimal angle θs

needed to create maximum velocity according to the Damköhler number and the properties

of the suspension. Theoretical results are compared to Brownian dynamics simulations

(Foss and Brady 2000; Carpen and Brady 2005) modified to consider surface reactions. We

offer some concluding remarks in Section 4.4.

4.2 Theory

We consider a colloidal particle of radius a — the osmotic motor — surrounded by a sea

of “bath” particles of radii b. The particles are modeled as hard-spheres immersed in an

incompressible and continuum solvent of viscosity η and density ρ. For colloidal particles,

inertia is negligible (small Reynolds number), thus enabling the use of the Stokes equations

in describing the fluid flow. We neglect hydrodynamic interactions and rotary Brownian

motion for all particles. Although this may seem to be a drastic approximation, it allows

a simple and transparent analysis that captures and illustrates many of the significant

physics observed in self-propulsion. The suspension of bath particles generates an osmotic

pressure in the system given by Π = nbkT , where kT is the thermal energy and nb is the

number density of bath particles. The structure and properties of this system are completely
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determined by the forces of interaction among the particles; the solvent or fluid only enters

in the form of a thermal bath providing kT of energy for each degree of freedom of the

particles — the well-known fluctuation-dissipation theorem. A portion of the motor surface

is reactive such that the bath particles undergo an irreversible first-order reaction with speed

κ. For simplicity, we assume bath particles that undergo reaction are consumed1. Figure

4.1 shows a definition sketch of the osmotic motor-bath particles configuration. Note that

in the figure we have chosen the reactive site to be axisymmetric with the z-axis. The

interface between reactive and passive surfaces is defined by the polar angle θs, which takes

values from 0 (completely inert) to π (completely reactive), and becomes the only variable

that determines the distribution of reaction on the motor. Bath particles that collide on the

passive surface, or do not react at all, are reflected by a hard-sphere potential, so that the

particles do not interact until their hard-sphere radii touch, whereupon a force is exerted

to prevent the hard-sphere radii a and b of the motor and bath particles, respectively, from

overlapping.

Consumption of bath particles at the reactive portion of the motor’s surface creates a

low bath particle concentration region (depletion zone) that drives the microstructure away

from equilibrium. This creates local bath particle concentration gradients that the motor

can potentially use for propulsion (or for pumping fluid). Physically, the motor experiences

fewer collisions on the reactive surface than on the passive (inert) surface, thus generating

an imbalance in osmotic pressure about the motor, and consequently, a net “osmotic” force.

Because rotational diffusion of particles is not included in this model (torque-free particles),

the reactive site always points in the direction of this self-created net osmotic force, here
1This simple reaction could be interpreted as if reactant particles are instantaneously transformed into

solvent molecules or into products that diffuse very fast away from the motor. Thus, mass is conserved and
there is no need to resupply particles to the suspension. This issue was addressed in our previous work,
Córdova-Figueroa and Brady (2008), and in Chapter 3. A simple scaling argument was derived to account
for other reaction stoichiometries.
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Figure 4.1: Definition sketch for the suspension: An osmotic motor of radius a with a first-
order reaction on a portion of its surface determined by the polar angle θs (located in the
z-axis) surrounded by bath particles of radii b induces an osmotic force F osm that points
towards low bath particle concentration regions. Particles are modeled as hard-spheres.
The angle θs is measured from the front and takes values from 0 (completely inert) to π
(completely reactive).

taken to be the z-coordinate (see Figure 4.1). To understand the resulting behavior of the

osmotic motor, it is necessary to compute the local microstructural deformations caused by

the nonuniform reaction, specifically, the pair-distribution function g(r) thus determining

the probability of finding a bath particle at a vector separation r from the motor.

Local deformations to the microstructure are of central importance to the driving force

of the motor, therefore, we must solve for the distribution of bath particles surrounding

the motor. The stochastic nature of Brownian motion requires such distribution to be

found statistically. We denote the probability density of finding the motor and bath par-

ticles in a given configuration at time t, PN (x1,x2, ...,xN , t), where the label 1 denotes

the motor and 2 → N the bath particles, and xi denotes the position of particle i. The

non-equilibrium microstructure of colloidal dispersions can be directly calculated from a
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Smoluchowski equation (Batchelor 1977, Felderhof 1988):

∂PN
∂t

+
N∑
i=1

∇i · ji = 0 (4.1)

where ji is the probability flux carried by particle i. In the absence of hydrodynamic

interactions and rotational motion, the balance of instantaneous forces acting on the motor

exerted by particle j is given by

FH
1 =

N∑
j=1

(
F ext + F P

j − kT∇j lnPN
)
, (4.2)

where FH is the hydrodynamic force that at low Reynolds number is linear in the velocity U ;

F ext is an external force (e.g., to hold particle, to pull particle through material) acting on

the motor; F P is the interparticle force, which we have assumed is central and corresponding

to a hard-sphere potential; and −kT∇ lnPN is the entropic, or Brownian, force on the

motor due to random thermal fluctuations of the solvent molecules (Batchelor 1976). Bath

particles in the suspension (labels 2 → N) move under the action of hydrodynamic forces

and entropic forces, given by a force balance similar to (4.2) but with zero external forces,

F ext = 0.

A closed equation for the pair-distribution function g(r) is obtained by integrating the

N -particle Smoluchowski equation (4.1) over the configurational degrees of freedom of N−2

bath particles, neglecting interactions between bath particles. The neglect of such high-order

couplings restricts the theory to low bath particle volume fractions, φb = 4πb3nb/3 � 1;

only one bath particle interacts with the motor, therefore, behaving as an ideal gas. For a

detailed derivation of the pair-level Smoluchowski equation see Squires and Brady (2005)

in their work on single particle motion in colloidal dispersions and microrheology in the
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absence of hydrodynamic interactions.

The average force of the osmotic motor is obtained from (4.2) by averaging over the po-

sitions of the N − 1 bath particles. The N -particle probability distribution can be written

as PN (x1,x2, ...,xN , t) = PN−1/1(r2, r3, ..., rN , t|x1, t)P1(x1, t), where PN−1/1 is the condi-

tional probability for finding the N − 1 bath particles in configuration rN−1 given that the

motor is at location x1. Owing the statistical homogeneity of the suspension, PN−1/1 does

not depend on the position of the motor. Thus, the average force of the motor is defined

〈FH
1 〉1 =

∫
FH

1 PN−1/1(r2, r3, ..., rN , t)dr2...drN , (4.3)

where the subscript 1 on 〈 〉1 indicates to the conditional average relative to the motor

at x1. A procedure to solve (4.3) assuming diluteness and hard-sphere interparticle forces

is discussed in Squires and Brady (2005) for averaging stochastic quantities, so we shall

proceed quickly. At the two-body level, the averaged forces acting on the osmotic motor

becomes

FH = F ext − nbkT
∮
r=a+b

ng(r)dS, (4.4)

where the integral is over the surface of contact between the motor and bath particles,

r = a+b, with normal n directed radially out from the motor. We have dropped the brackets

and label 1 denoting the motor for clarity. The hydrodynamic Stokes drag force, defined as

FH = −6πηaU (where U is the motor velocity), is balanced by a constant external force

F ext and the average entropic or osmotic force, F osm = −nbkT
∮
r=a+b ng(r)dS, exerted on

the motor by collisions with bath particles. From Eq. (4.4) we see clearly that the thermal

motion of the bath particles acts to resist the motion of the motor or, if present, the external

force. In the absence of surface reaction on the motor (inert colloids), the pair-distribution
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function g(r) is isotropic and the integral in (4.4) is zero. Indeed, if the particle is fully

reactive over its surface g(r) is also isotropic. This implies that for the motor to create an

anisotropic environment, or regions of low bath particle concentration necessary to drive

the suspension away from equilibrium, the reaction must be on a portion of the motor to

break the symmetry.

To compute the net osmotic force acting on the motor, we need to determine the pair-

distribution function g(r) about the motor. In addition to studing the behavior of the

osmotic motor subject to different distributions of reactive sites, we are interested in op-

timizing the resulting osmotic force and providing ideas on how to design better osmotic

motors in terms of the properties considered here for the simple model motor. In a particle-

level description, the osmotic force increases if the motor maximizes the number of hard-

sphere collisions with bath particles in the vicinity on its left hemisphere (negative z-axis in

Figure 4.1). We demonstrate that this can be easily done by selecting the right distribution

of reaction on the spherical motor for a given Damköhler number, and also by taking into

consideration the number of bath particles in the vicinity that collide with the motor. We

shall see that half reactive or fast reaction is not necessarily the right design choice for

spheres if maximum osmotic force is desired. Osmotic motors could take advantage of their

geometry and the flux of bath particles toward the motor to minimize the reactive portion

on the surface, an option often needed for designing and constructing ‘efficient’ nanodevices.

Two scenarios for the osmotic motor are considered: one in which the motor is held

fixed and another one where the motor is free to translate with velocity U . A spherical

coordinate system (r, θ) is adopted to model the particles.
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4.2.1 Fixed motor

In the fixed motor scenario, the osmotic motor experiences no motion. The net osmotic

force created autonomously by the surface reaction balances the external force that keeps

the motor fixed (F ext = F osm). Therefore, only bath particle positions evolve by Brownian

motion. The osmotic force along the z-axis is given by

F osm = −nbkBT (a+ b)2
∮
nzg(r = 1;Da, θs) dΩ, (4.5)

where dΩ = dS/(a + b)2 is the solid angle of integration and nz is a unit vector along the

z-axis. We have made length dimensionless by the contact distance a+ b. The probability

density flux is simply the diffusion of bath particles j = −D∇g. Conservation of bath

particles about the fixed motor satisfies the steady-state diffusion equation,

∇2g = 0, (4.6)

subject to the undisturbed microstructure condition far from the motor,

g ∼ 1 as r →∞, (4.7)

and at contact, the flux to the motor is balanced by the nonuniform reaction:

n · ∇g = Dah(n) g. (4.8)

The parameter that governs the motor behavior is the ratio of the speed of reaction to that

of diffusion — the so-called Damköhler number Da = κ(a+ b)/D, where the characteristic
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length is the sum of the motor and bath particle radii and D is the relative diffusivity. Here,

the relative diffusivity D is simply the diffusivity of bath particles Db. The distribution of

reaction on the surface is determined by the dimensionless function h(n), which we take to

be 1 on the reactive surface (0 < θ < θs) and 0 on the passive surface (θs < θ < π) (see

Figure 4.1). We must compute the pair-distribution function at contact, and thus determine

the net osmotic force. For simplicity, we shall refer to the integral of the pair-distribution

over the surface of contact in (4.5) as F(Da, θs) = − 3
4π

∮
r=1 nzg(r)dΩ, a nondimensional

function of the Damköhler number and the angle θs that represents the asymmetric bath

particle distribution created by the nonuniform reaction on the motor. The osmotic force

can be maximized by finding the best distribution for reactive sites for each Damköhler

number. These values are obtained from the derivative of the nondimensional function

F(Da, θs) with respect of Da and keeping the angle θs constant, which at maximum, the

derivative must equal zero.

4.2.2 Free motor

The second scenario corresponds to a motor that is free to translate at velocity U due to the

reaction-driven osmotic force. No external forces, F ext = 0, or imposed particle gradients

act on the motor. By contrast, the osmotic motor migrates autonomously through the

suspension. The resulting net osmotic force balances the hydrodynamic Stokes drag force

FH , giving the motor velocity along the z-axis

U = −nbDa(a+ b)2
∮
nzg(r = 1;Da,Pe, θs) dΩ, (4.9)
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where Da = kT/6πηa is the Stokes-Einstein-Sutherlad diffusivity of the osmotic motor. In

a reference frame moving with the motor, which translates at velocity U , each bath particle

is advected with velocity −U and moves diffusively. Therefore, the probability density

flux is given by j = −D∇g − Ug. Continuity of bath particles requires that ∇ · j = 0,

so that, at steady-state, the pair-distribution function g(r) for the free motor satisfies the

advection-diffusion equation

∇2g = −Pe∂g
∂z
, (4.10)

and has taken the motion to be along the z-axis. The associated boundary conditions are

g ∼ 1 as r →∞, (4.11)

∂g

∂r
= (Da h(n)− Peµ) g at r = 1, (4.12)

so that n · (U/U) = cos θ = µ. We made all lengths dimensionless by scaling it with

the contact distance a + b, and velocity with the yet unknown osmotic velocity U . The

expression at contact (4.12) shows the competition between self-propulsion of the motor in

driving the environment away from equilibrium and Brownian motion attempting to restore

the disturbed microstructure. The Péclet number Pe is the ratio of the “self-induced”

osmotic velocity U to the relative Brownian velocity D/(a+ b). The free motor undergoes

Brownian motion; therefore, the relative diffusivity D is now the sum of the motor and bath

particle diffusivity: D = Da +Db. From (4.9) the implicit equation for the Péclet number

is

Pe =
U(a+ b)

D
= βF(Da,Pe, θs), (4.13)
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where β = φb(1+a/b)2 and F(Da,Pe, θs) is now a nondimensional function of the Damköhler

number, the Péclet number, and the angle θs; F(Da,Pe, θs) must be solved simultaneously

with the governing equations to get a solution for the motor velocity U . The Péclet number

is not an independent parameter, but rather is regulated by Da and β. In fact, the resulting

Pe could behave differently depending on the portion of the reactive surface. The product

β corresponds to the number of bath particles within a bath particle radius of the motor

surface: β ∼ nb(a+ b)2b.

Consumption of bath particles near the reactive surface, which is controlled by Da,

creates a low bath particle concentration region in which the motor prefers to move. As

it moves forward, the osmotic motion acts as a source/sink of bath particles on the motor

particle surface. On the reactive surface, the osmotic motion is a source of bath particles,

which eventually reduces the motor’s driving force and therefore its speed by restoring

the depleted region. On the rear surface, the motor creates a wake of low bath particle

concentration, again reducing the motor velocity. This has the physical effect of limiting

the osmotic pressure imbalance resulting from the surface reaction. Note that at Pe = 0

the free motor problem reduces to the scenario in which the motor is held fixed, giving

similar microstructural deformation for active surface reaction. Here, osmotic propulsion

is maximized by finding a set of values (θs,Da) where the derivative of F(Da,Pe, θs) with

respect to Da results in zero. The calculations are repeated for different values of β.

4.3 Results

Our aim in this work is to extend the dilute theory applied to half-reactive osmotic motors

presented in Chapter 3 to different distributions of reactive sites (various θs). This analysis

also allows for the exploration of optimal reactive surface distributions to generate maximum
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driving force in multiple scenarios. The microstructural deformation relative to the motor

is determined by adopting a spherical coordinate system. We compute the osmotic force

balanced by the external force to keep the motor fixed. And in the case that the motor is

free to move, the motor velocity is calculated. In addition to the dilute theory, we employ

Brownian dynamics (BD) simulations that allow us to test our theoretical analysis. It also

provides an insightful physical interpretation of the surface reaction and a particle-level

description of osmotic propulsion. We perform simple hard-sphere BD simulations (Foss

and Brady 2000; Carpen and Brady 2005) where if a bath particle collides with the motor

on the reactive surface, it has a probability to undergo reaction. If no reaction occurs,

then the bath particle collides with the motor just as it does on the nonreactive surface.

The BD simulations should correspond to the analytical model, and the force imparted to

the motor comes directly from the hard-sphere collisions with the bath particles not from

any integration of the pair-distribution function over the surface as in (4.5). Additional

details of the simulation method considered in this work can be found in Chapter 3, which

is modified to account for different distributions of reactive sites.

4.3.1 Fixed motor

Here, we solve the fixed motor problem with different reactive site distributions. The general

solution of the diffusion equation (4.6) satisfying the boundary condition (4.7) is obtained

by separation of variables, giving

g(r, µ) = 1 +
∞∑
n=1

Anr
−(n+1)Pn(µ), (4.14)
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where Pn(µ) are the Legendre polynomials with argument µ = cos θ and An are unknown

constants to be determined from the boundary condition (4.8).

It is instructive to first examine the osmotic force that arises at small and high Da

numbers to see how it scales with the angle θs. For small Da, the problem can be solved

analytically, but its implementation diverges for increasing Da, reflecting the singular na-

ture of the diffusion equation (diffusion-limited problem). Therefore, for intermediate and

large Damköhler numbers, we employ a finite difference method that solves for the pair-

distribution function depending on the angle θs in a procedure that converges very rapidly.

Before presenting our results, we comment briefly on the numerical method. The Smolu-

chowski equation and its corresponding boundary conditions are discretised by approximat-

ing the radial and angular derivatives by central differences. As Da is increased, the demand

for grid points increases to capture accurately the low bath particle concentration regions

and the large gradients that may be present. Thus, the computational cost of the finite

difference scheme also increases with Da (and increasing Pe for the free motor problem

discussed in Section 4.3.2). Typically, 900 × 900 grid points were used, and accuracy was

tested by comparing the resulting pair-distribution function at contact to that computed

using a 1000 × 1000 grid. We proceed below to compute the osmotic force for arbitrary

Da and various θs from which the framework of maximum force is studied. Our numerical

method follows suggestions presented in the appendix of Khair and Brady (2006) in solving

the Smoluchoswki equation for the active microrheology problem. For the interested reader,

additional details on finite differences method are found in LeVeque (2007).
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4.3.1.1 Low Da limit

At small Da, when diffusion dominates over reaction, the pair-distribution function can be

transformed into a regular perturbation expansion in Da. The microstructure is described

by Eq. (4.14), however, finding An from the boundary condition becomes simple in this

limit. This allows us to easily get a solution for the pair-distribution function at contact,

and thus the osmotic force at small perturbations from equilibrium for any angle θs is

calculated. In the limit of Da� 1, the dimensionless function F(Da, θs) is given by

F(Da� 1, θs) =
3
8

sin2 θsDa. (4.15)

Eq. (4.15) reduces to 0 for inert (θs = 0) and fully reactive (θs = π) motors. These results

are expected for isotropic microstructures around the osmotic motor; the pair-distribution

function at contact is a constant. In the case of a half-reactive motor (θs = π/2), F(Da)

gives 3
8Da, as reported in Chapter 3. The resulting osmotic force at small Damköhler

numbers is linear in Da: F osm ∼ nbkT (a + b)2Da sin2 θs = nb(a + b)36πηbκ sin2 θs, where

we have used the Stokes-Einstein-Sutherland expression for the bath particle diffusivity

Db = kT/6πηb. Physically, this force is interpreted as if each bath particle reacting with

the motor strikes the motor with speed κ and thus hydrodynamic force 6πηbκ, and there are

nb(a+ b)3 colliding bath particles. The geometric factor sin2 θs adjusts the force according

to the reaction distribution. We find that for a small reactive site (θs → 0) the osmotic force

scales as F osm ∼ nb(a + b)36πηbκθ2
s . And in the case of a small passive surface (θs → π),

the osmotic force is F osm ∼ nb(a + b)36πηbκ(θs − π)2. Note both limits of the osmotic

force are O(Daθ2
s). Eq. (4.15) predicts that for the motor to maximize the osmotic force at

Da� 1, which is given by F osmmax = 1
2πkTnb(a+ b)2Da, the angle θs must be π/2, meaning
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Figure 4.2: The osmotic force F osm scaled by kTnb(a+ b)24π/3 as a function of the angle
θs scaled by π for various Da

equal distribution of the reactive and passive surface on the motor.

4.3.1.2 High Da limit

For fast reaction (high Da), the process is limited by the diffusion of bath particles. In this

limit, the pair-distribution function on the reactive surface is zero (g = 0), all colliding bath

particles are consumed. On the passive surface, the impenetrability condition ∂g/∂r = 0

holds. The governing equations become independent of Da, therefore An is only a function

of θs. One needs to find an accurate solution of An which makes analytical symbolic

methods arduous and time-consuming. Instead of expanding the pair-distribution function

for higher-order terms in Da, the corresponding set of equations for this limit is simply

solved numerically based on the method briefly mentioned above. The relevant quantity

to calculate is the nondimensional function F(Da, θs) in the limit as Da → ∞ aiming to

examine how the osmotic force behaves for different values of θs. Figure 4.2 shows the
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Figure 4.3: The osmotic force F osm scaled by kTnb(a+ b)24π/3 as a function of Da for var-
ious angles θs. The theoretical predictions (curves) are compared with Brownian dynamics
(BD) simulations (symbols).

numerical results of the osmotic force F osm scaled by kT/(a + b)φ (φ = 4π/3nb(a + b)3 is

the fraction of bath particles in the motor volume) in the limit as Da→∞ as a function of

the angle θs. It was determined that for motors with an irreversible first-order reaction on

half motor, the osmotic force in the limit as Da→∞ saturates and is independent of Da, an

observation that clearly continues to hold for motors with other distributions of reactive site.

The pair-distribution on the passive surface is O(1). The resulting osmotic force in this limit

scales as F osm ∼ nbkT (a + b)2f(θs). For small and large reactive sites, we found that the

function f(θs) is O(1). The maximum value of F(Da) is simply the scaled maximum osmotic

force, F osmmax. This value in the curve for F(Da→∞) shown in Figure 4.2 is approximately

0.5271, and corresponds to an angle θs ≈ 0.3776π (= 67.97o), representing the optimal

angle θops for reactive surface for fast reactions. Indeed, this distribution represents a 37.76%

reactive motor.
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4.3.1.3 Arbitrary Da

Having solved the dispersion microstructure and the osmotic force in the limiting cases for

the Damköhler number (slow and fast reactions), we continue to study the osmotic force for

arbitrary Da. Figure 4.3 plots the scaled osmotic force, F osm/kTφ/(a+ b) = F(Da, θs), as

a function of Da for various θs. The plot agrees with Eq. (4.15) as expected for small Da

numbers and the results obtained in the limit as Da→∞. In fact, at small Da, all curves

collapse into a single one when scaling the osmotic force with the geometric factor sin2 θs

found analytically. The open symbols in the figure are the result of Brownian dynamics

simulations modified to allow surface reaction in different distributions. As the theory

predicted, the scaled osmotic force is independent of size ratio a/b, bath particle volume

fraction φb, and from the time step ∆t used in the simulations. Note in the figure that the

maximum value in each curve is not necessarily found in the high-Da limit, but at some

arbitrary Da.

This observation is seen in Figure 4.2 where we have plotted F osm/kTφ/(a + b) =

F(Da, θs) as a function of the angle θs for arbitrary values of Da. This plot clearly shows

that the maximum osmotic force F osmmax (where the derivative of F(Da, θs) with respect of

θs is zero) changes as the Damköhler number is varied, thus giving an optimal distribution

of reactive site θops for each Da. We proceed to find the scaled maximum osmotic force

F osmmax for various Da and its corresponding optimal angle θops . Figure 4.4 plots the resulting

optimal angle, θops , and scaled maximum force as a function of Da. Clearly, when Brownian

motion dominates over reaction (Da� 1) the optimal angle that results in maximum force

is θops = π/2. The maximum force scales as F osmmax ∼ kTnb(a + b)2Da. Near Da ≈ 1 the

curves slowly decay to a new value. Note that in the limit as Da → ∞, the optimal angle

approaches an asymptotic value of 0.3776π, as mentioned in Section 4.3.1.2. In this limit,



137

10-2 10-1 100 101 102 103

Da = !(a+b)/D

-0.1

0

0.1

0.2

0.3

0.4

0.5

Fos
m

m
ax

  /
 (k

Tn
b(a

+
b)

2  4
"/

3)
 ; 
# sop

 / 
"

Fosm
max = Fosm(#s

op)
#s

op

Figure 4.4: The maximum osmotic force F osmmax scaled by kTnb(a + b)24π/3 and its corre-
sponding optimal angle θops scaled by π as a function of Da

the maximum osmotic force saturates and becomes independent of the speed of reaction,

thus F osmmax ∼ kTnb(a+ b)2.

In order to interpret in physical terms the maximum osmotic force, we examine the

microstructure evolution of bath particles about the fixed osmotic motor for increasing

Damköhler number and varying angle θs. In Figure 4.5 we show density plots of the mi-

crostructure surrounding the motor at small and high Da for θs = π/4 and 3π/4. For

Da� 1 (slow reaction), the microstructural deformation is proportional to Da and slightly

disturbed near the reactive surface. Moving to Da ≈ 1 or greater, the reaction now comes

into play, and the deformation near the reactive surface clearly exhibits a low bath particle

concentration region. Bath particles diffuse at a characteristic time τD ∼ (a+ b)2/D much

slower than the characteristic time taken by the reaction to create the depleted (no bath

particles) region near the reactive surface, τ ∼ (a+ b)/κ. Thus, the microstructure reaches

saturation and remains unchanged at high Da, which is appropriate for first-order surface
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Figure 4.5: Density profiles in the symmetry plate of the fixed osmotic motor at low and high
Da for different distributions of reactive site. Regions of low bath particle concentration
are in red and the undisturbed regions in blue. The top row is a motor with an angle
θs = π/4 and the second row is a motor with an angle θs = 3π/4. At small Da (left
column), the microstructure near the reactive surface is slightly disturbed, thus the osmotic
force is proportional to Da. In the limit of high Da (right column), the microstructure is
fully disturbed on the reactive surface causing a region of low bath particle concentration.
The osmotic force saturates and becomes independent of Da.

reactions.

Consider the equilibrium microstructure (no reaction) about the fixed motor as our

state of reference. Bath particle collisions with the fixed motor occurring anywhere in the

surface area from π/2 to π (left hemisphere of the motor) result, in average, in a force in

the z-direction that scales as F osmz ∼ nbkT (a + b)2. Otherwise, if collisions occur on the

surface area from 0 to π/2 (right hemisphere of the motor), the resulting force points in the

negative z-direction, which scales as F osm−z ∼ −nbkT (a+b)2. In equilibrium, the sum of both

equal in magnitude but opposite in sign forces is zero: F osm ∼ F osmz +F osm−z = 0. However,

if the reaction is active on a portion of the surface of the motor, it creates a nonuniform

bath particle concentration that drives the osmotic force away from its equilibrium value.
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We have shown that the magnitude of this “driving” force also depends on the size of the

reactive surface, because, in general, the distribution of bath particles about the motor varies

accordingly. The motor could increase the self-created net osmotic force if condition F osmz �

F osm−z is exploited, and is achievable if the concentration of bath particles is increased on

the left hemisphere. This is done here by choosing correctly the distribution of reaction

depending on the Damköhler number — the nondimensional speed of reaction. Previously,

it was shown from the solution of the pair-distribution function at contact for various

Da for half-reactive fixed motors that the self-created osmotic pressure imbalance could

drive bath particles located in the proximity of the passive surface to the reactive surface.

Therefore, the equilibrium concentration on the passive surface (g = 1) is reduced. This

bath particle (diffusion) migration depends on the speed and the type of reaction. And also

on the geometry of the motor. These facts play an important role for the motor’s ability to

harness its environment and to maximize its driving force.

For slow reactions, we found that the concentration of bath particles is slightly disturbed

at the reactive surface (see density plots in Figure 4.5). The net osmotic force is small for

slow reactions fundamentally because local gradients in bath particle concentration are also

small, and as calculated earlier, the osmotic force responds linearly in Da. If you decrease

the distribution of the reactive site to angle θs less than π/2 (reaction on front), bath particle

collisions occurring on the motor surface area within θs to π/2, in principle, provide “kicks”

in the negative direction, F osm−z and reduce the net osmotic force in the desired direction.

Resultantly, in the linear-response regime, the scaled osmotic force plotted in Figure 4.2

predicts a maximum force at θs = π/2. This theoretical prediction is also observed in

Figure 4.4. In fact, the angle θs = π/2 (half-reactive motor), represents the largest portion

of reactive surface necessary to design fixed osmotic motors, but only those optimal for slow
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reactions. As Da is increased, the depletion zone near the reactive surface acts as a sink of

bath particles and consequently, causes the bath particle concentration to decrease near the

passive surface if compared to slower reactions. All this implies that one can properly reduce

the reactive surface area (or increase the passive surface) if desired, as long as the motor

continues generating maximum force, by increasing the Damköhler number in a fashion that

keeps low motor/bath collisions (g � 1) occurring within θs < θ < π/2. Consequently, this

reduces bath particle “kicks” in the opposite direction, which are not harnessed at small

Da, and keeps F osmz � F osm−z maximized. As observed in Figure 4.4, the minimum optimal

angle θops permitting the motor to generate maximum force is 0.3776π. Figure 4.6 shows

density plots of the structure surrounding the fixed motor at Da = 100 (fast reaction) for

various θs. Note that decreasing θs from π/2 (optimal reaction distribution at low Da) to

its limiting optimal reaction distribution at high Da, the bath particle distribution on the

rear of the motor increases, causing an increment in the net osmotic motor in the desired

direction. For reactive surfaces greater than the passive (reaction on rear), independently

of the speed of reaction, there is less surface available for bath particles to collide without

reacting, which is necessary to create F osm. We have demonstrated that maximum force

for fixed “spherical” osmotic motors is always achieved for angles θops less than π/2: motors

with half or more passive surfaces.

So far, we have assumed the motor is fixed. If the motor is released, there will be an

advective flux of bath particles towards the motor that will alter the concentration distribu-

tion of bath particles surrounding the motor and consequently reduce the propulsive force.

All the explanations presented to describe the maximized osmotic force should also apply

for the free motor. Advection flux carries more bath particles toward the front of the motor

but it leaves behind bath particles located near the rear portion. We expect this additional
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Figure 4.6: Density profiles in the symmetry plane of the fixed osmotic motor at Da = 100
for different reaction distributions (θs = π/2, 0.45π, 0.4π, 0.377π). Regions of low bath
particle concentration are in red and the undisturbed regions in blue. The bath particle
distribution on the rear of the motor increases as θs is decreased (lighter blue turning into
darker blue) to its optimal reaction distribution θops = 0.377π, and thus maximizes F osm.

force acting on the motor to change the values of the optimal angles considerably in the

presence of strong advective forces (high Pe). We proceed to examine the microstructural

deformation about the free motor. Specifically, we compute the nondimensional function

F(Da,Pe, θs) and thus, the velocity of the motor for different distributions of reactive site,

Damköhler numbers, and product β. Also, the behavior of the optimal angles for maximum

velocity Umax (expressed as Pe) is examined as a function of Da for various β.

4.3.2 Free motor

Solving for the pair-distribution function g(r) about the free motor is analytically challeng-

ing when an implicit equation for Pe must be solved simultaneously with the advection-

diffusion equation. In fact, the problem becomes more complex with the addition of the

variable θs in the set of equations that describe the microstructure surrounding the free
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motor. Aside from these limitations, it is simple to solve this problem analytically in the

limit of small Da. For arbitrary Da we solve for the pair-distribution function numerically,

which allows us to study behaviors at small and high β for any angle θs, and its relation

to the motor velocity. The numerical (finite difference) method employed is similar to the

method used for the fixed motor problem at intermediate and high Da (Section 4.3), where

additional grid points are located where they are needed (e.g., large gradients in g near θs).

The numerical method properly captures the low bath particle concentration region near

the reactive surface as Da is increased and, as we shall illustrate below, in the rear of the

motor for increasing Pe.

4.3.2.1 Low Da limit

For slow reactions, the microstructure is slightly perturbed near the reactive surface caus-

ing small gradients in bath particle concentration. One can easily transform the pair-

distribution function g(r) into a regular perturbation expansion in Da allowing us to com-

pute analytically the first term O(Da) of the dimensionless function F(Da,Pe). In the

limit of Da� 1, the dimensionless function F(Da,Pe) is given by

F(Da� 1, P e) =
3
8

sin2 θsDa−
1
3
Pe. (4.16)

Again, the geometric factor describing the reactive surface distribution is sin2 θs. For

isotropic environments, as in the case of θs = 0 and θs = π, the microstructure around the

motor is symmetric, giving constant pair-distribution function at contact and F(Da,Pe) =

0, independently of the speed of reaction. As reported in Chapter 3, Eq. (4.16) reduces to

F(Da� 1, P e) = 3
8Da−

1
3Pe for half reactive motor (θs = π/2). From (4.16) the resulting
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Pe is simply

Pe =

(
3
8β sin2 θs

1
2β + 1

)
Da. (4.17)

In the limit of small β, the Peclet number scales as Pe ∼ β sin2 θsDa. The osmotic velocity

is limited by the speed of reaction and scales linearly with Da: U ∼ nbDa(a+b)2Da sin2 θs =

nbb(a + b)2κ sin2 θs. The motor behavior for the limiting cases of θs at small Da numbers

is examined. In the limit as θs → 0, the velocity of the motor is U ∼ nbb(a + b)2κθ2
s . In

the opposite limit (θs → π), the velocity behaves as U ∼ nbb(a + b)2κ(θs − π)2. Indeed,

for small β both limits are O(βDaθ2
s). In the case when particles are very far from each

other, bath particles are unlikely to collide or be consumed on the reactive surface for the

motor to create local concentration gradients; thus the motor moves diffusively but does

not experience propulsion. In the limit as β → ∞, the Peclet number is O(sin2 θsDa).

Therefore, the velocity of the motor becomes

U =
3
4
κ sin2 θs, (4.18)

which is independent of the concentration of bath particles and particle sizes. From (4.17)

we found that for slow reactions, the maximum velocity is

Umax =

(
3
8β

1
2β + 1

)
κ, (4.19)

and it is obtained at θops = π/2. At this same optimal angle a maximum force was accom-

plished by the fixed motor at small Da.
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4.3.2.2 High Da limit

It is helpful to investigate the microstructure at high Damköhler numbers for surface reac-

tions on the front portion (0 < θs < π/2) and on the rear portion (π > θs > π/2) of the

motor separately, considering both circumstances exhibit different behaviors. Fast reactions

on the reactive surface create a sink of bath particles, which is limited by the diffusion of

the bath particles. In the limit as Da → ∞, all bath particles colliding with the reactive

surface are consumed, therefore, the pair-distribution function at contact is zero on this

portion (g = 0). The boundary condition (4.12) at the passive surface becomes

∂g

∂r
= −Peµg. (4.20)

In the limit of small Pe, a regular perturbation expansion in Pe turns the microstructural

evolution Eq. (4.10) into Laplace’s equation∇2g = 0 with a general solution given by (4.14).

The boundary condition at the passive surface becomes ∂g/∂r = −µ. Note that the Péclet

number is nowhere in the governing equations, therefore, g ∼ O(1) and the nondimensional

function F(Da → ∞, P e � 1) ≈
∫
gµdµ ∼ O(1). Thus, for slow propulsion at high Da,

the Péclet number scales as Pe ∼ β. This scaling is true for all distributions of reactive

surfaces.

In our previous work, we have found that for half-reactive motors the Péclet number

scales as Pe ∼ (βDa)3/5 in the limit of high Da and β (see details in Chapter 3). We

demonstrate below that this scaling is unique for half-reactive motors. A fast moving motor

(high Pe) develops a wake of zero bath particles on the rear of the motor that grows as Pe

is increased, a similar feature observed in inert probe particles used for active microrheology

measurements (Squires and Brady 2005; Khair and Brady 2006).
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First we examine fast reaction on the front portion of the motor. The reactive region

is located within µs < µ < 1, where µs = cos θs. In the high Da and Pe limit, diffusion

is only important in a thin region of O(Pe−1(a + b)) adjacent to the motor, outside of

which advection dominates and g = 1. This region is governed by a balance between radial

diffusion and radial advection, giving an approximate equation

∂2g

∂Y 2
+ µ

∂g

∂Y
= 0, (4.21)

where Y = Pe(r = 1) is a coordinate perpendicular to the reactive surface. This equation

has a solution of

g = 1− e−µY . (4.22)

There will be a region of rapid angular variation near µs that scales as 1/Pe. The an-

gular coordinate is then transformed into s = Pe(µ − µs) to represent this region, where

radial and angular diffusion balances radial and angular advection. These scalings for the

perpendicular and parallel coordinates are substituted into the governing equation (4.10),

giving

∂2g

∂Y 2
+ (1− µ2

s)
∂2g

∂s2
= −

(
µs
∂g

∂Y
− (1− µ2

s)
∂g

∂s

)
, (4.23)

subject to the undisturbed probability density far from this region, g ∼ 1 as Y → ∞, and

at Y = 0 the boundary condition becomes

∂g

∂Y
+ µsg = 0. (4.24)

The general solution of g in this region must match the solution (4.22) as s → −∞. A

strong advection (high Pe) increases the bath particle concentration in the region within
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µs < µ < 0 and reverses the gradient in concentration necessary for propulsion. The pair-

distribution function is order Pe in this region. On the rear (passive) portion of the motor,

the pair-distribution function is O(1). Integrating g over the surface of contact will give a

negative F(Da,Pe) and one that is finite as Pe → ∞. But the motor never achieves this

limit. In fact, there is a limiting Pe that is O(1) and independent of concentration and

particle size as β →∞. This means that the nondimensional function F(Da,Pe) ≈
∫
gµdµ

decays as 1/β at high β to saturate the motion of the motor with the relative diffusive

flux. Thus, the resulting motor velocity in this limit for fast reaction on the front portion

is simply U ∼ D/(a+ b) — the relative diffusive speed of the particles.

We now proceed to examine fast reaction on the rear portion of the motor. On the

reactive region within 0 < µ < 1, there is also a thin region of O(Pe−1) near contact where

the pair-distribution function is satisfied by Eq. (4.22), which is caused by the advective flux

of bath particles toward the moving motor. The pair-distribution function is unity outside of

this thin region. The reactive surface on the rear portion within µs < µ < 1 acts as a sink of

bath particles and drives a free-shear layer-like evolution of bath particle concentration from

unity above (outside of the wake) to zero below (reactive surface: g = 0). It is possible here

that the value of g at the passive surface is very small for large Pe. The pair-distribution

function at the passive surface satisfies Eq. (4.20), showing that g is exponentially small

such as g ∼ e−Pe. Recalling that β ≈ Pe/
∫
gµdµ, we then obtain the scaling β ∼ Pe ePe

as Pe → ∞, which can also be read lnβ ∼ Pe + lnPe. Resultantly, the Péclet number

behaves as Pe ∼ lnβ in the limit of high β. This strong dependence in Pe would then

appear as if there was a finite Pe as β →∞, much like the case for front half reactive. The

proposed scaling arguments are investigated numerically in the next section.
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Figure 4.7: The motor velocity scaled by Danb(a+ b)24π/3 as a function of Da for various
angles θs and β. The theoretical predictions (curves) are compared with Brownian dynamics
(BD) simulations (symbols). A time step ∆t = 0.001 was chosen for the BD simulations.

4.3.2.3 Arbitrary Da

After considering the boundary conditions at contact and far from the motor, the pair-

distribution function g(r) is solved numerically for various distributions of reactive sites

and simultaneously with the implicit formula of the Péclet number for arbitrary Damköhler

numbers. This enables us to compute the nondimensional function F(Da,Pe, θs) for a

variety of physical conditions expressed in the product β and Da, and propose explanations

for the results obtained. Figure 4.7 plots the scaled velocity of the motor, U/(Daφ/(a+b)) =

F(Da,Pe, θs), as a function of Da for various angles θs and values of β. The open symbols in

the figure are the result of Brownian dynamics simulations. The time step of the simulation

is 0.001. The results in the figure show that the fixed motor is the limit as β → 0 (Pe = 0)

of the free motor; the fixed motor corresponds to an infinitely dilute suspension of bath

particles. This is true for any distribution of the reactive site. The plot agrees with Eq.
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Figure 4.8: The Péclet number Pe as a function of Da at θs = π/4 and various β

(4.16) as expected for small Da numbers. In the limit as Da→∞, the velocity of the motor

saturates and becomes independent of Da. As the theory predicted, the scaled velocity of

the motor depends on the size ratio a/b, the concentration of bath particles expressed as

their volume fraction, φb (combined in β = φb(1 + a/b)2), but not on the time step ∆t used

in the simulations. The decreasing nondimensional function F(Da,Pe, θs) for a given θs as

β is increased reflects the fact that the gradient in bath particle concentration at contact

is affected by the Péclet number. For the physical values considered in this figure, Pe is

small.

In Figure 4.8, the behavior of Pe for a motor with reaction only on the front portion

is investigated as a function of Da for arbitrary values of β. We have chosen the angle

θs = π/4 to represent the physics encountered on all the reaction distributions that are

less than half motor. The figure shows that in the limit of small Da, the Péclet number is

O(Da), independently of the value of β. A different behavior is expected at high Da, when
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Figure 4.9: The Péclet number Pe as a function of β at θs = π/4 and various Da

reaction dominates the microstructural deformation over diffusion. For all β, it is observed

that the Péclet number is independent of the speed of reaction just as Da → ∞. Thus,

the motor velocity saturates and becomes uncontrolled by Da. The dependence of β on the

Péclet number is shown in Figure 4.9 for various Da and assuming θs = π/4. Firstly, the

Péclet number is linear in β for small β. Therefore, the right scaling for small Da and β

is Pe ∼ βDa; the motor velocity behaves as U ∼ nbb(a + b)2κ. At high β, we found that

Pe ∼ O(1), which shows that the motor velocity is simply U ∼ D/(a + b) — the relative

diffusive speed of the particles. At saturation, adding more bath particles to collide with

the motor does not change the probability distribution of bath particles around the motor

nor, consequently, its behavior. We have also plotted in Figure 4.9 the Péclet number in

the limit as Da → ∞, where we found that at small β, it is linear in β, and at high β, it

becomes independent of β. The autonomous behavior of the motor with reaction on the

front portion is controlled by the self-induced advective flux of bath particles toward the



150

10-3 10-2 10-1 100 101 102 103 104

Da = !(a+b)/D

10-4

10-3

10-2

10-1

100

101

Pe

" = 0.25
" = 1
" = 10
" = 100
" = 625

#s = 3$/4

Figure 4.10: The Péclet number Pe as a function of Da at θs = 3π/4 and various β

front and away from the motor, however, it saturates in the limit of high Da and β before

it reaches microrheology build up that could change the sign of the bath particle gradient

and reverse the process. Evidently, the motor regulates itself to avoid such behavior.

This observation is not the case for half-reactive motors (θs = π/2), where the Péclet

number was found to diverge as Pe ∼ (βDa)3/5 in the limit of high β and Da, proving

the singularity that is present at such reaction distribution. It was determined that the

nondimensional function F(Da,Pe, θs = π/2) goes to zero as Pe−2/3, thus preventing any

microrheology build up that could stop or reverse the motion. The reader can find a detailed

description of half-reactive motors in Chapter 3. We proceed to investigate the resulting

Pe for a motor with reaction on the rear portion. We have plotted in Figure 4.10 the Péclet

number as a function of Da for arbitrary values of β. The angle θs = 3π/4 is considered to

illustrate the physics involved for all reaction distributions that are greater than half motor.

It is found that for small Da, the Peclet number is linear in Da. This is consistent with
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Figure 4.11: The Péclet number Pe as a function of β at θs = 3π/4 and various Da

what was found analytically for all distributions of the reactive site. As Da is increased, the

Péclet number reaches a limiting value (Pe ∼ O(1)) for small and intermediate β. This is

not the case in the high β limit, where the Péclet number seems to approach an asymptote,

but, in fact, it scales as Pe ∼ ln(Da) in the limit as Da→∞. The resulting Péclet number

against the product β at the angle θs = 3π/4 and multiple values of Da is shown in Figure

4.11. It is found that for small β, the Péclet number scales as Pe ∼ β, which is true

for all values of θs. Thus, it becomes clear that for all distributions of slow reactions the

Péclet number scales as Pe ∼ βDa, giving a motor velocity of U ∼ nbb(a + b)2κ as found

analytically in Section 4.3.2.1. In the limit as β → ∞, the figure shows that for arbitrary

but finite Da, Pe is O(1) (saturation limit), thus the osmotic motor scales as U ∼ D/(a+b),

which is a similar result obtained for reactions on the front portion. The figure reiterates

that at both high β and Da, the Péclet number appears to approach a plateau. In fact, it

was found that Pe increments are exponentially small. This behavior is examined in Figure
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4.12 (complementary to Figure 4.11), where the natural logarithm of the Péclet number,

lnPe, is plotted as a function of ln(lnβ) at θs = 3π/4 in the limit as Da→∞. The figure

clearly shows a linear dependence, giving Pe ∼ lnβ in the process of β → ∞, which was

predicted in Section 4.3.2.2 using scaling arguments. This same scaling is also expected in

this limit for other angles within π/2 < θs < π. Resultantly, the Péclet number scales as

Pe ∼ ln(βDa) at high β and Da for reaction distributions on the rear of the motor. Thus,

the motor velocity scales as U ∼ D/(a + b) ln(nbb(a + b)3κ/D). A motor with reaction on

the rear portion does not experience microrheology build-up at high Pe because all bath

particles colliding in the front side are consumed (g = 0).

Independently of the distribution of reactions over the surface, a fast moving motor

develops behind a wake of low bath particle concentration (g ≈ 0) that grows as Pe.

Indeed, for small reactive sites and small passive sites, Pe is also small, thus the wake is not
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Figure 4.13: The Péclet number Pe as a function of the angle θs scaled by π at Da = 0.1
for various β

as fully developed as we expect at high Pe for intermediate reaction distributions. Outside

of the wake, the pair-distribution function is g ∼ 1. Bath particles from this region that

migrate in the wake are rapidly advected away from the motor. If the distribution of the

reactive site on the motor is greater than π/2, the motor velocity does not saturate (this

is contrary to what is observed for motors with distributions within 0 < θs < π/2) because

bath particles traveling on the boundaries of the low density wake that are close to the rear

portion of the motor could diffuse inside the wake and collide with the passive surface. It

is this concentration contribution, which is small, that prevents saturation. This explains

the scaling argument dependent on bath particle concentration found for Pe in the limit of

high β and Da.

Having investigated the Péclet number as a function of Da and β, we now present the

resulting Pe as a function of θs in Figures 4.13 and 4.14. Figure 4.13 shows the Péclet



154

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!s / "

0

5

10

15

20

25

30

Pe

# = 6.76
# = 12.1
# = 60.5
# = 168.1
# = 512

Da = 1000

Figure 4.14: The Péclet number Pe as a function of the angle θs scaled by π at Da = 1000
for various β

number as a function of θs at Da = 0.1 and various β. Note that the curves are nearly

symmetric with respect to θs = π/2, showing that at small Da a maximum is located at π/2

independently of the value of β. As expected, the Péclet number increases as β is increased.

Each curve approximates Eq. (4.17), which was obtained analytically and described in

Section 4.3.2.1. In Figure 4.14, the Péclet number is plotted against θs at Da = 1000 and

various β. In contrast to what is observed for small Da, the curves are asymmetric with

respect to θs = π/2. As β is increased, the Péclet number increases and the maximum

value in each plot, which are all located on the front portion of the motor, shifts toward

π/2 (the optimal angle θops ). This result (θops = π/2) differs from the optimal angle for

maximum force obtained at high Da for the fixed motor: θops ≈ 0.3776π, which is also the

result at β = 0. If the angle θs is less than π/2 (reaction on the front), the advective flux

of bath particles arriving to the surface fraction from θs to π/2 increases the probability
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of finding bath particles in that region, and consequently reduces the motor’s speed by

providing hard-sphere forces in the opposite desired direction of motion. Therefore, only

half-reactive motors subject to fast reactions and high β are less affected by the strong

advective flux of bath particles toward the front side of the motor. In the limit of high β,

the Péclet number in the region within 0 < θs < π/2 was found to be limited by D/(a+ b)

and the region within π/2 < θs < π, scales as Pe ∼ lnβ. Similar plots were constructed for

other Damköhler numbers in order to obtain the optimal distribution of the reactive site

that gives maximum velocity (Pe).

To study the behavior of the maximized motor velocity, we plot in Figure 4.15 the re-

sulting optimal angles θops as a function of Da for various β. As shown above, for small Da

the optimal angle is π/2 for all values of β, which is also observed in the figure (solid line).

In the limit as β → 0, the curve for the optimal angle as a function of Da corresponds to
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β

the data plotted in Figure 4.4, which is included for comparison with curves for nonzero β.

This β = 0 curve approaches the value of θops ≈ 0.3776π in the case of a fast reaction. In the

opposite limit (high Da), the optimal angle increases as the product β is increased, but we

were unable to calculate numerically the resulting optimal angle and plot its behavior for

very high Da and β values. At these extreme limits, the numerical method requires large

grids with many nodes in the regions where most needed (regions of large bath particle gra-

dients), making the process computationally unfeasible and a different approach is required.

Note that for increasing β, the optimal angle θops shows a “bottom” with inflection point

near Da ≈ 10 and θops ≈ 0.43π. The physical meaning of this inflection point is unknown.

The maximum Péclet number Pemax, which corresponds to the Péclet number evaluated

at θops (Pemax = Pe(θops )), is plotted in Figure 4.16 as a function of Da for arbitrary values

of β. This plot shows that at small Da, Pemax ∼ Da for all β. In limit of high Da, there is a

limiting Pemax for small and arbitrary values of β, and thus Umax ∼ D/(a+ b). This is not
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the case in the limit of high β, where the maximum Péclet number diverges (not limited by

diffusion) and scales as Pemax ∼ (βDa)3/5, thus Umax ∼ (Da/b)5/2κ3/5. In fact, this is the

same scaling observed for the Péclet number at high Da and β for half-reactive motors (see

details in Chapter 3). Based on this observation, we predict that the optimal angle goes to

π/2 in the limit of high Pe, which results in the limits as Da → ∞ and β → ∞ (Figure

4.15). Note that as β →∞ the optimal angle is the same (θops = π/2) in the limits of small

Da and Da→∞. It is known that increasing the product β corresponds to increasing the

number of bath particles colliding within a bath particle radius of the motor surface. In

the limits of high Da and β, the advective flux of bath particles (given by Pe) toward the

motor and parallel to the direction of motion is high. This has the net effect of building up

bath particles near any passive surface area within 0 < θ < π/2 (right hemisphere), which

limits self-propulsion for the motor by reducing the bath particle concentration gradient

created by the motor. A moving motor under these conditions cannot obtain maximum

velocity for optimal angles less than π/2 because the strong advective force (Pe � 1)

restores any regions of low bath particle concentration that could be created near passive

surface portions located within θs and π/2 as an indirect consequence of the fast reaction.

The optimal angles for maximum propulsion of the free motor are less than or equal to π/2,

similar to the fixed motor scenario.

To illustrate the effect of increasing Da to the microstructure, we show in Figures 4.17

and 4.18 density profiles of the suspension surrounding the osmotic motor with distribution

of reaction given by the angles θs = π/4 and θs = 3π/4. The top row of both figures

corresponds to the case of β = 10 and increasing Da; and the bottom row to Da = 100 and

increasing β. It is observed for β = 10 that the region of low bath particle concentration

near the reactive surface grows as Da until it saturates in the limit of high Da, where
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Da = 0.1, Pe = 0.0306 Da = 20, Pe = 1.201 Da = 1000, Pe = 1.5601 

β = 0.1233, Pe = 0.0511 β = 6.822, Pe = 1.231 β = 41.083, Pe = 2.2558 

Figure 4.17: Density profiles in the symmetry plate of the fixed osmotic motor at a distri-
butions of reaction θs = π/4. Regions of low bath particle concentration are in red and the
undisturbed regions in blue. The top row corresponds to β = 10 and increasing Da; the
bottom row represents Da = 100 and increasing β. The motion is from left to right.

it becomes limited by the diffusion of bath particles. The behavior of the microstructure

is different if Da is maintained constant, but the product β is varied. The density plots

show that the depleted region near the reactive surface decreases for increasing β until an

advection-diffusion boundary layer of width ∼ (a + b)/Pe is formed at high Pe on the

front of the motor (right hemisphere). In the case of θs = π/4, the boundary layer within

0 < θ < θs contains no bath particles (g = 0) and the deformation within θs < θ < π/2 has

magnitude of order Pe. The microstructure is unchanged (g = 1) outside of the boundary

layer. Simultaneously, the moving motor creates a wake with no bath particles (g = 0) in

the rear of the motor (left hemisphere). In the case of θs = 3π/4, the front side of the motor

forms a boundary layer of zero concentration and O(1/Pe). The remaining reactive surface

reduces the bath particle concentration in the vicinity, however, at high Da the migration

of bath particles from outside this region to the passive surface prevents saturation and a
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Da = 0.1, Pe = 0.0289 Da = 5, Pe = 0.4271 Da = 1000, Pe = 0.7505 

β = 0.1233, Pe = 0.0142 β = 16.655, Pe = 1.001 β = 1006.3, Pe = 3.4069 

Figure 4.18: Density profiles in the symmetry plate of the fixed osmotic motor at a distri-
butions of reaction θs = 3π/4. Regions of low bath particle concentration are in red and
the undisturbed regions in blue. The top row corresponds to β = 10 and increasing Da;
the bottom row represents Da = 100 and increasing β. The motion is from left to right.

finite velocity for the motor. Also shown on the figures are the resulting Péclet numbers

corresponding to the motor velocities.

4.4 Conclusions and discussion

The work presented offers a theoretical framework for the behavior of an osmotic motor sub-

ject to different distributions of reactive surfaces established by the angle θs. For simplicity,

it was assumed that an irreversible first-order reaction consumes bath particles at a portion

of the motor surface. The basis of our concept involves determining the reaction-induced

perturbation to the suspension microstructure in order to calculate the driving force on the

motor, from which the motor velocity is determined via application of the Stokes drag law.

A theory for the microstructure evolution was provided and solved in the simplest limiting

case of hard-spheres in the absence of hydrodynamic interactions and rotational diffusion.
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The model was restricted to the limit where bath particles do behave as an ideal gas. In

addition to the theory, we used a Brownian dynamics simulation that provided a means of

verifying our theoretical results. We examined two scenarios for the osmotic motor: one in

which the motor is held fixed by an external force F ext, and another where the motor is

free to move.

Once the microstructural deformation caused by the surface reaction is known, relevant

statistical quantities can be computed. We have calculated the fixed motor force for all

values of Damköhler number, Da, bath particle volume fraction, φb, and motor/bath size

ratios, a/b, for different values of the angle θs. For each angle θs, the results collapse into

an universal curve after scaling the osmotic force by kTnb(a + b)24π/3. We have shown

that BD simulations agree with the theoretical predictions. For small perturbations to the

microstructure, we found the osmotic force is order Da times the geometric factor sin θ2
s .

In the limit of high Da, the force saturates and simply scales as F osm ∼ nbkT (a+ b)2f(θs),

where the function f(θs) is independent of θs in the limits of small and large reactive sites.

When the motor is let free, it moves rapidly toward the self-created low bath particle

concentration region (g � 1) located near the reactive surface. The resulting advective flux

of bath particles toward the motor alters the bath particle probability distribution relative to

the motor, and, consequently, the propulsive force. Eventually (almost instantaneously) the

motor catches up with bath particles reducing the gradient in bath particle concentration.

Independently of the amount of reactive surface, the motor cannot move faster than the

rate in which the depleted region in front of the motor is created. If the contrary happens,

the motor destroys the concentrated gradient needed for propulsion. Therefore, the osmotic

force is balanced by the viscous force acting on the moving motor. The resulting motor

velocity was calculated as a function of Da for various β = φb(1 +a/b)2 and angles θs. Also
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we demonstrated again that BD simulations are in agreement with the theoretical results.

In general, we have shown that the physical properties of the microstructure, the size ratio

a/b and the bath particle volume fraction φb (the product β), directly contribute to the

speed of the motor, an observation not found in the fixed motor problem.

At small Da numbers, we have shown that motor velocity is described simply by U =

3
8β sin2 θsκ/(1

2β + 1). For small β, the motor velocity scales as U ∼ Danb(a+ b)2Da sin θ2
s ,

while in the limit as β → ∞, it becomes U = 3
4κ sin θ2

s . To study the high-Da limit, we

divided the analysis to reaction on front and reaction on rear of the motor. When the

reaction is on front, the Péclet number scales as Pe ∼ β at small β, resulting in the motor

velocity U ∼ Danb(a+ b)2. We also found that for all values of β in the limit as Da→∞,

the Péclet number is O(1). Thus, the motor velocity saturates and becomes limited by the

diffusive velocity of the bath particles, U ∼ D/(a+b), which is independent of bath particle

concentration and particle size. For reaction on the rear, we found that the Péclet number

scales as Pe ∼ β for small β, giving the motor velocity U ∼ Danb(a + b)2. This limit is

observed for all distributions of the reactive site. However, in the limit as β → ∞, the

Péclet number appears to slowly approach a limiting speed as Pe ∼ lnβ, thus the motor

velocity scales as U ∼ D/(a + b) ln(nb(a + b)2) and does depend on the concentration of

bath particles and particle size. In fact, only at θs = π/2 (half reactive motor) we observed

that in the limit as Da → ∞ and β → ∞ the Péclet number diverges as Pe ∼ (βDa)3/5,

giving the motor velocity U ∼ D/(a+ b) ln(nbb(a+ b)3κ/D).

The optimal angle for maximum propulsion was computed as a function of the Damköhler

number and various β. For small Da we found that independently of the value of β, the

optimal angle is θops = π/2. At high Da, the optimal angle changes depending on the value

of β. At β = 0 (no motion), the optimal angle θops converges to approximately 0.3776π. As
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β is increased and the advective forces become stronger on the motor, the optimal angle

increases as well. In the limit as β → ∞, the optimal angle is again at θops = π/2. This is

the case because, for half-reactive motors, the Péclet number diverges for increasing β and

Da, meaning that the gradient in bath particle concentration goes to zero.

In this study, we have neglected hydrodynamic interactions and rotation diffusion. Inclu-

sion of hydrodynamic interactions does affect quantitatively (not qualitatively) the results

for the osmotic force. It could also change the values of the optimal angles, but up to what

extent is unknown. Adding rotational diffusion to the model may change the net osmotic

force, however changing the distribution of the reactive surface could potentially be used

to reduce the effect of rotational motion to the net force and even to regulate it in general.

Indeed, rotational diffusion is negligible for large motors when compared to translational

diffusion, Dr
a/Da ∼ (1/a)2, where Dr

a = kT/8πηa3 is the motor rotary diffusivity. Another

important means to limit the rotation of the motor is to have a non-spherical motor with

a relatively large aspect ratio and have reaction occurring on one end only, much like the

catalytic nanorods used in the original experiments of Paxton et al. (2004).

In general, it should be interesting to expand and compare the proposed ideas for opti-

mal angles to other transport mechanisms (e.g., diffusiophoresis). A similar argument for

optimizing the design of swimmers based on patterns of surface properties was presented

by Golestanian et al. (2007). We have demonstrated that more reactive surfaces do not

translate to higher forces or velocities. As we have done for spheres, motors with other ge-

ometries (e.g., cylinders, spheroids) could be characterized by a length parameter describing

the amount of the reactive surface, which is then optimized for better performance. Many

important questions are raised when designing catalytic motors. How does the portion of

reactive surfaces vary from shape to shape? What is the best shape? What happens if there
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is more than one motor? Can motors be used to assist other motors to optimize propulsion?

The design and construction of osmotic motors can revolutionize applications in directed

self-assembly of materials, thermal management of micro- and nanoprocessors, and the

operation of chemical and biological sensors. One can potentially construct a system or

array of motors with different distributions of reactive sites, where each motor produces

different osmotic forces when supplying reactant bath particles to the medium. Another

interesting possibility is the design of intelligent motors that regulate distribution of reactive

sites autonomously or via external inputs (e.g., UV light, magnets) to control speed and

manage different tasks.
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Chapter 5

Osmotic propulsion by surface flux
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5.1 Introduction

Self-propulsion at nano-scales through a fluid medium is one of the most difficult chal-

lenges facing nanoscience today. The goal is to synthesize and exploit motors made from a

myriad of nanoscale building blocks that obtain on-board or off-board power from chemi-

cal reactions. The created work allows these devices to propel themselves through a fluid

phase while, simultaneously or sequentially, performing a task or series of tasks. Such

nanomachines, whether individual, or assembled into designed architectures, might some-

day transport medicine in the human body, conduct operations in cells, move cargo around

microfluidic chips, manage light beams, agitate liquids close to electrode surfaces, and search

for and destroy toxic organic molecules in polluted water streams (Ozin et al. 2005). Recent

developments suggest that chemically powered nanomachines will become a resounding pos-

sibility to overcome the endless limitations and restrictions found at low Reynolds numbers

(Purcell 1977). The mechanics of propulsion in this regime have been studied extensively,

however, this study has been focused on explaining the motions of microorganisms in fluid

medium and their applications to man-made devices (Steer and Viswanathan 1992). As

an example, the flagellated bacteria Serratia marcescens have been employed as fluidic ac-

tuators to propel custom designed microstructures through the use of a swarm blotting

technique. The flow deposition of bacteria is used to create a motile bacterial carpet that

can generate local fluid motion inside a microfabricated system (Kim and Breuer 2007,

2008).

Researchers have investigated a variety of external fields for colloidal transport in fluids,

such as electrophoresis for directing charged particles (Obrien and White 1978), thermo-

and diffusio-phoresis migration due to temperature and concentration gradients (Goldhirsch
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and Ronis 1983; Anderson and Prieve 1984), and optical tweezers to manipulate particles

using light gradients (Applegate et al. 2004), which are applicable for nanodevice motion.

Phoretic motion has been extensively studied for its utility in microfluidics devices or even

adapted to consider surface reactions (Howse et al. 2007). Recent experiments have shown

that phoretic motion of particles can not only be induced externally, but also by on-board

processes (e.g., chemical reactions) that changes the properties of its environment and

thus create local gradients. Paxton et al. (2006) explored the role of electrokinetics in the

spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2)

solutions that may rise from the bimetallic electrochemical decomposition of H2O2. Self-

diffusiophoresis was suggested as the mechanism propelling polystyrene microspheres half

coated with platinum immersed in a hydrogen peroxide solution (Howse et al. 2007). In both

experiments, the decomposition of hydrogen peroxide on the platinum surface into oxygen

and water harnesses the chemical free energy of the medium, which is then converted into

motion.

Some biological cells propel themselves using chemical surface reactions. Polymerizing

networks of actin filaments generate force for a variety of movements in living cells, intra-

and intercellular motility of certain bacterial and viral pathogens, and motility of endocytic

vesicles and other membrane-bound organelles. During actin-based motility, coexisting

populations of actin filaments exert both pushing and retarding forces on the moving cargo

(Giardini et al. 2003). Moving intracellular bacteria display phase-dense “comet tails”

made of actin filaments, the formation of which is required for motility. For intracellular

Listeria monocytogenes, it was found that the actin filaments remain stationary in the

cytoplasm as the bacterium moves forward, and that length of the comet tails is linearly

proportional to the rate of movement (Theriot et al. 1992). It was shown by Smith et al.
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(1995) that polarized localization (asymmetric distribution) of the protein is required for

efficient unidirectional movement. The fact that actin polymerization alone is capable of

providing sufficient force to push out a lipid bilayer has been tested in polystyrene beads

coated with purified ActA protein, causing them to undergo directional movement in an

actin-rich cytoplasmic extract (Cameron et al. 1999). Numerous models have been proposed

to describe the physics controlling the behavior of the actin polymerization motor (Mogilner

2006; Leshansky 2006), however, many biophysical questions remain about the mechanism

and control of actin network growth and about how network architecture of actin filaments

influences behavior.

It is well known that when two fluid volumes are separated by a semipermeable mem-

brane, fluid will flow from the volume of low particle concentration, to the volume of high

particle concentration. (This process is important in biological systems, in which it pro-

vides the primary means of transporting water into and out of cells.) The fluid flow may be

stopped, or even reversed by applying pressure on the volume of higher concentration. If

there are particles only in one volume of the system, then the pressure on it that stops the

flow is called the osmotic pressure. The particle motion is wholly determined by the fluctu-

ations of thermal collisions with nearby solvent molecules. Whenever a particle motion is

blocked by the membrane, it will transfer momentum to it and, therefore, generate pressure

on it. For dilute concentrations, the osmotic pressure Π is given by van’t Hoff formula (van’t

Hoff 1888), which is identical to the pressure formula for an ideal gas: Π = nbkT , where

nb is the solute concentration and kT is the thermal energy. If we now stop holding the

membrane, the osmotic pressure difference between the two sides of the system will push

the membrane until thermodynamic equilibrium is reached. A simple mechanism of cell

and organelle motility based on osmotic pressure differences, as in the classic example de-
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scribed above, was presented by Williams and De Gennes (1993) and Leonetti (1995). This

well-known principle was shown experimentally for lipid vesicles by the action of pump-

ing solvent across the semipermeable cellular membrane in an applied solute concentration

gradient (Nardi et al. 1999).

However, one could illustrate this principle without a semipermeable membrane. Con-

sider a colloidal particle — the osmotic motor— immersed in an uniform bath particle

concentration. A bath particle located near the motor interacts and delivers momentum to

it in some specific direction. Therefore, the motor must deliver a nonzero momentum to its

neighbor fluid molecules in other directions. The overall average momentum, delivered by

the fluid molecule to both the motor and neighbor fluid molecules, must be zero (Brownian

motion). If the bath particle concentration in the vicinity of the motor is disturbed, for

example as a result of a chemical surface reaction, more bath particle interactions on a

portion of the motor create a net osmotic force that could be used by the motor for directed

motion — such motion is called osmotic propulsion.

Our own recent work (Córdova-Figueroa and Brady 2008) has focused on developing

theoretical frameworks for osmotic propulsion by studying, possibly, the simplest scenario:

a spherical osmotic motor particle with a first-order reaction on a portion of its surface

that converts reactants into products in the suspension. The motor has the ability to break

any microstructural symmetry of the total bath particle concentration (the sum of reactant

and product concentrations) depending on the reaction stoichiometry and the diffusion of

reactants and products. Thus, it creates a net osmotic force useful for propulsion or to

pump fluid. As the motor moves forward, eliminating low concentration regions, it pushes

the microstructure of the colloidal particles out of equilibrium. In turn, the progress of

the motor is retarded by the presence of bath particles, which, through Brownian diffusion,
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act to restore equilibrium. The force resisting the self-induced motor’s motion depends on

the concentration of bath particles and particle sizes. The relative magnitude of the speed

of reaction to the thermal motion of the bath particles sets the degree of microstructural

deformation and is known as the Damköhker number, Da.

Recently, Golestanian et al. (2005) used the thin-interfacial-limit expressions for phoretic

motion as the basis for their chemically induced mechanism. However, our osmotic mech-

anism is not restricted to this limit; indeed, our motor particle could actually be smaller

than the reactant/product particles. The “osmotic force” approach produces precisely the

result for the flux of one species (the motor) due to a concentration gradient of another

species (the bath particles) as derived by Batchelor (1983) when hydrodynamic interactions

are neglected. It is well known that when small Brownian particles are excluded from the

region between two nearly touching (larger) colloidal particles, this results in more collisions

of the small particles on the “outer” surfaces of the large particles, which in turn results in

a net osmotic force on each large particle causing them to attract (Jenkins and Snowden

1996). This is exactly the mechanism at work in our osmotic motor.

In the present work, we examine the self-propulsion of an osmotic motor creating a con-

stant flux of product particles, j0, on a hemisphere (Section 5.2) surrounded by a dispersion

of “bath” particles. As an analogy to the semipermeable membrane example, we consider

two possible scenarios for the motor: fixed by an external force, or free but the self-created

osmotic force balanced by Stokes drag force due to viscous forces (Section 5.2.1). In Section

5.3, we develop a Brownian dynamics (BD) simulation based on the algorithms presented

by Foss and Brady (2000) for sheared colloidal dispersions and by Carpen and Brady (2005)

for active particle-tracking microrheology. A relationship between the particle-level inter-

pretation of the flux that BD provides and the macroscopic quantity that is the Damköhler
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Figure 5.1: Schematic description of the osmotic motor of radius a and bath particles of
radii b (in gray). The left side of the motor produces a constant flux of particles of radii
b (in red). A net osmotic force F osm is created toward lower bath particle concentration
regions.

number was derived, enabling us to compare the simulation results with the theory. The

net driving force is investigated in the limits of slow and fast flux in relation to diffusion for

different bath particle concentrations and motor to bath particle size ratios (Section 5.4).

In Section 5.5 we also propose ideas for a problem that consists of a reversible reaction

on a portion of the motor. This type of reaction unifies the recent work done consider-

ing a first-order surface reaction (see details in Chapters 2 and 3) and the constant flux

problem addressed in this work. Lastly, some concluding remarks and a comparison to the

polymerization motor are present in Section 5.6.

5.2 The osmotic force

Consider the behavior of a colloidal particle of radius a — the osmotic motor — immersed

in a dispersion of bath particles of radii b. Both motor and bath particle sizes are large

compared to the solvent molecules (filling voids between particles) so that their behavior

can be described by the familiar equations of colloidal physics (Russel et al. 1989). Figure
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5.1 shows a schematic description of the osmotic motor and bath particles. Different types

of interparticle forces can exist between the motor and bath particles, but we model these

interactions in the simplest way by adopting a hard-sphere potential so that the particles do

not interact until their radii touch. In the present work, we neglect hydrodynamic interac-

tions and rotary diffusive motion. Although this may seem to be a severe approximation, it

allows a clear analysis that illustrates many of the significant physics of colloidal particles.

The hard-sphere suspension generates an osmotic pressure Π proportional to the thermal

energy kT of the medium times the total bath particle concentration nb. For simplicity,

it is assumed that the bath particles are dilute and therefore behave as an ideal gas. The

average collisions of bath particles on the motor exert an osmotic force given by

F osm = −kT
∫

nnbdS, (5.1)

where n is a unit vector normal to the excluded volume located at (a+b) and the integral of

the osmotic pressure is over the available surface for bath particle collisions with the motor.

In the absence of any external forces or gradients, the bath particle concentration about

the motor remains in equilibrium. Thus, the osmotic force is zero. We have proposed

a model to describe, possibly, the simplest mechanism in which a motor can propel itself

autonomously without external inputs or “assistances” (Córdova-Figueroa and Brady 2008).

The motor works by changing the local concentration of bath particles via a surface reaction.

If the reaction is properly located on the surface, it can break the symmetric structure of

bath particles about the motor, and therefore it can create a net osmotic force useful for

propulsion. This osmotic force must be balanced by an externally imposed force F ext to

hold the motor fixed, or by the hydrodynamic Stokes drag force F hyd = −6πηaU , where η
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is the viscosity of the solvent and U is the motor velocity.

The above description of the basic physics governing the osmotic motor, while simple,

is nevertheless completely accurate. A formal statistical mechanical derivation starting

from the N−particle probability density for finding reactive bath particles surrounding the

motor and the entropic origin of the osmotic force is possible and follows the work on single

particle motion in colloidal dispersions and microrheology (Squires and Brady 2005; Khair

and Brady 2006). That derivation also shows that there is no restriction on the size of the

motor relative to the bath particles.

It is assumed that the reaction takes place on half of the surface of the motor, while

the other half is passive (Figure 5.1). The bath particle concentration near the motor does

depend on the type of reaction rate that governs the chemical reaction and also on the

distribution of reactive surfaces (see details in Chapter 4). The behavior of an osmotic

motor subject to a first-order irreversible reaction on a portion of its surface was discussed

in Córdova-Figueroa and Brady (2008). In that problem, the osmotic force was found to be

proportional to the speed of reaction for slow reactions (reaction limited), and independent

of it for fast reactions (diffusion limited). But these limits are not necessarily the case

for other types of reactions. The reaction rate is balanced by the flux of bath particles

at the motor surface. It is in this balance that the reaction rate establishes the resulting

nonequilibrium bath particle concentration near the surface, which could then be used by

the motor to propel itself through the suspension. There are, in fact, a myriad of reaction

rate models that we can test theoretically for the osmotic motor to see their behavior for

arbitrary reaction speeds. Here, we proceed to examine the motor’s behavior subject to a

constant flux of product particles, which can also be seen as a zeroth-order reaction. We

discuss qualitatively the governing equations in the case of a reversible reaction R ↔ sP
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on a portion of the motor surface, where R and P are reactant and product particles,

respectively, and “s” is the stoichiometry number.

5.2.1 Surface flux

Suppose a constant flux of particles of radii b are produced on the half surface of the osmotic

motor (Figure 5.1). The product particles are assumed to be identical to the bath particles

in the suspension. The flux of product particles at the reactive surface is given by j0 — the

number of product particles per time per surface area. Similar to what we have presented in

past works, two possible scenarios for the motor are investigated: one, in which the motor

is held fixed, and a second one where it moves freely. Whether the motor is fixed or free

is just a change of reference frame. For a fixed motor there will be an advective flux at

infinity that removes bath particles from the suspension at the same rate of the product

particle formation flux.

To compute the osmotic force, we must solve for the product particle concentration nP

around the motor. We made nP nondimensional by the undisturbed bath particle concen-

tration far away from the motor, n∞b . Therefore, the scaled product particle concentration

is governed by the diffusion equation:

∇2ñP = 0. (5.2)

Eq. (5.2) is accompanied by boundary conditions:

ñP ∼ 1 as r →∞ (5.3)
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and

∂ñP
∂r

= Dah(n) at r = 1, (5.4)

where we define the Damköhler number

Da =
j0(a+ b)
Dn∞b

(5.5)

that measures the ratio of the formation speed of product particles, j0/n∞b , to the diffusion

speed, D/(a+b). The fixed motor does not undergo diffusion; thus, for this case the diffusion

coefficient is just that of the bath particles: D = Db. All lengths were nondimensionalized

by the contact distance a+ b. The distribution of reaction on the surface is determined by

the dimensionless function h(n), which we take to be -1 on the reactive half and 0 on the

passive half. Increasing Da, drives the suspension away from equilibrium. Thus, the fixed

motor creates an osmotic force

F osm = −kTn∞b (a+ b)2
∮

nñPdΩ, (5.6)

where dΩ = dS/(a + b)2 is the solid angle. Bath particles will accumulate on the reactive

(rear) side and push the motor with osmotic force (5.6). Solving the diffusion equation

for the scaled product particle concentration ñP about the fixed motor is easily obtained

analytically via separation of variables.

Letting the motor propel freely through the suspension (no external force holding it)

develops an advective flux of bath particles towards the motor that balances diffusion. This

changes the bath particle concentration distribution about the motor and consequently, the

osmotic force (5.6). The scaled product particle concentration distribution now satisfies the
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advection-diffusion equation given by

∇2ñP = −Pe∂ñP
∂z

, (5.7)

where the direction of motion is taken to be along the z-axis (Figure 5.1). Far way from

the motor, the concentration simply satisfies (5.3). At contact, the boundary condition

becomes

∂ñP
∂r

= Dah(n)− PeµñP , (5.8)

where µ = cos θ. The ratio of advective flux to the diffusive motion is given by the Péclet

number Pe = U(a + b)/D. The velocity is found from balancing the Stokes drag on the

motor with the osmotic force, giving

U = − kT

6πηa
n∞b (a+ b)2

∮
nñP (n;Da,Pe)dΩ, (5.9)

where the bath particle concentration now depends on the Damköhler and Péclet numbers.

The unknown motor velocity and the Péclet number must be found self-consistently, along

with the scaled product particle concentration ñP . The free motor also undergoes Brownian

motion; therefore the diffusion coefficient is now the sum of the motor and bath particle

diffusivities: D = Da +Db. From (5.9), the implicit equation for the Péclet number is

Pe = −Da

D
n∞b (a+ b)3

∮
nzñP (n;Da,Pe)dΩ = φb

(
1 +

a

b

)2
F(Da,Pe), (5.10)

where we have used the Stokes-Einstein-Sutherland expression for the motor diffusivity

Da = kT/6πηa; φb = 4πb3n∞b /3 is the bath particle volume fraction and F(Da,Pe) =

− 3
4π

∫
r=1 nzñPdΩ represents the nondimensional bath particle concentration distribution at
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contact as a function of the Damköhler and Péclet numbers. We denote for future references

the product φb (1 + a/b)2 as β, which corresponds to the number of bath particles within a

bath particle radius of the motor surface.

At Pe = 0 (β = 0), the problem reduces to the fixed motor case and the nondimensional

function F is a function of Da only, F(Da). Note that the advective flux in (5.8) exerts both

pushing and retarding forces on the motor. Bath particles will accumulate on the passive

(front) side in a similar fashion as observed in the active microrheology problem (Squires

and Brady 2005; Khair and Brady 2006). We expect that the motor velocity increases as

Da is increased, forming a tail-like region of dense product particle concentration on the

rear of the motor that grows as Pe. If the motor were to move faster than the constant flux

of product particles it would leave behind the particles needed to push it forward. However,

the motor regulates its speed to prevent this issue to occur and thus sustains propulsion.

Solving the advection-diffusion equation simultaneously with Pe for all values of Da and

β, which is needed to obtain the motor velocity (5.9), is demanding analytically. For this

matter, a finite difference method is employed. In addition, the theory is compared to

Brownian dynamics simulations. This allows us to study the problem in a particle level

description and also interpret the osmotic force in terms of hard-sphere collisions rather

than an integral of ñP over the surface of contact (5.6).

5.3 Brownian dynamics simulations

The Brownian dynamics (BD) method is well-established and has been investigated and

expanded by various researchers. In the BD method the components of the system are

allowed to respond to the instantaneous forces present in a given configuration, which causes

the system to adopt a new configuration. Even in the absence of external forces (e.g.,
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magnetic, gravitational, etc.) between the components, the system will still evolve from

one configuration to the next due to thermal fluctuations. Our approach is similar to that

used by Foss and Brady (2000) for sheared colloidal dispersions and by Carpen and Brady

(2005) for active particle-tracking microrheology. BD has also been used to investigate

reactive suspensions subject to different reaction rates (Andrews and Bray 2004). A further

description of BD is given in Allen and Tildesley (1989), so we shall proceed quickly.

The motion of the individual particles at small Reynolds number is governed by the

steady-state Langevin equation — a balance between the forces that may be present in the

suspension:

FH + FB + FHS + F ext = 0, (5.11)

where in the absence of hydrodynamic interactions FH is the Stokes drag force F hyd; FHS

represents hard-sphere forces; F ext represents the external force only applied to hold the

motor fixed; and FB are the Brownian forces given by

FB = 0 (5.12)

and

FB(0)FB(t) = 2kTRδ(t), (5.13)

where R is the resistance matrix in the absence of hydrodynamic interactions. The overbars

denote an ensemble average over the thermal fluctuations in the fluid, with the amplitude of

the Brownian force being given by the fluctuation-dissipation theorem. The sum of all the

forces acting on the suspension is zero. Rotational diffusion of the particles does not matter

for spherical particles in the absence of hydrodynamic interactions (torque-free particles).
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In the absence of external forces, Eq. (5.11) is integrated over the simulation time step ∆t

to give the nondimensional particle evolution equation for this system:

∆x = ∆xB + ∆xHS (5.14)

with

∆xB = 0. (5.15)

For bath particles,

∆xB∆xB = 2∆tI, (5.16)

and for the motor,

∆xB∆xB = 2
(
b

a

)
∆tI, (5.17)

where I is the isotropic tensor. We have made length nondimensional by the bath particle

radius, b, and time by the characteristic bath particle diffusive time, τb = b2/Db. The

random Brownian step, ∆xB, has zero mean (denoted by the overbar) and variance equal

to the single-particle Stokes-Einstein-Sutherland diffusivity in the absence of hydrodynamic

interactions. Clearly, Eq. (5.17) shows that the Brownian step of the motor decreases as

the motor size is increased.

The simulation method searches for particle pairs that have overlapped during the time

step ∆t and updates the positions of the particles by first Brownian forces, and second by an

iterative method which corrects collisions by applying the hard-sphere force/displacement

∆xHS . This hard-sphere collision scheme is based on the algorithm of Heyes and Melrose

(1993) in which the simulation checks for particle overlaps and displaces the overlapping

particles along their lines of centers back to contact in response to a hard-sphere-like in-
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terparticle force. Because bath particles are considered to behave as an ideal gas, only

hard-sphere collisions between the motor and bath particles are allowed. This “potential-

free” algorithm implements the hard-sphere potential considered in the theory.

The above approach was used to examine the motor in two cases: fixed or free. In order

to keep the motor fixed at a given configuration, an external force F ext equal in magnitude

to the self-created osmotic force is exerted on the motor. Thus, the motor does not move

at all and only the bath particle configurations evolve by diffusion. In this case, the hard-

sphere collision scheme needs to take into account the fact that since the motor is fixed,

the bath particles need to displace the entire amount back to contact position. On average,

more particles in the suspension collide with the reactive surface than on the passive surface,

causing a nonuniform distribution of collisions. The average osmotic force F osm is simply

the hard-sphere force of the bath particles exerted on the fixed motor

F osm = −kT
b

〈∆XHS〉
∆t

, (5.18)

where the average 〈·〉 is defined as the average over a time period. Indeed, in the absence

of reaction (the constant flux of product particles) the average hard-sphere force is zero.

Releasing the external force acting on the fixed motor causes it to move forward elimi-

nating regions of low bath particle concentration. Thus, the hard-sphere force must balance

the hydrodynamic force F hyd. The average motor velocity is given by the sum of the average

Brownian and hard-sphere velocity contributions:

U =
Db

b

〈∆X〉
∆t

=
Db

b

(
〈∆XB〉

∆t
+
〈∆XHS〉

∆t

)
. (5.19)
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Observing that the time-averaged Brownian displacement is zero, 〈∆XB〉 = 0, one obtains

U =
Db

b

〈∆XHS〉
∆t

. (5.20)

The motion of the motor only has non-zero contribution along the z-axis, where we define

the average velocity in this direction as U = nz ·U . The Péclet number Pe = U(a+ b)/D

is given by

Pe =
a

b

〈∆XHS〉
∆t

. (5.21)

As stated in the theory, there is a constant production of bath particles, QP (units

of product particles per time), coming out from one hemisphere of the motor particle that

must be emulated in BD. We define the time-averaged product particles created during each

time step 〈NP 〉 = QP τb∆t. All product particles appear at a distance a+ b from the center

of the motor (Figure 5.1). However, 〈NP 〉 has some stochastic variations, which could be

represented with a Poisson distribution (Andrews and Bray 2004). The Poisson distribution

is a discrete probability distribution that expresses the probability of a number of events

occurring in a fixed period of time, but only if these events occur with a known average

rate and independently of the time since the last event. Similar characteristics are present

in this problem; NP product particles are created at each time step with time average given

by 〈NP 〉. During a time step, the probability at which NP bath particles are produced is

given by a Poisson distribution

P (NP ) =
(〈NP 〉)NP

NP !
exp(−〈NP 〉). (5.22)

Note that Eq. (5.22) decays slowly to zero as NP → ∞. To save computational time,
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the Poisson distribution P (NP ) is truncated at NP,max, the maximum number of product

particles allowed to be formed at each time step.

In order to emulate the constant flux of product particles on the reactive surface, an

“accept-reject” algorithm is considered. The algorithm consists of generating sampling

values from the Poisson probability distribution function P (NP ) by using an assisting dis-

tribution f(NP ), under the only restriction that P (NP ) < Mf(NP ) where M > 1 is an

appropriate bound on P (NP )/f(NP ). Rejection sampling is usually used in cases where the

form of P (NP ) makes sampling difficult, as in this case. Instead of sampling directly from

the distribution P (NP ), we use an envelope distribution Mf(NP ) where sampling is easier.

These samples from Mf(NP ) are probabilistically accepted or rejected. This method relates

to the general field of Monte Carlo techniques, including Markov chain Monte Carlo algo-

rithms that also use a proxy distribution to achieve simulation from the target distribution

P (NP ). It forms the basis for algorithms such as the Metropolis algorithm (Robert and

Casella 1999). The validation of this method is the envelope principle: when simulating the

pair (NP , v = u ∗Mf(NP )), where u is a sample from (0,1), one produces a uniform simu-

lation over the subgraph of Mf(NP ). Accepting only pairs such that u < P (NP )/Mf(NP )

then produces pairs (NP , v) uniformly distributed over the subgraph of P (NP ) and thus,

marginally, a simulation from P (NP ) (von Neumann 1951).

Our implementation of the above algorithm in BD comprises of the next key steps. At

each time step ∆t a random number c is generated from a Gaussian distribution with zero

mean and standard deviation of 1. A deviation from the average number of produced bath

particles at each time step, 〈NP 〉, is calculated with this random number: NP = σc+ 〈NP 〉,

where σ =
√
NP,max/2. The parameter NP is rounded off to the closest integer and com-

pared to NP,max. If NP is greater than zero and less than NP,max, the value is accepted.
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Otherwise, the value is rejected and another c is generated until the condition is satisfied.

Then, the values of P (NP ) and Pmax = P (〈NP 〉) are calculated. An assisting function

slightly greater than P (NP ), that overlaps with the domain is proposed. The function is

given by f(NP ) = Pmax exp(−(NP −〈NP 〉)2/NP,max). Once f(NP ) is calculated, it is multi-

plied by a random number u that ranges uniformly from 0 to 1. If u < P (NP )/Mf(NP ), the

value NP is accepted, which becomes the number of bath particles created in that specific

time step. Otherwise, the value NP is rejected and another u must be generated starting

the whole iterative process again. We have chosen arbitrarily M = 1.1 to guarantee that

the envelope of the assisting function is greater than Pmax. Now that the total number of

product particles that the motor creates at each ∆t is known, the same number, NP , of

bath particles are uniformly taken out of the simulation box. This maintains a constant

total number of bath particles N during the simulation run. This action of removing bath

particles as new ones are formed, on average, does not produce any significative changes

to the results. To prevent errors in the above algorithm and in the results, one must im-

pose the condition NP,max � 〈NP 〉 at all times. In the simulations, we have truncated the

Poisson distribution at no less than NP,max = 10 and no greater than 〈NP 〉/NP,max = 0.1,

giving an adequate representation of the Poisson distribution. For the values of QP and ∆t

considered in the simulations, variations to the results should not be appreciable for higher

values of NP,max.

A relation between QP and the Damköhler number can be easily obtained using the

definition of Da, giving

QP = j0Arxn = Da

(
Dn∞b
a+ b

)
Arxn, (5.23)
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where Arxn = 2π(a+b)2 is the “contact” reactive surface area. Therefore, the time-averaged

number of product particles created at each time step, 〈NP 〉, is simply

〈NP 〉 =
3
2
Da

(
D

Db

)(
1 +

a

b

)
φb∆t, (5.24)

which shows its direct dependence on Da, the bath particle volume fraction φb, and the

size ratio a/b. Simulation results are compared to the theory using Eq. (5.24). For fixed

motors, D/Db ≡ 1 and Eq. (5.24) becomes 〈NP 〉 = 3
2Da(1 + a/b)φb∆t. For free motors,

D/Db ≡ (1 + b/a), thus 〈NP 〉 = 3
2Da(1 + a/b)(1 + b/a)φb∆t.

Factors such as bath particle volume fraction and the number of bath particles in the

simulation cell, can lead to a wide variation in computational time. Because we are inter-

ested in measuring the motor’s average force (or velocity if it is free), and we only have

one motor per simulation, long and/or multiple runs are required to obtain good accuracy.

The averaging is done over a period of T time steps where we have T forces/velocities (for

the motor). The resulting averages for each simulation run are then averaged together to

obtain the final average, as well as the deviation from the average. In general, runs are

for 1000 simulation time units (T∆t). The number of bath particles was chosen according

to the value of QP , but it was not less than 600 particles. If the motor creates too many

product particles (high QP ), a tail-like region of high product particle density is created on

the reactive surface that could cross the periodic boundary enclosing the particles. Before

starting the simulations, we ensure that there are enough bath particles in the suspension

and that the simulation box is large enough to avoid this issue.
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5.4 Results

The nonequilibrium bath particle concentration caused by the constant flux is examined

for the fixed and free motors, adopting an axisymmetric spherical polar coordinate system

with origin at the center of the osmotic motor. This enables us to compute the propulsive

force for different Damköhler numbers and values of the product β. Theoretical results

will be compared to Brownian dynamics simulations based on the method described in

Section 5.3. The simulation method can be implemented for all size ratios, but it becomes

computationally intensive for large motors. Therefore, we were able to obtain simulation

results for all Da but we restricted the values of β within 0 ≤ β ≤ 10.

5.4.1 Fixed motor

We first solve the governing equations of the bath particle concentration about the fixed

motor, and thus the osmotic force. The scaled concentration of bath particles is transformed

into ñP = 1 +DafP , where it becomes clear that the governing equations are independent

of Da. The diffusion equation for fP is solved via separation of variables, giving

ñP (r, µ) =
∞∑
m=1

Amr
−(m+1)Pm(µ), (5.25)

where Pm(µ) is the Legendre polynomial of order m and argument µ = cos θ and Am are

the coefficients (Abramowitz and Stegun 1965). We have kept only the solutions that decay

at infinity. The boundary condition at r = 1 is satisfied when

∞∑
m=1

−(m+ 1)AmPm(µ) = h(n), (5.26)



187

where the coefficients Am are given by

Am = −2m+ 1
m+ 1

∫ 1

−1
Pm(µ)h(n)dµ. (5.27)

The general solution for fP is substituted into Eq. (5.6). The nondimensional function

F(Da) = − 3
4πDa

∫
r=1 nzfPdΩ, representing the particle concentration distribution at con-

tact, results in

F(Da) =
3
8
Da. (5.28)

Thus, the resulting osmotic force for the fixed motor is simply

F osm =
kT

a+ b
φ

(
3
8
Da

)
, (5.29)

where φ = 4/3πn∞b (a+b)3 is the fraction of bath particles in the motor volume. The osmotic

force scales linearly with Da: F osm ∼ n∞b (a+ b)3(6πηbj0/n∞b ). This has a simple physical

finding: each product particle strikes the motor with speed κ and thus hydrodynamic force

6πηbj0/n∞b , and there are n∞b (a + b)3 colliding bath particles. We plot in Figure 5.2 the

scaled osmotic force as a function of Da. The symbols are the result of BD simulations

for different bath particle concentrations and particle size. Note that the simulation results

collapse into a single universal curve independent of φb and a/b, and the simulation time

step ∆t considered in the simulations. The formula to obtain Da from a particle-level point

of view has been demonstrated to work for the values shown here; however, the simulation

results are off by a scale factor ∼ 3/4 and the reason for this discrepancy is unclear1. The
1There is a possibility that in order to compare QP and Da properly one needs to integrate the continuous

equation over a time step and then take the limit as ∆t→ 0. Since these time-dependent diffusion problems
have “power” behaviors, there is a chance to obtain the exponent in such an integration procedure. Further
studies are necessary to examine such a discrepancy.
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Figure 5.2: The osmotic force F osm scaled by kTn∞b (a + b)24π/3 as a function of Da for
different values of β. The theoretical prediction (line) is compared to Brownian dynamics
(BD) simulations (symbols) for various bath particle volume fractions, φb, size ratios, a/b,
and simulation time step ∆t. There is a discrepancy between the theory and the simulation
results of ∼ 3/4. The inserts are density profiles in the symmetry plane of the osmotic
motor at Da = 0.1 and 100. Color red represents higher concentration regions of bath
particles; and color blue represents undisturbed or lower concentration regions.

concentration of bath particles is illustrated in the inserts of Figure 5.2 showing density

plots of the fixed motor at Da = 0.1 and Da = 100. As expected, the denser zone (red

color) is located near the reactive surface (left side of the motor) with product particle

concentration going as n̂P ∼ Da for all values of Da (all reaction speeds). The product

bath particles will diffuse away from the motor toward regions less concentrated. Note that

the force is not saturated nor limited by diffusion.

5.4.2 Free motor

We now consider the free motor problem, which basically addresses the fact that the osmotic

(driving) force must be balanced by the hydrodynamic force F hyd. Firstly, we point out
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that the motor cannot move faster than the speed in which product particles are formed.

This is its only driving mechanism. If the contrary occurs, the motor leaves behind the

dense area of particles that pushes the motor forward. Thus, the motor velocity is bounded

by Da/(a+ b) ≤ U < jo/n
∞
b , where Da/(a+ b) is the diffusive velocity of the motor without

reaction.

We start our analysis by transforming the concentration of bath particles into: n̂P =

1 +DafP . This expression is substituted in equation (5.7), giving

∇2fP = −αDa∂fP
∂z

, (5.30)

and boundary conditions

fP ∼ 0 as r →∞ (5.31)

and

∂fP
∂r

= h(n)− αµ(1 +DafP ) at r = 1, (5.32)

where α = Pe/Da.

We proceed to first examine the product particle concentration and the motor velocity

that arise in the low and high Da regimes, which enables us to obtain the limiting behaviors

for low and high β.

5.4.2.1 Slow propulsion

In the limit of small Da, where Brownian motion dominates over the constant flux, the

concentration of bath particles is only slightly perturbed from its equilibrium state (no

constant flux). Here, the Péclet number is also small (Pe < Da). Therefore, a regular

perturbation expansion in Da (fP = fP,0 + DafP,1 + O(Da2)) is substituted in the above



190

governing equations, resulting in the following O(1) equations:

∇2fP,0 = 0, (5.33)

subject to zero concentration far from the motor, fP,0 ∼ 0, and, at contact (r = 1), the

boundary condition becomes

∂fP,0
∂r

= h(n)− αµfP,0. (5.34)

Eq. (5.33) can be easily solved via separation of variables with solution given by equation

(5.25). The nondimensional function F(Da,Pe) becomes

F(Da,Pe) =
3
8
Da− 1

3
Pe, (5.35)

same as in the first-order reaction problem discussed in Chapter 3. Clearly, Eq. (5.35) is

reduced to the results for the fixed motor at Pe = 0. This shows that the advective flux

does reduce the bath particle concentration gradient created by the motor. And at small

Da that first negative contribution is O(Pe). Substituting Eq. (5.35) into the implicit

formula for the Péclet number (5.10), we obtain

Pe =
3
8βDa
1
2β + 1

. (5.36)

In the limit of small β, the Péclet number scales as Pe ∼ βDa. Note that the motor velocity

scales as U ∼ Dan
∞
b (a+ b)2Da ∼ Da/D(a+ b)3j0 for small β. In the limit as β →∞, the

motor velocity becomes

U =
3
4
j0
n∞b

, (5.37)
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which is independent of bath particle concentration and the size of the particles, and it is

identical to the motor velocity obtained from the first-order reaction problem in Chapter 3.

5.4.2.2 Fast propulsion

In the limit of high Da, when the constant product particle flux is faster than the diffusive

speed of bath particles, and high Pe, the fast moving motor experiences different behaviors

around its surface. In the front of the motor, diffusion is important only in a thin boundary

layer of thickness δ ∼ O((a+b)/Pe) adjacent to the motor, outside of which advection dom-

inates (Squires and Brady 2005). On the rear, a wake of high product particle concentration

diffusing away from the motor is created with length measured from the surface order Pe.

Outside of the wake, the concentration is in equilibrium, and n̂P = 1 there. There is a small

region past µ = 0 where the bath particle concentration at contact grows as n̂P (1) ∼ Da.

All the propulsion gradient must occur near this region (passive to reactive transition).

At high Da, the bath particle concentration is perturbed again by substituting fP =

f̂P,0 + 1
Da f̂P,1 + O(Da−2) into the advection-diffusion Eq. (5.33) and boundary conditions

(5.31) and (5.32), resulting

∇2f̂P,0 = −Pe
∂f̂P,0
∂z

, (5.38)

and boundary conditions

f̂P,0 ∼ 0 as r →∞ (5.39)

and

∂f̂P,0
∂r

= h(n)− Peµf̂P,0 at r = 1, (5.40)

where we have taken the limit as Da→∞. Note that the above equations are independent
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of Da. The nondimensional function F becomes

F(Da,Pe) = − 3
4π
Da

∫
r=1

nz f̂P,0dΩ. (5.41)

From the boundary condition at contact (5.40), the function of f̂P,0 at contact scales as

1/Pe. Thus, the Péclet number becomes

Pe = βF(Da,Pe) ∼ βDa
Pe

, (5.42)

which scales as Pe ∼ (βDa)1/2 in the limit of high Da. Therefore, the motor velocity scales

as U ∼ D/(a+b)(βDa)1/2 ∼ (a2j0Da)1/2. This scaling condition is obtained by noting that

at high Pe there is a balance of surface flux and advection, j0 ∼ UnP , giving the scaling

for the bath particle concentration nP ∼ j0/U . The osmotic force F osm = −kT
∮

nnPdS ∼

kTa2j0/U must balance the hydrodynamic force F hyd = 6πηaU retarding the propulsion

of the motor. Finding the velocity that results in this balance gives U ∼ (a2j0Da)1/2. This

means that the motor could sustain and increase its propulsion as far as it continues creating

more product particles to prevent being stopped by the build-up of bath particles in front

of the motor.

5.4.2.3 Arbitrary Da

Having examined the two limiting cases for the free motor, we now proceed to treat the

case of general Da and product β. It is challenging for higher orders of Da and all values

of β to solve analytically the advection-diffusion equation and its corresponding boundary

conditions simultaneously with the implicit formula for Pe. Therefore, we employ a (fast)

finite different method that accurately captures (with additional grid points) the regions of
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Figure 5.3: The osmotic velocity U scaled by Dan
∞
b (a + b)24π/3 as a function of Da for

various values of β. The theoretical predictions (lines) are compared to Brownian dynamics
simulations (symbols) for same β and various ∆t. There is a discrepancy between the theory
and the simulation results of ∼ 3/4.

large bath particle gradients without compromising the condition far from the motor. The

resolution of the method is tuned to accommodate the order 1/Pe region in front of the

motor, the long concentrated wake behind the motor that appears at high Da and β, and

near θ = π/2 — the transition from passive to reactive surface.

In Figure 5.3 we plot the predictions for the motor velocity U as a function of the

Damköhler number resulting from the numerical method. The motor velocity has been made

nondimensional by the diffusive velocity of the motor Da/(a+ b), and the fraction of bath

particles in the motor volume, φ. Thus, the figure represent the nondimensional function

F(Da,Pe). The curves in the figure correspond to various values of β and the symbols

to simulation results for same β and time step ∆t. We have included, for comparison, the

nondimensional osmotic force (expressed as a Stokes velocity) for the fixed motor. Again,

the formula derived to compute Da from the simulations shows to be in close agreement
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Figure 5.4: The Péclet number Pe as a function of the Damköhler number Da = j0(a +
b)/Dn∞b for various β

with the theory based on the values here presented. However, the same discrepancy (a

scale factor ∼ 3/4) that was observed in the fixed motor problem continues here, suggesting

that such a discrepancy comes from the formula to connect QP and Da and not from the

properties of the suspension. The plot agrees with the limits of low and high Da. At small

Da, the motor velocity is linear in Da. In the opposite limit, the motor velocity behaves

as Da1/2. It is apparent that the curves decrease as β is increased, which demonstrates

the direct dependence of β in increasing the Péclet number. As Pe is increased the bath

particle distribution at contact decreases.

The Péclet number as a function of Da for various β is plotted in Figure 5.4. This

plot is an extension to Figure 5.3, where we now investigate the behavior for arbitrary β

against Da. Firstly, at small Da, the Péclet number is order Da for all β, showing that

F(Da,Pe) ∼ Da as expected. In the limit as Da → ∞, the curves scale as Pe ∼ Da1/2.
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Figure 5.5: The Péclet number Pe as a function of the product β for various Da = j0(a+
b)/Dn∞b

Note that the curves in Figure 5.4 increase as β is increased, reflecting the effect of having

more bath particles near the motor. Usually, the transition from low to high Da regimes

occur near Da = 1. This is not the case in this problem. This transition appears to happen

at a later Damköhler number, but as β is increased it comes closer to 1.

In Figure 5.5 we plot the Péclet number as a function of β for arbitrary values of Da. The

plot shows that for small Da, Pe is linear in β. Therefore, for small Da and β, Pe ∼ βDa.

For finite Da, the motor velocity saturates as β → ∞, giving Pe ∼ O(1). The motor

moves at a diffusive velocity U ∼ D/(a + b), which is independent of the concentration

of bath particles and particle size. It is expected from the scaling argument discussed in

Section 5.4.2.2 that in the limits as Da → ∞ and high β, the Péclet number diverges

as Pe ∼ β1/2. Thus, the nondimensional function F(Da,Pe) scales as α−1 = Da/Pe

at high Pe. Clearly, this behavior is not shown in Figure 5.5. The Péclet number also
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Figure 5.6: The Péclet number Pe as a function of the product βDa in the limit as Da→∞

saturates for the high Da values considered in the plot, suggesting that a different condition

must be satisfied. The Péclet number as a function of the parameter βDa, which appears

naturally from scaling the governing equations in the limit as Da→∞, is plotted in Figure

5.6. At low βDa, the Péclet number scales linearly as Pe ∼ βDa. This plot shows that

it is the combined condition βDa � 1, not simply β � 1, that shows the square-root

behavior at high Da and β: Pe ∼ (βDa)1/2, which was also predicted using a simple

force balance. This limiting behavior means that the characteristic time of propulsion

τU ∼ a/U is given by the geometric mean τU ∼ (τj0τa)
1/2, where τj0 ∼ 1/a2j0 is the

characteristic time of the constant flux and τa ∼ a2/Da is the characteristic diffusive time

of the motor. The product βDa is independent of the uniform concentration of bath particles

n∞b : φb(1 + a/b)2Da ∼ b(a + b)3j0/D. Note that the curves in Figure 5.5 increase as the

Damköhler number is increased, showing the effect of having more product particles being

formed at the motor provide additional collisions for directed motion. The transition from
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Da = 0.7, Pe = 0.42672 Da = 20, Pe = 6.1776 Da = 100, Pe = 16.345

β = 0, Pe = 0 β  = 6, Pe = 3.5666 β  = 1000, Pe = 4.5651 

Figure 5.7: Bath particle density profiles in the symmetry plane of the osmotic motor at at
β = 10 for different Da (top row) and at Da = 10 for different values of β (bottom row).
Color red implies regions of accumulation or high concentration of bath particles; and color
blue represents undisturbed or lower bath particle concentration regions. The left half of
the motor is reactive and its motion is from left to right. As Pe increases, bath particles
accumulate in the front side of the motor and a high bath particle concentration wake is
developed in the rear.

low to high β regimes occurs near β = 1. And in Figure 5.6 such transition from low to

high Pe in the limit as Da→∞ occurs near βDa = 1.

Figure 5.7 shows density plots around a motor at β = 10 for different Da (top row) and

also at Da = 10 for different values of β (bottom row). Also shown on the plots are the

resulting Péclet numbers corresponding to the motor velocities. At small Da, Brownian

motion is dominant enough to minimize the effect of the reaction, and the density is almost

symmetric (as it would be at equilibrium). This symmetry breaking is clearly seen for

high Da, with the development of a high bath particle density layer on the front of the

motor and a high-density comet-like wave behind the motor. This wake grows longer as the

Péclet number is increased, reflecting the decreasing ability of thermal/Brownian motion

to heal the disturbed suspension. It is observed in the density plots that by increasing
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β and keeping Da fixed, the concentration of bath particles is reduced near the reactive

surface as it increases near the passive. As described in Squires and Brady (2005), in the

high Pe limit, the effect of a moving particle on the suspension is strongly localized to a

thin advection-dffusion boundary layer of thickness O((a+ b)/Pe) on the front side of the

motor. In this limit (high Pe), the bath particle concentration goes to zero as 1/Pe on the

reactive surface (rear side) except in a thin region downstream of µ = 0 that controls the

mechanism for propulsion.

5.5 Reverse reaction

We have addressed the behavior of an osmotic motor subject to a constant (stream) flux

of product particles formed at one hemisphere. Here, we describe the governing equations

for a motor subject to a reversible reaction. The bath particles are divided into reactants

labeled R, and products P . We consider a portion of the surface to be reactive such that

the reactant bath particles undergo a reversible first-order reaction of products according

to: R ↔ sP , where for each reactant particle “s” product particles are produced and the

stoichiometry value s can be greater than or equal to zero. At the reactive surface, there

is an equilibrium reactant concentration given by neqR . As we shall see below, this rate of

reaction enables us to unify the results for the nonequilibrium concentration of particles

about the motor in the cases of an irreversible first-order reaction (presented in Chapter 3)

and a constant flux on the surface of the motor described in the previous sections.

We first consider a fixed motor. Since the reaction only takes place at the motor surface,

the reactants and products diffuse in the surrounding fluid with translational diffusivitiesDR

and DP , respectively, and their concentrations satisfy Laplace’s equation. For the reactant:

∇2nR = 0, subject to the imposed concentration far from the motor, n∞R ; and the flux to
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the motor is balanced by the reaction on the motor surface: n · ∇nR = rR(a+ bR)/DR. All

lengths have been nondimensionalized by the sum of the motor and reactant radii: a+ bR.

The products satisfy a similar equation with the subscript R replaced by P . However, the

osmotic force is proportional to the total concentration of bath particles nb = nR + nP ,

which satisfies ∇2nb = 0, subject to n∞b = n∞R + n∞P , and at the motor surface n · ∇nb =

rR(a + bR)/DR × (1 − sDR/DP ). Here we consider a first-order reversible reaction with

rate constant κ (units of velocity), i.e., rR = κ(nR−neqR ). Defining the scaled concentration

differences ñR = (nR − n∞R )/(n∞R − n
eq
R ) and ñb = (nb − n∞b )/[(n∞R − n

eq
R )(1− sDR/DP )] it

is easy to see that ñR and ñb satisfy the same Laplace equation and boundary conditions.

Thus, only the reactant concentration profile is needed to completely solve the problem.

The reactant concentration profile is governed by the ratio of the speed of reaction

to that of diffusion — the Damköhler number Da = κ(a + b)/D. We have dropped the

subscript R for the reactant and will simply refer to the reactant as a bath particle. The

boundary condition at the motor surface now becomes: n ·∇ñ = Da(ñ+ 1)h(n). Thus, the

governing equations are the same for a fixed motor with a first-order irreversible reaction

on a portion of its surface. The osmotic force (5.1) becomes

F osm = −kTn∞R
(

1−
neqR
n∞R

)(
1− sDR

DP

)
(a+ b)2

∮
r=1

nñ dΩ (5.43)

where dΩ = dS/(a + bR)2 is the solid angle2. In Figure 5.8, we plot the osmotic force

exerted on a half-reactive fixed motor as a function of Da. The stoichiometry/diffusivity

factor, (1 − sDR/DP ), tells how many products are produced per reactant, s, and how

fast the products diffuse relative to the reactants, DR/DP . And it is this combination
2Technically, for spherical reactants and products of different radii, the integral in (5.43) should be over

the “contact” surfaces at a + bR and at a + bP . This introduces a negligible error, especially in the large
motor limit a� bR,P .
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Figure 5.8: The osmotic force F osm scaled by n∞R kT (a+b)2(1−neqR /n∞R )(1−sDR/DP )4π/3
as a function of the Damköhler number Da = κ(a + b)/D. The motor is considered to be
half reactive. For small Da, the scaled osmotic force is linear in Da. In the limit of high
Da, the scaled osmotic force saturates and becomes independent of Da.

that governs the behavior. The reversibility factor, (1 − neqR /n∞R ), determines how many

products are transformed back into reactants in comparison to the equilibrium concentration

of reactants. The sign of the force will depend on which particle diffuses faster and on the

ratio of neqR /n
∞
R . It is expected that for slow reactions, the osmotic force is proportional to

Da, giving F osm ∼ n∞R
(
1− neqR /n∞R

)
(1− sDR/DP ) (a + b)3(6πηbκ) . However, the force

saturates for fast reactions and becomes independent of the speed of reaction: F osm ∼

kTn∞R
(
1− neqR /n∞R

)
(1− sDR/DP ) (a+ b)2.

Now, we consider the scenario if the motor was released and was able to move freely.

In a frame of reference traveling with the free motor, there will be an advective flux

towards the motor. The scaled reactant concentration satisfies the advection-diffusion

equation: ∇2ñR = −PeR∂ñR/∂z, where the direction of motion is taken to be the z-

direction. The products also satisfy the same equation with R replaced by P . The scaled
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total concentration does not satisfy the same equation as the reactants. It is governed by

∇2ñb = −(PeR − PeP )/(1 − sDR/DP )∂ñR/∂z − PeP∂ñb/∂z, subject to ñb ∼ 0 far away,

and at the motor surface

∂ñb
∂r

+ PePµ

ñb +
1(

1− sDR
DP

)(
1− neq

R
n∞R

)
 =

Da(ñR + 1)h(n)− µ

(
PeR − PeP

1− sDR
DP

)ñR +
1

n∞R
neq

R
− 1

 , (5.44)

where µ = cos θ. In the small and large Péclet number limits, the scaled total concentration

ñb does satisfy the same equation as the reactants. This is also true when PeR = PeP . In

the limit as neqR /n
∞
R → 0, the condition at contact (5.44) reduces to the condition expected

for an irreversible reaction. In the opposite limit, neqR /n
∞
R → ∞, the boundary condition

at contact becomes that of a constant flux of bath particles created on the reactive surface

balancing the flux of particles. In fact, the osmotic force (5.43) changes sign and points

away from the constant flux (as in Figure 5.1). The solution for ñb diverges in the cases

sDR/DP = 1 and neqR /n
∞
R = 1, however, for these two situations the osmotic force (5.43)

is zero. This equation reduces in the limits as sDR/DP → 0 and neq/n∞ → 0 into the

simplest irreversible reaction: R → 0. The motor velocity is clearly Eq. (5.43) expressed

as a Stokes velocity. We can get the proper limits for large β and Da from Eq. 5.44, which

enables us to examine how the behavior of the motor velocity changes as the reaction is

modified from surface flux to first-order.
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5.6 Conclusions and discussion

Studies of reaction-driven propulsion mechanisms present great opportunities in the control

and motion of nanodevices and the understanding of many biological systems. We have

proposed a simple model of propulsion for particles harnessing their environment via a

surface reaction. Our proposed model consists of a colloidal particle — the osmotic motor

— immersed in a dispersion of “bath” particles, that propels itself by creating a constant

flux of particles on one hemisphere. For simplicity, we neglected hydrodynamics interactions

and rotational diffusion, and considered the product particles to be the same size as the bath

particles. This nonuniform production of particles disturbs the equilibrium concentration

and thus the osmotic pressure acting on the motor. The integration of the osmotic pressure

over the surface of contact for collisions between the motor and surrounding particles gives

the osmotic force, which relates to the particle gradient generated by the motor. Our

work has demonstrated, analytically and by simulation, that autonomous motion can be

generated quite simply by exploiting the ever-present random thermal motion via a chemical

reaction at the motor surface. We have solved for the bath particle concentration around

a motor, subject to a constant flux of product particles on the half surface. This enabled

us to compute the osmotic force for all Damköhler numbers — the ratio of the speed of the

product particle flux j0/n
∞
b to the diffusive velocity D/(a + b). The employed Brownian

dynamics simulations show excellent agreement with the theory.

We have considered two possible scenarios for the motor: fixed and free. The osmotic

force resulting for the fixed motor was found to be linear in Da for all Damköhler numbers:

F osm ∼ n∞b (a + b)3(6πηbj0/n∞b ). Product particles are concentrated near the reactive

surface and diffuse away from the fixed motor. In the free motor case, the osmotic force is
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balanced by the Stokes drag force F hyd, giving an expression for the velocity of the motor.

As the motor propels though the suspension, bath particles start to accumulate on the

front side of the motor (passive surface). At small Da, it was found that the motor velocity

is U = 3
8βj0/n

∞
b /(

1
2β + 1). In the limit as β → ∞ (large motors), the motor velocity is

simply U = 3
4j0/n

∞
b , independent of β. For intermediate and finite Da, there is a limiting

speed in the limit as β → ∞ that scales as the diffusive velocity of the bath particles:

U ∼ D/(a + b). This saturation limit observed at high β suggests that no matter how

many bath particles are added to the suspension it would not change the steady-state total

particle concentration around the motor. At high Da and β, diffusion of bath particles is

slower than the constant flux. On the front side of the motor a boundary layer of order Pe

is formed where radial diffusion is balanced by radial advection. Here, the Péclet number

scales as Pe ∼ (βDa)1/2. Thus, the motor velocity scales as U ∼ (a2j0Da)1/2.

We have addressed the governing equations for an osmotic motor subject to a reversible

reaction. Our goal was to illustrate the limiting behaviors of sDR/DP and neqR /n
∞
R and

their connection to the results obtained for the bath particle concentration assuming an

irreversible first-order and a zeroth-order (constant flux) reaction at the motor surface.

What is the behavior of the motor for arbitrary values of sDR/DP and neqR /n
∞
R ? What

role do other types of reactions play? How do other distributions of reaction (e.g., constant

particle formation on strategically located sites) affect the behavior of the motor? How

will a motor consuming bath particles on one side and formation on the other side act for

different speeds of reactions, shapes, and suspension properties? Can this have relevance

for the osmotic propulsion of lipid vesicles (Nardi et al. 1999)? We leave these questions

open for the interested reader.

Although we have assumed that only a single species is formed by the motor, this model
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can be extended to polydisperse suspensions of hard-spheres and multiple reactant/product

species. If reactant or product particles are of same size as the inert species already present

in the dispersion (the bath particles), this changes the total particle concentration. Oth-

erwise, the inert species do not affect the reactant or product particle concentration. The

total osmotic force is based on the sum of all the individual osmotic forces created by each

species. Another drastic simplification is assuming that j0 (or κ) remains constant. In real-

ity, there are many factors that could influence the rate of reaction, such as concentration,

temperature (endothermic and isothermic reactions), type of solvent, and pressure. And

potentially this alters the driving mechanism for propulsion presented in this work.

The results of our model resembles superficially the polymerization motor, which also

operates by asymmetric distribution of concentration around the motor and forms a comet-

like tail of polymers as it is propelled forward. It was observed by Cameron et al. (1999)

and Bernheim-Groswasser et al. (2002) that the actin-based motility of polystyrene beads

decreases as the size of the beads are increased. For high β, the motor velocity in our

model scales as U ∼ D/(a + b) ∼ Db/a, which goes to zero as 1/a for very large motors.

Also, the tail length formed by bacterium Listeria monocytogenes (Theriot et al. 1992)

is linearly proportional to the rate of movement. We have shown that for slow reactions

(Da � 1), the motor velocity is linear in the rate of formation of product particles and

scales as U ∼ b(a + b)2j0. The moving osmotic motor exhibits a wake that grows as Pe

is increased. The Péclet number is also linear in the rate of product particle formation:

Pe ∼ j0(a + b)/Dn∞b . Indeed, these behaviors could also be observed in other reaction-

driven motility mechanisms. We are not suggesting that the polymerization motor operates

exactly as the osmotic motor, but this similarities clearly show that our mechanism could be

a good alternative for explaining motility of microorganisms and organelles and exploiting
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for man-made settings.
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Chapter 6

Conclusions
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6.1 Conclusions and future directions

Recently, reaction-driven propulsion has emerged as a possible mechanism to move objects

at the micro- and nanoscale. From biological motors to catalytic nanomotors, experimental

methods have continued to progress and propose new ideas that could be tested or explained,

fundamentally, in theoretical developments. To address these discoveries, we have proposed

a simple model for propulsion: a colloidal particle — the osmotic motor — immersed

in a hard-sphere dispersion of colloidal “bath” particles subject to a nonuniform surface

reaction creating an imbalance in osmotic pressure. The hard-sphere colloidal dispersions

are perhaps the “simplest” particle system; nevertheless, as shown in the previous chapters,

its properties are nontrivial and require careful analysis.

In Chapter 2, we presented perhaps a simplistic interpretation of a reaction-driven mo-

tor. Our motor derives its propulsive motion from the free energy present in the concen-

tration gradient of the reactant bath particles. This gradient in free energy (or chemical

potential) exerts a force on the motor and that force is balanced by the drag of the solvent

— the Stokes drag. The motion is not force-free. If one sums the force on the motor and

on all of the reactant bath particles, then the total force is indeed zero, as it must be. Since

we have neglected any hydrodynamic interactions between the motor and bath particles,

there is no velocity disturbance. The motor is propelled or entrained by the flux of reac-

tant particles down the concentration gradient established by the heterogeneous chemical

reaction occurring on the motor surface, just as a gradient in concentration of one chemical

species can drive the flux of another (Batchelor 1983). As showed in an earlier paper by

Squires and Brady (2005), one can express this free energy driving force as the integral of

the concentration of the reactant — the osmotic pressure — over the motor surface. In
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the absence of any external forces or particle gradients acting on the motor, the concen-

tration of bath particles about the motor is uniform and thus the osmotic force is zero.

To illustrate the interesting physics involved in this problem, we assumed that on half of

the surface there is a first-order reaction in control of creating a net osmotic force. On the

reactive portion of the motor surface for each reactant particle “s” product particles are

produced. The departure from equilibrium or the uniform concentration of bath particles

is controlled by the Damköhler number Da: the ratio of the speed of reaction κ and the

Brownian motion of particles D/(a + b). This osmotic force was found to be proportional

to the thermal energy kT , the stoichiometry/diffusivity factor, (1−sDR/DP ), the available

area for collisions (a+ b)2, and the gradient in bath particle concentration at contact. The

stoichiometry/diffusivity factor, (1− sDR/DP ), tells how many products are produced per

reactant, s, and how fast the products diffuse relative to the reactants, DR/DP .

We found that the osmotic force created by a fixed motor is proportional to Da for

slow reactions, however, for fast reactions the force saturates and it becomes independent

of Da. If the (fixed) motor is released, it cannot travel any faster than the bath particles

can diffuse. If the motor were to move faster than this velocity, the bath particles would not

keep up, and the motor would loose the propulsive force that caused it to move in the first

place. The resolution of this paradox is to recognize that in a frame of reference traveling

with the free motor there will be an advective flux of bath particles towards the motor that

will alter the concentration distribution about the motor and, consequently, the propulsive

force. The strength of the advective flux compared to the diffusive motion is given by a

Péclet number Pe = U(a+ b)/D, where U is the free motor velocity. It was found that Pe

is a function of Da and the product φb(1 + a/b)2, which combines the bath particle volume

fraction, φb, and the size ratio of motor to bath particle, a/b, into a single parameter and
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corresponds to the number of bath particles within a bath particle radius of the motor

surface. The results showed that the fixed motor is the limit as φb(1 + a/b)2 → 0 (Pe = 0)

of the free motor, corresponding to an infinitely dilute suspension of bath particles as we

expected, and whether the motor is fixed or free, it is just a change of reference frame. For

a fixed motor there will be an advective flux at infinity to supply reactive bath particles

to the motor. This also implies that the motor will induce a fluid flow to supply the bath

particles and can be used as a pump — a novel microfluidic pump (and mixer). For small

Damköhler numbers, the motor velocity is proportional to κ; however, we found that for

finite φb(1 +a/b)2 the motor velocity saturates and scales as U ∼ D/(a+ b) — the diffusive

speed of the particles.

In Chapter 3, a formal statistical mechanical derivation of the microstructural deforma-

tion of the dispersion and the osmotic force was presented, which follows the work on single

particle motion in colloidal dispersions and microrheology (Squires and Brady 2005; Khair

and Brady 2006). For simplicity, it was assumed that the surrounding particles behave as

an ideal gas enabling us to make analytical progress. All calculations were performed for a

half-reactive motor with a first-order reaction. We calculated the fixed motor force for all

values of Damköhler number, Da, bath particle volume fraction, φb, motor/bath size ra-

tios, a/b, and stoichiometry/diffusivity factors, (1− sDR/DP ). This resulted in a universal

curve, onto which a wide range of measurements collapsed, and also agreed with Brownian

dynamics simulations. For small perturbations to the microstructure, we found that the

osmotic force is linear in the Damköhler number Da. In the limit of high Da, the force

saturates and becomes independent of Da. We found this force to be large compared to

typical colloidal forces, indicating that this mechanism could be useful for self-propulsion

(or for pumping fluids). It was shown that when the motor is let free, it moves rapidly
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toward lower bath particle concentration regions located near the reactive surface. Almost

instantaneously the motor catches up with the bath particles reducing the gradient in bath

particle concentration. Therefore, the osmotic force is balanced by the viscous force acting

on the moving motor. For the free motor case, we assumed that the stoichiometry value “s”

is zero, which greatly simplifies the governing equations. This assumption is unnecessary

in the limit of small Péclet numbers, i.e., the fixed motor, and in the limit of large Péclet

numbers where the effects of advection are the same for the reactants and products. The

effect of nonzero sDR/DP apart from being a scalar factor in the motor velocity will be

quantitative, not qualitative. Thus, the osmotic velocity was calculated as a function of

Da for various β = φb(1 + a/b)2. Also, we demonstrated again that BD simulations are in

agreement with the theoretical results. In general, we showed that the physical properties

of the microstructure, a/b and φb (or the product β), directly contribute to the speed of

the motor, an observation not shared by the fixed motor problem. For small Da numbers,

we showed the osmotic velocity is simply U = 3
8βκ/

(
1
2β + 1

)
. In the limit as β → ∞, the

motor velocity becomes U = 3κ/4, which is independent of the bath particle concentration

and the particle size. For finite Da and high β, the motor velocity reaches saturation and

scales as U ∼ D/(a+ b). But at high Da and β, we found that the Péclet number diverges

as Pe ∼ (βDa)3/5, giving a motor velocity that scales as U ∼ (Da/b)5/2κ3/5. In general,

we observed that at βDa� 1 the Péclet number is small (slow propulsion). In the limit of

βDa � 1, advection dominates over diffusion in the local microstructure, thus Pe is large

(fast propulsion).

We have proposed ideas to modify the dilute theory to account for concentrated systems.

Comparisons with measurements and Brownian dynamics simulations will be necessary

to determine whether these ideas are applicable. In this work, we modeled the particle
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interactions adopting a hard-sphere potential, so that the bath particles do not interact

with the motor until their hard-sphere radii touch, whereupon a force is exerted to prevent

overlapping. The problem can be extended to other forces existing between the motor

and bath particles, including electric forces between charged double layers, van der Waals

forces, and steric repulsions, by simply using the “excluded annulus” model, in which a

single parameter λ based on the ratio of the hydrodynamic radii and and the hard-sphere

radii tunes hydrodynamic interactions (Brady and Morris 1997). Hydrodynamics would

be expected to slow the motor’s motion, the question here is to what extent. At the pair

level (one motor, one bath particle) hydrodynamics can be included analytically (following

the work on microrheology, Khair and Brady (2008)), while for more concentrated systems,

Stokesian dynamics (Banchio and Brady 2003) can be adapted to simulate reacting bath

and motor particles. Many interesting applications can be considered with the addition of

hydrodynamic interactions.

Recently, Ruckner and Kapral (2007) examined the motion of a single, chemically pow-

ered nanodimer comprised of two linked spheres, one of which has equal interactions with

the solvents and the reactants but catalyzes reactants into solvents. The other sphere is

inert but interacts differently with the solvent molecules produced in the reaction. The

uneven interactions on the nanodimer generates a nonequilibrium concentration gradient at

the catalytic end that in conjunction with the force difference at the noncatalytic end leads

to directed motion.

Inclusion of hydrodynamics is also needed to examine the inverse question of how much

fluid it can pump, rather than how fast the motor can move. If we place a motor in a

microchannel, what kind of flow velocity can it generate in the channel? Will the flux of

reactive bath particles be limited by the walls? How will this change the scaling with Da?
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What kind of flows are created if one portion of the channel walls is a sink for bath particles

and another a source? Can this be used to promote mixing in micro- and nanofluidic

devices? Can the motion of a motor be directed to one region of a channel by the supply

of reactants? Can a motor be tailored to be a sensor for a specific chemical or biological

compound? Questions are plentiful just by modeling osmotic propulsion with other particle

interactions.

The “steady” force that a motor can exert may be much less than the peak fluctuating

force, and the peak force may be all that is necessary to cause some desired action. Since

the osmotic force arises from random collisions between the motor and bath particles, the

motor experiences a fluctuating force and, in some cases, these fluctuations may provide

a more important role than the averages, as in the case for living cells and heterogeneous

colloidal systems, that could be useful for nanotechnological applications. We computed

theoretically the time-averaged fluctuations resulting from the collisions between the motor

and bath particles as a function of the Damköhler number and the product β. It was found

that the time-averaged force fluctuations are O(Da2) at small Da, and are independent

of Da in the limit as Da → ∞. Also, for small and large β, the time-averaged force

fluctuations become ∼ (kT )2nb(a+ b). We calculated the ratio of parallel to perpendicular

fluctuations for various Da and β, giving a better picture of how the fluctuations relate to

the microstructural deformation relative to the motor. In addition to the theory, simulations

should also be considered in order to give us a better picture of the fluctuating force of the

motor as time progresses. An interesting problem that can be studied in simulations consists

of a motor fixed by an external force and subject to a fast reaction on half surface that is set

free at a certain time. The motor exerts a large peak force driving the motor forward and

thus, reduces the self-created bath particle depleted region until it saturates and reaches a
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limiting speed which is less than the initial one that comes from the result of the balance

between advection and diffusive forces. Again one can apply the external force to hold the

motor, and consequently repeat the process. Thus, the initial bath particle concentration

distribution about the fixed motor is recovered at a diffusive time scale b2/Db, as is the

osmotic force. This cycle can be useful to produce large but short-in-duration osmotic

forces that can be harder to obtain from moving motors. This principle can also be used to

obtain information about the surrounding medium in response to the motion of the motor.

We have derived an expression for the efficiency of conversion of free energy into me-

chanical energy, which measures the ability of the motor in harnessing its environment to

create useful work. For an irreversible first-order reaction rate (consumption of bath par-

ticles) on half motor’s surface, the motor efficiency ξ goes to zero as Da → ∞. We found

the efficiency of the fixed motor to be independent of Da for Da � 1. For fast reactions,

the fixed motor efficiency scales as ξ ∼ β/(lnDa). On the other hand, the efficiency of

the free motor also scales as ξ ∼ β for slow reactions, but scales as ξ ∼ 1/(β lnDa) for

high Da and β. Many questions arise by investigating the motor efficiency. Can we define

other types of efficiency? How does the motor efficiency compare to other reaction-driven

transport mechanisms? Is it possible to design an osmotic motor as efficient as biological

machines (Purcell 1997; Chattopadhyay et al. 2006)? There are many variables that could

be manipulated to improve the motor efficiency, such as the portion of the reactive surface

on the motor and the expressions for the reaction rate.

In Chapter 4, we offer a theoretical framework for the behavior of a spherical osmotic

motor subject to different distributions of reactive surface (described by the angle θs). For

simplicity, it was assumed that an irreversible first-order reaction consumes bath particles

at a portion of the motor surface (s = 0). The basis for our model involves determining the
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reaction-induced perturbation to the suspension microstructure in order to calculate the

driving force on the motor. The motor velocity is determined via application of the Stokes

drag law. A theory for the microstructure evolution was provided and solved in the simplest

limiting case of hard-spheres in the absence of hydrodynamic interactions and rotational

diffusion. The model was restricted to the limit where bath particles behave as an ideal

gas. In addition to the theory, we used a Brownian dynamics simulation that provided a

means of verifying our theoretical results. We examined two scenarios for the osmotic motor

subject to different distributions of reactive surface: one, in which the motor is held fixed

by an external force, and another where the motor is free to move.

We calculated the osmotic force exerted by bath particles to a fixed motor for all values

of Damköhler number, Da, bath particle volume fraction, φb, and motor/bath size ratios,

a/b, for different values of the angle θs. For each angle θs, the results collapse into an

universal curve after scaling the osmotic force by kTnb(a + b)24π/3. We have shown that

BD simulations agree with the theoretical predictions. For small perturbations to the mi-

crostructure, we found the osmotic force is of order Da times the geometric factor sin θ2
s .

In the limit of high Da, the force saturates and simply scales as F osm ∼ nbkT (a+ b)2f(θs),

where the function f(θs) is independent of θs in the limits of small and large reactive

sites. The osmotic force exerted on a free motor is balanced by the viscous force acting

on the moving motor. The resulting motor velocity was calculated as a function of Da

for various β = φb(1 + a/b)2 and angles θs. Also we demonstrated again that BD simu-

lations are in agreement with the theoretical results. In general, we have shown that the

physical properties of the microstructure, the size ratio a/b and the bath particle volume

fraction φb (the product β), directly contribute to the speed of the motor, an observation

not found in the fixed motor problem. At small Da, we have shown that the motor veloc-
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ity is U = 3
8β sin θ2

sκ/(
1
2β + 1). This expression reduces to U = 3

4κ sin θ2
s in the limit as

β → ∞. To study the high-Da limit, we divided the analysis to the reaction on front and

the reaction on the rear of the motor. When the reaction is on front, the Péclet number

scales as Pe ∼ β at small β, resulting in the motor velocity U ∼ Danb(a + b)2. We also

found that for all values of β in the limit as Da→∞, the Péclet number is O(1). Thus, the

motor velocity is limited by the dffusive velocity of the bath particles U ∼ D/(a+ b), which

is independent of bath particle concentration and particle size. For reaction on rear, the

scaling arguments are different. For small β, we also found that the Péclet number scales

as Pe ∼ β, giving the motor velocity U ∼ Danb(a + b)2. Therefore, this limit is reached

independently of the distributions of the reactive site. However, in the limit as β →∞, the

Péclet number slowly approaches a limiting speed as Pe ∼ lnβ, thus the motor velocity

scales as U ∼ D/(a+ b) ln(nb(a+ b)2), as it depends on the concentration of bath particles

and particle size. In fact, only at θs = π/2 (half-reactive motor) we observed that in the

limit as Da→∞ and β →∞ the Péclet number diverges as Pe ∼ (βDa)3/5.

The optimal angle for maximum propulsion was computed as a function of the Damköhler

number and various β. For small Da we found that for all values of β, the optimal angle

for maximum propulsion is θops = π/2. At high Da, the optimal angle changes depending

on the value of β. At β = 0 (no motion), the optimal angle θops converges to approximately

0.3776π. As β is increased and the advective forces become stronger on the motor (increas-

ing Pe), the optimal angle increases as well. In the limit as β → ∞, the optimal angle is

again at θops = π/2, because, exclusively for half-reactive motors, the Péclet number diverges

for increasing β and Da, which means that the gradient in bath particle concentration goes

to zero.

This work illustrates in simple terms that an osmotic motor with different distributions
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of reaction exhibits different behaviors depending on the speed of reaction and the value of β

— bath particle concentration and size of the particles. The understanding of such behaviors

and their relation to the distribution of reaction could enable scientists to properly design

reaction-driven nanodevices. These ideas could potentially open a new field that deals with

the theory, development, and experimentation of smart reactive surfaces on nanodevices

that modify themselves to achieve desired tasks or motions. We showed that there are

optimal distributions of reaction for better propulsion. An interesting project can be the

extension of these concepts of optimization based on reactive surface distributions to other

transport mechanisms, such as diffusiophoresis and surface-tension gradients that also rely

on the establishment of a gradient to provide the driving force for motion. Future directions

should consider the role of hydrodynamic interactions, rotational motion, and other reaction

rates.

In Chapter 5, we proposed a simple model that consists of a colloidal particle — the

osmotic motor — immersed in a dispersion of bath particles that propels itself by creating a

constant flux of particles on one hemisphere. The model enabled us to compute the osmotic

force for all Damköhler numbers — the ratio of the speed of the product particle flux j0/n∞b

to the diffusive velocity D/(a + b). We have solved for the bath particle concentration

around a motor in two possible scenarios: fixed and free. The osmotic force resulting

from the fixed motor was found to be linear in Da for all Damköhler numbers: F osm ∼

n∞b (a + b)3(6πηbj0/n∞b ). Product particles are concentrated near the reactive surface and

diffuse away from the fixed motor. In the free motor case, the osmotic force is balanced

by the Stokes drag force F hyd, giving an expression for the velocity of the motor. As the

motor propels though the suspension, bath particles start to accumulate on the front side

of the motor (passive surface). At small Da, it was found that the motor velocity scales
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as U = 3
8β(jo/n∞b )/(1

2β + 1). For large motors (β → ∞), the motor velocity is simply

U = 3
4(jo/n∞b ), which is independent of β. For any finite Da, there is a limiting speed in

the limit as β →∞ that scales as the diffusive velocity of the bath particles, U ∼ D/(a+b).

At high Da and β, diffusion of bath particles is slower than the constant flux. On the front

side of the motor a boundary layer of order Pe is formed where radial diffusion is balanced

by radial advection. Here, the Péclet number scales as Pe ∼ (βDa)1/2. Thus, the motor

velocity scales as U ∼ (a2j0Da)1/2. We also considered Brownian dynamics simulations,

which showed excellent agreement with the theory.

In addition to a constant flux condition at the motor’s surface, we addressed the govern-

ing equations for an osmotic motor subject to a nonuniform reversible surface reaction. We

showed the limiting behaviors of sDR/DP and neqR /n
∞
R , and their connections to the results

obtained for the bath particle concentration assuming an irreversible first-order and a sur-

face flux reaction. It is instructive to ask, what is the behavior of the motor for arbitrary

values of sDR/DP and neqR /n
∞
R ? How is the osmotic force modified for other chemistries?

What if there are enthalpic effects — specific interactions between the motor and the reac-

tive species — in addition to entropic? What if the reaction is iso- or endothermic? How

efficient is the osmotic motor for other chemistries?

Although we have assumed that only a single species reacts with the motor, this model

can be extended to polydisperse suspensions of hard-spheres and multiple reactive species.

If reactant or product particles are of same size as the inert species already present in the

dispersion (the bath particles), this changes the total particle concentration. Otherwise, the

inert species do not affect the reactant or product particle concentration. The total osmotic

force is based on the sum of all the individual osmotic forces created by each species. Another

drastic simplification is assuming that j0 (or κ) remains constant. In reality, there are many
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factors that could influence the rate of reaction, such as concentration, temperature, type

of solvent, and pressure. Potentially, this could alter the driving mechanism for propulsion.

In the analysis we have ignored the fact that a small motor will also be subject to

its own Brownian motion, and in particular its rotary Brownian motion. As the motor

rotates in response to Brownian torques, the reactive side will no longer be in the same

direction, and this may limit the extent of its directed motion. The time scale for the

establishment of the concentration profile about the motor is the diffusive time of the bath

particles τb ∼ a2/D. The time scale for rotary Brownian motion of the motor is its rotary

diffusivity Dr = kT/8πηa3. Rotary motion of the motor will not be important as long as

τbDr ∼ b/a� 1, which is the case when the motor is much larger than the bath particles.

Thus, the work described in previous chapters is restricted to this limit. What happens

when this restriction is relaxed? Even in this limit a large motor will travel at its osmotic

velocity U for a time 1/Dr after which it will establish a new bath particle concentration

profile and travel again at U but in a new (random) direction. Thus, for times long compared

to 1/Dr the motor will undergo a random walk with a step length U/Dr and thus should

have a mean-square displacement that grows linearly in time with a translational diffusivity

that scales as U2/Dr. Would this be true? How does the mean-squared displacement of

the motor depend on the reaction rate, bath particle concentration, etc.?

Clearly, neither the motor nor the bath particles need to be spherical. We shall ask the

question of how the shape of the motor affects the osmotic force exerted by bath particles

in the suspension. What happens to the osmotic force if the motor, for example, is a

cylinder (i.e., catalytic nanorod) or a spheroid (i.e., microorganisms)? What is the optimal

reactive distribution for other motor geometries? One can start the investigation of these

shape effects on self-propulsion following the work on Khair and Brady (2008), where it was
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asked what role did the shape of the “probe” play on measuring microrheological properties.

Rotational diffusion can also be relevant component in other particle geometries.

Rotary motion is also possible by having reactive patches strategically located about

the motor surface. Paxton et al. (2006) has recently demonstrated such movement on a free

platinum/gold gear suspended in a hydrogen peroxide solution. The individual teeth were

coated with platinum on one face of each tooth. It was shown that the decomposition of hy-

drogen peroxide at platinum surface generates interfacial forces across each tooth. The gear

rotates at ∼ 1s−1, corresponding to a linear velocity of ∼ 300 µm/s at the platinum-coated

gear tooth. It was found that this linear velocity is more than an order of magnitude faster

than the nanorod movement (Paxton et al. 2004). The theoretical framework developed

for single motors may be used to study other interesting problems. A natural extension

is to consider two motors with separation d connected by an inertialess thin rod — the

osmotic rotor — immersed in a colloidal dispersion of bath particles with reactive surfaces

of each motor pointing toward opposite directions. Consequently, we expect the osmotic

forces exerted on the motors to have components parallel and perpendicular to d. In the

case of fixed rotor, for large |d| the parallel components for each motor vanish, while the

perpendicular components are, by symmetry, identical and equal to that for a single osmotic

motor. We can make a swimmer from the osmotic rotor by having it create rotary motion,

but then attaching it to a chiral object so that there is the rotational-translational coupling

in Stokes flow. One can then ask how fast such a motor could go. The idea is not to do any

hydrodynamics as far as the reaction problem is concerned, but to use the hydrodynamic

resistance matrix to get the translational velocity. This resembles the dynamics of bacterial

flagella made from a rotary motor and thin helical filament (Namba 1993; Berg 2003).

Once these motors or rotors move autonomously, what tasks can they do? Can we
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attach them to other devices to create complex systems or movements? And how does the

behavior compare to the one observed individually? How is the fuel (reactant) supplied

to the medium? And by whom? One important aspect to be studied is multiple motors.

Depletion flocculation could occur if small particles are excluded from a zone separating two

nearly touching osmotic motors and the imbalance osmotic pressure of the small particles

causes an entropic force leading to flocculation. In fact, reaction-induced bath particle

depleted regions of two or more motors can collapse and hinder or stop their propulsion

mechanism. A contrary behavior occurs if a passive surface of a motor collapses with the

reactive surface of another motor. The two motors could move and collaborate together in

this configuration. How does the net force increase for this two-motor configuration? Could

they be separated randomly? Or, is it necessary to apply an external force to separate them?

What happens if rotary Brownian motion is dominant? Will a group of motors swarm

together? Can this have relevance for the swarming of biological organisms? How will two

or more motors act when they compete for the same reactant? Osmotic motors could be

designed to regulate their motion by chemotactic effects. Chemotaxis is a phenomenon

observed in nature in which bodily cells, bacteria, and other single-cell or multicellular

organisms direct their movements according to certain chemicals in their environment (Bray

et al. 2007). This is important for bacteria to find food (e.g., glucose) by swimming towards

the highest concentration of food molecules, or to flee from poisons (e.g., phenol). In

multicellular organisms, chemotaxis is critical to early (e.g., movement of sperm towards the

egg during fertilization) and subsequent phases of development (e.g., migration of neurons

or lymphocytes) as well as in normal function. These biological features could also be

mimicked by “intelligent” nanodevices if such operations are necessary, depending on the

final goal. How can rules or information be included on-board the motor to self-regulate
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itself? These questions are not unique for osmotic motors, but relevant as well for other

propulsion mechanisms proposed by other authors.

At the theoretical and computational levels, we need to understand the enhanced diffu-

sion expected for moving osmotic motors at arbitrary Damköhler numbers. In particular,

we need to compute the effective self-diffusivity Deff , which determines the capacity of the

motor to depart far from its initial point. From scaling arguments, we can easily suggest

the orders for slow and fast reactions. It is known that the effective motor diffusivity scales

as Deff ∼ l2/τ , where l is the step size taken by the motor and τ is the diffusive time

scale a2/D0. The short-time self-diffusivity, D0, measures the average instantaneous motor

mobility, which is simply the bare diffusivity of the motor in the absence of hydrodynamic

interactions. For inactive motors (Pe = 0), the step size scales as the motor radius a and

the effective diffusivity is proportional to D0. At small Pe (slow propulsion), the length

scale is now l ∼ Pe a, giving the effective self-diffusivity Deff ∼ Pe2D0. Our work has

shown that the result of small Pe means the Damköhler number and the product β is also

small, thus Pe ∼ βDa. Therefore, the effective diffusivity scales as Deff ∼ D0(βDa)2. At

high Pe, advective forces dominate over difusion. The length scale is l ∼ Pe a, however, the

time scale is now that of advection τ ∼ Pea2/D0. This suggests that Deff ∼ PeD0. For

the half-reactive motor discussed in Chapter 3, we have found that at high Da and β, the

Péclet number scales as Pe ∼ (βDa)3/5, resulting in the effective self-diffusivity scaling as

Deff ∼ D0(βDa)3/5. Further analysis is necessary to comprehend these scaling conditions

and the diffusion for arbitrary Da, bath particle concentration, and particle sizes, and its

qualitative behavior with the inclusion of hydrodynamics interactions, complex chemistries,

multiple motors, etc.

Our research has demonstrated analytically and by simulation that autonomous motion
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can be generated quite simply by exploiting the ever present random thermal motion via a

chemical reaction at the motor surface. This model and future theoretical direction should

be tested in lab experiments. A simple experimental set-up to prove the action of osmotic

pressure gradients induced by chemical reactions should be the starting point. This opens up

many possibilities for exploiting autonomous motion to either propel particles and/or pump

fluid, some of which are outlined in this work. Osmotic propulsion provides a simple means

to convert chemical energy into mechanical motion and work, and can impact the design and

operation of nanodevices, with applications in directed self-assembly of materials, thermal

management of micro- and nanoprocessors, and the operation of chemical and biological

sensors. Studies of autonomous motors may also help us to understand chemomechanical

transduction observed in biological systems and to create novel artificial motors that mimic

living organisms, which can be harnessed to perform desired tasks.
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