Chapter 5

Cation- π Interactions in the GABA_A and Glycine Receptors Mediate Neurotransmitter Binding

Reproduced in part from:

Claire L. Padgett, A.P. Hanek, H.A. Lester, D.A. Dougherty, and Sarah C.R. Lummis; J. Neurosci 2007, 27 (4), 886-892 Copyright 2007 Society for Neuroscience

And

S.A. Pless, K.S. Millen, A.P. Hanek, J.W. Lynch, H.A. Lester, S.C.R. Lummis, and D.A. Dougherty; *J. Neurosci* **2008** 28 (43), 10937-10942 Copyright 2008 Society for Neuroscience

5.1 Introduction

5.1.1 Cys-loop Neurotransmitter Gated Ion Channels

The γ -amino butyric acid type A (GABA_A) and glycine (Gly) receptors are members of the Cys-loop ligand-gated ion channel family, which also includes the nicotinic acetylcholine (nACh), serotonin type 3 (5-HT₃), and γ -amino butyric acid type C (GABA_C) receptors. These proteins mediate rapid synaptic transmission in the central and peripheral nervous systems. At rest the receptors are in a closed, non-conducting state. Upon binding of neurotransmitter, the receptor undergoes a conformational change to an open, ion-conducting state, thereby allowing ions to cross the cell membrane, converting a chemical signal (neurotransmitter) to an electrical one.

Each protein has five homologous subunits arranged pseudo-symmetrically around a central ion-conducting pore. Each subunit has a large extraceullular ligand-binding amino-terminal domain principally comprised of two beta sheets, four membranespanning helices (M1-M4), a large intracellular loop, and a short extracellular carboxy tail. The beta strands in the extracellular domain are connected by short, unstructured loops which contribute to ligand binding and to transduction of the conformational change that takes place upon ligand binding.

Agonist binding sites are located at select subunit interfaces. The principle subunit contributes residues located on loops A, B, and C while the complementary subunit contributes loops D, E, and F. Of particular importance are a group of aromatic amino acids associated with loops A-D.¹ These aromatic residues are clustered together in a box-like structure (Figure 5.1) in the crystal structure of the acetylcholine binding protein (AChBP), which is homologous to the extraceullular domain of the GABA_A and Gly receptors.² The resulting aromatic box is the location of cation- π interactions between acetylcholine and nicotine in the nAChR,^{3,4} serotonin in the 5HT_{3A}R and MOD-1 receptor (Cys-loop receptor found in C. *elegans*),⁵⁻⁷ and GABA in the GABA_CR (Table 5.1).⁸

Figure 5.1 The ligand binding site of the nAChR. **A**, The agonist binding site is located at the interface between two subunits; the principle subunit is shown in pink and the complementary in gray. **B**, the area of **A** in the red box highlights the loops A (black), B (blue), and C (green) from the principle subunit and loop D (orange) from the complementary subunit. **C**, The aromatic box from the AChBP structure consists of a Tyr (loop A), Trp (loop B), two Tyr (loop C, residue 1 and 2), and Trp (loop D).

Cation- π interactions have been identified in the binding site of four members of the Cys-loop superfamily: muscle-type nAChR,⁴ neuronal $\alpha_4\beta_2$ nAChR,³ 5-HT_{3A}R,^{5,6} and

 $GABA_cR.^8$ Given the data on these other receptors, the high homology among the Cysloop superfamily and especially the conservation of the aromatic box (Table 5.1), it seems reasonable that the other predominant mammalian inhibitory Cys-loop receptors, $GABA_AR$ and GlyR, will also bind neurotransmitter agonist through a cation- π interaction.

π interactions a	re shown i	n red.			
Receptor	Α	B	C1	C2	D
nACh	Tyr	Trp	Tyr	Tyr	Trp
5-HT ₃	Glu	Trp	Phe	Tyr	Tyr
GABA _C	Phe	Tyr	Tyr	Tyr	Tyr
GABAA	Tyr	Tyr	Phe	Tyr	Phe
Gly	Phe	Phe	Tyr	Phe	Phe

Table 5.1 The aromatic box is conserved across the Cys-loop family. Residues previously identified as participating in cation- π interactions are shown in red.

5.1.2 The Binding Sites

The $\alpha_1\beta_2$ GABA_AR studied has two binding sites, each located at a β/α interface. Given that GABA_CR and GABA_AR both bind GABA (structure, Figure 5.6) and that the aromatic boxes are highly similar (Table 5.1), it seems likely that GABA will bind in a similar manner, making the loop B residue (β_2 Tyr157) the most likely candidate for the cation- π interaction. This seems especially likely since the residue is conserved as a Tyr. The other residues in the aromatic box (Figure 5.2) are β_2 Tyr97 (loop A), β_2 Phe200 (loop C1), β_2 Tyr205 (loop C2), and α_1 Phe65 (loop D).

The α_1 GlyR is homomeric, thus there are five possible binding sites. Unlike the other Cys-loop receptor binding sites, the predominant aromatic in the GlyR aromatic box is Phe (Figure 5.2, Table 5.1). This is especially intriguing given that no neurotransmitter-Cys-loop receptor cation- π interactions have been found at Phe sites.

Together, α_1 Phe99 (loop A), α_1 Phe159 (loop B), α_1 Tyr202 (loop C1), α_1 Phe207 (loop C2), and α_1 Phe63 (loop D) comprise the aromatic box.

Figure 5.2 The aromatic box of the $GABA_AR$ (**A**) and GlyR (**B**), from homology models based on PDB structure 2BG9.

5.1.3 Probing Cys-loop Receptors for a Cation- π Interaction

Cation- π interactions can be identified by incorporation of fluorinated aromatics at prospective cation- π sites. The cation- π binding affinity of aromatics is strongly influenced by electrostatics, and addition of electron-withdrawing fluorines around the aromatic ring systematically diminishes the negative electrostatic potential on the face of the ring (Figure 5.3), and thus the cation- π binding ability.⁹ Thus, a systematic increase in EC₅₀ with increasing fluorination provides compelling evidence for a cation- π interaction. The reluctance to participate in H-bonding interactions and small steric size further make fluorine an ideal substituent. Here, we use a series of Phe analogs that contain an increasing number of fluorine atoms on their phenyl rings to probe potential cation- π interactions at the aromatic residues that contribute to the binding sites of the $\alpha_1\beta_2$ GABA_A and α_1 Gly receptors. These unnatural amino acids were incorporated into receptors expressed in Xenopus oocytes using nonsense suppression.^{10,11}

Figure 5.3 Electrostatic potential surfaces of phenylalanine analog side chains. All surfaces are scaled such that red is -40 kcal/mol and blue is +40 kcal/mol. The cation- π binding ability (calculated in the gas phase with a sodium ion using Hartree-Fock 6-31G** methods) is given below in kcal/mol.

5.2 Results

5.2.1 γ-Aminobutyric Acid Receptor

Probing of tryptophan and phenylalanine residues via successive fluorination is straightforward, whereas the 4-position hydroxyl group of tyrosine introduces a complication. Adding electron withdrawing groups to the phenyl ring of Tyr substantially lowers the pK_a of the hydroxyl, such that highly fluorinated tyrosines are expected to be ionized at physiological pH. To avoid complications from the ionization of tyrosines, we first study the Tyr to Phe mutant and then introduce fluorinated phenylalanines. Previous studies have validated this strategy.⁸

Mutation to Phe at $\beta_2 97$ was well-tolerated, lowering the EC₅₀ to 0.6 μ M (Table 5.2). When referenced to the Phe mutation, introduction of a single fluorine increased the EC₅₀ 33-fold. Incorporation of 3,5-F₂Phe and then 3,4,5-F₃Phe further increased the EC₅₀ 700- and 16,500-fold, respectively, indicating a 22-fold and 24-fold increase for each additional fluorine, respectively. Hill coefficients and macroscopic currents did not

change appreciably. The systematic increase in EC_{50} with the addition of fluorines at position β_297 indicates a cation- π interaction is present. The dose-response relationships and a fluorination plot⁴ of the cation- π binding energy⁹ and the EC_{50} values compared with the parent Phe are shown in Figure 5.4.

50		1		1 = 3	
Amino Acid	EC ₅₀	EC ₅₀ /EC _{50(WT)}	EC ₅₀ /EC _{50(Phe)}	n _H	Ν
$\alpha_1\beta_2$ (WT)	3.5	1	5.8	1.2	4
Phe	0.6	0.17	1	1.4	4
4-F ₁ Phe	20	5.7	33	1.2	5
$3,5$ - F_2 Phe	420	120	700	1.1	4
3,4,5-F ₃ Phe	9900	2800	16,500	1.9	5

Table 5.2 EC₅₀ values (μ M) for incorporation of fluorinated Phe residues at β_2 Tyr97

Figure 5.4 The dose response relationship shifts rightward with addition of fluorine residues (left panel). The fluorination plot (right panel) for Phe and Phe analogs at β_2 Tyr97 of GABA_AR

The β_2 Tyr157Phe mutation caused a 400-fold increase in the GABA EC₅₀ to 1400 μ M (Table 5.3), due to the removal of the 4 position hydroxyl. Incorporation of F₁Phe at the same position restored a wild type like EC₅₀, while incorporation of 3,5-F₂Phe and 3,4,5-F₃Phe increased the EC₅₀ but not in a manner consistent with a cation- π interaction.

The sensitivity of the receptor to the Phe mutation but not 4-F₁Phe strongly suggested the hydroxyl of tyrosine was important for channel function. To probe whether or not the OH group filled a steric or hydrogen bonding role, 4-Me-Phe and 4-OMe-Phe were incorporated. The 4-Me-Phe mutant has an EC₅₀ 10-fold lower than the Phe mutant but 43-fold higher than wild type. 4-OMe-Phe, however, has an EC₅₀ of 5 μ M. Partial rescue of the Phe mutant by 4-Me-Phe suggests there is a steric component to the role of the 4 position hydroxyl at β_2 Tyr157. Nearly full restoration of the wild type function by 4-OMe-Phe suggests that in addition to a steric role, the hydroxyl of β_2 Tyr157 is a hydrogen bond acceptor.

Table 5.3 EC₅₀ values for Phe analogues at β_2 Tyr157 (loop B), β_2 Tyr205 (loop C), and α_1 Phe65 (loop D). EC₅₀ values are given in μ M; n_H is the hill coefficient; and N is the number of oocytes used.

β ₂ Tyr157	EC ₅₀	n _H	Ν	β ₂ Tyr205	EC ₅₀	n _H	Ν	α ₁ Phe65	EC ₅₀	n _H	Ν
Phe	1400	0.9	6	Phe	80	1.4	5	Phe	3.0	1.2	4
F ₁ Phe	3.0	1.2	6	F ₁ Phe	1.5	1.9	3	F ₁ Phe	11	1.4	3
F ₂ Phe	420	2.0	4	F ₂ Phe	70	1.9	4				
F ₃ Phe	110	1.7	4	F ₃ Phe	90	2.5	4	F ₃ Phe	11.5	1.5	3
MePhe	5.0	1.2	3								
OMePhe	150	0.8	3								

Substitutions at position β_2 Tyr205 (Table 5.3) showed some similarity to those at β_2 Tyr157. There was an increase of 24-fold in EC₅₀ for the Tyr to Phe mutation, but a wild-type EC₅₀ for mutation to 4-F₁Phe. Incorporation of 3,5-F₂- or 3,4,5-F₃-Phe at this position yielded a similar EC₅₀ to phenylalanine.

Incorporation of phenylalanine at the loop D residue, α_1 Phe65, through nonsense suppression (wild type recovery) reproduced the wild-type GABA EC₅₀ (Table 5.3). Addition of a fluorine to the phenyl ring increased EC₅₀ to 11 μ M. Incorporation of F_3 Phe did not further increase the EC₅₀. There were no significant differences in Hill coefficients for these mutations.

5.2.2 Glycine Results

An alignment of amino acid residues contributing to the aromatic box in Cys-loop receptors reveals that Phe63, Phe99, Phe159, Tyr202, and Phe207 of the α_1 GlyR are all possible candidates to contribute to a cation- π interaction (Table 5.1). A cation- π interaction at Phe99 or Tyr202 was ruled out on the basis of previous studies using conventional mutagenesis.^{12,13} Therefore we selected Phe63, Phe159, and Phe 207 for unnatural amino acid incorporation. A recent study using conventional mutagenesis and a computational model¹⁴ implicate Phe159 and Phe207 in a joint cation- π interaction with the glycine amino group (structure, Figure 5.6), making these two residues of particular interest.

Fluorinated Phe residues were incorporated using nonsense suppression. When coinjected with Phe-tRNA, mutant mRNAs encoding Phe63TAG, Phe159TAG, Phe207TAG, and Phe159TAG/Phe207TAG receptors produced functional receptors that responded to the application of glycine. Maximal currents (I_{max}), EC₅₀ and n_H values were similar to each other, and to previously published results for wild-type (WT) α_1 homopentameric GlyRs expressed in *Xenopus* oocytes.¹⁵ We thus conclude that the wild-type phenotype is successfully rescued by the nonsense suppression method.

Successive addition of fluorines to Phe159 leads to a progressive decrease in glycine sensitivity (Figure 5.5, Table 5.4), indicating a cation- π interaction at this site. 4-CN-Phe generates an EC₅₀ value intermediate between those for 3,5-F₂Phe and 3,4,5-F₃Phe, as predicted by cation- π binding ability.⁹ As in previous studies with Trp and Tyr,

the fluorination plot⁴ demonstrates a strong linear correlation between the cation- π binding ability and relative log EC₅₀ value (scaled to wild type). The magnitude and consistency of the effect show a significant cation- π interaction at Phe159.

10	reported in µr					
	Amino Acid	EC_{50}	EC ₅₀ /EC _{50(Phe)}	n _H	I _{max}	Ν
	Phe	109 ± 2	1	2.8 ± 0.2	7.4 ± 0.6	5
	4-F ₁ Phe	288 ± 6	2.6	3.1 ± 0.2	7 ± 1	4
	$3,5$ - F_2 Phe	11000 ± 200	100	2.0 ± 0.1	7.7 ± 0.6	6
	3,4,5-F ₃ Phe	103000 ± 3000	940	2.3 ± 0.1	5.6 ± 0.6	7
_	4-CN-Phe	46000 ± 1000	420	1.9 ± 0.1	9 ± 1	9

Table 5.4 EC₅₀ values (μ M) for incorporation of fluorinated Phe residues at Phe159. I_{max} is reported in μ A

Figure 5.5 The dose response relationship shifts right indicating loss-of-function with addition of fluorine residues (left panel). The fluorination plot (right panel) for Phe and Phe analogs at Phe159 in α_1 GlyR

The addition of a single fluorine at Phe207 (F_1 Phe) resulted in no change in the glycine EC₅₀ value (Table 5.5). However, the addition of larger groups, methyl, methoxy, and cyano, at the 4 position yielded EC₅₀ values 10- to 30-fold higher. Incorporation of 3,5-F₂Phe and 3,4,5-F₃Phe increased EC₅₀ 500-fold and 100-fold, respectively. These results are not consistent with a cation- π interaction involving Phe207.

Amino	•				Amino				
Acid	EC ₅₀	\mathbf{n}_{H}	I _{max}	Ν	Acid	EC ₅₀	n _H	I _{max}	Ν
Phe	114	2.2	11 ± 1	4	Phe	131	2.7	9 ± 1	18
F ₁ Phe	151	2.4	10 ± 3	4	F ₁ Phe	287	2.6	8 ± 2	13
F ₂ Phe	56700	2.4	8.1 ± 0.2	5	CN-Phe	>400000	1.7	7.4 ± 0.7	4
F ₃ Phe	13500	2.4	8 ± 1	8					
CN-Phe	3910	2.6	10 ± 1	4					
Me-Phe	1020	2.2	10 ± 3	4					
OMe-Phe	2520	2.2	10 ± 0.4	4					

Table 5.5 EC₅₀ values (μ M) for incorporation of fluorinated Phe residues at Phe207 (green, left) and for simultaneous incorporation at Phe159 and Phe207 (red, right). I_{max} is reported in μ A.

Additional evidence against a cation- π interaction at Phe 207 stems from results with the Phe159TAG/Phe207TAG double mutant receptor (Table 5.5). If Phe159 and Phe207 both contribute to a cation- π interaction with the glycine amine group, a large increase in EC₅₀ would be expected when both interactions are simultaneously weakened. Receptors containing the Phe159TAG/Phe207TAG mutation displayed robust expression and electrophysiological properties similar to those of wild-type receptors when coinjected with Phe-tRNA. Addition of a single fluorine (4-F₁Phe) to both sites produced receptors with only a small decrease in glycine sensitivity (Table 5.5). The Phe159TAG/Phe207TAG double mutant did not produce a functional receptor with 3,5-F₂Phe-tRNA. However, introduction of a cyano group (4-CN-Phe) yielded receptors displaying a greatly reduced glycine sensitivity, with an EC₅₀ value in excess of 400 mM.

Table 5.6 EC₅₀ values (μ M) for incorporation of fluorinated Phe residues at Phe63. I_{max} is reported in μ A.

Amino			Amino						
Acid	EC ₅₀	n _H	I _{max}	Ν	Acid	EC ₅₀	n _H	I _{max}	Ν
Phe	113	2.6	9 ± 1	7					
4-F ₁ Phe	34.5	2.8	8.9 ± 0.7	7	4-CN-Phe	6.5	2.7	8 ± 2	5
$3,5-F_2$ Phe	210	2.1	3 ± 1	3	3,4,5-F ₃ Phe	348	2.8	4.2 ± 0.7	5

Introduction of a single fluorine in the 4 position at Phe63 decreased the EC₅₀ value by a factor of three (Table 5.6). Substitution with 3,5-F₂Phe or 3,4,5-F₃Phe caused relatively small (2- to 3-fold) changes in EC₅₀ value that produced no consistent trend when combined with F₁Phe data. We note that 3,5-F₂Phe and 3,4,5-F₃Phe produced significantly lower maximal currents, which may inflate the EC₅₀ values slightly.¹⁵ To ensure the lower maximal currents were not causing substantial artifacts in the data, we also incorporated 4-CN-Phe which gave maximal currents similar to both Phe and 4-F₁Phe. Cyano is strongly deactivating in a cation- π interaction (Figure 5.3),⁴ and its introduction at a site where a cation- π interaction is present will substantially increase EC₅₀. Mutation to 4-CN-Phe substantially *decreased* EC₅₀, confirming that Phe63 does not participate in a cation- π interaction.

5.3 Discussion

5.3.1 A Cation- π Interaction at Loop A of GABA_AR

The GABA_A receptor binding site has been intensively investigated using a range of techniques, including mutagenesis, radioligand binding assays, and photoaffinity labeling.¹⁶⁻²⁰ These techniques have implicated many amino acids that may be important in the binding site, but they cannot identify the chemical-scale interactions of each amino acid with the neurotransmitter. Here, we used unnatural amino acid mutagenesis combined with functional studies to probe the effects of subtle chemical modifications to aromatic amino acids that form a critical part of this binding site. The results indicate that β_2 Tyr97 contributes to a cation- π interaction, the hydroxyl groups of β_2 Tyr157 and β_2 Tyr205 are critical to receptor function, and that α_1 Phe65 is insensitive to subtle chemical changes.

Cysteine accessibility studies previously showed that β_2 Tyr97Cys is protected from covalent modification by the presence of GABA or the GABA_A receptor antagonist gabazine (SR95531).²⁰ indicating this residue lies in the binding pocket of the receptor. Furthermore, mutation to Cys had the same ~100-fold increase on the GABA EC₅₀ and on the SR95531 IC₅₀. EC₅₀ is an equilibrium measure which incorporates both binding events (the on and off rate of the agonist) and channel activation (the opening and closing rate), thus changes in EC₅₀ cannot be directly attributed to changes in the agonist affinity. The antagonist, SR95531, is not able to activate the GABA_AR, thus the IC₅₀ (concentration of antagonist necessary to achieve half maximal inhibition) is dependent only on binding events. Similar shifts in the EC₅₀ of GABA and IC₅₀ of SR95531 for the β_2 Tyr97Cys mutant strongly indicate that changes in EC₅₀ resulting from mutation of β_2 Tyr97 are the result of changes in GABA binding.

Our data show a strong correlation between the cation- π binding ability of tyrosine derivatives incorporated at β_2 97 and the EC₅₀ (Figure 5.4). The size of this effect and the systematic dependence on the number of fluorines unambiguously establish a cation- π interaction at this site.

The fluorination plot indicates that β_2 Tyr97 is involved in a cation- π interaction but does not indicate that the cationic partner is GABA. There are four positively charged amino acids within 10Å of β_2 Tyr97 that could perform this role, and without detailed structural information it is difficult to exclude these residues. A homology model of the GABA_AR²¹ indicates the β_2 Lys102 and β_2 Lys103 side chains face away from the binding site, suggesting they are unlikely partners for the cation- π interaction. α_1 Arg132 is positioned such that it could interact with β_2 Tyr97 but this interaction would restructure the aromatic box such that GABA would not access the binding site. β_2 Arg207, the remaining positively charged residue, has previously been proposed to interact with the carboxylate of GABA²² and would therefore exclude it from contributing to a cation- π interaction at the other end of the molecule. Because all full GABA agonists have a charged amine, it is not possible to use an alternative agonist to provide definitive proof, but given the arguments described above, combined with the precedence of the ligand as the source of the cation in other Cys-loop receptors, we believe that GABA is the source of the cation.

Table 5.7 Sequence Alignment of loop A in the principle subunit ofCys-loop receptor binding sites

• •	· ·	
Subunit	Alignment	Alternate Alignment
AChBP	SSL w v pd laa <mark>y</mark> n-aisk	SSL w v pd laa <mark>y</mark> n-aisk
nACh α_1	ERI w r pd lvl <mark>y</mark> nnadgd	ERI w r pd lvl <mark>y</mark> nnadgd
5-HT _{3A}	DSI w v pd ili <mark>ne</mark> fvdvg	DSI W V PD ILI <mark>NE</mark> FVDVG
Gly α_1	DSI W K PD L <mark>F</mark> FA <mark>N</mark> EKGAH	DSI W K PD L <mark>F</mark> FA N EKG
$GABA_C \rho_1$	KKI W V PD M <mark>F</mark> FVHSKRSF	KKI W V PD M <mark>f</mark> FVHSKR
$GABA_A \beta_2$	DQL w v pd t <mark>y</mark> fl n dkksf	DQL w V pd T <mark>y</mark> FL n DKK

The conserved WxPDxxxxN are shown in bold. The loop A residue of the aromatic box is highlighted.

Thus, the GABA_A receptor becomes the first instance of a Cys-loop receptor that displays a cation- π interaction with a loop A residue. Loop A does contain an aromatic box residue in the nACh receptor, α Tyr93, and in the AChBP crystal structures this Tyr aligns with Tyr89, which is clearly located at the "bottom" of the aromatic box. Presumably, β_2 97 of the GABA_A receptor plays the role of α Tyr93 and Tyr89, but the alignment is problematic; a gap equivalent to 2 amino acids is required to bring the β_2 97 into alignment with the nACh receptor and AChBP tyrosine residues (Table 5.7). Loop A contains a highly conserved WxPDxxxxN motif, which plays a crucial role in positioning the rest of the binding site, particularly loop B.^{23,24} It is therefore surprising that a gap insertion is necessary in a conserved region with such an important structural role, but the mutagenesis results are compelling.

The location of a cation- π interaction on loop A, contrasting to loop B for other members of the Cys-loop family, supports previous suggestions that a "lock-and-key" metaphor is not appropriate for such receptors.⁷ If they required a precise protein–ligand lock-and-key interaction, we would expect related receptors to use cation- π interactions at a conserved location in the three-dimensional structure. This is not the case in the 5-HT-gated 5-HT₃ and MOD-1 receptors, in which the cation- π interactions occur on loop B and loop C, respectively.^{5,7} We now find similar variability in the ionotropic GABA receptor family; the cation- π interaction moves from loop B in the GABA_cR⁸ to loop A in the GABA_AR (the present study). These are very similar receptors, showing 39% sequence identity and 64% homology between GABA_A(β_2) and GABA_C(ρ_1) in the extracellular domain. Nevertheless, GABA binds with different orientations in the two receptors. Apparently Cys-loop receptors require only that a ligand occupies the general binding region defined approximately by the aromatic box.

There is no cation- π interaction at α_165 : addition of 4-F to the phenyl ring increased GABA EC₅₀ slightly, but addition of more fluorines around the ring resulted in no additional increase. This residue has been previously reported to play a role in GABA binding: mutation of α_1 Phe64 (α_1 Phe65 by human numbering) to Leu increased the GABA EC₅₀ from 6 to 1260 μ M, with the IC₅₀ values of bicuculline and SR95531 increasing by similar amounts.¹⁶ This suggests that the effects of mutations at this position are attributable to disruption of binding rather than gating, and that an aromatic is preferred here, although our data indicate that α_1 Phe65 is tolerant to small chemical changes. A model of the GABA_AR²¹ indicates that α_1 Phe65 is located on the "righthand" face of the aromatic box (Figure 5.2B), and is partially obscured by β_2 Tyr157. Taken together, these data and the model suggest that α_1 Phe65 contributes to the general hydrophobicity of the region.

Previous data suggest that β_2 Tyr157 and β_2 Tyr205 specifically participate in GABA binding: phenylalanine mutations at both these sites significantly increased EC_{50} values, whereas activation of the receptors using pentobarbital, which binds at a location distinct from the GABA binding site, resulted in no change in functional response.¹⁷ Similarly, we observed that removal of the OH (introducing Phe) is highly deleterious at both β_2 Tyr157 and β_2 Tyr205, resulting in ~400- or 24-fold increases in EC₅₀, respectively. Wild-type behavior can be rescued at β_2 Tyr157 by incorporation of 4-F or 4-MeO substituents, whereas 4-Me-Phe or multiply fluorinated phenylalanines increased EC₅₀ values 35- to 120-fold. These data suggest that the OH of β_2 Tyr157 acts as a hydrogen bond acceptor. The strong penalty for removing the OH and the near wild-type behavior of 4-MeO-Phe support this analysis. In this light, the near wild-type behavior for 4-F-Phe is perhaps surprising. Fluorine is the most electronegative element, and as such it is reluctant to donate a lone pair of electrons to a hydrogen bond donor. As a result, organic fluorine (fluorine bonded to a carbon) hardly ever accepts a hydrogen bond, especially if an alternative, better acceptor can be accessed.²⁵ Inspection of the region around β_2 Tyr157 in a receptor model²¹ suggests that there are no alternative hydrogen bond acceptors close to the hydroxyl group within the protein. In such a case, even the very poor acceptor of 4-F-Phe may be better than nothing at all (Phe). The data for β_2 Tyr205 show no clear pattern, although there is an indication that an electronegative atom at position 4 is favored.

5.3.2 A Cation- π Interaction at Loop B of GlyR

A previous model of the GlyR¹⁴ indicated a cation- π interaction involving both Phe159 and Phe207 may exist. In addition to these two residues, there are other aromatic residues in the binding pocket (Phe63, Tyr161, Phe99, Phe100, and Tyr202). We omitted Tyr161 from the present study because the Tyr161Ala was previously shown to function despite a 10-fold loss in glycine sensitivity.^{26,27} If this residue was involved in a critical cation- π interaction, it seems unlikely that mutation to Ala would only cause a 10-fold shift in channel function. Phe99 and Phe100 in loop B were omitted for similar reasons, as Ala substitution at these sites results in only small changes to the EC₅₀ value.¹² It has been convincingly demonstrated that the hydroxyl group of Tyr202 and not its aromatic character is crucial for agonist binding.¹³ Therefore, of the seven residues originally identified, only Phe63, Phe159, and Phe207 were plausible candidates for a cation- π interaction.

The data presented here clearly indicate there is a cation- π interaction with Phe159 and not with Phe207 in the α_1 GlyR. These results are in disagreement with a prior model which proposed a cation- π interaction at both Phe159 and Phe207.¹⁴ We performed experiments with double-mutant receptors (Phe159/Phe207) to confirm there was not a dual cation- π interaction. The measured EC₅₀ value of ~300 μ M for receptors with 4-F₁Phe at both of these positions is close to the calculated value of ~380 μ M that would be expected if the EC₅₀ value were simply the product of the two individual

mutations. Substitution with 4-CN-Phe at both sites resulted in functional receptors. Although the glycine EC₅₀ value (>400 mM) of the double mutant could not be determined, the data are consistent with the EC₅₀ value of ~1.5 M calculated by multiplying the EC₅₀ value of the two single mutations. For a dual cation- π interaction we would expect to see an EC₅₀ for the double mutant that differed from that predicted by the EC₅₀ values of the single mutations. Together, the results from both the Phe207TAG single mutant and the Phe159TAG/Phe207TAG double mutant support the presence of only one cation- π interaction in the GlyR binding site, namely that at position 159.

The data presented here rule out a cation- π interaction at position 207. However, previous studies indicate an aromatic residue at this position is imperative for proper receptor function.¹⁴ Phe207 was highly sensitive to all Phe analogues except 4-F₁Phe, suggesting a sensitivity to the addition of steric bulk, especially at the 3 and 5 positions of the phenyl ring. This result is surprising since a hydrogen to fluorine substitution is usually well tolerated.^{3-5,7,8,21,28} Perhaps the higher sensitivity to these mutations in the GlyR is due to the smaller size of the neurotransmitter. Since glycine is a smaller molecule than the ligands that activate other Cys-loop receptors, the GlyR binding site may be more compact than any of the other aromatic boxes examined thus far, thereby making it more sensitive to incorporation of Phe analogues with substituents at the 3 and 5 positions or bulky substituents at the 4 position.

5.3.3 Cys-loop Receptor Cation- π Interactions

A cation- π interaction has been identified in the binding site of all seven cys-loop receptors explicitly tested for the interaction.^{3-5,7,8,21,28} Although the location of the interaction varies, the loop B aromatic is involved in five (nAChRs, 5HT_{3A}R, GABA_CR,

and GlyR) of the 7 receptors. The slopes of the fluorination plots are indicative of the strength of the cation- π interaction but (Figure 5.6) vary significantly (3.7-fold) with the GABA_AR having the strongest and the acetylcholine receptors having the weakest. Acetylcholine has a quaternary ammonium group which presents a less focused charge to the aromatic face, thereby decreasing the strength of the cation- π interaction. This may contribute to the shallower slope of the acetylcholine receptors. However, all the other neurotransmitters have primary ammonium moieties, yet there is still a 2.2-fold range in slopes, indicating that the positively charged species alone is not indicative of the strength of the interaction.

Figure 5.6 Fluorination plot of seven Cys-loop receptors and their neurotransmitter agonists. The $GABA_{C}R$ (light blue) linear fit is hidden by the GlyR (red).

5.4 Conclusion

In conclusion, cation- π interactions between GABA and a tyrosine on loop A in the GABA_AR and between glycine and a phenylalanine on loop B in the GlyR have been identified by unnatural amino acid mutagenesis. The GABA_AR is the first example of a cation- π interaction with a loop A residue in a Cys-loop receptor, while the cation- π interaction in the GlyR is the first example of such an interaction between a neurotransmitter and phenylalanine residue. The location of the cation- π interaction is not conserved among closely related members of the Cys-loop family, as evidenced by the different locations for the GABA_A (loop A) and GABA_C (loop B) receptors. The results presented here, along with previous studies that identified cation- π interactions in other Cys-loop receptors, emphasize the importance of the cation- π interaction to neurotransmitter binding and thus proper brain function.

5.5 Materials and Methods

Mutagenesis and preparation of mRNA: Mutant GABA_A receptor subunits were developed using pcDNA3.1 (Invitrogen, Abingdon, UK) containing the complete coding sequence for either the human α_1 or human β_2 GABA_A receptor subunit kindly provided by Dr. K. A. Wafford (Merck, Sharp, and Dohme, Harlow, Essex, UK). The codons at positions α_165 , β_297 , β_2157 , and β_2205 were replaced by a TAG codon as described previously (Beene et al., 2002). Mutagenesis reactions were performed using the method of Kunkel (1985) and confirmed by DNA sequencing. The human GlyR α_1 subunit cDNA was subcloned into pGEMHE to increase expression in oocytes. Site-directed mutagenesis to a TAG codon at positions 63, 159, and 207 was performed with the QuickChange mutagenesis kit (Stratagene). The mMessage mMachine kit (Ambion) was used to generate capped mRNA for oocyte injection.

Xenopus laevis (Nasco) oocytes were prepared as described below and injected with 5 ng (GABA_AR) or 10 ng of mRNA. After injection, oocytes were incubated for 24-48 hours at 18°C prior to electrophysiology recordings.

Xenopus oocyte preparation: Harvested stage V–VI *Xenopus* oocytes were washed in four changes of OR2 buffer (in mM: 82.5 NaCl, 2 KCl, 1 MgCl2, 5 HEPES, pH 7.5), defolliculated in 1 mg/ml collagenase for ~1 hour, washed again in four changes of OR2, and transferred to 70% Leibovitz media (Invitrogen) buffered with 10 mM HEPES, pH 7.5. The following day, they were injected with 5 ng (GABA_AR) or 10 ng (GlyR) of mRNA. Electrophysiological measurements were performed 24–72 h after injection.

Synthesis of tRNA and dCA amino acids. This was as described previously (Beene et al., 2004). Briefly, unnatural amino acids were chemically synthesized as nitroveratryloxycarbonyl-protected (NVOC) cyanomethyl esters and coupled to the dinucleotide dCA, which was then enzymatically ligated to 74-mer THG73 tRNA_{CUA} as detailed previously.¹⁰ Immediately before coinjection with mRNA, aminoacyl tRNA was deprotected by photolysis.²⁹ For the GABA_AR 5 ng of total cRNA was typically injected (1 ng of wild-type α_1 or β_2 subunit and 4 ng of the corresponding α_1 or β_2 mutant subunit) with 25 ng of tRNA-aa in a total volume of 50 nl. For the GlyR, 10 ng of mutant α_1 cRNA and 25 ng of tRNA-aa in a total volume of 50 nl was injected. For a control, cRNA alone and cRNA mixed with dCA-THG₇₄ tRNA (no unnatural amino acid

attached) were injected into oocytes. No neurotransmitter-induced currents were detected.

Characterization of mutant receptors: Peak GABA-induced currents were recorded at 22-25°C from individual oocytes using the OpusXpress system (Axon Instruments, Molecular Devices). GABA (Sigma, St. Louis, MO) was stored as 100 mM aliquots at -80°C, diluted in ND96 buffer (in mM: 96 NaCl, 2 KCl, 1 MgCl2, 1.8 CaCl2, 5 HEPES, pH 7.5) and delivered to cells via the automated perfusion system of the OpusXpress. Glass microelectrodes were backfilled with 3 M KCl and had a resistance of 0.5-3.9 MΩ. The holding potential was -60 mV. To determine EC₅₀ values, GABA concentration–response data were fitted to the Hill equation (equation 5.1), where I_{max} is the maximal peak current and n is the Hill coefficient.

$$I = \frac{I_{\text{max}}}{1 + EC_{50} / [A]^n}$$
 Equation 5.1

5.6 References

- (1) Akabas, M. H. Int Rev Neurobiol 2004, 62, 1-43.
- (2) Brejc, K.; van Dijk, W. J.; Klaassen, R. V.; Schuurmans, M.; van Der Oost, J.; Smit, A. B.; Sixma, T. K. *Nature* **2001**, *411*, 269-76.
- (3) Xiu, X.; Puskar, N. L.; Shanata, J. A.; Lester, H. A.; Dougherty, D. A. Nature 2009.
- (4) Zhong, W.; Gallivan, J. P.; Zhang, Y.; Li, L.; Lester, H. A.; Dougherty, D. A. Proc Natl Acad Sci U S A 1998, 95, 12088-93.
- (5) Beene, D. L.; Brandt, G. S.; Zhong, W.; Zacharias, N. M.; Lester, H. A.; Dougherty, D. A. *Biochemistry* **2002**, *41*, 10262-9.
- (6) Beene, D. L.; Price, K. L.; Lester, H. A.; Dougherty, D. A.; Lummis, S. C. *J Neurosci* 2004, 24, 9097-104.
- (7) Mu, T. W.; Lester, H. A.; Dougherty, D. A. J Am Chem Soc 2003, 125, 6850-1.
- (8) Lummis, S. C.; D, L. B.; Harrison, N. J.; Lester, H. A.; Dougherty, D. A. *Chem Biol* 2005, *12*, 993-7.
- (9) Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A. *Proc Natl Acad Sci U S A* **1996**, *93*, 10566-71.
- (10) Nowak, M. W.; Gallivan, J. P.; Silverman, S. K.; Labarca, C. G.; Dougherty, D. A.; Lester, H. A. *Methods Enzymol* **1998**, *293*, 504-29.
- (11) Nowak, M. W.; Kearney, P. C.; Sampson, J. R.; Saks, M. E.; Labarca, C. G.; Silverman, S. K.; Zhong, W.; Thorson, J. S.; Abelson, J. N.; Davidson, N.; Schultz, P. G.; Dougherty, D. A.; Lester, H. A. Science 1995, 268, 439-442.
- (12) Vafa, B.; Lewis, T. M.; Cunningham, A. M.; Jacques, P.; Lynch, J. W.; Schofield, P. R. J Neurochem 1999, 73, 2158-66.
- (13) Rajendra, S.; Vandenberg, R. J.; Pierce, K. D.; Cunningham, A. M.; French, P. W.; Barry, P. H.; Schofield, P. R. *EMBO J* **1995**, *14*, 2987-98.
- (14) Grudzinska, J.; Schemm, R.; Haeger, S.; Nicke, A.; Schmalzing, G.; Betz, H.; Laube, B. *Neuron* **2005**, *45*, 727-39.
- (15) De Saint Jan, D.; David-Watine, B.; Korn, H.; Bregestovski, P. J Physiol 2001, 535, 741-55.
- (16) Sigel, E.; Baur, R.; Kellenberger, S.; Malherbe, P. *EMBO J* 1992, *11*, 2017-23.
- (17) Amin, J.; Weiss, D. S. *Nature* **1993**, *366*, 565-9.
- (18) Smith, G. B.; Olsen, R. W. J Biol Chem 1994, 269, 20380-7.
- (19) Boileau, A. J.; Evers, A. R.; Davis, A. F.; Czajkowski, C. J Neurosci **1999**, *19*, 4847-54.
- (20) Boileau, A. J.; Newell, J. G.; Czajkowski, C. J Biol Chem 2002, 277, 2931-7.
- (21) Padgett, C. L.; Hanek, A. P.; Lester, H. A.; Dougherty, D. A.; Lummis, S. C. *J Neurosci* 2007, 27, 886-92.
- (22) Wagner, D. A.; Czajkowski, C.; Jones, M. V. J Neurosci 2004, 24, 2733-41.
- (23) Cashin, A. L.; Petersson, E. J.; Lester, H. A.; Dougherty, D. A. J Am Chem Soc 2005, 127, 350-6.
- (24) Lee, W. Y.; Sine, S. M. J Gen Physiol 2004, 124, 555-67.
- (25) Dunitz, J. D. *Chembiochem* **2004**, *5*, 614-21.
- (26) Vandenberg, R. J.; French, C. R.; Barry, P. H.; Shine, J.; Schofield, P. R. *Proc Natl Acad Sci U S A* **1992**, *89*, 1765-9.
- (27) Yang, Z.; Ney, A.; Cromer, B. A.; Ng, H. L.; Parker, M. W.; Lynch, J. W. J Neurochem 2007, 100, 758-69.
- (28) Pless, S. A.; Millen, K. S.; Hanek, A. P.; Lynch, J. W.; Lester, H. A.; Lummis, S. C.; Dougherty, D. A. J Neurosci 2008, 28, 10937-42.
- (29) Kearney, P. C.; Nowak, M. W.; Zhong, W.; Silverman, S. K.; Lester, H. A.; Dougherty, D. A. *Mol Pharmacol* **1996**, *50*, 1401-12.