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Engineering RNA Devices for Gene Regulation, Biosensing, and  

Higher-order Cellular Information Processing 

Maung Nyan Win 

B.S., Virginia Commonwealth University 

M.S., California Institute of Technology 

Ph.D., California Institute of Technology 

 

Abstract 

The proper regulation of gene expression is critical to many biological processes 

occurring in the cell. It is becoming increasingly apparent that post-transcriptional processing 

pathways play significant roles in regulating the expression of various genes in both 

prokaryotic and eukaryotic organisms, where they direct a variety of complex cellular 

functions. A striking example of a biological communication and control system directing 

sophisticated gene expression regulation through precise molecular recognition is the class of 

RNA regulatory elements, called riboswitches, comprised of distinct sensor (ligand-binding) 

and actuator (gene-regulatory) functions that control gene expression in response to changing 

levels of specific target ligand concentrations.   

Inspired by these natural examples, numerous synthetic riboswitch systems have been 

developed and have made profound contribution to the field of riboswitch engineering. 

However, these early examples of synthetic riboswitches pose one or more challenges, such 

as portability of the switch design across different cellular systems and modularity and 

programmability of the components comprising the switch molecule. Therefore, we set out to 

develop a modular and extensible RNA-based gene-regulatory platform that will provide a 
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framework for the reliable design and construction of gene regulatory systems that can 

control the expression of specific target genes in response to effector molecules of interest. 

The platform is called the “ribozyme switch” and composed of distinct functional 

components, which are modularly coupled and functionally independent of each other. 

Through this platform, ribozyme switch devices that enable up- or down-regulation of target 

gene expression were developed. Design modularity and response programmability of the 

switch platform were also demonstrated. We also exhibited the versatility of the platform in 

implementing application-specific control systems for small molecule-mediated regulation of 

cell growth and non-invasive in vivo sensing of metabolite production.  

Through the ribozyme switch platform, we further constructed higher-order RNA 

devices that enable complex cellular information processing operations, including logic 

control (AND, NOR, and NAND gates), advanced computation (bandpass filter and signal 

shift in the output swing), and cooperativity (signal gain). Finally, we extended the small 

ribozyme switch platform responsive to small molecules to a different class of ligand 

molecules, proteins, by developing protein-responsive gene regulators and cellular biosensors. 

In addition to engineering RNA devices for programming cellular function, we also 

developed a high-throughput method for functional characterization of small molecule-

binding RNA aptamers, which enables robust, accurate, and rapid characterization of such 

RNA aptamers. This method can be very useful as we (and others) develop RNA aptamers 

for small molecules of specific interest, which can be subsequently integrated into the 

ribozyme switch platform as sensing elements for specific applications. Together, these 

research developments hold synergistic values for the reliable construction of ‘designer’ 

gene-regulatory systems for various biotechnological and medical applications. 
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