
 

An iterative approach to de novo computational enzyme design 

and the successful application to the Kemp elimination 
 

 

 

 

Thesis by 

Heidi Kathleen Privett 

 

 

 

 

 

In Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 

 

California Institute of Technology 

Pasadena, California 

2009 

(Defended May 13, 2009) 



 ii 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2009 

Heidi K. Privett 

All Rights Reserved 



 iii 
ACKNOWLEDGEMENTS 

I offer thanks to my advisor, Stephen Mayo, for his support and encouragement, 

for allowing me the opportunity to work on an exciting project that at times seemed 

impossible, and for not letting me give up when my research appeared hopeless. 

I would also like to thank all of the past and present members of the Mayo Lab 

who contributed to a fun, congenial, and collaborative work environment and were 

always there to provide advice and encouragement. 

I would like to thank all of my official collaborators, who have all been 

acknowledged individually in the relevant chapters and appendices. 

In addition, I thank all of the Caltech students, postdocs, and staff who generously 

gave their time to teach me new techniques, trained me on equipment housed in their 

labs, and helped me troubleshoot problems in my projects even though my research had 

little bearing on their own.  These generous individuals include Jonas Oxgaard (Goddard 

Lab), Amanda Cashin (Dougherty Lab), Ariele Hanek (Dougherty Lab), Dan Caspi 

(Stoltz Lab), Doug Behenna (Stoltz Lab), Robert Dirks (Pierce Lab), Jens Kaiser (Rees 

Lab), Jost Veilmetter (Protein Expression Facility), Rich Olson (Bjorkman Lab), Adrian 

Rice (Bjorkman/Rees Labs), Hernan Garcia (Phillips Lab), Brendan Mack (Davis Lab), 

and Jenn Stockdill (Stoltz Lab).   

I also thank my many Caltech and non-Caltech friends, without whom I would 

have never made it, and my family for telling me that I could be anything I wanted to be 

when I grew up. 



 iv 
ABSTRACT 

 The development of reliable methods for the “on demand” de novo design of an 

enzymatic catalyst for an arbitrary chemical reaction has been an elusive goal of the 

computational protein design community.  Recent successful results of de novo 

computational enzyme design have been encouraging, but the activity of the enzymes 

produced so far is still well below that of natural enzymes and the generalizability of 

these methods has yet to be established. 

Presented in this thesis are methods that we have developed for the computational 

design of enzyme active sites as well as results from the evaluation of these methods 

through a test case, the Kemp elimination.  Initial Kemp elimination designs were 

shown to be inactive.  However, in the course of refining these design procedures, we 

carried out extensive theoretical and experimental evaluation of several of these 

inactive designs, which allowed us to identify the causes of the inactivity and led to 

adjustments of our design procedure.  These modified methods were then successfully 

used to design four distinct enzymes for this reaction in three inert scaffolds including 

the scaffold that housed the previously inactive designs.  In addition, we demonstrate 

that molecular dynamics simulations can accurately predict the activity of designed 

Kemp elimination enzymes and can be used as a reliable prescreening step, allowing 

us to focus our experimental efforts on designs that are most likely to be active. 

The work presented here demonstrates that the cyclic evaluation and redesign of 

both active and inactive enzymes was instrumental in the identification and resolution 

of deficiencies in our computational methods and directly resulted in de novo 

designed enzymes with novel and increased activity. 
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