Chapter 5

Photochemical Production and Release of Gaseous NO$_2$ from Nitrate-doped Water Ice

C. S. Boxe,1 A. J. Colussi,1 M. R. Hoffmann,1 J. Murphy,2
P. Wooldridge,2 T. Bertram,2 and R. C. Cohen2

1W. M. Keck Laboratories, California Institute of Technology, Pasadena, CA 91125, and 2Department of Chemistry and Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720

Abstract

Temperature-programmed NO$_2$ desorption rates, R, from NaNO$_3$-doped ice irradiated at $\lambda \sim 302$ nm were measured in a continuous flow reactor as function of the nitrate concentration and heating rate, $\partial H = dT/dt$, between $-30 \leq T/^\circ C \leq 5$. R increases non-monotonically with T reflecting intervening structural transitions of the polycrystalline ice matrix. For $\partial H = 0.70 \ ^\circ C \ \text{min}^{-1}$, R noticeably accelerates at $\sim -7 ^\circ C$ in experiments in which [NO$_3^-$]$_0 > 200 \ \mu$M. An additional transition is observed at $\sim -23 ^\circ C$ at $\partial H = 0.10 \ ^\circ C \ \text{min}^{-1}$. Furthermore, samples that were subjected to prolonged photolysis at $-30 ^\circ C$ continue to evolve NO$_2$ in the absence of illumination at rates that also surge at $\sim -7 ^\circ C$ upon heating at $\partial H = 0.70 \ ^\circ C \ \text{min}^{-1}$. The total NO$_2$ released under continuous irradiation does not scale linearly with the duration of the experiment (i.e., with $1/\partial H$), and was observed to vary as $\propto ([\text{NO}_3^-]_0)^{1/2}$, demonstrating the occurrence of significant in situ losses of the NO$_2$ produced in the initial photolytic event prior to desorption. The implications of these results for the interpretation of ambient NO$_2$ concentrations above ice and snow in polar regions are analyzed.

Introduction

The nearly constant nitrate (e.g., HNO₃, NH₄NO₃, NaNO₃) concentrations across snow-covered regions (such as the Antarctic ice shelf) suggest remote atmospheric sources,¹,² that are smoothed out during long-distance transport.³,⁴ Thus, if depositional nitrate were ultimately incorporated and preserved in ice cores, [NO₃⁻] vs. depth profiles should provide direct and detailed data on global paleoatmospheres.⁵,⁶ It has become apparent, however, that nitrate undergoes solar photolysis in the snowpack leading to NO₃ (= NO + NO₂)⁷⁻¹⁶ back emissions into the atmospheric boundary layer. Post-depositional transformations, such as reemission or chemical and photochemical degradation, will alter trace gas (i.e., HNO₃, CO₂, H₂O₂, CH₄) imprints thereby compromising their documental value.⁶,¹⁷ NO₃⁻ photolysis¹⁸⁻²³ (eqs. 1-3) is also a source of ·OH and,¹⁶,²⁴⁻²⁶ therefore, the oxidation of organic matter within snowpacks is an additional consequence of nitrate photochemistry.²⁴,²⁶,²⁷

\[
\text{NO}_3^- + H^+ \overset{hv}{\longrightarrow} \text{NO}_2^- + \cdot OH \quad (1)
\]

\[
\text{NO}_3^- \overset{hv}{\longrightarrow} \text{NO}_2^- + \text{O}(^3\text{P}) \quad (2)
\]

\[
\text{NO}_2^- + H^+ \overset{hv}{\longrightarrow} \text{NO} + \cdot OH \quad (3)
\]

Previously,²⁸⁻³⁰ we showed that frozen NO₃⁻ is readily photolyzed into NO₂⁻ and NO₂ within fluid domains (i.e., the quasi-liquid layer, QLL). Quantum yields for NO₂⁻ and NO₂ formation in ice (φNO₂⁻ ≈ 4.8 × 10⁻³, φNO₂ ≈ 1.3 × 10⁻³) were similar to those in water (φNO₂⁻ ≈ 6.2 × 10⁻³ and φOH ≈ 1.8 × 10⁻³),²²,³⁰ and exhibited Arrhenius behavior between −35 ≤ T/°C ≤ 21. We also reported that NO₂⁻ production in frozen media was significantly enhanced in the presence of formate as a co-solute providing further
evidence for non-geminate scavenging of \(\cdot \text{OH} \) radicals by formate in extended fluid microdomains.29 Boxe \textit{et al.}28 showed further that \(\text{NO}_x \) release rates from illuminated frozen nitrate solutions are only partially controlled by molecular photochemistry. Significant amounts of \(\text{NO}_2 \) remain occluded in subsurficial layers of the frozen medium during photolysis, possibly within interstitial pores at the intersection of ice grains, and only emerge as the ice matrix undergoes discrete metamorphisms.28

In this paper, we report temperature-programmed, \(\text{NO}_2 \) desorption rates measured during the \(\lambda \geq 300 \text{ nm} \) photolysis of nitrate-doped polycrystalline ice layers as function of nitrate concentration and heating rates. These new experiments were obtained using LIF detection of \(\text{NO}_2 \) with pptv sensitivity over a wide range of nitrate concentrations overlapping those representative of typical ice and snow, which complement and corroborate the conclusions drawn from our preliminary study on these systems.28

Experimental Methods

A schematic representation of the LIF detection setup, which is directly coupled to the photoreactor31, is shown in Figure 5.1. Pre-cooled NaNO\(_3\) (EM Science) solutions (2 \(\mu \text{M} \), 30 \(\mu \text{M} \), 200 \(\mu \text{M} \), 1 mM, 10 mM, and 50 mM) at \(\text{pH} \leq 6 \) were sprayed onto a cold finger (CF in Figure 5.2, with exposed area \(A = 304 \text{ cm}^2 \)), to produce uniform layers of nitrate-doped polycrystalline ice (NDI). The ice temperature was controlled with an external cryogenic unit (Thermo Neslab ULT-80), which circulated refrigerated fluid through the interior of the CF. The ice-covered CF was encased within a sealed quartz sheath (QS) and placed in a reflective cylindrical stainless steel chamber, and subsequently illuminated by four Hg Pen-Ray UV lamps (UVP, modal 90-0001-04) emitting at \(\lambda = 313 \pm 20 \text{ nm} \). The photon irradiance incident on the QS: \(I_i = 3.0 \times 10^{15} \)}
photons cm2 s$^{-1}$, was determined using potassium ferrioxalate as a chemical actinometer.32 The lamp stability was monitored by a photocell (UDT Sensors, model PIN UV 100L) located on the top of the reflective chamber. The NDI matrices, initially held at ~ -30 °C, were heated at three linear ramps ($\partial H = 0.70, 0.30,$ and 0.10 °C min$^{-1}$) to 5 °C during or, in some specific experiments described below, after irradiation. The NO$_2$ generated photochemically in the volume enclosed between CF and the QS was continuously flushed with 1 atm zero-air carrier gas, $F_c = 2.5$ L min$^{-1}$, into the detection zone.31 NO$_2$ fluorescence signals were observed by an LIF detection system with a detection limit of 5 pptv/min.31

Results and Discussion

Solutes, such as nitrate, are largely rejected from the ice phase during the freezing of aqueous solutions.$^{33-40}$ We have already elaborated on the physical possibilities for the existence of fluid phases and interfaces in frozen solutions.28 A quasi-liquid layer (QLL) is present at the pristine ice/air interface, and also over contaminated ice samples.41 However, sub-eutectic phases of low-dimensionality are also present within the bulk of frozen solutions, and they may hold most of the solute impregnating polycrystalline ice.$^{42-45}$ Solutes also accumulate in the internal water-vein system at triple junctions (three-grain intersections) and nodes (four-grain intersections),$^{46-48}$ as shown by Fukazawa et al.46 using micro-Raman spectroscopy of Antarctic ice samples. They46 concluded that polar ice is a dynamic environment with fluid-like domains both at the ice-air interface and deep within subsurface regions.

The NO$_2$ concentrations measured during the photolysis of NDI in the range of 2 µM $\leq [\text{NO}_3^-]_o \leq 50$ mM as function of temperature/time under a $\partial H = 0.70$ °C min$^{-1}$ ramp are
shown in Figs. 5.3a-f. Considering that the LIF detection zone is at ~293 K, a constant carrier flow rate of \(F_c = 2.5 \text{ L min}^{-1} \) and an illuminated NDI area of \(A = 304 \text{ cm}^2 \) imply that the detection of 1 pptv (1 part in \(10^{12} \) per volume = \(2.5 \times 10^7 \) molecule \(\text{cm}^{-3} \) at 1 atm, 293 K) \(\text{NO}_2 \) in this experimental setup is equivalent to the production of \(R \sim 3.4 \times 10^6 \) \(\text{NO}_2 \) molecules \(\text{cm}^{-2} \text{s}^{-1} \). It is apparent that the distinct upward inflection observed in \([\text{NO}_2] \) at ~\(-8 \) °C for \([\text{NO}_3^-]\), \(\text{NO}_2 \) gradually disappears at lower nitrate concentrations. Emission rates sharply decrease above ~\(-4 \) °C following the depletion of the \(\text{NO}_2 \) that had accumulated in the interior of the NDI’s. The latter effect is a consequence of the fact that upon NDI melting the fluid falls to the bottom of the QS where is only exposed to a small fraction of the actinic radiation. Hence, photolysis rates drop considerably due to geometric factors rather than for photochemical reasons.

Previously, we\(^{28}\) showed that observations similar to those described above could be rationalized by assuming that most of the photochemically produced \(\text{NO}_2 \) initially fills microscopic interstices within polycrystalline ice rather than being immediately released into the overlying gas. The \(\text{NO}_2 \) formed in the network of interconnected cavities that are open to the atmosphere diffuses away concomitantly with photolysis, while the rest remains trapped in closed pockets before effusing through the molecular channels unblocked during the softening of the topmost ice layers at higher temperatures. This hypothesis is fully supported by the experiments shown in Figs. 5.4a,b, in which we illuminated \([\text{NO}_3^-]\), \(50 \text{ mM NDI for 3 hrs at } -30 \) °C and then heated the sample at \(\partial H = 0.70 \) °C \(\text{min}^{-1} \). In these experiments, \(\text{NO}_2 \) concentrations gradually build up, reaching steady-state about >3 h irradiation. Emissions drop when the photolysis lamps are shut off, and then increase, displaying the distinctive surge at ~\(-7 \) °C (cf. Fig. 5.3a). A similar
experiment at \([\text{NO}_3^-]_o = 2 \ \mu\text{M}\) is shown in Figs. 5.5a,b. In this case, average NO\(_2\) emissions at \(\sim 240\ \text{pptv}\) during 3.2 hours represent the production of \(\sim 3 \times 10^{15}\) NO\(_2\) molecules, which is equivalent to \(\sim 50\%\) of the nitrate contained in the \(\sim 5\ \text{cm}^3\) of the frozen 2 \(\mu\text{M}\) NaNO\(_3\) solution being photolyzed. The slow decline of NO\(_2\) emissions during the course of the experiment shown in Fig. 5.5a may reflect the gradual depletion of nitrate. The decoupling of photolysis and thermal desorption in these experiments demonstrates the occurrence of two distinct mechanisms for NO\(_2\) release. We notice, however, that NO\(_2\) production rates from \([\text{NO}_3^-]_o = 50\ \text{mM}\) NDI drop \(\sim 46\) times (Figs 5.4a,b), but only a factor of \(\sim 5\) from \([\text{NO}_3^-]_o = 2 \ \mu\text{M}\) NDI (Figs. 5.5a,b) after illumination is halted. In other words, the large ratio of (the largely) photon-driven rates: \(R_{50 \text{mM}}/R_{2 \ \mu\text{M}} \sim 29\), is not reflected to the ratio of the subsequent purely desorptive dark rates: \(R_{50 \text{mM}}/R_{2 \ \mu\text{M}} \sim 4\).

An additional indication that nitrate photolysis and NO\(_2\) desorption are not the only processes determining NO\(_2\) release is provided by the \([\text{NO}_3^-]_o\)-dependence of the total amount of NO\(_2\), \(\int[\text{NO}_2]F_c dt\), liberated during photolysis over the course of an experiment is proportional to \(([\text{NO}_3^-]_o)^{\frac{1}{2}}\), at \(\partial H = 0.70 \ \circ\text{C} \ \text{min}^{-1}\) (Fig. 5.6). The observed \(\int[\text{NO}_2]F_c dt \propto ([\text{NO}_3^-]_o)^{\frac{1}{2}}\) dependence is not due to the sample becoming optically thick at the highest concentration, since even at \([\text{NO}_3^-]_o = 50\ \text{mM}\) only \(\sim 1\%\) of the incident photons are absorbed (\(\varepsilon = 7.5 \ \text{M}^{-1} \ \text{cm}^{-1}\) at 305 nm) by \(< 300 \ \mu\text{m}\) thick frozen layers. Therefore, the fraction of photon flux incident on all our samples that is absorbed by nitrate is linearly proportional to \([\text{NO}_3^-]_o\), anticipating a similar dependence for \(R\), at variance with the results of Fig. 5.6, which show a mere \(\sim 50\)-fold enhancement of \(R\) upon a \(2.5 \times 10^4\) variation of \([\text{NO}_3^-]_o\). A similar argument, based on the small optical
densities that NO₂ reaches in these experiments, indicates that secondary photolysis of NO₂, another complicating feature considered below in more detail, is expected to reduce R by a factor that should be nearly independent of [NO₃]₀.

A likely explanation of the results of Fig. 5.6 implicates NO₂ reabsorption via the relatively (vs. NO₂ desorption) fast hydrolysis in the quasi-fluid media in which these events take place, reactions 4 or 4’:

\[
2 \text{NO}_2(\text{aq}) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NO}_3^-(\text{aq}) + \text{NO}_2^-(\text{aq}) + 2 \text{H}^+(\text{aq}) \quad (4)
\]

\[
2 \text{NO}_2(g) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NO}_3^-(\text{aq}) + \text{NO}_2^-(\text{aq}) + 2 \text{H}^+(\text{aq}) \quad (4')
\]

Reactions 4 and 4’ have the required stoichiometry to produce the \(\int [\text{NO}_2]^1 \text{d}t \propto ([\text{NO}_3^-])^{1/5} \) dependence. Equilibrium constants \(K_4 = 2.8 \times 10^6 \), and \(K_4' = 6.8 \times 10^3 \), at 240 K and 270 K, respectively were calculated using \(\Delta H_4 = -25.7 \text{ kcal mol}^{-1} \) and \(\Delta S_4 = -77.9 \text{ cal K}^{-1} \text{ mol}^{-1} \) (in M, atm units).⁴⁹ Assuming pH 5.0, \([\text{NO}_3^-] = 50 \text{ mM}, [\text{NO}_2^-] \sim 0.1 \times [\text{NO}_3^-] = 5 \text{ mM}, [\text{H}_2\text{O}] = 55 \text{ M}, \) we calculate equilibrium NO₂ pressures of \(1.3 \times 10^{-11} \) atm, and \(2.6 \times 10^{-10} \) atm at 240 K and 270 K, respectively, that are much smaller than the \(\sim 1 \text{ ppbv} \) and 10 ppbv levels shown in Fig. 5.3a at the corresponding temperatures. At \([\text{NO}_3^-] = 2 \mu\text{M}, [\text{NO}_2^-] \sim 1 \mu\text{M},^{50,51} \) the equilibrium NO₂ pressures drop \(\sim 1 \times 10^4 \) times relative to the above values. Even the occurrence of hundred-fold larger nitrate concentrations in the interstitial fluids, due to solute rejection upon freezing, will not affect the conclusion that NO₂ hydrolysis may be an important and competitive chemical pathway in these systems. The rates of reaction (4) at the low NO₂ concentrations prevalent in present experiments (in which there is minimal dimerization of NO₂ into \(\text{N}_2\text{O}_4 \)) are expected to be second order in \([\text{NO}_2]^{52} \). Thus, the much larger NO₂ levels that
should be produced, in principle, by photolysis of the more concentrated NDI’s will be extensively buffered by fast NO$_2$ hydrolysis via reaction (4). This phenomenon incidentally provides further evidence that chemistry and photochemistry in ‘frozen’ solutions actually take place in fluid environments, because a ‘dry’ medium such ice itself would not support NO$_2$ hydrolysis.

Since the time required to sweep the entire temperature range (from – 30 °C to above melting) is inversely proportional to the heating ramp, \(\partial H \), the total amounts of NO$_2$ collected in photolysis experiments carried out on NDI’s of the same composition should be, barring secondary losses, directly proportional to \(1/\partial H \), i.e.: \(F_c \int [NO_2] dt \propto \partial H^{1} \). Figs. 5.7a,b show thermograms performed on \([NO_3^-]_o = 50 \text{ mM NDI at } \partial H = 0.30 \text{ and 0.10 °C min}^{-1} \), respectively (cf. Fig. 5.3a). These results, in conjunction with those of Fig. 5.3a for \(\partial H = 0.70 \text{ °C min}^{-1} \), as well as those performed on \([NO_3^-]_o = 2 \mu \text{M NDI (not shown), are presented in Fig. 5.8. It is apparent that } \int [NO_2] dt \text{ vs. } \partial H^{1} \text{ plots are not linear: } \int [NO_2] dt \text{ only increases about threefold upon a sevenfold extension of photolysis time. The inference is that increasingly larger NO}_2 \text{ losses attain at longer irradiation times. In other words, NO}_2 \text{ production is not uniquely determined by } T \text{ and } [NO_3^-], \text{ but critically depends on the thermal history of the irradiated sample due to the slow kinetics of the processes involved. This phenomena reflect the competition between NO}_2 \text{ secondary losses and the weak, but positive temperature dependence of its desorption rates. NO}_2 \text{ is expected to be retained for longer periods within the polycrystalline ice matrix during slower heating schedules and, hence, be subjected to more extensive photodecomposition. We have estimated that the absorption coefficient of NO}_2, \text{ averaged over the output of our lamps, is } \sim 28 \text{ times larger than } NO_3^-^{30} \text{ If NO}_2 \text{ remained trapped as} \)
a gas, rather than dissolved, the large quantum yield of its photodecomposition in the gas-phase:

\[
\text{NO}_2 \xrightleftharpoons{hv} \text{NO} + \text{O}^3\text{P} \tag{5}
\]

\(\phi_5 \sim 1 \text{ vs. } \phi_1 \sim \phi_2 \sim 2 \times 10^{-3}\), would further shorten its photodecomposition lifetime. Chemical losses due to secondary radical reactions may also contribute to the non-linearity of Fig. 5.8 plots.\(^{29,30}\)

Implications for Snowpack Chemistry in Polar Regions

The NO\(_3^-\) concentrations measured in snow at rural and remote sites range from 1 to 20 \(\mu\text{M}\).\(^{5,53-56}\) These overlap with the lower \([\text{NO}_3^-]\)\(_0\) range of the present experiments. Considering that nitrate samples were subjected to photon irradiances and temperatures of environmental relevance, our results can thus be directly applied to the interpretation of NO\(_2\) emissions from sunlit snow. Chu and Anastasio have recently compared the results of laboratory studies on the photochemistry of frozen nitrate solutions with field measurements of NO\(_x\) gases released during spring at various high-latitude locations.\(^{17}\) Their analysis was based, however, on equating the OH production rates in reaction (1), determined by using benzoic acid as an *in situ* radical scavenger, with the NO\(_2\) rates that should be released into the atmosphere from irradiated snowpacks mimicking their samples. The present experiments show that NO\(_2\) desorption is not instantaneous and that, while trapped in the ice, NO\(_2\), a primary photochemical product of reaction (1), undergoes extensive losses via several chemical and photochemical reaction channels. The inference is that Chu and Anastasio almost certainly overestimated NO\(_2\) fluxes from illuminated snowpacks, and the apparent agreement they obtained between field and laboratory data is probably fortuitous. We suggest that it would be still possible to
reconcile most findings if primary NO\textsubscript{2} were transformed into NO, and/or NO\textsubscript{2}/HONO species that could be eventually released into the boundary layer, and therefore accounted for as NO\textsubscript{x}, depending on the acidity of the local molecular environment.

Conclusions

The photolysis of nitrate embedded within polycrystalline ice produces NO\textsubscript{2}(g) that is detected as it emerges from the solid. NO\textsubscript{2} desorption rates under continuous illumination increase with rising temperature, and display distinct acceleration stages that are ascribed to structural transitions of the ice matrix. The amount of NO\textsubscript{2} photodesorbed in a given experiments after scanning the entire temperature range: −30 ≤ T/°C ≤ 5, scales nonlinearly with [NO\textsubscript{3}⁻],\textsubscript{o} or the heating rate, \(\partial H\). These behaviors express the occurrence of extensive chemical and photochemical losses of NO\textsubscript{2} prior to desorption into the gas-phase.
Figure 5.1. Schematic diagram of the experimental setup. (1) photolysis cell (see Figure 5.2); (2) reflective reaction chamber; (3) pen-ray UV lamps emitting at $\lambda_{\text{max}} \approx 313 \text{ nm}$; (4) circulating cryostat; (5) computer workstation utilizing Thermo Neslab Nescom Software; (6) zero air carrier gas. Schematic of the UC, Berkeley laser-induced fluorescence NO$_2$ instrument was extracted with modifications from Thornton et al. (2000). The core of the instrument is mounted on a breadboard, one side holding the laser subsystem and the other side the detection axis. A frequency doubled Nd$^{3+}$:YAG laser (YAG) at 532 nm pumps a custom-built dye laser (DL), the output (585 nm) of which is sampled by fused silica beam splitters to monitor power, frequency (by measuring transmittance through an NO$_2$ reference cell shown as a cube), and line width measured with an external etalon (E). Six photodiode detectors (PD) are used to measure laser power at various points along the beam path. A set of dispersion prisms (DP) is used to separate the 585 nm light from the 532 nm light which is then dumped. The 585 nm light is then sent through a hole in the breadboard to the detection side to the multipass White Cell (WC). The pressure in the WC is measured with a manometer., 100 Torr Baratron (B). NO$_2$ fluorescence is collected and sent through a series of optical filters.
housed in the filter changer (FC) to the photomultiplier tube in its TE-cooled housing (PMT).
Figure 5.2. The photochemical reaction cell is illustrated above where CF is the inner coldfinger on which polycrystalline ice is formed, and QS is a quartz sheath that encase the coldfinger.
Figure 5.3a. NO$_2$ gas-phase concentration at $\partial H = 0.70$ °C min$^{-1}$ vs. temperature during irradiation of 50 mM nitrate-doped polycrystalline ice.

Figure 5.3a. NO$_2$ gas-phase concentration at $\partial H = 0.70$ °C min$^{-1}$ vs. temperature during irradiation of 10 mM nitrate-doped polycrystalline ice.
Figure 5.3c. NO$_2$ gas-phase concentration at $\partial H = 0.70 \, ^\circ\text{C min}^{-1}$ vs. temperature during irradiation of 1 mM nitrate-doped polycrystalline ice.

Figure 5.3d. NO$_2$ gas-phase concentration at $\partial H = 0.70 \, ^\circ\text{C min}^{-1}$ vs. temperature during irradiation of 200 μM nitrate-doped polycrystalline ice.
Figure 5.3e. NO$_2$ gas-phase concentration at $\partial H = 0.70$ °C min$^{-1}$ vs. temperature during irradiation of 30 µM nitrate-doped polycrystalline ice.

Figure 5.3f. NO$_2$ gas-phase concentration at $\partial H = 0.70$ °C min$^{-1}$ vs. temperature during irradiation of 2 µM nitrate-doped polycrystalline ice.
Figures 5.4. (a) NO$_2$ released from irradiated 50 mM nitrate-doped polycrystalline ice at -30 °C for 3 - 4 hrs. Subsequently, we observe (b) NO$_2$ desorption (without photolysis) $\partial H = 0.70$ °C min$^{-1}$ ramp rate. Note: fig. (b) rescales both the x- and y-axis of NO$_2$ desorption data to temperature (T/°C) and pptv., respectively.
Figure 5.5. (a) NO$_2$ released from irradiated 2 µM nitrate-doped polycrystalline ice at −30 °C for 3 – 4 hrs. Subsequently, we observe (b) NO$_2$ desorption (without photolysis) at $\partial H = 0.70$ °C min$^{-1}$ ramp rate. Note: fig. (b) rescales the x-axis of NO$_2$ desorption data to temperature (°C).
Figure 5.6. Total NO$_2$ photodesorbed (a.u.) vs. [NO$_3^-$]$_0$/mM at $\partial H = 0.70$ °C min$^{-1}$ heating rate.
Figure 5.7a. NO$_2$ released during $\partial H = 0.30$ °C min$^{-1}$ ramp rate from irradiated 50 mM nitrate-doped polycrystalline ice vs. temperature.

Figure 5.7b. NO$_2$ released during $\partial H = 0.10$ °C min$^{-1}$ ramp rate from irradiated 50 mM nitrate-doped polycrystalline ice vs. temperature.
Figure 5.8. Area below curves vs. heating rate (°C min⁻¹) for $[\text{NO}_3^-]_0 = 2 \mu\text{M (V)}$ and 50 mM (Δ).
References

