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Abstract

In this thesis we investigate the locomotion of fish and birds by applying both new and well

known mathematical techniques.

The two-dimensional model is first studied using Krasny’s vortex blob method, and

then a new numerical method based on Wu’s theory1 is developed. To begin with, we

will implement Krasny’s ideas for a couple of examples and then switch to the numerical

implementation of the nonlinear analytical mathematical model presented by Wu. We will

demonstrate the superiority of this latter method both by applying it to some specific cases

and by comparing with the experiments. The nonlinear effects are very well observed and

this will be shown by analyzing Wagner’s result for a wing abruptly undergoing an increase

in incidence angle, and also by analyzing the vorticity generated by a wing in heaving,

pitching and bending motion. The ultimate goal of the thesis is to accurately represent the

vortex structure behind a flying wing and its influence on the bound vortex sheet.

In the second part of this work we will introduce a three-dimensional method for a

flat plate advancing perpendicular to the flow. The accuracy of the method will be shown

both by comparing its results with the two-dimensional ones and by validating them ver-

sus the experimental results obtained by Ringuette in the towing tank of the Aeronautics

Department at Caltech.

1In this thesis we will use ’Krasny’s method’ to refer to the method based on the vortex blob technique
and ’Wu’s method’ to refer to the one implemented by Wu. Since we are not aware of an actual method
developed by Krasny for an airfoil moving forward at a given angle of attack, we should rather use ’classical
vortex method’ and ’semi-analytical method’ respectively to describe these two implementations. However,
we will talk about ’Krasny’s method’ and ’Wu’s method’ for easier understanding.
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Chapter 1

Introduction

Flight has fascinated the human mind since its early days of development. The gracefulness

and the perfection of a bird in the air inspired us to try to emulate some particular aspects

of its superb ability. The first flying devices were paper kites in China about 2000 years ago.

After that, men created all kinds of contraptions, which included the ornithopter, which

was no more than human-sized bird wings. They had not figured out the effect of taking

something of a small scale and making it larger to accommodate a larger client, as flapping

wings will work on birds, but will not do the deed for humans, who are generally larger

than flying birds.

Years after several other followers failed to create anything successful, it was the Wright

Brothers’ turn, who are credited with the first sustained flight on December 17, 1903.

However, the perfection and elegance of the bird-flapping flight has never been achieved.

For these reasons, one can imagine how rich and complex the literature is when we direct

our attention to animal flight. In the present chapter, we will try to put our work into

context and see what has been done in the past in this vast field.

History and Literature: Theory and Computations. Starting with the work of Sir

James Gray who was the head of Cambridge University’s Zoology Department from 1937

to 1961, the theory of animal locomotion stimulated G. I. Taylor in making two pioneering

investigations. One involved the swimming of snakes and eels, and the other one initiated

hydrodynamic studies of flagellar propulsion. However, the main contributions to this do-

main came later on from Sir James Lighthill and Professor Theodore Wu. Lighthill laid
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a theoretical foundation for the swimming of slender fish, while Wu made an extension of

classical oscillating airfoil aerodynamics to a linear theory of flexible lifting-surface locomo-

tion, to examine the performance of bending wings of birds in flapping flight and the lunate

tails of fast-swimming percomorph and acombroid fishes and rays in swimming.

Re-emphasizing the importance of Wu’s (scaling of aquatic locomotion - Wu [1977]),

Lighthill’s (scaling of aerial locomotion) and Weis-Fogh’s (hovering flight) work in fish and

bird locomotion, we should also remember the advances made in the field of wing theory

and free-surface numerical methods.

One of the pioneers in the study of a wing in flight was T. Theodorsen with his theory

of instability and the mechanism of flutter (see Theodorsen [1935]). In 1931, Kaden intro-

duced similarity variables for describing the roll-up of a semi-infinite plane vortex-sheet (see

Saffman [1992], p. 147). During the 1950s, several authors presented approximate asymp-

totic solutions in which the spiral vortex generated behind a sharp edge was replaced by a

single point vortex, an example of which is given by Rott [1956]. Moore in 1976 (see Moore

[1976]) studied and verified the stability of a class of vortex sheets rolling-up, but could

not verify the stability of the problem as noted by Pullin in 1978 (see Pullin [1978]). In

the same work, Pullin, for the first time, obtained regular and well-defined start-up vortex

spirals from an accurate numerical solution of the Birkhoff-Rott equation (inviscid flow)

written in similarity variables. These results were used by Krasny to validate his method.

In 1991 (see Krasny [1991]), he provided an extensive discussion of Chorin’s vortex blob

method (see Chorin [1973]) and applied it for the evolution of a free vortex sheet undergoing

a certain perturbation and for the wake forming at the edges of a flat plate advancing per-

pendicular to the flow. Strong numerical evidence indicated that the vortex blob method

converged past the vortex sheet singularity formation time, as the smoothing parameter

tended to zero.

Nitsche and Krasny, in 1994, (see Krasny [1994]) developed a numerical method for

the vortex ring formation at the edge of a circular tube. Comparison between simulation

and experiment indicated that the model captured the basic features of the ring formation

process. Then, in 2001, a very interesting model was presented by Chamara and Coller
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(Chamara [2001]) for a pair of airfoils with two degrees of freedom: pitching and heaving.

They were interested in finding the optimum configuration of the two airfoil system for

which the two oscillatory instabilities due to the flutter occurred simultaneously.

Closer to animal locomotion, Dickinson et al. measured the unsteady forces on a robotic

fruit fly wing and demonstrated the role of wing rotation in force generation (Dickinson

[1999]). Also, J. Wang in 2000 (see Wang [2000]) tried to quantify the vortex dynamics

of a flying insect, that is essential for hovering, and identify a minimal two-dimensional

model that produced sufficient lift. Later, in 2004, Wang, Birch and Dickinson compared

computational, experimental and quasi-steady forces in a generic hovering wing undergoing

sinusoidal motion along a horizontal stroke plane. In particular, they investigated unsteady

effects and compared two-dimensional computations and three-dimensional experiments in

several qualitatively different kinematic patterns (see Wang [2004]).

If we look at free-surface flow problems we should mention the work of Baker, Meiron

and Orszag in studying the evolution equations. They proposed in 1982 an alternative to

the matrix inversion techniques used before. The resulting Fredholm integral equations

of the second kind were solved efficiently by iteration in both two and three dimensions.

Applications to breaking water waves over finite-bottom topography and inter-facial waves

were provided (see Baker [1982]). Finally, Baker and Beale (see Baker [2004]) applied the

vortex-blob method to develop a boundary integral method for computing the motion of an

interface separating two incompressible, inviscid fluids.

In three dimensions we should point to the work of Brady, Leonard and Pullin who, in

1998 provided a three-dimensional computational method to track the evolution of regu-

larized three-dimensional vortex sheets through an irrotational, inviscid, constant-density

fluid. Also, in 2001, Lindsay and Krasny (Lindsay [2001]) developed a fast adaptive La-

grangian particle method for computing free vortex sheet motion in three dimensional flow.

To be able to do all the computations efficiently, they also included an adaptive treecode

algorithm.

History and Literature: Experiments. In the fluid dynamics literature we were very

lucky to find some significant experiments that helped us in verifying our computational
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results. Thus, Didden in 1979 (see Didden [1979]) performed an experiment in which a

moving piston forces fluid from a circular tube, leading to the formation of a vortex ring.

Krasny used this experiment to validate his numerical method.

The fluid mechanics literature is richer in experiments involving a heaving wing. Some

were done by Bratt in 1953 (see Bratt [1953]) and more recently by Jones, Dohring &

Platzer in 1998 (see Jones [1998]) and by Lai, Yue & Platzer in 2002 (see Lai [2002]). For

pitching, the experiment by Koochesfahani (see Koochesfahani [1989]) at Caltech for the

visualization of the wake behind a flat plate in pitching motion with various frequencies and

pitching axes provided very useful information.

Closer to the natural bird movement, Pennycuick (Pennycuick [1996]), after long ob-

servations on a thrush nightingale and a teal, came up with a formula for the wing-beat

frequencies of different birds in level cruising flight. In 2000, Earls went even further. It

is well known how the most difficult moment of the flight is the take-off. Earls, in 2000,

(Earls [2000]), after a study on starlings and quails, showed the movements of the bird

wings during this essential moment, talking about kinematics and mechanics. We will use

these natural movement descriptions when we analyze a bird’s flight in Chapter 3.

For this thesis, in three dimensions, we use some very nice experiments involving a

three-dimensional flat plate advancing perpendicular to the flow, performed for his Ph.D.

thesis by M. Ringuette in the towing tank at Caltech in 2004 (see Ringuette [2004]).

Wu’s Method. In the history of pioneering development of linear unsteady airfoil theory,

Herbert Wagner (1925) was the first to have generated an integral equation for calculating

the wake vorticity shed by a wing. This approach was further developed by Theodore

von Karaman and William Sears (1938), who made a lasting contribution by providing an

improved derivation based on the decomposition of the bound vorticity Γb into two parts,

one for the “quasi-stationary wake-less” flow Γ0 past the wing, and the other, Γ1, due to

the wing reaction to the vortex sheet. Γ0 and Γ1 were both carefully analyzed using linear

approximations.

Some work towards the generalization to fully nonlinear theory was done by McCune and

co-workers (1990, 1993) but the full generalization to two dimensional flexible lifting surface
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performing arbitrary movements was done by Theodore Y. Wu in 2001 (see Wu [2001]). The

discussions in this thesis will be based on this newer and improved theory. The analysis of

both Γ0 and Γ1 captures very well the nonlinear effects while the wake vorticity γw is being

computed using the Kutta condition in the form of generalized Wagner’s integral equation

for the conservation of total circulation.

Issues Addressed in This Thesis. The main goal of this thesis is to develop a better

method for capturing the nonlinear effects present in highly nonlinear movements of a bird’s

wing or a fish’s fin. These nonlinear effects are very important when we have to study very

sensitive movements as highly curved ones (very quick U-turns) or those implying wing-

wake interaction. The main difficulty arises when analyzing the fluid properties near the

trailing edge of a wing as well as the behavior of the flow inside the vortex ring. These

difficulties will be overcome by using Wu’s method which provides a very strong nonlinear

analytical approach in computing the flow and wing characteristics.

The method will be applied to some significant cases and we will show how it matches

the experiment data. Compared to the previous methods, Wu’s method will better capture

the position and radius of a vortex forming behind a wing advancing at a certain angle

of attack. In Section 3.3, we will see how the relative error in the span-wise location of

the core of the vortex ring compared to experiment is 9% for Wu’s method and 72% for

Krasny’s. Also the radii of the vortex rings are different, in Wu’s method being 25% bigger

than in Krasny’s. However, Wu’s result agrees very well with the experiment in the sense

that it verifies the square-root behavior of the radius as predicted by Davenport. The CPU

time on an AMD Athlon(tm) XP 1700+ with 512 MHZ for the same initial data (12,000

time-steps) is almost the same: about 90 hours for Wu’s method and 85 for Krasny’s. Here

the complexity of the method proposed by Wu is balanced by the need of a matrix inversion

in Krasny’s method.

Wu’s method will also show more roll-ups inside the vortex ring compared to Krasny’s

method. To get the same number of roll-ups for Krasny’s we will have to decrease the blob

and therefore to decrease the time step accordingly. This will increase considerably the

total CPU time.
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For nonlinear motions, Wu’s method shows very good results when compared with the

experiments for heaving and pitching. Some more interesting examples will be studied

involving highly curved Heaviside, Fourier and bending motions. The lift and the thrust

will be analyzed, emphasizing the effect of the free vortex sheet over the flying wing.

One of the big improvements we could note using Wu’s method is what we obtain

computationally for Wagner’s theoretical result. The theory says that in the case of a

forward flying wing with an angle of attack, the initial lift is half the final lift. Our result is

significantly better than the ones found in the literature (see Katz [2001]). We get a ratio

of initial lift over final lift of about 0.64 while using Krasny’s method this was around 0.74.

The one obtained by Katz and Plotkin is about 0.85.

We will try to demonstrate that all these improvements are due to the fact that Wu’s

method captures the leading order effect of the first released vortex element. The error

that Krasny’s method introduces in this first element will propagate in the wake at every

time step and will be the source of discrepancies between the results obtained with the two

approaches.

The thesis begins with an introduction to Krasny’s vortex-blob method. The under-

standing of his work was a very important step for us and it was crucial in the implemen-

tation and development of a numerical method for Wu’s theory. Krasny’s ideas are taken

from his paper from 1994 (see Krasny [1994]) in which he studied the vortex formation at

the edge of a circular tube. Krasny’s method provides important insight for a number of

fluid mechanics and numerical issues. We generalize Krasny’s method to a flat plate moving

perpendicular to the flow. We refer to Krasny [1991] for more discussions of the method.

We will continue with the extensive presentation of Wu’s theory for a flexible plate

advancing at an angle of attack. This is inspired form Wu’s 2001 paper “On Theoretical

Modeling of Aquatic and Aerial Animal Locomotion” (see Wu [2001]). The very complex

mathematical formulation provides a nonlinear approach inspired from a theory initially

adopted by Wagner, von Karman and Sears. It is based on the decomposition of the bound

vorticity into two parts, one representing the “quasi-steady wake-less” flow over the wing,

and the other representing the additional bound vorticity in reaction to the trailing wake
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vortices, required to reinstate the original time-varying normal velocity on the bound sheet.

We will provide an extensive description for the implementation of these methods and

will include some very interesting comparisons both between the two methods and between

Wu’s method and experiment. First we will present our results for the vortex formation

at the edge of a circular tube. They verify well against Krasny’s results and against the

experimental ones obtained by Didden in 1979 (see Didden [1979]). We continue with the

problem of a flat plate advancing perpendicular to the flow and then with the implemen-

tation of Krasny’s method for a wing advancing at a given angle of attack. To the best

of our knowledge, the numerical implementation of the latter case is not available in the

literature and therefore, the method we are presenting here is partly inspired from the cases

discussed in this thesis involving Krasny’s method, partly from the simple numerics found in

Katz [2001]. The corresponding section and the following ones involving Wu’s method will

present an analysis that documents the structure and development of a tip vortex shed from

a conventional wing. Such flows are of engineering importance because they dominate the

wakes of lifting vehicles. In real experiments they are also of scientific interest as examples

of turbulent flows dominated by rotation.

In order to demonstrate that Wu’s method behaves better than the ones developed

before, we will compare it against the experiment done by Davenport (see Davenport [1995]),

and then we will apply it to some highly nonlinear motions such as heaving, pitching, mixed

heaving-pitching, and bending. We will compute some relevant quantities such as thrust

and lift and interpret the results obtained. A very nice way of validating Wu’s method

is to see its output for Wagner’s famous result: if a wing undergoes an abrupt change in

incidence angle, the initial lift at t = 0+ will be half of the final lift. We try to see what

happens to this result in the case of an abrupt Heaviside or Fourier flexible motion.

In the last part of the thesis, we will propose a three-dimensional mathematical model

for a flat plate advancing perpendicular to the flow. The three-dimensional approach for

the computation of the bound circulation is inspired from the panel method presented in

“Low speed aerodynamics” by J. Katz and A. Plotkin (Katz [2001]). This is ingeniously

combined with Krasny’s two-dimensional method to solve for the free sheet vortex elements.
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The results match the experiments done by Ringuette in 2004 at Caltech (see Ringuette

[2004]) in terms of the total circulation along chord-wise sections of the wake. Also, the

results agree very well with the two-dimensional ones for a chord-wise center section of a

very high aspect ratio wing. However, the numerical method fails to observe the separation

found in the experiment after the so called “formation number”. This is due to the viscosity

of the fluid and it can only be artificially implemented in our potential flow.

The three-dimensional results are very important for developing a more complex three

dimensional theory. As in the two-dimensional case, this could be the first step towards a

more in depth analysis. The first results obtained in this thesis are very promising for a

future work which could be of great importance for the study of swimming and flying. The

main difficulty though, would be the three-dimensional generalization of Wu’s theoretical

model.

Organization of the Thesis. Chapter 2 will present the theoretical approach and the

numerical algorithms for Krasny’s and Wu’s methods. For Krasny’s method we will use

two of his papers - see Krasny [1991] and Krasny [1994]. Wu’s approach will be inspired

from his paper, “On theoretical modeling of aquatic and aerial animal locomotion” (see Wu

[2001]).

Chapter 3 will show our implementation for these methods on various examples. Krasny’s

method will be applied to a piston forcing the fluid out of a tube, to a wing advancing per-

pendicular to the flow and to a wing advancing at a given angle of attack. Wu’s method will

be applied for a wing advancing at a given angle of attack, for a wing in heaving, pitching,

bending motions as well as for a wing in highly curved Heaviside and Fourier motions. The

two methods will be compared against experiments and we will demonstrate the superiority

of Wu’s method. Also, the lift and thrust will be analyzed in some significant cases and

Wagner’s result will be numerically implemented using Wu’s method.

Chapter 4 will present the implementation of the three-dimensional method along with

some very interesting comparisons with the experiments done in 2004 by Davenport.

Chapter 5 is devoted to concluding remarks and future directions.
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Chapter 2

Theory for the Mathematical
Model of the Vortex in Potential
Flow

2.1 Krasny’s Vortex Blob Method

2.1.1 Vortex Formation at the Edge of a Circular Tube

Introduction Inspired from an experiment done by Didden in 1979, Krasny and Nitsche

(1994) implemented a numerical method for the axisymmetric flow shedding a vortex wake.

Didden’s experiment investigated the movement of a piston inside a circular tube which was

forcing the fluid out and was generating a vortex ring at the edge of the tube. Comparison

between the numerical simulation and experiment indicated that the theoretical model

captured the basic features of the ring formation process.

The vortex-sheet model has been used extensively to compute separating flow past a

sharp edge. The computations employed a time-stepping procedure in which discrete vortex

elements of suitable strength were released from the edge at regular intervals. Instead of

using point vortices, Krasny used blobs, meaning that he gave a non-zero radius (δ) to the

released vortex elements. This was used to regularize the roll-up of the free vortex sheet

(see Chorin [1973]). The artificial smoothing parameter δ > 0 was used in the equation

governing the motion of the sheet and information about the vortex sheet was gotten by

considering the limit of the result as δ → 0.

Another difficult problem, aside from the roll-up, is the separation at a sharp edge.
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Krasny’s approach, as it will be discussed later, takes care of this by carefully analyzing the

relation between the circulation shedding rate and the slip velocities on both sides of the

edge by using the Kutta condition.

Krasny’s goal was to prove that the vortex-sheet model provides an asymptotic ap-

proximation for slightly viscous flow. As it was said before, he succeeded in doing this by

comparing his computational results with some very accurate measurements from a well-

controlled laboratory experiment. Work done before Krasny (see Tryggvason, Dahm &

Sbeih - 1991) showed that the zero smoothing limit of δ → 0 agreed with the zero viscos-

ity limit ν → 0 in the case of the Kelvin-Helmholtz problem for the periodic vortex-sheet

roll-up in two-dimensional flow. This study compared the vortex-blob simulations with

finite-difference solutions of the Navier-Stokes equations. While the vortex-blob method

proved to give very good results when applied to Kelvin-Helmholtz problem, Krasny tried

to offer a validation of this method for flows past a sharp edge.

The following theoretical and numerical results follow closely the theory presented in

Krasny [1994] and Krasny [1991].

Free Vortex Sheet The model is implemented using cylindrical coordinates

(xf (Γ, t), rf (Γ, t)), with 0 6 Γ 6 ΓT (t) and 0 6 t, where Γ is the Lagrangian circulation

along the sheet and ΓT (t) is the total circulation at time t. A regularized filament of unit

strength located at (x̃, r̃) will influence a point at (x, r) by

ψδ(x, r; x̃, r̃) =
1
4π

∫ 2π

0

rr̃ cos θ
(ρ2 + δ2)1/2dθ

, (2.1)

where ψδ is the stream function, ρ2 = (x− x̃)2 + r2 + r̃2− 2rr̃ cos θ and δ is the vortex-blob

smoothing parameter. This is where the blob appears in the equations governing the sheet.

Lamb (1931 ) shows that the stream function can be expressed in terms of the complete

elliptic integrals of the first and second kind, F (λ) and E(λ), as

ψδ(x, r; x̃, r̃) =
1
2π

(ρ1 + ρ2)(F (λ)− E(λ)), (2.2)
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where λ = (ρ2 − ρ1)/(ρ2 + ρ1), ρ2
1 = (x− x̃)2 + (r− r̃)2 + δ2, ρ2

1 = (x− x̃)2 + (r+ r̃)2 + δ2,

and

F (λ) =
∫ 2π

0

dθ√
1− λ2 sin2 θ

, E(λ) =
∫ 2π

0

√
1− λ2 sin2 θdθ, (2.3)

To learn more about numerical calculations of elliptic integrals and elliptic functions, see

(Bulirsch [1965]).

The velocity induced by a circular filament has axial and radial components given by

the definition of the stream function

uδ(x, r; x̃, r̃) =
1
r

∂ψδ

∂r
(x, r; x̃, r̃), vδ(x, r; x̃, r̃) = −1

r

∂ψδ

∂x
(x, r; x̃, r̃). (2.4)

The partial derivatives of ψδ are given by the chain rule

∂ψδ

∂x
=
x− x̃

ρ1

∂ψδ

∂ρ1
+
x− x̃

ρ2

∂ψδ

∂ρ2
,
∂ψδ

∂r
=
r − r̃

ρ1

∂ψδ

∂ρ1
+
r + r̃

ρ2

∂ψδ

∂ρ2
, (2.5)

which, after finding F ′(λ) and E′(λ) in terms of F (λ) and E(λ), gives

∂ψδ

∂ρ1
=

1
2π

(
F (λ)− 1

2

(
1 +

ρ2

ρ1

)
E(λ)

)
,
∂ψδ

∂ρ2
=

1
2π

(
F (λ)− 1

2

(
1 +

ρ1

ρ2

)
E(λ)

)
. (2.6)

When r 6= 0, the induced velocity is computed directly using (2.4), while, for r = 0 the

velocity is computed by evaluating the limit r → 0 in (2.4)

uδ(x, 0; x̃, r̃) =
1
2

r̃2

((x− x̃)2 + r̃2 + δ2)3/2
, vδ(x, 0; x̃, r̃) = 0. (2.7)

In summary, the induced velocity is computed by integrating over the sheet

 uf

vf

 (x, r) =
∫ ΓT

0

 uδ

vδ

 (x, r;xf (Γ, t), rf (Γ, t))dΓ. (2.8)
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Bound Vortex Sheet The piston and the tube are given again in cylindrical coordinates,

parametrized by arc length s

(xb(s), rb(s)) =

 (0, s), 0 6 s 6 R

(s−R,R), R 6 s 6 R+ L
, (2.9)

where L and R are the length and the radius of the cylinder respectively.

The velocity induced by the bound vortex sheet is given by

 ub

vb

 (x, r) =
∫ R+L

0

 u0

v0

 (x, r;xb(s, t), rb(s, t))γ(s, t)ds, (2.10)

where γ(s, t) is the bound-sheet strength. It can be seen that δ is set to zero on the bound-

sheet but it is positive on the free-sheet. Krasny explains this by the necessity of resolving

the roll-up in the free-sheet, while there is not such requirement on the bound sheet since

its shape is fixed. Even more than that, we set δ = 0 on the bound-sheet to prevent ill-

conditioning in the equation for the bound-sheet strength, as it will be seen later on. For

now, let’s just note that the velocity induced by both the free and the bound sheet is given

by  u

v

 (x, r) =

 uf

vf

 (x, r) +

 ub

vb

 (x, r). (2.11)

There is a difficulty occurring at the edge (x, r) = (L,R), where the singular kernel on

the bound sheet cannot be balanced by the regularized kernel on the free sheet. However,

Krasny shows in his paper (see Krasny [1994]) that this can be overcome by application of

the normal boundary condition on the tube wall. He also verifies the effect of the jump in

δ upon the induced velocity in the article’s appendix.

Discretization In the numerical implementation we have two different sets of filaments:

free filaments - their number increases in time because at every time step another one

is released in the free sheet, and bound filaments. The free filaments are denoted by
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(xf
j (t), rf

j (t)), and they depend on the circulation parameters Γj , j = 0, ..., Nf . The bound

vortices are denoted by (xb(sj), rb(sj)), and they are placed on the piston and tube walls

according to

sj =


jR
Nb

1
, j = 0, ..., N b

1

R+ L sin
(

π
2

j−Nb
1

Nb−Nb
1

)
, j = N b

1 , ..., N
b.

(2.12)

In other words, the bound filaments are uniformly spaced on the piston, but they cluster

at the edges of the tube which provides better resolution at those edges. This is a frequently

used technique in fluid dynamics.

To find the new position of the free filaments, Krasny applies the trapezoidal rule to

integrals (2.8) and (2.10) and computes the total induced velocity (2.11). From that he

finds
dxf

j

dt
= u(xf

j , r
f
j ),

drf
j

dt
= r(xf

j , r
f
j ). (2.13)

Of course the first goal would be to find the bound-sheet strength. This will be done by

inverting a linear system that comes from writing down the boundary conditions


v(xm

j , r
m
j ) = 0, j = N b

1 , ..., N
b

u(xm
j , r

m
j )− u(xm

j−1, r
m
j−1) = 0, j = 2, ..., N b

1

u(1
2L, 0) = Up(t).

(2.14)

The first condition is given by the fact that the tube walls are impenetrable, so radial

velocity is zero, the third one matches the velocity of the piston in the center of the tube

and the second one sets uniform tangential velocity along the piston. Given this, we obtain

a linear system in N b equations and N b unknowns solved by Krasny using Gaussian elimi-

nation. Krasny shows how the need of taking δ = 0 on the bound sheet appears from the

fact that the solution of the linear system (2.14) oscillates and fails to converge under mesh

refinement when δ > 0.

Vortex shedding Now we will talk about the edge of the tube. The circulation shedding

rate there is given in terms of the slip velocities at the edge, inside and outside the tube
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u−, u+

dΓT

dt
=

1
2
(u2
− − u2

+). (2.15)

These slip velocities satisfy

u− − u+ = γe,
1
2
(u+ + u−) = ū, (2.16)

where γe is the sheet strength at the edge of the tube (computed when solving the linear

system (2.14)) and ū is the average slip velocity.

This is how the circulation shedding rate at the edge and the average slip velocity are

obtained

i) set ū = u(L,R) which is computed by applying the trapezoidal rule to the axial component

of (2.11);

ii) obtain the sheet strength γe by solving the linear system (2.14);

iii) having γe, ū compute u+, u− from (2.16). Since no attached flow is allowed, whenever

u+ or u− is negative we set it to zero;

iv) having u+, u− compute dΓt/dt and ū from (2.15) and (2.16).

Time-stepping, numerical parameters and results Finally we are able to describe

the algorithm for the numerical method. At each time step there are four stages to be

treated:

i) solve the linear system (2.14) to get the bound-sheet strength values γe;

ii) evaluate the velocity of the free filaments u(xf
j , r

f
j ), v(xf

j , r
f
j ) from (2.11);

iii) evaluate dΓt/dt and ū as described above using (2.15) and (2.16);

iv) update (xf
j , r

f
j ),Γt, Up(t) and prepare for the next time step.

A new filament is shed only in the first stage of a time-step. Krasny is also using

a point insertion technique which means he inserts additional filaments in the free sheet

whenever the distance between consecutive filaments is bigger than some ε or when the

angular separation (with respect to the spiral center) is larger than 2π/Nrev.

The simulation performed by Krasny is set up to match Didden’s experiment (Figure

2.1). The tube radius is R=2.5, the tube length is L=10, and the speed is U0 = 1.6. The



15

Figure 2.1: Tube with piston immersed in fluid - flow visualization of vortex ring formation
- experiment by Didden (1979); simulation by Krasny using δ = 0.2

piston stops moving at toff = 1.6 when a counter-rotating vortex appears at the edge of

the tube. It can be seen that, with a blob of δ = 0.2, Krasny’s experiments (Figure 2.1)

reproduce very accurately Didden’s plots. Simulations are also performed varying the blob

radius and it turns out that as δ is reduced the spiral core is more tightly rolled up.

In Krasny and Nitsche’s paper more plots can be found showing how accurate the

simulation is compared with the experiment (see Figure 2.2).

2.1.2 Vortex Formation at the Edges of a Free Falling Two-Dimensional

Plate

Another example through which Krasny wants to show how vortex blob computations ap-

proximate real fluid motion is the movement of flat plate normal to the flow. This generates

a vortex sheet roll-up at the edges of the plate.

A vortex sheet is defined by a curve z(Γ, t) in the complex plane depending on two
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Figure 2.2: Comparison at t=1.45; experiment versus simulation with δ = 0.2

parameters: circulation and time. The evolution equation is

∂z

∂t
(Γ, t) =

∫
K(z(Γ, t)− z(Γ̃, t))dΓ̃, K(z) =

1
2πız

, (2.17)

where the Cauchy principal value of the integral is taken. This is a special case of the Biot-

Savart law, which expresses the velocity as an integral over the vorticity in incompressible

flow. Again, Chorin’s vortex blob method is applied, and the singular kernel in (2.17)

is replaced by the smooth approximation Kδ which approaches our original kernel as δ

approaches zero. For example, in free space this becomes

Kδ(z) = K(z)
|z|2

|z|2 + δ2
. (2.18)

Using this kernel in the evolution equation will give us a smoothed approximation to the

vortex sheet. The curve is discretized into vortex blobs zj(t) as discussed in the previous

section and the integral with the smoothed kernel can be approximated by a quadrature

rule
∂zj
∂t

=
∑

k

Kδ(zj − zk)Γk. (2.19)

By integrating in time these equations we could get the motion of the vortex blobs.
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Numerical method In Krasny’s method the plate coincides with the interval −1 6 x 6 1

and it moves vertically with speed 1/2. Again, as before, the flow contains a bound vortex

sheet composed by point vortices and a free vortex sheet composed by blob vortices. At

every time step a new filament is released from both edges of the plate. The velocity induced

at a vortex element (xj , yj) (either a vortex point or vortex blob) having circulation Γj is

given by (according to equation 2.19)

(
dxj

dt
,
dyj

dt
) =

∑
k 6=j

(−(yj − yk), (xj − xk))Γk

2π((xj − xk)2 + (yj − yk)2 + δ2)
. (2.20)

In this equation one should be careful on considering δ = 0 whenever the index k refers to

one of the bound point vortices. Along the bound sheet, since the plate is horizontal, i.e.,

y is constant, the bound vortex sheet strength γ(x, t) satisfies a Cauchy singular integral

equation of the first kind,
1
2π

∫ 1

−1

γ(x, t)dx̃
(x− x̃)

= −v(x, t). (2.21)

Krasny argues that the necessity of using vortex points on the bound sheet is due to the

impossibility of solving the above equation for a general right side if the kernel is smoothed.

To provide better resolution at the edges, the bound point vortices are not placed uniformly

on the plate but they cluster towards the edges according to xj = cos θj , θj = jπ/n and

equation (2.21) is satisfied at the midpoint of each interval. Another equation comes from

the fact that the total circulation is conserved in accordance with Kelvin’s theorem. Hence,

equations (2.21) transform into a linear system which, solved by Gaussian elimination, will

give us the strengths γ(xj , t).

Krasny uses the Kutta condition to determine the circulation of the free vortices

dΓ
dt

=
1
2
(U2

− − U2
+) = U · γ, (2.22)

where γ ∼ ∆Γ/∆x is calculated by a finite difference formula. Here, as we have seen before,

U− and U+ are the one-sided velocities at the edge, U is the average velocity, and γ is

the vortex sheet strength at the edge. The separating flow condition is used to prevent an

attached slip flow from contributing to the shedding process (if either U+ < 0 or U− < 0
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that value is set to zero). Krasny’s method uses an adaptive point insertion technique and

an adaptive time step.

Validation Krasny validates his results by comparing them with the ones obtained by

Pullin in 1978. Pullin used point vortices to represent the vortex sheet, a single point vortex

to represent the inner spiral turns, and conformal mappings to determine the strength of

the bound vortex sheet. The pair of counter-rotating vortices forming in the recirculating

region behind the plate agree very well between the two methods. Taking as an example

δ = 0.025 and t = 1 Krasny’s results could be checked by superimposing the shape of the

vortices over the one obtained by Pullin; they agree quite well.

2.1.3 Vortex Formation behind a Two-Dimensional Wing at Angle α

Krasny has not explained in his papers how exactly he would apply his vortex-blob theory

to forward flying wings. Some plots appeared in his articles regarding the vortex sheet

roll-up past a semi-infinite flat plate. To get one step closer to numerically implement

Wu’s method, we try to implement Krasny’s method first for comparison with Wu’s. The

implementation is based on the theory from the two previous sections and some very useful

ideas from Katz & Plotkin’s “Low Speed Aerodynamics”. Our implementation could be

found in the next chapter along with results and some very interesting comparisons between

the two models.

2.2 Wu’s Analytical Method

Classical slender-body theory of fish locomotion As noted in the introduction,

the slender-body theory was developed by Lighthill (1960, 1970), Wu (1971c,d), Wu and

Newman (1972), Newman (1973), Newman and Wu (1973) and others, for understanding

the fish locomotion. This theory is applicable to a very general class of body geometry and

movement, from the propulsive motions in carangiform and thunniform to those in amiiform

and gymnotiform. In all cases the body may be regarded as slender, characterized by a

small slenderness parameter, δ, defined as the ratio of maximum body depth to body length,
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δ = 2b/l. The theory is based on the assumption that the amplitude of the undulatory wave

motion passed along the body is small compared to body length, so that its higher nonlinear

effects can be neglected. The Reynolds number, for the cases of practical interest is usually

high, ranging over 104 − 107. Wu and Newman showed in 1972 that the effect of body

thickness in the direction of bodily displacement (in the z-direction) from the stretched-

straight position (in the xy-plane) is secondary in effect and can be neglected. Later on,

Newman (1973) and Newman and Wu (1973) showed this effect could be amended if desired

by employing conformal mapping to map cross-sectional body contour into a slit so as to

make use of the solution to zero-thickness case. With the effect of body thickness neglected,

the transverse bodily motion can be prescribed (see Figure 2.3) to vary with time t as

z = h(x, y, t) with x, y ∈ Sb; 0 < x < l; |y| < b(x), (2.23)

where the (x,y,z) coordinate system is fixed in the body frame, and the stream is considered

having velocity U in the x direction which basically matches the fish steady swimming

velocity in still water. Sb denotes the stretched-straight body plan-form lying in the xy-

plane and 2b is the body depth. With the assumption that the fluid is incompressible

(dρ
dt = ∂ρ

∂t +u · ∇ρ = 0) and the flow irrotational (vorticity=curl(u)=0), there exists a scalar

potential φ0(x, y, z, t) such that

φ0 = Ux+ φ(x, y, z, t), (2.24)

where the velocity potential φ gives the perturbation velocity

u = (u, v, w) = ∇0φ (∇0 = (∂x, ∂y, ∂z), (2.25)

and satisfies Laplace’s equation φxx + φyy + φzz = 0.

Since we are studying the slender-body theory, the slenderness parameter δ and the body

displacement function h are very small compared to the body length l. Therefore we can

consider only the leading terms in the Laplace equation and reduce this to a two-dimensional
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Laplace equation in y and z

φyy + φzz = 0. (2.26)

Accordingly, the Bernoulli equation can be linearized too, to give

Dφ = Φ (D ≡ ∂/∂t+ U∂/∂x), (2.27)

Φ = (p∞ − p)/ρ, (2.28)

where Φ is Prandtl’s acceleration potential depending on pressure and density. From (2.26)

and (2.27) it can be seen that Φ also satisfies the two-dimensional Laplace equation. There-

fore we can work with the complex variables (see Wu 1971, 1983)

ζ = y + ız, f = φ+ ıψ, F = Φ + ıΨ, ν = v − ıw = df/dζ. (2.29)

The complex coordinate ζ, complex velocity potential f , complex acceleration potential

F and complex velocity ν are analytic functions of one another and are related by

Df = F (D ≡ ∂/∂t+ U∂/∂x), (2.30)

Dν = dF/dζ. (2.31)

The boundary conditions for this problem can be given both in terms of φ and Φ as

follows:

I. Boundary conditions in terms of φ: II. Boundary conditions in terms of Φ

(i) (φz)± = Dh ≡W (y;x, t), (i) (Φz)± = DW (y;x, t) ((x, y) ∈ Sb),

(ii) Dφ± = 0, (ii) Φ± = 0, ((x, y) ∈ Sw),

(iii) φ± = 0, (iii) Φ± = 0, ((x, y) ∈ Sc),

(iv) Dφ± = 0, (iv) Φ± = 0, ((x, y) on T.E.),

f = O(ζ−1), F = O(ζ−1), ν = O(ζ−2), (|ζ| → ∞).
Here, in conditions (i) we discuss the body plan-form (Sb : |y| < b(x), 0 < x < l) , in

(ii) Sw describes the wake plan-form (see Figure 2.3) resulting from projecting the vortex
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Figure 2.3: The various sections of flow regions for analyzing fish propulsion:(A) anterior
leading edge section (0 < x < xm);(B) trailing side-edge section (xm < x < xc); and (C)
caudal fin section (xc < x < l).

sheet shed from trailing edges of side fins onto the z = 0 plane (Sw : b(x) < |y| < bm =

b(xm), b′(x) < 0) and in (iii) Sc denotes the region in the z = 0 plane complementary to

Sb +Sw. In (iv) we describe the Kutta condition, namely that we have continuous pressure

at the trailing edge (T.E.) of side fins and caudal fin. Finally, conditions (v) are required

by the Kelvin’s circulation theorem.

The nonlinear theory of two-dimensional flexible lifting-surface locomotion The

theory of two-dimensional lifting-surface locomotion is very important, both because it

provides a very good limiting case for asymptotic evaluation of lifting surfaces of large

aspect-ratio found in many cases of aquatic and aerial animal locomotion, and because it

provides a very good starting point for the development of a three-dimensional generalized

theory.

Thus, we consider the irrotational flow of an incompressible and inviscid fluid generated

by a thin (no thickness) two-dimensional surface Sb, having an arbitrary motion through

the fluid, its flexibility being inspired by the movement of animals in nature. We are

going to parametrize this motion by using a Lagrangian coordinate ξ to express a point



22

Figure 2.4: The Lagrangian coordinate system, (ξ, η), used to describe arbitrary motion of
a two-dimensional flexible lifting surface moving along arbitrary trajectory through water
in a reference frame (x, y) fixed with the fluid at infinity.

X(ξ, t), Y (ξ, t) on Sb varying in time as

Sb(t) : x = X(ξ, t) = (X(ξ, t), Y (ξ, t)) (−1 < ξ < 1, t > 0). (2.32)

The simplest choice of ξ is the initial material position of Sb(t = 0) which is taken to

be in its stretched-straight shape so that X(ξ, 0) = ξ, Y (ξ, 0) = 0 (−1 < ξ < 1) , lying in

an unbounded fluid initially at rest in an inertial frame of reference (see Figure 2.4). The

body surface Sb(t) might be flexible but it is considered inextensible, so that

X2
ξ + Y 2

ξ = 1. (2.33)

Of course, the tangential s and normal n vectors are given by

s(ξ, t) = ∂X/∂ξ = (Xξ, Yξ), n(ξ, t) = (−Yξ, Xξ). (2.34)

The velocity of a point ξ on Sb(t) is given by

U(ξ, t) = ∂x/∂t = (Xt, Yt) (−1 < ξ < 1, t > 0), (2.35)
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and its tangential and normal components are found by projecting the velocity onto the

corresponding vectors

Us(ξ, t) = U · s = (XξXt + YξYt), Un(ξ, t) = U · n = (XξYt − YξXt). (2.36)

As we have seen before, the flow field is expressed in Eulerian coordinates, so the velocity

of the incompressible and irrotational flow has a velocity potential ψ(x, y, t) and a stream

function φ(x, y, t). As seen from (2.30) and (2.31) the complex coordinate z, complex

potential f and complex velocity w are given by

z = x+ ıy, f = ψ + ıφ, w = u− ıv = df/dz (2.37)

and they are analytic functions of one another.

Now we’ll try to express all the boundary conditions in terms of these variables and to

do that we will adopt a set of coordinates (ξ, η), with the η-axis pointing in the direction

of the normal vector n, where η = 0 coincides with Sb(t) for (−1 < ξ < 1, t > 0). After the

motion starts, a free vortex sheet is shed from the trailing edge (T.E. at ξ = 1) to form a

wake surface Sw(t) described by the extended material coordinate ξ for ξ > 1

Sw(t) : x = X(ξ, t) = (X(ξ, t), Y (ξ, t)) (1 < ξ < ξm, t > 0), (2.38)

where ξm identifies the trajectory (X(ξm, t), Y (ξm, t)) of the very first vortex filament re-

leased into the wake (i.e. the furthest wake point with respect to the trailing edge). Hence,

at every time step a new stretch is being created in the wake just beyond the trailing edge

δX(1, t) = U(1, t)δt, tangentially to the trajectory of the trailing edge.

Using analytic continuation, we can think of (ξ, η) as forming a complex reference plane

ζ = ξ + ıη so that the two planes, ζ and z = x + ıy are related by a conformal transfor-

mation which will be denoted by z = z(ζ, t). There is no need to determine the actual

conformal mapping z = z(ζ, t) since we only have to use its analytic relationship in a small

neighborhood of Sb(t) + Sw(t).

Now it is time to introduce a transformation between the Eulerian coordinates (x, y, t)
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and the Lagrangian material ones (ξ, η, t′)

x = x̃(ξ, η, t′), y = ỹ(ξ, η, t′), t = t′, F (x(ξ, η, t′), y(ξ, η, t′), t) = F̃ (ξ, η, t′), (2.39)

where F denotes any differentiable function. By the chain rule, for this kind of general

function we get
∂F̃

∂t′
=
∂F̃

∂t′

∣∣∣∣∣
ξ,η

=
∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
≡ dF

dt
, (2.40)

which is material time differentiation in a frame of reference that follows the fluid particle

(ξ, η) at a time instant t′ = t. Using these relations we will derive some useful properties

for the quantities of interest. To start with a general flow variable, we will denote its value

on the ± side of Sb or Sw by

F̃ (ξ, η = ±0, t′) = F̃±(ξ, t′) (−1 < ξ < ξm, t > 0). (2.41)

The variables with subindices ± are called surface variables and they are computed for the

upper and lower boundaries of the surface. Their derivatives are given by (2.40),

∂F̃±
∂t′

=
(
dF

dt

)
±

=
(
∂F

∂t

)
±

+ u± · (∇F )±, (u± = (u±, v±), ∇ = (∂x, ∂y)), (2.42)

and
∂F̃±
∂ξ

= s · (∇F )±,

(
∂F̃

∂η

)
±

= n · (∇F )±, (2.43)

where the operator ∂t′ means the material rate of change, the operator ∂ξ gives the surface

gradient and ∂ξ the normal gradient.

To compute the velocities of the particles along both sides of Sb ∪Sw at X(ξ, t) we have

u±(ξ, t′) = ∂x±(ξ, t′)/∂t′, (−1 < ξ < ξm, t
′ > 0), (2.44)

which in complex form becomes

∂z±
∂t′

(ξ, t′) = w±(ξ, t′), (2.45)
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where the over-line means complex conjugate. Decomposing the velocity into tangential

and normal components, we get

u±s − ıu±n = (u± − ıv±)(Xξ + ıYξ) = w±(ξ, t′)
∂Z(ξ, t′)
∂ξ

, (2.46)

where Z = X + ıY.

The kinematic condition, which will also be our boundary condition in the numerical im-

plementation, requires that any fluid particle that is at some point in time on the boundary

surface will remain moving along it at all times. This can be written as

on Sb(t) ∪ Sw(t) : u+
n (ξ, t′) = u−n (ξ, t′) = Un(ξ, t′) (−1 < ξ < ξm, t > 0). (2.47)

This means of course that there is no flow through the surface. Tangential to the surface the

condition should be different since the tangential velocity at the boundary surface develops

a jump in magnitude across the surface. Hence, Sb(t) becomes a bound vortex sheet while

Sw(t) is a free vortex sheet which is convected away with the fluid. The above relations say

that Un(ξ, t′) is prescribed on Sb(t) but is unknown on Sw(t), this having to be calculated

by imposing a dynamic condition on Sw(t), namely that the pressure has to be continuous

on Sw(t)

p+(ξ, t′) = p−(ξ, t′) (1 6 ξ < ξm, t > 0), (2.48)

which means there is no pressure jump across the free sheet, including the trailing edge at

ξ = 1 which is the Kutta condition. The pressure is given by the Bernoulli equation

p

ρ
+
∂φ

∂t
+

1
2
(u2

s + u2
n) =

p

ρ
+
∂φ

∂t′
− 1

2
(u2

s + u2
n) = 0, (2.49)

where the latter one follows from using (2.40). Furthermore, using condition (2.47) we get

1
ρ
(p− − p+) =

(
∂φ

∂t

)
+

−
(
∂φ

∂t

)
−

+
1
2
(u+

s + u−s )(u+
s − u−s ) (z ∈ Sb ∪ Sw) (2.50)

=
∂

∂t′
(φ+ − φ−)− 1

2
(u+

s + u−s )(u+
s − u−s ) (z ∈ Sb ∪ Sw). (2.51)
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To find a unique solution to our problem, we follow the approach from (2.17) and write

the integral representation of a surface distribution of a mass dipole of strength µ over the

boundary surface, which gives the complex potential f = φ+ ıψ in the form

f(z, t) =
1

2πı

∫
Sb∪Sw

µ(ξ′, t)
z′ − z

dz′ (z′ = z(ξ′, t′), z /∈ Sb ∪ Sw). (2.52)

Applying Plemelj’s formula (see Muskhelishvili [1946], §17, eq. (17.2)) for a point z

approaching a point on the sheet Z(ξ, t) from the η = ±0 side, we get

f±(z, t) = ±1
2
µ(ξ, t) +

1
2πı

∫
Sb∪Sw

µ(ξ′, t)
z′ − z

dz′ (z = Z(ξ, t) ∈ Sb ∪ Sw), (2.53)

computed taken the Cauchy’s principal value of the integral. Having the dipole strength µ

related to the jump discontinuity in φ

µ(ξ, t) = φ+(ξ, t)− φ−(ξ, t) (2.54)

and the relation between vorticity γ along the ξ-axis and the jump in tangential velocity

across the boundary of the vortex sheet

γ(ξ, t) =
∂µ

∂ξ
(ξ, t) =

∂

∂ξ
(φ+ − φ−) = u+

s − u−s , (2.55)

we are able to compute the complex velocity w(z, t) = df/dz

w(z) =
1

2πı

∫
Sb∪Sw

µ(ξ′, t)
[
− d

dz′
1

z′ − z

]
dz′ =

1
2πı

∫
Sb∪Sw

µ(ξ′, t)
[
− ∂

∂ξ′
1

z′ − z

]
dξ′

=
1

2πı

∫
Sb∪Sw

γ(ξ′, t)
z′ − z

dξ′ (γ = ∂µ/∂ξ, z /∈ Sb ∪ Sw).

Here, to get the second integral we changed the variable and then to get the third one we

integrated by parts and used (2.47). Further more, by applying Plemelj’s formula again we

get

w±(z, t) = ±1
2
γ(ξ, t)/

dz

dξ
+

1
2πı

∫
Sb∪Sw

γ(ξ′, t)
z′ − z

dξ′ (z = Z(ξ, t) ∈ Sb ∪ Sw). (2.56)
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Now combining this last relation (2.56) and (2.46), it follows

us± − ıun = ±1
2
γ(ξ, t) +

1
2πı

dz

dξ

∫
Sb∪Sw

γ(ξ′, t)
z′ − z

dξ′. (2.57)

Of course, this result validates (2.47) and gives

u+
n (ξ, t) = u−n (ξ, t) =

1
2π
<
{
dz

dξ

∫
Sb+Sw

γ(ξ′, t)
z′ − z

dξ′
}
, (2.58)

usm ≡ 1
2
(u+

s + u−s ) =
1
2π
=
{
dz

dξ

∫
Sb+Sw

γ(ξ′, t)
z′ − z

dξ′
}
. (2.59)

These equations will play a very important role in the implementation of the numerical

method. The first one shows the continuity of the normal velocity across the vortex sheet,

while the second one gives an average of the tangential component of the velocity across the

boundary Sb ∪ Sw. These relations again give an interpretation of the boundary conditions

on Sb: un(ξ, t) is prescribed and γ(ξ, t) is unknown;

on Sw: γ(ξ, t) is material invariant and un(ξ, t) and usm(ξ, t) are unknown.

Here, we should discuss this material invariance of the vorticity in more detail. It

refers to Helmholtz’s theorem, which states that in an irrotational flow of an incompressible

inviscid fluid, free vorticity cannot be generated in any interior bulk of the fluid but only at

a boundary surface. Once it gets generated it will be conserved in time. Hence, imposing

this vorticity conservation with the local fluid, we get

∂γw

∂t
+ usm

∂γw

∂ξ
= 0, (2.60)

which can be used as the Kutta condition like (2.48). This will help compute the trajectory

of the free vortex sheet by a time-marching procedure.

There is one more thing we have to take care of since there will be another equation

needed in the numerical method. This comes from the total net vorticity, where, using

Kelvin’s theorem, we know that the total circulation is conserved in time. The circulation
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Γ(t) is given by

Γ(ξ, t) =
∮

u ·dx =
∮ P+

P−

dφ = φ+(ξ, t)−φ−(ξ, t) = µ(ξ, t) (−1 < ξ < ξm, t > 0), (2.61)

where points P− and P+ are chosen directly across the vortex sheet at location ξ, so that

the line connecting them, along which we integrate, does not intersect the vortex sheet

boundary. Circulation can also be given in terms of the vorticity distribution

Γ(ξ, t) =
∮

u · dx =
∫ ξ

0
γ(ξ, t)dξ (−1 < ξ < ξm, t > 0). (2.62)

Kelvin’s theorem states that the total circulation is conserved, hence, around any closed

contour Σ that completely encircles the entire vortex sheet, the circulation remains the

same in time

ΓΣ(t) =
∫ ξm

0
γ(ξ, t)dξ = Γ(0). (2.63)

If the flow starts from rest, the initial value of the total circulation is zero. One more thing

of particular interest would be to split the integral in (2.63) in two parts to find a relation

between the circulation of the bound vortex sheet and the one for the free vortex sheet

Γb(t) =
∮

u · dx =
∫ 1

0
γ(ξ, t)dξ = −

∫ ξm

1
γ(ξ, t)dξ = −Γw(t). (2.64)

We did this because, eventually, we are interested in the circulation of the newly released

vortex filament. To be able to compute this circulation we consider the variation δΓb =

Γb(t+δt)−Γb(t) on the bound sheet for a very small time interval δt. According to Kelvin’s

theorem the variation of circulation on the bound sheet for this small period of time is equal

with opposite sign to the circulation of the newly released vortex filament during this span

of time. In other words

δΓb(t) = −δΓw(t) = −γ(1, t)δξ = −γ(1, t)[Us(1, t) + usm(1, t)]δt, (2.65)

where Us(1, t) is the (given) tangential velocity of the trailing edge. The circulation of the
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previously shed free sheet does not appear in this relation, since it remains conserved in

time.

The theory presented above is sufficient to produce a time-marching numerical procedure

described by Wu, (Wu [2001]). However, Wu takes the theory even further and after some

more theoretical results, he proposes a new numerical method based on the time-marching

procedure and on the extended theory. Here we will first present the theoretical results

from this paper and then describe the complete numerical recipe.

Generalized Wagner-von Karman-Sears method As it was said in the introduction,

quite a few brilliant mathematicians worked on the development of linear unsteady airfoil

theory. The ones who made the biggest contribution are Theodore von Karman and William

R. Sears. Their theory is based on a result found by Herbert Wagner (1925) who came up

with an integral equation to calculate the wake vorticity shed from a wing. Von Karman and

Sears improved Wagner’s theory and developed a very ingenious decomposition of the bound

vorticity distribution γb into two parts, one for the “quasi-stationary, wake-less” flow, γ0, and

the other, γ1 due to the effect of the trailing vortex sheet on the wing. The uniqueness and

importance of this method reside in the fact that it does afford a direct generalization to the

fully nonlinear theory. Theodore Wu (2001) improved this idea even further, generalizing it

to two-dimensional flexible lifting surface performing arbitrary motion for modeling aquatic

and aerial animal locomotion.

Following the ideas of von Karman and Sears, we split the bound vorticity in two parts

as follows

on Sb(t) : γ(ξ, t) = γ0(ξ, t) + γ1(ξ, t) (−1 < ξ < 1),

on Sw(t) : γ(ξ, t) = γw(ξ, t) (1 < ξ < ξm),

where γ0(ξ, t) is the “quasi-stationary, wake-less” vorticity mentioned above, and γ1(ξ, t)

is the additional bound vorticity due the effect of the trailing wake vortices γw(ξ, t). To

determine these vortex distributions we will follow the next three steps:

1. determine γ0(ξ, t) using the prescribed Un(ξ, t) with t fixed and no unsteady wake;

2. determine γ1(ξ, t) due to the effect of the wake so that we reinstate the unsteady
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Un(ξ, t);

3. determine γw = γw(ξ, t) by using the Kutta condition.

We should emphasize that this approach will take into account the nonlinear effects given by

the actual displacement of the vortex sheet, which makes this theory significantly different

than the linear one.

Following the three steps given above, we start interpreting the mathematical equations

from this point of view. In the first step, we will omit the wake effect and regard time as a

fixed parameter. This will transform equation (2.58) into

Un(ξ, t) =
1
2π
<
{
dz

dξ

∫ 1

−1

γ0(ξ′, t)
z′ − z

dξ′
}
for(−1 < ξ < 1), (2.66)

which basically is an integral equation that will give us γ0(ξ, t) under the Kutta condition.

To be able to get that, we rewrite (2.66) to single out the Cauchy kernel

Un(ξ, t) =
1
2π

∫ 1

−1

[
1

ξ′ − ξ
+ g(ξ′, ξ)

]
γ0(ξ′, t)dξ′ ≡ (G0 +G1)γ0,

g(ξ′, ξ) = <
{
dz

dξ

1
z′ − z

}
− 1
ξ′ − ξ

, (2.67)

where (ξ′ − ξ)−1 is the Cauchy kernel while g(ξ′, ξ) is a smooth kernel. For slightly curved

body movement, |g(ξ′, ξ)| is small which give us the idea to solve (2.67) by iteration or by

perturbation analysis, writing γ0(ξ, t) as a series expansion in terms of the small bound of

|g(ξ′, ξ)|. Note that in the case of a flat-plate airfoil both z and z′ will be on the wing,

making dz/dξ a constant, and therefore making g(ξ′, ξ) zero, which is the linear case as

expected.

With this said, let’s write the expansion for γ0(ξ, t)

γ0 = γ00 + γ01 + γ02 + ... (2.68)
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Substituting (2.68) in (2.67) we get after we match terms of the same magnitude

G0γ00 =
1
2π

∫ 1

−1

1
ξ′ − ξ

γ00(ξ′, t)dξ′ = Un(ξ, t), (2.69)

G0γ0k = − 1
2π

∫ 1

−1
g(ξ′, ξ)γ0,k−1(ξ′, t)dξ′ ≡ −G1γ0,k−1. (2.70)

The leading order equation can be solved in a closed form under the Kutta condition, giving

γ00(ξ, t) = − 2
π

√
1− ξ

1 + ξ

∫ 1

−1

√
1 + ξ′

1− ξ′
Un(ξ′, t)
ξ′ − ξ

dξ′ ≡ G−1
0 Un (−1 < ξ < 1). (2.71)

This can be easily verified by substituting (2.71) in (2.69) and using the Poincaré-

Bertrand formula (see Muskhelishvili [1946], §23, eq. (23.7))

∫
L

dξ′

ξ′ − ξ

∫
L

h(ξ′, ξ′′)
ξ′′ − ξ′

dξ′′ = −π2h(ξ, ξ) +
∫

L
dξ′′

∫
L

h(ξ′, ξ′′)
(ξ′ − ξ)(ξ′′ − ξ′)

dξ′. (2.72)

Putting everything together, we find all terms in the decomposition of γ0(ξ, t)

γ0(ξ, t) = G−1
0 (Un +N0), N0 =

N∑
m=1

(−1)m(G1G
−1
0 )mUn ≡ GNUn. (2.73)

This way, given Un (the body motion) by (2.36) we have found the vorticity γ0 which will

also give us the corresponding circulation

Γ0(t) =
∫ 1

−1
γ0(ξ, t)dξ = −2

∫ 1

−1

√
1 + ξ

1− ξ
[Un(ξ, t) +N0(ξ, t)]dξ. (2.74)

This ends step 1. We are going to move on to analyze step 2. Before doing that some more

explanations need to be given. In step 2 we are supposed to find γ1 due to the effect of the

wake. We will find it in terms of the wake vorticity though, γw and then at the end, having

γ1 determined and both γ1 and γw written in terms of γw, we will write Kelvin’s circulation

theorem and determine γw from there. Having γw determined, we will be able to find γ1 as

well from the relation we determine in step 2.

First, from (2.58) we have the expression for the normal velocity Un1(ξ, t) induced at
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z(ξ, t) on Sb by the free vortex sheet γw given by

Un1(ξ, t) =
1
2π
<
{
dz

dξ

∫ ξm

1

γw(ξ′, t)
z′ − z

dξ′
}
≡ (K0 +K1)γw ≡ Kγw, (−1 < ξ < 1) (2.75)

K0γw =
1
2π

∫ ξm

1

γw(ξ′, t)
ξ′ − ξ

dξ′, K1γw =
1
2π

∫ ξm

1
g(ξ′, ξ)γw(ξ′, t)dξ′, (2.76)

where g(ξ′, ξ) is the same as the one defined in step 1 except that in this case the ranges for

ξ′ and ξ are: 1 < ξ′ < ξm and −1 < ξ < 1. If we denote by Un1 the normal velocity induced

by the wake vortex γw on the wing Sb, then γ1, the corresponding induced vorticity will

satisfy (2.66) but with Un replaced by −Un1. Then exactly as in (2.73) we get for γ1

γ1(ξ, t) = −G−1
0 [Un1 +N1], N1 =

N∑
m=1

(−1)m(G1G
−1
0 )mUn1 = GNUn1 (N 6 ∞). (2.77)

If we substitute (2.75) in (2.77) and do some algebra we get

γ1(ξ, t) = γ10(ξ, t) + γ1N (ξ, t), γ10 = −G−1
0 K0γw, γ1N = −G−1

0 GNUn1, (2.78)

γ10 =
1
π

√
1− ξ

1 + ξ

∫ ξm

1

√
ξ′ + 1
ξ′ − 1

γw(ξ′, t)
ξ′ − ξ

dξ′ (−1 < ξ < 1), (2.79)

γ1N =
1
π2

√
1− ξ

1 + ξ

∫ ξm

1
γw(ξ′, t)dξ′

∫ 1

−1

√
1 + ξ′′

1− ξ′′
g(ξ′, ξ′′) +GNK(ξ′, ξ′′)

ξ′′ − ξ
dξ′′, (2.80)

where γ10 was gotten by integration with the order of integrations interchanged.

This vorticity γ1 will be responsible for the generation of more circulation Γ1 around

the wing

Γ1(t) =
∫ 1

−1
γ1(ξ, t)dξ = Γ10(t) + Γ1N (t), (2.81)

Γ10 =
∫ 1

−1
γ10(ξ, t)dξ =

∫ ξm

1

(√
ξ + 1
ξ − 1

− 1

)
γw(ξ, t)dξ, (2.82)

Γ1N =
1
π

∫ ξm

1
γw(ξ, t)dξ

∫ 1

−1

√
1 + ξ′

1− ξ′
[g(ξ, ξ′) +GNK(ξ, ξ′)]dξ′. (2.83)
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Now, the total circulation around the wing Sb is of course Γb = Γ0 + Γ1 while the total

circulation around the free vortex sheet Γw is given by

Γw(t) =
∫ ξm

1
γw(ξ, t)dξ. (2.84)

As we said before, now it is time to apply Kelvin’s theorem which states that the total

circulation around both the bound and the free vortex sheet is conserved

Γb + Γw = Γ0 + Γ1 + Γw = 0, (2.85)

which gives

Γ0 +
∫ ξm

1

√
ξ + 1
ξ − 1

γw(ξ, t)dξ + Γ1N = 0, (2.86)

or the generalized nonlinear Wagner’s integral equation for the trailing vortex distribution

γw. In this last equation, Γ1N and N0 from (2.74) refer to nonlinear effects. If we disregard

these two terms the original Wagner’s linear equation is obtained.

The numerical algorithm To discretize all the equations above to be used in our numer-

ical method, we choose a time sequence t0 = 0, t1, t2, ..., (tk+1 − tk = ∆tk, k = 0, 1, 2, ...),

with sufficiently small ∆tk. At time t0 the body is found in the stretched-straight posi-

tion in the unbounded flow which is at rest. After ∆t1, i.e. at time t1, the bound sheet

moves at a new position according to (2.32). In the mean time a free filament is released

in the wake Sw or in other words, a first onset grid is opened behind the trailing edge at

a distance δξ (see 2.65) to receive the shed vortex element. The unknown vorticity γ(ξ, t)

on the wing is determined from the two components γ0(ξ, t) and γ1(ξ, t). γ0(ξ, t) will be

determined from (2.73). For determining γ1(ξ, t) we first have to solve for γw(ξ, t) from

(2.86) and then use (2.78), (2.79) and (2.80). This way the total vorticity on the wing is

determined (γ0(ξ, t) + γ1(ξ, t)) and also the vorticity of the newly released wake element

γw(ξ, t1). Hence, we know the vorticity along the whole sheet (1 < ξ < 1 + ∆ξ1) and we

could determine u±s from (2.57) and un on ∆ξ1 of Sw(t1) from (2.58). This way we can

revise the data on Sw(t1) by iteration for any improvement on the length and direction of
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∆ξ1.

At t2, we move the wing again according to (2.32) to the new position X(ξ, t2). The

vortex released at the previous time step will be convected with the flow velocity and its

circulation will be preserved in time, thus it will be known. The movement of the wing

will open again a new onset grid in the wake, allowing a new free vortex element in the

wake at a distance ∆ξ2. We can again go through all the calculations performed at the

previous time step, i.e., compute the vorticity of the whole vortex sheet, compute the

normal and tangential velocities and eventually updating the data on Sw. This way we

have just constructed an algorithm that will take us from any known time step tk to the

next one tk+1. As one could see, an incredibly important role is played by the determination

of the vorticity of the currently shed free vortex element. The in-depth numerical procedure

for discretizing the equations given above will be presented in the next chapter.
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Chapter 3

Numerical Implementation of the
Mathematical Model

3.1 Numerical Implementation of Krasny’s Methods

3.1.1 Vortex Forming at the Edge of a Circular Tube with Results; Com-

parison With Krasny’s Results and With Didden’s 1979 Experiment

To implement this method we follow Krasny’s results (Krasny [1994]) which were described

in Section (2.1.1). Our numerical implementation uses N b
1 = 8 bound filaments on the

radius of the piston (i.e. half the piston since we have axial symmetry). On each tube wall

we have N b − N b
1 = 50 filaments. The piston has diameter 5 (so radius R = 2.5) and the

tube length is L = 10. The bound vortices are equally spaced on the piston but they use

some sine-distribution on the tube wall so that we have more filaments at the edge of the

tube (see (2.12)).

To closely follow Krasny’s implementation we choose a variable time step: until t = 0.5

the time step linearly increases from an initial ∆t0 = 0.004 to a final reading of ∆t1 = 0.02.

The piston keeps moving until time toff = 1.6 when it stops abruptly and a counter rotating

vortex begins forming. The time step is constant except for an interval of length 0.2 around

the stopping time. Here, the time step decreases linearly down to ∆t0/10 = 0.0004 and

then symmetrically increases back to ∆t1 = 0.02. We need this mesh refinement to better

capture the ending of the initial vortex formation and the beginning of the counter-rotating

one. Also to mimic the real experiment, the piston accelerates from zero velocity to a
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Figure 3.1: Krasny’s method for piston pushing the fluid out from a tube, with adaptive
speed U0 ≈ 4.6, blob δ = 0.4, variable time-step dt ≈ 0.02, tube length L = 10, tube radius
R = 2.5, time when piston stops toff = 1.6. Plot after 170 time steps.

constant velocity U0 = 4.6 in time tu = 0.3. To get the plot in Figure (3.1), we use a blob

δ = 0.4 and 170 time-steps. We use here only the point insertion technique with respect to

distance (see Section (2.1.1)), and for that we choose ε = 0.4.

First, we compose our linear system having the sheet-strength values γ(sj , t) as the Nb-

unknowns. The strengths are computed at the bound points while the boundary conditions

(2.14) are satisfied at midpoints. The first condition, giving zero radial velocity on the tube

wall, will provide Nb −N1
b equations from a discretization of (2.10) and (2.8). To compute

the velocities, we use (2.4), and to compute the complete elliptic integrals of the first and

second kind from (2.3), we use an idea from (Bulirsch [1965]) which gives us a very accurate

result with ten digits of accuracy.

The second condition, which states that the tangential velocity is the same inside the

tube, will give us N1
b −1 equations, again by computing the corresponding induced velocities

as explained above. The third condition, which matches the piston velocity in the center

of the tube (r = 0, x = L/2) will provide the last missing equation and will be computed

based on formula (2.7). On all these computations we set δ = 0 on the bound sheet and

δ > 0 on the free sheet for the reasons explained in Section (2.1.1). Hence, we have a linear

system with Nb equations and Nb unknowns which is easily solved in Matlab by using the

inv function which gives the inverse of a matrix.
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Remark 1. The right hand side of the linear system consists of velocities induced by the

free sheet given by (2.8). In here, the circulation of the free vortices is known from the

previous time step since it is conserved in time.

Since now we have the sheet-strength values, we can determine the convection velocities

of the free filaments by using (2.11). The velocity ū of the currently released filament is

computed using (2.15) and (2.16). This way we prevent having attached slip flow at the

edge of the tube. The free filaments along with the newly released filament can be convected

now with the computed velocities and the computation for the next time step can start.

The comparison of our results (Figure 3.1), Krasny’s, and the ones gotten by Didden

in 1979 (Didden [1979]) are very promising in our quest to better understand the various

aspects of vortex theory. The next step, before analyzing Wu’s method, is to implement

Krasny’s ideas for a wing advancing perpendicular to the flow. This will be described in

the next section.

3.1.2 Vortex Forming at the Edges of a Vertically Moving Flat Plate;

Comparison With Krasny’s Results

The discussion in this section is based on the theory presented in (Krasny [1991]) and

summarized in Section (2.1.3). Here we go one step further and analyze the wake behind a

two-dimensional plate advancing perpendicular to the flow.

The whole idea is, as in the piston-tube problem presented in the previous section, to

form the linear system, to invert it and then to determine the velocity of the currently

released free filament. This time the system will be formed based on the evolution equation

(2.17) with a smoothed kernel given by (2.18) and (2.19). The discretization of this equation

is given in (2.20). The linear system will have as unknowns the circulation of the bound

filaments. Since the problem is symmetric we will have a stationary point in the center of

the plate, having circulation zero.

In our implementation we take N + 1 = 81 points on a plate with radius R = 1

which moves upwards with a velocity U0 = 1/2. The plate reaches this velocity after an

acceleration that takes t = 0.01. During this acceleration the time-steps are smaller but
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Figure 3.2: Krasny’s method for a wing advancing upwards, normal to the flow, with
adaptive speed U0 ≈ 0.5, blob δ = 0.2, variable time-step dt ≈ 0.01. Plot after 400 time
steps having N = 80 bound vortex points.

they increase linearly as described in the previous section, and when the velocity becomes

constant the time step becomes constant as well, with dt = 0.01. The blob is chosen to be

δ = 0.2 and the the bound vortex points on the wing have a cosine distribution so that we

have more points and therefore a better resolution at the edges of the plate. The boundary

condition requires that there is no normal flow through the plate which means matching the

normal velocity from (2.20) with the advancing velocity of the plate. This will be done at

the midpoints giving therefore N equations. However we want to compute the circulation

at every bound point, i.e. N + 1 unknowns, issue that will be solved remembering that we

have a stationary point in the center of the plate with circulation zero. Hence, we have

a linear system with N equations and N unknowns which will be solved by inverting the

matrix in Matlab with the inv function and will provide the circulation on the plate.

The sheet strength value at the edge of the plate γe, will be computed by a finite

difference formula applied to the bound circulation γ ∼ ∆Γ/∆x. The edge strength will

allow us to compute the circulation and the velocity of the newly shed vortex exactly as

in the case of the piston-tube problem. For that we will use (2.15) and (2.16) or just

(2.22). First, we compute the slip velocities U at both edges of the plate. This will be

done using relation (2.20). Then we compute the slip velocities above and below the edge

U+ and U− using (2.16) and whenever one of them is negative we set it to zero to prevent
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attached slip flow. With the updated U+ and U− we recompute U , which will be now the

tangential velocity of the currently released vortex filament, and also the circulation of this

free filament from (2.22).

Remark 2. (i) In (2.22), dΓ/dt represents the time variation of the total circulation of the

free sheet and (ii) the newly shed vortex filament is released tangentially to the plate, i.e.

in the x-direction, with the computed tangential velocity U .

The numerical computation for Figure (3.2) is performed with the data given at the

beginning of this section and a blob δ = 0.2. The plot is obtained after 400 time-steps. We

can see a very nice roll-up which agrees very well with the results gotten by Krasny (see

Krasny [1991]) and Pullin (see Pullin [1978]). The success of the implementation of these two

methods makes us go even further and try to develop an algorithm in the spirit of Krasny’s

ideas for a wing advancing at a given angle of attack. We could not find any description

of the method for this case, however, designing it is very important for understanding wing

mechanics. Please see the next section (3.1.3) for a discussion of this algorithm.

3.1.3 Vortex Forming behind a Wing Advancing at a Given Angle of

Attack

Our implementation of Krasny’s idea for a wing advancing at a given angle of attack is

based on the evolution equation (2.17). The idea presented in the previous two sections

will work here too, since by discretizing this evolution equation we get a linear system that

will give us the circulation on the wing. The discretization of the equation shows that if

a vortex element of circulation Γ is located at (x0, y0), then the velocity induced by this

element at an arbitrary point P (x, y) will be

u =
Γ
2π

(y − y0)
(x− x0)2 + (y − y0)2

v =
−Γ
2π

(x− x0)
(x− x0)2 + (y − y0)2

. (3.1)

Let’s consider the wing to be formed of bound points distributed so that we have better

resolution at the trailing and leading edges given by the presence of more vortices (cosine-
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Figure 3.3: Discrete vortex representation of the thin, lifting airfoil model.

distribution). Following an idea from Katz, (Katz [2001]), we will be using two sets of

additional points on the wing. The vortices will be placed at the segment quarter chord,

while the normal vectors n will be placed at collocation points situated at the three-quarter

chord of the segments, and this way the Kutta condition will be satisfied automatically

(see Figure (3.3)). Therefore, the boundary condition (no flow through the wing) will be

imposed at the collocation points and the circulation will be determined at the location of

the vortices. This way equations (3.1) will not have singularities when both points are on

the wing. However, when the points will be in the wake, a blob will be used, meaning that

we will add a small δ2 to the denominators of (3.1).

Suppose we take N points on the wing (in our calculations N = 40). Then we will have

N − 1 vortex points and N − 1 collocation points. If at a certain time step we have Nw

vortex filaments in the wake, then the velocity of each bound vortex point of the wing is

a sum of the velocities induced by the N − 1 bound vortices and Nw free vortices. These

induced velocities are computed using (3.1). The strength of all the wake vortices except the

one shed at the current time step is known from the previous time step since it conserves in

time. Therefore the unknowns here are the values of the circulation of bound vortices (N−1

unknowns) and also the strength of the latest wake vortex. Hence we have N unknowns

and only N − 1 equations, i.e. imposing the boundary condition at every collocation point.

The N th linear equation will be given by the Kelvin condition which states that the total

circulation is conserved. This means that the sum of the total bound and free circulation
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is zero if we start from a rest state. So our system will be of the form

ai1Γ1 + ai2Γ2 + ai3Γ3 + ... + ai,N−1ΓN−1 + aiwΓ1w = bi i = 1, .., (n− 1)

Γ1 + Γ2 + Γ3 + ... + ΓN−1 + Γ1w = b0 = −
∑
k>1

Γkw,

where the right-hand-side terms are the ones known, corresponding to the known wake

strengths.

Remark 3. The location of the currently released filament is also known, this being placed

in the center of the path covered by the trailing edge at the current time step.

Having said this, we are able to solve for the strengths of the bound vortices and the

latest released wake filament by solving the linear system. Going back to equations (3.1)

we can now compute the velocities of all the free vortices and move them accordingly. This

ends one time step in our computation. To start the next one, we will move the wing with

the prescribed velocity and compute all the above quantities again.

The result will be compared latter in this chapter with the one obtained using Wu’s

method but for now we could be satisfied with it since it displays all the features we’re

looking for. For instance, we get more and more roll-ups as we decrease the blob and the

interior of the vortex has a very good resolution. For our computations we choose variable

time steps, apply insertion techniques both with respect to the distance between the free

vortices and to the angular separation and all work fine. The plot in Figure (3.4) is obtained

with a speed U0 = 10, inclination angle α = 18◦ and blob δ = 0.2. The time step is chosen

relatively small dt = 0.0002 since we leave our method to run for 10,000 time-steps. This

corresponds to the wing covering a distance equal to 10 chord lengths (the chord length is

c = 2). We can see that even after such a long computation, the method is very robust

giving a very nice roll-up.

At this point, knowing all these tricks about vortex theory, we are ready to attack

Wu’s method. Even more than that, now we have some very important results to use for

comparison with this method.
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Figure 3.4: Krasny’s method for a wing advancing with an angle of attack α = 18◦, with
speed U0 = 10, blob δ = 0.2, time-step dt = 0.0002. Plot after 10,000 time steps having
N = 40 bound vortex points.

3.2 Numerical Implementation of Wu’s Method

3.2.1 Vortex Forming behind a Wing Advancing at a Given Angle of

Attack Modeled With Wu’s Method

We will describe here the numerical method implemented for applying Wu’s theory. The

code is written in Matlab. To discretize the bound vortex sheet we choose 40 points

(xb(i), yb(i)) on the wing having a chord of 2. Also, the bound filaments are chosen to

form a cosine-mesh, ξj = cos θj , θj = jπ/n, to provide better resolution at the edges. The

wing is inclined at α degrees. We prescribe the flow velocity U0, the time step dt and a

constant f being the distance from the trailing edge where we put the current released free

filament, also referred in our theory as δξ. The current free vortex is released tangentially

to the plate from the trailing edge so that the segment connecting it to the trailing edge

will make an angle α with the x-axis.

We will also need some extra points on the wing, namely the centers of the segments

connecting two bound vortex points (xh(i), yh(i)). These midpoints will help us compute

the Cauchy’s principal value for some integrals later on, which is a very common idea in

fluid mechanics.

First, we compute γ0 knowing the normal imposed velocity on the wing Un sin(α). From
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(2.67) we can compute γ0 either by iteration or by a series expansion

Iteration Series expansion

we have Un = (G0 +G1)γ0 γ0 = γ00 + γ01 + γ01 + ...

⇒ γ0 = G− 0−1Un −G−1
0 G− 1γ0 G0γ00 = Un ⇒ γ00 = G−1

0 Un

Let γ(n+1)
0 = G−1

0 Un −G−1
0 G1γ

(n)
0

guess γ0 (best guess would be G−1
0 Un) γ00 = G−1

0 Un

γ
(1)
0 = G−1

0 Un −G−1
0 G1γ

(0)
0 γ01 = −G−1

0 G1γ00

so γ0 = γ00 + γ01 = G−1
0 Un −G−1

0 G1γ00

γ
(2)
0 = G−1

0 Un −G−1
0 G1γ

(1)
0 γ02 = −G−1

0 G1γ01

⇒ γ0 = γ00 + γ01 + γ02

⇒ γ0 = G−1
0 Un −G−1

0 G1γ00 −G−1
0 G1γ01

= G−1
0 Un −G−1

0 G1(γ00 + γ01)

γ
(3)
0 = G−1

0 Un −G−1
0 G1γ

(2)
0 γ0 = G−1

0 Un −G−1
0 G1(γ00 + γ01 + γ02)

.......................................................

⇒ γ0n = γ00 + γ01 + γ02 + ...+ γ0,n−1

The numerical computation of γ0 is extremely tedious and we’ll devote our attention to

that for the next paragraphs.

We observe that, from (2.71) we get

γ00(ξ, t) = − 2
π

√
1− ξ

1 + ξ

∫ 1

−1

√
1 + ξ′

1− ξ′
Un(ξ′, t)
ξ′ − ξ

dξ′. (3.2)

One would expect to be able to get a contribution of
√

1 + ξ outside the integral to

cancel the singularity due to the factor in front of this integral, so that γ00 is bounded for

ξ close to one, i.e., at the leading edge. However, this will not happen. To see that, let’s

consider a smooth Un(ξ, t) which corresponds to smooth moves of the wing. Let’s take an

even easier example, considering a constant velocity, and without losing generality, consider

Un ≡ 1. For this, we are able to compute the integral analytically, as one can see from the

following lemma.
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Lemma 1. Under the Kutta condition and the integrability condition, the solution of the

Cauchy integral equation of the first kind,

1
πı
−
∫ 1

−1

φ(y)
y − x

dy = 1 is φ(y) = ı

√
1 + y

1− y
, for any y ∈ (−1, 1).

For a proof of the lemma please refer to Appendix (A). According to this lemma, we

have

∫ 1

−1

√
1 + ξ′

1− ξ′
dξ′

ξ′ − ξ
= π, ∀ ξ′ ∈ (−1, 1), (3.3)

which clearly states that we will not be able to get rid of the square root discontinuity in

front of the integral just by manipulating the integral itself. Interpreting the physics, this

means that the vorticity γ0 has a square root discontinuity at the leading edge. However,

this is not a problem, since we are looking for the circulation on the wing which is the

integral of the vorticity (see 2.74). By integrating the square root discontinuity, this will

vanish and we will have a nice, smooth bound circulation.

Finally, the vorticity γ0 will be computed using (2.68) through (2.71) following these

steps:

1. From (2.71) compute

γ00(ξ) =
∫ 1

−1

√
1 + ξ′

1− ξ′
Un(ξ′, t)
ξ′ − ξ

dξ′, (3.4)

which is not a genuine vorticity since it misses the

− 2
π

√
1− ξ

1 + ξ

factor in front. As we said before, we omit this factor so that we do not deal with

discontinuities in our numerical procedure;
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2. From (2.70) compute

G0γ01 = − 1
2π

∫ 1

−1
g(ξ′, ξ)

[
− 2
π

√
1− ξ′

1 + ξ′
γ00

]
dξ′

=
1
π2

∫ 1

−1
g(ξ′, ξ)

√
1− ξ′

1 + ξ′
γ00(ξ′)dξ′ ≡ U1

n, (3.5)

here we put back the factor we omitted before, so that everything agrees with (2.70).

Also we introduce a term U1
n (which will be some sort of an analog to Un from (2.71))

just for the sake of recognizing some pattern in our recursive algorithm.

3. Having said this, using (2.70), (2.71) becomes

γ01(ξ, t) = − 2
π

√
1− ξ

1 + ξ

∫ 1

−1

√
1 + ξ′

1− ξ′
U1

n(ξ′, t)
ξ′ − ξ

dξ′ ≡ G−1
0 U1

n (−1 < ξ < 1),

and as in step 1 we will compute

γ01(ξ) =
∫ 1

−1

√
1 + ξ′

1− ξ′
U1

n(ξ′, t)
ξ′ − ξ

dξ′; (3.6)

4. now as in step 2 we compute U2
n from (2.70)

G0γ02 =
1
π2

∫ 1

−1
g(ξ′, ξ)

√
1− ξ′

1 + ξ′
γ01(ξ′)dξ′ ≡ U2

n; (3.7)

5. Again as in steps 1 and 3 we invert now the operator G0 and get

γ02(ξ) =
∫ 1

−1

√
1 + ξ′

1− ξ′
U2

n(ξ′, t)
ξ′ − ξ

dξ′. (3.8)

The above procedure can be continued indefinitely giving us not vorticities γ00, γ01, γ02, ...

but γ00, γ01, γ02, .... However, when we compute Γ00,Γ01,Γ02, ... we integrate

Γ0k =
∫ 1

−1
− 2
π

√
1− ξ

1 + ξ
γ0k(ξ)dξ,

and we get rid of the discontinuity.
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The algorithm above can be coded by writing three Matlab procedures or functions.

First one will give us the smooth kernel g(ξ′, ξ), the second one will compute γ0k and the

third one Uk
n . Let’s see how they are computed.

For the kernel g(ξ′, ξ) from (2.67) we used midpoints to represent ξ and the bound points

for ξ′. We used finite differences to compute dz/dξ after we explicitly wrote the real part

of the complex quantity.

Computing γ0k on midpoints gets a bit trickier since by simply applying the trapezoidal

rule in computing the integral we get a very poor result. We say poor here because we can

always compare our result, for some constant velocity Uk
n , with the result given by Lemma

1 to serve as a standard reference. Therefore we choose another way, commonly used in

lifting flow problems, changing the variable ξ′ = cos y′ to get

γ0k(ξ) =
∫ 1

−1

√
1 + ξ′

1− ξ′
Uk

n

ξ′ − ξ
dξ′

γ0k(cos y) =
∫ π

0
(1 + cos y′)

Uk
n

cos y′ − cos y
dy′. (3.9)

This now will be solved using trapezoidal rule for points y′ and y chosen this time between

0 and π so that they correspond to the bound points on the wing and to the midpoints,

respectively. This method gives a very accurate computational result for the above integral

since we do not have to deal with the square root singularity anymore.

To compute Uk
n we’ll make the same change of variable, getting

Uk+1
n (ξ, t) =

1
π2

∫ 1

−1

√
1− ξ′

1 + ξ′
g(ξ′, ξ)γ0k(ξ′)dξ′

Uk+1
n (cos y, t) =

1
π2

∫ π

0
(1− cos y′)g(cos y′, cos y)γ0k(cos y′)dy′, (3.10)

where Uk
n is computed on the bound points of the wing using again the trapezoidal rule.

We stop the computation whenever the norm of γ0k gets smaller than some given epsilon,

in this case we chose ε = 10−11. Adding up all γ0k we get γ0 which gives the circulation Γ0

over the body by

Γ0 =
∫ 1

−1
− 2
π

√
1− ξ

1 + ξ
γ0(ξ)dξ, (3.11)
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which is computed again using a change of variable as in (3.10) and then applying the

trapezoidal rule. This ends our computation of the quasi-stationary body circulation Γ0.

Method for computing γ1 From (2.75) we get

Un1(ξ, t) =
1
2π
<
{
dz

dξ

∫ ξm

1

γw(ξ′, t)
z′ − z

dξ′
}

(3.12)

=
1
2π
γw(1, t)<

{
dz

dξ

∫ 1+δξm

1

dξ′

z′ − z

}
+

1
2π
<
{
dz

dξ

∫ ξm

1+δξm

γw(ξ′, t)
z′ − z

dξ′
}
(3.13)

= Aγw(1, t) +B, (3.14)

where

A =
1
2π
<
{
dz

dξ

∫ 1+δξm

1

dξ′

z′ − z

}
B =

1
2π
<
{
dz

dξ

∫ ξm

1+δξm

γw(ξ′, t)
z′ − z

dξ′
}
,

and γw(1, t) is the vorticity of the latest shed free vortex (the one between ξ = 1 and

ξ = 1 + δξm), which is considered constant on the little gap being just opened in the wake

over δξm.

Now using (2.76) and the linearity of the operators G−1
0 and G1 (and implicitly of GN )

we get

γ1(ξ, t) = −G−1
0 (Un1 +N1) = −G−1

0 [Aγw(1, t) +B +GN (Aγw(1, t) +B)] (3.15)

= −G−1
0 (A+GNA)γw(1, t) +−G−1

0 (B +GNB) (3.16)

= −G−1
0 (A+N1A)γw(1, t) +−G−1

0 (B +N1B) = γ1Aγw(1, t) + γ1B, (3.17)

where N1A and N1B have the obvious meaning in accordance with (2.76). Of course, in

(3.17), γ1A does not represent genuine vorticity, being just a multiplicative factor, but we

still denote it by γ for the simplicity of understanding. It becomes clear now how γ1 is

computed: just recall the procedures used in computing γ0 but this time with (−A) and

(−B) instead of Un to determine γ1A and γ1B and then use the last relation from (3.17). A

and B are computed using the trapezoidal rule. Still, γw(1, t) is unknown and therefore we
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Figure 3.5: Wu’s method for vortex forming behind a wing flying at α = 18◦, U0 = 10, time
step dt = 0.0002 and blob δ = 0.2. In figure (b) one can see how accurate the method is
when we zoom inside the vortex. Plot after 10,000 time-steps.

have to take our analysis even further.

Using Kelvin’s relation for the conservation of circulation (see (2.85)) we get

0 = Γ0 + Γ1 + Γw (3.18)

= Γ0 +
[
γw(1, t)

∫ 1

−1
γ1Adξ +

∫ 1

−1
γ1Bdξ

]
+
[
γw(1, t)δξm +

∫ ξm

1+δξm

γ(ξ, t)dξ
]
(3.19)

where the bound circulation Γ1 is split in two parts corresponding to A and B, and the

wake circulation is also split in two parts, one corresponding to the latest released vortex

filament and the second to the rest of the free sheet.

In conclusion, we have

γw(1, t) = −
Γ0 +

∫ 1
−1 γ1Bdξ +

∫ ξm

1+δξm
γ(ξ, t)dξ

δξm +
∫ 1
−1 γ1Adξ

. (3.20)

Here all the terms are known from our previous discussion. Of course,
∫ ξm

1+δξm
γ(ξ, t)dξ is

known from the conservation of the free circulation from one time step to the next. Hence

we know γw(1, t) and therefore both γw and γ1.

Having the circulation and vorticity on both the bound and the free sheet, we can now
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compute the convection velocities for the free vortex filaments. These velocities will be

computed using relations (2.58) and (2.59) in which

<
{
dz

dξ

∫
Sb+Sw

γ(ξ′, t)
z′ − z

dξ′
}

=
dx

dξ

∫
Sb+Sw

(x′ − x)γ(ξ′, t)
(x′ − x)2 + (y′ − y)2

dξ′

+
dy

dξ

∫
Sb+Sw

(y′ − y)γ(ξ′, t)
(x′ − x)2 + (y′ − y)2

dξ′, (3.21)

=
{
dz

dξ

∫
Sb+Sw

γ(ξ′, t)
z′ − z

dξ′
}

= −dx
dξ

∫
Sb+Sw

(y′ − y)γ(ξ′, t)
(x′ − x)2 + (y′ − y)2

dξ′

+
dy

dξ

∫
Sb+Sw

(x′ − x)γ(ξ′, t)
(x′ − x)2 + (y′ − y)2

dξ′. (3.22)

Note that these relations also give the normal and tangential velocities. In convecting the

free vortices it would be easier though, to work with the x and y components of the velocities.

Also, when we discretize the integrals, the sum will contain a +δ2 in the denominator (the

blob) whenever ξ′ is on Sw. However, δ is set to zero when ξ′ is on Sb. After all these steps,

we are ready to go to the next time step and to compute all the required unknowns again.

This ends the description of our method. An example is provided in Figure (3.5). The

example shows how accurate the method is by zooming inside the vortex. We do not use

in this case any point insertion technique just to show how good the raw result is. The

numerical implementation uses an advancing wing velocity U0 = 10, an angle of inclination

α = 18◦, a blob δ = 0.2 and a fixed time step dt = 0.0002. The plot is obtained after 10,000

time-steps, or after the wing traveled 10 chord lengths (the wing’s chord length is 2).

3.3 Comparison of the Two Methods for the Rigid Wing

3.3.1 Comparing the Results

Both Krasny’s method and Wu’s method produce very nice results. Krasny also observes

that the smaller the blob δ gets, the more accurate the method becomes in terms of capturing

the physical effect of viscosity. By that it should be understood that we would like to capture

better what happens in the center of the vortex, and by decreasing the blob we get more

and more roll-ups. Comparing the two methods for identical sets of initial data (see Figure

3.6) we can see that Wu’s method behaves much better in capturing the roll-ups inside the
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Figure 3.6: a.) Vortex obtained with Krasny’s method; b.) Vortex obtained with professor
Wu’s method.

vortex ring. Krany’s method would produce the same results for a smaller blob which will

require a smaller time-step for accuracy and therefore a longer computational time. The

plots presented in Figure (3.6) are obtained for a flat plate of chord c = 2, inclined at an

angle α = 18◦, traveling with a speed U0 = 10, with a time-step dt = 0.0002 and after ten

thousand time-steps. For both plots, the blob is chosen to be δ = 0.2. No point insertion

technique is used in these plots to better see the accuracy of the methods. The plot obtained

using Wu’s method proves to be very stable for small blobs when the number of roll-ups

becomes very big.

The difference between the two plots resides, perhaps more importantly, in the position

and radius of the vortex ring. The center of the ring obtained with Krasny’s method is

located at (x, y) = (0.395,−0.151) while Wu’s method gives us a ring with center located

at (x, y) = (0.827,−0.588). The radius of the first one is R = 0.97 while for the second one

the radius is R = 1.218. So one can see that by Wu’s method we get a slightly bigger vortex

ring located a bit lower and more to the right than the one gotten by the other method. To

verify the right position of the vortex and also to validate the ring dimensions we will refer

in the next subsection to experiments performed using a NACA wing.
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Figure 3.7: The way the radius of the vortex was measured.

3.3.2 Validating the Numerical Computations

Radius of the vortex One of the few experiments we could find in the literature in-

volving the structure and development of a tip vortex shed from a conventional wing is

that performed in 1995 by William J. Davenport (Davenport [1995]). His experiments were

performed in the Virginia Tech Stability Wind Tunnel and a rectangular-planform NACA

0012 wing with a 0.203 m chord, and a blunt tip was used to generate the vortices. The

measurements we are going to refer to were done with a chord Reynolds number U∞c/ν of

530000 (corresponding to a velocity of about 37.3 m/s) with the wing at an angle of attack

α of 5◦. Davenport’s results were taken at cross-sections 5c, 10c, 15c, 20c, 25c and 30c

downstream of the wing leading edge (here c represents the chord length). He showed using

these six points of data that the scale of the spiral grew approximately as the square root

of the distance traveled by the wing (see Figure 9, pp.84, in Davenport [1995]).

Even though the difference between this experiment and our numerical model is obvious

(NACA wing has thickness), Davenport’s results are as close as possible to our model, and by

comparison we can demonstrate that our model and method are indeed valid approximation

of real-life physics.

The simulation using professor Wu’s method is performed with the following character-

istics: a chord length c = 2, an advancing speed of 10, an angle α of 5◦ to match Davenport’s

experiment, a blob of 0.2 and a time-step of 0.0005. The wing is left to travel for 12,000
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time steps which corresponds to 30 chord lengths and the sample of data for the behavior of

the radius is taken after every 100 time-steps or every quarter-chord-length traveled. The

code is run on a AMD Athlon(tm) XP 1700+ with 512 MHZ, and it runs for about 90

hours. The radius is measured from the center of the vortex (considered to be the location

of the first filament released) to the right most point of the wake (see Figure 3.7).
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Figure 3.8: Plot of the radius of the vortex versus the square-root function. Here the x axis
represents the number of chord-lengths traveled by the wing.

The results are very accurate, and the large number of data points taken offers a very

detailed view of the analogy with the experiment. In Figure (3.8) we can see that the

behavior of the radius in time mimics very well the behavior of the square-root function

represented by a dotted line. The slight discrepancy at the beginning of the motion could

be due to the fact that we miss thickness in our model.

Also, to validate the position of the vortex found in Figure (3.6), we note that Daven-

port’s experiment results are very close to the results obtained using Wu’s method. Daven-

port computes the span-wise position of the core η as a function of x/c in the baseline flow.

The distance η is defined as the y-coordinate of the vortex core center relative to the wing

tip. After the wing travels x/c = 10 chord lengths, Davenport reports a position of about

η/c = 0.27, which in our case, for the data used in Figure (3.6), would mean η = 0.54 since

the chord is 2. This is very close to what Wu’s method gives us: η = 0.588 and rather far

from the result obtained using Krasny’s method: η = 0.151. Again, the small discrepancy
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could be due to the thickness of the NACA wing.

3.4 Results Obtained for Nonlinear Motions

Some very interesting cases to be analyzed in the following sections are those for heaving

and pitching motions. While the heaving or fluttering motion is closer to that of a bird’s

wing in flight, the pitching motion is better related to the movement of a fish’s fin. Since

both movements have very close correspondents in nature we will try to see how our method

compares with the experiments found in the literature. Nevertheless, we will try to argue

that they do provide thrust, and, in the case of a mixed heaving and pitching motion, we

will try to describe the kind of flight that generates lift and the one that generates thrust.

3.4.1 Wu’s Method for Heaving Motion

The fluid mechanics literature is richer in experiments involving a heaving wing. Some

experiments were done by Bratt in 1953 (see Bratt [1953]) and more recently by Jones,

Dohring & Platzer in 1998 (see Jones [1998]) and by Lai, Yue & Platzer in 2002 (see

Lai [2002]). To further validate our unsteady method and to aid in defining its limits of

applicability, the unsteady wake structures numerically generated are compared with the

wake structures found experimentally.

If we consider a flapping wing and denote by Vp = hk the non-dimensional plunging

velocity, where h is the plunge amplitude in terms of the chord c and k is the reduced

frequency ωc/U0, then it is well known from the above experiments, that in viscous fluids,

stationary airfoils and airfoils plunging sinusoidally with low Vp generate viscous related

drag. As the Vp is increased the drag is reduced and eventually thrust is produced. However,

the potential-flow code predicts zero drag for a stationary airfoil and thrust for a plunging

airfoil at any finite frequency. Therefore, qualitative and quantitative comparisons of the

wake structures are made for a sufficiently big Vp such that the experiment will show a

thrust mode as well. The qualitative agreement demonstrated in Figure (3.9) is excellent.

In the experiment, the distance between the centers of the vortices in the second pair of

vortices is about 0.4 when the plate length is 1 while for the computational result, the same
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Figure 3.9: Heaving wing; Upper: rotational orientation of eddies; Center: experiment done
by Lai in 2002; Lower: Wu’s numerical method.

distance is 0.8 for a plate of length 2. The upper image shows a schematic illustration of the

rotational orientation of the eddies. This kind of placement will obviously generate thrust.

The numerical plot is the lower image and then the experiment from (Lai [2002]) is the

center one. For the numerical plot we use a foil advancing to the left in a stationary flow,

flapping at 10 Hz with a non-dimensional plunge velocity of Vp = 0.076 which perfectly

match the experiment data. The amplitude is h = 0.038 and the wing velocity is U0 = 5.

Here, a small blob is used δ = 0.11, the time step is ∆t = 0.001 and the execution is

stopped after 2630 time steps. The experiment was conducted in the water tunnel facility

at the Department of Aeronautics and Astronautics, Naval Postgraduate School, Monterey,

California.

To demonstrate the production of thrust, we analyze the velocity profile at a point

located at 0.41c behind the trailing edge. To better capture the thrust production we

should have integrated this profile along a x = ct. section; however, this punctual analysis

should give a good interpretation of the thrust. One could see from Figure (3.10)) that

the mean velocity at this point is positive indicating the presence of a jet. This shows how
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Figure 3.10: Heaving wing; Profile of the velocity at 0.41c downstream behind the trailing
edge.

important the study of the wake is, the released vortices being able to create thrust and

therefore to move the bird or the fish forward.

The first drop in the velocity which makes it negative is due to the beginning of the

motion, however, after the first quarter of the motion period, thrust will be generated. If we

are looking at the physical interpretation, this represents the period before the flow particles

situated at 0.41c downstream from the trailing edge get influenced by the disturbance

created by the pitching wing.

3.4.2 Pitching Motion

A very similar wake is produced in the case of a pitching motion (see Figure 3.11). Here,

the upper part represents the plot obtained by Wu’s method while the lower one represents

the experiment done in 1989 by Koochesfahani (see Koochesfahani [1989]) at Caltech. This

time the wing is advancing from left to right having a high pitching frequency (f = 5 ⇒

w = 2πf ≈ 31.14) around the quarter-chord center which matches the conditions in the

experiment. The amplitude is ±2◦ and the advancing speed is 10. The blob is δ = 0.2,

the time step ∆t = 0.0005 and the procedure is stopped after 3000 time steps. Again the

comparison shows a very accurate behavior compared with the experiment. The position

and orientation of the vortices in the wake suggest a jet-like wake behind the pitching foil.
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Figure 3.11: Pitching motion; Upper: Wu’s numerical method; Lower: experiment done by
Koochesfahani in 1989.

Koochesfahani shows though, that at low frequencies in real flow, the drag effect is dominant

due to the viscosity. This could be a research door for the biologists to see what kind of

frequencies exist in the case of rapid fish movements and how they agree with the numerical

and water tank experiments.

3.4.3 Mixed Pitching and Heaving Motion

A bird wing is an airfoil combining the functions of an aircraft wing and propeller blade to

give lift and thrust. This is done by a mixed motion of the wing involving both heaving

and pitching. This more complex movement is very nonlinear and we’ll try to analyze it

using Wu’s method.

Just to see the shape of the wake behind a wing performing a mixed motion, we use Wu’s

method for the following case (see plot a. in Figure (3.12)): a heaving movement having

amplitude h = 0.038 and angular frequency wh = 8 combined with a pitching movement

around a point situated at xc = 0.15 from the leading edge, having pitching amplitude

of ±3◦ and pitching angular frequency of wp = 8. The wing starts from a rest position

that coincides with the [−1, 1] segment on the Ox axis and has a phase difference between

heaving and pitching of zero degrees. It also moves to the left with a speed U0 = 3.12 and

a vortex element is shed in the wake after every time step ∆t = 0.002. The plot is made



57

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−12 −10 −8 −6 −4 −2 0

−4

−2

0

2

4

x − axis

y 
−

 a
xi

s

0 500 1000 1500 2000 2500
−3

−2

−1

0

1

2

3

time steps

Li
ft

0 500 1000 1500 2000 2500
−1

0

1

2

3

4

5

6

time steps

ve
lo

ci
ty

 a
t d

is
ta

nc
e 

0.
5c

 b
eh

in
d 

th
e 

T
.E

.

time steps

ve
lo

ci
ty

 a
t d

is
ta

nc
e 

0.
5c

 b
eh

in
d 

th
e 

T
.E

.

0 100 200 300 400 500 600
−1

0

1

2

3

4

5

time steps

A
dd

ed
 li

ft

time steps

A
dd

ed
 li

ft

a) b)

c) d)

Figure 3.12: Wu’s method for a mixed heaving-pitching motion. a) An example of mixed
heaving-pitching motion; b) Comparison of flow velocities at a distance 0.5c behind T.E.
for cruising flight (blue) and ascending flight (red); c) Lift for cruising flight; d) Added lift
for two half-periods for ascending flight

after 2000 time steps.

However, we want to describe more realistically the actual movement of a bird’s wing.

For that, we have to take into consideration some more aspects from the natural movement.

We know that in order to generate lift and thrust, the down-stroke and the upstroke of a

bird’s wing are not similar. The down-stroke is more powerful by keeping the wing section

almost horizontal, while in the upstroke the wing is inclined, having the trailing edge lower

than the leading edge. We will show that this movement generates lift and therefore we

will call this ascending flight. However, a wing which does not incline for the upstroke,

i.e. having a pure heaving motion, will not create any lift because of the symmetry of this

motion. Without considering the bird’s weight, we could argue that this kind of motion will

keep the bird at a constant altitude and we will show that it generates more thrust than

the first motion. Therefore we will call this cruising motion.

To better see the difference between these two movements, we analyze them using Wu’s
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method. The ascending motion is composed of a heaving with amplitude h = 0.425 and

angular frequency wh = 8. While for the down-stroke we have only this heaving motion,

for the upstroke we combine it with a pitching motion. Thus, when the wing starts the

upstroke, we start to incline it with an amplitude θ0 = 4◦ and an angular frequency wp = 8

equal to that of the heaving so that when the wing ends the upstroke it will find itself again

in a horizontal position.

The cruising flight is modeled using a pure heaving motion with the same characteristics

as above. For both motions we pick a flight velocity of U0 = 8 and a time step for the

numerical method ∆t = 0.0007. The blob is δ = 0.2 and the pitching motion is realized

around the trailing edge. The lift is computed as in Section 3.4.7.

Plot b. in figure (3.12) shows the velocity of a particle located at a distance 0.5c = 1

behind the trailing edge. Since the fluid is stationary and only the wing is moving, we can

see that, having a positive average velocity behind the trailing edge, thrust will be generated

in both cases. However, one will notice that in the case of cruising flight (the blue plot)

more thrust is generated than in the case of ascending flight. For instance, during the

half-period corresponding to the upstroke, the thrust for the cruising motion is 20% larger

than the other one which makes this motion more suitable when the bird wants to advance.

However, if we take a look at the lift, we will see that, due to the symmetry of the

motion, the overall lift in the case of a cruising flight is practically zero (see plot c. Figure

(3.12)). Not the same thing can be said about the ascending case. In this case, if we add

up the lift produced during the upstroke and the one produced during the down-stroke we

will see that the resulting lift is quite relevant (see plot d. Figure (3.12)).

In conclusion, we have demonstrated that these two types of mixed motions provide quite

different results: the cruising movement produces thrust but no lift while the ascending one

produces less thrust but considerable lift. It is worth mentioning though, that in a real flight

things change a bit. To be able to support its own weight, the bird will use some pitching

even during cruising so that the generated lift will cancel this new force. Also during the

ascending flight, the amplitude of pitching will have to increase because of the same reason.

Another fact observed in nature is that on the upstroke of the wing beat, the feathers at
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Figure 3.13: Wu’s method for a bending motion.

the end of many bird wings twist sideways to let the air slip through with little resistance.

This will increase even more the lift compared to the pure heaving motion.

3.4.4 Bending Motion

In this subsection, we would like to demonstrate the ability of Wu’s method in dealing

with nonlinearity. We use an example of a plate with zero thickness but having a variable

camber. The incidence angle of the chord is zero but there is an actual incidence angle given

by the camber. The deformation of the wing used in Figure (3.13) is given by y = ε(1−x2),

with the amplitude ε = 1/8 sin(ωt). The angular frequency is ω = 8, the advancing speed

is U0 = 6, the time step ∆t = 0.002 and the blob δ = 0.2. The plot is obtained after 1100

time steps and very accurately catches the formation and structure of the wake vortices.

This example has very nice applications when combined with a flapping motion. In that

case, it would describe the motion of a wing composed by a flexible membrane like the one

found in bats (Chiroptera) or in some insects.

3.4.5 Analysis of the First Released Vortex Element

To better understand the differences we noticed between Wu’s and Krasny’s methods, we

analyze the first released vortex element for a rigid wing (of length 2) advancing at a given

angle of attack. We are able to compute the circulation of this first vortex analytically and
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therefore to compare this exact circulation with the ones given by the two computational

methods.

The analytical formula for the vorticity on the body without any wake effect (γ0) is

given by equation (2.73) after a simple change of variables. The vorticity on the wake (γw)

is computed using equation (2.86) along with Lemma 1. Finally the vorticity induced on the

body by the wake (γ1) is computed from formula (2.79). (For more details please consult

Sears [1938]). When the wing goes abruptly from horizontal position to an inclination alpha

so that the wake-free circulation on the body is Γ0 = 1, we have the following formulas for

the discussed vorticities

γ0 =
1
π

√
1− x

1 + x
(3.23)

γw = − 1
π

√
1

1 + Ut− x
(3.24)

γ1 = − 1
π

1√
(1 + x)(1 + Ut− x)

. (3.25)

In figure (3.14) we plot these functions without the 1/π factors and for an initial vortex

placed at a distance σ = 0.1 behind the trailing edge. A couple of things can be observed

from this plot. Firstly, we can see that both γ0 and γ1 are unbounded at the leading
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edge of the wing which is in accordance with the known wing theory results. The more

important aspect, however, is the fact that the vorticity on the wake blows up near the first

released vortex element. Therefore, one should be very careful on the numerical analysis

of this first wake point. In fact, the strength of Professor Wu’s method resides exactly

in this combination of analytical and numerical methods used to catch the behavior of

the wake near the trailing edge. In contrast, Krasny’s method considers this very first

released element as an extension of the body, computing its circulation purely numerically

by inverting a linear system.

This can be seen better when comparing the results given by the two methods with the

analytical result. For a wing advancing with a speed U0 = 10, at an angle of 18 degrees, and

the wake circulation computed after the wing traveled a distance of 0.005, the analytical

wake circulation from equation (3.24) is Γw = −0.61804, the same circulation computed

with Wu’s method is Γw = −0.6510 and the one computed using Krasny’s method is

Γw = −0.7131. Such a discrepancy will be propagated in the wake later, and this is why

we are seeing much better results for Wu’s method.

3.4.6 Convergence Analysis

A very conclusive test to demonstrate the accuracy of Wu’s method is the convergence

analysis of the outer wake both with respect to time and blob. The outer wake represents

a cut of the whole wake as it is depicted in figure 3.15 (a).

For a blob size of 0.2 we vary the time step, choosing dt=0.0005, 0.00025, 0.000125, and

0.0000625. We stop our computation after 1000, 2000, 4000 and respectively 8000 steps.

This means the wing travels the same distance but we have more points in the wake, or a

finer mesh in other words. We compute the distance between the resulting outer wakes by

computing the distance between corresponding points on these wakes. In figure 3.15 (b)

we can see a plot of these distances. The green plot represents the point distances between

the outer wakes with dt=0.0005 and dt=0.00025, the red one the point distances between

the outer wakes with dt=0.00025 and dt=0.000125, while the blue one corresponds to the

point distances between the outer wakes with dt=0.000125 and dt=0.0000625. It is obvious
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Figure 3.15: (a)The outer wake; b) distances between points on the wakes for a constant
blob but variable time step; (c)&(d) Outer wake and a zoom for a constant time step
dt=0.000125 but variable blob; (e)&(f) Outer wake and a zoom for a constant time step
dt=0.0005 but variable blob. For plots (c), (d), (e) and (f) the green wake has δ=0.4, the
blue one 0.2, the red one 0.1 and the black one 0.05.
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how these distances decrease as time step decreases. More than that, the average distance

between the outer wakes are 0.0028, 0.0014 and 0.0007 going from the coarsest mesh to the

finest. This shows how the outer wake converges with respect to time step.

We perform a similar convergence study by varying the blob size. For a time step of

0.000125 and 4000 time steps we choose the blob size to be 0.4, 0.2, 0.1 and 0.05. Again

we compute the distance between the points on the outer wake and it turns out that the

average distance between these points goes from 0.0250 to 0.0057 and to 0.0015. Hence, the

method is convergent with respect to the blob size. A representation of these outer wakes

can be seen in figure 3.15 (c) with a zoom of the outer part of the vortex in figure 3.15 (d).

Here the green plot corresponds to δ = 0.4, the blue one to δ = 0.2, the red one to δ = 0.1

and the black one to δ = 0.05.

We go even further and do the same computations for a different time step, dt=0.0005

and 1000 points in the wake. This case is similar to the above one in terms of the distance

traveled by the wing. The blobs are again the same. The results show that the distance

between the outer wakes are this time 0.0253, 0.0062 and 0.0027 respectively. Again, a

representation of these outer wakes can be seen in figure 3.15 (e) with a zoom of the outer

part of the vortex in figure 3.15 (f). Here the green plot corresponds to δ = 0.4, the blue

one to δ = 0.2, the red one to δ = 0.1 and the black one to δ = 0.05.

It can be seen that in this case, for a bigger time step, the convergence is slower in delta.

In other words, if we choose our blob size carefully, by decreasing the time step we will get

a faster convergence of the outer wake. This shows that our method is more dependent on

the time step than on the blob itself.

Some other experiments that are not included here show the dependence of the methods

to the incidence angle. These experiments demonstrate that for a given time, for both meth-

ods the wake flattens more and more as we decrease the angle, approaching the horizontal.

Of course, this is an expected result since for a plate advancing at a zero angle of attack we

expect to get a linear wake.

Another experiment tries to feed the first n vortex elements (where n is 30, 50, 100)

from Wu’s method into Krasny’s method hoping that these points, having less error near
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the trailing edge, will correct Krasny’s method and will produce an outer wake closer to

the one given by Wu’s. The experiment is not very conclusive because of the effect the

core of the vortex has on the outer wake. Unfortunately, by feeding all these points from

one method to the other, the accuracy is lost in the center of the vortex and this chaotic

behavior affects the whole wake.

To show how the methods converge to a common result for the outer wake after we

minimize the the impact of the error introduced in the first released vortex element, we also

try to make the initial jump of the plate from the horizontal to angle α smoother. This

experiment again does not prove to be very successful since, after all, we end up adding the

contribution of all the smaller steps and the total error introduced in the wake is almost

the same as in the non-smooth case.

3.4.7 Verifying Wagner’s Result

A validation of professor Wu’s method and of the numerical method may be given by

Wagner’s (1925) classical problem for a flat plate airfoil making a time-step increase in

incidence angle so that Γ0(t) = H(t), the unit Heaviside step function. With the nonlinear

terms dismissed, equation (2.86) reduces in the linear limit to

∫ 1+Ut

1
γw(ξ, t)

√
ξ + 1
ξ − 1

dξ = −1 (t > 0), (3.26)

with γw properly scaled to have the unit change of the integral as a standard. Using the

results of Karaman and Sears (1938), we change the variable s = 1 + Ut − ξ, so that

γw(ξ, t) = γ(1 + Ut − s, t) = γ̂(s, t), s being the distance measured along Sw(t) from the

tip of the starting vortex (at ξ = ξm) backward toward the trailing edge, by which (3.26)

becomes ∫ Ut

0
γ̂(s, t)

√
2 + Ut− s

Ut− s
ds = −1 (t > 0). (3.27)

We are interested in the beginning of the motion and therefore 0 ≤ Ut− s� 1, so the
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Figure 3.16: Variation of lift after the initiation of a sudden forward motion of a two-
dimensional flat plate.

leading order of the small-time asymptotic representation of (3.27) is

∫ Ut

0
γ̂(s, t)

√
2

Ut− s
ds = −1 (0 < Ut� 1). (3.28)

But now this is Abel’s integral equation and it has the solution

γ̂(s, t) = −(π
√

2s) (Ut� 1). (3.29)

Again following Karaman and Sears (1938), Wagner’s lift-deficiency function Φ(Ut) is

found to be

Φ(Ut) = −
∫ 1+Ut

1

γ(ξ)√
ξ2 − 1

dξ = −
∫ Ut

0

γ̂(s)√
2(Ut− s)

ds =
1
2

(as t→ 0), (3.30)

which is Wagner’s result, stating that an impulsively started flat-plate airfoil generates

instantly half the final lift, which it eventually achieves, 1−Φ(Ut) → 1 as t→∞, i.e., after

a time delay, which is known as Wagner effect.

The designed numerical method is used to compute the initial lift and the lift at every

later time step. After a sufficiently long time the lift is considered to be L(t = ∞) or the

final lift. The plot is presented in Figure (3.16). The result is obtained with blob 0.2, speed

10, time step 0.001 angle of attack α = π/20 and the final lift considered after the wing has
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traveled 8k time steps or approximately 40 chord lengths.

We compute the lift using the theory in (Sears [1938]). Sears shows how the total

momentum of continuously distributed vortices (consisting of the airfoil and its wake) is

I = ρ

∫ 1

−1
γ(x)xdx+ ρ

∫ ξm

1
γ(ξ)ξdξ. (3.31)

Using the fact that the lift is given by L = −dI/dt , the decomposition of vorticity γ(x) =

γ0(x) + γ1(x) and Kelvin’s theorem of conservation of circulation, we get

L = −ρ d
dt

∫ 1

−1
γ0(x)dx+ ρUΓ0 + ρU

∫ ξm

1

γ(ξ)dξ√
ξ2 − 1

, (3.32)

where the first term represents the contribution of the apparent mass, the second one the

quasi-steady lift, and the last one the lift given by the wake. The apparent mass behaves

like a delta function centered at zero (γ0 is constant after t = 0+) and we will explain in

more detail how we compute the main contribution of this term. We will compute

L(t)
L∞

=
− 1

U
d
dt

∫ 1
−1 γ0(x)dx+ Γ0 +

∫ ξm

1
γ(ξ)dξ√

ξ2−1

− 1
U

d
dt

∫ 1
−1 γ0(x)dx+ Γ0 +

∫∞
1

γ(ξ)dξ√
ξ2−1

. (3.33)

This is how we compute the contribution of the apparent mass: since this contribution

comes only from a very small time interval around t=0, we consider the first time step a

bit bigger, dt1=0.05. In this time interval we compute the apparent mass analytically by

linearly varying the angle of attack from 0 to α = π/20. As a consequence, we get

− 1
U

d

dt

∫ 1

−1
γ0(x)dx = − 1

U

d

dt

∫ 1

−1
−2Un

√
1− x

1 + x
dx =

2
d

dt
sin(α(t))

∫ 1

−1

√
1− x

1 + x
dx = 2 cos(α(t))α′(t)

∫ 1

−1

√
1− x

1 + x
dx,

where α′(t) will be the slope of the linear function going from 0 to π/20 in the interval dt1.

This is indeed a very nice way of verifying Wagner’s result and it can be seen that

the theoretical result (initial lift is half the final lift) and the numerical one (about 0.64)
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Figure 3.17: Heaviside Motion

are very close and that our numerical result is significantly better than some other ones.

For instance Joseph Katz and Allen Plotkin (2001) get a result of about 0.85. Again, this

demonstrates the robustness of Wu’s method.

3.4.8 Analyzing the Lift for an Abrupt Heaviside Flexible Motion and an

Abrupt Fourier Flexible Motion

Our theory provides new theoretical results. Similar to the case studied for the Wagner

effect, one can analyze what happens when an abrupt Heaviside flexible motion is sought.

In other words, at time t = 0− our wing coincides with the segment [−1, 1] on Ox and

at time t = 0+ the wing undergoes abruptly a transformation that will deform it into a

parabolic wing by x(ξ) = ξ, y(ξ) = ε(1 − ξ2) for ξ ∈ [−1, 1]. Then the wing is rotated

with angle α with respect to the trailing edge, so that it will make an α incident angle with

the flow. The rotation will transform the coordinates as follows

x1 = 1 + ε(1− ξ2) sin(α)− (1− ξ) cos(α)

y1 = ε(1− ξ2) cos(α) + (1− ξ) sin(α).

Hence, the outer normal will be given by N(2εξ cos(α) + sin(α),−2εξ sin(α) + cos(α)).

Furthermore, the normal component of the fluid velocity reduces to
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Figure 3.18: Behavior of Lift for a Heaviside Motion

Un = U∞
2εξ cos(α)+sin(α)√

1+4ε2ξ2
.

Again, we get a very nice resolution of the vortex core (see Figure 3.17) while the behavior

of the lift can be seen in Figure (3.18). The plots are obtained for deformation ε = 0.05,

angle of attack α = π/18, blob δ = 0.2, flow velocity U0 = −3.12, time step dt = 0.002 and

103 time steps. This corresponds to the wing traveling 10 chord lengths to the left. The

amplitude of deformation (ε = 0.05) will give an effective angle of attack of approximately

π/18 + π/36 = π/12 or 15 degrees.

The plot of the lift shows that in this case the initial lift would be about 0.72 of the

final lift (see Figure 3.18) for this generalization of Wagner’s result.
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Figure 3.19: Fourier Motion
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Figure 3.20: Behavior of Lift for a Fourier Motion

For the Fourier movement, the equation of the motion is similar to the one in the

Heaviside case except that now, the amplitude of the deformation is variable, i.e. ε = ε(t)

where ε(t) = ε0 cos(ωt). The equations given above will remain the same up to this change.

For the numerical simulations we chose ε0 = 0.2 and ω = 5 so that after 1256 time steps

(see Figure 3.19) the 2π period of the cosine has been covered. At a time step of dt = 10−3

and a flow velocity of U0 = −3.12 this corresponds to 2 chord lengths of flight.

Because of the periodic motion, the lift will also show periodicity. The effective angle of

attack will be given by the chord angle (10 degrees) and the angle due to the wing curvature.

For ε0 = 0.05 the angle due to curvature varies between ±5 degrees which means that the

effective angle of attack could be anywhere between around 15 degrees and 5 degrees. As a

consequence, we expect to get lift during the motion. In Figure (3.20) it can be seen that

the average lift is somewhere around 0.55 after two full periods.
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Chapter 4

Three-Dimensional Model

This chapter will try to take the discussion even further and analyze the three dimensional

model of a wing. We are not using a generalization of Wu’s method, since this is still under

research. Instead we use a panel-method combined with Krasny’s vortex-blob method.

The three-dimensional model we are using is a direct generalization of the two-dimensional

vertically-moving flat plate studied in section (3.1.2). The modeling and simulations will

use a square flat plate but we will justify our method by validating it in the next section

against the two-dimensional model by using a rectangular very high-aspect ratio plate. We

will assume again the presence of potential flow and the viscosity will be mimicked by the

blob in the wake.

Now let’s try to describe the method we are using. The main procedure is somehow

similar to the two-dimensional case, however the equations are different. The idea is to

form a linear system using the Biot-Savart law by imposing the normal flow conditions on

the plate, and to determine the circulation of the plate filaments by solving this system.

For that we will apply a rectangular mesh over the plate having more mesh points near the

corners to give a better resolution. The mesh will form some panels on the wing and we will

apply the no-through flow condition in the center of each one. After having computed the

bound circulation for the panels, we will compute the circulation for each filament on the

plate and then apply the two-dimensional method along all the longitudinal and transversal

sections. The two-dimensional method will then compute the circulation of the currently

shed vortex filament considering that a filament is shed at every time step along the mesh

lines. The circulation of all the other free filaments will be preserved in time and therefore
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Figure 4.1: Velocity induced by vortex segment ~AB at location C.

having all the unknowns we could compute the velocities of all the free filaments. We then

move these filaments to the updated locations and go to the next time step.

Bound Sheet It is known that the velocity induced by a vortex filament of strength Γ

and a length of dl is given by the law of Biot and Savart

~dV =
Γ(~dl × ~r)

4πr3
. (4.1)

From Figure (4.1) the magnitude of the induced velocity is

dV =
Γ sin θdl

4πr2
. (4.2)

Since we are interested in the flow field induced by a straight segment, let us use the above

equations to calculate this effect. Let AB be such a segment, with the vorticity vector

directed from A to B. Let C be a point in space whose normal distance to line AB is rp.

Since

r =
rp

sin θ
and dl = rp(csc2 θ)dθ, (4.3)

we can integrate between A and B to find the magnitude of the induced velocity

V =
Γ

4πrp

∫ θ2

θ1

sin θdθ =
Γ

4πrp
(cos θ1 − cos θ2). (4.4)
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Now let ~r0, ~r1 and ~r2 designate the vectors ~AB, ~AC and ~BC, respectively, as shown in Figure

(4.1). Then

rp =
|~r1 × ~r2|

r0
, cos θ1 =

~r0 · ~r1
r0r1

, cos θ2 =
~r0 · ~r2
r0r2

,

where for a vector ~r, we denote by r its magnitude. Substituting these expressions into

equation (4.4) and noting that the direction of the induced velocity is given by the unit

vector
~r1 × ~r2
|~r1 × ~r2|

,

we get

~V =
Γ
4π

~r1 × ~r2
|~r1 × ~r2|2

[
~r0 ·
(
~r1
r1
− ~r2
r2

)]
. (4.5)

Now in order to implement this, we write the components of the induced velocity V =

(u, v, w) 
u = K · (r1 × r2)x

v = K · (r1 × r2)y , K = Γ
4π|r1×r2|2

(
r0·r1
r1

− r0·r2
r2

)
w = K · (r1 × r2)z

(4.6)

with  r0 · r1 = (x2 − x1)(xp − x1) + (y2 − y1)(yp − y1) + (z2 − z1)(zp − z1),

r0 · r2 = (x2 − x1)(xp − x2) + (y2 − y1)(yp − y2) + (z2 − z1)(zp − z2)
(4.7)

and |r1 × r2|2 = (r1 × r2)2x + (r1 × r2)2y + (r1 × r2)2z, r1 =
√

(xp − x1)2 + (yp − y1)2 + (zp − z1)2,

r2 =
√

(xp − x2)2 + (yp − y2)2 + (zp − z2)2,
(4.8)

and finally 
(r1 × r2)x = (yp − y1)(zp − z2)− (zp − z1)(yp − y2),

(r1 × r2)y = −(xp − x1)(zp − z2) + (zp − z1)(xp − x2),

(r1 × r2)z = (xp − x1)(yp − y2)− (yp − y1)(xp − x2).

(4.9)

We will consider a 2 by 2 square plate and a N ∗ N point-mesh on it, with N odd so
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Figure 4.2: Computing the filament circulations from the panel circulations.

that a vortex point will be placed in the center of the plate. By imposing the no-through

flow conditions in the center of the mesh panels we will get (N − 1)2 linear equations using

formula (4.5). To each panel we assign a circulation Γij . However, in order to be able to

construct this linear system we should rearrange this circulation matrix into an array using

a natural counting method from right to left and from up to down. At time t = 0+, before

anything is shed into the free sheet, the linear system will look like this

a11Γ1 + a12Γ2 + a13Γ3 + ... + a1,(N−1)2Γ(N−1)2 = U0

a21Γ1 + a22Γ2 + a23Γ3 + ... + a2,(N−1)2Γ(N−1)2 = U0

... (4.10)

a(N−1)2,1Γ1 + a(N−1)2,2Γ2 + a(N−1)2,3Γ3 + ... + a(N−1)2,(N−1)2Γ(N−1)2 = U0.

Whenever we compute the velocity induced by a panel on a certain point (centers of the

panels), we will add the contribution from each segment filament bordering the considered

panel so every segment will give two contributions. One segment filament will enter the

calculations from both panels it belongs to, having the circulations assigned to those panels.

Therefore, after inverting the matrix and solving the system, we have to recalculate the

circulation of each bound filament. Thus, the circulation of a certain filament will be given

by the difference of the circulations of the panels the filament borders. To do this, we will



75

have to reconstruct the circulation matrix from the circulation array obtained by solving

the system. As in Figure (4.2) we will get

Γf1 = Γi,j+1 − Γij , and Γf2 = Γi+1,j − Γij . (4.11)

We are doing this because the velocity induced by a filament is taken into consideration

two times, one time for every panel it belongs to. When we are at the edge, the circulation

for the corresponding missing panel will be considered zero.

Free Sheet We found a very simple and elegant way to solve for the free sheet. At this

point we know how to solve for all the quantities on the bound sheet. We do know the

circulation along all the chord-wise and span-wise sections. From now on, we will switch to

the two-dimensional method and apply it for all these sections with the given steady-state

bound circulation, imported from the three-dimensional model. As in Section (3.1.2), we

will compute for every such two-dimensional slice the sheet strength value at the edge γe,

which will give us the slip velocities at both edges U . Furthermore, we will compute the slip

velocities above and below the edge and impose the non-attached slip flow condition. With

the updated slip velocities we will recompute U , which is now the velocity of the currently

released vortex filament, and also the circulation of this free vortex from (2.22).

Having all the information about the first free vortex element we can now move it

according to U . Going to the next time steps, we will solve the corresponding section’s two-

dimensional linear system. However, from now on the contributions from the previously

released free vortices will enter the system. Their circulation will be known since it is

preserved in time, and therefore we can write the system as

AΓ̃ = b̃, (4.12)

where A is the matrix of coefficients from the two-dimensional model, Γ̃ is the new bound

circulation to be computed, and b̃ is the known vector, including the circulation induced

by the free vortex elements. We can look at this system as a perturbed system from its

original state. Consider b̃ = b+ δb, where b is the vector from time step one consisting only
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of the imposed normal velocities, to which we add some perturbation δb which is in fact the

velocity induced by the free vortices. Then, we can also write Γ̃ = Γ + δΓ, where Γ is the

wake-less bound circulation imported from the three-dimensional model. Hence we get

A(Γ + δΓ) = b+ δb. (4.13)

But A, Γ and b solve the initial linear system at time t = 0 so AΓ = b and therefore

(4.13) becomes

A · δΓ = δb. (4.14)

Solving this system we get δΓ and hence the new bound circulation Γ + δΓ. All the other

quantities: the edge strength, the slip velocities and the velocities of the free vortices, are

computed at every time step from the two-dimensional model, using the known bound

circulation.

4.1 Validation of the Three-Dimensional Model Using the

Two-Dimensional Results

To verify the accuracy of our three-dimensional model, we try to compare our results with

the ones obtained in the two-dimensional formulation. One way to do that would be to

take a very high aspect-ratio wing and check what happens in the middle section. Since the

wing is very long, the fact that it is finite should have very little influence in the center and

we expect the center section to behave very similar to the two-dimensional plate we studied

in Section (3.1.2). We analyze a three-dimensional plate of length 62 and width 2. The

mesh consists of 31x31 points and they are placed according to some cosine distribution so

that we have more points in the corners and therefore better accuracy. We will compare

the steady-state circulation (no wake influence) of the center section of this plate with the

two-dimensional model which has a length of 2 and a mesh of 31 points as well. The wings

will advance upwards with a speed U = 1.

Figure (4.3) (a) shows the wing and the section we are considering and part (b) shows
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Figure 4.3: (a) three-dimensional high aspect ratio wing and section considered; (b) Plot of
steady-state circulation as given by Equation (4.5).

what the steady-state circulation looks like on the wing. This is to be understood in the

sense of Equation (4.5). To get similar results to the two-dimensional case we have to use

Equation (4.11) and compute the circulation of the filaments on the section considered.

Plotting this on top of the two-dimensional circulation (see Figure (4.4) plot (a)) we get

results so close they cannot be differentiated just by the plots. The norm of their difference

is very small, 2.4842 · 10−4 however it is bigger than computer precision which shows the

presence of the three-dimensional effect.

Plot (b) in Figure (4.4) shows the circulation in the section which is closest to the edge

of the wing in a chord-wise section. We can notice that even though the shape looks similar,

the absolute value of the circulation of the filaments is lower than in the center section, being

about half the later. Plot (c) shows the circulation along the center section in a span-wise

plane, and this is quite different than the other two. The circulation being very small for

the main part of this section shows that the edge effects become very small as we go further

from the plate’s edges. In fact it says that only about 22% of the plate near every edge

will feel the finite-wing effect. The last plot, (d), gives the circulation on the plate for a

section near the edge in a span-wise plane. Note that this is significantly smaller than the

circulation for the corresponding center section, being about 6 times smaller. In conclusion,

our model proves to be very accurate when compared with the two-dimensional one and



78

0 5 10 15 20 25 30 35
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x−axis

G
am

m
a0

(a)

0 5 10 15 20 25 30 35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x−axis

G
am

m
a0

(b)

0 5 10 15 20 25 30 35
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y − axis

G
am

m
a0

(c)

0 5 10 15 20 25 30 35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

y−axis

G
am

a0

(d)

Figure 4.4: (a)&(b) chord-wise sections; (c)&(d) span-wise sections; (a) Superposition of cir-
culation obtained in the two-dimensional case and the one obtained in the three-dimensional
center chord-wise section; (b) Circulation obtained in the three-dimensional case, on an edge
chord-wise section; (c) Circulation for the three-dimensional case on the central span-wise
section; (d) Circulation for the three-dimensional case on an edge span-wise section.

plots (b), (c) and (d) show how important the three-dimensional effect is in the motion of

the plate, especially at the edges. They also show that the finite-plate effect tends to reduce

the vorticity in the near-edge cross sections compared to the center ones.

4.2 Numerical Results vs. Experiment for a Rectangular

Wing

In this section we will try again to refer to more concrete examples taken from nature. To

do that we will try to consider some wings with aspect ratios (AR) found in various birds

and insects. Aspect ratio here will be defined as b2/S, where b is the span of a single wing,
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instead of the conventional definition, which is the distance between both wing tips; S is

the single-wing plan-form (top-view) area.

Flying insects have AR’s between about 2.75 and almost 6 (Ellington [1984] & Dickinson

[1999]) while hummingbirds have AR’s of around 4 (Dhawan [1991]); a soaring bird, such as

albatross, has an AR of about 9 (Dhawan [1991]). A finite aspect-ratio wing, compared to

one of infinite span, experiences aerodynamic effects due to the tip, which increase relatively

as the aspect ratio decreases. Therefore for low aspect ratio wings the influence of the tip

is very significant.

In this chapter we will refer extensively to the experiments done by Ringuette (see

Ringuette [2004]) in the GALCIT towing tank at California Institute of Technology. Given

the aspect ratios found in insects and hummingbirds mentioned above, he made some ex-

periments with flat plates of rectangular planforms, having AR = 2 and AR = 6. Next, we

will compare these experiments with the result obtained with our numerical method.

One thing the reader should be aware of is the presence of vortex separation in Ringuette’s

work. He argues that the circulation of the vortex ring does not grow indefinitely. Therefore,

the experiments will show separation which happens at a time called “formation number”.

Formation number is the non-dimensional time at which a vortex achieves its maximum

circulation before pinch-off. Pinch-off occurs when a vortex is no longer being fed by the

shear-layer that generated it and the two become distinct entities in terms of vorticity. This

separation was found in the experiment, however the numerical method is unable to observe

it. Of course, if we wanted to mimic the experiment even better we could artificially detach

the leading edge vortex (LEV) in our numerical method and let another one begin forming.

Aspect Ratio 2 For a wing of aspect ratio 2, the effects due to the tip are more prevalent

then in the AR = 6 case. It can be seen from Figure (4.5) that the vortices near both chord-

wise and span-wise center sections have more roll-ups than the ones near the corresponding

edges. This is in perfect agreement with what we found in a previous section, where we

showed (see Figure (4.4)) that there is more circulation near the bound center sections

than near the edges. This will imply that less circulation is shed in the free sheet near the

edges, making the vortices weaker. Also from the same plots (see Figure (4.4)) we expect
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Figure 4.5: Wake shape for AR = 2.

the vortices to be stronger along the chord wise sections compared to those released along

span-wise sections since the corresponding total circulation is bigger.

In both numerical and experimental setup a plate with chord c = 5 and aspect ratio

AR = 2 is used (for the experiment the measuring unit was centimeter). The plate velocity

is U0 = 6 and for the numerical method we choose a time step of dt = 0.003 and a blob

δ = 0.2. Our numerical bound sheet is represented by a 31x31 point mesh.

In Figure (4.6) we make a comparison between the experiment (plot (a)) and our nu-

merical method (plot (b)). We plot here the total circulation of a chord-wise section in the

wake versus the formation time. The formation time is a non-dimensional time defined as

tform = U0 · t/c where c is the chord. The plots are for three different chord-wise sections:

triangles denote the circulation at 50% of span, circles at 75% of span and diamonds at 90%

of span. It can be seen that the plots look very similar until the pinch-off occurs. After

that, the circulation from the experiment would not grow as fast anymore and trail after

the numerical results. This can be seen even better in Figure (4.7).

Plots (a) and (b) show the total circulation at 50% span from experiment and numerical

method, respectively. We can see that the plots are identical until about formation time
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Figure 4.6: Circulation vs. formation time from (a) Ringuette’s experiment and (b) nu-
merical method, for AR = 2, triangles - 50% span, circles - 75% span, diamonds - 90%
span.

tform = 3, i.e., until the plate has traveled three chord lengths. Accordingly, plots (c) and

(d) show the circulation at 75% span while (e) and (f) show the circulation at 90% span. On

the right is always the experimental result. We can see that for the 75% case the similarity

goes up to tform = 2 while in the 90% case up to tform = 1.5. On the left, we also have the

shapes of the corresponding sections taken from the experiment at given formation times.

Aspect Ratio 6 For a wing of aspect ratio 6, the effects due to the tip are less significant

than in the AR = 2 case. It can be seen from Figure (4.8) that the vortices near both chord-

wise and span-wise center sections have more roll-ups than the ones near the corresponding

edges. This is, again, in perfect agreement with what we found in a previous section, where

it was showed (see Figure (4.4)) that there is more circulation near the bound center sections

than near the edges. This implies that less circulation is shed in the free sheet near the

edges, making the vortices weaker. However, in this case this can be seen better along span-

wise sections due to the higher aspect ratio plate. Also, from the same plots (see Figure

(4.4)) we expect the vortices to be stronger along the chord wise sections compared to those
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Figure 4.7: Total circulation versus formation time for AR = 2. Left column - Ringuette’s
experiment results, right column - our numerical results. (a)&(b) 50% span, (c)&(d) 75%
span, (e)&(f) 90% span.
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Figure 4.8: Wake shape for AR = 6.

released along span-wise sections since the corresponding total circulation is bigger. This

is obviously more pronounced here than in the AR = 2 case.

In both numerical and experimental setup, a plate with chord c = 5 and aspect ratio

AR = 6 is used (for the experiment the measuring unit was centimeter). The plate velocity

is U0 = 6, and, for the numerical method, we choose a time step of dt = 0.003 and a blob

δ = 0.2. Our numerical bound sheet is represented by a 31x31 point mesh.

In Figure (4.9) we make a comparison between the experiment (plot (a)) and our nu-

merical method (plot (b)). We plot here again the total circulation of a chord-wise section

in the wake versus the formation time. The plots are for three different chord-wise sections:

triangles denote the circulation at 50% of span, circles at 75% of span and diamonds at 90%

of span. It can be seen that the plots look very similar until the pinch-off occurs. After

that, the circulation from the experiment would not grow as fast anymore and trail after

the numerical results. This can be seen even better in Figure (4.10).

Plots (a) and (b) show the total circulation at 50% span from experiment and numerical

method, respectively. We can see that the plots are identical all the way up to formation

time tform = 4.5, i.e., until the plate has traveled four and a half chord lengths. Accordingly,
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Figure 4.9: Circulation vs. formation time from (a) Ringuette’s experiment and (b) nu-
merical method, for AR = 6, triangles - 50% span, circles - 75% span, diamonds - 90%
span.

plots (c) and (d) show the circulation at 75% span, while (e) and (f) show the circulation

at 90% span. On the right is always the experimental result. We can see that for the 75%

case the similarity goes up to tform = 3 while in the 90% case up to tform = 2. On the left,

we also have the shapes of the corresponding sections taken from the experiment at given

formation times. The plot of the circulation of the leading edge vortex is also included in

some of these plots (x’s and/or crosses). One can see that after a while the circulation of

this LEV will trail the total circulation, implying separation.
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Figure 4.10: Total circulation versus formation time for AR = 6. Left column - Ringuette’s
experiment results, right column - our numerical results. (a)&(b) 50% span, (c)&(d) 75%
span, (e)&(f) 90% span.
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4.3 Numerical Results for a Three-Dimensional Square Wing

We thought it would be interesting to post here the numerical results for a square plate

when AR = 1. Of course, in this case the finite-wing effects are the strongest. Unfortunately

we couldn’t find an experiment to match the square plate model but based on the previous

comparisons for AR > 1 we are very confident our results are correct.

For the numerical simulations, we choose a square plate of length 2 represented by a

31x31 point mesh. The plate is moving upwards with a velocity U0 = 1 and data is collected

every dt = 0.01 time step. The blob again is chosen to be δ = 0.2, and the code is stopped

after 400 time steps. This is equivalent to a formation time of 4.

In Figure (4.11) (a)&(b), we plot a quarter of the wake. Of course, the wake will be

symmetrical. From this plots we can see very well how the increased circulation shed in

the wake near the center sections makes the vortices stronger, with more roll-ups, while the

vortices near the edges are weaker with fewer roll-ups. Due to the lack of circulation, the

edge vortices are more elongated because the normal velocity is dominant. Plots (a) and

(b) are similar, with the only difference that in plot (b) we have half as many vortices as in

(a) for a better visualization.

Figure (4.12) contains a plot similar to the ones we have already seen in AR = 2 and

AR = 6 cases: total circulation versus formation time. This time though, due to the more

powerful finite-wing effects, the separation between the three curves (M’s - 50% span, ◦’s -

75% span and �’s - 90% span) is even more accentuated.
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Figure 4.11: Wake shape in the case of a square plate. (a) has twice as many vortices as
(b).
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Chapter 5

Concluding Remarks and Future
Directions

Concluding Remarks The main goal of this thesis was to get more insight into fish and

bird locomotion. Even though the topic is incredibly vast, we tried to explain some features

found in nature, such as the effect of the trailing wake on the thrust and lift. This was done

using the new and efficient method of Professor Wu which we demonstrated to be more

reliable than the previous ones.

The new method can better capture the leading singular effect near the trailing edge,

which improves the accuracy when dealing with some high nonlinear movements. The

vorticity blows up near the the first released vortex element, and the analytical analysis

provided by our method succeeds in better resolving this issue. We showed that the current

method is better than the other methods when verifying Wagner’s result. We also discussed

the convergence of the outer wake and were able to demonstrate that using a blob in Wu’s

method did not affect its accuracy, since the method is more dependent on the time step

than on the blob size. All the results compared very well with the experiments, and the

method showed a great deal of robustness and accuracy on all the models and simulations

we tried it on. When compared to Davenport’s experiment, Wu’s method gives a much

better position and size of the outer wake than Krasny’s method.

The three-dimensional model presented here is just a start for what could be an analysis

of the same depth as the two-dimensional one. We consider it just a teaser for the reader

and a good start for a better understanding of the natural three-dimensional movement.

The current method shows some very nice behavior compared with the experiment and
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demonstrates how efficient a direct generalization of the two-dimensional theory could be

when some three-dimensional considerations are also taken into account.

Future Directions There are several directions to follow in the future to continue what

we have started here.

We began working on this project fascinated by Gray’s paradox. He proved in 1936 that

given the muscle power and the frictional drag experienced during the motion, a fish could

not swim as fast as some of the species do. One explanation for this might be the effect of

the vortices released by the lateral fins on the tail fin. The tail fin could just take advantage

of this vorticity present in the fluid and generate a greater thrust for the fish. Another

unexplained fish behavior would be the extremely rapid U-turn a trout, for example, could

make when approaching a wall at very high speed. All these examples involve extremely

nonlinear motions and require some very fine mathematical analysis. We are confident that

the new method presented in this thesis could help in solving some of these mysteries. The

two-dimensional, semi-analytical approach of Professor Wu could capture these sensible

details when dealing with highly-curved movements and wake-crossing maneuvers by Sb.

From a technical point of view, it would be a big step forward to better understand the

necessity of the numerical blob, and to try to develop a numerical method that avoids using

it, therefore becoming even more precise.

In three dimensions, our method already captures a lot of the experimental details,

and therefore it could be a very good start for developing a more sensitive mathematical

model. Just like in two dimensions, where we started with Krasny’s method just to help

in developing Wu’s approach, this three-dimensional model could provide the basis for a

further investigation of a possible generalization of Wu’s method in three dimensions. This

may be a very difficult theoretical task, but it could lead to some very nice results. However,

even the further development of the present method could bring some valuable information

about the three-dimensional flight. The idea of a three dimensional wing advancing at

a given angle of attack with the finite-wing effects taken into consideration is extremely

tempting especially for the visualization and effects of the trailing wake. A more immediate

task would be to model and understand the helical pattern observed by Ringuette in 2004
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in the corner regions of a three-dimensional plate advancing perpendicular to the flow.
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Appendix A

Cauchy Integral Equation of the
First Kind

Lemma. The solution of the Cauchy integral equation of the first kind,

1
πı
−
∫ 1

−1

φ(y)
y − x

dy = 1 is φ(y) = ı

√
1 + y

1− y
, for any y ∈ (−1, 1).

Proof. Let’s define

Φ(z) =
1

2πı
−
∫ 1

−1

φ(y)
y − z

dy,

and assume that the solution is Hölder continuous, so that the Plemelj formulas (see Muskhe-

lishvili [1946], §17, eq. (17.2)) apply

Φ±(x) = ±φ(x)
2

+
1

2πı
−
∫ 1

−1

φ(y)
y − x

dy.

Since

Φ+(x) + Φ−(x) =
1
πı
−
∫ 1

−1

φ(y)
y − x

dy = 1 (A.1)

and Φ+(x)− Φ−(x) = φ(x), (A.2)

the task of solving the integral equation becomes that of solving (A.1), which is an inho-

mogeneous multiplicative Riemann-Hilbert problem.

To find an analytic function satisfying (A.1), we first try to find a function that satisfies
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the homogeneous version of this problem. Let Φ(z) = H(z)Ψ(z), where

H+(x) +H−(x) = 0

across the interval [-1,1]. We rearrange this equation and apply a logarithm to turn it into

an additive Riemann-Hilbert problem

logH+(z)− logH−(x) = ıπ.

The solution to this additive problem is

logH(z) =
1

2πı

∫ 1

−1

ıπ

ξ − z
dξ + k(z)

=
1
2

log(ξ − z)
∣∣∣∣ξ=1

ξ=−1

+ k(z)

=
1
2

log
(
z − 1
z + 1

)
+ k(z),

where k(z) is any entire function. We will not have any need for k(z) in this problem so

we set k(z) = 0, but it is sometimes helpful to choose an appropriate k(z) to make later

calculations more convenient. We have now determined that

H(z) =

√
z − 1
z + 1

.

Since we want H(z) to have a branch cut along the interval [-1,1], let’s restrict arg(z − 1)

and arg(z + 1) to [0, 2π). This choice of angle restriction produces

H±(x) = lim
y→0±

H(x+ ıy) = ±ı
√

1− x

1 + x
.

(Of course, H(z) satisfies H+(x) +H−(x) = 0.)

Knowing h(z) allows us to turn the original inhomogeneous multiplicative Riemann-

Hilbert problem into an additive one. Substituting Φ±(x) = H±(x)Ψ±(x) into (A.1) and
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rearranging, we obtain

Ψ+(x)−Ψ−(x) =
1

H+(x)
= −ı

√
x+ 1
1− x

.

We use the Discontinuity Theorem to find Ψ(z).

Ψ(z) =
−ı
2πı

∫ 1

−1

√
ξ + 1
1− ξ

dξ

ξ − z

Let t =
√

(ξ + 1)(1− ξ). =
2

π(z − 1)

∫ ∞

0

t2dt

(t2 + 1)(t2 + z+1
z−1)

Decompose fractions =
1

π(z − 1)

∫ ∞

0

[
z + 1

t2 + z+1
z−1

− z − 1
t2 + 1

]
dt

Use
∫∞
0 dx/(x2 + a2) = π/(2a). =

1
2(z − 1)

[
(z + 1)

√
z − 1
z + 1

− (z − 1)

]

=
1
2

[√
z + 1
z − 1

− 1

]
.

Using the same angle restrictions as before, we find that

Ψ±(x) =
1
2

[
∓ı
√
x+ 1
1− x

− 1

]
.

Now all that remains is to recall that Φ±(x) = H±(x)Ψ±(x) and work through some algebra

to obtain the solution to the integral equation,

φ(x) = Φ+(x)− Φ−(x) = −ı
√

1− x

x+ 1
.

�
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