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Abstract

We study the relation between topological sigma models and generalized geometries. The
existence conditions for the most general type of topological sigma models obtained from
twisting the NV = (2,2) supersymmetric sigma model are investigated, and are found to be
related to twisted generalized Calabi-Yau structures. The properties of these topological
sigma models are analyzed in detail. The observables are shown to be described by the
cohomology of a Lie algebroid, which is intrinsically associated with the twisted generalized
Calabi-Yau structure. The Frobenius structure on the space of states and the effects of
instantons are analyzed. We also study D-branes in these topological sigma models, and

demonstrate that they also admit descriptions in terms of generalized geometries.
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Chapter 1

Introduction

Since their discovery in the 1970s [35] and 80s [38], topological field theories (TFT) have
proven to be a remarkably fruitful area of research for both physics and mathematics. Phys-
ically, many TFTs admit exact treatment and yet share important properties of their more
“physical” siblings. The study of TFTs has had a great impact on our understanding of
quantum field theories and string theories in general. A good example in this regard is
the realization that certain quantities in the physical model can be computed exactly in
the much-simpler topological model [3]. From the mathematical point of view, TFTs are
typically closely related to questions of interest in geometry and topology. The methods
employed to solve the TFTs have led to new developments in these subjects. One example
in this regard is E. Witten’s solution of the Chern-Simons theory, which has resulted in

surprising advances in knot theory.

A particularly important class of TFTs are the two-dimensional topological sigma models
[39]. Loosely speaking, a topological sigma model is a TFT whose fields are constructed
from maps from a Riemann surface ¥ (the worldsheet) to a manifold M (the target). It was
first discovered by Witten that the topological sigma model can be defined on any almost
Ké&hler manifold [39]. The correlation functions in such a theory are the celebrated Gromov-
Witten invariants of J-holomorphic curves. If the target manifold is actually Kahler, then
the topological sigma model can be constructed alternatively by “twisting” an N = (2,2)

supersymmetric sigma model. In fact, there are two inequivalent twistings, and the resulting
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topological field theories are called the A-model and the B-model, respectively[40].

The A-model and B-model are topological field theories in the sense that they do not
depend on the metric on the worldsheet ¥. In addition, the A-model only depends on the
Kéhler moduli of M, while the B-model only depends on the complex moduli of M. An
important fact concerning the B-model is that, due to an analogue of the familiar chiral
anomaly in four dimensions, the B-model is well-defined as a quantum theory if and only if
M is a Calabi-Yau manifold. There is no such restriction for the A-model. Mirror symmetry
exchanges the B-model on a Calabi-Yau manifold M with the A-model on the mirror Calabi-

Yau M.

Although the above story has become a well-established part of our knowledge, there
are certain unsatisfactory aspects in this picture. Perhaps the most glaring one is the fact
that the A-model and the B-model are not defined on the same category of manifolds. As
already mentioned, while the A-model can be defined on any Kéahler manifold, the B-model
only exists on Calabi-Yau manifolds. In fact, the A-model only depends on the symplectic
structure on M and, when it is formulated on a symplectic manifold, it is precisely the
topological sigma model originally discovered by Witten. Given the stark differences between
the A-model and B-model, it is natural to ask whether there is a more general class of
topological sigma models, which includes the A/B models as special examples, and which
is defined on a new type of geometry that include both the symplectic geometry and the
Calabi-Yau geometry?

One of the main goals of this thesis is to investigate such a possibility. It turns out
that there is indeed a more general type of topological sigma model that includes the A-
model and the B-model as two extreme examples. It is defined on a new type of manifolds
recently introduced by N. Hitchin—the generalized Calabi-Yau manifolds [15]. As the name
suggests, the usual Calabi-Yau manifolds are special examples of the generalized Calabi-Yau

manifolds.

We begin with a brief introduction to generalized geometries in Chapter 2. This chap-

ter is aimed at providing the necessary mathematical background that is needed in later
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chapters. This is a review of known mathematical facts, mainly developed by N. Hitchin
and M. Gualtieri. Given a smooth manifold M, let us denote its tangent bundle by 7" and
cotangent bundle by 7. In the realm of “generalized” geometries, the geometric properties
of M are studied from the viewpoint of the direct sum 7' @ T™ rather than of T' or T alone.
Just like on the tangent bundle 7', there exists a natural bracket structure on 7'@® 7™. This
is the so-called Courant bracket. As we shall see, the Courant bracket plays a crucial role
in defining the generalized complex structure. Other types of geometric structures also have
their “generalized” counterparts; important examples for our purpose are generalized Kahler
and generalized Calabi-Yau geometries. It should be noted that all generalized geometries

mentioned above have a twisted version, whenever a closed 3-form is present.

In Chapter 3, we begin by briefly reviewing our physical setup: the N = (2,2) super-
symmetric sigma model in two dimensions. The most general (2,2) sigma model was first
analyzed by Gates, Hull, and Rocek [9] in 1984. The main novelty in their findings is that the
(2,2) theory actually allows two independent complex structures as well as a Neveu-Schwarz
three-form H. Each of the complex structures is Hermitian with respect to the metric and is
covariantly constant with respect to a specific connection with torsion. The torsion is closely
related to the three-form H. It is a remarkable fact, proved by M. Gualtieri [12], that the
rather intricate geometric structure associated with (2,2) sigma models is equivalent to the
twisted generalized K&hler structure. Generalized geometry enters the scene of (2,2) sigma

models in a natural but nontrivial manner.

In the same chapter, we describe in detail how to obtain a topological field theory from
twisting the generic (2, 2) sigma model. In particular, we construct a scalar odd operator Qg
from the twisted (2, 2) supersymmetry operators, which satisfies Q% = 0. It is regarded as a
BRST operator in the twisted theory, and observables of the twisted theory are identified with
the @ g-cohomology. Such field theories are usually called cohomological field theories. For
reasons that will be explained in detail later, we shall call this twisted theory the generalized
B-model. Due to quantum anomalies, the twisted theory makes sense as a cohomological

field theory at the quantum level if and only if certain geometric and topological conditions
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are satisfied. This can already be seen in the case of the ordinary B-model, which is well-
defined if and only if its canonical bundle admits a nowhere zero holomorphic section. For the
generalized B-model, the analogous condition turns out to be precisely the one that defines
the so-called twisted generalized Calabi-Yau (TGCY) structure introduced by N. Hitchin in
[15]. When the TGCY condition is met, we prove that the twisted theory is a topological

field theory, in the sense that its energy-momentum tensor is BRST exact.

We analyze the fundamental properties of the topological theory in Chapter 4. A main
result is the identification of local BRST invariant observables of the generalized B-model
with the Lie algebroid cohomology of an intrinsically associated complex Lie algebroid. The
space of observables not only has a ring structure naturally derived from the Lie algebroid
cohomology ring, but also has a compatible product, defined by tree-level two-point corre-
lation functions. This is usually referred to as a Frobenius structure. We also comment on

the role that instantons play in the quantum theory.

Another goal of the thesis is to initiate an investigation of topological D-branes in the
general topological sigma models discussed above. The rank-one objects were first described
by A. Kapustin in geometric terms [21]. Again, generalized geometry enters the scene: a
D-brane preserves the topological algebra of the generalized B-model if and only if it defines
a so-called generalized complex submanifold. We call such a brane a GC brane. In Chapter
5, we analyze the open string BRST cohomology for rank-1 GC branes. This material is
based on [23]. It turns out that, just like in the closed string case, the open string BRST
cohomology is computed by a Lie algebroid cohomology. This viewpoint sheds new light even
on the rank-1 ordinary A-branes and B-branes. For example, the Lie algebroid cohomology
for ordinary B-branes naturally leads to the spectral sequence of S. Katz and E. Sharpe
[26], while for rank-one coisotropic A-branes it leads to a proof of a conjecture of Kapustin
and Orlov [25]. Finally, we indicate how to extend the analysis to higher-rank topological

D-branes.

The majority of the thesis is based on recently published joint work with A. Kapustin

[22, 23], although some content has not appeared in the literature before. One new result
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is the proof of topological invariance of the generalized B-model in Sec. 3.4. Another is
the treatment of higher-rank topological D-branes in Sec. 5.3, which is based on ongoing
work with A. Kapustin. Finally, in the Summary, the discussion of the deformation space
of twisted generalized Calabi-Yau manifolds is based on still-unpublished material, and the
space-time effective description of the generalized B-model is based on ongoing work with

J. Gomis.



Chapter 2

Geometric Background

2.1 The geometry of T T*

The essence of generalized geometries is to regard various geometric structures as defined on
the direct sum of the tangent bundle and the cotangent bundle &7, instead of structures on
the tangent bundle or cotangent bundle alone. We will introduce various types of generalized
geometries in the following. In this section we will briefly review the geometry of T' & T™.
We will follow refs. [15, 12] closely.

A notable difference between 7" @ T* and 7' is that the former comes with a natural

non-degenerate inner product. Given any X,Y € I'(T)! and &,m € T'(T*), one defines

(n(X) +£(Y)).

N | —

(X +&Y +n) =

The pairing (, ) is a nondegenerate symmetric bilinear form and so can naturally be regarded

as an inner produce on T'@® T*. Note that (,) has signature (n,n), where n = dimT.

Just like there is a Lie bracket on 7', there is also a natural bracket structure on 7' T,

the Courant bracket. It is defined by

X+ &Y 4] = [X, Y]+ Ly — Lyé — Jd(exn — )

'In this thesis, I'(E) always denote the space of C* sections of vector bundle E.
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for any X + &, Y +n € I'(T'® T*). Here on the right-hand side, [,] denotes the usual Lie
bracket on T', Lx is the Lie derivative along X, and ¢x the interior product with X.

Although the Courant bracket [,] is antisymmetric by definition, it is not a Lie bracket,
because it does not satisfy the Jacobi identity. Given three sections A, B, C, the failure of
the Jacobi identity of their brackets is measured by d(A, [B, C]) 4 cyclic. From this it follows
that when restricted to an isotropic subbundle of T" & 7™, the Courant bracket becomes
a Lie bracket. This fact is crucial for us, as we will frequently work with eigenbundles
of generalized complex structures (see next section), and these eigenbundles are maximal
isotropic subbundles of the complexification of T'@® T™*. The (complex) Lie bracket induced
from the Courant bracket endows these eigenbundles with the structure of Lie algebroids.
The definition of a Lie algebroid is given in the Appendix.

If H € Q3(M) is a closed 3-form, then one can define the twisted Courant bracket, denoted
by [,]g. Forany X +& Y +n, X,Y € [(T), {,n € ['(T™*)), one defines

(X+&EY +ng=[X+EY +n]+wwiexH .

Most properties of the Courant bracket extend to its twisted cousin. In particular, when
restricted to an isotropic subbundle, it also becomes a true Lie bracket (here it is important

that dH = 0).

2.2 Generalized complex structures

Before we venture into the land of “generalized” geometries, it is a good idea to first recall how
an ordinary complex structure is defined in differential geometry. Given an even-dimensional
manifold M, an almost complex structure is a smooth section J of the endomorphism bundle
of TM, End TM, such that J? = —id. 2 A complex structure is an almost complex structure

that is integrable. There are several equivalent ways to formulate the integrability condition.

20f course an almost complex structure does not always exist on an even-dimensional manifold, and there
are topological obstructions in general. The question of finding the sufficient and necessary conditions for
the existence of almost complex structures is an open problem in differential geometry.
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One approach that is particularly convenient for us uses the natural Lie bracket [,] on TM.
Let TM¢ be the complexified tangent bundle. Extending by C-linearity, [,] also gives a Lie
bracket on TM¢. Let TM™? (resp. TM%') denote the +i-eigenbundle (resp. —i-eigenbundle)
with respect to the almost complex structure J. J is said to be integrable if and only if
TM' (or TM®!) is closed under the Lie bracket [, ].

The definition of generalized complex structure (GC structure) is similar. It also involves
two parts: defining the almost structure, and specifying a suitable integrability condition.
On a generic even-dimensional® manifold, the structure group of T @& T* is O(2n,2n). A
generalized almost complex (almost GC) structure is a reduction of the structure group
from O(2n,2n) to U(n,n). In geometric terms, a generalized almost GC structure J is a
section of the endomorphism bundle End (7' @ T*) such that the following two conditions are
satisfied: 1) J is orthogonal with respect to the canonical inner product (,) on T @® T*; 2)
J defines an almost complex structure on T'® T, namely J?2 = —1.

It can be shown that almost GC structures only exist on even-dimensional manifolds.
Also, as in the case of almost complex structure, there are in general obstructions to their ex-
istence. Thanks to a result of M. Gualtieri, topological obstructions to almost GC structures
are the same as the ones to almost complex structures. In other words, an even-dimensional
real manifold admits an almost GC structure if and only if it admits an ordinary almost
complex structure.

A generalized complex structure (GC structure) is an almost GC structure satisfying a
further integrability condition. In the definition of ordinary complex structures, the natural
Lie bracket on Tt is used to define the integrability condition. In the generalized case,
it should be rather evident that one should make use of the natural bracket structure on
Tc @ T¢, the Courant bracket. Let E; be the +i (or —i) eigenbundle of [ in Tt & T¢. The
almost GC structure J is said to be integrable if E 7 is closed under the Courant bracket on
Tc ®T¢. An integrable almost GC structure is called a generalized complex (GC) structure.

Before we move to more specialized generalized geometries, let us first look at some

3Like in the case of complex geometry, the existence of generalized almost complex structure requires the
dimension of the manifold to be even.
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standard examples of generalized complex manifolds. Not surprisingly, ordinary complex
manifolds are GC manifolds. This can be seen as follows. Let (A, I) be a complex manifold

with complex structure I. Let us construct an almost GC structure J; as

Jr = : (2.2.1)

Here we write J; in the matrix form with respect to the splitting TM &TM*, and [* : T* — T*
is the dual of I (i.e., I"¢§(X) = &(IX) for any X € T,¢ € T™). Obviously J; specifies an
almost complex structure on TM @ TM* because [ is an almost complex structure. It is also

easy to see that J; is integrable if and only if I is an integrable almost complex structure.

Perhaps more surprizing is the fact that symplectic manifolds provide another class of
examples of GC manifolds. If M is a symplectic manifold with symplectic form w, one can

define

T = : (2.2.2)

l'is a nondegenerate Poisson bivector. Clearly

Here the inverse of the symplectic 2-form w™
J2 = —id, so it is an almost GC structure. The +i eigenbundle is E7, = {X —iw(X)|X €
TMc}. It is easy to show that E 7 is closed under the Courant bracket if and only if dw = 0,

which is precisely the condition for the presymplectic manifold (M, w) to be symplectic.

From the above examples, one can see that generalized complex geometry unifies ordinary
complex geometry and symplectic geometry. In fact, complex geometry and symplectic
geometry can be regarded as two extreme cases of generalized geometry. To state this in a
more concrete way, we recall the definition of the type of a generalized complex manifold.
Let (M, J) be a GC manifold of real dimension 2n, and L be the image of the projection of
E; to TM ® C. The type of the generalized complex structure J at p € M is defined to be
the codimension of (E7), in T, ® C. It is easy to see that complex manifolds are examples
of type-n GC manifolds while symplectic manifolds are examples of type-0 GC manifolds.

There is a large middle ground in between. In addition, the type of a GC manifold is not
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required to be fixed over the whole manifold. More exotic examples of GC manifolds of
varying types are discussed in M. Gualtieri’s thesis [12].

When there is a closed 3-form H, the Courant bracket can be twisted. One can define the
twisted generalized complex (TGC) structure correspondingly. The definition of the almost
structure is the same as before, but the integrability is defined via the twisted Courant
bracket. In other words, one requires E; to be closed under [, ]y. As in the untwisted case,

the twisted Courant bracket [,]g restricts to a Lie bracket on E.

2.3 Generalized Kahler structures

A generalized Kéhler (GK) structure is a pair of commuting GC structures (J;, J2) such that
G = —J1J> defines a positive definite metric on T' @ T*. Here we have used the intrinsic
inner product (,) to identify a metric with an endomorphism. Similarly, in the presence of
a closed 3-form H, one can correspondingly define the twisted generalized Kéhler (TGK)
structure, by demanding (71, J2) to be a pair of commuting TGC structures.

From a more algebraic viewpoint, a (twisted) generalized Kéhler structure is an integrable
reduction of the structure group of T@T™* to U(n) x U(n). We briefly recall the construction,
following [12]. The original structure group of T'@® T* is O(2n,2n). A choice of a maximal
subbundle C'; that is positive definite with respect to (,) induces a positive definite metric
on T'@® T*, and reduces the structure group to O(2n) x O(2n). On the other hand, an
almost generalized complex structure reduces the structure group to U(n,n). By analogy
with Kéahler geometry, one requires the positive metric G and the almost generalized complex
structure J to be compatible. If we regard G as an endomorphism on 7" @ 7™, this simply
means that G commutes with . One can also show that GJ is another almost generalized
complex structure, and it commutes with J. By integrable reduction to U(n) x U(n) we
simply demand that both almost generalized complex structures be Courant integrable.

Obviously this construction extends to the twisted case with H # 0.

To see that generalized Kéhler structure is really a generalization of the ordinary Kahler
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structure, let us take a Kahler manifold M, with a complex structure I and a compatible

symplectic form w. We define the following GC structures
I 0 0 —w!

\7[: I jw:
0 —-I* w 0

That J; commutes with 7, is equivalent to the fact that w is compatible with I (i.e. w is of
type-(1,1) with respect to I). That G = —7,7, is a positive definite metric on TM & TM*

is automatic, as

0 -1
a= 7],
g O
where g = —wI is the Hermitian metric on M. Obviously (GA, A) > 0 for any nonzero

AeT T

The importance of TGK geometry lies in the fact that it is precisely the geometry of

general (2,2) supersymmetric sigma models, as we will see in Chapter 3.

2.4 Differential forms and generalized Calabi-Yau man-

ifolds

There are close relationships between the properties of differential operators acting on dif-
ferential forms and the geometric structure of the manifold. A well-known example is the
Dolbeault operator on an almost complex manifold. Given an almost complex structure
I on an even dimensional manifold M, the complexified tangent (or cotangent) bundle is
decomposed into +i eigenbundles of I. Therefore, I induces a second grading on Q°*(M, C),

the space of complex differential forms on M:

O (M,C) = @ .

ptq=r
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Let O be the operator whose action on QP9 is the composition of exterior differential d
followed by projection to QP?*1. Similarly define @ to be the operator whose action on
P4 is the composition of d followed by projection to P14, It is a well-known theorem in
complex geometry that the almost complex structure I is integrable if and only if d = 9 + 0.

In the case of twisted generalized complex geometry, there is an analogous, but less
familiar story. In order to explain this, let us recall that on an almost TGC manifold (M, J)
of dimension 2n, the canonical bundle is defined to be A*®E ;. Alternatively, one can define

the canonical bundle K using differential forms:
K={peQ(MO)](X+&- -p=0VX+EecT(Ey)},
where the action of X + £ on Q°*(M,C) is the Clifford multiplication:
(X+E -p=ENp+ixp, VX € Tc,E € TE .

The canonical bundle K is a uniquely determined line bundle once J is given.
Using the fact that (T ® T*)¢c ~ E @® E* ~ E @ E, and that E annihilates K, we can

give an alternative grading to the space of complex differential forms
Q.(M,(C) ZUo@Ul@"'@UQn, (2.4.1)

where Uy = K is the canonical bundle, and U, = A*E - Uy.* Let us also define the twisted
differential dgy = d — HA. Similar to the case of ordinary complex geometry, we introduce
the “generalized Dolbeault” operators. It is enough to specify their action on Ug. We define
O : T(Ug) — T'(Ugy1) by the composition of dy followed by projection to I'(Ug1). Similarly,
we define 0y : I'(U,) — I'(Ux_1) by the composition of dy and projection to I'(Uy_1). We

have the following theorem:

4Intuitively, one can regard elements in E to be annihilation operators, those in E creation operators,
and K = Up the “vacuum” bundle. That one only needs to consider antisymmetric products of elements in
E is because when acting on Q° (M), they can always be expressed as operators with less degrees via Clifford
algebra.
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Theorem. The almost TGC structure J is integrable if and only if dy = Oy + Ox.

The proof of the theorem in the special case of H = 0 is given by Gualtieri [12], while
the more general form as stated above is proven in [22]. Here we shall give a proof of this
important theorem following [22].

Let p be an arbitrary differential form, and let A = X + £, B = Y + n be arbitrary
sections of E. It is straightforward to show (using Eq. (4.1.5)) and the Cartan identities
Lx =itxod+doux, ixy] = [Lx,ty]) that

A-B-dp = d(BAp)+ B-d(Ap) —A-d(Bp)+[A, Blp (2.4.2)
A-B-(HNp) = —wixHANp+wHA(Ap)
—uxH N (Bp) + H A (ABp). (2.4.3)

Subtracting (2.4.3) from (2.4.2), one obtains

The rest of the proof now follows exactly as in Ref. [12]. First let us assume J is
integrable. For p € I'(Up), (2.4.4) reduces to AB - dyp = [A,Blg - p = 0. Since dgyp has
no component in Uy, it follows that d(T'(Uy)) C T'(U;) and thus dy = Oy + Oy holds for
p € I'(Up). Now assume dy = Oy + Oy holds for all Uy, 0 < k < i, and let p € I'(U;) and
A, B € T'(E) as before. Equation (2.4.4) now shows that AB - dyp € I'(U;_3 ® U;_1), which
in turn implies dgp € T'(U; 1 @ U;y1). By induction, one concludes that dy = 9y + 9y on
A*TM* ® C. The converse is also true by a similar argument.

Now we can give a definition for twisted generalized Calabi-Yau (TGCY) manifolds. A
twisted generalized Calabi-Yau structure is a twisted generalized complex structure that

satisfies the following two conditions:
e There exists a nowhere zero section p of the canonical bundle.

e pis dy-closed, i.e., dyp = 0.
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The first condition simply means that the canonical bundle K is topologically trivial.
The second condition is more interesting. Recall that 0y always decreases the grading by
one. Since p € I'(K) already has the lowest grading, dgp = 0. Therefore dgp = 0 is
equivalent to Oyp = 0, in viewing of the above theorem. This means p is a nowhere zero
generalized holomorphic section. Alternatively, one can rephrase the TGCY condintion as
follows: a twisted generalized complex manifold is twisted generalized Calabi-Yau if and only
if its canonical bundle has a nowhere vanishing generalized holomorphic section. As we will
see in Chapter 3, the condition for TGCY manifold is precisely the condition that a (2,2)
sigma model can be twisted into a topological quantum field theory.

An ordinary Calabi-Yau manifold is clearly a GCY manifold. Interestingly, symplectic
manifolds provide another class of examples of GCY manifolds. If (M,w) is a symplectic
manifold, then the associated GCY structure is the one corresponding to p = e™. Obviously
the GCY condition is satisfied and (M,w) defines a GCY structure.

In [12], M. Gualtieri also introduced a much stronger version of GCY, the generalized
Calabi-Yau metric. Roughly speaking, a generalized Calabi-Yau metric is a generalized
Kéhler structure (71, J2) such that each of the generalized complex structures defines a
generalized Calabi-Yau structure. The (twisted) generalized Calabi-Yau metrics are also
important for us. Although the weaker form of (twisted) GC structure is all one needs
in order to extract a topological field theory from the (2,2) sigma model, the topological
theory has certain “nice” properties if the stronger form of (twisted) GCY metric holds.
For example, it can be related to N = 2 space-time supersymmetry if the stronger form is

satisfied.
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Chapter 3

Topological Theories from N = (2,2)
Sigma Models

3.1 N =(2,2) sigma models in two dimensions

The topological sigma models that we will be studying are constructed from (2,2) super-
symmetric sigma models by twisting. In this section, we review the basic facts about the
general (2,2) supersymmetric sigma models and set up the notation. Let ¥ be a two di-
mensional Riemann surface (the worldsheet) and M a Riemannian manifold (the target).
We shall take a Lorentz metric on ¥ for the moment. Let ¢ : ¥ — M be a map from the
worldsheet to the target. It gives the fields of the bosonic sigma model. It is well-known that
the bosonic sigma model in 1+ 1 dimensions with any Riemannian target manifold always
admits a (1,1) supersymmetric extension. The action of the (1, 1)-extended theory can be

conveniently written in (1, 1) superspace. let us introduce (1, 1) superfields
DU = ¢+ 0P + 07y + -0 F.

Here ¢, are worldsheet fermions of left/right chirality. In mathematical terms, they are
sections of ¢*(TM)® S, St being the two inequivalent spinor bundles on ¥.. F'is an auxiliary

field that will be integrated out eventually. We also introduce the standard supercovariant
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derivatives

0

. 0 .
= % +Z0+8+7 D =_—+1i0 67, 8j: = 80:|:81.

‘D+ 807

We will take the manifest (1,1) supersymmetric action to be

1
S = 5/<;12(f0129(ga,)(<1>)+J_ea,,(cp))mcpapc1>b. (3.1.1)

Here g is a Riemannian metric and B a 2-form potential for the Neuve-Schwarz 3-form H.
Strictly speaking B is not a globally defined 2-form if H is a nontrivial class in H*(M). At
the quantum level, H is quantized so that [H/27] must define a class in H3(M,Z) for the
path integral to be well-defined.

The action is invariant under the manifest (1,1) supersymmetry generated by

Q. = 9 0o, Q = 8;% —1070_.
When the target manifold M possesses additional structure, the theory may have a larger
supersymmetry. For example, it is well-known that when (M, g) is Kéhler and H = 0,
the theory has (2,2) supersymmetry. A natural question is whether (2,2) supersymmetry
implies Kahler geometry. This has been answered in the negative by Gates, Hull, and Rocek
[9]. We shall summarize their results below.

In order to get (2, 2) supersymmetry, one needs to find one more supersymmetry generator

for each chirality, Q- , such that (Q., Q) generate (2, 2) supersymmetry algebra. They must

take the following form by dimensional reasons:
00 = (eYQy + & Q_)0* =& [ ()%, D, " + e 1_(9)%, D, P,

where I, are certain sections of the endomorphism bundle End (TM). The requirement
that (Q, Q) generate the (2,2) algebra, and that the action be invariant under this larger

supersymmetry, boils down to the following conditions [9]:
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e (I,,1 ) are a pair of integrable almost complex structures on TM.
e The metric g is Hermitian with respect to both I, and I_.

e I, and I_ are covariantly constant with respect to a pair of connections V*) = V +

1971 H, respectively:

Here V denotes the Levi-Civita connection on TM. The connections V&) are torsion-
ful, with the torsion given by

1
T = :I:ig_lH.

In addition to having two independent complex structures, the difference from the usual
Kahler geometry also lies in the fact that in general (g,1;) (or (g,I_)) do not define a
Kahler structure. This means that the two forms w, = gl are not closed in general due to
the presence of torsion.

An interesting special case is when [I,,I | = 0. In this case, I, and I  can be simul-
taneously diagonalized and one can decompose TM¢ = ker(I, — I_) @ ker(I, + I_). It can
be shown [9] that ker(Z, — I ) is an integrable distribution and it can be parametrized by
N = 2 chiral superfields. On the other hand, ker(Z, + I ) is an integrable distribution that
can be parametrized by twisted chiral superfields. A manifold with the property [I,,1_] =0
is said to admit a product structure. The name comes from the fact that locally, such a
manifold is a product of two Kéahler manifolds, although globally it is not Kahler in general.
Another interesting class of examples is provided by hyper-Kéhler manifolds, which admit a
family of complex structures parametrized by # € S?. One may take I, and I_ to be any
two complex structures parametrized by two points 1+ € S2. With a generic choice, one has
ker[I,,] ] = 0. This is in a sense the opposite to the case with product structure. We refer
to refs. [9, 33, 20, 30] for more details on related issues.

It is a remarkable fact that the geometric structure (g, I, I_, H) defined by the (2,2) su-

persymmetric sigma model is equivalent precisely to the twisted generalized Kahler structure
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[12]. The explicit map between the two descriptions is

I —a or —p
Ji = ,  Ja= , (3.1.2)
dow —I O oI
with
=+ +1)/2, ol = (I, —1.)/2,

(Wit +wh)/2,

I
B

&= (wy +w_)/2, dw = (wy —w-)/2.

Both a and § can be shown to be Poisson bivectors [30].

For later use, we give the explicit expression for the action of the (2,2) sigma model,

after integrating out the auxiliary fields F'*:

1 1 _
S = [ S+ o0 + Jan(usvVOut + vl
M
1 a C
+ R Vv, (3.1.3)
where R((l;:c)d is the Riemann tensor with respect to the connection V(*):

R(Jr)abc d = aa]'_‘+cbd - abFJFcad + F+caer+ebd - F+cber+ead'

Here I',. are the Christoffel symbols for the connections V&), respectively. When H vanishes,

they are simply the familiar Christoffel symbols for the Levi-Civita connection.

3.2 Twisting the N = (2,2) sigma model

In this section, we construct a twisted version of the (2,2) sigma model. This section is

largely based on [22]. In the original construction of A-model and B-model by Witten [40],
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the target manifold is an ordinary K&ahler manifold, with vanishing Neveu-Schwarz 3-form.
We know from previous discussion that, with a possibly nontrivial NS 3-form, the natural
geometric structure for the (2,2) sigma models is the twisted generalized K&hler structure.
In addition to the 3-form flux, it also allows for two independent complex structures. We
will see below that this more general class of sigma models can also be twisted in the sense

of [40], if extra topological and geometrical conditions are satisfied.

The general procedure of twisting is to shift the worldsheet spin of all the fields by the
charges of a conserved U(1)g symmetry. Since R-symmetry leaves bosons intact, only the
spin of the fermions is changed. The purpose of doing this is to make all fields in the
theory to have integral spin on the worldsheet. Of particular importance is that, after the
twisting, certain supersymmetry generators will become worldsheet scalars and can be used
to construct the BRST operator. Obviously for this procedure to work (i.e. to yield a theory
all of whose fields have integral worldsheet spin), an integrality condition must be satisfied:

for any field ¢ of spin s(¢) and U(1)g charge qr(p),

s(¢) + 3 an(p) € Z

In such a case, we simply shift the spin of any field by one-half of its U(1)g charge.

In the case of (2,2) sigma models discussed above, one can indeed find such a U(1) R-
symmetry. In fact, as in the more special case considered in [40], there are two inequivalent
U(1)g symmetries. The two complex structures induce two different decompositions of the

complexified tangent bundle
TMe ~ TP o T ~ T @ T

With such decompositions, the fermionic fields . splits accordingly into the holomorphic

and anti-holomorphic components:

Vo= S (Ui e+ S (Ui, Yo = 5L+ (14 L
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At the classical level, there are two inequivalent ways to assign U(1) R-charges to fermions

(the bosons have zero charge):

vy e (G0t ) =1 a(G0 i) = -
U aa(50-il)es) = -1, a(50 i) =1

Obviously both U(1)g symmetries satisfy the above integrability condition, and therefore
can be used to twist the theory: we simply shift the spin of the fermions by half of the U(1)y
or U(1)4 charges. We call the operation that shifts the spin by U(1)y (resp. U(1)a) the
A-twist (resp. the B-twist). Note that flipping the sign of I_ interchanges the A-twist and
the B-twist. The following table summarizes the worldsheet spin of fermions as well as the

supercharges after the twist. Note that we use the shorthand notation y° = L1 =iy,

P =11+l ).

Qr +iQ4 | Qr —iQy | Q- +iQ_ | Q- —iQ_ [ ¢ [ y° [ ¢ [ 417
A-twist 0 1 1 0 0 1 1 0
B-twist 0 1 0 1 0 1 0 1

An important fact to note is that the spin-0 fields can always be expressed as sections
of an eigenbundle of 7; of J5, depending on the twist. For concreteness, let us consider the
B-twist. The spin-0 fermions are xy = zﬂ?r’l and A = 1/10,’1. Alternatively, one can take the
independent spin-0 fermions to be y + A and g(x — A). These fields can be regarded as living
in the bundle E;, the —i-eigenbundle of J; in (T" ® T*) ® C. To see that, let us introduce
the following fields:

Y=vi+v,  p=g(—v)

We regard ¢ € ['(TMc) and p € ['(TM¢), and their direct sum (¢, p)T as a section of
(TM & TM*) ® C. It is easy to show, recalling the defining equation (3.1.2) for [J;, that

A
xr = (141iF) v

g(x — M) p

(3.2.1)
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The importance of this relation will become apparent when we construct the local observables

of the twisted theory in the next chapter.

So far our analysis has been classical. For the A-twist (resp. the B-twist) to make
sense at the quantum level, one must make sure that U(1)y (resp. U(1),) is anomaly-free.
Mathematically, the anomalies are computed by the Atiyah-Singer index theorem, and the

resulting anomaly-free conditions are

Uly: a(TY) — e (TH°) =0, (3.2.2)

Ula:  a(T®)+ce (1) =0.

It is possible to express the anomaly conditions in terms of twisted generalized com-
plex structures. Recall that (2,2) sigma models require the target space M to be a twisted
generalized Kahler manifold, with a pair of commuting twisted generalized complex struc-
tures (J1, J2) and a positive definite metric G = — 717, on TM & TM*. As mentioned in
Chap. 2, we use the non-degenerate inner product (,) to identify TM @& TM* with its dual,
so G = —J1J> can be regarded as an endomorphism on TM @ TM*. Obviously G2 = 1. Let
C+ be the £1 eigenbundles of G. The natural projection from TM & TM* to TM induces
bundle isomorphisms

my: Cyp ~TM, m_:C_ ~TM.

The twisted generalized complex structure [J; naturally induces a pair of complex structures
(I,1_) on TM via my. More specifically, the action of I, on a section X of TM is obtained
from first lifting X to a section X = 7TJ:1(X ) on C', acting on it by J;, and finally projecting
back to TM via w,. This action is well-defined since J; preserves C,.. Obviously I, so
defined is an almost complex structure. It is in fact integrable because 7 is twisted Courant
integrable. The other complex structure I_ is defined similarly, except that one uses the
isomorphism 7_. One can show that these are precisely the complex structures I, that

appeared in the (2,2) sigma model.

Let F; and E; denote the i-eigenbundles of 7; and [J5, respectively. Since J; and J,
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commute, one has the further decompositions £y = E;" ® E] and Fy = Ef ® E;, where the
superscripts & label the eigenvalues of the other twisted generalized complex structure. For

example, £, has J, =1, J2 = —t. It follows that
C:®C=Ef o (E) =Ey o (B)
and from the definition of 7., we obtain the following bundle isomorphisms:
Ef ~T!°, By ~TY
Now we can rewrite Eq. (3.2.2) in terms of bundles E; and Es:

Uy : (B =0, (3.2.3)
U)a:  a(BE)=0.

From this equation, we immediately see that U(1)4 (resp. U(1)y) is anomaly-free if and
only if the canonical bundle for [J; (resp. J2) is topologically trivial. As already discussed in
Chapter 2, this is precisely the first requirement for (M, J;) (resp. (M, J>)) to be a twisted
generalized Calabi-Yau manifold. Of course, for (M, J 2) to really define twisted generalized
Calabi-Yau structures, the second requirement that the canonical bundle be holomorphically
trivial must also be satisfied. In the next section, we will show that this second requirement

guarantees the absence of BRST anomaly.

As already mentioned, flipping the relative sign of I exchanges the A-twist and B-twist.
This symmetry is also reflected at the level of anomaly-free conditions, since flipping the
relative sign of I, is equivalent to exchanging J; and J5. Due to this symmetry, we will

only consider the B-twist explicitly in the following.
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3.3 The BRST anomaly

The ordinary B-model is a cohomological field theory; namely, it is equipped with a BRST
operator, which is an odd operator that squares to zero, and its physical observables are
classified by the BRST cohomology. The B-twisted theory obtained above also shares this
important property. Its BRST operator, denoted by @ g, is constructed from a linear com-
bination of the spin-0 components of the twisted (2,2) supercharges, and Q% = 0 follows
directly from the (2,2) algebra. We shall describe the operator @p and its cohomology in
more detail in Chapter 4. Classically, @) g is a BRST symmetry of the B-twisted model, as it
preserves the action. In this section, we address the question of when () generates a BRST
symmetry even at the quantum level. In other words, we look for possible anomalies of the
BRST symmetry. From the path integral point of view, the BRST anomaly shows up when-
ever the path integral measure is not BRST-invariant. As is usual, only the fermionic zero

modes contribute to the anomaly, and the anomaly can be computed by an index theorem.

Let us consider tree-level amplitudes in the B-twisted theory. It follows from the Riemann-

Roch theorem that the number of excessive qﬁl and ¢*' zero modes is given by
2dime X + ¢y (¢*TO) + 1 (" TOY) = 2n + ¢ 1 (EY),

where n is the complex dimension of M. As mentioned in the previous section, the B-
twist makes sense only if ¢1(£;) = 0, so the second term above vanishes and the total
number of excessive 1/11’1 zero modes is simply 2dimcX. As argued in the previous section,
functions of these zero modes can be interpreted as C*(IIE;) ~ A*(EY). The path integral
measure for the zero modes is simply a choice of a nowhere zero section 2 of A*P(E;) =
A?"(E;). The latter is precisely the canonical bundle for the complex Lie algebroid F;.
As the canonical bundle is topologically trivial, such a nowhere zero global section always
exists. The BRST invariance of the quantum theory imposes a further condition that this
section should be annihilated by Q. As we will show in Chapter 4, () is identified as
the Lie algebroid differential dg,. When represented on the Lie algebroid module Q°*(M, C),
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the measure for the zero modes is a nowhere vanishing section Q of Uy (see Eq. (2.4.1)),
and Qp is identified with the generalized Dolbeault operator dy. The requirement that Qg
annihilate the measure for the zero modes is precisely the second condition in the definition
of twisted generalized Calabi-Yau structures that the canonical bundle should be generalized

holomorphically trivial.

3.4 Topological invariance of the twisted theory

The geometric picture emerging so far is rather pleasing. We have found that the general
N = (2,2) sigma model can be twisted into a very special quantum field theory, if and
only if the target manifold is endowed with a (twisted) generalized Calabi-Yau structure.
This resulting quantum field theory carries a nilpotent fermionic operator ()g, and it has
the unusual spin-statistics property that all its fields, bosonic or not, have integral spin on
the worldsheet. In this section, we show that the twisted theory is in fact a topological
field theory. As always, we shall only consider the B-twist explicitly as the A-twist can be
obtained by simply exchanging the two twisted GC structures.

Let us start by renaming the fermionic fields:

X = %(1+u+)¢+, A= %(14—2’[)1/1, (3.4.1)

po = SU—iLgs,  me = (-l (3.42)

Note that the subscripts on p and n denotes their worldsheet spin. In order to write down a
worldsheet covariant action, let us introduce a worldsheet metric h,, and the epsilon symbol

e" such that €* = —e** = 4. We promote p, and 7, to covariant spin-1 fields

Pz — Pus Nz — Um
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which satisfy the following (anti)self-dual conditions:

Pu = —1€,° pu, Mu = 1€,y - (3.4.3)

Here €,” is the tensor defined by

gyl =t
1% \/E
Obviously e, = —e.* = 4, and it can be regarded as a complex structure on the worldsheet.

From this point on in this chapter, we will set H = 0 for simplicity, although the results
should hold even when H # 0. In this case, we can set B = 0, since a non-zero B-field
only contributes a topological term to the action, so it has no effect on our analysis. In the

covariantized form, the action reads

1
S = / d20-\/ﬁhl“/{z gabay¢aau¢b + igabPZDqu
%

+ igapns DA’ + Rabedp,‘jx”niAd}. (3.4.4)

Note that in the case of H = 0, there is no need to distinguish V(t) and V()| and we write

D, for the covariant derivative on the fermions.

The next step is to write down the covariantized BRST transformations for the fields.

They turn out to be:

{@p, 9"} = X"+, (3.4.5)
{@p. X"} = IO, (3.4.6)
{Qp, X} = T%NXE, (3.4.7)
(Qual) = (60 —ie )50 —iL)i0) +TWANE A, (348)
Qurh = L0 +ig 31— iL30.68") + T+ A, (3.49)

It is easy to check that the (anti)self-dual equation (3.4.3) is preserved by the covariant
BRST transformation.
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Let us define

{
V = = VR guy (90,0 + 10,6").

It is straightforward to show that the covariant action in (3.4.4) can be written in the

following form:

S = {QB,V}—l—i/d%e“”(éw)abﬁuwﬁmb
b

i
+ / 2oV hhH <§gab(pz — 19D, (x — A’ + Rabcd,oZanf,)\d). (3.4.10)
)

What do we learn from Eq. (3.4.10)7 Were the second line not there, we would have shown
the topological invariance of the generalized B-model. This is because all the dependence
on the worldsheet metric would then be contained in {Qp,V}.! This implies that variation
of the worldsheet metric only changes the action by ()p-exact terms. In other words, the
stress-energy tensor is () p-exact. It is well known that perturbing the action by BRST-exact
terms does not change the theory.

The second line in Eq.(3.4.10) does appear to explicitly depend on the worldsheet metric.
However we will show in the following that it vanishes on shell. More precisely, it vanishes
after we impose the equations of motion for p, and 7,. The slightly unsatisfactory situation
that the () g-exactness of the stree-energy tensor only holds on shell is perhaps not surprizing,
in view of the fact that not only did we integrate out the auxilliary fields F'¢, but also the
N = (2,2) algebra itself used to construct g holds only on-shell. This being said, the on
shell )p-exactness of the stress-energy tensor is all we need to guarantee the topological

invariance of the generalized B-model.

From the covariant action (3.4.4) it is easy to read off the following equations of motion:

igabDqu—i_RabchbT],C,Ad = 0,

igabDuAb+Rabcd)\bp5Xd = 0.

!Note that the second term in the first line in (3.4.10) can be expressed as an integral of differential forms
on Y, so it does not depend on the worldsheet metric.
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It follows that

Z‘ a a 1 a C a
5 9ab (P}, — D, ("= X\") = —§Rabcd(puxbmAd + Ao Y)
1 a C
5 Ravea( A" X" + X T AY).

The first line on the RHS in (3.4.11) can be shown to give —RapcapiX1SA?, using the first
Bianchi identity
Rabcd + Racdb + Radbc = 0.

In addition, the contraction of the second line in (3.4.11) with the inverse metric h*” is zero,
a direct consequence of the (anti)self-dual property of the spin-1 fields p and n. Therefore
we see that the second line in Eq. (3.4.10) precisely cancels out after imposing the EOMs
for x and A. Introducing wy = g/t and dw = (w; —w_)/2 as in Chapter 2, one can rewrite

(3.4.10) concisely as

1
— 2 s
S /Ed o{QB,V}+ 3 /2¢ (0w), on shell. (3.4.11)

From this key equation it is obvious that the stress-energy tensor is ()p-exact; namely

= {Q@Qp, "}, where b* = §V/dh,,. This confirms that the B-twisted theory is indeed a

topological field theory. Extending the usual terminology, we shall call it the generalized B-

model, although our construction makes the A-twist and B-twist completely symmetric. In

particular, ordinary A-model and B-model are simply two extreme limits of the generalized
B-model.

We will come back to Eq.(3.4.11) in Chapter 4 when we study the instanton corrections

in the generalized B-model.
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Chapter 4

Properties of the (Generalized
B-model

4.1 Topological observables

4.1.1 A differential bicomplex

Let us recall that the fermionic fields of the B-twisted theory are y, A, p,, and n;. As
discussed in detail in Chap. 3, the first two are spin-0 fields on the worldsheet, while p,
(resp. mz) is a (1,0)-form (resp. (0,1)-form) on the worldsheet. There is a hierarchy of
observables in the topological sigma model. The most fundamental ones are O-forms on the
worldsheet. There are also 1-form and 2-form observables in the theory; in particular the
2-form observables correspond to deformations of the original Lagrangian. In this thesis,
we shall only consider the fundamental 0-form observables, since other observables can be

constructed from the fundamental ones by descent equations [40, 7].

The fundamental O-form observables of the genealized B-model are constructed from spin-
0 fields, namely ¢, x, and A. We call smooth functions of these spin-0 fields preobservables.
A preobservable is not an observable yet. Like in the case of gauge theory, a preobservable is
admissible if and only if it is BRST invariant. Also a standard argument shows that adding
BRST-exact pieces to an admissible preobservable does not change the associated observable.

This means the space of 0-form observables is identified with the BRST cohomology.
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We recall that the BRST operator of the generalized B-model is given by

Qp = QL+ Qr, QL=

DN | =

(Q4 +1iQ4),

Qr = - (Q- +iQ-).

N | —

As we saw in Table 3.2, both ), and Q)r are worldsheet scalars. Furthermore, they satisfy

Q3 =0,Q% =0, and {Q,Qr} = 0. First let us write down the explicit transformations of

scalar fields under Q)7 and Qr:

{Qr, 9"}
{Qr, x"}
{Qr, A"}
{Qr, ¢"}
{Qr, A}
{Qr, X"}

e, (4.1.1)

_FJrabc)‘ch'

The preobservables of the theory must take the following form

Of = farayir

al...Xap)\bl.../\bq7

where f is totally anti-symmetric in a’s as well as in b’s. Recall that x € I(T>"), A € [(T%"),

so one can regard f as a section of Q37 (M)®Q>Y(M). Here the subscripts & remind us with

respect to which complex structure the differential forms are decomposed. Next we must

require that O be annihilated by the BRST operator Q1 + @r.To write down the action of

Q@ on Oy, it is convenient to regard f as a (0,p) form for the complex structure I, with

values in Q%7(M). A straightforward calculation gives

{QLa Of} = OD(+)f‘

Here D(+) is a covariantization of the ordinary Dolbeault operator 0 corresponding to I,.
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The covariantization uses the connection on Q%%(M) coming from the connection I'_ on TM.
On the other hand, one can regard f as a (0, ¢) form for I | taking values in Q&” (M). One
gets

{QR7 Of} = OD(_)fa

where D(_) now stands for a covariantization of Dolbeault operator d for I_ using the

connection I', on TM.

The space of local observables has a natural bigrading by the left and right moving R-
charges. With respect to this bigrading, @, (resp. @r) has degree (1,0) (resp. (0,1)). The

local observables fit into the following bicomplex:

Qr

- — P~ Lgtl —— Opgtl —— Opt+lgtl —— ...

Qr
--&opflyq @z oL QL Oprtla QL
Qr

o —— P Lg-l —— Opg-l —— Optlgl —— ...

Qr

The total cohomology of this bicomplex is the space of “physical” observables in our topo-
logical theory. As usual, this means that there are two spectral sequences which converge
to the BRST cohomology Hg,, . For references on spectral sequences, see [5, 11, 32]. In
practice, the computation is usually quite involved, unless the spectral sequence degenerates
at very early stage. In addition, the above formulation is somewhat awkward as it makes
the underlying twisted generalized Kahler structure completely hidden. In the following we
will proceed from a different route by working directly with the twisted generalized complex

structures (J1, J2).
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4.1.2 Ramond-Ramond ground states and differential forms

Our strategy is to make use of the state-operator correspondence to translate the problem
of computing the BRST cohomology of operators into the equivalent problem of computing
the BRST cohomology of states. In a topological field theory, there is a state-operator
isomorphism, so the two cohomologies are identical. If the topological field theory is obtained
from twisting a physical theory, then this isomorphism should also be seen at the level of the
physical theory. In the special case that the physical theory is an N = 2 superconformal field
theory, the cohomology of operators is reinterpreted as the chiral ring, while the cohomology
of states is reinterpreted as the space of zero-energy states in the Ramond-Ramond sector.

In CFT terms, the isomorphism between these two spaces is given by the spectral flow.

There are several reasons to adopt this alternative point of view. The first is mainly a
technical one. It turns out that when Ramond-Ramond ground states are concerned, one can
obtain exact results by going to the point-particle limit. In this limit, the 2-D sigma model
reduces to the supersymmetric quantum mechanics, whose Hilbert space can be naturally
identified with the space of differential forms on X. The supercharges of the original sigma
model all become differential operators on forms, and can be easily computed. We will see
that this operator is exactly the differential associated to the twisted generalized complex
structure J; in Ref. [12]. From this one can infer without any computations that the chiral
ring coincides with the Lie algebroid cohomology associated to J;. This is the result claimed
at the end of the previous section, except that we do not need to assume the existence of
the topological twist.

Secondly, it may be interesting to consider the N = (2, 2) sigma model with H-flux even
when the U(1)4 charge is anomalous, i.e., the condition Eq. (3.2.2) is not fulfilled, or more
generally, when the twisted generalized Calabi-Yau condition is not fulfilled. Such theories
cannot be topologically twisted, but both the chiral ring and the space of RR ground states
are perfectly well-defined and in general non-isomorphic. In the Kéhler case (i.e., H = 0 and
I, = 1), this is a familiar situation: the chiral ring is given by H*(A*TX), while the space
of RR ground states is H*(2%). Only in the Calabi-Yau case are the two spaces naturally



32
isomorphic.

Before going into detailed analysis of Ramond-Ramond ground states, we would like
to comment on a subtlety that involves the direction of “time” on the worldsheet. One
might be puzzled why this question is relevant, because in the topologically twisted theory
the worldsheet is a Riemann surface and there is no preferred time direction at all. To
understand the underlying reason for this, let us consider in more detail the operator-state
correspondence in a TFT. To physically realize this correspondence, one needs to introduce a
time direction explicitly on the worldsheet. This is illustrated in Fig. 4.1. An insertion of an
operator (regarded as an element in the chiral ring in our setup) at the tip of the hemisphere
gives rise to a state in the RR sector at the “out-going” boundary circle of the cigar.! In
this formulation, the direction of the cigar is the time direction. If one stretches the cigar
to infinite length, the resulting state on the boundary circle becomes a true ground state
of zero energy. It should be mentioned that, although this physical realization operator-
state correspondence picks a “time” direction on the worldsheet explicitly, the choice of the
time direction has no physical consequence: the BRST cohomologies are all isomorphic for

different choices of worldsheet time direction.

P
(I).

Figure 4.1: An insertion of an operator (an element in the chiral ring) ¢ on the tip of the
cigar produces a state ® in the Ramond-Ramond sector, after coupling the R-current to the
spin connection on the cigar.

However, things become more subtle when we include the open string sector, as we shall
do in Chapter 5. It then becomes important that we adopt a consistent choice. To explain

this point, let us consider a disk correlation function with both bulk and boundary insertions.

!To ensure the resulting state to live in the Ramond-Ramond sector, one also has to turn on a gauge
field, which equals the spin connection on the worldsheet, that couples to the R-current. This is the physical
realization of “twisting” that we used in Chap. 3 to construct the generalized B-model.
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The setup is illustrated in Fig. 4.2, with the boundary of the cigar now ending on a D-brane.
Now it becomes apparent that the usual choice of time direction for open strings, denoted
by t, in the figure, is incompatible with the direction of time (denoted by t.) picked by the
operator-state map above. In fact, this discrepancy is a well-known fact in the open-closed
string duality. The times ¢, and t. are usually referred to as the open-string channel time
and the closed-string channel time, respectively. In this terminology, all the formulas that we
have written down so far should really be regarded as formulated in the open-string channel,
if we allow it to couple to time-like boundaries (i.e., boundaries that are specified by o = 0, 7
on the worldsheet). On the other hand, the time appearing in the state-operator map is the

closed string channel time.

le

lo

Figure 4.2: It is important to distinguish the open-string channel time ¢, and the closed-string
channel time ¢, when studying bulk-boundary correlation functions.

The essence of this rather lengthy discussion is that one should choose a compatible
convention for the closed strings and open strings, if they are allowed to couple to each
other. This is what we will do here, as eventually we shall couple the theory to open strings.
Note that the open/closed channel times are related to each other by a 90-degree rotation on
the worldsheet (see Fig. 4.2). Among other things, this rotation induces a nontrivial relative

phase factor ¢ for fermions with different worldsheet chiralities. Without loss of generality,
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we assume that the transformation from open-string channel to closed-string channel is given
by
Yy =Yy, Yo =i

The fields ¥ and p introduced earlier now become

Y=y +ip, p=g(thy —ih ).

The important relation (3.2.1) that associates the spin-0 fermions to sections of E; in the

twisted theory now becomes

X+ A =(1+\/—_1.71) Y
g(x —iA) p

Finally, since the supercharges are spinors, they also transform nontrivially:

Q+ — Qs Q+ — Q+7 Q- —1Q-, Q- —iQ_.

In particular, the supercharge that corresponds to the BRST operator ()p is represented in

the closed string channel as

Qp=Qr+iQr==(Q4 +iQ+ +iQ_ — Q_).

N | —

Let us start by writing down the Noether charges associated with (), and ) in the
point-particle approximation?:

a ] e a c
Q+ = ¢+9ab¢b— gHabc¢+¢i¢+>

Q- = ¢igab¢b+éﬂab0¢i¢’i¢i. (4.1.2)

2We use the same symbols for the generators and their associated charges.



35
Let Q@ = Q. +1Q_ and Q* = @+ — i@} _. The supersymmetry algebra implies that

Q*=Q7=0, {QQ}=4%H.

where H is the Hamiltonian of the supersymmetric quantum mechanics:
H_} éag'bb_lR(ﬁL)zﬂa{ﬁb{/}clﬁd
= anb 4" tabed Y+ Y+ Y-V

By the standard Hodge-de Rham argument, the supersymmetric ground states are in one-

to-one correspondence with the elements of ()-cohomology.

The charge ) can be thought of as an operator on differential forms via canonical quan-
tization. The classical phase space of the supersymmetric quantum mechanical system is
TM & II(TM @& TM), where II(TM & TM) is the parity reversal of TM & TM. The two
“fermionic” copies of TM come from ¢, and . The symplectic form on TM is the stan-
dard one, while the symplectic form in the odd directions (which is actually symmetric) is

given by the Riemannian metric g:

{08, 98 pp. = —ig”, {¥4,¢5}pp = 0.

Canonical quantization identifies the Hilbert space with L%(.S), the space of square-integrable
sections of the spin bundle S = S(TM & TM). In the case at hand, TM & TM has a
natural complex polarization, with respect to which the spin bundle S can be identified with
A*(TM*). In other words, instead of ¢+ we use the coordinates ¢ and p, which can be
quantized by letting * be a wedge product with dz®, and letting p, be a contraction with
the vector field %:

Yt — dz®A, Pa = La = 19/d,- (4.1.3)

Now we discuss how N = 1 supercharges () and Q* act on the Hilbert space. Let us
first consider the case H = 0. Following the standard quantization procedure, one can easily

show that Q = —iv/2¢*V,, with V being the covariant derivative on the sections of the
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spin bundle S(TM @& TM) that is induced from the Levi-Civita connection on TM , and with
¥* acting as a Clifford multiplication. Under the isomorphism S(TM @& TM) ~ A*(TM*),
Q@ is identified with the de Rham differential d, up to a factor —iv/2. This is the familiar
statement that the space of ground states in an N = 1 supersymmetric quantum mechanics

is isomorphic to the de Rham cohomology of the target space. Now let us consider the case

H # 0. Using (4.1.2) and the identification (4.1.3), one can show that

Q = _\/Eiwava—i_%]{abcwawbwca

* ¢ 1 \/ii aoc
Q" = —\/529 "oV + TH % papppe.

Up to a numerical factor —v/2i, Q is identified with a twisted de Rham operator
dg =d— HNA,

while Q* is identified with its adjoint. Therefore the supersymmetric ground states are in

one-to-one correspondence with the dg-cohomology. This statement is also well-known [34].

It remains to identify the BRST operator, (g, in this context. The Ramond-Ramond
ground states are graded by the U(1)y R-symmetry. The corresponding R-current is given
by

?

7= = (s s, 90) + oo ,80),

under which (1 + il;)Y, and (1 + ¢I_)1_ have charge +1 by canonical anticommutation

relations. For our purpose, it will be more convenient to express J in terms of the fermions

Y, p: _
J = =5 (8w(¥,v) = alp,p) = 2(Iw, ).

As discussed above, quantization amounts to substitutions:

Y > dx®A, Pa < 19)9ze = la-
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Then the R-current is identified with the following operator on differential forms:
J = —i(éw A —ty — LI”)

where ¢, is the contraction with the Poisson bivector o, and ¢; is defined in a local coordinate
basis as

v = I%(dabA) o 1.

Note that dw,c, and I can be read off J; (see Eq. (3.1.2)), and therefore the operator .J
depends only on the TGC structure J;.

It is not difficult to see that the BRST operator can be expressed as

Qs =-(Q+1[,Q)).

1
2

Since ) = dy, it is clear that () depends only on the 3-form H and the twisted generalized
complex structure J;. In the following subsection, we will relate g to the generalized

Dolbeault operator defined in Section 2.4.

4.1.3 BRST cohomology of states and operators

To express the the BRST operator on the Ramond-Ramond states as an operator on differen-
tial forms, we first recall the definition of generalized Dolbeault operators (s, O ) associated
with an almost TGC structure J: Oy is the degree-1 part of dy = d — HA associated with

an alternative grading induced by J;
Q.(M,(C) ZUo@Ul@"'@Ugn. (414)

Here Uy is the canonical bundle, U, = A*E, - Uy, and E; the —i-eigenbundle of J;. See the

discussion in Section 2.4.

We are going to show that the BRST cohomology of states is isomorphic to the coho-
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mology of 9y on differential forms on the TGC manifold (M, J;). As a preliminary step,
let us obtain a convenient explicit formula for the grading operator on 2°*(M), defined in

the previous subsection, in terms of the twisted generalized complex structure [J;. Let

A=X+E¢e(TMc & TME). It can be regarded as an endomorphism of A*TM¢:
A-p=ixp+&Np. (4.1.5)

On the other hand, J; is an endomorphism of TMc®TM¢ with eigenvalues v/ —1 and —+/—1.
By definition, the grading operator R(.J;) must satisfy

[R(J), Al = —iJiA, YA e T(TMc & TM).

Obviously, this condition determines R(7;) up to a constant. Using the explicit matrix form

(3.1.2) of J; , one gets
T1A - p=tjx + L) — tx0w A —ft(f) A
Then it is easy to check that the following is a solution to the above equation:
R(J) = —vV—1(6w A —to — t7).

The general solution may differ from this only by a constant.

From the result of the last section, one immediately sees that under the identification of
Q) < dy and the identification of the Hilbert space as the space of differential forms, the

R-current generator J is identified as

J < R(Jy) + const.
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The BRST operator Qg then becomes

Qs = %(QHJ,Q])
= 2 (dn + [R(Z:),dn])

This is the desired result: the BRST complex of Ramond-Ramond ground states is identified
with the generalized Dolbeault complex on the twisted GCY manifold (M, J;, H).

A direct consequence of this analysis is that the BRST cohomology of operators in the
twisted theory is isomorphic to the Lie algebroid cohomology of E;. Recall that the gener-
alized Dolbeault complex (Q°*(M,C),dy) is a Lie algebroid module over the Lie algebroid
complex (A*E1,dg,). As discussed in the Appendix, this means for any section s of A*E;

and any differential form p:
Ou(s - p) = (dg,s) - p+ (—1)Fls - dpp.
This is equivalent to the following operator equation:

{QBv 3} = dE137

with {, } the graded commutator of operators. Since we identified the space of sections of
A*E, with the space of operators, the space of forms with the Hilbert space of the super-
symmetric quantum mechanics, and Jg with the representation of the BRST charge on the
Hilbert space, this simply implies that the cohomology of d is isomorphic to the BRST

cohomology of operators, as claimed.
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4.2 The Frobenius structure

For any N = 2, 2-D field theory we may consider the chiral ring, as well as the cohomology
of the supercharge Qg on the states in the Ramond sector. As already mentioned above,
the latter is a module over the former. The two spaces are not isomorphic in general. But
if the theory admits a topological B-twist, the two spaces are always isomorphic, by virtue
of the state-operator correspondence in a topological field theory. More precisely, the space

of states of a 2-D TFT is an algebra with a nondegenerate scalar product (-,-) such that
(a,bc) = (ab,c).

Such algebras are called Frobenius. All topological correlators can be expressed in terms of
the Frobenius structure on the space of states. For example, genus-zero correlators are given
by

(ay...an)g=0 = (a1,a2 ... an).

Consider now an N = 2 sigma model defined on a twisted generalized Calabi-Yau man-
ifold, and the U(1)4 R-charge is nonanomalous. One expects that the theory admits a
topological B-twist, and therefore the chiral ring, which is known to be isomorphic to the
Lie algebroid cohomology of Ej, is a supercommutative Frobenius algebra. Note that the

Frobenius scalar product (-,-) can be recovered from the “trace” function:
Tr(a) = (1,0)

by letting (a,b) = Tr (ab). The name “trace” is used because Tr vanishes on commutators (in
the graded case, on graded commutators). Let § be a dy-closed differential form that sits in
the component Uy. For a twisted generalized Calabi-Yau such a form exists and is unique up

to a constant factor. Note that €2 is also dy-closed. Consider now a bundle automorphism
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p:TM & TM* — TM @& TM* that looks like

p:(v,8) — (v,-§), Yvel(TM),V¢e(TM). (4.2.1)

This automorphism takes the form ¢ to —g, and maps the Courant bracket twisted by H to
the Courant bracket twisted by —H. It follows from this that for any twisted generalized
complex structure J the bundle map J' = p~1Jp is also a twisted generalized complex
structure, for the opposite H-field H' = —H. Moreover, it is easy to see that (M, —H, J') is a
twisted generalized Calabi-Yau if and only if (M, H, J) is one. (From the physical viewpoint,
p corresponds to worldsheet parity transformation, and the above facts are obvious). In

particular, we have a decomposition
ANTM*@C=Uje U, & --aU,,.

Let Q' be the Ogi-closed differential form that sits in the component Uj. We claim that the

trace function on the Lie algebroid cohomology is given by
Tr () ~ / YNa-Q, (4.2.2)
M
where « is a dp-closed section of A*(EY).

To derive this formula, we recall that the Frobenius trace is computed by the path-integral
on a Riemann sphere with an insertion of the operator corresponding to a. Since we are
dealing with a topological theory, we must also turn on a U(1) gauge field coupled to the R-
current participating in the twisting. This gauge field must be equal to the spin connection,
which means that the total flux through the sphere is 2. Let us stretch the sphere into
a long and thin cigar, so that the insertion point of a is somewhere in the middle portion.
The value of the path-integral does not change, of course, but it may now be evaluated
more easily by reducing the computation to the supersymmetric quantum mechanics. The

path-integral on each hemisphere gives a state in the Ramond-Ramond sector, which may be
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approximated in the point-particle limit by a function of the zero-modes. Bosonic zero-modes
are simply coordinates on M, while fermionic zero-modes are v, taking values in TM¢. Thus
the Ramond-Ramond state is represented by a function on IITMc, i.e. by a (complex-valued)

differential form. We have described above how « acts on differential forms.

It remains to identify the particular RR states arising from performing the path-integral
over each hemisphere, and then integrate over the zero-modes. Since we are not inserting
any operators on the hemispheres, the RR ground state in question is the spectral flow of
the unique vacuum state in the NS sector, and therefore in the point-particle approximation
is represented by the form (2 defined above. However, there is a subtlety related to the
choice of orientation. This subtlety arises because our identification of RR states with
differential forms depends on orientation: exchanging left-moving and right-moving fermions
is equivalent to performing a Hodge duality on forms. In the physical language, Hodge duality
is simply the Fourier transform of fermionic zero-modes. If we induce the orientations of both
hemispheres from a global orientation of the Riemann sphere, then the wave-function coming
from one hemisphere will be given by a function of the fermionic zero-modes 1, while the
wave-function from the other hemisphere will be a function of the Fourier-dual zero-modes.
In order to evaluate the path-integral one first has to Fourier transform the second state,
and only then multiply the wave-functions and integrate over the zero-modes. Alternatively,
we can choose the opposite orientation for the second hemisphere, so that there is no need

for Fourier transform. We can always choose the worldsheet parity transform to act as

Yy = W, Yo — —ihy.

Apparently this worldsheet parity transformation leaves v intact but flips the sign of p. This
is reflected on the sections of TM @ TM* by the automorphism p described in (4.2.1). The

sign of H is also reversed, since it is an odd form. We conclude that the wave-function from
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the second hemisphere is given by €)', and the path-integral in question is given by

Tr(a)rv/ A ANa-Q.
M

Let us check that this formula is indeed consistent, i.e., that it vanishes if o = dg, 8 for

some (3. Indeed, we have

Tt (d8) — /M Y A (di B) - O
= /Q’AEH(ﬁ-Q)

- /M O A (du + [R(FL), dul) (8- ©). (4.2.3)

Next we make use of the following two identities valid for any two forms v, n:

/M7 Adyn = —(—1)M /M(dH,V) A1, (4.2.4)
/M VA R(T)n = — / (R(T)) A, (4.2.5)

M

where H' = —H, and J' = p~'Jp. The first identity is obvious. To prove (4.2.5), we note
that R(J1) = —i(0w A —to — ¢7). It is not difficult to see that when pulling R(7;) to the left

of v in (4.2.5), dw and ¢, do not change, but ¢; picks up a minus sign; namely

/7/\(5w/\—ba—LI~)n:/(5w—ba—|—LI~)7/\n.
M

M

Now recall that J| is given by the same matrix form (3.1.2) as J;, except that dw and « are

replaced by —dw and —a, respectively. This immediately gives (4.2.5).
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Using the identities (4.2.5) and (4.2.5), we get

Te(d) = —(—1)7 /M ((dgr + [R(TD), ds ) A B - €

= —(-)¥ [ QA AB-Q
(1) /M 0 A
__— (4.2.6)

Let us also check that the formula for the trace (4.2.2) reduces to the known expressions
in the case of the ordinary A- and B-models, by setting H = 0 and I, = +£1_ = I. For
the ordinary B-model, we have I, =1 =1, so J, = J; is simply the generalized complex
structure corresponding to the ordinary complex structure /. In this case, J| = J1, ' = Q,
and the form €2 is simply the top holomorphic form on M. It is obvious that our formula for

the trace function reduces to the standard formula for the B-model [40]:
Tr () = / QA ().
M

For the A-model, the situation is more interesting. We have I, = —I_ = I, and the
relevant generalized complex structure is J; = J,, is the standard one associated with the
symplectic structure w = g/. In this case, J| = —Ji, and the forms 2 and Q' are given by

Q — eiw, QI — efiw‘
The complex Lie algebroid for the A-model is isomorphic to TM¢, thus the Lie algebroid
cohomology is isomorphic to the complex de Rham cohomology. The usual formula for the

Frobenius trace on H*(M) is

Tr(ﬁ)z/Mﬂ, B € Q(M),df = 0.

This does not seem to agree with our formula. But one should keep in mind that the

identification between the Lie algebroid cohomology and de Rham cohomology is nontrivial,
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and as a result, although the bundle A®Ej} is isomorphic to Q°*(M), the action of Q°*(M)
on itself coming from the action of A*Ej on Q°(M) is not given by the wedge product.
To describe this action, let us identify the space of sections of Q°(M) with the graded
supermanifold IITM. Let a € QF(M) be given by

1
o= —Qg . 0. dx" N\ ... N\dz.

k!

The action we are after is obtained by associating to a the following differential operator on

ITTM:

1
Haal...akDal Ce Dak,

where
D=6 ti(w ) D
o06b”
The operators D* anticommute, so this is well-defined. On the other hand, in the usual
description of the A-model, the action of Q°*(M) on itself is given by the ordinary wedge

product (plus quantum corrections, which we neglect all together).

The difference between our description of the A-model and the usual one is due to a
different identification of the fermionic fields with operators on forms. While we identified ¢*
with “creation” operators dx® and p, with “annihilation” operators, the usual identification

is different:
= = - . ,] B A
Y= dxt, L= drt, g = L%, gl — L%.

This choice is related to ours by a Bogolyubov transformation. In the usual description the
vacuum state with the lowest R-charge J;, — Jg is given by the constant O-form on M. It is
easy to see that the Bogolyubov transformation maps it to the inhomogeneous form e*’. The
same transformation also maps the ordinary degree of a differential form to the nonstandard
grading on 2°(M) defined in Ref. [12] and explained above. Thus our formula agrees with the

standard one after a Bogolyubov transformation (and if one neglects quantum corrections).
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4.3 Instanton corrections and the generalized quantum

cohomology ring

So far we have only discussed the classical ring structure on the space of topological observ-
ables. In general, the actual ring structure is deformed by quantum effects. A well-known
example is the ordinary A-model, whose ring of BRST-invariant observables (the quantum
cohomology ring) is a deformation of the de Rham cohomology ring H*(M,C) induced by
worldsheet instantons. In this section, we carry out the analysis for generic twisted topolog-
ical sigma model with H-flux, and identify worldsheet instantons that can contribute to the
deformation of the ring structure. This section is essentially an extension of the analysis of
Section 8.2 of Ref. [21] to the case H # 0.

To identify the instantons that extremize the bosonic part of the action is easy. From
Eq.(3.4.11) and the transformation formulas for p, and 7),, it is rather obvious that the

bosonic action® is minimized around the configurations

1 1
(6,7 — ieﬂ”)i(l —il,)%0,¢° =0, (0, + ieu”)i(l —4I.)%0,¢° = 0. (4.3.1)

I

The above equations, together with their conjugates, can be written equivalently as
Oup =¢,/1,0,9, Oup = —¢,/'1 .0,9. (4.3.2)

The instanton equation can be written in a form that renders the generalized complex
structure J, apparent. Let ¢ : TM — TM & TM* be the natural inclusion of TM into
TM & TM*, and d¢ : TS — TM be the derivative of ¢ : ¥ — M. Recalling that the other

generalized complex structure 7 is

5T —p
o oI

3The fact that Eq.(3.4.11) only holds on shell is irrelevant to the analysis in the following, since the on
shell conditions used only affect terms involving fermions.
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we can write the instanton equation equivalently as

Joo(todp) =10 (dpoce). (4.3.3)

Note that ¢ acts as a complex structure on the worldsheet. Equation (4.3.3) shows that the
instanton configurations of the generalized B-model are those maps ¢ that intertwine with
the worldsheet complex structure £ and the generalized complex structure J> on M. We call

such maps generalized holomorphic curves.

It is easy to see that the equation of generalized holomorphic curves reproduces the well-
known results in the special cases of ordinary A /B-models. In the case of A-model, 5 is the

generalized complex structure corresponding to an ordinary complex structure

The instanton equation (4.3.3) reduces to I od¢p = d¢ o e, which is the equation for ordinary
holomorphic curves. It is well-known that in the ordinary A-model, the instantons are

precisely given by holomorphic curves [40].

In the case of ordinary B-model, J5 is the generalized complex structure corresponding

to the symplectic structure w:

The instanton equation (4.3.3) obviously reduces to d¢ = 0 in this case. Therefore there are

no nontrivial instantons in the ordinary B-model-again a well-known fact.

The path-integral of the generalized B-model can be localized around the generalized
holomorphic curves, and the semiclassical calculation is exact. To see this, let us consider a
one-parameter family of theories whose Lagrangians are defined to be t{Qg,V} + ¢*(0w)/2.
When ¢ = 1, this is just the Lagrangian of our generalized B-model, as given in (3.4.11). On

the other hand, as variation of ¢ changes the Lagrangian by () g-exact terms, the generalized



48
B-model is equivalent to the theory defined by any ¢. In particular, it is equivalent to the
theory in the limit of ¢ — co. In such a limit, the path integral can obviously be computed
exactly using semiclassical methods near the minima given by (4.3.1).

There is another way to see that the path integral can be localized near the instantons
(4.3.1). As is well-known, the path integral of a (cohomological) TFT, with BRST operator
@, can be localized around the Q-invariant field configurations [40]. In the case of the
generalized B-model, the BRST variations of the fields are given in eqs. (3.4.5)—(3.4.9).* It
is easy to see that the @) p-invariant solutions are precisely the instantons found in (4.3.1).
Therefore, the path integral of the generalized B-model can be localized near the generalized
holomorphic curves.

As we know from Section 4.1, the classical ring structure of topological observables (i.e.,
BRST-invariant observables) is the natural one associated with a Lie algebroid cohomology.
On general grounds, this ring structure may be subject to quantum corrections coming from
worldsheet instantons. In other words, the Lie algebroid cohomology ring can be deformed
due to the fact that tree-level correlation functions of topological observables may have
nontrivial contributions coming from rational generalized holomorphic curves. We shall call
this deformed ring structure the quantum Lie algebroid cohomology ring. Like in the special
case of ordinary A-model, the quantum Lie algebroid cohomology ring should be related to
an intersection theory on the moduli space M of generalized rational curves on generalized
Calabi-Yau manifolds.

Unfortunately, very little is known of the moduli space M. Therefore we shall limit
ourselves to making some speculations on the generic structures of the quantum Lie algebroid
cohomology ring. First we note that, although the equation of generalized holomorphic
curves specifically depends on J5, the quantum Lie algebroid ring structure does not. In
fact, more is true: the generalized B-model does not depend on J; at all. This can be seen
from Eq.(3.4.11). Suppose we fix J; and varies J. Since Qp is identified with the Lie

algebroid differential associated with 7, it is unchanged. The topological term fz ¢*(dw) is

4These transformations ignore the H-field. However, it can be shown that including the H-field does not
change the ) g-invariant field configurations.
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also unchanged, because of Eq.(3.1.2) and the fact that J; is kept fixed. Therefore, variations
of J5 only perturb the action by @) g-exact terms and so leave the theory invariant.

We will not try to describe these corrections more precisely here. But note that for a
generic TGC structure J5 the TG-holomorphic instanton equation is much more restrictive
than the ordinary holomorphic instanton equation. Indeed, it requires the image of 73 under
d¢ to lie in the kernel of the map @. For a generic J,> and at a generic point of M the 2-form
w is nondegenerate, and so this condition does not allow nonconstant instantons. In other
words, all nontrivial instantons must be contained in the subvariety where @ is degenerate.
The extreme cases are the ordinary B-model, where @ is a symplectic form and there are
no nontrivial instantons, and the ordinary A-model, where @ vanishes identically. It would
be of some interest to better understand the moduli space of these generalized holomorphic

curves.
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Chapter 5

Topological D-branes

To any topologically twisted sigma model one can associate a category of topological D-
branes. The objects of this category are topological D-branes themselves, and the space of
morphisms is the open-string BRST cohomology, which can alternatively be represented by
the open-string Ramond ground states. In this work, we will largely forget this categorical
structure but rather focus on its building blocks. In the first two sections we shall focus on
the geometric description of rank-1 topological D-branes in the generalized B-model, and
compute their open-string BRST cohomology. In Sec. 5.3 we will take the initial steps to

analyze topological D-branes of higher rank.

5.1 Rank-1 topological D-branes in the generalized B-

model

In geometric terms, a D-brane of rank 1 is a submanifold Y together with a Hermitian line
bundle £ equipped with a unitary connection V. Its curvature F = —iV? is a real closed
2-form on Y whose periods are integral multiples of 27. For the purpose of classifying the
topological D-branes, only the curvature of the connection V will be important; for this
reason we will regard a rank-1 brane as a pair (Y, F').

If H # 0, then there is an additional constraint of Y: the restriction of H to Y must be

exact. That is, while the B-field on X is not a globally well-defined 2-form, its restriction to
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Y is. The set of B-fields on X is acted upon by 1-form gauge transformations:
B B+d\, )€ QY(X).
Under this gauge transformation, the connection on £ transforms as follows:
V=V —illy.

The curvature of V is not invariant under these transformations; the gauge-invariant com-
bination is

F =Bly +F.

In the following, we shall ignore the torsion H, and always work with B = 0 for simplicity.
The results we obtain, however, are also applicable to the case of nonzero B-field, except

that one should replace every F' in sight by F, and the gauge field A by A — A.

Topological D-branes of the generalized B-model are D-branes that preserve the topo-
logical algebra. In other words, they must preserve the N = 1 supersymmetry () and the
U(1l)y R-current J. As mentioned before, the N = 1 supersymmetry takes the form of
Q = Q4+ + Q_ in the open-string channel, which is natural for the purpose of analyzing
D-brane boundary conditions. One might think that the boundary conditions that preserve
() are those that guarantee the invariance of the the action in Eq. (3.1.1). This is a little
naive, since the presence of boundary in general introduces corrections to the action due to
the bulk-boundary coupling. In the path integral formulation, every boundary component,
which is diffeomorphic to an S, incorporates a Wilson loop operator in the path integral;

namely [41],

[1eie4 = [1Dgje9 -1 Pesp(§ 4),

where A is the gauge field supported on the D-brane, and the loop integral is over the
boundary component S*. If more than one boundary components are present, one simply

insert multiple Wilson loop operators inside the path integral.
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In the case of rank-1 branes, which are the object of our study in this section, the gauge

field is abelian, and the contribution of a Wilson-loop operator simplifies: it gives an overall

exp(/aEA).

This overall factor inside the path integral can be interpreted as an effective shifting of the

factor

original bulk action Sy by a boundary contribution: Spuic — Sbuk + Sboundary, Where

Sboundary = _/62/1: _/azAuqsudT.

Boundary conditions preserving () are those that keep the total action S = Spuk + Sboundary
Q@-invariant. Note that in general the original bulk action Sy, is no longer @)-invariant,
contrary to the case without boundary.

Now let us work out the Q)-preserving boundary conditions. We take the following ansatz

for the fermions: when restricted to 0%,

v e TY, (5.1.1)

Pulpy = Fut”. (5.1.2)

This choice is not as arbitrary as it may appear. To see why, let us write down the corre-
sponding boundary condition for the bosons obtained from the @-variation of (5.1.1) and

(5.1.2):

¢ € TV, (5.1.3)

v v v v
¢ = Fud” — 5 (DaFu =17 5 Fp) 979", (5.1.4)

Eq. (5.1.3) simply says that the D-brane wraps on the submanifold Y. In the limit of flat
metric and uniform field strength, Eq. (5.1.4) has a simple physical interpretation: it says
that the tension at the ends of the string is balanced by the Lorentz force as its charged ends

move on Y.
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It is not difficult to check that these boundary conditions indeed preserve the total action

S. The bulk variation is

8Shuc = / d*odf*df*e(Q + Q)L

= 5 | ar (nd —gumnrer).

Using the boundary conditions (5.1.2) and (5.1.4), it comes out to be

5Sbu]k = —6/ dr Fuyé,uwl/'
ox

A simple calculation shows that 65 poundary Precisely cancels 0.Shux; thus the total action is

Q-invariant.

It turns out that the boundary conditions (5.1.1) and (5.1.2) for the fermions have a
natural interpretation in generalized geometry. The relevant concept is that of the generalized
tangent bundle [12]. Given a pair (Y, F'),where Y is a submanifold of M and F a closed 2-
form on Y, its generalized tangent bundle, denoted by T Yr, is a subbundle of TM & TM*|y
defined by

Z+E€TYr<—= Z€TY, £+ 1z2F € NY™.

As is clear from the discussion above, the boundary condition for fermions that preserves

the N = 1 supersymmetry is precisely that when restricted on Y, the fermion field

lives in the generalized tangent bundle 7 Yr.

For the brane to be a topological D-brane in the generalized B-model, it must also
preserve the U(1)y R-symmetry. Note that the boundary action Speundary 1S invariant under

the R-symmetry, so the bulk action Sy itself must also be invariant. It follows that the
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R-current Jy must be tangent to Y. From the worldsheet point of view, this means

J\lf = wy(Yy,¥s) —w_(¢-,9-) =0.

To make contact with generalized geometry, it is convenient to write the above equation in

terms of ¢ and p:
dw(th,v) + 2p(I) — alp, p) = 0, (5.1.5)

where dw, o, I are as defined in (3.1.2). To see the meaning of (5.1.5) more clearly, let us
introduce a new field p) = p — Fi. The usefulness of p’ lies in the fact that it lives in
the conormal bundle NY*. Thus we may treat p’ and ¢ as the independent unconstrained

variables. It is not difficult to check that Eq. (5.1.5) breaks into two separate conditions:

(f—a-Fyp—ald) € TV,

(bw—I'""F—F-I4+F-a-F)p—(I"-F-a) € NY*

This is same as the statement that the B-transformed generalized complex structure e J1e 2,
with B = —F', preserves the subbundle 7Y & NY™* in TM & TM?*. Equivalently, the boundary
condition of the fermions preserves the R-current if and only if J; preserves the generalized

tangent bundle T Yp.

This condition also corresponds to a construction in generalized geometry. It is the
concept of the generalized complex submanifolds, also due to Gualtieri. A pair (Y, F'), with
Y a submanifold of a generalized complex manifold (M, J) and F a closed 2-form on Y is
called a generalized complex submanifold if its generalized tangent bundle 7T Y} is stable with
respect to J. Our analysis above shows that a rank-1 brane specified by (Y, F') is a topological
D-brane in the generalized B-model if and only if (Y, F') is a generalized complex submanifold.
For this reason, we call topological D-branes in the generalized B-model generalized complex

branes, or simply GC branes. The geometric description of the GC branes was first given in

[21]. See also [43].
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Remarkably, the GC branes reproduce all known examples of rank-1 topological D-branes
in the ordinary A- and B-model. In the case of B-model, the generalized complex structure
is the one associated with an ordinary complex structure I, given in (2.2.1). The generalized

complex submanifold condition is the same as that TY & NY™ is preserved by

I 0
—(FI+I*F) —I"

e " Jel =

This is equivalent to two conditions. The first is that I preserves T'Y; this shows that Y is
a complex submanifold of M. The second is that FI + I*F = 0; this means the curvature
2-form F' is of type (1,1). In other words, the line bundle is holomorphic. This is indeed the

well-known result for ordinary B-branes [18].

The case of A-brane is slightly more involved. To use the general formalism discussed
above, the generalized complex structure is now the one associated with a symplectic struc-
ture, as given in (2.2.2). The generalized complex manifold condition is that TY @ NY™* be

stable under
—wlF —wt

w+ FwlF Fuw!

e_FjweF —

In the special case of flat bundle (i.e., F = 0), the above equation reduces to two simple
relations: w(TY) C NY* w }(NY*) C TY. The first condition shows that Y is isotropic,
while the second shows it is coisotropic. It follows that YV is a Lagrangian submanifold. That
flat bundles supported on Lagrangian submanifolds provide consistent boundary conditions

for the A-model was first discovered by Witten more than a decade ago [41].

When F' # 0, the conditions are more complicated, and we do not analyze them in detail
here but refer the reader to Ref. [12, 21]. What is remarkable is that these GC branes
turn out to be precisely the coisotropic A-branes, discovered by Kapustin and Orlov rather
recently [25]. In short, they are certain special coisotropic manifolds carrying transverse
holomorphic structure. We will come back to these interesting objects in the next section

when we compute the open string spectra on them.
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We end this section by making a few comments. First, the boundary condition analyzed
above is only valid for rank-1 branes. Higher-rank D-branes carry non-abelian gauge fields on
their worldvolume, and the corresponding boundary conditions are much more complicated.

This will require somewhat different methods, as we will do in Sec. 5.3.

Secondly, our analysis so far (and indeed in this whole chapter) is classical. At the
quantum level, anomalies may render an otherwise perfectly well-defined classical topological
D-brane an unacceptable object. For example, although the boundary conditions defined by
a GC brane preserve the U(1)y R-current classically, the presence of the boundary may
induce a quantum anomaly and therefore break the topological algebra. This boundary-
induced anomaly is already present in the case of the ordinary A-model, whose branes we call
A-branes. It is known that, although a Lagrangian submanifold defines a classical A-brane,
it does not define a quantum A-brane unless its Maslov class vanishes [17]. A Lagrangian
submanifold with trivial Maslov class is called gradable. For the case of coisotropic A-branes,
there is a similar story. A classical coisotropic A-brane can be lifted to a quantum A-brane
if and only if its so-called generalized Maslov class vanishes [28, 24]. When its generalized
Maslov class vanishes, a coisotropic A-brane is called a graded coisotropic brane. Gradability
is a generic feature of quantum topological D-branes. In the case of GC branes in generalized
B-model, a form of gradability proposed by Hitchin [16] might play a role of ensuring the

absence of anomalies.

5.2 Open-string BRST cohomology

We described the condition of (classical) rank-1 topological D-branes in the generalized B-
model in terms of generalized geometries. These branes must wrap on generalized complex
submanifolds and they form elementary objects in the category of topological D-branes.
The natural question to ask next is what the morphisms between a pair of such objects are.
By definition, the space of morphisms between a pair of topological D-branes £ and &’ is

the BRST cohomology of the space of open strings, with boundary conditions given by &
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and &'. From the physical viewpoint, these are simply open string states in the Ramond
sector which have zero energy. Open-string BRST cohomology for topological D-branes in
A- and B-models has been intensively studied during the last decade both for physical and
mathematical reasons. In this section, we compute the BRST cohomology for open strings
with ends on the same GC brane. The treatment here mainly follows Ref. [23]. See [44] for

a similar analysis in a somewhat different context.

As in the bulk generalized B-model, we show that to any GC brane wrapped on a sub-
manifold Y of a GC manifold X one can associate a Lie algebroid Ey, whose cohomology
computes the open-string BRST cohomology. It turns out that this result has interesting im-
plications even for the relatively well-understood rank-1 A-branes and B-branes (i.e., rank-1
topological D-branes of the ordinary A- and B-model). Here we briefly comment on the case
of B-branes. It is believed that the category of B-branes is equivalent to the bounded derived
category of coherent sheaves on X, and the rank-1 objects are relatively simple to describe:
they are holomorphic line bundles supported on complex submanifolds, as we have seen in the
previous section. However, even in this relatively simple case, the mathematical procedure
for computing endomorphisms of the corresponding object in D’(X) is rather complicated
and involves some arbitrariness. From the derived category point of view, the correct spaces
of endomorphisms are the Ext-groups. The most explicit way to relate to this result is to
say that there is a spectral sequence converging to the desired space of endomorphisms (i.e.,

the Ext-groups) whose E; terms are given by the sheaf cohomology

P a7 (ANYH). (5.2.1)

pgq

The differential dy can also be described completely explicitly [26]. It is the composition of
the cohomology class fy € HY(TY ® NY*) corresponding to the exact sequence

0 — TY — T'X|ly —— NY —— 0

and the cohomology class [F] € H'(TY*) represented by the curvature of the line bundle



58
E. The class [F] is known as the Atiyah class of the holomorphic line bundle &; it is the
obstruction to the existence of a holomorphic connection on £. The class Sy measures the
extent to which T X |y fails to split holomorphically as TY @ NY. Their composition [F].8y
is a class in H2(NY™).

Back-of-the-envelope estimates of the open-string BRST cohomology give E5 as the phys-
ical result, but a more careful computation shows that the whole spectral sequence arises [26].
This serves as an important check that the category of B-branes is indeed equivalent to
DP(X). Our result shows that one can dispense with the spectral sequence and write down
an explicit graded vector bundle on Y and a differential )y on its space of sections, such
that Qy-cohomology computes the space of endomorphisms of the B-brane. Specifically, the

graded bundle is isomorphic to

P o @ ANy (5.2.2)

P.g
(the grading being p + ¢), and the differential @)y is mapped by this isomorphism to a
deformation of the Dolbeault differential

O+6(Y,F).

The correction term §(Y, F') has bidegree (2, —1) and depends both on the way Y sits in X
and the curvature of the line bundle on Y. The correction term is by itself a differential.
One can write down a spectral sequence which converges to )y-cohomology and whose Ej
terms are given by Eq. (5.2.1). It also turns out that the differential dy is equal to [F].fy.

This confirms that our result by using Lie algebroid cohomology matches the known results.

It should be mentioned that the isomorphism of our graded bundle on Y with the graded
bundle Eq. (5.2.2) is not canonical, and as a result the form 6(Y, F') is not completely
canonical either. However, the construction of the original graded bundle and the differential

Qy is completely canonical and involves no arbitrariness.

We note that in the case of B-branes of higher rank we do not have analogous results.

The spectral sequence computing endomorphisms still exists, but we do not know how to
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get it from a complex of vector bundles on Y. Hopefully, an extension of the computations

in this paper will enable one to find such a complex.!

5.2.1 The Lie algebroid of a GC brane

Let (Y, F) be a GC brane in (X,Z). As we saw in Sec. 5.1, the generalized tangent bundle
T Yy is stable under Z. Therefore Z restricts to an almost complex structure on 7 Y. Let
Ey be the —i eigenbundle of this almost complex structure in the complexification of T Yz.
It turns out there is a natural Lie algebroid structure on Ey [23, 14]. Let us explain it.
To define the Lie algebroid, it suffices to specify its anchor map and the Lie bracket on its
sections. The anchor map is taken to be the obvious projection to T'Ys. The Lie bracket is
defined as follows. Recall that E is the —i eigenbundle of Z in (T'® T*) ® C. Given any two
sections of Ey, we can regard them as sections of E|y, because Ey is a subbundle of Ely.
Extend them off Y, compute the twisted Courant bracket, and restrict back to Y. One can
easily check that the resulting section lies in Fy, and does not depend on how we extend

sections off Y. We define it to be the Lie bracket of the two sections that we start with.

5.2.2 Open-string BRST cohomology for a GC brane

In this section we show that the cohomology of the Lie algebroid Ey is isomorphic (classically,
i.e., if one neglects instantons) to the BRST cohomology of the open string space of states,
where both ends of the open string are on the GC brane (Y, F').

The proof is a combination of two tautological lemmas. The first one is that open-
string BRST cohomology is isomorphic to the cohomology of a degree-1 vector field @)y on a
certain graded supermanifold of the form L[1], where L is some complex vector bundle over
Y. Indeed, in the zero-mode approximation (which is sufficient for computing the BRST
cohomology) open string preobservables are functions of both bosonic coordinates on Y and
fermionic coordinates taking values in some vector bundle over Y. Fermionic coordinates

can have R-charge 1 or —1. In order to compute the BRST cohomology, it is sufficient to

!We would like to emphasize that the results of Ref. [26] apply only to rank-1 bundles.
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consider fermionic coordinates with R-charge 1, since the BRST-variation of the ones with
R-charge —1 contains spatial derivatives of bosonic coordinates. Let L be the vector bundle
over Y where fermionic coordinates of charge 1 take values. Then the space of observables
is the space of functions on the graded supermanifold L[1]. The generator of the BRST
transformation is a degree-1 vector field on L[1] that squares to zero.
We can be more specific about the bundle L. As always, it is convenient to work with

the linear combinations of ¥4

¢:¢++¢—7 P:9(¢+_¢—)a

in order to make contact with generalized geometry. Open-string boundary conditions (5.1.1)
and (5.1.2) put a linear constraint on the fermionic zero-modes (v, p), which requires them
to be in the fibers of the generalized tangent bundle 7Yr. Finally, the requirement that the
fermions have U(1)y R-charge one is equivalent to the requirement that the fermions be in
the subbundle Ey. It then follows that L, as a vector bundle, is precisely the vector bundle
FEy associated with the GC brane.

The vector field Qy on L[1] = Ey[1] can be thought of as follows. In the closed-string
case, bosonic zero-modes take values in the whole X, while fermionic zero-modes with R-
charge 1 take values in the bundle E. The closed-string BRST operator Q5 can be thought
of as a degree-1 vector field on E[1]. Open-string boundary conditions select a submanifold
Ey[1] of E[1]. In these terms, compatibility of the boundary condition with the BRST
symmetry means that Qp is tangent to Ey[1]. Therefore ()5 induces a degree-1 vector field
Qy on functions of Ey[1]. Obviously, this vector field generates BRST transformations of
open string preobservables.

The second tautological statement is that the Lie algebroid cohomology of Ey is isomor-
phic to the cohomology of @)y acting on functions on Ey[1]. This is fairly obvious from the
way the Lie bracket on Ey was defined. Suppose f is a function on Ey[1]. To compute
Qy(f), we must extend f to a function on the ambient supermanifold E[1], apply Qg and

restrict back to Ey[l]. We can think of the extension as a two-step procedure. First we
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extend in the fermionic directions. This means that if we regard f as a section of A*E},
we must lift it to a section f of A®E*|y (the former vector bundle is quotient of the latter).
Second, we extend in the bosonic directions. This means that we extend the section f of
A*E*|y off Y. Then we apply the vector field @ g, restrict back to Y, and project to A*ES.
One can easily see that these are precisely the manipulations one has to do to compute the

action of the Lie-algebroid differential for Ey on a section f of A*Ej.

5.2.3 Three examples

5.2.3.1 Flat bundles

It is easy to verify that for flat line bundles over GC submanifolds (i.e. for F' = 0) the
application of the results of the previous section gives familiar results. For a GC structure
Z coming from a complex structure I on X (and note that we always work with B = 0), a
GC submanifold is simply a complex submanifold. For such a submanifold, Ey = TY%! @
(NY*)". The Lie bracket is the obvious one: TY%! has the standard Lie bracket, the

1,0

conormal part is an abelian subalgebra, and TY%! acts on sections of (NY*)™" via the

ordinary 0 operator. Lie algebroid cohomology of Ey is therefore isomorphic to

& B (AINYH0).

P
We note that this is precisely the naive answer that we mentioned a while ago. That the
BRST cohomology in this case is actually given by the naive answer is a direct result of the
flatness of the line bundle, as it will become clear in the next subsection. More generally, for
B-branes supporting non-flat gauge fields, the above sheaf cohomology is only the Ey term
of a whole spectral sequence.

If 7 comes from a symplectic structure on X, then as we saw in Sec. 5.1 a GC submanifold

is simply a Lagrangian submanifold. In this case Ey is isomorphic to T'Y¢ as a Lie algebroid.
Hence Lie algebroid cohomology is isomorphic to the de Rham cohomology H*(Y,C). This

also confirms the well-known result [41].
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5.2.3.2 Rank-1 B-branes

Now let B = 0 and let Z come from a complex structure on X. Let (Y, F') be an arbitrary
GC brane. As discussed in the previous section, Y must be a complex submanifold of
X, and the curvature F' of the connection V is of type (1,1) (i.e., the line bundle £ is
holomorphic). Let us compute the Lie algebroid structure of Ey. If the line bundle is flat,
then from the definition of the generalized tangent bundle 7Y}, one sees immediately that
By ~TY% @ (NY*)"’. We will see below that when F # 0, the Lie algebroid structure of

Ey is deformed from the naive direct sum
B =TY% @ (NY")".

To see why the Lie algebroid Ey is a deformation of EY in general, let us do a simple
local calculation. Let (2P, u’) be local holomorphic coordinates on X such that Y is locally
given by the equations z# = 0. Their complex conjugates will be denoted z?, @'. We want to

choose a local basis of sections for EFy. The most obvious choice is

0 )
prie Fdv?, e’ =dzP.

€ =

It is easy to see that this is a local trivialization of Ey. Moreover, it is easy to check that
all Lie brackets vanish (it is important here that dF = 0). On the other hand, the obvious
Lie algebroid EY = TY %! @ (NY*)"? has the following obvious local trivialization:

0
— = p:dp‘
(2 8617 f z

Obviously, all Lie brackets vanish as well. It seems at this stage that we have proved that
the two Lie algebroids are isomorphic. However, this conclusion is premature, because the
transition functions in the two cases are different. Namely, as one goes from one chart to
another, the covectors du’/ mix up with dz?, and so e; mix with e?; on the other hand, f;

does not mix with fP.
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To compare the two Lie algebroids, it is convenient to adopt a more complicated local
trivialization for Ey, so that the transition functions are the same as for EY.. This will prove
that Ey and EY are isomorphic as smooth vector bundles. However, we will see that the Lie
bracket on Ey is deformed from that on EY in general, so they are not isomorphic as Lie
algebroids.

It is possible to give a precise mathematical description of the deformation of the Lie
bracket on Fy, using the language of Cech cohomology. Let {U,} be an open cover of Y.
On each U,?%, we choose local holomorphic coordinates (22, u’,), so that Y is defined over U,

«

by zo = 0. On double overlaps U,s = U, N Us one has
—,  du}, = (Bag)ldujy + (Cap)idzp,

where B,s = (Quq/0ug) and A,p = (dug/du,) are the gluing cocycles for (TY*)%Y and
TY%!. The entries of the rectangular matrices Chs = (Quo/023) are local holomorphic
functions, and they measure the mixing of covectors du, and dzz. Now consider a local

holomorphic section of TY? @ (NY*)"° that is defined on U,z by

.o,
— i p
Cap = (Caﬁ)paué (039 dzﬁ.
By definition, ¢,z is a Cech 1-cochain with values in the coherent sheaf 7Y ® (NY*)"°.
What is less obvious, but true, is that c,g is actually a 1-cocycle. To see this, let U,s, be

a non-empty triple overlap. Over it we have (we suppress the matrix indices to simplify the

notation):

dua = Bagdulg—FCaBng

82g
= Baﬁ (Bmduv + Cﬁvdzv) + Caﬁ <£> dZ7
v

0z
B(wduv + |:Ba505’7 + (a—zﬂ)Cag} dZ,Y .
v

2 Actually, on an open neighborhood of U, in X, but we shall not elaborate on this technical issue here.
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and it easily follows that

0
Cay = Cq ® dzy = Cy ® dzp + 0678_% ® dzy = Cop + Cpy-

T Oug, A Oug

This shows that c,s indeed defines a Cech 1-cocycle with respect to the open cover {U,}.
We can of course choose {U,} to be a good open cover; in this case c,5 defines a class in the
first Cech cohomology HY(TY' @ (NY*)"?), which measures the failure of TX|y to split
holomorphically as TY @& NY. This Cech cohomology class is precisely the class §y that
appeared earlier in this section.

One can actually write the cocycle ¢,3 as a coboundary of a smooth 0-cochain. The
existence of such a cochain is guaranteed by the existence of partition of unity for smooth
sections. In sheaf theoretical terminology, this reflects the fact that the sheaf of smooth
sections of TY0 @ (NY*)"’ is a fine sheaf, so its first sheaf coholomogy H' vanishes®. Since
we know c,p is a 1-cocycle, it must be a coboundary.

To explicitly construct such a 0-cochain, it suffices to define it locally (i.e., on each open

set Uy,). Locally such a 0-cochain is defined in terms of matrices C,, of smooth functions:

-0
Ca = (C“)g’a—uz; ® dzg.

That c,pg is the coboundary of the 0-cochain defined by c, is the statement that one can

choose the matrices C,, such that on double overlaps

9 )
Cap = (Ca);ﬁ—uzy ® dzg — (Cﬁ)i)a—ué &® dzg

As already mentioned, such a choice always exists, and is a consequence of the existence of

partition of unity.

3In fact, all higher sheaf cohomology of a fine sheaf vanishes.
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Using the cochain c,, we can define a modified local trivialization of Ey. Namely, over

U, we choose the local basis

(ca)i = oo — (Fuyy (du — (Cade8), (ea)? = 28,

(o3

Here (F,);; are the components of the curvature 2-form F' in local coordinates uq, %io. They

glue on double overlaps by (Fy);; = (Ba/g)‘g(Bag);(Fg);i. It is easy to check that the gluing

cocycle for the modified local bases is exactly the same as that for the standard basis

9
P—d
oo (fa) =dz

1
a

(foc)f =
of TY®! @ (NY*)". Namely, the gluing cocycle is given by
()i = (005/0Ua)i(es);,  (ea)” = (D2a/025)h(ep)".

This shows that Ey is isomorphic to EY. as a vector bundle.

Now let us compute the Lie bracket of elements of the modified local basis e,. Locally,

these come out to be

Unlike the local basis f, of EY, the commutators of the local basis e, of Fy have a non-

0o 0
5(Y>F) <aa1 7%)7

where §(Y, F) is a local section of Q%2(Y) ® (NY*)"° given in U, by

vanishing part

8(C,)E 0(C.)E -
(Y, F) = ((F)% (R (aaj)f’) 4:2 ® 7, A d2].

It follows from the definition of C, and the fact that the cocycle c,p is holomorphic that
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d(Y, F) is in fact globally defined. To see this more clearly, note that on the double overlap

Uaﬁa

ACL)E a(Cs)t 0
o O o g = 28 9o gp
ow, ouk ° T Tom, ouf © P

This expression defines a global section dy of Q%1(Y) ® TY? @ (NY*)"? whose local ex-

pression is

I(CE 9

P
ouy,  Oug”

dy = ® dzP @ di’..

It is easy to see that dy is O-closed and therefore represents a class By € HY(TY ®
NY*). This is simply the Dolbeault representative of the cohomology class whose Cech
representative was denoted c,g. The form §(Y, F') is obtained by taking the wedge product
of dy and F € Q% @ (TY*)"" and contracting TY? with (TY*)"". Since both F and dy
are O-closed, so is 0(Y, F).

The Lie algebroid differential for Ey is now easily computed. Since Ey ~ TY% @
(N Y*)l’o, it is a degree-1 differential )y acting on smooth sections of the graded bundle

@ QO,T(Y) ® ASNYI’O,
where the grading is given by r + s. One easily sees that if ( is a section of this graded
bundle, then

Qv () = 9¢+d(Y, F)(.

Here J means contraction of NY* and A*NY. We conclude that the Lie algebroids Fy and
EY are not isomorphic in general: the former is a deformation of the latter.

Note that the sheaf cohomology class represented by §(Y, F') is exactly the product of
the class By € H(TY ® NY*) and a class in H'(TY™*) represented by the (1,1) form F.
The latter class is the Atiyah class of the line bundle on the brane Y. There is a standard
filtration on the doubly-graded complex K™* = @, Q%" (Y) @ A*NY'°, which gives rise to a
spectral sequence that converges to the Jy-cohomology. More concretely, we get a spectral

sequence whose Ejy and E; terms are the graded complex K itself, and whose whose F; term
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is simply the now familiar 9-cohomology:

P B (ANYH).

P
The second differential ds is the product of [dy| = By and the Atiyah class. This is precisely
the Fy term in the spectral sequence expected to compute the Ext-groups of the object of
D*(X) corresponding to our brane (Y, F') we saw earlier [26]. (The object is the push-forward
of the locally free sheaf £ on Y to the ambient manifold X). This matches the previously
known results and provides some evidence that the Lie algebroid cohomology computes the

Ext-groups.

5.2.3.3 Coisotropic A-branes

Since the geometry of coisotropic A-branes is somewhat more complicated than that of B-
branes, we start with a brief review of the data involved (see Ref. [25] for more details).
A coisotropic A-brane is a triple (Y, V, F) such that Y C X is a coisotropic submanifold,
and V is a unitary connection on a line bundle on Y with curvature F'. By definition,
LY = ker(wly) forms an integrable distribution of constant rank, which is the codimension
of Y. In addition, the curvature form F', regarded as a bundle map F : TY — TY*, must
annihilate LY. So if we denote the quotient bundle TY/LY by FY, F descends to a section
of A2FY*. Finally, the restriction of w™'F to FY defines a transverse almost-complex
structure on Y with respect to the foliation LY. (This transverse almost complex structure
is automatically integrable.) It follows from these conditions that the complex dimension of
FY is even. Furthermore, both F' and w|zy are of type (2,0) + (0,2) with respect to the

transverse complex structure J = w™ ' F|ry.

The Lie algebroid associated with the brane (Y, F') is Ey = ker(Zy + i), where Zy is the

restriction to Y of the generalized complex structure associated to the symplectic structure
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won X:

It is easy to see that topologically Ey is isomorphic to LcY @ FY19. However, we will show
that By ~ LY: @ FY'0 also as Lie algebroids. To this end, we perform the same kind
of calculation as in the B-brane case. As the calculation is similar, we shall be brief. Let
us choose a local system of coordinates (22, z¢, z y*) on X such that the submanifold Y is
locally defined by z* = 0, y* parametrize the leaves of the foliation defined by LY, while
the 2’s are holomorphic coordinates in the transverse directions. Note that the splitting of
transverse coordinates into holomorphic and anti-holomorphic ones is done with respect to

the complex structure J on FY. A local trivialization for Ey is given by

0

“ "oy

0 . L
- — w;dz? — iwiedx?, e

% - Z-(A}Madl’a.

To find the gluing cocycle in this basis, let us take another local system of coordinates
(u,w,v) that overlaps with the old one. As equations 2% = 0 and u* = 0 define the same sub-
manifold Y locally, one must have u = u(z) on the overlap. In addition, from w(LY,TY) =0
one deduces that w = w(z, 2),w = w(zx, z). In other words, the Jacobian for the coordinate

change takes the following “upper triangular” form?

dz/0u 0z/0u 0y/du
0 0z/0w Oy/ow
0 0 dy/ov

0, 2,y) _
O(u,w,v)

It immediately follows that the e,’s transform among themselves in a simple way:

e —%e
B Qor

“Here we write z to denote both z and Z coordinates to simplify the notation. The same applies to w.
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The transformation law for the e;’s is slightly more complicated. In the new chart, we have

0 .
= — —wl.duw! — i du®
€= S w;dw’ — iw;,du®.

The form of the Jacobian implies that the components of w transform according to

0zF 92¢

/
Wy, = - —— Wi
Y owt Qw’
, 029 0x® 029 9% oy Ox®
Wy = ——Wip+ ——o— Wik + =——=—— Wy
ta Owt Que 7" Owi our 7" Owi Que

Combining this with the transformation law for the coordinate basis, one can show that

, 0 +3y“
eh=——¢e;+——e,.
oowt 7 owt M

This is the same gluing cocycle if we take

. 0 s 0
€;, = azi, € = a—yl‘ (523)

as the obvious local trivialization of LY @ FY1°. Therefore our choice of basis establishes

an isomorphism between Ey and LY @ FY'10 as vector bundles.

One can further show that these basis sections of Fy commute under the Lie bracket

derived from the Dorfman bracket on TX @ T X*. For instance, we have

leiej] = —ils,(Wjadq™) +iLy, (Wiadq™) — dig, (iwindq™)
= —’i(aina — ajwia + aawij)dqo‘
= 0, (5.2.4)

where ¢®’s denote all of 22, 2%, Zz,y". The last step follows directly from dw = 0. By the
same token, we have [e,,e,] = 0, [e;,e,] = 0. Namely, our basis sections for Ey have the

same (vanishing) Lie brackets among themselves, just as the basis sections Eq. (5.2.3) of
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LYe & FYO.

This shows that Fy ~ LY@ FY 1 not only as vector bundles but also as Lie algebroids.
Since Lie algebroid structures on £ — X are in one-to-one correspondence with degree-1
homological vector fields on E[1] (i.e., BRST operators in the jargon of TFT), we conclude
that one can use the obvious Lie algebroid structure on LYy @ FY'1? to compute the open
string ground states for a coisotropic A-brane. Namely one can use the simplified BRST

operator®

Qy = dcy + Oy,

where d;y is the de Rham differential in the leaf direction, and dzy is the Dolbeault operator
in the directions transverse to the foliation. This proves the claim by A. Kapustin and D.
Orlov [25] that the open-string BRST cohomology for a coisotropic A-brane is isomorphic to
the cohomology of the sheaf of functions locally constant along the leaves of the characteristic

foliation of Y and holomorphic in the transverse directions.

5.3 Towards a theory of higher-rank generalized com-
plex branes

So far our discussion of topological D-branes has been focused on the relatively simple case
of rank 1. To generalize our analysis to higher-rank cases, there are several obstacles to

overcome. First, the Wilson-loop operator

Tr P exp (—i;l)

does not yield a local correction to the bulk action without introducing additional boundary
degrees of freedom. Secondly, the Lie algebroid structure of the BRST cohomology is lost. In
our description of the open string BRST cohomology in terms of Lie algebroid cohomology,

it is crucial that functions of the fermionic zero modes form a graded commutative alge-

5We have changed 9 to 0 to conform with the usual conventions.
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bra C*(IIE). For higher-rank D-branes, the gauge fields are non-abelian, and this graded
commutative algebra must be replaced by some non-commutative algebra that is presently
unknown. One expects the open-string BRST cohomology to be some module over this non-
commutative algebra. This non-commutativity is unavoidable even when one considers open
strings stretched between two different rank-1 branes, as recent calculation of open string

spectra between pairs of coisotropic A-branes confirms [1].

In this final section, we shall only focus on the first aspect; namely to try to provide
a geometric description of higher-rank topological D-branes in generalized B-model. The
question of computing the BRST cohomology is much more involved and is left to future
work. As in the rank-1 case, we restrict to the case of H = 0 and in fact set B = 0 for

simplicity. The sigma model bulk action is still given by
1
Sbulk = §/d20/d9d9+gm,(q))D+<I>“D<I>”.
and the N = 1 supersymmetry for the bulk fields are

St = et
PP = 2iegH

5:0u = 2i69yual¢u+6rl;u\¢/\pu-

As before, the variation of the bulk action under the N = 1 supersymmetry is

0Sbulk = _g/a dr <Pu¢” - guual¢“wu)'
)

In the rank-1 case, the variation of the bulk action is compensated by the variation of the
boundary action that comes from the Wilson-loop operator. In the higher-rank case at hand,
the Wilson-loop operator is non-local, and it certainly does not give a local boundary action

in the usual sense. Is there a way around this conumdrum?

The answer to this question is that there is a local boundary action that one can write
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down, but to achieve that one needs to introduce extra fields. These extra fields can be taken
as fermions living on the boundary only. The specific construction runs as follows. Let k
be the rank of the brane. One introduces k¥ boundary fermions® 7,, @ = 1,...,k. These
fermions are charged under the non-abelian gauge fields A and they live in the fundamental
representation. The claim is that inserting the non-local Wilson-loop operator in the path
integral is equivalent to enlarge the system by including the boundary fermions 7,, with their
action given by

Sboundary = ’L/d’]' (ﬁaﬁa + Z'Aubaﬁanbésﬂ) . (531)

There is a further constraint to be satisfied for the boundary fermions: their Hilbert space
must be projected to the subspace of fermion number one. This last condition guarantees
that one gets precisely the path-ordered phase factor. For more details on this matter, see

Ref. [19, 2, §].

Mimicking the ansatz we used in Sec. 5.1, we speculate the following form of boundary

condition for the bulk fermions:

7# € TY7 pu|TY = Fuuabﬁbnawy- (532)

We will come to the correct interpretation of it in a moment. To write down the boundary
condition for bosons, which is obtained from the @-variation of (5.3.2), we need to extend
the N = 1 supersymmetry to the boundary fermions as well. It turns out that a consistent
choice is

01 = €A, M, on* = —ieA, nPwH. (5.3.3)

To see that (5.3.3) indeed closes under N = 1 supersymmetry, we note

{Q,{Q,n.}} = z‘{Q,Au’;mw*‘}

1

= S (F) g+ 24,

5Do not confuse the 71,’s with the spin-1 bulk fermion in Sec. 3.4.
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We claim that the right-hand side is actually equal to 27, on-shell, as required by the N =1
supersymmetry. To write down the equation of motion for 7,, it is crucial to note that p and
7. are constrained by (5.3.2). It comes out that the e.o.m. for 7, takes the following form

L)

ﬁa = _i(Au)banbéu - 4

From this it follows directly that Q?n, = 2i7,, and the N = 1 supersymmetry closes.

The boundary condition for the bosons can now be determined from (5.3.2) from the

extended N = 1 supersymmetry: besides the constraint ¢ € Y, the bosons must also satisfy

v a - v U a v
guual¢ = Fpu bnbna¢ - 5 (D)\Fpu - Fp‘u,)\Fpu) b77b77a1/1>\¢ . (534)

Using (5.3.2) and (5.3.4), the variation of the bulk action can be shown to be

0S bulk = —E/dT Fw,abﬁbna’gl}uq.ﬁ’u.

It is remarkable that the bulk variation 0S5y is precisely cancelled by the variation of
the boundary action (5.3.1) that we wrote down before. This is easy to see because Spoundary

varies under () as

5Sboundary =€ / dr F,uuai,ﬁbnawy(ﬁuJ

which precisely cancels the bulk variation. It follows that the boundary condition (5.3.2)

preserves the N = 1 supersymmetry.

Next we consider the condition of unbroken U(1)y R-symmetry. For the boundary fields,

we take the ansatz

(5377:0, 6R77:0
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As before, the variations for the bulk fermions are

Orp = idw(y) —il'p,

op = il —ia(p).

Again, the various symbols appearing above are defined in (3.1.2). For topological D-branes,

the R-current J{, must vanish at the boundary as in the rank-1 case:

dw(t, ¥) + 2p - I — a(p, p) = 0.

The only difference is that one has to replace F,, by (F.,)%7’n.. We write the latter simply
as F'in in the following. As before, introduce p’ = p — Ffniy, which is interpreted as living
in NY*. We have

(6w — I'Fipn — Fiinl + Fiin - o - Fin) (1, ¢)

—a(p,p) +20 - T — 20" a - Fijp = 0. (5.3.5)

The crucial point now is that one must regard equations (5.3.2) and (5.3.5) as operator
equations in the sub-sector of the boundary Hilbert space with fermion number one, H;. To
find a solution, let’s first consider equation (5.3.2). Let v = v,7%|0) € H1, where |0) is the
vacuum state. One can regard v as a section of a vector bundle E over Y, and (5.3.2) can

be rewritten as

pRv—F(p®v)e NY*"®E.

Here F is regarded as a section of Hom(7Y,TY*) ® End (E):
F:ie,®7" — —(F.)30" @17,

with {e,} a basis for TY and {6} the dual basis.
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Now let us consider the meaning of (5.3.5). Acting on v € Hy, it yields

(dw(v,v) +2p" - I — alp, p))va — 20" - - Foipuy

—2p - I'F2apuy + FoaFe (4, ¢)vp = 0.

The invariant way to express the above result is that the subbundle (TY & NY*) ® E C
(TX ®TX*)® E is preserved by the following endomorphism of TX & TX*) ® E:

1®1 0 I®l —-a®l 191 0
—F 1®1) \dw®l -I'®1 F 1®1

Let TYr(E) denote the subbundle of (TY & TX*|y) ® E that is defined by
{XeTYQ®E,{eTX |y ®E|¢ -~ F(X) e NY*® E}.

It is the higher-rank version of the generalized tangent bundle 7 Y. We see that the bound-
ary condition (5.3.2) defines a (classical) topological D-brane if 7Y (E) is stable under the

action Z ®idg. This is a generalization of the results obtained in Sec. 5.1 for rank-1 branes.
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Chapter 6

Summary and Outlook

In this work we have studied the topological sector of the generic (2,2) sigma model, with
possible H-flux, as well as (classical) topological D-branes in them. There is an intimate
relation between the newlyfound mathematical theory of generalized geometries, and the
properties of these topological sigma models. For example, the ring of local observables
in the topological theory is isomorphic, on the semiclassical level, to the cohomology of a
certain Lie algebroid that controls the deformation theory of a twisted generalized complex
structure. On the quantum level, the two rings are isomorphic as vector spaces, but the ring
structures may be different due to worldsheet instantons. It would be very interesting to
further explore this direction. In Sec. 4.3 we already took an initial step by showing that the
quantum ring structure depends only on one of the two twisted generalized complex struc-
tures present. This is the analogue of the statement that the ordinary quantum cohomology
ring is independent of the choice of the complex structure [40]. To fully unravel the struc-
ture this quantum ring structure, one needs to understand the moduli space of generalized

holomorphic curves better.

It is expected on general grounds that the moduli space of N = 2 SCFTs is a product
of two spaces, corresponding to deformations by elements of the (c,c) and (a,c) rings. It
follows from our work that for N = 2 sigma models with H-flux these two moduli spaces are
identified with the moduli spaces of two independent twisted generalized complex structures

J1 and J>. The mathematical implication of this observation is that the deformation theory
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of twisted generalized Calabi-Yau manifolds is unobstructed. One can prove this statement
rigorously [29, 14]. Here we briefly outline the main idea behind the proof. As is shown in
[12], deformations of a twisted GC structure J are represented by sections ¢ € ['(A2E*),

which must satisfy the following Maurer-Cartan equation:
1
dpe + 5[6, €|lgx = 0. (6.0.1)

Here as before FE is the +i (or —i) eigenbundle of J. Infinitesimal deformations are in
one-to-one correspondence with elements of the second Lie algebroid cohomology Hz(M).
For a generic twisted generalized Kahler manifold, the deformation space is obstructed in
general; namely given an infinitesimal deformation, there is no guarantee that it can be
integrated into a true, finite deformation. However, in the case that (M, J) is twisted gen-
eralized Calabi-Yau, things are different. It can be shown that in this case any infinitesimal
deformation of J can be made into a true deformation. The proof of this fact uses the
generalized Hodge decomposition discovered in [13]. We have already seen that the Lie al-
gebroid cohomology HZ(M) is isomorphic to the generalized Dolbeault cohomology group
HgH (M), which in turn is isomorphic to the space of generalized harmonic forms H?*(M), by
Gualtieri’s result. Let €; € ['(A2E*) be a representative of a class in H%(M)) corresponding
to an infinitesimal deformation of J. Using the isomorphism ' : A*E* — Q°*(M, C) induced
by the spin representation

"ta—=sd =a-Q,

one can assume € to be a generalized harmonic form. In particular, one may assume Jye; =
0. It is shown in [29] that starting with such a generalized harmonic form €, one can

construct a power series solution

€= Z €t e € T(A’E*) Vi

i>1

such that it solves the Maurer-Cartan equation (6.0.1). The power series solution can be
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shown to converge in a neighborhood of ¢ = 0, following the line of argument in [27].

Just as the Kodaira-Spencer theory of complex deformation on an ordinary Calabi-Yau
manifold yields an effective field theory that is the string field theory of the B-model [3], the
above solution of the Maurer-Cartan equation (6.0.1) for twisted GCY manifolds also has an
interpretation of an effective field theory. The recursive solutions for ¢; found in [29] reveal
the perturbative structure of this field theory. In fact, this field theory can be identified
with the semiclassical limit of the string field theory of the generalized B-model [10]. The

Maurer-Cartan equation, when written in the equivalent form
a !/ ]' !
Oye — 58}{(6 Ne) =0,

is interpreted as the classical equation of motion of the string field.

If there are no nontrivial instantons in the theory (see our discussion of worldsheet instan-
tons in generalized B-model in Sec. 4.3) this field theoretical description of the generalized
B-model is exact. When nontrivial instantons exist, however, this effective field theory only
describes the generalized B-model up to the semiclassical level.! semiclassically, the general
construction in Ref. [10] reduces to the known results in the limit of the ordinary A-model
and B-model. In the case of the B-model, it reduces to the familiar Kodaira-Spencer theory
of gravity? proposed in [3]. In the case of the A-model, the resulting theory after reduction
turns out to be what is called the Kahler gravity, first analyzed in [4]. Here the identifica-
tion is not as straightforward as in the case of B-model, due to the fact that the natural
identification of fermions with operators on differential forms in the generalized B-model is
different from that of the conventional choice for the A-model. This is already discussed in

Sec. 4.2. One needs to perform a Bogolyubov transformation to relate to the Kahler gravity

!The string field theory of the generalized B-model is a field theory on the loop space LM. When
nontrivial worldsheet instantons are present, it cannot be reduced to a field theory on M except in the limit
of large volumes, where the worldsheet instantons are suppressed.

2The reduction of the string field theory of generalized B-model in this case actually include more fields
than in [3]. The extra fields correspond to deformations parametrized by a holomorphic Poisson bivector and
a holomorphic (0,2)-form. The former can be interpreted as turning on certain noncommutativity on M,
while the latter can be described as deforming the category of coherent sheaves on M. Both deformations
are natural from the viewpoint of generalized B-model.
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formulated in [4].

Another very interesting direction for future study, which we have not discussed at all in
this work, is to understand the mirror symmetry for generalized Calabi-Yau manifolds. Up
to now, most results are from supergravity solutions of flux compactifications, and are largely
confined to special backgrounds (for a recent discussion, see [36]). To make further progress
for more general twisted GCY backgrounds, it is likely that more powerful worldsheet meth-
ods must be developed. Hopefully, such new tools will also enable us to construct examples
of generalized Kahler and generalized Calabi-Yau manifolds in a systematic manner. In the
ordinary Kéahler case, Witten’s gauged linear sigma model (GLSM) is the physical realiza-
tion of Kihler quotient, and one can obtain toric backgrounds® as the IR limit of the GLSM
[42]. In the case of (twisted) generalized Kéhler manifolds, such a worldsheet theory has
not been found so far. Compounding the matter even more, it is not even clear what is the
counterpart of the Kahler quotient for generalized Kahler geometry, although recently there

is progress in this direction [6]. We leave this interesting topic to the future.

3More general backgrounds are possible, if one allows non-abelian gauge groups.
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Appendix A

Lie algebroids and Lie algebroid
cohomology

Certain vector bundles have the special property that they carry natural Lie bracket struc-
tures on the sections. The tangent bundle of a differential manifold and a bundle of Lie
algebras are the first examples to come to mind. The former carries a natural Lie bracket of
vector fields, while in the latter the Lie bracket structure is provided by the Lie bracket on
the Lie algebra. Lie algebroids can be regarded as generalizations of the tangent bundle as
well as a bundle of Lie algebras. For a thorough discussion of the topic, see [31].

At the more formal level, a Lie algebroid on a differential manifold M is a vector bundle
E — M with a Lie bracket [,] on its sections, together with a bundle map (called the anchor)
a: E — TM such that

e The anchor induces a Lie algebra homomorphism, i.e. a[X,Y] = [a(X),a(Y)],VX,Y €
['(E).

e The Leibniz rule is satisfied:

(X, fY] = fIX,Y] + (a(X) f)Y, VX,Y eI'(E), f € C*(M).

The tangent bundle is a trivial example of Lie algebroid, with the anchor map being
the identity map. Another trivial example is the cotangent bundle. Here both the Lie

bracket [, |7« and the anchor map are zero. A less trivial example is the cotangent bundle
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on a symplectic manifold (M,w). Let a = w™!. It is a nondegenerate Poisson bivector and
defines a nondegenerate map a : T*M — TM via £ — «(). There is a bracket on T*M
given by
&, = = w([e(€), an)]).

That this gives a Lie bracket is the consequence of the symplectic condition dw = 0. Regard-
ing a to be the anchor map, it is easy to see that a induces a Lie algebra homomorphism.
Therefore the cotangent bundle with the anchor map and Lie bracket defined above is a Lie

algebroid.

On an arbitrary differential manifold M, there is a canonically associated differential
complex (A*T*M,d), the de Rham complex. There is similar construction for a generic
Lie algebroid £ — M. Consider the derived bundles constructed from exterior products
of E*. We claim there is actually a differential complex, (A*E*, dg), for some bundle map

dp : A°E* — APTLE* Vp. For any given w € I'(APE*), the map dg is defined via

p

dEw(X07 Xl; T aXp) = Z(_l)ia(Xi)w(Xm T 7Xi7 T aXp)

~

1=0
+Z(—1)i+jW([Xi,Xj],X0, ce ,Xi, Ce ,X]', Ce ,Xp)

1<j

for arbitrary Xo, Xi,..., X, € I'(E). One can show that d7, = 0, so (A*E*,dg) does form a
differential complex. Its cohomology is called the Lie algebroid cohomology of E.

Let L be a Lie algebroid, and E a vector bundle over the same base manifold M. A Lie
algebroid connection on E is a linear operator D : I'(F) — I'(L* ® E) such that

D(fs)=d.f ® s+ fDs
for any s € I'(E), f € C*°(M). It can be extended to D : A°L ® E — A*T! ® E via

D(as) =dpa® s+ (—1)a A Ds.
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Just like ordinary connections on vector bundles, one can show D? is a section of A’L* ®
End E. Tt is called the curvature of D. When the curvature vanishes, D itself becomes a
differential operator of the associated complex. In this case, we say (A* ® E, D) form a Lie
algebroid module over (A*L* d}).

There is an alternative, and perhaps a more intuitive, way to think about Lie algebroids.
For any vector bundle E we may consider a graded supermanifold IIFE, i.e., the total space
of the bundle F with the fiber directions regarded as odd and having degree 1. It turns
out that there is a one-to-one correspondence between Lie-algebroid structures on E and
degree-1 odd vector fields @ on IIE satisfying {Q, Q} = 2Q* = 0 [37]. The correspondence
goes as follows. Let (2P, £#) be local coordinates on ILE, where z° are local coordinates on
M, and & are linear coordinates on the fiber. Any degree-1 odd vector field on IIE has the

form
0 1 0
— b T Zapgvep T
Q - aug 83:_() + 2cyp£ é- 8{“’
where aZ and ¢, are locally-defined functions on M. Let e, be the basis of sections of £
dual to the coordinates £#. Define a map a : E — TM by
0
_ b
ale,) = %@,
and a bracket by

[6,,, eP] = Cﬁpeﬂ'

One can show that these data define on E the structure of a Lie algebroid if and only if

Q? =0.
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