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Appendix A.  Equations for Translating Between Stress Matrices, Fault Parameters, 

and P-T Axes 

Coordinate Systems and Rotations 

We use the same right-handed coordinate system as Andy Michael’s program, 

slick [Michael, 1984; 1987], which is East, North, and Up. 

 

 

Figure A.1.  Right-handed coordinate system used in generating code that is compatible 

with Andy Michael’s stress inversion programs.  All vectors generated will have a format 

v = [Ê, N̂ ,Ûp] . 

 

Therefore, our stress matrices will have the following Cauchy stress tensor format:  

 !
ij
=

!
EE

!
EN

!
EU

  

!
NE

!
NN

!
NU

  

!
UE

!
UN

!
UU

 .

 (A.1) 

For any component of ! ij , j  indicates the direction of the force applied, and i  describes 

the normal of the plane on which the force is acting.  Following physics sign convention 

for ! ij , where tension is positive and pressure is negative, if the force vector is acting in 

the positive direction and the normal is also in the positive direction, then the component 

!
ij
> 0 .  Conversely, if the force vector is acting in the negative direction and the normal 
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is in the positive direction, ! ij
< 0 . For example, !

EN
> 0  describes one of two scenarios:  

1) A force acting in the N̂  direction on a plane with a normal in the Ê  direction.  2) A 

force acting in the !N̂  direction on a plane with a normal in the !Ê  direction.  The 

diagonal components of ! ij  describe the normal tractions (forces normal to the plane on 

which they are acting), and the off-diagonal components describe the shear tractions 

(forces tangent to the plane on which they are acting).  Figure A.2 graphically shows all 

the components of the stress tensor. Figures A.3 and A.4 show 2D examples in more 

detail. 

As noted in Figure A.2, our Cauchy stress matrix must be symmetric resulting in: 

 !
ij
=

!
EE

!
EN

!
EU

  

!
EN

!
NN

!
NU

  

!
EU

!
NU

!
UU

 .

 (A.2) 

Figure A.3 shows in detail our convention for normal stresses and Figure A.4 shows in 

detail our convention for shear stresses. 
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Figure A.2.  The stress vectors are shown for three of the six exterior faces on a box.  

Note that in our convention, the diagonal elements of our stress tensor (!
EE

, !
NN

, and 

!
UU

) for tension are > 0  and for compression are < 0 .  In this figure all the elements of 

!
ij  are positive.  For example, !

EE
, !

NN
, !

UU
 are all pointing in the same direction as 

their respective normal vectors, resulting in tension.  The off-diagonal elements, !
EN

, 

!
NU

, !
UE

, have either a traction in the positive direction and a positive normal or have a 

traction in the negative direction and a negative normal for the given coordinate system.  

Since we are interested in systems where there is no net rotation, the matrix must be 

symmetric, i.e., !
NE

= !
EN

, !
UE

= !
EU

, and !
UN

= !
NU

  [illustration adapted from 

Housner and Vreeland, 1965]. 
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Figure A.3.  In this 2D example, !
EE

 and !
NN

 are both positive, i.e., the traction vectors 

are always pointing in the same direction as the normal vectors, resulting in 

E !W tension and N ! S  tension. 

 

Figure A.4.  Again, !
EN

 and !
NE

 are positive using our convention that a traction 

aligned in a positive direction on a plane with a positive normal, or a traction aligned in 

a negative direction on a plane with a negative normal, produce a positive component in 

our stress tensor.  Note, due to rotational symmetry, !
EN

= !
NE

. 



A-5 

 

In Figure A.4, if !
EN

 is the only stress being applied, then we could write our 

Cauchy stress tensor as follows, 

 ! ij

a( )
= A 

0 1 0

1 0 0

0 0 0

"

#

$
$

%

&

'
'

 (A.3) 

 
where A  is the scalar amplitude of !

EN
. 

If we wish to rotate the stress tensor, ! ij

a( ) , then we can apply any combination of 

the following rotation matrices,  

 R !( ) =

1 0 0

0 cos! " sin!
0 sin! cos!

#

$

%
%

&

'

(
(

         

for a counter-clockwise rotation !  

of the stress tensor about the 
ˆ
E  axis

 (A.4) 

 R !( ) =

cos! 0 sin!
0 1 0

" sin! 0 cos!

#

$

%
%

&

'

(
(

         

for a counter-clockwise rotation !  

of the stress tensor about the 
ˆ
N  axis

 (A.5) 

 R !( ) =

cos! " sin! 0

sin! cos! 0

0 0 1

#

$

%
%

&

'

(
(

         

for a counter-clockwise rotation !  

of the stress tensor about the 
ˆUp axis.

 (A.6) 

In Figure A.5, we apply the third rotation matrix, R !( ) , to rotate ! ij

a( )  about the 

positive Ûp axis  by ! = 45°  to produce a new Cauchy stress tensor, !
kl

b( ) .  We can write 

out the rotation as the following set of steps: 
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! kl

b( )
= Rki! ij

a( )
Rlj = R "( )! a( )

R "( )( )
T

= A

cos" # sin" 0

sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

0 1 0

1 0 0

0 0 0

$

%

&
&

'

(

)
)

#
cos" sin" 0

sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

= A

cos" # sin" 0

sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

# sin" cos" 0

cos" sin" 0

0 0 0

$

%

&
&

'

(

)
)

= A

# cos" sin" # sin" cos" cos" cos" # sin" sin" 0

# sin" sin" + cos" cos" sin" cos" + cos" sin" 0

0 0 0

$

%

&
&

'

(

)
)

= A

# sin2" cos2" 0

cos2" sin2" 0

0 0 0

$

%

&
&

'

(

)
)
,

 (A.7) 

 

and for ! = 45° , we find that our rotated stress is simply 

 !
kl

b( )
= A

"1 0 0

0 1 0

0 0 0

#

$

%
%

&

'

(
(
.

 (A.8) 

 
If we rotate the coordinate systems instead of the stress tensors themselves, the 

rotation matrices are the transpose of those used for rotating the stress tensors. 

 R
T !( ) =

1 0 0

0 cos! sin!
0 " sin! cos!

#

$

%
%

&

'

(
(

          

for a counter-clockwise rotation !  

of the coordinates about the 
ˆ
E  axis

 (A.9) 

 R
T !( ) =

cos! 0 " sin!
0 1 0

sin! 0 cos!

#

$

%
%

&

'

(
(

          

for a counter-clockwise rotation !  

of the coordinates about the 
ˆ
N  axis

 (A.10) 

 R
T !( ) =

cos! sin! 0

" sin! cos! 0

0 0 1

#

$

%
%

&

'

(
(

          

for a counter-clockwise rotation !  

of the coordinates about the 
ˆUp axis.

 (A.11) 
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Figure A.5.  The dotted lines indicate the unrotated stress tensor and the solid lines are 

for the rotated stress tensor.  Rotation of the stress field counter-clockwise by 45°.  Note 

that it results in E !W  compression and N ! S  tension.  This agrees with our tensor, 

!
kl

b( ) , where !
EE

b( )
< 0 , i.e., compression in the E !W  direction, and !

NN

b( )
> 0 , i.e., 

tension in the N ! S  direction. 
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Therefore, if we start with  

 ! ij

a( )
= A 

0 1 0

1 0 0

0 0 0

"

#

$
$

%

&

'
'

 (A.12) 

and rotate the coordinate system by 45° about the Ûp  axis, our stress tensor in the new 

coordinate system is: 

 

! kl

c( )
= Rik! ij

a( )
Rjl = R "( )( )

T
! a( )
R "( )

= A

cos" sin" 0

# sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

0 1 0

1 0 0

0 0 0

$

%

&
&

'

(

)
)

cos" # sin" 0

sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

= A

cos" sin" 0

# sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

sin" cos" 0

cos" # sin" 0

0 0 0

$

%

&
&

'

(

)
)

= A

cos" sin" + sin" cos" cos" cos" # sin" sin" 0

# sin" sin" + cos" cos" # sin" cos" # cos" sin" 0

0 0 0

$

%

&
&

'

(

)
)

= A

sin2" cos2" 0

cos2" # sin2" 0

0 0 0

$

%

&
&

'

(

)
)
,

 (A.13) 

and for ! = 45° , we find that our stress tensor in the rotated coordinate system is  

 !
kl

c( )
= A

1 0 0

0 "1 0

0 0 0

#

$

%
%

&

'

(
(
.

 (A.14) 

 
Figure A.6 graphically shows this rotation of the coordinate system. 
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Figure A.6.  Rotation of the coordinate system counter-clockwise by 45°.  The solid 

normal vectors represent the unrotated coordinates and the dashed normal vectors 

represent the rotated coordinates.  Note that the rotation results in compression in the 

primed, or new N ! S  direction, and tension in the new E !W  direction. 

 

Any symmetric stress matrix, ! , can be represented in terms of a diagonal matrix 

! ' , which contains the eigenvalues of ! , and a rotation matrix V , which contains 

eigenvectors of ! , where ! = V! 'V
T .  Once we know V , which rotates our coordinate 

system to the primed coordinate system, we can rotate our stress tensor !  or anything 

else into this coordinate system.  For example, ! ' = VT
!V .  This is called the principal 

coordinate system, and the diagonal values of ! '  are the principal stresses, where 
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! ' =
!
1

0 0

0 !
2

0

0 0 !
3

"

#

$
$

%

&

'
'

 

and the principal stresses, !
1
, !

2
, and !

3
 are ordered from most to least compressive, 

i.e., from smallest (most negative) to largest (most positive) given that in our convention 

compression yields negative values and tension yields positive values.  V = V
ij  is the 

eigenvector matrix associated with the eigenvalues where V
i1

 is the eigenvector for !
1
, 

V
i2

 is the eigenvector for !
2

, and V
i3

 is the eigenvector for !
3
.  !

1
 is the maximum 

compressive stress, !
3
 is the minimum compressive stress, and !

2
 is the intermediate 

compressive stress.  Therefore, for a deviatoric matrix where the trace has been 

subtracted, one finds that !
1
< 0  (compression), !

3
> 0  (tension), and !

2
= " !

1
+!

3( ) .  

!
1
, !

2
, and !

3
, are the eigenvalues of ! , and 

 

!
x
1
= VÊ = V

i1
, 
 

!
x
2
= VN̂ = V

i2
, and 

 

!
x
3
= VÛp = V

i3
 are the eigenvectors in the new principal coordinate system. 

 

Translating a Stress Matrix into Strike, Dip, and Rake Earthquake Fault 

Parameters 

 Ultimately, we wish to ask, given a particular stress state described by our stress 

tensors, what is the failure orientation?  What synthetic fault parameters (strike, dip, and 

rake) are produced when the material fails?  These questions can only be answered once a 

fracture criterion, that determines the timing, locations, and possibly the orientations of 

the failures, has been chosen.  The two fracture criteria we applied in this project were the 

Hencky-Mises plastic yield condition [Housner and Vreeland, 1965] and the Coulomb-

Mohr criterion.  Appendix B compares these two fracture criteria in detail; however, for 
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this section we need only compare how they affect the orientation of failure relative to 

the principal eigenvectors of the stress tensor. 

 In the Hencky-Mises plastic yield condition, failure always occurs on a plane at 

45° between the !
1
 and !

3
 axes.  There are two possible failure planes, and they are 

perpendicular to one another.  In this particular case, the two possible failure planes 

match the two possible planes on a focal sphere.  The optimally oriented planes of our 

plastic yield criterion are also equivalent to the failure planes in the Coulomb-Mohr 

criterion with coefficient of friction µ = 0 .  If the Coulomb-Mohr failure criterion is used 

instead, then the failure planes will occur at ±!  relative to the !
1
 axis, where ! " 45° .  

The formula for determining !  depends on the coefficient of friction, µ , where, 

! =
"

4
#
tan

#1 µ( )
2

.  If µ > 0 , then ! < 45°  and the two failure planes are no longer 

perpendicular to one another; thus the two possible failure planes will be associated with 

different focal mechanisms.  Therefore, the focal mechanism will depend on which 

failure plane one chooses. 

 Once one knows !  relative to the !
1
 axis based on the fracture criterion, then it is 

fairly simple to calculate all four possible slip and normal vectors by rotating the !
1
 and 

!
3
 axes (Figures A.7 and A.8).  The slip and normal vectors can then be converted to 

strikes, dips, and rakes.  Two possible triplets of strikes, dips, and rakes are associated 

with each failure plane depending on which side of the failure plane one considers fixed. 

Typically, we choose the strike, dip, and rake with dip ≤ 90.  This results in one triplet of 

strike, dip, and rake for each failure plane; given that we have two failure planes, we now 

have two triplets of strike, dip, and rake to randomly choose between when we create our 
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synthetic focal mechanism catalog.  However, we find that it is helpful to have all four 

sets of slip and normal vectors when attempting to determine the minimum angle 

between two different focal mechanisms.  It might be possible to reduce the problem to 

one set of slip and normal vectors per failure plane if we specify that the slip and normal 

vectors bound a compressional quadrant.  However, for the numerical calculations in this 

thesis, we use all four possible sets of slip and normal vectors per failure plane when 

calculating the minimum angular difference between pairs of focal mechanisms. 
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Figure A.7.  Slip and normal vectors for the two possible failure planes can be generated 

by rotating the !
1
 and !

3
 eigenvectors about the !

2
 axis.  For example, our first slip 

vector, 
 

!
l
a

, is the !
1
 eigenvector rotated counter-clockwise through an angle ! .  

 

!
l
b

, the 

slip vector for the alternate failure plane, is the !
1
 eigenvector rotated clockwise through 

an angle ! .  
 
!
!
n
a

, the negative of the normal vector associated with 
 

!
l
a

, is the !
3
 

eigenvector rotated counter-clockwise through an angle ! .  Last, 
 

!
n
b
, the normal 

associated with the slip vector 
 

!
l
b

, is the !
3
 eigenvector rotated clockwise through an 

angle ! .   
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 Figures A.7 and A.8 graphically show the rotation of eigenvectors in the principal 

coordinate system to produce our slip and normal vectors that will be converted into 

strikes, dips, and rakes.  The procedure to determine the four possible slip and normal 

vectors from an arbitrary symmetric stress tensor, ! , is as follows: 

1) Calculate the eigenvalues and eigenvectors of ! , where ! = V! 'V
T  and V  

is the eigenvector matrix. 

2) Rotate the coordinate system of the !
1
 and !

3
 eigenvectors into the principal 

coordinate system, using the transpose of the eigenvector matrix, VT . 

3) In the principal coordinate system, rotate the !
1
 and !

3
 eigenvectors about 

the !
2

 axis as shown in Figures A.7 and A.8 to produce the slip and normal 

vectors for the failure planes. 

4) Rotate the coordinate system of the slip and normal vectors back into the 

unprimed E , W , and Up  coordinate system using the eigenvector matrix,V . 

So the equations might look like 
 

!
l
a
= VR !( )VT !

x
1
, 
 

!
l
b
= VR

T
!( )VT !

x
1
, 

 

!
n
a
= !VR "( )VT !

x
3
, 
 

!
n
b
= VR

T
!( )VT !

x
3
, and 

 

!
l
c
= !

!
l
a
, 
 

!
l
d
= !

!
l
b

, 
 

!
n
c
= !
!
n
a

, 
 

!
n
d
= !
!
n
b
, 

where  

 R !( ) =

cos! 0 sin!
0 1 0

" sin! 0 cos!

#

$

%
%

&

'

(
(

 (A.15) 

 
and 

 

!
x
1
, 
 

!
x
2

, 
 

!
x
3
 are the eigenvectors for the !

1
, !

2
, and !

3
 axes. 
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Figure A.8.  The last two sets of slip and normal vectors are simply the slip and normal 

vectors on the other side of the fault planes.  In general, the slip vector on side two equals 

the negative of the slip vector on side one.  The normal vector on side two equals the 

negative of the normal vector on side one.  In a sense, these are the alternate slip and 

normal vectors for the two possible failure planes.  
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 Once we have a slip vector, normal vector pair, we can begin determining the 

strike, dip, and rake.  Figures A.9 and A.10 illustrate how the strike and dip of a plane 

can be calculated from a given normal vector.  The equation for the strike of the plane is 

 ! = tan
"1 sin!
cos!

#
$%

&
'(
= " tan"1 n

N

n
E

#

$%
&

'( ,
 (A.16) 

 
and the equation for the dip of the plane is, 

 ! = tan
"1 sin!
cos!

#
$%

&
'(
= tan

"1 n
E

2
+ n

N

2

n
U

#

$
%

&

'
(
.
 (A.17) 

 
Note that if the normal vector points down, one must first switch the sign of the normal 

and slick vectors, 
 

!
n = !

!
n  and 

!
l = !

!
l ,  if n

U
< 0  before calculating the strike and the dip 

of the plane. 

 Last, Figure A.11 graphically shows how one calculates the rake of the rupture 

given the strike angle and slip vector.  We calculate what is the strike vector,  
!
h , then find 

the angle between  
!
h  and  

!
l , which is rake, ! . 
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Figure A.9.  How to calculate the strike of a plane given the normal vector.   

 

 

Figure A.10.  How to calculate the dip of a plane given the normal vector.   
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Figure A.11.  How to calculate the rake of a rupture.  First, determine the strike vector, 

 

!
h , which by definition always has zero for the Ûp  component.  Then use the definition of 

a dot product of two vectors to derive the rake angle, ! . 

 

 

The formula for the strike vector will be 

 

 

!
h =

sin!
cos!
0

"

#

$
$

%

&

'
'
=

(n
N

n
E

0

"

#

$
$

%

&

'
'
.

 (A.18) 

Using the definition of the dot product, we can then determine the angle ! , 
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!
h !
!
l =||
!
h ||  ||

!
l || cos"

" = cos
#1

!
h !
!
l

||
!
h ||  ||

!
l ||

$

%&
'

() .

 (A.19) 

These formulas work for either set of conjugate planes.  

Now if one starts with the strike, dip, and rake of a failure, one knows the 

coefficient of friction, and one wishes to determine the stress tensor, the procedure is the 

inverse of what has just been done.  One calculates the slip and normal vectors of the 

plane, then rotates these by ±!  in the principal coordinate frame to produce the 

eigenvectors.  We will not go through the derivation, but one can look to Jarosch and 

Aboodi [1970] for how to calculate the slip and normal vectors from strike, dip, and rake.  

For our particular coordinate system, the equations are, 

 

 

!
l =

l
E

l
N

l
U

!

"

#
#

$

%

&
&
=

sin '( )cos (( ) ) cos '( )cos *( )sin (( )

cos '( )cos (( ) + sin '( )cos *( )sin (( )

sin *( )sin (( )

!

"

#
##

$

%

&
&&

!
n =

n
E

n
N

n
U

!

"

#
#

$

%

&
&
=

cos '( )sin *( )

) sin '( )sin *( )

cos *( )

!

"

#
##

$

%

&
&&
.

 (A.20) 

 
After we have rotated,  

!
l  and  

!
n  into our eigenvectors, x̂

1
 and x̂

3
, we can reconstruct the 

stress tensor exactly if we also know the eigenvalues.  If not, then there is an ambiguity 

as to the magnitude the stress tensor.  For example, if we have the stress tensor ! with its 

associated eigenvector matrix V and eigenvalue matrix ! ' , we can reconstruct !  

exactly. 

 ! = V! 'V
T  (A.21) 
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See the following example. 

 

! = 0.618

1 1 0

1 0 0

0 0 "1

#

$

%
%

&

'

(
(

V =

0 0.5257 -0.8507

0 -0.8507 -0.5257

1.000 0 0

#

$

%
%

&

'

(
(

       

! ' =

-0.618 0 0

0 -0.382 0

0 0 1.000

#

$

%
%

&

'

(
(

 

 (A.22) 

 
In this case, indeed, ! = V! 'V

T .  However, what if one does not know the eigenvalues 

(principal stresses) and one has to guess their values?   For example, assume one might 

choose ! '
Guess

 to be 

 ! '
Guess

=

-1.0000 0 0

0 0 0

0 0 1.0000

"

#

$
$

%

&

'
'
.

 (A.23) 

 
In this case our best guess for the stress matrix is, !

Guess
= V! '

Guess
V

T , where 

 !
Guess

=0.618

1.1708 0.7236 0

0.7236 0.4472 0

0 0 -1.6180

"

#

$
$

%

&

'
'
.

 (A.24) 

 
One can see that ! " !

Guess
.  They may be close but not quite equal to one another.  They 

do, however, produce the same strike, dip, and rake since the same eigenvector matrix, 

V , is used for both !  and !
Guess

.   
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Translating a Stress Matrix into P and T axes 

 Viewing  
!
P  (Pressure) and  

!
T  (Tension) axes on an equal area plot is an excellent 

way to visualize earthquake focal mechanism orientations for a large number of 

earthquakes.  The definition of the  
!
P  and  

!
T  vectors is 

 

 

!
P =

1

2

!
n !
!
l( )

!
T =

1

2

!
n +
!
l( )

!
B =
!
n "
!
l

 (A.25) 

where  
!
n  is the normal vector to a shear dislocation plane,  

!
l  is the slip vector, and  

!
B  is 

the vector normal to  
!
n  and  

!
l .   
!
P  and  

!
T  vectors are rotated ±45°  relative to  

!
n  and  

!
l .  

In the case of optimally oriented planes, i.e., µ = 0 ,  
!
P  corresponds to the !

1
 (most 

compressive) eigenvector of the stress matrix,  
!
T  corresponds to the !

3
 (least 

compressive) eigenvector of the stress matrix, and  
!
B  corresponds to the intermediate, !

2
 

eigenvector of the stress matrix.  Except for Appendix C, which explicitly discusses the 

Coulomb failure criterion, all our results assume optimally oriented planes with the 

plastic yield criterion; hence, this correspondence between the  
!
P  and  

!
T  vectors and our 

stress matrix eigenvectors for optimally oriented planes is especially useful.    

 For example, in Figure A.12 we have the following stress matrix being 

represented,  

 ! ij = A

1 0 0

0 "1 0

0 0 0

#

$

%
%

&

'

(
(

 (A.26) 
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where there is tension (blue) in the E !W  direction and compression (red) in the N ! S  

direction.  Since µ = 0 , the two possible failure planes are at ! = ±45°  from the !
1
 axes.  

We could take any one of the possible four sets of normal vectors and slip vectors to 

reproduce the same  
!
P  and  

!
T  axes.   

 

Figure A.12.  N ! S  compression (red) and E !W  tension (blue).  In this case of 

optimally oriented planes, µ = 0 , the stress matrix eigenvectors align with the  
!
P  and  

!
T  

axes.  The two possible failure planes are 45°  from the  
!
P  and  

!
T  axes. 

 

Figure A.14 is an equal area plot of  
!
P  and  

!
T  axes for 1,000 synthetic earthquakes where 

each red asterisk represents a  
!
P  axes for a single event and each blue circle represents a 

 

!
T  axes for a single event.  The average  

!
P  and  

!
T  orientation is approximately the same 

as Figure A.12.  The distance from center represents the dip or plunge, ! , of the  
!
P  or 

 

!
T vectors, where a plunge of 90° corresponds to the center and a plunge of 0° would plot 
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at the circumference of the circle.  The azimuth, or angular distance from the top of the 

circle, represents the azimuth from N , ! , for the  
!
P  or  

!
T vectors.  Figure A.13, a cartoon 

of an equal area plot, visually shows these relations. 

 

 

 

Figure A.13.  A cartoon of a typical equal area plot for P-T azimuths and plunges.  The 

longitude, ! , is the azimuth of the circle, and plunge, ! , is plotted as a function of radial 

distance where, ! = 90°  at the center and ! = 0° , at the circumference.  Note the radial 

lines are not necessarily to scale. 
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Figure A.14.   Equal area plot of  
!
P  and  

!
T  vectors for 1,000 synthetic earthquakes with 

an average compression axis in the N ! S  direction and an average tension axis in the 

E !W  direction.  The red asterisks are the  
!
P  vectors and the blue circles are the  

!
T  

vectors.  The azimuth, ! , of the vectors is represented by the angular distance from the 

top of the circle in the clockwise direction.  The dip or plunge of the vectors, ! , is 

represented by the radial distance where the center of the circle is a ! = 90° , and the 

circumference is a ! = 0° . 
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