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Chapter 4

Atom preparation: optical
pumping and conditional loading

This chapter presents two significant advances in our ability to prepare trapped atoms

within an optical cavity. First, we demonstrate that we can use Raman transitions to

pump a trapped atom into any desired Zeeman state. Second, we introduce a feedback

scheme for conditioning our experiment on the presence of at most one atom in the

cavity. When combined with a new Raman-based cavity loading method which allows

us to trap multiple atoms consistently, this scheme allows us to perform single-atom

experiments after almost every MOT drop.

While there exist well-known methods for optically pumping atoms in free space,

we have struggled to implement them in our lab. These conventional methods rely

on classical fields which address both hyperfine manifolds of the atom, and we have

used the lattice beams as well as linearly polarized light from the side of the cavity for

this purpose. One source of our difficulties may be the Zeeman-dependent AC Stark

shift which the FORT induces in the excited states of the atom [39]; this potentially

leads to mixing of the excited-state Zeeman populations during the optical pumping

process. In addition, recent calculations suggest that diffraction of beams focused

into the cavity from the side results in significant intensity variation along the cavity

axis.

After a series of frustrating optical pumping attempts in the cavity, we realized

that it might be better to study our techniques first in the simpler setting of a MOT.
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We rehabilitated the old lab 1 upper vacuum chamber for this purpose, and under-

graduate Eric Tai is currently working with Dal in lab 9 to explore free-space optical

pumping. In the meantime, we have found an alternative method of preparing atoms

in a specific Zeeman state, presented in Sections 4.1 and 4.2: by driving incoherent

Raman transitions across a specifically chosen frequency range, we can create a tun-

able dark state for population trapping. Not only does our new scheme avoid the

problems associated with side beams and excited-state mixing, but also it no longer

restricts us to the Zeeman levels mF = 0, +F,−F as in conventional optical pumping.

Variation in intracavity atom number is another bugbear of the experiment which

in the past has been only indirectly confronted. The number of atoms loaded into the

FORT after each MOT drop is believed to obey Poissonian statistics over the course of

a data run. Therefore, if we can establish a maximum acceptable level of events with

two or more atoms present, we can simply turn down the loading rate (and thus, the

average atom number N̄ in the Poissonian distribution) until this threshold is met.

(In practice, this is accomplished by attenuating the power in the lattice beams which

cool atoms into the FORT, so that cooling is less effective.) However, we must rely

on an unfortunate trade-off between two-atom contamination and data acquisition

time. For example, 90.8% of all trials in the single photon generation experiment

were discarded because they had no atoms, and the experiment thus required almost

a day of continuous data acquisition; nevertheless, the effects of two-atom events

could still be seen in the photon statistics [16, 39]. In order to decouple these two

parameters, we introduce a real-time measurement of atom number which allows us

to enforce the condition N < 2 before the experiment begins (Sections 4.3 and 4.4).

4.1 Optical pumping via incoherent Raman tran-

sitions

The following section has been adapted from Ref. [32].

A new optical pumping scheme is presented that uses incoherent Raman tran-
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sitions to prepare a trapped cesium atom in a specific Zeeman state within the

6S1/2, F = 3 hyperfine manifold. An important advantage of this scheme over ex-

isting optical pumping schemes is that the atom can be prepared in any of the F = 3

Zeeman states. We describe an experimental implementation of the scheme and show

that a fraction 0.57 ± 0.02 of the total population can be prepared in the desired

state, with the remaining population distributed fairly uniformly among the six other

states. We demonstrate the scheme in the context of cavity quantum electrodynam-

ics, but the technique is equally applicable to a wide variety of atomic systems with

hyperfine ground-state structure.

4.1.1 Introduction

Many experiments in atomic physics rely on the ability to prepare atoms in specific

internal states. For example, spin-polarized alkali atoms can be used to polarize the

nuclei of noble gases [84], to act as sensitive magnetometers [85], and to provide

frequency standards that exploit magnetic-field-insensitive clock transitions [86]. In

the field of quantum information science, internal atomic states can be used to store

and process quantum bits [1, 2, 34, 87, 88] with extended coherence times.

A standard method for preparing an atom in a specific internal state is optical

pumping [89, 90, 91], which involves driving the atom with light fields that couple to

all but one of its internal states; these light fields randomly scatter the atom from one

internal state to another until it falls into the uncoupled “dark” state. Various optical

pumping schemes have been analyzed and demonstrated for alkali atoms [92, 86, 93]

and today are well-established techniques. These schemes rely on dark states that

are set by the polarization of the driving field, and this imposes restrictions on the

possible Zeeman states in which the atom can be prepared. Specifically, one can

prepare the atom in the mF = 0 state by using light that is linearly polarized along

the quantization axis, or in one of the edge states (mF = ±F ) by using light that is

circularly σ±-polarized along the quantization axis.

In contrast, the scheme presented here allows the atom to be prepared in any
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of the Zeeman states within the lowest ground state hyperfine manifold of an alkali

atom, which in our case is the 6S1/2, F = 3 manifold of cesium. The key component

of the scheme is a pair of optical fields that drive Raman transitions between pairs

of Zeeman states |3, m〉 ↔ |4, m〉. We apply a magnetic bias field to split out the

individual Zeeman transitions and add broadband noise to one of the optical fields,

where the spectrum of the noise is tailored such that all but one of the transitions

are driven. The two Zeeman states corresponding to the undriven transition are

the dark states of the system, and we exploit these dark states to perform optical

pumping. We verify the optical pumping by using coherent Raman transitions to

map out a Raman spectrum, which allows us to determine how the atomic population

is distributed among the different Zeeman states; these measurements show that a

fraction 0.57 ± 0.02 of the total population is prepared in the desired state, with

the remaining population distributed fairly uniformly among the six other states.

The capability of driving Raman transitions between hyperfine ground states has

many additional applications, such as state manipulation [94], ground-state cooling

[30, 33, 35, 37], precision measurements [95, 96], and Raman spectroscopy [97]. The

scheme described here shows that this versatile tool can also be used for atomic state

preparation.

We have demonstrated this scheme in the context of cavity quantum electrody-

namics (QED), specifically in a system in which a single atom is strongly coupled to

a high-finesse optical cavity. Cavity QED offers a powerful resource for quantum in-

formation science, and the ability to prepare the atom in a well-defined initial state is

a key requirement for many of the protocols that have been proposed for this system,

such as the generation of polarized single photons [4, 82] and the transfer of Zeeman

coherence to photons within the cavity mode [76]. Conventional optical pumping

to a single Zeeman sublevel has been previously demonstrated within a cavity [83],

but we find our new method to be particularly effective given the constraints of our

system, in which optical access to the atom is limited and we must address the large

multiplicity of cesium sublevels. However, optical pumping via incoherent Raman

transitions has much broader applications beyond the cavity QED setting and can be
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Figure 4.1: Schematic of experiment. (a) View from the side of the cavity. Shown are
the linearly polarized FORT, Raman, and probe beams that drive the cavity, and the
circularly polarized 4 − 4′ lattice beams and linearly polarized 4 − 4′ side beam that
drive the atom. (b) View along the cavity axis. Shown are the 4 − 4′ lattice beams
and the 4 − 4′ side beam.

used in a wide variety of atomic systems with hyperfine ground-state structure.

4.1.2 Experimental apparatus

Our system consists of a single cesium atom that is strongly coupled to a high-finesse

optical cavity, as shown in Figure 4.1. The cavity supports a set of discrete modes,

and its length is tuned so that one pair of modes 1 is nearly resonant with the atomic

transition 6S1/2, F = 4 → 6P3/2, F = 5′ at λD2 = 852 nm (see the level diagram

shown in Figure 4.2). The atomic dipole associated with this transition couples to

the electric field of the resonant mode, allowing the atom and cavity to exchange

excitation at a characteristic rate g = (2π)(34 MHz) for the 6S1/2, F = 4, mF = 4 →
6P3/2, F = 5′, mF ′ = 5 transition, a rate that is much larger than either the cavity

decay rate κ = (2π)(3.8 MHz) or the atomic decay rate γ = (2π)(2.6 MHz); thus, the

system is in the strong-coupling regime [49].

We hold the atom inside the cavity via a state-insensitive far off-resonance trap

(FORT) [13]. The FORT is produced by resonantly driving a cavity mode at λF =

936 nm with a linearly polarized beam, which creates a red-detuned standing wave

inside the cavity. Each antinode of this standing wave forms a potential well in which

an atom can be trapped; for the experiments described here, the optical power of the

1Since there are two polarization degrees of freedom, the cavity modes occur in nearly degenerate
pairs.
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Figure 4.2: Level diagram for the D2 line in cesium

FORT beam is chosen such that the depth of these wells is UF = (2π)(45 MHz).

We drive Raman transitions between the F = 3 and F = 4 hyperfine ground-

state manifolds of the atom by adding a second beam, referred to here as the Raman

beam, which drives the same cavity mode as the FORT beam but is detuned from the

FORT by the atomic hyperfine splitting ΔHF = (2π)(9.2 GHz) (this scheme was first

proposed in [19] and was used to perform Raman sideband cooling in [17]). The FORT

and Raman beams are combined on a polarizing beam splitter (PBS) before entering

the cavity, so the Raman beam is linearly polarized in a direction orthogonal to the

polarization of the FORT beam. To stabilize the frequency difference between the

FORT and Raman beams, the external-cavity diode laser that generates the Raman

beam is injection-locked to the red sideband of light that has been picked off from

the FORT beam and passed through an electro-optical modulator (EOM), which is

driven at ΔHF . The FORT and Raman beams form the two legs of a Raman pair and

drive Raman transitions between pairs of Zeeman states |3, m〉 ↔ |4, m〉, where the

quantization axis ẑ is chosen to lie along the cavity axis 2. Typically we use a strong

FORT beam and a weak Raman beam, so the Raman beam does not significantly

alter the FORT trapping potential 3.

2The FORT-Raman pair generates a Raman coupling between the hyperfine ground states that
is proportional to �J · (ε̂F × ε̂R), where �J is the electron angular momentum operator and ε̂F ,ε̂R are
the polarization vectors for the FORT and Raman beams, so in general Δm = ±1, 0 transitions are
possible [19]. For our system ε̂F × ε̂R = ẑ, so only the Δm = 0 transitions are driven.

3The FORT and Raman beams give level shifts UF ∼ Ω2
F /Δ and UR ∼ Ω2

R/Δ, and the effective
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Figure 4.3: Ground state spectrum of cesium in the presence of an axial bias field. The
Raman coupling drives transitions between pairs of Zeeman states |3, m〉 ↔ |4, m〉,
as indicated by the arrows.

In order to address individual Zeeman transitions, we apply a magnetic bias field

Ba along the cavity axis. As shown in Figure 4.3, this axial field shifts the |3, m〉 ↔
|4, m〉 transition by

δ(|3, m〉 ↔ |4, m〉) = ωB m, (4.1)

where

ωB ≡ (g4 − g3)μBBa = (2π)(700 kHz/G) Ba, (4.2)

and g4 = 1/4, g3 = −1/4 are the Lande g-factors for the F = 4 and F = 3 ground-

state hyperfine manifolds. For the experiments described here, we typically set the

axial bias field such that ωB � (2π)(910 kHz).

The strong atom-cavity coupling allows us to to determine whether the atom is

in the F = 3 or F = 4 hyperfine manifold by driving the cavity with a 100μs pulse

of resonant 4− 5′ probe light, as described in [30]. If the atom is in F = 4, it couples

to the cavity and blocks the transmission of the probe beam, while if the atom is in

F = 3, it decouples from the cavity, and the probe beam is transmitted. Using this

technique, we can determine the hyperfine ground state of the atom with an accuracy

Rabi frequency for the Raman transitions driven by the FORT-Raman pair is ΩE ∼ ΩF ΩR/Δ,
where ΩF,R are the Rabi frequencies of the FORT and Raman beams and Δ is the detuning from
atomic resonance. Thus, the ratio of the level shifts is UR/UF ∼ (ΩE/UF )2 ∼ 10−5 for the typical
values UF = (2π)(45 MHz), ΩE = (2π)(120 kHz).
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of ∼ 98% for a single 100μs measurement interval.

Atoms are delivered to the cavity by releasing a magneto-optical trap located a

few millimeters above the cavity, and the falling atoms are loaded into the FORT

by cooling them with 4 − 4′ lattice light. This lattice light consists of two pairs of

counter-propagating beams in the σ+ − σ− configuration, which are applied from the

sides of the cavity. We ensure that only one atom is trapped in the FORT by applying

the Raman beam and driving the cavity with a resonant 4−5′ probe; this combination

gives an effect analogous to that in [18], which allows us to determine the number of

atoms in the cavity based on the amount of 4 − 5′ light that is transmitted.

4.1.3 Coherent and incoherent Raman transitions

If the FORT and Raman beams are both monochromatic, then they drive coherent

Raman transitions between pairs of Zeeman states |3, m〉 ↔ |4, m〉, and the atomic

populations oscillate between the two states in each pair. The effective Rabi frequency

for the |3, m〉 ↔ |4, m〉 transition is

ΩE(|3, m〉 ↔ |4, m〉) = Ω0 (1 − m2/16)1/2, (4.3)

where Ω0 is set by the power in the FORT and Raman beams [19]. For the ex-

periments described here, the powers in these beams are chosen such that that

Ω0 � (2π)(120 kHz). The Raman detuning for the FORT-Raman pair is given by

δR = ωF − ωR − ΔHF , where ωF and ωR are the optical frequencies of the FORT

and Raman beams, which means that the effective detuning for the |3, m〉 ↔ |4, m〉
transition is

δE(|3, m〉 ↔ |4, m〉) = δR − ωB m. (4.4)

We can also drive incoherent Raman transitions by using a monochromatic FORT

beam and a spectrally broad Raman beam, where the spectral width is typically

∼ 10 MHz. In contrast to coherent Raman transitions, in which the atom undergoes
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coherent Rabi oscillations, for incoherent Raman transitions the atomic population

decays at a constant rate from |3, m〉 → |4, m〉 and from |4, m〉 → |3, m〉. In Section

4.1.7, we show that these decay rates are proportional to S(ΔHF +ωB m), where S(ω)

is the power spectrum of a beat note formed between the FORT and Raman beams.

4.1.4 Measuring the population distribution

Given an initial state of the atom in which the entire population lies in the F = 3

manifold, we can use coherent Raman transitions to determine how the population

is distributed among the various Zeeman states. To perform this measurement we

prepare the atom in the desired initial state, apply a coherent Raman pulse of fixed

duration, Rabi frequency, and Raman detuning, and then drive the cavity with a

resonant F = 4 → F = 5′ probe beam to determine if the atom was transferred to

F = 4. By iterating this process, we determine the probability p4 for the atom to

be transferred by the Raman pulse, and by repeating the probability measurement

for different Raman detunings δR we can map out a Raman spectrum p4(δR). For

the Raman spectra presented here, the Raman pulses have Rabi frequency Ω0 =

(2π)(120 kHz) and duration 25μs. This is long enough that the Rabi oscillations

decohere, and the Raman spectrum just records the Lorentzian envelope for each

Zeeman transition.4 Thus, when the |3, m〉 ↔ |4, m〉 Zeeman transition is resonantly

driven by the Raman pulse, roughly half the population that was initially in |3, m〉 is

transfered to |4, m〉.
As a demonstration of this technique, Figure 4.4 shows a Raman spectrum for

an initial state with comparable populations in all of the F = 3 Zeeman states. To

prepare this state, we optically pump the atom to F = 3 by alternating 7 pulses of

resonant F = 4 → F = 4′ lattice light with 7 pulses of resonant F = 4 → F = 4′ side

light, where each pulse is 300 ns long. The beams that deliver the lattice and side

light are shown in Figure 4.1.

4Subsequent measurements (Section 5.2.2) have shown that decoherence times are longer over a
certain frequency range on the red side of each transition. Pulses of 25μs are in fact not quite long
enough for decoherence at these special detunings, but the Lorentzian assumption still holds in the
context of a broad scan.
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Figure 4.4: Raman spectrum for a random initial state. Shown is the transfer prob-
ability p4 vs. Raman detuning δR: the points are the experimental data, the curve
is a fit of p4(δR), as given by equation (4.5), and the vertical green lines indicate the
predicted frequencies δ(|3, m〉 ↔ |4, m〉) for individual Zeeman transitions.

To determine the population p3,m in the Zeeman state |3, m〉, we fit a sum of

Lorentzians, one for each Zeeman transition, to the experimental data:

p4(δR) = pb + (1/2)
∑
m

(1 + (δR − ωB m)2/(1 − m2/16) Ω2
0)

−1 p3,m, (4.5)

where pb is a constant background. We fit the Zeeman state populations, the Rabi

frequency Ω0, and the frequency ωB that characterizes the strength of the axial bias

field, and perform an independent measurement to determine the background prob-

ability pb = 0.006. The fitted value of Ω0 agrees to within 14 % with the value we

would expect based on the measured optical powers in the FORT and Raman beams,

and the fitted value of ωB agrees to within 5 % with the value we would expect based

on the known axial coil current and geometry. As a consistency check, we sum the

fitted populations and obtain the result 1.10±0.03, in reasonable agreement with the

expected value of 1.

4.1.5 Optical pumping scheme

We can prepare the atom in a specific Zeeman state by using a Raman beam whose

spectrum is tailored to drive incoherently all but one of the Zeeman transitions. As
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Figure 4.5: (a) Power spectrum of noise used for pumping into |3, 0〉. (b) Power
spectrum of coherent signal used for driving coherent Raman transitions with Ω0 =
(2π)(120 kHz). Both curves are obtained by combining the FORT and Raman beams
on a photodetector and measuring the spectrum of the photocurrent, mixed down
from ΔHF = 9.2 GHz; shown is the RF power in a 3 kHz bandwidth vs. detuning
from ΔHF .

an example, Figure 4.5a shows the power spectrum of the noise used for pumping

into |3, 0〉. This graph was obtained by measuring the power spectrum of a beat note

formed between the FORT and Raman beams by mixing them on a photodetector

with a non-polarizing beam splitter. For comparison, Figure 4.5b shows the power

spectrum for a monochromatic Raman beam tuned to Raman resonance, as would be

used for driving coherent Raman transitions.

Comparing the noise spectrum shown in Figure 4.5a to the Raman spectrum

shown in Figure 4.4, we see that the noise drives incoherent Raman transitions from

|3, m〉 ↔ |4, m〉 for m �= 0, but because of the notch around zero detuning, the

|3, 0〉 ↔ |4, 0〉 transition is not driven. We optically pump the atom into |3, 0〉 by first

driving incoherent Raman transitions for 10μs, then pumping the atom to F = 3

using the method discussed in Section 4.1.4, and iterating this sequence 40 times. It

is straightforward to modify this procedure so as to pump into the |3, m〉 Zeeman

state for any m; we simply shift the notch in the noise so that it overlaps with the

|3, m〉 ↔ |4, m〉 transition.

To characterize the optical pumping, we first pump the atom into a specific Zeeman

state and then measure the Raman spectrum as described in the preceding section.
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Figure 4.6: (a) Raman spectrum for optical pumping into |3, 0〉. (b) Raman spectrum
for optical pumping into |3, 1〉. Raman spectrum for a random initial state. Shown is
the transfer probability p4 vs. Raman detuning δR: the points are the experimental
data, the curve is a fit of p4(δR), as given by equation (4.5), and the vertical green
lines indicate the predicted frequencies δ(|3, m〉 ↔ |4, m〉) for individual Zeeman
transitions.

Figure 4.6 shows Raman spectra measured after pumping into (a) |3, 0〉 and (b)

|3, 1〉. We find that the fraction of the atomic population in the desired state is

0.57± 0.02 for pumping into |3, 0〉 and 0.57± 0.02 for pumping into |3, 1〉, where the

remaining population is roughly equally distributed among the other Zeeman states

(these numbers are obtained by fitting equation (4.5) to the data, as described in

Section 4.1.4). Summing the fitted populations in all the Zeeman states, we obtain

the value 1.02± 0.04 for (a) and 1.08± 0.04 for (b), in reasonable agreement with the

expected value of 1.

To generate the Raman beam used in Figure 4.5a, we start with an RF noise

source, which produces broadband noise that is spectrally flat from DC to ∼ 10 MHz.

The noise is passed through a high-pass filter at 500 kHz and a low-pass filter at 5 MHz,

where both filters roll off at 60 dB per octave. The filtered noise is then mixed against

an 85 MHz local oscillator, and the resulting RF signal is used to drive an acousto-

optical modulator (AOM) that modulates a coherent beam from the injection-locked

Raman laser. The first-order diffracted beam from the AOM forms a Raman beam

with the desired optical spectrum. Note that previous work has demonstrated the use

of both synthesized incoherent laser fields [98, 99], such as that used here, as well as
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the noise intrinsic to free-running diode lasers [100, 101] to resonantly probe atomic

spectra.

Although the scheme presented here relies on incoherent Raman transitions, it is

also possible to perform optical pumping with coherent Raman transitions. The basic

principle is the same: we simultaneously drive all but one of the Zeeman transitions,

only instead of using a spectrally broad Raman beam, we use six monochromatic

Raman beams, where each beam is tuned so as to resonantly drive a different tran-

sition. We have implemented such a scheme, and found that it gives comparable

results to the incoherent scheme described above, but there are two advantages to the

incoherent scheme. First, it is simpler to generate a Raman beam with the necessary

spectral properties for the incoherent scheme. Second, when coherent Raman tran-

sitions are used, the six frequency components for the Raman beam must be tuned

to resonance with their respective transitions, and hence are sensitive to the value of

the axial magnetic field. When incoherent Raman transitions are used, however, the

same Raman beam can be used for a broad range of axial field values.

4.1.6 Conclusion

We have proposed a new scheme for optically pumping atoms into a specific Zeeman

state and have experimentally implemented the scheme with cesium atoms in a cavity

QED setting. An important advantage over existing schemes is that atoms can be

prepared in any of the Zeeman states in the lower hyperfine ground state manifold.

We have measured the effectiveness of the optical pumping, and have shown that a

fraction ∼ 0.57 of the atomic population can be prepared in the desired Zeeman state.

Some possible factors that could be limiting the effectiveness of the optical pumping

include fluctuating magnetic fields transverse to the cavity axis, misalignment of the

cavity axis with the axial bias field, and slow leaking out of the dark state due to

scattering from background light. We are currently investigating these factors.

The scheme presented here operates on a fundamentally different principle from

existing optical pumping schemes, in that it relies on incoherent Raman transitions
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to create an atomic dark state. Raman transitions have many different applications

in atomic physics, so there are often independent reasons for incorporating a system

for driving Raman transitions into an atomic physics laboratory; our scheme shows

that such a system can also be applied to the problem of atomic state preparation.

The scheme should serve as a useful tool for experiments in atomic physics, both in

a cavity QED setting and beyond.

4.1.7 Transition rate for incoherent Raman transitions

As described in Section 4.1.3, we drive incoherent Raman transitions between pairs

of Zeeman states |3, m〉 ↔ |4, m〉 by using a monochromatic FORT beam and a spec-

trally broad Raman beam. For incoherent Raman transitions the atomic population

decays at a constant rate from |3, m〉 → |4, m〉 and from |4, m〉 → |3, m〉, and in this

section we calculate these decay rates.

We will consider a single Zeeman transition |3, m〉 ↔ |4, m〉, so we can treat the

system as an effective two-level atom with ground state g ≡ |3, m〉 and excited state

e ≡ |4, m〉, where the energy splitting between g and e is ωA ≡ ΔHF + ωB m. The

FORT-Raman pair drives this effective two-level atom with broadband noise, which

we can approximate as a comb of classical fields with optical frequencies ωk and Rabi

frequencies Ωk. Let us assume that we start in the ground state g. If we only consider

the coupling of the atom to field k, then the equation of motion for the excited state

amplitude ce is

iċe =
Ωk

2
e−iδkt cg, (4.6)

where δk ≡ ωk − ωA is the detuning of the field from the atom. At small times the

population is almost entirely in the ground state, so we can make the approximation

cg = 1 and integrate equation (4.6) to obtain

ce(t) =
Ωk

2δk

(e−iδkt − 1). (4.7)
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Thus, the transition rate from g to e for a single frequency ωk is

γk =
|ce(t)|2

t
=

π

4
t Ω2

k D(δkt/2), (4.8)

where

D(x) ≡ sin2 x

πx2
. (4.9)

The total decay rate is obtained by summing the decay rates for all the fields in the

comb:

γ =
∑

k

γk =
π

4
t
∑

k

Ω2
k D(δkt/2). (4.10)

To evaluate this expression we need to know the distribution of Rabi frequencies Ωk.

This information can be obtained by forming a beat note between the FORT and

Raman beams on a photodetector, and measuring the power spectrum S(ω) of the

photocurrent using a spectrum analyzer. Let us first consider this measurement for a

monochromatic Raman beam, and then generalize to a spectrally broad Raman beam.

If both the FORT and Raman beams are monochromatic, with optical frequencies

ωF and ωR, then the resulting photocurrent i(t) is given by

i(t) = iF + iR + 2η cos((ωF − ωR)t)
√

iF iR, (4.11)

where iF and iR are the cycle-averaged photocurrents for the FORT and Raman beams

taken individually and η is the heterodyne efficiency. Thus, the power spectrum of

the photocurrent has a spike at the difference frequency Δ ≡ ωF − ωR:

Sc(ω) = Pc δ(ω − Δ), (4.12)

where the integrated power Pc of the spike is proportional to iF iR. If the difference

frequency Δ is tuned to Raman resonance (Δ = ωA), then the FORT-Raman pair
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drives coherent Raman transitions with a Rabi frequency Ωc that is proportional to
√

iF iR, so

Ω2
c = αPc, (4.13)

where α is a constant that depends on various calibration factors.

Now consider the case of a spectrally broad Raman beam, which results in a pho-

tocurrent with power spectrum Si(ω). The effective Rabi frequency Ωk corresponding

to comb line k is given by

Ω2
k = α Si(ωk) δω, (4.14)

where δω is the frequency spacing between adjacent comb lines. Substituting this

result into equation (4.10), and replacing the sum with an integral, we obtain

γ =
π

4
αt

∫
Si(ω) D((ω − ωA)t/2) dω. (4.15)

If the power spectrum near ωA is flat over a bandwidth ∼ 1/t, then we can approxi-

mate D as a delta function and perform the integral:

γ =
π

2
α Si(ωA). (4.16)

It is convenient to use equation (4.13) to eliminate the calibration factor α:

γ =
π

2

Si(ωA)

Pc

Ω2
c . (4.17)

The spectrum analyzer trace given in Figure 4.5a displays the power spectrum in

terms of the power Pi(ν) � 2πB Si(ω) in a bandwidth B = 3 kHz, so we can also

write this as

γ =
1

4

Pi(ωA/2π)

Pc

Ω2
c

B
=

1

4
(1 − m2/16)

Ω2
0

B

Pi((ΔHF + ωB m)/2π)

Pc

, (4.18)
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where we have substituted Ωc = (1 − m2/16)1/2 Ω0 and ωA = ΔHF + ωB m.

We can calculate the time evolution of the atomic populations using rate equations.

It is straightforward to show that the decay rate e → g is also given by γ, and from

the rate equations one can show that the excited state population is

pe(t) =
1

2
(1 − exp(−2γt)). (4.19)

We can calculate the decay rates for the noise spectrum shown in Figure 4.5. For

this noise spectrum the power Pi(ν) has roughly the same value P̄i at the frequencies of

all the m �= 0 Zeeman transitions, so we can write the decay rates for these transitions

as

γ(|3, m〉 → |4, m〉) = γ(|4, m〉 → |3, m〉) = (1 − m2/16) Γ, (4.20)

where

Γ ≡ (1/4)(Ω2
0/B)(P̄i/Pc). (4.21)

From the power spectrum for the noise shown in Figure 4.5a we have that P̄i =

−63 dBm, and from the power spectrum for the coherent signal shown in Figure

4.5b we have that Pc = −36 dBm, where the corresponding Rabi frequency is Ω0 =

(2π)(120 kHz). Substituting these values into equation (4.21), we obtain Γ = 0.084 μs−1.

4.2 Optimizing optical pumping

The discussion in the previous section centers on an example in which a magnetic

field is applied along the cavity axis, so that only Δm = 0 Raman transitions are

permitted. It is important to stress, however, that Raman-based optical pumping also

works for an arbitrary applied field, in which Δm = ±1 transitions are also possible.

The point is that given an applied field of any direction and magnitude, it will have

an associated Raman spectrum which reflects transitions between different pairs of
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Figure 4.7: Rate of population transfer for incoherent Raman transitions: atoms are
prepared in F = 3 and then driven with the notched incoherent Raman spectrum of
Figure 4.5(a), in the presence (blue) or absence (red) of a magnetic bias field. The
probability to transfer an atom to F = 4 is shown as a function of pumping time.

Zeeman levels. Based on this Raman spectrum, one can tailor a noise spectrum such

as 4.5(a) which will address transitions between all but one Zeeman level.

In implementing our optical pumping scheme, we took several steps to optimize

the relevant parameters. First, we characterized the preparation of atoms in F = 3

via lattice light and linearly polarized side light; we found that by using short (300 ns)

interleaved pulses and resonant light, we could transfer 99.9% of the population to

the F = 3 manifold in 10 μs.5 We next measured the rate at which the incoherent

Raman spectrum transferred population from F = 3 to F = 4. This is shown in

Figure 4.7, where atoms are prepared in the F = 3 manifold and then subjected to

incoherent Raman pulses of varying duration, either in the presence or absence of a

5Switching between two fields with different polarizations is necessary to avoid creating a perma-
nent dark state in the F = 4 manifold. An alternate but slightly less efficient scheme is to drive both
lasers continuously but with a small relative detuning; the detuning then sets a precession rate for
the dark state. In the case of an applied magnetic field, only one F = 4 → F ′ = 4 laser is necessary,
since now the atom’s dark state changes as it travels through the field.
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bias field. With the magnetic fields nulled, we expect that the the notched Raman

spectrum will be unable to drive any resonant transitions between Zeeman states, and

the slow leakage we observe into F = 4 is probably due to off-resonant driving from

the edges of the notch. In the presence of a bias field, the Raman pulses should be

able to address atoms in every Zeeman level but |3, 0〉 and to transfer population until

an equilibrium is reached. We see that this population transfer takes place with time

constant τ = 20 μs and that it asymptotes to a state in which approximately 45% of

the population is in F = 4; presumably, another 45% resides in |3, mF �= 0〉 and the

final 10% remains in |3, 0〉. The measured value of τ is in reasonable agreement with

the calculated value Γ = 0.084 μs−1 in Section 4.1.7, which should be weighted by the

initial distribution of atoms among Zeeman manifolds as in equation (4.20).

The time constants for these two processes — repumping to F = 3 and incoherent

Raman transfer to |4, mF �= 0〉 — allowed us to design a series of pulses in which

population is shuttled back and forth between the two hyperfine manifolds while

gradually accumulating in |3, 0〉. In order to optimize both the pulse durations and

the number of iterations, we measured the final population transferred to |3, 0〉 as a

function of these parameters; we settled on 10 μs of incoherent Raman light followed

by 4.2 μs of F = 4 → F ′ = 4 repump fields (7 cycles of paired 300 ns pulses), repeated

40 times. Thus, the time required for optical pumping of each atom is roughly 600

μs.

We also investigated the fraction of population that we could prepare in |3, 0〉
as a function of the applied axial magnetic field. Recall that our incoherent Raman

spectrum has a low-frequency cutoff at (2π)(500 kHz) and a high-frequency cutoff at

(2π)(5 MHz). In the limit of very small axial fields, all of the Δm = 0 transitions are

contained within the low-frequency notch; we expect that the Raman spectrum will

be unable to transfer population to F = 4, and optical pumping will be ineffective.

However, also for small applied fields, the |3, 0〉 → |4, 0〉 Raman pulse that we use

to measure population should in fact address all Zeeman states. Thus, as we see

in Figure 4.8, the measured population transfer is very high at the smallest field

values. As the Δm = 0 transitions with m �= 0 are pushed out of resonance with the
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Figure 4.8: We measure the success of our Raman optical pumping protocol as a
function of axial magnetic bias field. After optical pumping, we apply a Raman pulse
to transfer population from |3, 0〉 to |4, 0〉, followed by state detection. For small
fields, the pulse addresses all Zeeman levels, while at larger values, the number of
Zeeman transitions inside the Raman envelope is field-dependent.

|3, 0〉 → |4, 0〉 detection pulse, this value declines steeply. It then rises again for field

splittings greater than (2π)(0.5 MHz), as one by one, Raman transition frequencies

are pushed outside the notch and can now be driven by the incoherent Raman fields.

Finally, at roughly (2π)(1
3
× 5 MHz), the |3,±3〉 → |4,±3〉 transitions are pushed

past the high-frequency cutoff and again out of range of the incoherent Raman; here

the transfer probability begins again to decline. Based on this measurement, we set

our axial field to generate a splitting of (2π)(910 kHz) between neighboring Zeeman

levels. However, it is clear that optical pumping should be effective over ∼ 1 MHz

of field values, and we could of course use different filters in order to access a wider

range.

Despite our efforts at optimization, we are able to transfer at best 60% of atoms

into a target Zeeman state. We remain unsure as to what limits our pumping effi-
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ciency, although we have narrowed the list of possible suspects. We have ruled out

scattered light from stray fields, as we have seen that atoms pumped into F = 3 only

leak into F = 4 very slowly (Figure 4.7). The small peak at 85 MHz in the power

spectrum shown in Figure 4.5(a), due to carrier frequency leakage through our RF

mixer, is also not a cause for concern; we have confirmed that the optical pumping

efficiency does not change when we shift the center frequency of the spectrum out of

resonance with the |3, 0〉 → |4, 0〉 transition. We also have replaced the 500 kHz low-

frequency notch with one at 100 kHz with no observed change in pumping efficiency,

suggesting that off-resonant excitation of |3, 0〉 → |4, 0〉 due to the finite notch width

is not the problem. Remaining candidates include fluctuating magnetic fields and the

finite suppression (∼ 20 dB) of Raman power which the notch provides.

A final unresolved question concerns the timing of our optical pumping scheme.

We would expect that atoms would be pumped to the dark state |3, 0〉 by applying

the incoherent Raman pair and the F = 4 → F ′ = 4 repumping light simultaneously.

However, in practice we have found that this is much less successful than the pulsed

scheme and that any overlap between the Raman and repump pulses degrades the

scheme’s effectiveness.

4.3 Trapping and detecting multiple atoms

4.3.1 Cavity loading

Through mid-2007, we relied on optical lattice Sisyphus cooling to load atoms into

the FORT after their release above the cavity [13]. The details of this method are as

follows: 30 ms after the end of polarization-gradient cooling in the lower MOT, when

we expect the atoms to be falling through the cavity mode, we turn on F = 3 → F =

3′ and F = 4 → F = 4′ lattice beams for 5 ms, where both beams are blue-detuned

by 10 MHz. The best observed loading probabilities for ≥ 1 atoms are ∼ 60% with

this technique, in which case (assuming Poissonian loading statistics) ∼ 30% of all

loading attempts would consist of single atoms. We hypothesize that one of the two
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lattice beams provides Sisyphus cooling [67], while the other acts as a repump (and

thus in principle does not need to be in the standing-wave lattice configuration). In

experiments where the cavity is tuned to the F = 4 → F = 4′ transition, we have

found that we cannot load efficiently using F = 4 → F = 4′ lattice light; we believe

that this is due to resonant scattering into the cavity mode. Instead, in this case we

employ the F = 3 → F = 3′ lattice beam in conjunction with a resonant probe beam

along the cavity axis, which presumably repumps the atoms with less scatter-induced

heating.

We have recently found that by instead using the FORT-Raman pair during the

5 ms loading window in conjunction with the F = 4 → F = 4′ lattice beam, over

99% of all MOT drops result in cavity loading. (Note that as the intracavity FORT

is always present, the beams we turn on for loading are the Raman beam and the

F = 4 → F = 4′ lattice.) In contrast with the previous method, which required a

dense, bright lower MOT, here we observe excellent loading even when the lower MOT

quality is visibly poor. Furthermore, the measurements described below confirm that

we are loading multiple atoms almost every time.

We hypothesize that by replacing the F = 3 → F = 3′ beam with Raman transi-

tions, we are still able to recycle the atom to F = 4 while avoiding the spontaneous

emission inherent to a F = 3 → F = 3′ repump; the F = 4 → F = 4′ lattice

beam then provides the necessary Sisyphus cooling. Repumping via Raman transi-

tions thus results in more efficient atom cooling, because spontaneous emission was

previously heating the atom throughout the cooling process. Loading efficiency is

found to increase as a function of Raman beam intensity, presumably because it al-

lows faster recycling, and we currently use a Rabi frequency of 2.2 MHz for atom

loading. We have explored loading efficiency of the Raman scheme as a function of

various parameters, as discussed in Section 4.3.4.

Despite the significant improvement in loading efficiency, we do not observe direct

loading from the upper MOT (with the timing sequence adjusted appropriately, so

that the cooling beams address the atoms while they are within the cavity). In the

process of setting up the lab 11 experiment, Joe Buck and Jason McKeever observed
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transits from atoms dropped from both the upper and lower MOTs, with narrower

transits corresponding to the faster velocities of the upper MOT atoms [102], but we

no longer see upper MOT transits. Presumably this effect is highly sensitive to the

position of the upper MOT with respect to the gap between the cavity mirrors, as

well as to the forces which the falling atoms experience as the magnetic fields are

ramped off.

4.3.2 Raman-based determination of atom number

The “Raman repump” technique outlined above can be used not only to load atoms

into the cavity but also to determine the number of atoms present in real time. In

order to explain this measurement, we first consider the “by the numbers” effect

originally demonstrated in Ref. [18]. In that experiment, the cavity was tuned to the

F = 4 → F = 4′ transition and probed continuously with a resonant on-axis beam

in tandem with a F = 3 → F = 3′ lattice beam. While the vacuum-Rabi splitting

tells us that the presence of a single two-level atom in our strongly coupled cavity will

completely suppress the transmission of a resonant probe beam, the two-level model

is insufficient for a non-cycling transition such as F = 4 → F = 4′. An atom may be

in the F = 4 manifold, in which case it participates in the cavity-QED interaction,

or it may be in F = 3, in which case the probe laser sees an empty cavity. With the

introduction of a lattice beam as a repump, the atom moves back and forth rapidly

between these two possibilities, and over timescales � 1 ms, the cavity transmission

represents a time-average of high (F = 3) and low (F = 4) values. When N > 1

atoms are present, there is a greater probability that at least one atom will be in

F = 4 and that transmission will be suppressed. Thus, as atoms leave the cavity

one by one, we observe a climbing “stair-step” transmission with distinct plateaus

corresponding to atom number.

In addition to the initial F = 4 → F = 4′ measurements [18], we have subsequently

observed this “by the numbers” effect with the cavity and probe tuned to the F =

4 → F = 3′ transition (though with worse signal-to-noise and shorter atom lifetimes
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in the cavity). Jason suggested in his thesis [39] that this technique could be used to

prepare one atom deterministically in the cavity, either by actively discarding cases

where N > 1 or by heating out the additional atoms. Unfortunately, most of our

experiments to date have taken place with the cavity tuned to the F = 4 → F ′ = 5

resonance in order to exploit the physics of the cycling transition, whereas “by the

numbers” relies on a non-cycling transition for atom detection.

Raman transitions between the cesium ground states allow us to have our cake

and eat it too, or in this case, to implement atom number determination on a cycling

transition. The key concept here is that while the trapped atoms would ordinarily

remain in the F = 4 manifold, we can use the FORT-Raman combination to cycle

each atom between F = 4 and F = 3 at the Rabi frequency of the Raman pair.

As in the original experiment, the probability to have at least one atom in F = 4

increases with atom number. The result is the same “telegraph signal” of high (all

atoms in F = 3) and low (one or more atoms in F = 4) values, which we observe as

an averaged stair-step pattern. One might imagine that the atom-number plateaus

would be noisy due to this averaging; in Ref. [18], their smoothness is due to the

fact that the timescale of decay to F = 3 and recycling to F = 4 (∼ γ−1, ten of

nanoseconds), is much shorter than the lifetime of atoms in the cavity (hundreds of

milliseconds), and that the data are filtered by the heterodyne detection bandwidth

of 1 kHz. For Raman-based atom number determination, cycling between atomic

levels also needs to be fast with respect to the number determination time window.

In practice, as for atom loading, we operate with a Rabi frequency of 2.2 MHz. As we

have replaced heterodyne detection with photon counting, we bin the photon counts

on a time frame that is short compared with atom lifetimes in the cavity.

Figure 4.9 shows typical traces from a data set of 1,200 MOT drops in which the

FORT-Raman pair and a blue-detuned F = 4 → F = 4′ lattice were used to load

atoms into a cavity tuned to the F = 4 → F ′ = 5 transition, followed by 280 ms of the

Raman pair in conjunction with a probe resonant with the cavity. Photon counts are

binned in 1 ms intervals for the data presented. Here we observe the expected stair-

step pattern and well-defined plateaus for single atoms, suggesting that tdetect = 1 ms
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Figure 4.9: Two sample traces from a data set of 1,200 MOT drops: the FORT-
Raman pair and F = 4 → F = 4′ lattice are used to load multiple atoms into a cavity
on the F = 4 → F = 5′ transition, followed by 280 ms of Raman and a resonant
probe beam on the cavity axis. Photon counts are binned in 1 ms intervals.

should be sufficient in order to determine N ≤ 1.

Figure 4.10 shows a histogram of counts per 1 ms bin for the entire data set.

Because the histogram is dominated by multi-atom (highly suppressed) events, the

second plot shows a closer view of the y-axis near the origin in order to resolve zero-,

one-, and two-atom peaks clearly. We observe that the one-atom peak is easy to

distinguish from the zero-atom and two-atom cases, and that it is also plausible that

we could separate out two-atom events. More quantitatively, we can fit the data to a

sum of Gaussians corresponding to photon count distributions for each atom number,

as shown in Figure 4.11; the center of each Gaussian is then the mean number of

counts for a given atom number plateau. (We initially attempted to fit the data as

a sum of Poissonians, but it was clear that the distribution widths were greater than
√

N fluctuations alone could explain. Other contributions to the spread may include

noise on the cavity lock and variation in the probe intensity over time.)

Note that the mechanism which determines the level spacing between N -atom

plateaus is different in the lattice (non-cycling) and Raman (cycling) cases. For the

lattice, the intensity of an N -atom plateau is given by I0∑
(k!)2yk , where the sum is from

k = 0 to N and I0 is the intensity of the zero-atom plateau. Here y is the ratio γ3→4

γ4→3
,
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Figure 4.10: Histogram of photon counts per 1 ms time bin for the data set of Figure
4.9, with 280 ms of continuous Raman and probe beams. The data are shown twice,
with a smaller range in the second plot.

where γn→m is the rate at which one atom is transferred from level n to level m. In

Ref. [18], these two rates could in principle be controlled independently by adjusting

the intensities of the lattice and probe beams. In the current experiment, however,

the probability that we will measure an atom driven by Raman transitions to be in

F = 3 is simply 1
2
, and the probability to find N atoms in F = 3 is (1

2
)N . Thus we

expect I1 = I0
2
, I2 = I0

4
and in general,

IN =
I0

2N
. (4.22)

The fits in Figure 4.11 are roughly consistent with this expectation, although we have

observed day-to-day variation of ∼ 20% in the peak ratios. For the purposes of atom

discrimination, we are only concerned with setting a strict enough lower bound so

that the case N ≥ 2 is always excluded.

In Figure 4.12, the histogram data of Figure 4.10 are separated out by time bin.

This plot displays the same basic features as Figure 3 of Ref. [18], namely (a) cluster-

ing of data in well-defined atom-number plateaus, and (b) time-dependent evolution

of the plateaus from N ≥ 3 to N = 0 as atoms leave the trap. In Ref. [18], we

observe a clear departure of atoms from one plateau to the next, and by the end

of the probing interval, the trap population resides entirely in the N = 0 plateau.
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Figure 4.11: Fit of the data in Figure 4.10 to a sum of four Gaussians. The data have
been truncated for small count rates in order to consider atom number N ≤ 3.

Here, in contrast, while some traces show the expected progression through N = 1

to N = 0, there are many cases for which N ≥ 3 even at the end of the probing

interval. The distribution of counts around these high-atom-number events narrows

as a function of time, which might suggest that poorly coupled atoms leave the trap

quickly while well-coupled ones remain. Furthermore, the data at late time intervals

(t > 150 ms) indicate a direct progression from the multi-atom case to N = 0; that is,

atoms may sometimes leave in rapid succession due to a “catastrophic event” rather

than independently.

We can further explore the time dependence of atom populations by assigning

approximate atom-number boundaries to the histogram data. We have seen that the

N = 0 plateau (Figure 4.11) is centered at 335 counts per ms bin and that we expect

this plateau value to scale as 2−N . We define four regions as follows:
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Figure 4.12: Photon count rate histograms (y axis) as a function of time bin (x axis)
for the data set of Figure 4.9

Atom number Min. counts per bin Max. counts per bin

0 3
4
∗ 335

1 3
8
∗ 335 3

4
∗ 335

2 3
16

∗ 335 3
8
∗ 335

≥ 3 3
16

∗ 335

By summing the number of counts within each region for every time bin, we can then

plot atom populations as a function of time, as shown in Figure 4.13. Again, we find

a point of comparison in the equivalent plot (Figure 4) of Ref. [18]. For that data

set, the N ≥ 3 population exhibited a steady decay from its initial value at t = 0.

The N = 2 and N = 1 populations first peaked, then decayed, with the N = 2 peak

occurring prior to that of N = 1. The N = 0 population grew steadily over time,

while the other three populations had almost reached zero by the end of the interval.

In our current Raman data set, we begin almost every interval with N ≥ 3 atoms and

rarely with only two. After 250 ms, the most likely case is that we have no atoms,
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Figure 4.13: Time evolution of the N -atom populations for for the data set of Figure
4.9

but the second most likely case is that we still have N ≥ 3 atoms. Furthermore,

despite the continual departure of atoms from the N ≥ 3 region, there is no growth

in the N = 1 and N = 2 populations after early times. Only the N = 0 population is

increasing, and its growth can not be accounted for solely by the departure of atoms

from N = 1.

4.3.3 Simulations

Russ has written a Matlab simulation in which N atoms (on average, with Poissonian

statistics) are loaded into the trap, and at any time after loading, there is a fixed

probability for an atom to leave. Transmission is given by equation (4.22), with

Poissonian noise added. While the time dependence found in these simulations mirrors

the observations of Ref. [18], we are not able to adjust the simulation parameters

to account for the long multi-atom dwell times we observe in Figures 4.12 and 4.13.

However, we do observe qualitative agreement with a second simulation, in which

the likelihood for atoms to leave the cavity is described by a simple “catastrophic
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event” model; that is, a model in which the initial departure of one atom increases

the probability for all other atoms to leave.

A physical basis for such catastrophic events may be the variation in g over the

range of possible FORT wells. Atoms in the best wells couple strongly to the cavity

and completely suppress a resonant probe beam, while atoms in poorly coupled wells

allow some resonant light from the probe to enter the cavity, and this intracavity

field can now heat the atoms out of the trap. We can imagine a scenario in which

multiple atoms are trapped in the FORT over a distribution of wells: if only one atom

is well-coupled, then it functions as a gatekeeper. Once it leaves, however, probe light

enters the cavity, initiating a cascade in which the remaining atoms leave rapidly.

4.3.4 Optimizing atom loading

Atom loading takes place within a 5 ms window during which we apply both lattice

light from the side of the cavity and Raman beams along the cavity axis. Loading

parameters thus include which lattice beams are used (F = 3 → F ′ = 3, F = 4 →
F ′ = 4, or both), and the frequency detuning and intensity of these beams. Assuming

that our goal is to load as many atoms as possible, we would like to have a means to

quantify the number of atoms loaded as a function of these parameters. Unfortunately,

because by-the-numbers plateaus scale as 2−N , they provide good discrimination for

the N = 1 case but do not allow us to distinguish easily between, for example, 5 and

6 atoms in the cavity.

We introduce the following measurement to compare loading parameters: after

loading multiple atoms, we first apply F = 4 → F ′ = 4 lattice light to pump all

atoms into the F = 3 manifold. We then drive a short Raman pulse which we

expect to transfer the population of each atom to F = 4 about 10–20% of the time;

for example, for the data presented in Figure 4.15, we use a Rabi frequency of 140

kHz corresponding to a π pulse time of 3.5 μs, and we drive a 700 ns pulse, where

sin2(π
2
∗ 0.7

3.5
) ≈ 0.1. Finally, we apply the state detection scheme of Ref. [30] in order

to read out with a probe beam whether any atom is in F = 4. The idea is that the
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probability for one or more atoms to be in F = 4 will scale linearly with the number

of atoms in the cavity.

Each state detection measurement has a binary result: the atom is either in F = 3

(zero) or F = 4 (one). We perform a series of 1500 measurements per atom, where

each measurement lasts about 110 μs, including 5 μs of pumping to F = 3, one 700 ns

Raman pulse, and 100 μs of state detection. After accumulating data over hundreds

of MOT drops, we average the number of 0 and 1 counts in each of the 1500 trials

to find the probability for Raman transfer. From the early data (i.e., trial number

< 25), we can infer how many atoms were initally loaded. The decay of transfer

probability over time provides a gauge of how quickly the atoms leave the trap during

the measurement process.

Figure 4.14 shows atom loading data for various combinations of loading beams.

The most significant finding is that loading with Raman and F = 4 → F ′ = 4 is

about a factor of 5 more effective than our previous method of loading with the two

lattice beams alone. Loading with Raman and both lattice beams is worse than the

loading with the lattice alone; presumably the heating effects of the lattice repump

are still present, but now the Raman may slow its efficiency. Loading with Raman

and F = 3 → F ′ = 3 works about half as well as Raman and F = 4 → F ′ = 4,

which may be due to the relative power in the two lattice beams. Additionally, the

F = 4 → F ′ = 4 lattice is not very sensitive to detunings between 10 MHz and 20

MHz, but the loading probability drops significantly when the detuning is reduced to

5 MHz. When the lattice beam is resonant with the cavity, we found that loading

almost never occurs, and so we were unable to acquire data at that setting. (In these

measurements, both F = 3 → F ′ = 3 and F = 4 → F ′ = 4 beams are assumed

to be 10 MHz blue-detuned unless otherwise specified.) For this data, the single

atom transfer probability is about 20%. However, we did not calibrate the data with

respect to a single-atom π pulse and so cannot extract information about overall

loading efficiencies.

A second set of atom loading data is shown in Figure 4.15. In this case, the yellow

curve (no Raman pulse) establishes a background transfer probability of Pbkgd = 0.01,



84

0.8

0.6

0.4

0.2

0.0

Tr
an

sf
er

 P
ro

ba
bi

lit
y

1400120010008006004002000
Trial Number

 44 and Raman Loading
 44 (15 MHz Blue) and Raman Loading
 44 (20 MHz Blue) and Raman Loading
 44 (5 MHz Blue) and Raman Loading
 33, 44 and Raman Loading
 33 and Raman Loading
 33 and 44 Loading (No Raman)
 Background Test
 higher_power

Figure 4.14: Probability for transfer of one or more atoms to F = 4 following a short
(t < tπ) Raman pulse, as a function of trial number, where each trial lasts about 110
μs. The measurement is repeated for various loading beam combinations in order to
optimize the number of atoms loaded into the FORT.

and the pink curve (conditional loading of only one atom, discussed in Section 4.4)

provides a single-atom reference of P − Pbkgd = 0.06 − 0.01 = 0.05. We see that

increasing the Raman power from -12 dBm to -2 dBm only improves the loading rate;

-2 dBm represents an upper limit on the amount of RF power we can safely use to

drive the amplifier for the Raman AOM. Detuning changes to both beams had no

appreciable affect. Under the best loading conditions, we find a transfer probability

of P − Pbkgd = 0.37 − 0.01 = 0.36, corresponding to an average of 0.36
0.05

≈ 7 atoms

loaded per drop. After 165 μs of interrogation, about 4 atoms remain.
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Figure 4.15: Probability for transfer of one or more atoms to F = 4 following a short
(t < tπ) Raman pulse, as a function of trial number, where each trial lasts about 110
μs. The measurement is repeated for various loading beam intensities and detunings
in order to optimize the number of atoms loaded into the FORT. A conditional loading
measurement provides a single-atom reference probability P = 0.05.

4.3.5 Atom detection with Raman and lattice light

The data in Figure 4.10 suggest that we can use a Raman/probe scheme to identify

zero, one, and (less efficiently) two atoms. We have also explored the possibility of

introducing F = 4 → F ′ = 4 lattice light in conjunction with the Raman and the

probe, in order to shift the histogram features to resolve higher atom numbers. To

understand this shift, consider a three-level atom as in Figure 4.16 with ground states

|a〉 and |b〉 and excited state |e〉, where we can drive transitions between |a〉 and |b〉 at

rate α and between |b〉 and |e〉 at rate β. (In our system, |a〉 → F = 3, |b〉 → F = 4,

|e〉 → F ′ = 4, and α and β are determined by the Rabi frequency of the Raman pair

and the intensity of the lattice light, respectively.) We also include decay from the
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Figure 4.16: Diagram of three-level atom with transition rates α, β and decay rates
γa, γb. Histogram of photon counts per 1 ms time bin, with 250 ms of continuous
Raman, probe, and F = 4 → F ′ = 4 lattice beams.

excited state to the two ground states at rates γa and γb. Then the coupled equations

which describe the populations of the three levels are given by

⎛
⎜⎜⎜⎝
−α α γa

α −α − β β + γb

0 β −β − γa − γb

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Pa

Pb

Pe

⎞
⎟⎟⎟⎠ = 0. (4.23)

In order to shift the histogram towards higher count rates, we want to minimize the

population in F = 4, that is, Pb. Solving equation (4.23) for Pb, we find

Pb =
1 + γa+γb

β

3 + 2(γa+γb)
β

+ γa

α

. (4.24)

If β > γa, γb and γ � α, then Pb can become very small. Thus, we should reduce the

Rabi frequency of the Raman pair and use a high-intensity lattice beam.

Unfortunately, both of these steps tend to increase the noise of the signal. An

intense F = 4 → F ′ = 4 beam will heat the atoms, and as we saw in Section 4.3.2,

we need a high Rabi frequency to smooth out the atom plateaus. Figure 4.16 shows

a histogram from an attempt to use both Raman and lattice beams continuously;
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while the N ≥ 1 peaks have clearly shifted toward higher count rates, the peak

widths prevent effective discrimination. After unsuccessful attempts to find optimal

intensity settings for both beams, we have concluded that this is probably not a useful

technique for atom number determination.

4.4 Conditional feedback to the experiment timing

In the previous sections, we have demonstrated that based on the number of photon

counts in a 1 ms window, we can make an accurate determination about the presence

of a single atom in the cavity. Here we outline how this information can be used to

run the experiment conditioned on real-time atom detection.

The ADwin-Gold system which controls the experiment timing has input and

output channels, but until the current application it had only been used to generate

output signals (both analog and digital). In the past, we wrote down a sequence of

timing commands as a single control program, timing.in, using a syntax designed

by Dave Boozer. Dave’s compiler hirez.exe then translated these commands into

a text file foo.txt written in the ADbasic language. This text was embedded in

a larger ADbasic program pulses.bas and compiled by the ADwin system. The

commands in timing.in collected and released the upper and lower MOTs, loaded

atoms into the FORT, and then initiated the series of pulses necessary for a particular

experiment. Once compiled, a series of commands will loop continuously until a new

program is loaded to the ADwin.

To implement conditional loading of the experiment pulses, it was useful to parti-

tion the timing.in commands into three smaller programs: timing_load_atom.in,

timing_one_atom.in, and timing_experiment.in. These programs are then sepa-

rately compiled to the three text files foo_load_atom.txt, foo_one_atom.txt, and

foo_experiment.txt and embedded in pulses_ten.bas, which replaces pulses.bas.

The command sequence in timing_load_atom.in begins with the formation of the

upper MOT and ends with loading atoms into the FORT using the Raman and lattice

beams. The next step in pulses_ten.bas is to initiate a do-until sequence which



88

calls the timing_one_atom.in pulses. These consist simply of 1 ms of continuous

Raman and probe fields and a trigger pulse sent to an SR400 Dual-Channel Gated

Photon Counter (Stanford Research Systems). After the three pulses, the for-loop

then instructs the ADwin to read in the value on the first of its analog channels,

which is connected to the analog output from the SR400 and scales linearly with the

number of photon counts during the previous ms. Based on histograms such as Figure

4.10, we establish in advance a lower bound of counts corresponding to N ≤ 1 atom.

The timing program repeats the pulse/read combination until the count threshold is

exceeded, that is, until there is at most one atom in the cavity. (For redundancy, the

do-until sequence is embedded in a for-loop which requires the count rate to exceed

the lower threshold over three 1 ms intervals.) Note that the probe and Raman

intervals serve two purposes: they measure the atom number, but they also provide a

heating mechanism which induces extra atoms to leave the cavity; this usually occurs

within about 50 ms.

Once we have eliminated multi-atom events, we introduce the experiment-specific

pulse sequence. However, it is possible that all atoms left the trap during the test-

ing interval. For the sake of efficiency, we only want to run the experiment pulse

sequence if we think there is an atom present, though no-atom events will also be

detected and eliminated in data processing afterwards. We set an upper thresh-

old for counts corresponding to N ≥ 1 atom; only if the number of photon counts

per 1 ms interval exceeds this threshold do we load the final sequence of pulses in

timing_experiment.in. Otherwise, the experimental cycle is skipped and we begin

the process again with timing_load_atom.

Figure 4.17 shows an histogram for atom-number determination with data ac-

quired as in Figure 4.10, except that here we have implemented the conditional load-

ing scheme described above. We see that peaks associated with N ≥ 2 atoms have

been eliminated, and only zero- and one-atom peaks remain. There are also a small

number of bins with very low count rates, which we have traced to 3 multi-atom events

in this data set of 1200 MOT drops. We are unsure as to how these events survived

the screening process but are satisfied for the time being with this low contamination
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Figure 4.17: Histogram of photon counts per 1 ms time bin, with 280 ms of continuous
Raman and probe beams. In contrast to the data presented in Figure 4.10, here we
have implemented conditional loading of N ≤ 1 atom before the experiment begins,
with lower and upper count thresholds indicated.

rate.

Having outlined the conditional loading scheme, I now discuss further details of

the SR400 photon counter implementation. We continue to send TTL pulses from

our two Perkin-Elmer SPCMs to the P7888 photon counting card for computer-based

data acquisition. However, we tee off these signals before the card and send them also

to the two channels of the SR400. (Before the SR400, each channel passes through a

NOT logic gate which serves as a buffer, to prevent potential damage to the P7888

card.) During each 1 ms gate pulse sent from the ADwin, the SR400 sums the counts

on its two inputs. At the end of the gate pulse, it sends out an analog signal between

0 and 10 V which is linear with respect to total counts between 0 and 999; that is, 1

count = 10 mV. This signal returns to the ADwin, which provides 16-bit analog-to-

digital conversion of inputs between -10 and 10 V, that is, according to the formula

value = 32767.5(1 +
volts

10
) = 32767.5(1 +

counts

1000
). (4.25)
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We have currently set a lower threshold for conditional detection at 160 counts/ms

(value = 38010) and an upper threshold at 220 counts/ms (value = 39976).

We have sometimes found it useful to incorporate a second ADwin analog chan-

nel input for real-time feedback to the timing. The second channel is needed when

we want to generate a sequence of pulse lengths that vary from atom to atom; for

example, the data in Figure 4.7 was obtained with Raman pulse lengths between 0.1

and 100 μs. As discussed in Section 3.5, we generate these pulses by using serial

commands to program a DG535 pulse generator, then triggering each pulse sequence

with a TTL signal from the ADwin. However, the ADwin timing program also needs

to know when the pulses are finished; for pulse lengths which vary from atom to

atom, a simple way to do this is to have the DG535 put out a signal for the ADwin

at the end of its pulse cycle. After the ADwin sends its initial trigger to the DG535,

it then polls its second analog channel input until the value crosses a TTL threshold,

at which point it continues with the experiment.

We first put conditional feedback into practice for the Raman optical pumping

results presented in Section 4.1 and in [32]. We were pleased to see a number of

immediate results: not only did it speed up the process of data acquisition, but also

we found that our single-atom Raman scans had reduced background levels, and

that the measured Zeeman populations summed to the expected value. (Both of

these effects can be understood in the context of multi-atom contamination: when

more than one atom is trapped in the cavity, there is a greater probability that an off-

resonant Raman pulse will transfer population to F = 4, increasing background levels,

and we also expect an increased probability to find one atom in any given Zeeman

level.) Implementing conditional feedback into our field-nulling protocol (e.g., Figure

2.2) has also improved the contrast of these scans and allowed us to set magnetic field

values more reliably. Further applications for this scheme include improved generation

of single photons; we would expect a stronger suppression of two-photon events than

observed in Ref. [16]. Meanwhile, single photon generation combined with optical

pumping might allow us to produce photons with narrower temporal pulse shapes, as

the long tail observed in Ref. [16] was attributed to atoms trapped in dark states.


