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 The theory of gas phase electron diffraction is hardly a new topic. It is well 

established for decades and has been thoroughly described in the literature (see, for 

example, Ref. 1). Consequently, it will not be dealt with in such depth here. The purpose 

of this chapter is to serve as a primer such that the subsequent descriptions of the ultrafast 

gas-phase electron diffraction experimental and theoretical methodology may be 

understood in the context of the much more familiar field of conventional gas-phase 

electron diffraction. The following sections will attempt to portray its important aspects 

in a simple and physically intuitive way. 
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2.1 Momentum transfer 

In electron diffraction, a beam of electrons travels an axis z and intersects with a 

beam of molecules. Although most electrons pass through the beam unperturbed, some 

are scattered by the atomic and molecular electrostatic potentials. If the molecules in the 

molecular beam are randomly oriented, and the electron beam is judged to be collimated, 

the electrons scatter in a radial symmetric pattern about z. The resulting patterns may then 

be described by an intensity measure at an angle θ  from the center position. Typically, 

these scattering intensity features are expressed in terms of the momentum transfer 

parameter, s , the magnitude of the change in the momentum vectors between the 

incident and scattered electron. For elastic scattering, the s value (with units of Å-1) at 

each point from the center position is given by 
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where 0k  and k  are the momentum vectors for the initial and scattered electron (for a 

plane wave of the form zikAe 0 ), respectively. λ  is the de Broglie wavelength of the 

electron. θ , the scattering angle between 0k  and k , is defined by simple trigonometry: 

 ),arctan( Ld=θ       (2-2) 

where d  is the distance on the detector from the center position and L  is the distance 

from the beam interaction region to the center position on the detector, known as “camera 

length”. For a given kinetic energy, T , the relativistically corrected de Broglie 
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wavelength is 
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where h  is Planck’s constant, 0m  is the rest mass of the particle (here, an electron), and 

c is the speed of light. The relativistic velocity of a particle at a given kinetic energy is 

given by 
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With T  at 30 keV for an electron experiencing a 30 kV acceleration voltage, λ  is 

0.06979 Å and v is 9.84 × 107 m/s. Comparison between the relativistic and non-

relativistic wavelengths and velocities of an electron are shown in Fig. 2-1. It’s clear that 

relativistic corrections, although not without influence in the energetic regime of UED, 

become much more critical at the higher electron acceleration potentials used in some 

electron microscopes. 

 

2.2 Atomic scattering 

 In a molecule, interactions between the valence electrons of nearby atoms hold 

the positively charged nuclei at the bonding distance. Electrons in the beam of an electron 

diffraction experiment, as charged particles, scatter from the electrostatic potentials of 

both the nuclei and the electron distribution (compare this with the much weaker 

scattering of x-rays which only interact with the electron distribution). Isolated atoms, 

themselves a roughly spherical positive nucleus surrounded by a roughly spherical shell 
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of electrons, become perturbed once implicated with other atoms in valence electron 

bonding to form a molecule. As a standard practice in electron diffraction, matters are 

simplified by assuming that an atom is actually just a spherical potential and that a 

molecule is simply a collection of these unperturbed atoms at the appropriate internuclear 

distances. This approximation is known as the independent atomic model (IAM) and it 

holds remarkably well across gas-phase electron diffraction. This is in great part due to 

the fact that scattering from the nuclear potential is so much more intense than the 

scattering from the bonding electron density; even in a molecule, atoms still are roughly 

spherical. Interactions between the electron beam and the bonding electron density are 

relatively weak causing the IAM to suffer some inadequacy only at small scattering 

angles (s < 5 Å-1).2 

 Using the IAM, electron scattering from a molecule is separated into the purely 

atomic contribution and the interatomic molecular interference contribution. The total 

scattering intensity, )(sI , then can be written as 

   ).()()( sIsIsI MA +=       (2-5) 

The atomic scattering, )(sI A , is a sum of elastic and inelastic components for each atom; 
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where if  and iS  are the elastic and the inelastic scattering amplitudes, respectively, for 

the ith nucleus, and 0a  is the Bohr radius. The if  for a particular scattering center (atom) 

is derived using a simplified expression for a wave scattering from a spherical potential 

(the first Born approximation). The elastic scattering event may be thought of as 
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m
zki

m e ϕϕ ⋅0  since the no energy is transferred.3 The if  are proportional to 2−s  and have 

a linear dependency on iZ  (see Fig. 2-2). The inelastic iS  factors take into account 

excitations of the electrons within each atom caused by the scattering event and are 

essentially a sum of cross terms of the form n
zki

m e ϕϕ ⋅0  to evaluate all possible 

transitions. Both elastic and inelastic scattering drop off sharply with increasing s, with 

inelastic events important at small scattering angles (see Fig. 2-3). Accurate theoretical 

values of scattering factors are calculated using the method of partial waves and are 

available in the literature.4  

 

2.3 Molecular scattering 

The other main contribution to the total scattered intensity (Eq. 2-5) is the 

molecular term, )(sIM  – the interferences formed as coherent electron waves scatter off 

pairs of nuclei in a molecule. The spherical wave interference introduces weak sinusoidal 

oscillations into the diffraction signal (see Fig. 2-3). These oscillations are the familiar 

rings visible in a gas electron diffraction pattern. For an isotropic spatial distribution of 

molecules the diffraction pattern is radially symmetric about the center positions and 

)(sIM  is defined as 
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where iη  is the phase factor for the ith nucleus, ijr is the distance between ith and jth 
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nuclei, and the bracket denotes an average over all vibrational motion of the nuclei. The 

iη  terms, added to the molecular scattering formula by the second Born approximation 

(see Ref. 2) take into account the non-zero phase shift of a wave scattered off two nuclei 

of different Z.2 The difference, ji ηη − , is essentially negligible except when the Z are 

very different (see Fig. 2-4). The integral average over all vibrational motion in Eq. (2-7) 

can be evaluated using the harmonic approximation, by which it becomes 
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where ijer ,  and ijar ,  are the equilibrium and the effective internuclear distances between 

ith and jth nuclei, respectively, and hl is the harmonic mean vibrational amplitude. The 

damping term models the reduction of signal when vibrations are intense. By expanding 

on the harmonic approximation to model the anharmonicity of a Morse potential, the 

effective distance can be expressed by 

   ,
2

e

h
ga r

lrr −=         (2-9) 

,2
2
3

heg alrr +=       (2-10) 

where a  is the anharmonicity constant. gr  corresponds to the distance between centers of 

gravity at temperature T. Although there are some tabulated values for a ,5 it is often 

simply set at 2 for direct bonds and at 0 for non-bonded distances. ar  is the electron 

diffraction operational internuclear distance, which must be converted to er  for 

comparison with other methods (distances reported in subsequent chapters are er  values). 
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 To visualize the molecular scattering intensity and emphasize the damped 

oscillatory behavior, the modified molecular scattering function, )(ssM , is created: 

   
JI

M

ff
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where If  and Jf  are atomic elastic scattering factors of two selected atoms (the scaling 

atoms). The )(ssM  is the standard form in which diffraction data are presented and on 

which the theoretical model is refined and molecular structures extracted. Chapter 4 will 

describe the process by which the )(ssM  and the molecular structures are obtained from 

the diffraction pattern. 

 

2.4 The radial distribution curve 

 In the real space of diffraction data, the signal is represented by the sum of 

probabilities of two nuclei being separated by distance r. Plotted versus r, this is known 

as the radial distribution curve, )(rD , often used by diffractionists to show the molecular 

scattering in a more intuitive way. The conversion from )(ssM  in reciprocal space to the 

)(rD  in real space is made through sine transform: 

 ∫
∞

=
0

)sin()()( dssrssMrD      (2-12) 

However, due to the finite s range of data detectors, the integral to infinity is not possible 

and )(rf , a modified radial distribution, is needed. In order to account for this cut-off of 

signal and to stem the spurious ringing that it introduces, a Gaussian window function, 

( )2exp ks− , is included and the integral performed to maxs . 
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Typically, k  = 0.005 Å2 in UED. In addition to the cut-off of the data at high s, there is 

also a cut-off at low s where the signal from multiple scattering and inelastic effects is 

greatest – the region of breakdown of the IAM and often the region covered by a beam 

stop in electron diffraction experiments. Here, a piece of theoretically derived )(ssM  is 

appended such that the integration is continuous from 0. 

It is to be noted that for a pair of nuclei i and j, the area under its corresponding 

peak in the )(rf  is proportional to 
ij

jiij

r
ZZn

 where ijn is the multiplicity of the distance ijr  

in the molecule. This can be seen by combining Eqs. (2-8), (2-11), and (2-13) and 

performing the integration. 

( )

,
)2(2

)(
exp

)2(2
)(

exp
)2(8

1

)sin()sin()]2(exp[1

)sin()sin()]2(exp[)cos(1

exp)sin(
)sin(

)exp()cos()(

2

2
,

, ,

2

2

2
,

, 0

22
2
1

, 0

22
2
1

0

2
,

22
2
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
−∝

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
−

+⎥
⎦

⎤
⎢
⎣

⎡
=

+−⎥
⎦

⎤
⎢
⎣

⎡
≈

+−⎥
⎦

⎤
⎢
⎣

⎡
Δ=

−−Δ≈

∑

∑

∑ ∫

∑ ∫

∫ ∑

∞

∞

∞

ij

ija

ji ije

ji

ij

aij

ijji JI

ji

eij

ji
aijij

JI

ji

eij

ji
aijijij

JI

ji

eij

ji
eij

aij
ijijji

JI

lk
rr

r
ZZ

lk
rr

lkZZ
ZZ

r

dssrsrkls
ZZ
ZZ

r

dssrsrkls
ff
ff

r

dskssr
sr

sr
slff

ff
srf

π

η

η

(2-14) 

where the Gaussian function contains the convolution of both the k-damping and l-
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vibrational amplitude.  

 It is to be noted that although the above treatment is for an isotropic distribution, 

it has been shown elsewhere6 that orientational effects in diffraction can be quantitatively 

expressed. 
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