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Chapter 4

Physical Model

The impedance pump functions based on wave reflections. Each time the tube is

compressed, a pair of traveling pressure waves emerges from the ends of the pincher.

When the waves reach a mismatch in impedance they will partially reflect. Reflections

can occur at the ends of the tube or at the compression site if it is in the closed position

when a reflected wave arrives. The sum interaction of these waves is responsible for

the build-up of pressure across the pump. The amount of energy imparted into the

fluid will depend on the size and shape of the compression as well as the amplitude

of compression. The compression profile in time, both its frequency and waveform,

will determine the waves generated in the system. And, the mechanical properties of

the system such as the diameter, length, materials, pressure, and fluid will ultimately

be responsible for the wave speed, attenuation, and the reflectance coefficient in the

system.

4.1 Position of Compression

When looking at the data set in figure 3.16, a clear pattern emerges in the net

flow versus frequency response of the system. The curves appear similar though at

different scales. Two sets of peaks can be determined for the data set. By plotting

the frequency of compression versus the position of compression of these two sets we

arrive at figure 4.1(a). A similar plot can be made for the amplitude of the flow rate

at those peaks. We find that the frequency of the peaks lies on a parabola, while the
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amplitude lies on a cubic with symmetry about the center of the elastic section.

4.2 Dimensional Analysis

Auerbach et al. presented an analytical model for the impedance pump that requires

inviscid flow and consists of a short distensible section at which active compression

occurs and two rigid sections of unequal length [1]. Additionally, the solution requires

the application of a constant pressure head at the boundaries of the pump. From their

model arises a non-dimensional number, λ, that is predicted to be constant (table 4.2).

Property Symbol
pressure difference across length of pump ∆P

average flow velocity exiting pump V
offset from center of compression h

half the length of pump L

Table 4.1: Variables used in calculating λ

λ =
∆P

0.5ρV 2 h
L

Upon application of this number on the data collected, we find that there is no

constant line nor trend line found from this formula.

4.3 Lumped Model

Approaches taken thus far to model the behavior of an impedance pump can be di-

vided into two broad categories: lumped models that build an analogy to known solv-

able systems such as electrical circuits and determine the response of those systems,

and computational models that apply known fluid and structure laws to finite cells

and determine the response computationally at small temporal and spatial steps. The

computational results are more experimental in nature, whereas the lumped models

make a prediction of the dominant mechanics.

One such lumped model is presented by Field et al. [3]. This model consists
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Figure 4.1: Effect of position of compression on the frequency and amplitude of
two distinct peak sets chosen from the data set in figure 3.16. The position of the
compression has been centered at and non-dimensionalized by half the length of the
elastic section.
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of a three-element electrical analog. A resistor represents both the viscous losses

and losses due to the convergence and divergence of the cross sectional area. An

inductor represents the inertia of the fluid. A capacitor represents the compliance

of the surrounding vessel. All the terms are time variant, but not spatially variant.

This model then uses a time variant pressure represented by a voltage to actuate the

tube. This model has some interesting results: the flow and pressure have a complex

periodic oscillation, the net pressure as a function of frequency displays a chaotic

response, and period doubling is observed at increasing driving frequencies. However,

this type of formulation cannot incorporate the wave propagation that seems to be

the underlying cause for the unique frequency responses and resonant behaviors.

4.4 Wave Pulse Model

We offer a third approach to modeling the impedance pump and predicting its be-

havior. Experimental observation has shown us that wave propagation and reflection

on the surface of the pumping element plays an important role in the behavior of the

impedance pump. Starting from this point, we can create a wave model designed to

mimic the wave properties of the impedance pump.

We begin with a line of fixed length that represents the length of the impedance

pump along which a wave can travel.

−L ≤ x ≤ L

Compression parameters can be chosen including the location of the center of

compression, width, period and duty cycle (table 4.2).

Property Symbol Range
compression location l −L < l < L
width of compression w 0 ≤ w < L− |l|

period T
duty cycle d 0 ≤ d ≤ 1

Table 4.2: Compression parameters
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We use the assumption that a pair of pressure waves are emitted each time the

“tube” is compressed. These waves are allowed to travel along the line reflecting

any time they reach the ends of the line or the compression location if in the closed

position. Additional configurable parameters of the model include the time step

between calculations, wave speed, total simulation time, amplitude decay constant,

reflectance coefficient, initial wave amplitude, pulse width, and pulse waveform (table

4.3).

Property Symbol
time step dt

wave speed c
total simulation time sim t

amplitude decay constant r 0 ≤ r ≤ 1
dt

reflectance coefficient R 0 ≤ R ≤ 1
initial wave amplitude A0

pulse width p

waveform P (x) P (x) = e−
2x
p

2

Table 4.3: Additional model parameters

For each wave pair emitted, their start time, travel time, total distance traveled,

directions, amplitudes, and positions are computed for small temporal steps.

• The start time for each pair is dependent on the compression period and is an

integer multiple of the period.

iT

• The travel time is incremented by dt for each time step above the start time.

It is equivalent to

=

 t− iT for t ≥ iT ;

0 for t < iT ;

• The total distance traveled is the wave speed multiplied by the travel time.

=

 c(t− iT ) for t ≥ iT ;

0 for t < iT ;
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• The direction of each wave changes sign for each reflection encountered.

dir =

 −1 for a wave moving in the negative x-direction

1 for a wave moving in the positive x-direction

• The amplitude of each wave is based on an initial amplitude, chosen decay

constant, and reflectance coefficient. Each wave is subjected to exponential

decay in the form

A(t) = A(t− dt)(1− rdt)

And, for every reflection at the ends, the amplitude is decreased according to

the reflectance coefficient such that

A(t) = R · A(t− dt)

• Finally, the positions are determined based on a fixed wave speed which in a

real pump would be a result of the material properties, fluid properties, and

transmural pressure. The position is therefore

pos(t) = pos(t− dt) + dir cdt

In the event of a reflection at a site x, the position is adjusted according to

pos(t) = −(pos(t− dt) + dir cdt) + 2x

A Gaussian waveform is applied about the calculated positions of all the waves

and is reflected in the same manner as the wave position if it crosses a reflection site.

P (x) = e−
2x
p

2

All of the waves are then summed along the length of the line divided discretely into

steps of length dL to form a spatial wave profile for each time step. The difference in
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Figure 4.2: Simulation of wave amplitude difference as a function of compression
frequency and position.

the summed wave amplitude at the ends of the line represent a value proportional to

the pressure head of a similar pump. Once an equilibrium is reach a mean value of

the amplitude difference can be taken for varying compression frequencies.

The model was implemented using C++ code. We find similar results to those of

the experiments: the frequency response in the time-averaged amplitude difference

across the length of the model shifts with the position of compression and is sym-

metric about the center (figure 4.2); and the frequency response increases linearly

with the wave speed (figure 4.3). Additional results from the simulation show that

the pulse width greatly affects the amplitude of the difference across the length of

the pump (figure 4.4). The reflectance coefficient induces a similar behavior. As the

reflectance coefficient increases, so does the amplitude difference across the length.

As the reflectance coefficient goes to zero, no net difference is found across the pump

(figure 4.5).

A comparison can be made between the experimental results and the simulation
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Figure 4.3: Simulation of wave amplitude difference as a function of compression
frequency and wave speed.
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Figure 4.4: Simulation of wave amplitude difference as a function of compression
frequency and pulse width.
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Figure 4.5: Simulation of wave amplitude difference as a function of compression
frequency and reflectance coefficient.

using parameters in the range known to be accurate for a specific experiment (table

4.4). Many of the parameters are easily applied from the experiments. To maintain

convention used in the experiments, duty cycle is the fraction of the compression pe-

riod that the pinchers are not in contact with the tube. As was discussed in section

3.2.1, the pinchers only remain in contact with the tube during the compression and

not retraction when the motorized compression mechanism is used and the duty cycle

had been adjusted accordingly. The parameters that remain unknown are the ampli-

tude of the pressure wave, the waveform including its shape and width, the amplitude

decay constant, and the reflectance coefficient. If we do not concern ourselves with

the scale of the simulated results, but instead we worry just about the shape, we

can safely select the initial wave amplitude, pulse width, and reflectance coefficient

without affecting the overall shape. This leaves the shape of the waveform and the

amplitude decay constant up to interpretation. The shape chosen was a simple Gaus-

sian loosely based on the ultrasound images of the tube wall. The decay constant was
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also loosely based the ultrasound images, then further refined to fit the experimental

results with the simulated results as closely as possible.

Parameter Experiment Simulation
Total time 10 sec 10 sec

Time step, dt NA 10 msec
Wave speed, c 60 ± 10 m/sec 50 m/sec

Length of tube, 2L 15 cm 15 cm
Length step, dL NA 0.01 cm

Compression location, l -5.1 cm -5.1 cm
Width of compression, w 2.5 cm 2.5 cm

Duty cycle, d 70% 70%
Initial wave amplitude, A0 unknown 3

Waveform, P (x) unknown 3 cm wide Gaussian
Amplitude decay constant, r unknown 0.2

Reflectance coefficient, R unknown 0.5

Table 4.4: Parameters used for comparing experimental and simulated results.

The simulated results maintain most of the characteristics found in the experi-

ments. There are distinct, sharp peaks at select compression frequencies. Those peaks

lie at approximately the same locations. However, it appears that a linear term, if

added to the simulated results, would create a more accurate model of the experiment.

Capturing this effect will require further modeling. The model can be extended by

incorporating dispersion in the form of a time variant waveform. Additional work is

necessary to incorporate the interaction with the fluid. For this part, we can borrow

from the lumped model techniques and add resistance and impedance. Furthermore,

in the real experiments, there is a maximum input that can be exerted on the tube.

If the tube is already collapsed at the location of the compression, no work is done

if it is compressed again at that time. The disparity between the simulated and

experimental results caused by this effect grow with the frequency of compression.

What remains unique and quite exciting about this model is that it begins with

wave propagation as its mechanism. It shows that standard wave propagation and

wave reflection can be the mechanisms that build a net pressure across the length of

the pump. The force causing the wave propagation and the mechanism forcing the

reflections are secondary.
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Figure 4.6: Simulation of wave amplitude difference as a function of compression
frequency compared with experimental results.


