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Abstract

Theoretical studies of the role of structural inversion symmetry (SIA) and bulk in-

version symmetry (BIA) in the band structure and tunneling properties of zincblende

heterostructures have been carried out.

The effective bond orbital model (EBOM) method is used to examine the spin

splitting due to SIA in AlSb/InAs/GaSb asymmetric heterostructures. It is found

for the resulting two-dimensional electron gas (2DEG) that large theoretical values of

the Rashba coefficient in the range of 50×10−10 eV·cm can be achieved for optimized

structures. Structures presenting anticrossing of the conduction and valence bands

show an appreciable reduction in the value of the Rashba coefficient. The possibility

of extracting the Rashba coefficient from magnetization measurements is explored.

An expression is derived, valid in the diffusive limit, for the spin polarization of the

current resulting from a bias parallel to the plane of the quantum well.

The EBOM method is expanded to include BIA effects. The resulting formalism

is then used to compute the band structure of an AlSb/GaSb superlattice, where the

BIA-induced splitting is observed. The results agree with k · p calculations.

The first implementation of an 8-band Envelope Function Approximation method

faithful to the Td symmetry of bulk zincblendes has been made. It has been used to

compute the bands for quantum wells with and without BIA effects included, and

demonstrates that the BIA effects can be of the same order of magnitude as SIA

(i.e., Rashba) effects. A 2-band Hamiltonian describing BIA effects is proposed. The

origin of spurious solutions for certain values of the input parameters is determined

and a condition for its absence is derived. Modest modifications to the superlattice

method allow the computation of spin-dependent transmission coefficients with the

multiband quantum transmitting boundary method (MQTBM). The effect of BIA

on the transmitted states and the spin filtering action of an asymmetric resonant

interband tunneling diode are investigated.
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Finally, a Monte Carlo single photon generation algorithm is devised. The photons

generated are satisfactory for simulation of light emitted from band-to-band sponta-

neous transitions in crystals. The polarization is determined taking into account the

electron spin, making the algorithm suitable for the analysis of optical detection of

spin injection experiments.
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Chapter 1 Introduction

1.1 Thesis overview

The bulk of this thesis describes a theoretical study of the spin splitting that takes

place in the electronic band structure of semiconductor heterostructures when a

source of inversion asymmetry is present due to the breakdown of the conditions

for Kramers degeneracy [1]. In particular, this work focuses on the effect in the

bands of heterostructures of two different sources of asymmetry; namely, structural

inversion asymmetry (SIA) and bulk inversion asymmetry (BIA). In particular, these

effects are studied in structures built from materials belonging to the so-called 6.1 Å

system: AlSb, GaSb and InAs.

The splitting of the conduction subbands when the sequence of the layers making

a heterostructure is not symmetric (SIA) is called the Rashba effect. This is the

subject of the first two chapters. The subsequent chapters describe methods developed

to include the effect of a different source of asymmetry: bulk inversion asymmetry

(BIA), which arises from the different character of cations and anions in the unit

cell of zincblende materials [2]. Then, these methods are applied to see how our

understanding of the situation when SIA is present is affected by the inclusion of BIA

for both bands and tunneling properties of heterostructures.

Finally, the last chapter, while having in common with the rest the study of spin-

dependent electronic properties, dwells on how these affect the optical processes in

semiconductors, and provides the backbone for Monte Carlo simulations where the

effect of the electron spin on light production in band-to-band recombination is fully

taken into account.

The major results obtained in this thesis are

• Obtention of the largest reported theoretical value of the Rashba coefficient.
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• Development of efficient methods for the computation of spin-resolved band

structures and transmission coefficients in heterostructures. BIA effects need to

be included in a complete description of the behavior of the spins.

• Characterization of a new class of spurious solutions for the finite difference

method in the context of the effective mass approximation and obtention of a

test to predict their presence.

• Development of a Monte Carlo algorithm to generate photons with polarizations

in accordance to quantum mechanical selection rules.

Chronologically, Chapters 2 and 3 were developed first. The analysis of results

from spin injection using scanning tunneling microscopy [3] and the interpretation [4]

of experiments with spin polarized LEDs led to Chapter 8. The need for the un-

derstanding and quantification of BIA effects resulted in Chapter 5. The adaptation

of that k · p formalism to tunneling processes described in Chapter 7 was then im-

plemented. Efforts to reproduce experimental data obtained at HRL gave birth to

Chapter 6. Finally, the extension of code to calculate spin polarization in spin filter

devices motivated Chapter 4.

1.2 Motivation

Since the invention of the transistor in December 1947, its uses have grown into

a multibillion dollar market. Today’s way of life relies heavily on the ability of a

few million transistors to process data and a few million more to store it, whether

temporarily or permanently. As the capabilities of modern computers grow larger,

so do the demands they must satisfy. Applications such as weather forecasting, drug

design, crash simulations, gene sequencing, nuclear test simulations. . . are sure to

exhaust all the computing power available in today’s and a near future’s machines.

The increase in performance of computers depends critically on the ability to

reduce the feature size of transistors. So far, scientists and engineers have managed

to make Moore’s “law” good. This “law,” enunciated in 1965 [5], originally stated
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Figure 1.1: Intel’s CPUs and Moore’s law. Data taken from Intel’s web site.

that the number of components in an integrated circuit would double every year, and

in its present form that time constant is usually quoted as 18 months although, at

least for Intel’s CPUs, the number of transistors in a CPU doubles roughly every two

years (see Fig. 1.1).

Eventually, sizes will be reached where quantum effects will affect the normal

operation of the transistors. For example, tunneling leakage current in metal/oxide/

semiconductor (MOS) structures was believed in 2001 [6] to limit the gate oxide

thickness to 12 Å1. A new approach to keep up with this continuing miniaturization

is to come up with devices based precisely on the quantum properties of the electron.

The resonant tunneling diode (RTD) [7] and the single electron transistor (SET) [8]

are good examples of these devices.

1This is a typical figure, which is really application dependent and is given by how much power
density one can afford to consume.
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1.2.1 Theoretical methods

Another quantum property of the electron that only recently has received attention

for its potential for information storage and processing is its spin. The starting point

for the field of SPIN elecTRONIC (spintronic) devices was the discovery of giant

magnetoresistance (GMR) in 1988 by Baibich et al. [9]. So far, the only commercially

available spintronic devices—the GMR read heads present in hard drives—or in the

development phase—magnetic RAMs (MRAMs)—are based on the behavior of spin

in metals. Nevertheless, the marriage of spin and semiconductors is a hot research

topic. In 1990 Datta and Das [10] proposed a spin transistor where a gate voltage

controlled the amount of precession of a collection of spins while traveling in a semi-

conductor between two ferromagnetic contacts, thus modulating the resistance seen

by the electrons in transit. Typical precession frequencies of spins in semiconductor

structures are of the order of a few THz. The prospect of logic at such frequencies

has caused great interest among the funding agencies.

For applications such and Datta and Das’ spin transistor or even quantum com-

putation with spins in semiconductors to become a reality, a hurdle that must be

overcome is the achievement of reliable injection of spins into semiconductors. The

control over the direction of the spins forced into a material is what is understood

as spin injection. Once a nonequilibrium spin population has been established by

means of spin injection, it is necessary that the time it takes for it to come back to

equilibrium is long enough so that useful manipulations can be made.

On one hand, the proper description of transport, time evolution and interface

phenomena of spin ensembles will require having at disposal electron band structures

where all spin effects are included; in much the same way as thorough knowledge

of the “regular” band structure is required to fully understand electronic devices.

On the other hand, semiconductor heterostructures have been extensively used to

create new classes of materials with engineered electronic properties, and they show

promise to serve the same purpose for the spin properties. The methods developed

in Chapters 4 and 5 provide an efficient and easy to implement way to obtain spin



5

resolved band structures in heterostructures. In particular, the extension of the ef-

fective bond orbital model (EBOM) method in Chapter 4 allows for the inclusion of

BIA effects in existing code with negligible extra computational cost. Since EBOM

is a full zone method, results from EBOM calculations will be valid further away

from the zone center than k · p results. However, the EBOM method does poorly

when strain and magnetic field effects need to be accounted for. These two external

fields are straightforwardly included into the k ·p formalism. This is the driving force

behind Chapter 5, where an 8-band effective mass approximation (EMA) code that

reproduces the zincblende Td symmetry is implemented.

1.2.2 Spin injectors/filters

The Rashba effect is the building block on which several proposed spintronic devices

are built. When referring to the spin splitting of the conduction band (CB) levels of

a two-dimensional electron gas (2DEG) in an asymmetric potential, it constitutes the

basis for Datta and Das’ spin transistor [10]. Clearly, a greater value of the splitting,

given by a larger value of the Rashba coefficient, would increase the frequency at

which these spins are switched. A large Rashba coefficient will also improve the

performance of the asymmetric resonant tunneling diode (aRTD) spin filter proposed

by Voskoboynikov et al. [11] in 2000. In that device, electrons transmitted through

an asymmetric double barrier heterostructure emerge with their spin aligned with

the spin of the quasi-bound state through which they have tunneled. Note that spin

filtering would be achieved without the presence of any external magnetic field or any

ferromagnetic material.

Clearly, a method for experimental determination of the Rashba coefficient in het-

erostructures and theoretical understanding of its origin are required for the achieve-

ment of a spintronic device based on the Rashba effect. Since the Rashba effect is

closely related to structural asymmetry, the 6.1 Å materials system, with its variety

of band alignments, will be a candidate for the construction of structures with large

Rashba splitting. This motivates the studies in Chapters 2 and 3.
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Ting et al. [12] have proposed a modification of the aRTD idea that would have a

higher performance as a spin filter by letting the electrons tunnel through the strongly

spin split valence band states of an AlSb/InAs/GaSb/AlSb well region. Their original

calculation of the current polarization did not include the effects of bulk inversion

asymmetry. The formalism and structures studied in Chapter 7 address how the

tunneling properties of an asymmetric barrier change when BIA is accounted for.

1.2.3 Detection of spin injection

Once a structure is chosen as a candidate for spin injection, the question of the mea-

surement of the spin polarization of the injected electron population must be faced.

For this, there are mainly two kinds of measurements: electrical and optical. In

the electrical measurements, one looks for small changes in the voltage drop when a

current is forced through a semiconductor between two aligned or antialigned ferro-

magnets. However, these kind of measurements are not free from controversy as the

presence of ferromagnets is thought to produce spurious voltages due to local Hall

effect.

The optical measurement method is preferred because of its direct relationship

to the electron spin density. It basically consists in the analysis of the polarization

of light coming from radiative recombination between an electron and a hole. The

polarization of an emitted photon will be correlated with the spin of the electron

that originated it, and this relationship is well understood. However, the polarization

of photons emitted from a device will be affected by refractive effects at boundaries

and interfaces, and these effects have not received sufficient attention. Monte Carlo

ray tracing techniques are ideal for that purpose because they can easily be adapted

to different characters of the emitting medium—bulk with varying crystal structure,

quantum well, quantum dot—or a variation in the geometrical shape of the extracting

medium. They might find an application too in the study of the optical transmission

by polarized light of information stored in spins. These techniques will require a

method of generating single photons in agreement with the quantum mechanical
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selection rules. This and the understanding of the light emission process for arbitrary

situations led to the study in Chapter 8.

1.3 Summary of results

1.3.1 Theoretical methods

The methods developed in this thesis can be divided into four parts:

1. An extension to the EBOM method capable of accounting for bulk inversion

asymmetry (BIA) effects in zincblendes has been derived and implemented.

This extension correctly reproduces the space group symmetry of the zincblende

structure. By construction, it accurately describes the band structure near

the zone center, including the spin splitting in the conduction band of bulk

zincblendes. Calculations for superlattices using this new method agree with

k · p results.

2. Starting with a bulk k · p Hamiltonian having the right Td symmetry for

zincblendes, an 8-band effective mass approximation (EMA) code has been im-

plemented for [001] heterostructures. Contrary to most of the existing EMA

implementations, the one presented here correctly describes the microscopic

symmetry of most superlattices, making it an appropriate tool for phenomena

such as the optical anisotropy [13], and the mixing of heavy hole and light hole

states at the top of the valence band [14], whose existence is a consequence of

the reduced symmetry due to the BIA.

Also, a source of spurious solutions for the finite difference method has been

characterized. The application to the k · p method allows the derivation of a

condition that the Luttinger parameters must meet for the spurious solutions

not to appear.

3. A previous implementation of the multiband quantum transmitting boundary

method (MQTBM) in the k·p framework [15] for the determination of tunneling
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transmission coefficients has been cast in a form consistent with the finite differ-

ence method, eliminating some small spurious contributions. An algorithm for

generating an incoming state with a predetermined spin has also been created.

4. A Monte Carlo algorithm for single polarized-photon generation in radiative

recombination processes has been developed. This algorithm makes extensive

use of the host crystal symmetry properties to reduce to a minimum the number

of external inputs needed to determine the photon polarization. It allows the

determination of the Stokes parameters for light emitted in arbitrary directions

by a given electron spin population.

1.3.2 Applications

The 6.1 Å material system comprised of AlSb, GaSb and InAs is shown to offer great

promise for spintronic devices based on the Rashba effect. The Rashba coefficient for

AlSb/InAs/GaSb/AlSb 2DEGs is calculated theoretically to be able to achieve values

of the order of 50×10−10 eV·cm. This is the highest value reported in the literature.

The dependence of the Rashba coefficient on the thicknesses of the different layers is

studied, finding that the structures with InAs thickness between 5 and 15 monolayers

(MLs) and GaSb thickness of 8 or more MLs present optimal values of the Rashba

coefficient. It is also observed that the presence of anticrossing between the conduction

band of InAs and the valence band of GaSb in the 2DEG reduces the value of the

coefficient substantially. The application of an in-plane bias in the 2DEG is shown to

produce an amount of spin polarized current and some magnetization accompanying

it. The degree of polarization of the current is of the order of 5×10−5 for typical values
of the in-plane bias. Therefore, much larger Rashba coefficients would be needed to

use this configuration as a source of spin polarized current.

The presence of spin splitting even in structurally symmetric quantum wells (QWs)

is investigated. A 2-band Hamiltonian analogous to the Rashba Hamiltonian, but de-

scribing the splitting for these symmetric QWs due to the BIA and its interaction with

the Rashba splitting is proposed, and its validity tested with numerical 8-band calcu-
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Figure 1.2: Shubnikov-de Haas oscillations for a (InAs/AlSb SL)/InAs/(InAs/AlSb
SL) structure showing spin splitting. Data taken by Andy Hunter et al. [16]

lations. BIA effects are shown to be of the same order of magnitude as Rashba effects

for the conduction band of the studied 6.1 Å heterostructures, hence its inclusion is

necessary in the description of the bands in QWs.

Experiments support the theoretical predictions made in this thesis regarding the

magnitudes of the Rashba coefficients. Figure 1.2 shows a node in Shubnikov-de Haas

oscillations of a quantum Hall measurement, taken by Andy Hunter et al. [16] at HRL

Laboratories. The node and the change of phase of the oscillations are signatures of

the presence of the Rashba effect. The measured value (6.4×10−10eV·cm) and a calcu-

lation using the methods described in Chapter 5 (7.6×10−10eV·cm) show reasonable

agreement.

The implementation of the MQTBM is used to study the spin-dependent tunneling

properties of an asymmetric interband resonant tunneling diode (aRITD). It is shown

that the predicted [12] spin filtering properties of the aRITD should not be largely

affected when BIA is included into the calculation.
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1.3.3 Collaborative work

Unless noted otherwise, all the material presented in this thesis is the work of the

author. On the other hand, I must acknowledge David Ting for putting to my disposal

his EBOM code, used to do the calculations in Chapters 2 and 3 and modified to

obtain the numerical results in Chapter 4. Also, the code used to generate Fig. 8.9

was written by Steve Ichiriu.

1.4 Chapter overview

Chapter 2 presents the use of a previously established method for the calculation of

band structures [the effective bond orbital model (EBOM) method] to calculate the

magnitude of the Rashba effect in AlSb/InAs/GaSb/AlSb quantum wells. Then, the

consequences of the Rashba splitting on the magnetization and spin polarization cur-

rent of a two-dimensional electron gas (2DEG) are explored. Chapter 3 presents the

search for a structure that will yield an optimized Rashba effect. Chapter 4 presents

an extension to the EBOM method that reproduces the reduction in the symmetry

due to the bulk inversion asymmetry (BIA) present in zincblendes, and describes the

spin splitting resulting from that. In Chapter 5, the description of BIA in the k · p
framework is discussed, and results for band structure calculations in symmetric and

asymmetric quantum wells, with and without BIA effects are presented; and the role

of BIA is delineated. Chapter 6 describes a new class of spurious solutions that can

appear when using the finite difference method to solve the Envelope Function Ap-

proximation (EFA) equations and how to make sure they don’t show up. Chapter 7

calculates the spin-dependent transmission coefficients in AlSb/InAs/GaSb/AlSb aR-

ITDs with and without the BIA contribution and discusses the influence of BIA in

existing current polarization calculations. Finally, Chapter 8 presents an algorithm

for Monte Carlo single polarized-photon generation from electron-hole radiative re-

combination.
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[4] S. R. Ichiriu, X. Cartoixà, and T. C. McGill, , in preparation.

[5] G. E. Moore, Electronics 38, (1965).

[6] D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, and H. Wong, Proc.

IEEE 89, 259 (2001).

[7] L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).

[8] K. K. Likharev, Proc. IEEE 87, 606 (1999).

[9] M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G.

Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

[10] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

[11] A. Voskoboynikov, S. S. Lin, C. P. Lee, and O. Tretyak, J. Appl. Phys. 87, 387

(2000).
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Chapter 2 Spin splittings in asymmetric

AlSb/InAs/GaSb heterostructures and

electric field induced magnetization

2.1 Introduction

In recent years, interest in developing spin-sensitive devices (spintronics) [1–4] has

fueled renewed investigations into spin phenomena in semiconductors. The aim is to

control not only the spatial degrees of freedom of the electron, but also the spin degree

of freedom. Useful spintronic devices can be devised if such control is achieved. A

number of such devices have already been proposed [5–8], and the search for phenom-

ena which can lead to spin based devices is widespread [9–11]. Studies of asymmetric

quantum wells have been carried out both theoretically and experimentally in other

material systems [12–15]. One of the systems showing promise is the nearly lattice

matched system comprised of InAs, GaSb and AlSb [16, 17].

In particular, one of the phenomena that might be of importance in the

InAs/GaSb/AlSb heterojunction system is the Rashba effect [12]. The precise con-

tributions to the magnitude of the effect are a subject of some recent studies [18, 19].

Previously, a number of studies have examined InAs quantum wells confined by

InGaAs layers [20–23] or AlxGa1−xAs/GaAs heterostructures [24, 25]. In this study,

the focus is on the effects of the InAs/GaSb unique band offsets.

In Sec. 2.2 of this chapter, the results of a study of the band structure for an

AlSb/InAs/GaSb/AlSb asymmetric well using the effective bond orbital model are

presented. These results can also be described in terms of a Bychkov-Rashba Hamilto-

nian [12]. In Sec. 2.3 the dependence of the spin splitting on the electron momentum

for the conduction band for several structures is shown and the orientation of the



14

electron spins is described. In Sec. 2.4 an intuitive picture of the physics behind

the Rashba effect is presented. In Sec. 2.5, a derivation of an expression for the

surface magnetization and the degree of spin polarization of the current when the

nonmagnetic two-dimensional electron gas (2DEG) is under an in-plane electric field

is shown.

2.2 Theoretical methods

Spin splitting can result from the lifting of Kramers degeneracy through the removal

of inversion symmetry. Mechanisms for inversion symmetry removal include

I. The specific spatial arrangement of the composing layers with their inter-

faces. [18]

II. Bulk inversion symmetry as in the zincblende structure. [19]

III. Asymmetry created by external fields and dopant-induced band bending. [18]

In this chapter, the primary interest is in examining effects in the band struc-

ture induced by an asymmetric spatial arrangement of the heterostructure. Hence, a

band structure calculation technique was selected that allows treatment of layer ar-

rangement contributions with the highest accuracy. Bulk inversion asymmetry (BIA)

contributions are considered in Chapter 5.

The calculations shown are based on the EBOM method developed by Y.-C.

Chang [26, 27]. It consists of a tight-binding [28] model taking bond orbitals [29]

in an fcc lattice as a basis set, expanding the resulting matrix elements to second

order in k and identifying the EBOM parameters with the k · p [30, 31] parameters.

It accurately describes the lowest conduction band and the heavy hole, light hole and

splitoff bands near the zone center, making it appropriate for the calculation of the

band structure of the 2DEG, taking into account the strong coupling between the

InAs conduction band and the GaSb valence band states due to the broken gap band

alignment, as illustrated in Fig. 2.1.
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The calculations are performed on [001] structures using superlattice boundary

conditions, and it is found that the superlattice cells are effectively decoupled when

the AlSb thickness is 8 monolayers (ML) or more, with a monolayer having a thickness

of 3.048 Å.

The EBOM method accounts for the very different nature of the various inter-

faces, although it cannot describe properly the lack of inversion symmetry inherent

intrinsic to the zincblende structure. An extension to the method to deal with BIA

effects is presented in Chapter 4. In the bulk single crystal, that lack of inversion

symmetry leads to the k3 splitting [32]. This effect could lead to some corrections.

In Chapter 5 they are found to be on the order of a 20% at most. There has been

some work on BIA effects beginning with the work of Lommer et al. [33] and Cardona

et al. [34]. A discussion of the relative tradeoff is included in the papers by Silva et

al. [18, 19]. Space charge and gate generated electric fields are not included in the

calculation either. These fields do make some contribution to the Rashba splitting

[see Eq. (2.1)] [18, 35], and they are determined by the details of the doping and

applied bias.

2.3 Results

2.3.1 Band structure and spatial part of the wavefunction

The structure under consideration and a typical result for the probability distribution

of the electron wavefunction are illustrated in Fig. 2.1. The values of the band gaps

and lattice constants are taken to be the widely accepted values [16, 17] for the plots

in Fig. 2.1. The band offsets are taken from the review by Yu et al. [36] and reflect

the Type II staggered alignment of the bands for the AlSb/InAs interface and the

Type II broken gap alignment for the InAs/GaSb interface [37]. This configuration

provides a strong asymmetry of the confining potential. As a result, the Rashba

constant [see Eq. (2.1)] will have an enhanced value compared to previously studied

systems [14, 15, 35].
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Figure 2.1: Flat band diagram (right scale) of the heterostructure under consideration.
The structure consists of a superlattice constructed by repeating 16 layers of AlSb
followed by 6 layers of InAs followed by 6 layers of GaSb. The energies reflect the
accepted values of the band gaps and band offsets. Further, the calculated probability
density (left scale) for conduction band states in the well for k = (0.02, 0, 0) 2π/a,
where a is the unit cell size. The solid line shows the lower energy spin split state.
The dashed line shows the higher energy spin split state. The axes show the choice
of coordinates.

Figure 2.2 shows the band structure near the Γ point for a superlattice composed of

16 layers of AlSb, 6 layers of InAs and 6 layers of GaSb. The bands become spin split

due to the lack of inversion symmetry in the growth direction. Note that the energy

minimum of the lower conduction subband is no longer at the point k = 0. Control

calculations with symmetrical AlSb/InAs/AlSb and GaSb/InAs/GaSb structures and

these showed no splitting.

The probability density of the spin split states is shown in Fig. 2.1. We see that

the electron is mainly localized in the InAs layer, but it displays significant leakage

into the AlSb and GaSb layers. Careful examination of this figure shows that the state
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Figure 2.2: The calculated band structure of an 16ML (monolayers) AlSb/6ML
InAs/6ML GaSb superlattice near the Γ point for light holes, heavy holes and con-
duction electrons. Note the splitting in the states of the 2DEG, corresponding to the
conduction band.

corresponding to the lower (upper) energy band is displaced towards the AlSb/InAs

(InAs/GaSb) interface. This point is further discussed in Sec. 2.3.4.

2.3.2 Spin part of the wavefunction

One of the most important features of the results is the spin character of the eigen-

states. The result is shown in Fig. 2.3. The spin expectation value for the different

states always lies on a circle in the kx − ky plane. The x − y plane is the quantum

well plane (see Fig. 2.1). It is seen that for the lower (upper) conduction subband the

spins point tangentially to the circle in a counterclockwise (clockwise) fashion. The z

component of the expectation value of the spin is found to be zero within numerical



18

-0.04 -0.02 0.00 0.02 0.04

-0.04

-0.02

0.00

0.02

0.04

ky/(2π/a)

kx/(2π/a)

 Upper subband

-0.04 -0.02 0.00 0.02 0.04

-0.04

-0.02

0.00

0.02

0.04

ky/(2π/a)

kx/(2π/a)

 Lower Subband

Figure 2.3: Calculated expectation value of the spin for states of a 2DEG lying on
circles of constant k for the two conduction spin split subbands.

fluctuations. This is indeed the behavior predicted by the Rashba Hamiltonian [12]

HSO = αR (σ × k) · ν (2.1)

and found analytically by Schäpers et al. [35]. αR is the Rashba constant (dependent

on the details of the heterostructure), σ are the Pauli spin matrices, k is the crystal

momentum of the electron in the 2DEG and ν is a unit vector parallel to the growth

direction. The specific handedness of the rotation of each subband depends on the

details of the well, and it would have been reversed had the order of the InAs and

GaSb layers been reversed.

Note that, although there is spin splitting without the presence of an external mag-

netic field or magnetic constituents, Kramers time reversal degeneracy is preserved,

for

E (k, | ↑〉n̂) = E (−k, | ↓〉n̂) , (2.2)

where the left- (right-) hand side term is the energy of a state with wavevector k

(−k) and spin up (down) in the direction of a unit vector n̂.

Another important consequence of this unique spin configuration is that, though

there is a preferred spin direction for a single k state, when averaging over the whole
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Figure 2.4: Spin splitting for a 10/6/10 AlSb/InAs/GaSb superlattice in the conduc-
tion band.

subband the net spin vanishes, so there is no electronic magnetism for this system in

equilibrium.

2.3.3 Rashba coefficient for an asymmetric heterostructure

made of AlSb/InAs/GaSb/AlSb

From Eq. (2.1) it can be seen that, close to the zone center, the splitting ∆R due to

the Rashba Hamiltonian is linear with the electron wavevector k, and is given by

∆R = 2αRk. (2.3)

Figure 2.4 shows the spin splitting for a 10/6/10 AlSb/InAs/GaSb superlattice

in the conduction band along the [100] direction. As indicated by Eq. (2.3), the

calculated splitting is linear close to Γ. Further away from the zone center, the terms

of higher order in k coming from the numerical diagonalization of the 8 × 8 EBOM

Hamiltonian start taking over.
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A coefficient αR = 38× 10−10 eV·cm is found for the (AlSb=16 ML, InAs=6 ML,

GaSb=6 ML) heterostructure. In Chapter 3 optimization procedures are carried out

and coefficients as large as 50 × 10−10 eV·cm have been found. This is one of the

largest reported values for the Rashba coefficient.

As a validation of the method of calculation, the Rashba coefficient for an

In0.53Ga0.47As/In0.77Ga0.23As/InP heterostructure studied by Schäpers et al. [35] was

calculated. They reported an experimental value αR = (5.0 ± 0.1) × 10−10 eV·cm
for that structure. They also compute a Type I interface contribution to αR of

6.7× 10−10 eV·cm. Making the calculation with the EBOM method one finds an in-

terface contribution of 7.8×10−10 eV·cm. The reasonable agreement in the computed

values for the interface contribution to the Rashba coefficient validates the procedure

followed here and lends support to the claim for a large interface contribution to αBR

in the AlSb/InAs/GaSb/AlSb heterojunction studied here.

2.3.4 Spatial variation of the wavefunction

Figure 2.1 shows that the two eigenstates of the conduction subband have slightly

different spatial behavior. This coupling of the spatial part with the spin part of the

wavefunction is not modeled by the Bychkov-Rashba Hamiltonian in Eq. (2.1). The

attraction towards one or the other interface comes from the preference of the electron

to be located in regions with lower potential energy. The interface electric fields

transform in the rest frame of the electron into magnetic fields to which the electron

spin couples. Since the two interfaces have electric fields with opposite signs, hence,

magnetic fields with opposite signs, the sign of the spin will dictate the preference

for one of the interfaces. The lowest subband state tends towards the interface with

larger band offsets, where the electric fields are larger.

2.4 Physical explanation for the results

The unusual configuration of the spins in the conduction band shown in Fig. 2.3 can

be intuitively understood using the following argument. Classically, if the electrons in
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Figure 2.5: Schematic of the process by which the Rashba spin splitting arises. A
moving electron in an electric field sees a magnetic field in its rest frame and its spin
couples to it in a Zeeman-like manner.

the 2DEG are moving with a velocity v under the presence of an electric field E, this

transforms relativistically in the rest frame of the electron into an effective magnetic

field Beff given (in SI units) by (see, for example, Ref. [38])

Beff = − 1

c2
v × E, (2.4)

where c is the speed of light.

The magnetic moment of the electron will then couple to Beff producing the split-

ting. The quantum version of this reasoning is nothing but the spin-orbit interaction,

which includes a factor of 1/2 to account for Thomas precession. Since v ∝ k and

the only electric field that is not averaged to zero by the spatial extent of the wave-

function is E = Eν where ν is a unit vector in the direction of the growth, one has

for the spin-orbit Hamiltonian

H = −µ ·Beff ∝ −σ · (k× E) , (2.5)

where µ ∝ −σ is the magnetic moment of the electron.

As shown in Fig. 2.5, this readily explains why the spins are pointing in-plane and

perpendicular to the direction of propagation of the electron. Finally, if one makes

the substitution E = 〈E〉ν into Eq. (2.5) with 〈E〉 being the expectation value of the

electrical field for the conduction band states, the Hamiltonian (2.1) is recovered with
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αR just being the proportionality constant. In this description, the Bychkov-Rashba

constant is proportional to the expectation value of the electrical field, agreeing with

published experimental results [35, 39]. More sophisticated calculations [35] also find

interface contributions.

It can be argued [40] that the expectation value of the electric field should vanish

because the expectation value of the force that the electrons are subject to must

definitely vanish. Hence, it would seem that the value of the Rashba coefficient must

not depend on the expectation value of the electric field, in contradiction to the

argument shown in this section. However, Malcher et al. [14] show that one can have

a nonzero expectation value of the electrical field perpendicular to the plane of the

quantum well and still have a vanishing expectation value for the force.

2.5 Electric field induced magnetic moment

A novel observation is that the presence of a DC electric field parallel to the plane of

the 2DEG E‖ can produce a net magnetic moment. Consider the application of an

in-plane bias. It is a well-known result that, in the linear approximation and in the dif-

fusive limit where the electrons are thermalized before reaching the collector, the equi-

librium distribution function is displaced by a constant amount ∆k = eτE‖/~, [41]

where e is the electron charge, τ is the relaxation time and E‖ is the electric field

applied in-plane. Consider, for example, the displacement of the distribution func-

tion for the electrons in the lower conduction subband of Fig. 2.3. Figure 2.7 (a)

shows a schematic of the effect of the applied electric field on a 2DEG at zero tem-

perature. The gray region corresponds to states k whose spins are compensated by

opposite spins at −k, thus making a zero contribution to any magnetization or spin

polarization of the current. The white regions correspond to states that contribute

to the total spin. This can be accomplished by states newly occupied (unoccupied),

represented by the black (light gray) arrows. In the figure the displacement has been
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Figure 2.6: The hatched portion of k space S denotes the integration region of un-
compensated states where the magnetic moment of each electron will be added.

magnified for clarity and, using the relationship eτ = µm∗, it is found to be

∆k

kF
=
m∗µE‖

~
√
2πn

∼ 10−4, (2.6)

where µ is the mobility of the electrons in the 2DEG and n is the surface density of

electrons. The numerical estimate has been obtained using typical values for a 2DEG;

m∗ ∼ 0.02me, µ ∼ 80000 cm2/V·s, E‖ ∼ 1 V/cm and n ∼ 1012 cm−2. The sum of the

spins coming from the white regions will have a non zero component perpendicular

to the applied electric field. This yields a net magnetic moment and spin polarization

of the current due to electrons in that subband.

The net magnetic moment M coming from one subband can be obtained by inte-

grating the spins over the uncompensated states in the spherical band approximation

(see Fig. 2.6 for a schematic of the integration region):

M =

∫

S

λ(k)
g

2
µB〈σ〉 dSk, (2.7)
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where λ(k) =
(

A
2π

)2
is the surface density of states in k space for a single subband;

i.e., no spin degeneracy factor of 2, A is the area of the sample, g is the free electron

g—factor , µB is the Bohr magneton and 〈σ〉 is the unitless spin expectation value.

For small displacements of the Fermi sphere, as it is the case here, the differential of

surface in k space dSk can be written as

dSk = 2
m∗µ

~
E‖ cos θ kF dθ, (2.8)

where kF is the Fermi wavevector for the subband under consideration.

Then, performing the integral for θ between −π/2 and π/2, one gets

M↑ = −A
gµm∗E‖
8π~

µBkF↑, (2.9)

where M↑ is the resulting net magnetic moment coming from that subband and kF↑

is the Fermi radius for the subband with spins pointing counterclockwise. Figure 2.7

(a) shows that the magnetization will be perpendicular to the direction of the electric

field.

The combined effect of the two conduction subbands is shown in Fig. 2.7 (b). Each

subband contributes with a surface magnetization pointing in a direction opposite to

the other subband, but they do not cancel out due to the different size of the circles.

Adding the contribution from both subbands, using

(kF↑ − kF↓) =
2m∗

~2
αR (2.10)

and assuming E‖ pointing in a general direction in the plane, the resulting magnetic

moment per unit area will be

M

A
=
gµm∗2

4π~3
µBαR

(

E‖ × ν
)

, (2.11)

where ν is a unit vector pointing perpendicular to the 2DEG plane.

If one substitutes into this expression the values representative of the structure
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(a)

(b)

Figure 2.7: Illustration of the influence of a DC electric field on Fermi surfaces in
k-space. Part (a) shows a schematic of the displacement of the Fermi circle for one
of the conduction subbands of a 2DEG under the application of an in-plane external
electric field. The amount of displacement is greatly exaggerated for clarity. The
black arrows represent the spins of the newly occupied states, while the light gray
arrows represent the contribution from the states that have become unoccupied, thus
yielding the net current polarization and magnetization in the direction perpendicular
to the displacement of the circle. In part (b), the net effect for the two conduction
subbands is shown. The difference in size of the circles has been exaggerated for
clarity. Since the size of the regions contributing to the magnetization is different,
the “up” and “down” magnetizations will not compensate and there will be a net
surface magnetization in a direction perpendicular to the applied electric field.

µ ∼ 8 m2/V·s, m∗ ∼ 0.02me, αR ∼ 38 × 10−10 eV·cm and E‖ ∼ 1 V/cm one gets a

surface magnetization of the order of 10−12 J/T·m2. This magnetization corresponds

to ∼ 105 Bohr magnetons for a 1 mm2 sample. Measurement of this small effect

might be possible, for example, using Wernsdorfer’s µ-SQUID technique [42]. This

magnetic field would be distinguishable from a field produced by the current à la

Ampère because of the different directions that the Ampère field and the one proposed

here would have.

Also, the spin polarization of the current can be estimated by assuming all the
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magnetization is supplied by a difference

n↑ − n↓ =
2M

AgµB

(2.12)

to obtain the spin polarization of the 2DEG under an applied bias

P =
j↑ − j↓
j↑ + j↓

=
n↑ − n↓
n↑ + n↓

∼ 5× 10−5. (2.13)

This small value shows that this scheme is not a good candidate as a source of spin

polarized current, unless structures with a much higher Bychkov-Rashba coefficient

can be found.

2.6 Summary

In conclusion, it has been shown that there is a large spin splitting in the conduc-

tion band of the two-dimensional electron gas (2DEG) formed in an asymmetric

AlSb/InAs/GaSb/AlSb quantum well. This theoretical value is the largest such split-

ting reported for nonmagnetic 2DEGs confined by asymmetric walls. This splitting

and the behavior of the spins are well described, at low k’s, by a Rashba Hamiltonian.

The Rashba coefficients obtained with the effective bond orbital model (EBOM) have

been shown to be in agreement with those obtained with other methods. However,

EBOM has the added benefits that it takes into account the coupling of the space

and spin parts of the wavefunction and the interaction between the conduction and

valence bands in situations where it cannot be treated perturbatively. Also, it is

predicted that when an electric field is applied in the plane of the 2DEG, it should

display a surface magnetization estimated to be of the order of 10−12 J/T·m2 for

values typical of the structures in this chapter. The degree of spin polarization of

the resulting current is found to be ∼ 0.01%. These results are not encouraging for

practical applications, but other approaches using the Rashba effect [43, 44] show

more promise towards the realization of a spin injector.
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Chapter 3 Optimization of the Rashba

coefficient in asymmetric

AlSb/InAs/GaSb heterostructures

3.1 Introduction

In Chapter 2, it has been shown that, in order for any device exploiting the Rashba

splitting to be useful, large Rashba coefficients are required. In particular, large

Rashba splittings would help achieve a bigger spin polarization of the current in the

proposed [1] asymmetric Resonant Tunneling Device (a-RTD) realization of a spin

injector.

It has also been shown in Chapter 2 that predictions of the magnitude of the

Rashba coefficient in the 6.1 Å system composed by the nearly lattice matched com-

pounds AlSb, GaSb and InAs, with its unique band offsets [2], are among the largest

in the literature.

In this chapter, a systematic exploration of different AlSb/InAs/GaSb heterostruc-

tures is undertaken leading to a set of design rules for a structure having an optimized

Rashba coefficient. In Sec. 3.2 the Rashba coefficient is found for structures having a

varying number of monolayers. In Sec. 3.3 it is shown how the Rashba coefficient is

significantly reduced in wide wells and finally a summary is presented.

3.2 Rashba coefficient as a function of the layer

thicknesses

In this chapter, following the line of Chapter 2, the band structures are computed

using the effective bond orbital model (EBOM) method [3, 4]. For computational
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Figure 3.1: The Rashba coefficient as a function of AlSb and GaSb thicknesses for
InAs thickness fixed to 9 ML. The numbers in the plot are contour lines of the Rashba
coefficient in units of 10−10 eV·cm.

convenience purposes, the calculations will be made using superlattice boundary con-

ditions. The superlattice results will be valid for the quantum well case as long as the

AlSb layers are thick enough that all the instances of the superlattice are in effect iso-

lated from one another. One finds that the superlattice cells are effectively decoupled

when the AlSb thickness is 8 monolayers (ML) or more, with a monolayer having a

thickness of 3.048 Å. A flat band plot of the structure with its corresponding band

alignments can be found in Fig. 2.1.

The computations of the Rashba coefficient (see Chapter 2) are made in the same

conditions as in Chapter 2. Therefore, structural symmetry breaking mechanisms

for the well other than the layer sequencing [5, 6] will not be dealt with. The bulk

inversion asymmetry inherent to bulk zincblendes and the spin splitting originating

from it [7] will not be taken into account, either.
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Figure 3.2: The Rashba coefficient as a function of InAs and GaSb thicknesses for
AlSb thickness fixed to 16 ML.

A systematic exploration of structures with different layer thicknesses has been

undertaken with the purpose of looking for the configuration optimizing the Rashba

coefficient and delineating the role of each of the composing layers. The thickness

of each of the layers has been swept from 1 to 30 ML. The Rashba coefficient αR is

calculated from the splitting at 0.2% of the zone edge along the [100] direction and

then applying

∆R = 2αRk. (2.3)

Figure 3.1 shows the Rashba coefficient as a function of the AlSb and GaSb thick-

nesses while keeping the InAs thickness fixed to 9 ML. It is seen that the Rashba

coefficient is independent of the AlSb and GaSb thicknesses in a wide range. It only

changes its value when the AlSb layer is very thin—the quantum well approxima-

tion ceases to be valid—and when the GaSb layer is less than 8 ML. In this case,

a thinner GaSb layer reduces the amount of asymmetry in the quantum well and,
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therefore, reduces the Rashba coefficient. This behavior can be understood looking

at the wavefunction in Fig. 2.1. The tail of the wavefunction vanishes into the AlSb

on one side and into the GaSb on the other. Once the point has been reached where

the tail of the wavefunction vanishes inside one layer, it is of little consequence that

more monolayers of material are added, since that would affect a region where the

electron is barely present. This explains the independence of the AlSb and GaSb

thicknesses for most of the range.

Figure 3.2 shows the Rashba coefficient as a function of the InAs and GaSb thick-

nesses while keeping the AlSb thickness fixed to 16 ML. It is seen that, in order to

achieve a high Rashba coefficient, the GaSb thickness must be bigger than approxi-

mately 8 ML and the InAs layer must be between 5 and 15 ML. But in the previous

paragraph it has been shown that the AlSb thickness is of little importance as long

as it is thick enough; therefore, these design rules apply for quantum wells with AlSb

barriers thicker than 15 Å.

3.3 Rashba coefficient for wide wells

Another interesting feature in Fig. 3.2 that requires attention is the region of thick

GaSb and InAs where the Rashba coefficient is appreciably diminished, i.e., the dark

region. This sudden reduction is due to the anticrossing of the InAs electron states

with the GaSb hole states.

Figure 3.3 shows an example of such anticrossing. It displays the band structure

of a 24 ML GaSb / 24 ML InAs quantum well. In bulk, the InAs conduction band

electron states lie below the GaSb valence band hole states [2]. For a thin quantum

well, the InAs electron states are pushed up in energy, while the GaSb hole states

are pushed down; thus making the well behave as if it were made of a direct band

gap material. However, for the case shown in Fig. 3.3, the GaSb and InAs layers are

not thin enough for the valence and the conduction bands to be separated, and the

anticrossing takes place.

The inset in Fig. 3.3 shows that the amount of splitting only recovers its linear
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Figure 3.3: Band structure of a 12ML AlSb/24ML InAs/24ML GaSb/12ML AlSb
quantum well, showing the anticrossing of the conduction and valence bands. The
inset shows the splitting in the conduction band.

k dependence once the electron states don’t couple with the hole states. In this

situation, the Rashba coefficient defined as one half of the slope of the splitting at the

Γ point loses much of its meaning, and it is more appropriate instead to look at the

total amount of splitting. For example, the splitting at k = (0.03, 0, 0) Å−1 is reduced

to about one third of the value for thin wells [cf. plot (c) in Fig. 2.2]. This illustrates

the reduction in the magnitude of splitting that takes place whenever anticrossing of

the states occurs.

It is important to note that an eight-band method is needed to fully consider the
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interplay of the conduction and valence bands leading to the reduction of the Rashba

coefficient. This would have been impossible if, instead, a two-band method had been

employed.

3.4 Summary

In summary, it has been shown that the AlSb/GaSb/InAs system shows promise

to be the material system of choice to obtain large Rashba effect splittings. The

Rashba coefficient has been seen to be critically dependent on the InAs thickness,

while showing almost no dependence on the AlSb and GaSb thicknesses once these

are above some threshold value. The optimal thickness of the InAs layer has been

determined. Finally, the importance of designing the sample in such a way that there

is no anticrossing between the InAs electron states and the GaSb hole states in order

to achieve large values of the Rashba coefficient has been highlighted.
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Chapter 4 Description of bulk inversion

asymmetry in the effective bond orbital

model

4.1 Introduction

Since its inception in 1954 [1], the empirical tight binding method (TB) has been

extensively used to compute band structures of bulk metals [1–3], semiconductors [1,

4], and heterostructures [5, 6], yielding a good compromise between accuracy and

ease of implementation. Tight binding is a full zone method and, as such, it has been

used to describe situations where states corresponding to more than one extremum

are needed, such as short period superlattices [7] or X-point tunneling influence on

the escape time of electrons inside leaky quantum wells [8].

One of the difficulties tight binding users encounter is the choice of parameters.

Usually, tight binding parameters bear only an indirect relation with measurable

quantities, and their determination usually requires a tedious fitting procedure. The

effective bond orbital model (EBOM) method by Chang [9, 10] reviewed in Sec. 4.2

provides a way of matching the TB parameters using a reduced bond orbital ba-

sis set [11] with the measurable k · p parameters. As originally developed, the

EBOM method does not account for the bulk inversion asymmetry (BIA) present in

zincblendes, predicting no spin splitting in structures where BIA does cause a nonzero

splitting (cf. Sec. 5.5). In Sec. 4.3, an extension to EBOM capable of describing BIA

effects in the conduction band is presented. In Sec. 4.4 the method is applied to bulk

GaSb. Sec. 4.5 shows the application of the method to a symmetric AlSb/GaSb su-

perlattice, predicting the appearance of spin splitting in the conduction band. This is

a distinct feature of this method, while standard k ·p implementations or the original
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EBOM formulation would predict the absence of splitting. These results are shown

to agree with k · p calculations that do account for BIA (cf. Chapter 5). Finally, a

summary of the results is presented.

4.2 Review of the EBOM method

The basic idea of the EBOM method is to take the TB Hamiltonian expressed in

a bond orbital model basis set, series expand it for small k’s and then compare the

matrix elements with the k · p matrix elements [12] to obtain the TB parameters in

terms of the k · p parameters.

Following Chang [9], the orbitals are located at points of an fcc lattice. A state

at a site R with character α = s, x, y or z is labeled |R, α〉. The bond orbitals are

taken to be the Löwdin symmetrized orbitals [13] that most closely resemble the top

of the valence and bottom of the conduction band states. The requirement that they

originate from linear combination of atomic orbitals in a unit cell does not really

need to be made. The success of the method (and of the k ·p method as well) comes

precisely from the fact that detailed knowledge of the wavefunctions isn’t needed

because the matrix elements are only determined on symmetry grounds plus a few

parameters fitted empirically [1, 14].

The interaction between the p-type orbitals |R, β〉 and |R′, β′〉 (β = x, y, z) is, for

the fcc lattice, given by [10]:

〈R, β |H|R′, β′〉 =

EpδR,R′δβ,β′ +
∑

τ

δR′−R,τ

{

Exyτβτβ′(1− δβ,β′) +
[

Exxτ
2
β + Ezz(1− τ 2β)

]

δβ,β′
}

, (4.1)

where Ep is the on-site energy and Exy, Exx and Ezz are different nearest-neighbors

interaction parameters. The vectors τ join the twelve nearest neighbors, and they

can have values

τ =
a

2
([±1,±1, 0], [±1, 0,±1], [0,±1,±1]) , (4.2)
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with a being the lattice constant.

The interaction of s orbitals is quite simple

〈R, s |H|R′, s〉 = EsδR,R′ +
∑

τ

EssδR′−R,τ , (4.3)

with Es and Ess having analogous meanings as Ep and Exx. The remaining interaction

is between the s- and p-like orbitals at nearest neighbor sites:

〈R, s |H|R′, β〉 = EsxδR′−R,ττβ. (4.4)

At this point, a clarification must be made. The inadequacy of the ordinary EBOM

method to describe the reduced Td symmetry of zincblendes does not originate from

the basis set being located on an fcc lattice, but rather on the fact that a basis with

a definite parity has been used to obtain Eqs. (4.1)-(4.4). In the next section this

assumption is relaxed, yielding the correction necessary to describe spin splitting in

the conduction band.

From the Löwdin functions |R, α〉, Bloch sums can be written in the form

|k, α〉 = 1√
N

∑

R

eik·R|R, α〉, (4.5)

where N is the number of unit cells in the sample. Each eigenstate with a wavevector

k is written as a linear combination of Bloch sums [15]:

|Ψk〉 =
∑

α

uα|k, α〉. (4.6)

The coefficients uα are found by seeking stationary values of 〈Ψk |H|Ψk〉 /〈Ψk|Ψk〉,
which leads to the diagonalization of a Hamiltonian with matrix elements

〈k, α |H|k, α′〉 = 1

N

∑

R,R′

eik·(R
′−R) 〈R, α |H|R′, α′〉 =

∑

R′

eik·R
′ 〈R = 0, α |H|R′, α′〉 .

(4.7)



40

Parameters

Es=Ec + 12A′+~2/2m0
a2

Ess=−A′+~2/2m0
a2

Ep=Ev + 23~2/2m0+2L′+4M
a2

Exx=−~2/2m0+2L′

2a2

Ezz=−~2/2m0−2L′+4M
2a2

Exy=Exy(110) = −N ′

a2

a) Esx = P
4a

or b) (Ezz − Exx) = Xhl/8 = 0.5 eV

Table 4.1: Relationship between the EBOM parameters and the k · p parameters.

For the p subblock, plugging Eq. (4.1) into Eq. (4.7) yields

Hβ,β′(k) = Epδβ,β′ +
∑

τ

eik·τ
{

Exyτβτβ′(1− δβ,β′) +
[

Exxτ
2
β + Ezz(1− τ 2β)

]

δβ,β′
}

.

(4.8)

Similarly, it is easy to see that

Hs,s(k) = Es +
∑

τ

eik·τEss (4.9)

and

Hs,β(k) =
∑

τ

eik·τEsxτβ. (4.10)

In order to find values for the EBOM parameters, the sums over first neighbors

in Eqs. (4.8)-(4.10) are evaluated. For example, it is easy to see that

Hs,x = 4iEsx sin ξ(cos η + cos ζ), (4.11)

where ξ = kxa/2, η = kya/2 and ζ = kza/2. This agrees with the value in Table II

of Ref. [1], provided that terms occupied in the sc but not in the fcc lattices are

disregarded.

Then, the matrix elements are series expanded up to second order in k and com-

pared to k · p matrix elements [14] to obtain the relations listed in Table 4.1. The

values of the k ·p parameters L′, N ′ in terms of the more common L,N are available,
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for example, Eq. (13) in Ref. [16]. Note that the last entry in that table is not totally

determined. Taking Esx = P/4a might seem the sensible thing to do, but it produces

spurious solutions [9]. Instead, the auxiliary constraint (Ezz − Exx) = Xhl/8, where

Xhl is the heavy hole–light hole separation at the X point, is used.

Spin-orbit effects are simply introduced by adding spin to the basis states, per-

forming a change of basis on the Hamiltonian into a |j,m〉 basis and then modifying

the diagonal components of the energies to include the spin-orbit splitting.

4.3 Inclusion of bulk inversion asymmetry effects

in EBOM

As previously indicated, the EBOM Hamiltonian in zincblendes reproduces an Oh

point group symmetry rather than the reduced Td because the basis states (specif-

ically, the p states) are implicitly assumed to be parity eigenstates. The simplest

way to introduce an inversion symmetry breaking component consistent with the Γ5
1

symmetry of the valence states is to add some d character to the p states. Thus, the

substitutions

|R, x〉 → cp|R, x〉+ cd|R, yz〉

|R, y〉 → cp|R, y〉+ cd|R, zx〉

|R, z〉 → cp|R, z〉+ cd|R, xy〉 (4.12)

are made, where cp and cd are taken to be real and weight the importance of the odd

and even (under inversion) components, respectively, in the new state.

Keeping with the matrix element Hs,x as an example, the change in the states will

transform it to

Hs,x = cp 〈k, s |H|k, x〉+ cd 〈k, s |H|k, yz〉 . (4.13)

1The KDWS notation is being used (see Ref. [17]).
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Looking up again in Table II of Ref. [1], one can see that

Hs,x = 4iEsx sin ξ(cos η + cos ζ)− 4Es,xy sin η sin ζ, (4.14)

where the coefficients ci have been absorbed into the adjustable parameters Ei. Now,

comparing Eq. (4.14) with the corresponding element in the k · p Hamiltonian in

Ref. [14], one sees that the parameter B describing the BIA in the k · p formalism

(see Sec. 5.3) can be introduced in EBOM by taking

Es,xy = −B/a2. (4.15)

Therefore, the inclusion of BIA is made at a negligible computational cost and

its implementation is straightforward because only a supplemental matrix element

is being added instead of extending the basis set to include, say, anion and cation

orbitals. Another computational advantage is that the number of neighbors included

in the calculation is not increased.

It remains to be seen how the remaining matrix elements are affected by the

substitutions (4.12). Hs,s is left unchanged, while the other diagonal elements become

Hx,x = |cp|2[4Exx(cos ξ cos η + cos ξ cos ζ) + 4Ezz cos η cos ζ]+

|cd|2[4Exy,xy(110) cos η cos ζ + 4Exy,xy(011)(cos ξ cos η + cos ξ cos ζ)] =

[|cp|24Exx + |cd|24Exy,xy(011)](cos ξ cos η + cos ξ cos ζ)+

[|cp|24Ezz + |cd|24Exy,xy(110)] cos η cos ζ =

4Exx(cos ξ cos η + cos ξ cos ζ) + 4Ezz cos η cos ζ, (4.16)

where in the last step Exx and Ezz have been redefined so that Table 4.1 still holds.

The other diagonal elements can be obtained by the appropriate cyclic permutations.
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The nondiagonal elements between Γ5 states also change:

Hx,y = |cp|2[−4Exy sin ξ sin η] + |cd|2[−4Exy,xz(011) sin ξ sin η]+

cpcd[4iEx,xy(110) cos ξ sin ζ + 4iEx,xy(011) cos η sin ζ]+

cdcp[−4iEx,xy(110) cos η sin ζ − 4iEx,xy(011) cos ξ sin ζ] =

− 4Exy(110) sin ξ sin η − 4iExy(011) sin ζ[cos ξ − cos η], (4.17)

with the usual redefinition of parameters in the last step. Hy,z and Hz,x are obtained

by cyclic permutations. The results here obtained for the tight binding zincblende

matrix elements agree with those of Hass et al. [18], which correct the misprints in

Table V of Ref. [1].

Comparison with the k ·p Hamiltonian doesn’t provide the value of the Exy(011)

parameter because it only introduces terms of order k3 or higher when the corre-

sponding matrix element is expanded. This should not be a concern when properties

are sought involving only states near Γ. A look at the matrix elements reveals that

the contribution of Exy(011) reaches its peak near the K point. Since only properties

near the zone center are of interest here, its value will be set to zero for the following

calculations.

4.4 Bulk GaSb

The considerations above are illustrated with an example calculation of bulk GaSb.

Figure 4.1 shows the bands of bulk GaSb for a few special directions. The dashed

and dotted lines in plot (a) correspond to the EBOM model without the zincblende

symmetry corrections. The dotted line is obtained under the original requirement [9]

that the separation Xhl = 4.0 eV is used to obtain Esx. This will be called X model.

The dashed line is obtained taking Esx = P
4a
, with P obtained from the value of the

effective mass given by Eq. (5.17). This will be called P model. With the parameters

used, looking at the X and L points, in the P model the conduction (CB) and split

off (SO) bands are pushed further apart than in the X model. In the P model, the
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Figure 4.1: Band structure of GaSb calculated with EBOM under different assump-
tions for the parameters. The dotted line in plot (a) is obtained under the original
requirement [9] that the separation Xhl = 4.0 eV is used to obtain Esx. The dashed
line is obtained taking Esx = P

4a
. A term describing BIA has been included in plot (b),

which otherwise uses the same set of parameters as in the calculations represented by
the dashed line.

positions of the CB and SO bands are very sensitive to the value of the CB effective

mass. For example, changing m∗
c in InAs from 0.025 to 0.024 changes the position

of the SO band at the X point from about -10 eV to about -6.5 eV. Going one step

further and setting m∗
c = 0.023 makes the SO band anticross with the heavy and

light holes, and the spurious heavy hole (HH) - light hole (LH) crossing described in

Ref. [9] appears. Therefore, it is reasonable to assume that very small changes in the

value of the m∗
c parameter can not only get rid of spurious solutions present in the P

model but also tune the position of the CB at the X point.

Plot (b) in Fig. 4.1 is generated under the same conditions as model P , but with

BIA effects turned on by letting Es,xy = −B/a2. This will be called PB model. In

agreement with predictions from the character tables for the Td group [17], the bands

become spin split in the Σ direction because of the breakdown of Kramers degeneracy.

However, the correct description of the zincblende symmetry is made at the cost of
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Figure 4.2: Bands close to the zone center showing the spin splitting, calculated with
EBOM. The inset shows the amount of CB splitting and its k3 dependence at low
values of k.

the loss of accuracy for the CB and SO bands, specially along the Λ line, where they

take values quite far from pseudopotential calculations [19]. The preference of having

a correct description of the bands near the Γ point or the ∆ line including spin—with

its ability to describe short period 100 superlattices—or a more accurate full zone

description will determine the model to be used. The inclusion of second nearest

neighbors matrix elements [20] might reconcile the energy values at the L point in
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the PB model with the pseudopotential calculations and experimental findings [21].

Figure 4.2 shows the bands in more detail close to the zone center, with the spin

splitting in the bands along the [110] direction. The inset shows the splitting in the

conduction band along the Σ line for the CB, and a fit using

Splitting = γck
3, (4.18)

where γc is the k3 splitting proportionality constant. The value used for γc is 186

eV ·Å3, in good agreement with the measured value of 187 eV ·Å3 [22]. This shows

that the parameter B determines the CB splitting near the zone center in the PB

model in the same way as it does in the k ·p method, as expected from the derivation

in Sec. 4.3. A look at the inset reveals that, for GaSb, expression (4.18) is good

until about 2% of the zone edge. The only qualitative aspect of the bulk bands

that the extension in Sec. 4.3 cannot incorporate is the linear spin splitting in the

valence bands close to the zone center [23] (cf. Fig. 5.2). In k · p, this is described

by a parameter C coming from second-order mixed k · p and spin-orbit terms in the

perturbation expansion [14, 24]. It is this relation of C to the spin orbit interaction

that makes it impossible to include its effects in the EBOM method. This is because

the starting tight binding formulation includes spin orbit effects only in a limited

and ad hoc fashion. Boykin [25] has extended the tight binding method to include

the linear k splittings in the valence band, but the fact that four extra parameters

are needed in his treatment while a single one does the job in k · p suggests that a

tight binding formulation with spin orbit effects included from the beginning should

yield the linear splitting naturally and reveal constraints due to symmetry between

Boykin’s parameters. In any case, its effects are normally small, and its importance

for heterostructures is studied, for a particular case, in the following section.
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Figure 4.3: Comparison of EBOM and k · p superlattice bands. The structure is an
8/8/8 AlSb/GaSb/AlSb SL. The solid (dotted) lines are the k · p (EBOM) results.
The bands are spin split away from Γ due to the bulk inversion asymmetry. The inset
shows, for both methods, the amount of splitting in the E1 band and the values for
the splitting coefficients as defined in Eq. (5.69).

4.5 Bulk inversion asymmetry effects in symmet-

ric superlattices

The extension of the EBOM method in Sec. 4.3 is tested with the calculation of the

band structure of an AlSb/GaSb/AlSb symmetric superlattice (SL). The reduction

of the symmetry due to the confinement causes the states in the CB to become spin

split even along the [100] direction [26], contrary to the predictions of most of the

“oversymmetrized” k · p implementations.
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Figure 4.3 shows the comparison of the bands of an 16/8 AlSb/GaSb SL calculated

by both the k ·p and the EBOM methods. In the k ·p calculation, the parameters B

and C describing BIA are both set to finite values for GaSb. In the EBOM calculation,

as stated previously, only B can be set. Control calculations have been performed

with C = 0 and C 6= 0 for this structure and for a 16/8/8 AlSb/GaSb/InAs SL,

always finding that the inclusion of C modified the splittings only by a few tenths

of meV. Thus, at least for this system, the inability of the PB model to describe

the linear splitting in the valence bands of bulk zincblendes does not constitute a

serious drawback when studying splittings in heterostructures. The solid (dotted)

lines correspond to the k · p (EBOM) results. It can be seen that the value of the

gap is similar, although the absolute position of the levels is slightly different. In the

inset, the amount of splitting between the E1 subbands is shown, with both methods

yielding similar results.

4.6 Summary

Summarizing, an extension to Chang’s EBOM method [9] for calculating full zone

band structures has been presented. This extension can describe the most important

effects of bulk inversion asymmetry in zincblendes [23]. Also, the problem of spurious

solutions in the original formulation has been shown to be solvable with small changes

in the parameters. Finally, the new method has been applied to the calculation of

bulk GaSb and an AlSb/GaSb/AlSb superlattice, and shown to have good agreement

with k · p results close to the zone center.
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[13] P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950).

[14] E. O. Kane, in Semiconductors and Semimetals, edited by R. K. Willardson and

A. C. Beer (Academic, New York, 1966), Vol. 1, pp. 75–100.

[15] W. A. Harrison, Electronic Structure and the Properties of Solids, 1st ed. (Dover,

Mineola, USA, 1989).



50

[16] R. Enderlein, G. M. Sipahi, L. M. R. Scolfaro, and J. R. Leite, Phys. Stat. Sol.

(B) 206, 623 (1998).

[17] G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the

Thirty-Two Point Groups, 1st ed. (M.I.T. Press, Cambridge, MA, USA, 1963).

[18] K. C. Hass, H. Ehrenreich, and B. Velicky, Phys. Rev. B 27, 1088 (1983).

[19] J. R. Chelikowski and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

[20] J. P. Loehr, Phys. Rev. B 50, 5429 (1994).

[21] T. C. Chiang and D. E. Eastman, Phys. Rev. B 22, 2940 (1980).

[22] G. E. Pikus, V. A. Marushchak, and A. N. Titkov, Soviet Physics

Semiconductors-USSR 22, 115 (1988).

[23] G. Dresselhaus, Phys. Rev. 100, 580 (1955).

[24] M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev. B 38, 1806 (1988).

[25] T. B. Boykin, Phys. Rev. B 57, 1620 (1998).

[26] R. Eppenga and M. F. H. Schuurmans, Phys. Rev. B 37, 10923 (1988).



51

Chapter 5 Bulk inversion asymmetry

effects on the bands of zincblende

heterostructures

5.1 Introduction

In recent years, interest in developing spin-sensitive devices (spintronics) [1–4] has

fueled renewed investigations into spin phenomena in semiconductors. The aim is

to control not only the spatial degrees of freedom of the electron, but also the spin

degree of freedom. Useful spintronic devices can be devised if such control is achieved.

A number of such devices have already been proposed [5–7]. If a full understanding

of the operation of spintronic devices is wanted, a thorough knowledge of the band

structure including all spin details will be needed; in much the same way as thorough

knowledge of the “regular” band structure is required to fully understand electronic

devices.

In this chapter, the band structure of AlSb/GaSb/AlSb and AlSb/InAs/GaSb/

AlSb quantum wells is calculated using the k · p method taking into account spin-

orbit effects. Among others, the coupling through the spin-orbit interaction between

electron and hole states is taken into account, leading to the appearance of a spin

splitting in the conduction states. This splitting can be viewed as a consequence of

the removal of inversion symmetry in these heterostructures. The contribution to the

splitting of the different sources of asymmetry will be explored quantitatively. Thus,

the apparently contradictory statements of Lommer et al. [8] and Cardona et al. [9]

regarding this matter can be clarified.

Following the literature, throughout this chapter the term spin splitting will be

used to refer to the splitting of levels otherwise degenerate due to Kramers degeneracy,
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even though in the valence band the total angular momentum is the correct quantum

number to use.

Section 5.2 provides introductory remarks about how the breakdown of Kramers’

degeneracy translates into spin splitting, and also quotes the apparently contradictory

positions on the magnitude of the contributions to the splitting. In Sec. 5.3 the

method of the invariants for the construction of a Hamiltonian with the correct point

group symmetry is described. The validity of the constructed Hamiltonian is tested

by obtaining analytical expressions for the dispersion relation and then comparing

them to known expressions. Section 5.4 describes how the bulk Hamiltonian yields

the effective mass approximation equations and how they are solved. In Secs. 5.5 and

5.6 the effects of bulk inversion asymmetry on symmetric and asymmetric quantum

wells are explored and the results are finally summarized in Sec. 5.7.

5.2 Background

The appearance of spin splitting in the electronic band structure can be viewed as a

consequence of the removal of inversion symmetry. In systems possessing inversion

symmetry, the argument for the existence of spin degeneracy, most widely known as

Kramers’ degeneracy, goes as follows:

I. Time reversal is always a property of the system1. Since the Hamiltonian is

invariant under time reversal, the following pair of eigenstates linked by the

time reversal operator will be degenerate:

|k, ↑〉 Θ−→ |−k, ↓〉, (5.1)

where Θ is the time reversal operator.

II. If the system possesses inversion symmetry, the following pair of states will also

1In ferromagnetic materials, time reversal must be applied to the whole system, including the
ions responsible for the magnetic moment. This makes the following analysis invalid for that case.
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be degenerate:

|k, ↑〉 I−→ |−k, ↑〉, (5.2)

with I being the inversion operator.

III. And finally, the sequential action of these two operators would yield a pair of

degenerate eigenstates at the same k point in the Brillouin zone:

|k, ↑〉 IΘ−→ |k, ↓〉. (5.3)

In the case of bulk zincblendes, the splitting rising from the lack of inversion

symmetry is commonly called the k3 splitting due to its dependence near the zone

center [10]. Along the [110] direction, this splitting can be written for the conduction

band as [11]

∆BIA [110] = γck
3, (5.4)

where ∆BIA [110] is the splitting due to the bulk induced asymmetry (BIA), k is the

modulus of the wavevector and γc is the proportionality constant. Traditionally, the

term in the Hamiltonian leading to this splitting has been omitted in k · p calcula-

tions [12, 13].

However, in the case of quantum wells, other sources of inversion asymmetry can

be present. These sources include the different composition of the confining layers, an

asymmetric doping profile, an applied external electric field. All these mechanisms

are grouped into the so-called structure induced asymmetry (SIA) [14].

There have been some contradictory statements in the literature regarding the

relative contribution of SIA versus that of BIA in asymmetric heterostructures. In

Ref. [8] Lommer, Malcher and Rössler say, “Spin splitting of subband states . . . is

ascribed to the inversion-asymmetry-induced bulk k3 term, which dominates in large

gap materials, and to the interface spin-orbit or Rashba term, which becomes impor-

tant in narrow-gap systems.” On the other hand, Cardona, Christensen and Faso̧l [9]

compile the measured coefficients γc shown in Table 5.1. From there it can be seen

that, for the compounds shown, the k3 splitting is bigger in narrow gap than in wide
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Material Band Gap (eV ) γc (eV ·Å3)
GaAs 1.52 25.5
InP 1.42 8.5
GaSb 0.81 186.3
InAs 0.418 130
InSb 0.235 226.8

Table 5.1: Band gap and γc for selected III-Vs, adapted from [9]. The value for InAs
has been taken from [11].

gap materials. The numerical calculations performed in the following sections will

clarify these statements.

5.3 k · p method applied to bulk III-Vs

In order to calculate the band structure of the heterostructures under study, the

effective mass approximation (EMA) [13] based on an 8-band k ·p formalism is used.

There are several published 8-band k · p Hamiltonians [13], each including a more or

less detailed set of effects.

For the calculations shown, the Hamiltonian constructed by Trebin et al. [15] has

been implemented. This 8-band k · p Hamiltonian is constructed solely on group

theory arguments and, when applied correctly, guarantees the inclusion of all matrix

elements compatible with the Td symmetry group of the zincblendes up to the desired

order in the electron wavevector k.

5.3.1 Invariant expansion of the Hamiltonian

This method to construct k ·p Hamiltonians was first outlined by Luttinger [16], and

developed generally by Bir and Pikus [17–19]. It is based solely on symmetry argu-

ments. For the case of zincblendes, it basically goes as follows. The bulk Hamiltonian

can be written in the following way:

H =
∑

i,j∈Td irreps

H ij, (5.5)



55

where the H ij operator corresponds to the block in the Hamiltonian matrix coupling

the states of the Γj irreducible representation (irrep) to the states of Γi. Taking |Γi, k〉
defined as the k-th basis state of the Γi irrep of the Td point group, these operators

can be written explicitly as:

H ij =
∑

k∈Γi

∑

m∈Γj

Hkm (k) |Γi, k〉〈Γj,m|, (5.6)

where Hkm (k) are the matrix elements, and they are a function of the electron

wavevector k only.

Now, each of the matrices |Γi, k〉〈Γj,m| in H ij can be thought of as a vector that

will transform according to the product group representation Γi⊗Γ∗
j of Td. It is more

convenient to work with linear combinations of the |Γi, k〉〈Γj,m|’s that transform

according to the irreps contained in Γi ⊗ Γ∗
j .

Since it is being required that H is invariant under the point group operations,

each of the H ij must transform according to the trivial irreducible representation,

where all the group elements are represented by the unity. To achieve this, the

Hamiltonian blocks must have the following form [19]:

H ij (K) =
∑

Γl∈Γi⊗Γ∗j

al
∑

m∈Γl

XΓl
m

(

KΓl
m

)∗
, (5.7)

where the first sum is carried over the irreps contained in Γi ⊗ Γ∗
j , the second one

over the elements of Γl, K is a general tensor from the components of k, the strain

ε and the magnetic field H;
(

KΓl
m

)∗
is the complex conjugate of the m-th irreducible

component of K, XΓl
m is the m-th basis matrix coming transforming as Γi ⊗ Γ∗

j , and

the al’s are parameters that later can be mapped into standard k · p parameters.

In the case of interest here, the irreps building the Hamiltonian blocks are the

Γ6, Γ8 and Γ7 of Td, corresponding to the conduction, valence and split off bands

respectively.

To exemplify the method, consider the H66 block of the Hamiltonian, containing

all the possible coupling of the conduction bands states among themselves. The first
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Block Representations Matrices
H66 Γ6 ⊗ Γ∗

6 = Γ1 + Γ4 Γ1 : 1σ
Γ4 : σx, σy, σz

Table 5.2: Matrix basis set for the block of the Hamiltonian coupling the conduction
band states to themselves (adapted from [15]). 1σ is the 2 × 2 identity matrix, and
the σi’s are the Pauli matrices.

Terms involving k and H
Γ1 : 1, k2

Γ3 :
√
3
(

k2z − 1
3
k2
)

, k2x − k2y
Γ4 : [ky, kz] = eHx/i~c, [kz, kx] = eHy/i~c, [kx, ky] = eHz/i~c
Γ5 : kx, ky, kz; {kykz}, {kzkx}, {kxky}
{kykz} ≡ 1

2
(kykz + kzky)

Table 5.3: Irreducible components KΓl
m of K (adapted from [15]).

entry of Table II in Ref. [15] shows that the basis matrices of that block can only

transform as Γ1 and Γ4, and lists the explicit matrices (see Table 5.2). Therefore, only

the combinations of the components of k up to the desired (second) order transforming

as Γ1 and Γ4 will play a role. These are shown in Table 5.3.

Now, by application of Eq. (5.7), the most general H66 compatible with the sym-

metry requirements can be constructed:

H66 = a11σ + a′1k
21σ + a4

e

i~c
(σxHx + σyHy + σzHz) , (5.8)

where 1σ is the 2× 2 identity matrix, and the σi’s are the Pauli matrices. For clarity,

the strain and mixed k-strain terms are not shown. In order to find the value of the

ai parameters, one just needs to compare with the k · p perturbation results, and it

can be seen that a1 corresponds to the energy of the conduction band edge, a′1 must

be ~2
2m

and a4 must be −gs i~2
4m

, with gs being the effective g factor.

For completeness, Appendix A reproduces the full 8-band k ·p Hamiltonian from

Ref. [15], which has been implemented to perform the bulk and heterostructure cal-

culations. Note that, due to the way that it has been constructed, this Hamiltonian

takes into account all the effects of the spin-orbit interaction in the matrix elements

up to k2, and in particular the s − p coupling responsible for the existence of spin
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splitting in the conduction band. Strain and coupled strain/spin-orbit effects are also

properly described by this method.

To minimize the probability of introducing hard-to-detect typos in the coded defi-

nition of the matrix elements, the Hamiltonian was first entered in Mathematica [20].

From there, the appropriate C code for each matrix element was generated automat-

ically with the instruction CForm. This method also has the advantage that it allows

the algebraic operation of the Hamiltonian to find analytical forms for the dispersion

relation very near the zone center (cf. Sec. 5.3.3).

When implementing the Hamiltonian described in [15], one must be careful to

note the following typos in appearing in that article. The matrix Txx in Table I there

must read

Txx =
1

3
√
2





0 −1 0
√
3

−
√
3 0 1 0



 (5.9)

and the last equation in the group (A3) must also be corrected:

X12 = −i
(

X
(2)
2 −X

(2)
−2

)

/2. (5.10)

There is another remark about a point that can lead to confusion. Koster et

al. [21] have developed a set of tables for the Clebsch-Gordan coefficients for point

groups that are very helpful when constructing explicit subspace-invariant matrices

or when checking the symmetry properties of the Hamiltonian. However, in their

Table 83 the values they show can be used as displayed for the O point group, but

for Td the values should be taken according to the lookup table shown in Table 8.3.

5.3.2 Parameters of the model

When implementing a k · p Hamiltonian, one of the most crucial tasks is obtaining

a good set of parameters for the model. Unfortunately, this task is made harder

because there are in the literature a number of models that vary in the number of

bands considered and, even within the same number of basis states, with a different

set of effects included [22, 23].
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Parameter Description
a Lattice constant.
Eg Energy gap.
Ev Position of the valence band edge.
∆SO Spin orbit splitting.
A′ Correction to the conduction effective mass due to the interac-

tion with farther bands.
γ1 First Kane parameter. Related to the effective mass of heavy

and light holes.
γ2 Second Kane parameter. Related to the effective mass of heavy

and light holes.
γ3 Third Kane parameter. Measures the warping—directional de-

pendence of the effective mass—of the heavy and light hole
bands.

κ Related to the hole g-factor.
q Related to the anisotropy of the hole g-factor respect to the

direction of an applied uniaxial stress [24].
C Linear splitting coefficient of the HH-LH bands due to the bulk

inversion asymmetry. Measures the intra-valence band coupling
due to the atomic electric field.

P Momentum irreducible matrix element.
B Measures momentum coupling of conduction and valence band

via farther Γ5 bands. Contributes to most of the k3 splitting
in the conduction band. Vanishes when the crystal possesses
inversion symmetry.

C1 Change in the conduction band edge due to hydrostatic strain.
Dd Change in the valence band edge due to hydrostatic strain.
Du Related to the Bir-Pikus b deformation potential [19].
D′

u Related to the Bir-Pikus d deformation potential [19].
C2 Measures coupling of the conduction band to the valence band

under shear stress.
C4 Related to uniaxial strain-k coupling.
C ′
5 Related to shear strain-k coupling.

C11, C12, C44 Elastic moduli.

Table 5.4: Material parameters used in the k · p model and their description.
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When taking a parameter set from the literature, one must make sure that pa-

rameters with the same name have the same meaning. The Luttinger parameters

γL [16] are one example of this. The values of the 8-band Luttinger parameters, also

known as Kane parameters, differ greatly from the more widely used 6-band Luttinger

parameters. The γL shown in Table II in Lawaetz [22] are related to the γ’s in the

current implementation (cf. Appendix A) by

γ1 = γ1L −
1

3

EP

Eg

γ2 = γ2L −
1

6

EP

Eg

γ3 = γ3L −
1

6

EP

Eg

κ = κL −
1

3

EP

Eg

, (5.11)

where Eg is the energy gap of the compound, and EP has been defined as

EP ≡
2meP

2

~2
, (5.12)

whereme is the free electron mass and P is the irreducible momentum matrix element.

A list of the parameters employed in the implementation of the Hamiltonian in

Appendix A [15] and their meaning are shown in Table 5.4. Table 5.5 shows the

numerical values used in the calculations for the parameters of a number of materials.

The effects of an applied magnetic field will not be considered in the calculations

in this chapter. Therefore, the parameters κ and q will not be needed. Similarly,

C2, C4 and C ′
5 will not be needed because they only appear when the material is

under some sort of shear stress. When finding energy values for heterostructures in

Secs. 5.5 and 5.6, they will be supposed to be grown along the [001] direction, hence

introducing no shear stress. Finally, the effect of remote bands on the conduction

effective mass will be neglected. This amounts to setting the A′ parameter to zero.
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Parameter InSb GaSb AlSb InAs GaAs AlAs Al.08Ga.92As Al.12Ga.88As

a (Å)a 6.4794 6.096 6.136 6.058 5.653 5.66 5.6539 5.6541
Eg (eV )b 0.235 0.813 2.219 0.356 1.52 3.002 1.639 1.633
Ev (eV )c 0 0.56 0.11 0 0 -0.55 -0.044 -0.055
∆SO (eV )b 0.803 0.8 0.75 0.41 0.341 0.279 0.336 0.335

γb1 2.59 2.58 1.44 2.05 2.01 1.74 2 1.99
γb2 -0.6 -0.58 -0.35 -0.44 -0.41 -0.37 -0.5 -0.53
γb3 0.67 0.65 0.39 0.48 0.46 0.42 0.45 0.44

C (eV ·Å)d -9.32×10−3 7.00×10−4 0 -1.12×10−2 -3.40×10−3 2.00×10−3 -2.97×10−3 -2.86×10−3
P (eV ·Å)b 9.35 9.21 8.41 9.17 9.86 8.94 9.79 9.77
B (eV ·Å2)e 10.3 49.9 0 13.7f 30.4 21.3g 29.7 29.5
C1 (eV )h -6.17 -6.85 -6.97 -5.08 -7.17 -5.64 -7.05 -7.02
Dd (eV )h 0.36 0.79 1.38 1 1.16 2.47 1.26 1.29
Du (eV )h -3.1 -3 -2.1 -2.7 -2.6 -2.6 -2.6 -2.6
D′

u (eV )h -4.3 -4.2 -3.7 -3.1 -3.9 -3.9 -3.9 -3.9
C11 (GPa)a 69.18 88.34 87.69 83.29 112.6 120.2 113.2 113.4
C12 (GPa)a 37.88 40.23 43.41 45.26 57.1 57 57.02 57.09
C44 (GPa)a 31.32 43.22 40.76 39.59 60 58.9 59.91 59.89

aRef. [25].
bRef. [22].
cThe valence band offsets are consistent within the systems comprised of (InSb), (GaSb, AlSb, InAs) and (AlxGa1−xAs).
dRef. [9].
eFrom γc obtained in Ref. [26].
fFrom γc obtained in Ref. [11].
gFrom γc obtained in Ref. [27].
hAdapted from the Bir-Pikus deformation potentials a, b, d in Ref. [28].
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5.3.3 Analytic expressions of the energy values near the zone

center

Starting from the full Hamiltonian shown in Appendix A, analytical expressions for

the bands near the zone center can be found. These are useful to find measurable

quantities such as effective masses and intraband splittings as a function of the model

parameters. These expressions can also be useful when relating the parameters of

the model to the parameters used in other families of k ·p Hamiltonians. Unstrained

bulk material will be assumed in this section.

In order to obtain an analytic approximation to the energy dispersion relation, the

8-band Hamiltonian is first divided into two 4 × 4 blocks for the direction required.

To achieve this decoupling, the Hamiltonian in Appendix A is expressed in a basis

whose quantization axis has been selected according to Table 5.6. The matrix that

transforms the Hamiltonian from a z quantization axis into an arbitrary θ, ϕ axis is

R(θ, ϕ) =











D1/2(θ, ϕ) 0 0

0 D3/2(θ, ϕ) 0

0 0 D1/2(θ, ϕ)











(5.13)

where

D1/2(θ, ϕ) =





e−
i
2
ϕ cos( θ

2
) −e− i

2
ϕ sin( θ

2
)

e
i
2
ϕ sin( θ

2
) e

i
2
ϕ cos( θ

2
)



 (5.14)

and

D3/2(θ, ϕ) =


















cos( θ
2
)
3

e
3 i
2
ϕ

−
√
3 cos( θ

2
)
2
sin( θ

2
)

e
3 i
2
ϕ

√
3 cos( θ

2
) sin( θ

2
)
2

e
3 i
2
ϕ

− sin( θ
2
)
3

e
3 i
2
ϕ√

3 cos( θ
2
)
2
sin( θ

2
)

e
i
2
ϕ

cos( θ
2
)+3 cos( 3 θ

2
)

4 e
i
2
ϕ

sin( θ
2
)−3 sin( 3 θ

2
)

4 e
i
2
ϕ

√
3 cos( θ

2
) sin( θ

2
)
2

e
i
2
ϕ

√
3 cos( θ

2
) sin2( θ

2
)

e−
i
2
ϕ

−e
i
2
ϕ (sin( θ2 )−3 sin(

3 θ
2
))

4

e
i
2
ϕ (cos( θ2 )+3 cos(

3 θ
2
))

4
−

√
3 cos( θ

2
)
2
sin( θ

2
)

e−
i
2
ϕ

e
3 i
2

ϕ sin( θ
2
)
3 √

3 e
3 i
2

ϕ cos( θ
2
) sin( θ

2
)
2 √

3 e
3 i
2

ϕ cos( θ
2
)
2
sin( θ

2
) e

3 i
2

ϕ cos( θ
2
)
3



















(5.15)
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Direction in k space Notation for the line Quantization axis
[001] ∆ ẑ
[010] ∆ ŷ
[100] ∆ x̂
[110] Σ ŷ − x̂
[111] Λ ŷ − x̂

Table 5.6: Quantization axis for the basis functions of the Hamiltonian.

After the Hamiltonian has been expressed in the basis with the new quantization

axis, another change of basis consisting of a rearranging of the vectors is applied in or-

der to leave it in its final block diagonal form. The basis states are reordered from the

set
{

|Γ6,+1
2
〉, |Γ6,−1

2
〉, |Γ8,+3

2
〉, |Γ8,+1

2
〉, |Γ8,−1

2
〉, |Γ8,−3

2
〉, |Γ7,+1

2
〉, |Γ7,−1

2
〉
}

into
{

|Γ6,+1
2
〉, |Γ8,−3

2
〉, |Γ8,+1

2
〉, |Γ7,+1

2
〉, |Γ6,−1

2
〉, |Γ8,+3

2
〉, |Γ8,−1

2
〉, |Γ7,−1

2
〉
}

for the

∆ directions, or
{

|Γ6,+1
2
〉, |Γ8,+3

2
〉, |Γ8,−1

2
〉, |Γ7,−1

2
〉, |Γ6,−1

2
〉, |Γ8,−3

2
〉, |Γ8,+1

2
〉,

|Γ7,+1
2
〉
}

for the Σ and Λ directions.

Taking one of the 4 × 4 blocks, the secular equation to obtain the eigenvalues

would be a fourth degree polynomial. Instead, the standard procedure of taking the

unperturbed energy for the bands that are not under consideration will require the

solving of two first-degree equations—for the conduction and the split off bands—

and one second-degree polynomial for the heavy and light hole bands to yield the

approximate energies near the zone center.

Bands along the [100] direction

The energy dispersion relation for the conduction band (CB) along the [100] direction

up to second order in k is given by

ECB (k) = Eg +
~2k2x

2mem∗
CB

, (5.16)

where me is the free electron mass, m∗
CB is the conduction band effective mass, with

a value of
1

m∗
CB

= 1 +
1

3

EP

Eg

3Eg + 2∆SO

(Eg +∆SO)
, (5.17)
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Figure 5.1: Linear splitting of the HH and LH bands along [100] near the zone center
due to bulk induced asymmetry (BIA) effects. The inset compares the bands with
BIA included C 6= 0 to the bands with BIA not included C = 0. The value of C has
been artificially augmented 1,000-fold for C 6= 0.

where the symbols have the meaning listed in Table 5.4. This effective mass is

isotropic—the same along any direction on k space.

For the heavy hole (HH) band, the dispersion relation is

EHH (k) = Ckx −
(3Egγ1~2/me + 2P 2) k2x

6Eg

, (5.18)

while for the light hole (LH) band

ELH (k) = −Ckx −
(3Egγ1~2/me + 2P 2) k2x

6Eg

. (5.19)

These results indicate that, very close to the Γ point, the valence bands have a

linear behavior. Also, the effective mass seems to be quite different from the usual
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expressions [29, 30]. This can be reconciled with the conventional wisdom. The plot

in Fig. 5.1 shows the numerical diagonalization of the HH and LH bands close to

the Γ point for GaSb, except that the valence band splitting parameter C has been

increased by a factor or 1,000 to show more clearly its effects. It is seen that very

close to the zone center the HH and LH bands split linearly instead of quadratically,

following the behavior described in Eqs. (5.18)-(5.19); and it is not until farther into

the Brillouin zone that the bands recover the usual quadratic behavior. The inset in

Fig. 5.1 compares these bands to the case where the splitting has been set to zero.

It is seen that even with the inclusion of the bulk inversion asymmetry effects, the

bands recover soon the shape of the C = 0 case. The only difference then is that the

HH-LH separation is slightly bigger than predicted in the models not taking C into

account.

Setting C = 0 in the analytical Hamiltonian and expanding it to second order

yields the more usual expressions for the HH and LH effective masses

1

m∗
HH

= γ1 − 2γ2

1

m∗
LH

= γ1 + 2γ2 +
4

3

EP

Eg

, (5.20)

which have been expressed in terms of the Kane parameters. In terms of the Luttinger

parameters (see Eq. (5.11) ), they adopt the form

1

m∗
HH

= γ1L − 2γ2L

1

m∗
LH

= γ1L + 2γ2L. (5.21)

Finally, the spin-orbit split off (SO) band has the following dispersion relation

ESO (k) = −∆SO −
~2k2x

2mem∗
SO

, (5.22)
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where m∗
SO is the split off band effective mass, with a value of

1

m∗
SO

= γ1 +
2

3

EP

(Eg +∆SO)
. (5.23)

The effective mass for the SO band is also isotropic.

Note that the expressions of the effective masses of the CB and SO bands are not

affected by the inclusion of BIA effects.

Bands along the [110] direction

Along the [110] direction, the energy of the electrons in the CB as a function of the

wavevector k is, up to third order,

ECB (k) = Eg +
~2k2

2mem∗
CB

± 1

2
γck

3, (5.24)

with m∗
CB given by Eq. (5.17), and the k3 splitting coefficient (see Eq. (5.4) ) in terms

of the model parameters given by

γc =
P

3

2BEg∆SO −
√
3CP (Eg +∆SO)

E2
g (Eg +∆SO)

. (5.25)

It is easy to show that the contribution to γc of the part containing C is only about

4% for InSb and InAs. That contribution goes down to about 0.3% for GaAs and

AlAs, and it drops to a mere 0.03% for GaSb. Therefore, it is a good approximation

to consider that all the splitting in the conduction band is due to the nonvanishing

bulk inversion parameter B, which has its source in the momentum coupling of the

conduction and valence bands via remote Γ5 states [15].

Note that, in order to turn off BIA effects, both parameters B and C need to be

set to zero.

As in the [100] case, the inclusion of C 6= 0 changes the characteristics of the

bands very close to the Γ point respect to the more common assumption of C = 0.

In particular, it provides them with a small linear component. But, in opposition

to the [100] case, here the HH and LH bands are not doubly degenerate. The LH1–
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Figure 5.2: Linear splitting of the HH and LH bands along [110] near the zone center.
The value of the parameter C has been artificially augmented 1,000-fold.

LH2 and HH1–HH2—the number indicating subbands—linear splittings (∆LH [110]

and ∆HH [110] respectively) turn out to be the same for both HH and LH bands (see

Fig. 5.2), and are given by

∆HH [110] = ∆LH [110] =
√
3Ck. (5.26)

This result is slightly different from the one indicated in Ref. [9] in their Eq. (7.5).

A numerical diagonalization of the Hamiltonian has been performed to check the

validity of Eq. (5.26). The discrepancy arises because the splittings in Ref. [9] are

valid in the region where the quadratic (effective mass) splitting predominates, while

the result obtained here is valid in the region where the linear splitting dominates.

In the materials studied, one needs not go far from Γ to enter a regime where the

bands basically behave according to the standard behavior, described by the effective
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masses

1

m∗
HH

= γ1L −
√

γ22L + 3γ23L (5.27)

1

m∗
LH

= γ1L +
√

γ22L + 3γ23L, (5.28)

which agree with the expressions in Ref. [30]. In this regime, there is some LH and

HH splitting proportional to k3 due to the effect of B:

δHH [110] =
BP

3Eg

γ2L − 3γ3L +
√

γ22L + 3γ23L
√

γ22L + 3γ23L
k3 (5.29)

δLH [110] =
BP

3Eg

3γ3L − γ2L +
√

γ22L + 3γ23L
√

γ22L + 3γ23L
k3. (5.30)

Note that the k3 splitting in the heavy hole band is a good indicator of the

anisotropy of the hole effective masses, because it should vanish for a material with

isotropic hole effective masses (γ2L = γ3L).

The SO band also presents k3 splitting ∆SO [110], proportional to the B parameter

only:

∆SO [110] =
2BP

3 (Eg +∆SO)
k3. (5.31)

Bands along the [111] direction

Along this direction, in the region where the linear splitting dominates, the heavy

hole (HH) band has the dispersion relation

EHH (k) = ±
√
2Ckx −

~2k2

2me

(γ1L − 2γ3L) +O(k4), (5.32)

while for the light holes

ELH (k) = −~2k2

2me

(γ1L + 2γ3L) +O(k4), (5.33)
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Figure 5.3: Band structure for GaSb near Γ along [100].

from which

1

m∗
HH

= γ1L − 2γ3L (5.34)

1

m∗
LH

= γ1L + 2γ3L. (5.35)

The light hole, conduction and split-off bands are degenerate along the [111] di-

rection, as can also be deduced by group theory arguments [10]. The heavy hole band

shows a linear splitting near the zone center.

5.3.4 Numerical calculation of the energy bands

In the preceding section, it was assumed that the k point under consideration was

close enough to the zone center that the analytic expressions derived were valid. In

this section, k will still be supposed to be within the range of validity of the k · p
theory, but farther out into the Brillouin zone, so that the analytical expressions lose

their validity. In this section the k · p Hamiltonian will be diagonalized numerically,

giving special attention to the spin behavior of the conduction band states.
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Figure 5.4: Band structure for GaSb near Γ along [110] and spin splitting of the
conduction band.

Bands along the [100] direction

Figure 5.3 shows the band structure of bulk GaSb along the [100] direction. In

accordance with the group symmetry requirements, the bands are spin degenerate for

finite k’s.

Bands along the [110] direction and k3 splitting

Figure 5.4.a) shows the band structure of bulk GaSb along the [110] direction. For

this direction, all bands are spin split except at the Γ point due to the bulk inversion

asymmetry (BIA) effects. Plot (b) shows the energy splitting of the CB states as

a function of k in a loglog graph. Close to the zone center, the splitting in the

conduction band follows a power law, with exponent 3. This is in agreement with the

results derived in Eq. (5.24).

This so-called k3 splitting [10] can also be predicted by the methods described

in Sec. 5.3.1. Going up to order 3 in the combinations of components of k and

constructing an invariant 2-band Hamiltonian for the conduction band, it is found
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Figure 5.5: Direction for the spin of the spin-split states of the lowest conduction
subband of GaSb. This plot sweeps a circular path in k space with kz = 0. No spin
direction is specified for the 〈100〉 family because the states are spin degenerate.

that the Hamiltonian will include the following term breaking the spin degeneracy [11]:

Hk3 = γc
[

σxkx
(

k2y − k2z
)

+ cyclic permutations
]

. (5.36)

The fact that effects of order k3 are being studied with a Hamiltonian with terms

of order up to k2 might lead to some inaccuracies. A future study might deal with the

effect of these higher-order terms in the CB spin splitting. Since the main contribution

to γc comes from the parameter B, describing the coupling of the CB and the LH

band via remote states, one might expect that the third order terms in the 8-band

Hamiltonian block Hcc would have a contribution of about
EΓ8c−Γ6c

Eg
smaller than B,

where EΓ8c−Γ6c is the distance in energy from the CB to the closest, non valence band,

Γ8 band, which normally lies above the conduction band. For GaAs,
EΓ8c−Γ6c

Eg
is about

2. Basically, this would not have a big effect on the band structure calculations, but

it would affect substantially the values of the calculated matrix elements.

The two-band Hamiltonian in Eq. (5.36) also predicts the direction where the split

spins will be pointing. For example, it is easily seen from the previous equation that if
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k = (1, δ, 0), with δ a positive infinitesimal, the spin will point along the ±y direction.

Similarly, symmetry requires the spin to point along (−1, 1, 0) or (1,−1, 0) for k along

the [110] direction. This is indeed obtained in the numerical diagonalization of the

Hamiltonian including the BIA effects, as seen in Fig. 5.5. That figure shows a

circular sweep in k space with kz = 0. The arrows represent the direction towards

which the spin of the lowest conduction subband states is pointing. The horizontal

axis represents kx, while the vertical axis indicates the ky component of the state.

The states belonging to the 〈100〉 directions are spin degenerate; therefore, no spin

direction is given for them in Fig. 5.5.

The expectation value of the spin is calculated using the following spin oper-

ator, given in the
{

|Γ6,+1
2
〉, |Γ6,−1

2
〉, |Γ8,+3

2
〉, |Γ8,+1

2
〉, |Γ8,−1

2
〉, |Γ8,−3

2
〉, |Γ7,+1

2
〉,

|Γ7,−1
2
〉
}

basis:

Sx =
~
2





















0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 1√
3

0 0
√
2
3

0

0 0 1√
3

0 2
3

0 0
√
2
3

0 0 0 2
3

0 1√
3

−
√
2
3

0

0 0 0 0 1√
3

0 0 −
√
2
3

0 0
√
2
3

0 −
√
2
3

0 0 −( 13)
0 0 0

√
2
3

0 −
√
2
3
−( 13) 0





















(5.37)

Sy =
~
2





















0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 −
(

1√
3

)

0 0 −
√
2
3

0

0 0 1√
3

0 −( 23) 0 0 −
√
2
3

0 0 0 2
3

0 −
(

1√
3

)

−
√
2
3

0

0 0 0 0 1√
3

0 0 −
√
2
3

0 0
√
2
3

0
√
2
3

0 0 1
3

0 0 0
√
2
3

0
√
2
3

−( 13) 0





















(5.38)

Sz =
~
2















1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 1
3

0 0 −2
√
2

3
0

0 0 0 0 −( 13) 0 0 −2
√
2

3

0 0 0 0 0 −1 0 0

0 0 0 −2
√
2

3
0 0 −( 13) 0

0 0 0 0 −2
√
2

3
0 0 1

3















. (5.39)

The amount of spin splitting in bulk materials is highly anisotropic. The polar

plot in Fig. 5.6 shows the splitting as a function of angle for a circular sweep in k

space with kz = 0 and k‖ = 0.01Å−1. In that plot, an angle of 0 ◦ corresponds to an
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Figure 5.6: Spin splitting in the CB for an electron with k‖ = 0.01Å−1 and traveling
in the plane kx − ky.

electron traveling with positive kx only, an angle of 90 ◦ corresponds to an electron

traveling with positive ky only, and the rest taking the usual meaning. The amount

of splitting is given by the axis on the left or, equivalently, by the distance of the plot

line to the center.

5.4 Eight-band effective mass theory for superlat-

tices and quantum wells

In this section the method used to find the band structure and eigenstates for su-

perlattices and quantum wells is shown. Following the effective mass approximation

(EMA) theory [13], the 8 band k · p Hamiltonian of Eq. (A.1) is transformed into

a set of eight linear, second-order, ordinary differential equations. The appropriate

boundary conditions are enforced and the equations are solved by means of a finite

difference scheme.
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5.4.1 EMA Hamiltonian

In the effective mass approximation (EMA) [12], the bulk Hamiltonian H0 is modified

by some gentle—changing little in a lattice constant—potential U (r). Then, the

wavefunction of the structure under study is written as

Ψk‖ (r) =
∑

n

eik‖·rFn(z) un0 (r) , (5.40)

where k‖ = kxx̂+kyŷ is the electron wavevector in the kx−ky plane, un0 is the Bloch

wavefunction at the zone center, the Fn(z)’s are the envelope function components,

a set of supposedly slow varying functions that take all the effect of U (z); and it has

been assumed that the translational bulk symmetry is broken along the z axis only

(i.e., the superlattice or quantum well has been grown along the [001] direction). Burt

has developed a rigorous effective mass theory [31], which has the Luttinger theory

as a limiting case and explains the success of the latter in treating structures with

abrupt interfaces. The simpler Luttinger approximation will be used throughout this

study.

It has been shown [12, 13] that the equation

[

H0

(

k‖, kz; z
)

+ U (z)
]

Ψk‖ (r) = E Ψk‖ (r) , (5.41)

with H0

(

k‖, kz; z
)

being the bulk Hamiltonian with an allowance for a change of

material as a function of z, can be written in what is the key equation of the effective

mass approximation:

[

H0

(

k‖,−i∂z; z
)

+ U (z)
]

F(z) = E F(z), (5.42)

where F(z) is a multicomponent vector constructed from the different Fn(z)’s. In

an 8-band theory, F would have 8 components, each one multiplying the conduction

band (CB), heavy hole (HH), light hole (LH) and split off (SO) basis states.

On the other hand, the bulk k·p Hamiltonian can be expanded into its polynomial
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form for kz in the following manner:

H0 (k) = H(2)k2z +H(1)
(

k‖
)

kz +H(0)
(

k‖
)

. (5.43)

Putting together Eq. (5.42) and Eq. (5.43), a system of eight coupled differential

equations results:

[

−H(2)∂2z − iH(1)
(

k‖
)

∂z +H(0)
(

k‖
)

+ U(z)
]

F(z) = E F(z). (5.44)

This is the system of equations that must be solved to obtain the energies and eigen-

states of the system.

5.4.2 The finite difference method

There are several methods to solve numerically the system of coupled ordinary dif-

ferential equations given by Eq. (5.44), such as the transfer-matrix method [32, 33],

the finite element method [34], the basis expansion method [35]. In this study, the

finite difference method (FDM) has been employed because of its conceptual simplic-

ity, its ability to describe tunneling phenomena with only a few changes (see Sec. 7)

and its numerical stability respect to the transfer-matrix method, which requires the

truncation of growing exponential states [36].

In the finite difference method, the differential operators are first written in a

Hermitian form and then substituted by their finite difference approximations over a

discrete mesh (see Fig. 5.7) with N points. Following Chuang and Chang [37], the

following discretization scheme is used:

H(2)(z) ∂2zf
∣

∣

zi
→ ∂z

(

H(2)(z) ∂zf
)∣

∣

zi
≈ H(2)(zi+1) +H(2)(zi)

2(∆z)2
f(zi+1)−

H(2)(zi+1) + 2H(2)(zi) +H(2)(zi−1)

2(∆z)2
f(zi) +

H(2)(zi−1) +H(2)(zi)

2(∆z)2
f(zi−1) (5.45)
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Figure 5.7: Schematic of the structure under study, with points separating the mono-
layers, and mesh used when solving the effective mass approximation equations. The
mesh points need not coincide with the monolayer boundaries.

−iH(1)(z) ∂zf
∣

∣

zi
→ −i

2

[

H(1)(z) ∂zf + ∂zH
(1)(z)f

]∣

∣

zi
≈

− iH
(1)(zi+1) +H(1)(zi)

4∆z
f(zi+1) + i

H(1)(zi−1) +H(1)(zi)

4∆z
f(zi−1), (5.46)

where ∆z is the separation between the mesh points, and zi is the position of the i-th

mesh point.

Now, the application of the above equations to Eq. (5.44) yields the following

system of N algebraic equations:

Hi,i−1Fi−1 +Hi,iFi +Hi,i+1Fi+1 = EFi (5.47)
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where Fi is the eight-vector containing the envelope function components correspond-

ing to the i-th mesh point. This eigenproblem can be written in matrix form to better

appreciate its sparse structure:





























H0,0 H0,1 0 . . . . . . . . . H0,−1

H1,0 H1,1 H1,2 0 . . . . . . 0

0 H2,1 H2,2 H2,3 0 . . . 0
... . . .

. . . . . . . . .
...

...

0 . . . . . . 0 HN−2,N−3 HN−2,N−2 HN−2,N−1

HN−1,N 0 . . . . . . 0 HN−1,N−2 HN−1,N−1





























F = E F, (5.48)

where F is a column vector composed of the different Fi’s.

The discretized Hamiltonian matrices when inside only one material are given by:

Hi,i =
2H(2)

(∆z)2
+H(0) + Ui (5.49)

Hi,i+1 = −
H(2)

(∆z)2
− iH

(1)

2∆z
(5.50)

Hi,i−1 = −
H(2)

(∆z)2
+ i

H(1)

2∆z
= H†

i,i+1. (5.51)

Note that the above discretization scheme treats with equal footing the inner and

interface mesh points. Therefore, the general expression for the discretized 8 × 8

Hamiltonian matrices can be used without modification when dealing with interface

mesh points:

Hi,i =
H

(2)
i+1 + 2H

(2)
i +H

(2)
i−1

2(∆z)2
+H

(0)
i + Ui (5.52)

Hi,i+1 = −
H

(2)
i+1 +H

(2)
i

2(∆z)2
− iH

(1)
i+1 +H

(1)
i

4∆z
(5.53)

Hi,i−1 = −
H

(2)
i−1 +H

(2)
i

2(∆z)2
+ i

H
(1)
i−1 +H

(1)
i

4∆z
. (5.54)

H0,−1 and HN−1,N in Eq. (5.48) express the boundary conditions (BCs) of the

problem. When studying a quantum well, the BCs are that the wavefunction must
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vanish far from the well region. This is accomplished by setting the barrier region

wide enough, and requesting

F−1 = FN = 0, (5.55)

which translates into

H0,−1 = HN−1,N = 0. (5.56)

When finding the energies and states of a superlattice, the Bloch BCs apply, and

the envelope function is requested to have the supercell periodicity d, modulated by

a phase:

FN = eiqdF0 ⇒ HN−1,N = eiqdHN−2,N−1 (5.57)

F−1 = e−iqdFN−1 ⇒ H0,−1 = e−iqdH1,0, (5.58)

where q is the electron wavevector along the z direction, and it has been assumed

that the same material is at mesh points 0 and N − 1.

5.4.3 Interface conditions and hermiticity in the FDM

The hermiticity of the discretized Hamiltonian operator in Eq. (5.48) is ensured

if H†
i,i+1 = Hi+1,i. Since the H(j)’s are themselves Hermitian, an inspection of

Eqs. (5.52)-(5.54) shows that this is indeed the case. It is also clearly seen that

the introduction of the BCs as defined in the previous section doesn’t affect the her-

miticity of the Hamiltonian.

There exist in the literature several proposals on what are the correct quantities

to match at the interface between two materials [29, 37–39]. Most of them require

the continuity of the envelope function and a quantity that has the general form:

[A∂z +B]F, (5.59)

where A and B take different values depending on the author. Using the finite

difference formulae Eqs. (5.45)-(5.46), the continuity of Eq. (5.59) can be written in
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Figure 5.8: Mesh used in the study of interface boundary conditions.

a form similar to Eq. (5.47):

H2,1F1 +H2,2F2 +H2,3F3 = 0, (5.60)

where the Hi,j take the appropriate values and the subindexes i, j are referred to

the mesh points in Fig. 5.8. Isolating F2 from Eq. (5.60) and plugging it into the

corresponding equations for the Fi’s, one obtains

H1,0F0 +
(

H1,1 −H1,2H
−1
2,2H2,1

)

F1 −H1,2H
−1
2,2H2,3F3 = E F1 (5.61)

−H3,2H
−1
2,2H2,1F1 +

(

H3,3 −H3,2H
−1
2,2H2,3

)

F3 +H3,4F4 = E F4. (5.62)

Now, in order to preserve the hermiticity of the discretized Hamiltonian, one

should have
(

H1,2H
−1
2,2H2,3

)†
= H3,2H

−1
2,2H2,1 (5.63)

or, equivalently

H†
2,3 = H3,2 H†

2,1 = H1,2. (5.64)

However, the requirements in Eq. (5.64) are not satisfied by the discretized version
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of the interface conditions. From this it must be concluded that the enforcement of

interface boundary conditions of the form (5.59) is not possible if the hermiticity of

the Hamiltonian is to be preserved.

5.5 Bulk inversion asymmetry effects on symmet-

ric quantum wells

In this section, the methods outlined in Sec. 5.4 will be used to calculate the elec-

tronic properties of a symmetric quantum well. In particular, focus will fall on

AlSb/GaSb/AlSb quantum wells. However, some of the results derived are a con-

sequence of the underlying symmetry of the structure rather than the constituents

themselves. Therefore, these particular results will illustrate general considerations

about symmetric quantum wells.

In Sec. 5.5.1, the underlying symmetry of the discretized Hamiltonian is identified,

and its requirements on the energies and states of the well are listed. In Sec. 5.5.2,

the band structure and eigenstates of symmetric quantum wells (SQWs) without bulk

inversion asymmetry (BIA) terms will be studied, taking an AlSb/GaSb/AlSb QW as

a paradigm. Finally, in Sec. 5.5.3, the assumption of negligible BIA effects is relaxed,

the resulting energies and states are computed and the differences respect to the case

with higher symmetry are highlighted.

5.5.1 Symmetry group of the discretized Hamiltonian

This section deals with symmetric quantum wells, but the word “symmetric” needs a

more precise definition. Here, “symmetric” will be taken to mean that the sequence

of materials and their respective thicknesses are left unchanged under the inversion

operation (i.e., they are macroscopically symmetric). Thus, an AlSb/InAs/AlSb

quantum well (QW) is called symmetric, while an AlSb/InAs/GaSb/AlSb QW is

called asymmetric. This definition is made in order to avoid confusion with the

microscopic symmetry, that is, the symmetry group, of the QW. All asymmetric
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Figure 5.9: Effect of an extra atomic layer in a non-common atom AlSb/InAs/AlSb
QW. (a) shows the QW having complete monolayers, belonging to the C2v point
group. (b) shows the effect of adding one extra In atomic layer in the InAs. New
symmetry operations appear and among them, the C2 symmetry axis shown. The
point group is now D2v although it is a non-common-atom QW [41].

[001] heterostructures made from zincblendes are described by the C2v point group.

On the other hand, symmetric [001] QWs can belong to either the C2v or the D2d

symmetry groups depending on an interplay of characteristics such as the parity of

the number of monolayers, the existence of a common atom in the constituents [40],

or the existence of an extra atomic layer [41] (see Fig. 5.9).

The symmetry group of the discretized Hamiltonian in Eq. (5.48) can be found

by the brute force method consisting on verifying for all the operations g of the Td

point group whether the relationship

D−1(g)H(k‖)D(g) = H(g−1k‖) (5.65)

is sustained [19], where D(g) is the representation of the g operator in the basis of

the discretized Hamiltonian H(k‖), and k‖ = (kx, ky). This tedious procedure can

be done with the help of computer software, such as Mathematica [20], which auto-
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Point/Line Point Group Symmetry Spin Splitting Spin directions
Γ D2d No

∆ [100] C2 Yes [100],[1̄00]
Σ [110] Cs Yes [1̄10],[11̄0]

Other points C1 Yes Undetermined

Table 5.7: Symmetry requirements on spin splitting and directions for points in the
kx − ky plane in a D2d structure.

mates algebraic manipulations. It is seen that the EMA Hamiltonian corresponding

to structures possessing macroscopic symmetry under inversion transforms accord-

ing to D2d, while for macroscopically asymmetric structures it transforms according

to C2v. This is in opposition to the majority of EMA implementations, which lack

the inclusion of bulk inversion asymmetry effects and reproduce an approximate D4h

symmetry [42] for symmetric structures. There have been reports in the literature

of other 2-band [27], 14-band [43], and 16-band [9] EMA models describing the spin

splitting effects due to the reduced symmetry. Zhu and Chang [44] have started from

an 8-band model to generate perturbatively a 2-band Hamiltonian for electrons and

a 4-band Hamiltonian for holes, and they performed their calculations of inversion

asymmetry effects in that reduced basis set. No 8-band model, combining the more

accurate description of interband couplings respect to 2-band models and the sim-

plicity and numerical performance advantages over the 14- and 16-band models, had

been previously used in numerical studies of the BIA effects.

Tables 5.7 and 5.8 show the requirements that the underlying symmetry of the

atom arrangement imposes on the spin degeneracy of the energy levels and the direc-

tion where the spins are pointing in case the levels are not degenerate.

Although the k·p method is not designed taking into account the interface charac-

Point/Line Point Group Symmetry Spin Splitting Spin directions
Γ C2v No

∆ [100] C1 Yes Undetermined
Σ [110] Cs Yes [1̄10],[11̄0]

Other points C1 Yes Undetermined

Table 5.8: Symmetry requirements on spin splitting and directions for points in the
kx − ky plane in a C2v structure.
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Figure 5.10: Layer arrangements for a no-common-atom quantum well. An arrange-
ment as in (a) in the EMA would yield D2d symmetry. The alternative arrangement
(b) yields the correct C2v symmetry of the heterostructure.

teristics of no-common-atom (NCA) heterostructures, it is possible in some situations

to modify the simulated structure to obtain at least the right symmetry effects. Fig-

ure 5.10 a) shows a NCA quantum well. The way that the boundaries of the layers

are set up, the well would be symmetric and, therefore, the Hamiltonian would have

D2d symmetry instead of the C2v corresponding to the asymmetric interface bonds.

However, the material boundaries in the k · p method are arbitrary to half a mono-

layer. As seen in Fig. 5.10 b), a simple rearrangement of the material boundaries

reproduces the asymmetry in the bonds and allows to take into account, at least

qualitatively, the effects of the lower symmetry. The case where a NCA QW is added

an extra atomic layer to make it symmetric, as seen in Fig. 5.9 b), does not require

any rearrangement of the layers in order to make the calculated structure have the

correct D2d symmetry.
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The only case that cannot be modeled through these rearrangements is when a

common atom structure, such as an AlAs/GaAs/AlAs QW, has C2v symmetry due to

the well having an odd number of monolayers. In that case, even though the species

participating at the bond at the interface are the same, there is an asymmetry in the

bond orientation, which the EMA method cannot take into account.

With the control that the proposed model allows over the symmetry of the calcu-

lated heterostructures, it is possible to use the EMA in studies of the spin splitting ap-

pearing in heterostructures aiming at delineating the role of bulk inversion asymmetry

vs. structure inversion asymmetry, layer asymmetry vs. interface asymmetry. . . This

model also provides a straightforward and easy to implement tool to study effects in

QWs and superlattices derived from the possession of the reduced symmetry, such

as the presence of optical anisotropy [45, 46], and the mixing of heavy hole and light

hole states on top of the valence band [47, 48].

There is room for future improvement if the interface equations Eqs. (5.52)-(5.54)

are considered. One possible way to expand the model would be to treat the weighted

average of bulk parameters appearing in those equations as adjustable parameters.

This would improve the accuracy at the expense of simplicity. The addition of in-

terface parameters to the EMA theory had been previously proposed in the optical

anisotropy [45, 48] and the hole spin splitting and relaxation [49] contexts.

5.5.2 SQWs without BIA terms

Figure 5.11 shows the band structures along the [100] and the [110] directions of a

common atom AlSb/GaSb/AlSb symmetric quantum well (SQW) grown along the

[001] direction and with a well thickness of 8 monolayers (24.4 Å). Since no inversion

asymmetry affects are included, the bands show Kramers degeneracy throughout the

Brillouin zone and the quantization axes of the spins are not univocally defined.

The labels E1, HH1, LH1 and HH2 shown in the plots correspond to the first

electron, first heavy hole, first light hole and second heavy hole states in the QW

respectively. They refer to the main bulk state contribution at k = 0. For a well
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Figure 5.11: Bands along [100] and [110] for an AlSb/GaSb/AlSb SQW 8 monolayers
thick without BIA terms.

without BIA terms and in the zone center, the heavy holes decouple from the rest

of the bands, and the HHn states have only bulk heavy hole components. This is

in opposition to the En (LHn) bands, which have small bulk light hole (electron)

and split off contributions even at the zone center due to the loss of translational

symmetry along [001] caused by the well potential.

5.5.3 SQWs with BIA terms

Figure 5.12 shows the same band structures as in Fig. 5.11, but with the BIA terms

included. As predicted by the group theory (cf. Table 5.7), the bands are split along

both directions except at the zone center. This is the major difference with most

of the EMA models in the literature. Another point that must be noticed is that,

even though there is no spin splitting in bulk bands along [100], in the SQW a finite

splitting appears along that direction [27].

With the inclusion of BIA terms, the heavy hole states couple with the light holes

by means of remote states through a perturbative mixed spin orbit and k·p interaction

parametrized by C [9]. Thus, the HHn states lose their pure bulk heavy hole character
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Figure 5.12: Bands along [100] and [110] for an AlSb/GaSb/AlSb SQW 8 monolayers
thick with BIA terms.

and, in particular, the HHeven (HHodd) mix with the LHodd (LHeven). However,

looking at the wavefunction for the HH1 state, it can be seen that the contribution

from bulk components other than the HH to the probability density is about 8 orders

of magnitude less than the heavy hole contribution.

The linear behavior and the isotropicity close to the zone center of the spin split-

ting between the conduction subbands is manifest in Fig. 5.13. Plot (a) shows the

dependence of the spin splitting along the [100] line. It is seen that the splitting is

linear close to the Γ point, with a “Rashba” coefficient of αR = 22×10−10 eV·cm. By-

chkov and Rashba introduced that coefficient in the context of asymmetric quantum

wells [50]. In their article, the splitting in the conduction subbands is given by

∆R = 2αRk. (5.66)

However, this splitting is derived from a model Hamiltonian that describes only struc-

tural inversion asymmetry (SIA) effects, but not bulk inversion asymmetry. As a

consequence, the spin directions that they predict don’t apply to the SQW situation
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Figure 5.13: a) Spin splitting dependence for an AlSb/GaSb/AlSb QW along the [100]
line. The calculated “Rashba” coefficient is αR = 22 × 10−10 eV·cm. (b) Splitting
dependence along a circle in the kx − ky plane, with k = 0.001 Å.

(cf. Sec. 5.6).

A model Hamiltonian for spins in the conduction subbands of SQWs in the same

spirit as the Rashba Hamiltonian can be derived in the following fashion. From

Eq. (5.36) the operator nature of kz in the effective mass approximation can be made

explicit [27], and keeping only up to second-order terms in kx and ky the following

perturbation to the 2-band EMA Hamiltonian can be written:

HSplit Sym = γc
[

−σxkx∂
2
z + σyky∂

2
z + σz∂z

(

k2x − k2y
)]

. (5.67)

If |Fs; kx, ky〉 is the spatial part and |χ〉 is the spin part of the envelope function

corresponding to the electron traveling in the plane with wavevector kx, ky, the energy

change caused by the perturbation HSplit Sym will be given by

∆ = 〈χ| 〈Fs; kx, ky |HSplit Sym|Fs; kx, ky〉 |χ〉 = αR [〈χ |σx|χ〉 kx − 〈χ |σy|χ〉 ky] ,
(5.68)
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Figure 5.14: Spin directions for the lower conduction subband of an AlSb/GaSb/AlSb
SQW. The thickness of the well is 8ML (24.4 Å). The spins are plot at 15 ◦ intervals,
and correspond to states lying on a circle in the kx − ky plane with k = 0.01 Å.

with the “Rashba” coefficient for symmetric heterostructures αR given by αR =

−〈Fs; kx, ky |γc∂2z |Fs; kx, ky〉. The term depending on ∂z vanishes because the en-

velope function has a definite parity. So, it is readily seen that a phenomenological

Hamiltonian

H = αR (σxkx − σyky) (5.69)

will have the desired effect. From the definition of αR it is easy to see that in the

conduction band BIA effects will be bigger in narrow quantum wells because states

there are made from larger perpendicular wavevectors.

The behavior of the spins when BIA terms are included is very interesting. Fig-

ure 5.14 shows the direction towards where the spins of the eigenstates of the lowest

conduction subband point. The spin directions are shown for a circular sweep in the

kx − ky plane keeping k = 0.01 Å. The directions of the spins agree with what would

be predicted from Eq. (5.69). The spins at a given point in the plane point opposite

for the two subbands. Note that in a given subband, although the x and y axes are
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equivalent, in one of the axes the spin points outward while in the other it points in-

ward. The explanation lies in the way that the x and y axes are connected and in the

fact that spinors don’t change sign under inversion. For a QW with D2d symmetry,

the x and y axes are equivalent through a reflection by the plane containing the [110]

and [001] directions. The reflection by this plane can be thought of as a rotation of

180 ◦ along the [1̄10] direction followed by an inversion. Starting with a state |ky, ↑x̂〉
(spin pointing outward), the rotation will send it to |−kx, ↑−x̂〉 (still outward). Then,
the inversion will flip k, but not the spin, sending the state to |kx, ↓−x̂〉 (spin pointing

inward).

5.6 Bulk inversion asymmetry effects on asymmet-

ric quantum wells

In this section the structure under study will be an AlSb/InAs/GaSb/AlSb asym-

metric quantum well (AQW) grown along the [001] direction compliant with a GaSb

substrate. The thickness of the InAs and GaSb layers is 8 monolayers (ML) each one,

with a monolayer having 3.048 Å.

5.6.1 AQWs without BIA terms

Figure 5.15 shows the band structure along the [100] and the [110] directions of the

AQW without the inclusion of BIA terms. The structural inversion asymmetry (SIA)

reduces the symmetry group from D4h to C2v, and a spin splitting appears between

the conduction subbands. The splitting due to SIA effects is usually modeled using

a Hamiltonian first introduced by Bychkov and Rashba [50]:

HR = αR (σ × k) · ν, (5.70)

where αR is the so-called Rashba constant, σ is a vector composed of the Pauli

matrices, k is the electron wavevector and ν is the axis of symmetry of the structure.
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Figure 5.15: Bands without BIA effects for an AlSb/InAs/GaSb/AlSb AQW grown
along the [001] direction compliant with a GaSb substrate. The bands are along [100]
and [110]. The thickness of the InAs and GaSb layers is 8 ML each.

This Hamiltonian is valid to describe the SIA contributions close to the zone center.

It predicts a linear and isotropic splitting

∆R = 2αRk, (5.71)

where k is the magnitude of the electron wavevector. It also predicts that the spins

will point tangentially to the circles of constant k in the kx − ky plane, which is

verified in the numerical calculations (see Fig. 2.3). The Rashba effect in asymmetric

heterostructures is studied in detail in Chapter 2.
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Figure 5.16: Bands along [100] and [110] for an AlSb/InAs/GaSb/AlSb AQW with
BIA effects.

5.6.2 AQWs with BIA terms

The band structure for the AQW under study with BIA effects is shown in Fig. 5.16.

The effects of inversion asymmetry are highly anisotropic in bulk [10], and this reflects

on the directional dependence of the bands. Comparing with Fig. 5.15, it is seen that

the BIA effects are necessary to obtain accurate bands in the [110] direction.

The interplay of SIA and BIA effects in asymmetric quantum wells (AQWs) adds

a level of variety to the analysis of the behavior of the spins in the conduction band.

However, the inclusion of the Hamiltonian (5.69) keeps the analysis quite simple. For

a [001] structure, the SIA and BIA contributions to the splitting can be described by
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Figure 5.17: Angular dependence of the spin splitting for an AlSb/InAs/GaSb/AlSb
AQW. The solid line is the 8-band model numerical result. The dashed line is a fit
using Eq. (5.73) with αSIA = 40.3× 10−10 eV·cm and αBIA = 15.0× 10−10 eV·cm.

Hamiltonian HIA made from the addition of Eq. (5.69) and Eq. (5.70):

HIA = αBIA (σxkx − σyky) + αSIA (σxky − σykx) =

σx (αSIAky + αBIAkx)− σy (αBIAky + αSIAkx) , (5.72)

where αBIA (αSIA) is the coefficient describing BIA (SIA) effects. From here, making

an analogy with the Zeeman splitting, it is easy to find that the splitting in the

conduction band (CB) close to the zone center will be

∆IA = 2k
√

α2SIA + 2αSIAαBIA sin 2θ + α2BIA, (5.73)

where θ is the in-plane polar angle.

A full 8-band numerical calculation of the splitting along a circle in the kx − ky
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plane and the 2-band prediction from expression (5.73) are shown in Fig. 5.17. The

values from the analytic expression show very good agreement with the numerical

results. The numerical results are fitted with αSIA = 40.3× 10−10 eV·cm and αBIA =

15.0×10−10 eV·cm. This way the BIA effects are quantified, and it must be concluded

that they must be taken into account for an accurate description of the bands. This

is clearly so in the [110] direction, where the contributions are added linearly, but it

is also true in a lesser degree in the [100] direction, where the contributions are added

quadratically.

For a quantum well where the 2-band model is valid, the BIA splitting coefficient

for the CB can be estimated with

αBIA ≈
γcW
L2

W

, (5.74)

where γcW and L2
W are the k3 splitting coefficient of the CB and the thickness re-

spectively of the layer where the electrons are confined. This estimate will become

more accurate as the well becomes thicker. From this expression and Eq. (5.25) it is

readily seen that BIA effects will be considerable when the material in the well layer

has a low band gap and high spin-orbit interaction, such as InAs, GaSb and InSb

(cf. Table 5.1). So, it has been seen that, a priori, it is not possible to consider only

SIA effects for an asymmetric structure even if the constituents are low band gap

materials.

Figure 5.18 compares the splitting in the CB along the [100] and [110] directions

for the same AQW with and without the BIA terms. The values of half the slope,

i.e., the “Rashba” coefficient including bulk and inversion asymmetry, are listed for

each curve under the symbol α. With no BIA terms, the slope near the origin is

the same for both directions, and the values only depart when higher order O(k3)

contributions start to take over. For the curves with BIA effects, the linear splitting

behavior predicted by Eq. (5.72) holds only until about 1.5% of the zone boundary.

So, that equation can be applied to wells with electron concentrations up to 1011

cm−2. It would be interesting to study the effects that higher order contributions to
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Figure 5.18: Spin splitting vs. k for an AlSb/InAs/GaSb/AlSb quantum well along
the [100] and the [110] direction with and without BIA terms. The α’s are half the
slope at k = 0.

the splitting and BIA-induced anisotropy can have on the interpretation of the wide

body of Shubnikov-de Haas measurements of αR (see, for example, Refs. [51–53]) that

have so far assumed Eq. (5.70) to describe the splitting for all electrons in the well.

Finally, the electron spins are also affected by the inclusion of BIA terms. In

Fig. 5.19 the spins of the lowest conduction subband are shown for states lying on

a circle in the kx − ky plane of radius k = 0.01 Å. The direction of the spins has

changed respect to the case without BIA terms (see Fig. 2.3). As it can be deduced

from Eq. (5.72), it corresponds to the vector sum of the spins in Fig. 2.3 and the spins
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Figure 5.19: Spin directions for the lower conduction subband of an
AlSb/InAs/GaSb/AlSb AQW. The spins are plot at 15 ◦ intervals, and correspond
to the lowest conduction subband states lying on a circle in the kx − ky plane with
k = 0.01 Å.

in Fig. 5.19, each one weighted by their corresponding splitting coefficients α’s.

5.7 Summary

In summary, an implementation of an 8-band effective mass approximation (EMA)

method for calculating band structures has been obtained. This implementation is

faithful to the Td microscopic symmetry of bulk zincblendes. As a consequence, all

symmetry effects close to the zone center, including the spin splitting of the bands,

are correctly described. When the method is applied to symmetric heterostructures,

linear splittings in k are predicted as a consequence of the reduced symmetry. This

is not found for standard EMA implementations. A 2-band Hamiltonian describing

this splitting due to the bulk inversion asymmetry (BIA) is derived. The bands of

asymmetric heterostructures are also studied and described in the context of the BIA

Hamiltonian obtained for heterostructures. It is seen that, in the case studied, the

SIA and BIA contributions to the spin splitting are of the same order of magnitude
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even though the well is composed by narrow gap materials. Therefore, an accurate

description of the bands will require the inclusion of both effects.
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Chapter 6 Spurious numerical solutions

in the effective mass approximation

6.1 Introduction

The effective mass approximation (EMA) [1, 2] has long been a favorite among re-

searchers as a method that is fast and easy to implement for calculating the en-

ergy levels in quantum wells and superlattices [3–7], quantum wires [8–10], quantum

dots [8, 11, 12]. . . It is also the tool of choice for engineers to model devices such as

lasers and photodetectors [13–18]. Also, its use is widespread in the calculation of

tunneling coefficients [19–21] and times [22, 23], with application to the modeling of

resonant tunneling devices (RTDs).

Some of the implementations have the undesirable characteristic that they pro-

duce spurious solutions [3, 24–26]. Their origin is traced to the statement of a secular

equation having too high a polynomial degree in the electron wavevector k. In some

cases, the presence of the spurious solutions is required for consistent boundary con-

ditions at the interface to be satisfied [3], thus raising doubts about the validity of the

results [24]. In some other cases, interface or surface states are predicted to lie in the

gap [27], but the physical meaning of these solutions is a point still in discussion [28].

There exist several proposals to solve the k ·p spurious solution problem ranging from

methods to eliminate them [29, 30] to pointing out the necessity of keeping them for

a complete description [31].

In this chapter a new class of spurious solutions (SSs) particular to the finite

difference method (FDM) [32, 33] is studied. In Sec. 6.2 these SSs are presented,

they are characterized and different failed attempts to suppress them are presented.

Then, in Sec. 6.3, a general method for the study of this class of SSs is presented.

In Sec. 6.4 a condition that the Luttinger parameters must satisfy for the SSs not to
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Quantity InPa In0.53Ga0.47As
b

a (Å) 5.8693 5.8693
Eg (eV ) 1.35 0.839
Ev (eV ) -0.351 0
∆SO (eV ) 0.108 0.362

γ1 1.49 1.84c

γ2 -0.31 -0.87c

γ3 0.37 0.25c

C (eV ·Å) -1.44×10−2 7.53×10−3
P (eV ·Å) 8.79 9.49
B (eV ·Å2) -27.5 21.5
C1 (eV ) -5.04 -6.06
Dd (eV ) 1.27 1.08
Du (eV ) -2.4 -2.7
D′

u (eV ) -3.6 -3.5
C11 (GPa) 101.1 97.07
C12 (GPa) 56.1 50.82
C44 (GPa) 45.6 49.18

aSame source as in Table 5.5.
bObtained by linear interpolation unless oth-

erwise noted.
cObtained by harmonic averaging [34].

Table 6.1: Band structure parameters for InP and In0.53Ga0.47As.

exist is derived. Finally, in Sec. 6.5 this condition is applied to popular compilations

of Luttinger parameters to identify sets of parameters leading to SSs, and then the

results are summarized.

6.2 Spurious solutions in an InP/In0.53Ga0.47As su-

perlattice

The structure that will be used to illustrate the spurious solutions (SSs) is an

InP/In0.53Ga0.47As symmetric superlattice (SL) grown along the [001] direction with

an In0.53Ga0.47As width of 65 Å and an InP width of 88Å. The method of calculation

is described in Sec. 5.4. Table 6.1 lists the numerical parameters employed in the cal-

culations1. When there is no explicit source for the parameters of In0.53Ga0.47As, they

1The meaning of the parameters is shown in Table 5.4.
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Figure 6.1: Bands of an 88 Å/65 Å InP/In0.53Ga0.47As SL showing spurious solutions.
(a) shows the spatial profile of the bands. b) shows the bands in k space in the same
energy scale as in (a). It is seen that the first three hole bands lie in the forbidden
gap.

have been obtained as a linear interpolation between InAs and GaAs, except for the

8-band Luttinger parameters γi, where a harmonic average has been performed [34].

Figure 6.1.a) shows the band edge spatial profile for that structure. Figure 6.1.b)

shows a calculation of the first electron band and first three hole bands near the Γ

point for the SL. The energy scales in plots (a) and (b) are matched. Note that the

energy of the hole states lies inside the forbidden gap of the superlattice, showing

that there is something wrong with the computational procedure employed.

In order to obtain more insight into the nature of these spurious solutions, the

norm and the relevant envelope function components of the wavefunction correspond-

ing to the first SS (counting from the conduction band edge) were plotted and com-

pared to a nonspurious wavefunction. This is shown in Fig. 6.2. Plot (a) depicts
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the bottom two show the real and imaginary parts of selected envelope components.
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the spurious wavefunction, while plot (b) refers to the non spurious one. It can be

seen that the probability density F (z) =
∑8

i=1 |Fi(z)|2 of finding the electron in a

given monolayer is similar in both cases and doesn’t supply any information. How-

ever, a look at the individual components of the envelope function reveals that they

are highly oscillatory in nature for the spurious case, while they are smooth for the

physical state. The period for these spurious oscillations is twice the mesh spacing,

thus indicating that they might be somewhat related to the chosen discretization

mesh (see Sec. 5.4.2). The fact that the states are located mainly in the center of

the In0.53Ga0.47As layer discards the possibility that the SSs might originate from

boundary condition induced interface states [28, 35], because the latter should decay

exponentially away from the interface.

The relationship of the SSs and the discretization grid is further investigated in

Fig. 6.3. There, the band edge energies are plotted vs. the number of mesh points to

look for any dependencies. Four SSs appear in the range of mesh points and energies

under study. It is seen that while, as expected, the energies of the physical states

don’t depend strongly on the number of mesh points2, the energies of the SSs do

depend on the number of mesh points. After this, it must be concluded that the

SSs presented here are not only nonphysical, but also that they are not intrinsically

attached to the system of coupled differential equations (5.44) that must be solved

in the EMA model. Instead, they appear only due to the procedure followed to solve

these equations.

A heuristic approach was first tried to remove the spurious solutions. First, a

number of different boundary conditions for the interfaces was tried, without affecting

the SSs. The highly oscillatory behavior of the SSs might induce to think that there

was something wrong with the discretized version of the kinetic energy operator [36],

but they also remained there when different discretization schemes were tried, 2nd

neighbor difference formulae used or unevenly spaced grids employed.

Finally, it was realized that, since the role of the boundary conditions is merely to

2Except for a very coarse grid, where, as per the Nyquist theorem, there are not enough mesh
points to properly describe the oscillation of the envelope function in the confinement region.
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Figure 6.3: Energy of the spurious states vs. number of mesh points for a 88 Å/65 Å
InP/In0.53Ga0.47As SL. The state labeled with the square (round) dot corresponds to
plot (a) [(b)] in Fig. 6.2.

connect the bulk solutions, the SSs should be present also in bulk In0.53Ga0.47As, be-

cause that is where the envelope functions are oscillating. After this was understood,

it was possible to study the origin of the SSs and predict when they would appear.

6.3 Method for the study of the spurious solutions

Several practical implementations of calculations of band structures of heterostruc-

tures, including the multiband k · p [32, 33] and EBOM [37] methods, require the
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solution of a set of equations

Hσ,σ−1Fσ−1 +Hσ,σFσ +Hσ,σ+1Fσ+1 = EFσ (6.1)

for each of the points {σ} in the mesh (cf., for example, Sec. 5.4), where E is the

sought energy, Fσ are the envelope function coefficients at the mesh point σ and the

Hσ,ν are transfer Hamiltonians.

In bulk, the envelope functions of the physical solutions at the Γ point should be

flat. On the other hand, it has been shown in the previous section that SSs oscillate

with a period of double the mesh spacing. Both cases can be studied if it is assumed

that the envelope must follow the Bloch behavior, relating the value of the envelope

at a point σ + 1 to the value at σ,

Fσ+1 = ei∆z kzFσ, (6.2)

where ∆z is the mesh spacing and kz is the z component of the electron wavevector

in bulk.

Now, plugging Eq. (6.2) into Eq. (6.1), a single eigenvalue equation

[

e−i∆z kzHσ,σ−1 +Hσ,σ + ei∆z kzHσ,σ+1

]

Fσ = EFσ (6.3)

is obtained that must be solved in order to know the effect of an oscillating enve-

lope function on the energies. Any further advance requires an explicit form for the

Hamiltonian.

6.4 Spurious solutions in the k · p method

In the 8-band EMA method, the starting point is a model that treats the coupling

between the conduction band (CB), heavy hole (HH), light hole (LH) and split-off

(SO) bands exactly, and the interactions with the rest of the bands perturbatively.

Bulk inversion asymmetry effects [38] will be ignored to keep the results simple and
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obtain analytical expressions. This will cause the bands to be degenerate. The diago-

nalization of Eq. (6.3) can be carried out numerically if some of the assumptions need

to be relaxed. Also, since only spurious solutions at the zone center are sought, the

kx and ky components of the wavevector are set to zero. Then a simple change in the

ordering of the basis states described in Sec. 5.3.3 diagonalizes the k · p Hamiltonian

into two 4×4 blocks, and each one of them is block diagonalized again into a 1×1
block describing the HH band and a 3×3 block describing the CB, LH and SO bands:

H3×3 =











|Γ6,+1
2
〉 |Γ8,+1

2
〉 |Γ7,+1

2
〉

〈Γ6,+1
2
| Eg +

~2k2z
2m

√

2
3
Pkz −Pkz√

3

〈Γ8,+1
2
|

√

2
3
Pkz − (γ1 + 2γ2)

~2k2z
2m

√
2γ2

~2k2z
2m

〈Γ7,+1
2
| −Pkz√

3

√
2γ2

~2k2z
2m

−∆SO − γ1 ~2k2z
2m











, (6.4)

wherem is the free electron mass and the rest of the parameters is defined in Table 5.4.

After the application of the discretization procedure described in Sec. 5.4.2 to

Eq. (6.4) and plugging the result into Eq. (6.3) one obtains that the finite difference

algorithm is effectively solving the Hamiltonian

H3×3 FDM =










Eg +
~2
m

1−cos(∆z kz)

∆z2

√
2
3
P sin(∆z kz)

∆z
−P sin(∆z kz)√

3∆z√
2
3
P sin(∆z kz)

∆z
− (γ1 + 2 γ2)

~2
m

1−cos(∆z kz)

∆z2
~2
m

2
√
2 γ2 sin(

∆z kz
2

)
2

∆z2

−P sin(∆z kz)√
3∆z

~2
m

2
√
2 γ2 sin(

∆z kz
2

)
2

∆z2
−∆SO − γ1 ~2

m
1−cos(∆z kz)

∆z2











. (6.5)

Expanding this Hamiltonian about kz = 0 up to second order it is easily seen that

Eq. (6.4) is recovered, which ensures the correct description of the bands when

∆z kz ¿ 1.

Now, the eigenvalues of Eq. (6.5) can be plotted as a function of kz for both

the InP and the In0.53Ga0.47As parameters in Table 6.1. This is shown in Fig. 6.4.

Plot (a) shows the results for In0.53Ga0.47As. Consider, say, six mesh points in bulk

In0.53Ga0.47As with cyclic boundary conditions (see the insets in Fig. 6.4). The dif-
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Figure 6.4: Energy vs. wavenumber of a hypothetical spurious solution. (a) [(b)]
shows the dispersion relation for In0.53Ga0.47As (InP). The insets show two kinds
of light hole envelope functions (kz = 0 and kz = π

∆z
) satisfying cyclic boundary

conditions. ∆z is taken to be half the unit cell constant.

ferential equations from the EMA Hamiltonian (6.4) can be solved analytically to

obtain flat envelopes. The FDM should give the same results. From Fig. 6.4.a), it

is seen that the point kz = 0 reproduces the expected results. However, an envelope

with kz = π
∆z

will also satisfy the boundary conditions. The existence of this kind

of solutions is unavoidable in the FDM but, at least, one can demand that they lie

far from the energy range of interest. This is indeed the case with InP in Fig. 6.4.b)

but, on the other hand, the LH band of In0.53Ga0.47As enters the gap, thus giving

opportunity to the presence of SSs in the midgap.

Also, one finds that, for kz = π
∆z

, the energy of the three branches (with Ev set
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Figure 6.5: Prediction from Eq. (6.6) and actual spurious solution energy. The actual
spurious energy corresponds to the highest spurious energy in Fig. 6.3.

to zero) is

{

Eg +
2~2

m∆z
,−4(γ1 + γ2)~2/m+∆SO(∆z)

2

2(∆z)2
±

√

48γ22~4/m2 − 8(∆z)2γ2∆SO~2/m+∆2
SO(∆z)

4

2(∆z)2

}

. (6.6)

One can argue that, since the well region in the SL is quite wide, the first electron

and hole levels will be close to the corresponding edges. Then, the analytic expression

corresponding to the plus sign in front of the square root in Eq. (6.6), describing the

energy of the kz = π
∆z

light hole (LH) states in bulk In0.53Ga0.47As can be used to

make a rough approximation of the energy of the SS in the superlattice (SL) studied

in Fig. 6.3. Figure 6.5 shows a comparison of the energy of the SS estimated this way
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and the highest energy SS from the calculation in Fig. 6.3. The agreement is quite

good, and it supports the claim that the mechanism presented in the previous and

the present sections is responsible for the apparition of this class of mesh-dependent

SSs. It is expected that a similar study to the one in Sec. 6.3, but extended this way

Hσ,σ−1Fσ−1 +Hσ,σFσ +Hσ,σ+1Fσ+1 = EFσ (6.7)

Hσ+1,σFσ +Hσ+1,σ+1Fσ+1 +Hσ+1,σ+2Fσ+2 = EFσ+2 (6.8)

and keeping Eq. (6.2) could describe lower energy SSs. The condition that will be

derived is expected at least to delay the apparition of these lower energy SSs.

The SSs will first originate from the eigenvalue in Eq. (6.6) with the plus sign

in front of the square root (i.e., the LH band). A reasonable requirement to avoid

solutions in the gap is that the LH energy for kz =
π
∆z

be less than the valence band

edge (which is set to zero). Therefore, it is wanted that

√

48γ22~4/m2 − 8(∆z)2γ2∆SO~2/m+∆2
SO(∆z)

4 < 4(γ1+γ2)~2/m+∆SO(∆z)
2 (6.9)

or, equivalently, taking squares on both sides of the inequality,

0 < −2
(

2γ22 − 2γ1γ2 − γ21
) ~2

m
+∆SO(γ1 + 2γ2)(∆z)

2. (6.10)

Assuming γ1+2γ2 > 0, the condition that the mesh spacing must satisfy in order

to ensure that there are no solutions in the gap is obtained:

(∆z)2 >
2 (2γ22 − 2γ1γ2 − γ21) ~2

m

∆SO(γ1 + 2γ2)
. (6.11)

This condition will always be satisfied if the right hand side of that inequality is

less than zero. So this yields the condition that the modified Luttinger parameters

must satisfy in order to avoid SSs in the FDM method for any mesh spacing:

1−
√
3

2
γ1 < γ2 <

1 +
√
3

2
γ1 ⇒ −0.3666025γ1 < γ2 < 1.366025γ1. (6.12)
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If the above condition is not satisfied for a material, Eq. (6.11) can be used to find a

safe mesh spacing. Of course, for some choice of parameters the safe mesh spacing will

be too big for the solutions to be accurate. In that case, a different set of parameters

or a different solution method for the EMA equations should be employed.

On the other hand, if γ1 +2γ2 < 0, it is easy to see from Eq. (6.10) that ∆z must

satisfy

(∆z)2 <
2 (2γ22 − 2γ1γ2 − γ21) ~2

m

∆SO(γ1 + 2γ2)
, (6.13)

which can only be satisfied if the right hand side is positive, leading to the conditions

(6.12) again.

Finally, imposing that the branch with the minus sign in front of the square root

in Eq. (6.6) (the spin-orbit band) also has a negative energy at kz =
π
∆z

results in the

requirement

−
√

48γ22~4/m2 − 8(∆z)2γ2∆SO~2/m+∆2
SO(∆z)

4 < 4(γ1 + γ2)~2/m+∆SO(∆z)
2.

(6.14)

In principle, this requirement can be satisfied in two ways. The first way is that the

absolute value of the right hand side (RHS) is smaller than the absolute value of the

left hand side (LHS). However, this leads to conditions that are not compatible with

demanding that the light hole band has an energy below the band edge at kz = π
∆z

.

The other way that the inequality can be satisfied is requiring that absolute value of

the RHS is positive and larger than the absolute value of the LHS. It is not hard to

see that this leads to Eq. (6.9) and, therefore, will result in the same set of conditions

(6.12).

6.4.1 The InP/In0.53Ga0.47As SL revisited

Looking back at the parameters for In0.53Ga0.47As in Table 6.1, it is seen that

−0.3666025γ1 = −0.67 > −0.87 = γ2. Therefore, the conditions for the absence

of spurious solutions in the gap were not satisfied. For that case, any mesh spacing

smaller than 22.4 Å would have triggered the appearance of a spurious solution close
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Figure 6.6: Bands of an 88 Å/65 Å InP/In0.53Ga0.47As SL showing no spurious solu-
tions.

to or in the gap.

A different set of Luttinger parameters for In0.53Ga0.47As was found [39] and the

band structure of the InP/In0.53Ga0.47As superlattice recalculated. These bands are

plotted in Fig. 6.6, and they show no spurious solutions. The Luttinger parameters

used are listed in Table 6.2. They are calculated from the ones shown in Ref. [39]

using Eq. (5.11).

γ1 γ2 γ3
In0.53Ga0.47As 1.63 -0.27 -1.37

Table 6.2: Luttinger parameters for In0.53Ga0.47As satisfying the condition for the
absence of SSs (adapted from Ref. [39]).
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γ1 γ2 γ3
1−

√
3

2
γ1

1+
√
3

2
γ1

AlP 2.32 -0.52 0.57 -0.85 3.17
AlAs 1.74 -0.37 0.42 -0.64 2.38
AlSb 1.44 -0.35 0.39 -0.53 1.97
GaP 1.62 -0.31 0.37 -0.59 2.22
GaAs 2.01 -0.41 0.46 -0.74 2.75
GaSb 2.58 -0.58 0.65 -0.95 3.53
InP 1.49 -0.31 0.37 -0.55 2.04
InAs 2.05 -0.44 0.48 -0.75 2.80
InSb 2.59 -0.60 0.67 -0.95 3.54

Table 6.3: Check for possibility of spurious solutions in the Luttinger parameters
from Lawaetz [41].

6.5 Potential for spurious solutions in sets of Lut-

tinger parameters

A great amount of literature can be found about calculations and measurement of

Luttinger parameters for compounds and alloys. A comprehensive review was pub-

lished by Vurgaftman et al. [40]. Another commonly used list of parameters was

tabulated by Lawaetz [41]. In this section the condition derived in Eq. (6.12) will be

applied to the listed parameters in the above two references for selected materials to

detect the potential presence of SSs when using those data.

Table 6.3 lists the 8-band Luttinger parameters adapted from Lawaetz [41] for a

set of III-Vs and the limits of the interval where γ2 must lie in order to avoid SSs. It is

seen that none of those sets of parameters present a potential for SSs. An interesting

feature of writing the modified Luttinger parameters is that they depend strongly on

the anion but weakly on the cation (except when the cation is Al).

However, the situation for alloys requires a more careful consideration. A possible

approach to obtain the modified Luttinger parameters for alloys such as InxGa1−xAs

or AlxGa1−xAs is to take averages of the parameters of the base compounds. If this is

the approach followed, the calculated parameters are not at risk of producing SSs. On

the other hand, another plausible approach would be to take the direct [42] or recipro-

cal [34] averages of the true Luttinger parameters instead, and then use Eq. (5.11) to
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γ1 γ2 γ3
1−

√
3

2
γ1

1+
√
3

2
γ1

AlP 1.72 -0.10 0.42 -0.63 2.36
AlAs 1.49 -0.31 0.29 -0.55 2.04
AlSb 2.57 -0.12 0.66 -0.94 3.51
GaP 0.42 -1.32 1.12 -0.15 0.58
GaAs 0.66 -1.10 -0.23 -0.24 0.90
GaSb 2.32 -0.84 0.46 -0.85 3.16
InP 0.23 -0.82 -0.32 -0.09 0.32
InAs 2.81 -0.09 0.61 -1.03 3.84
InSb 1.75 -1.02 -0.02 -0.64 2.39

Table 6.4: Check for possibility of spurious solutions in the Luttinger parameters
from Vurgaftman et al. [40].

find the modified parameters. Since the k·p Hamiltonian is mostly expressed in terms

of the true Luttinger parameters, the averages of these are mainly used in the litera-

ture. Nevertheless, a linear interpolation for an alloy of all the terms in Eq. (5.11) can

introduce considerable bowing in the modified (aka. Kane [43]) parameters, so one

should be careful when calculating Kane parameters using the latter approach and

make sure to check that the condition (6.12) is satisfied. An experimental study of

the hole effective masses as a function, say, of the Ga composition, and then finding

from there the Kane parameters using Eqs. (5.20) should be able to discern which

one of the two approaches is more accurate or whether a more complex interpolation

formula should be used.

The bulk Luttinger parameters tabulated for III-Vs in Vurgaftman et al. [40] are

more dangerous to use in a FDM implementation of the EMA. Table 6.4 shows the

Kane parameters calculated from the Luttinger parameters in Ref. [40]. Any trace of

independence of the parameters respect to the cation is lost. The independence seen

in Table 6.3 might come from underlying assumptions in the way Lawaetz calculates

the parameters, but a test of this conjecture is out of the scope of this Chapter. It is

easy to check that GaP, GaAs, InP and InSb don’t satisfy Eq. (6.12), and that GaSb

is close to the lower limit. Figure 6.7 shows the energy of the states given by Eq. (6.2)

for GaAs and GaSb computed with Eq. (6.5) using parameters from Ref. [40]. Again,

the light hole and split off bands start bending downward reproducing the physical
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Figure 6.7: Plot (a) [(b)] is the same as Fig. 6.4 but for GaAs (GaSb) with Luttinger
parameters from Ref. [40].

effective mass, but at about kz = π
2∆z

the LH band bends up and enters the gap

region for GaAs and finishes close to it for GaSb. In the case of GaAs the spurious

solution would be out of the energy range of interest, but still there might be problems

due to other lower light hole folded bands that could invade the gap region. The set

of GaSb parameters isn’t ideal for the FDM method, either, because the energy of

the LH solution at kz = π
2∆z

is too close to the valence band edge [see Fig. 6.7.b)].

This state might interfere with states mainly in the GaSb layer in a quantum well or

superlattice.

6.6 Summary

In summary, a new class of spurious solutions for the effective mass approxima-

tion, which appears when trying to solve the EMA equations with the finite dif-

ference method, has been presented. A general approach to the study of this class of
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SSs in systems requiring the solution of a set of equations Hσ,σ−1Fσ−1 + Hσ,σFσ +

Hσ,σ+1Fσ+1 = EFσ has been formulated, and has been applied to the 8-band EMA.

A set of conditions has been derived to predict the appearance of SSs. The proposed

theory shows excellent agreement with the numerical values of the spurious energies.

Finally, popular tabulations of Luttinger parameters have been examined with the

derived conditions to identify those that might be problematic when carrying out

FDM 8-band EMA calculations. The table by Lawaetz [41] is free from danger, but

the parameters in the review article by Vurgaftman et al. [40] can lead to SSs for

some of the compounds listed.
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Chapter 7 Spin filters based on resonant

tunneling

7.1 Introduction

A major challenge for the development of spintronics [1–4] is the fabrication of a

spin injector. In the context of this chapter, spin injection refers to injection into a

semiconductor, as opposed to injection into a paramagnetic metal, which has been

demonstrated [5]. Up to date, there have been demonstrations of spin injection from

a ferromagnet [6] and dilute magnetic semiconductors (DMS) [7, 8] into a semicon-

ductor. Recent studies show the possibility of filtering the spin of electrons traveling

through an appropriately designed resonant tunneling structure [9] in order to obtain

a spin injector [10] with a high degree of spin polarization using only nonmagnetic

materials. The operating principle of this device would be the Rashba effect (see

Ref. [11] and Chapter 2) appearing in asymmetric structures.

In this chapter, a variation on the resonant tunneling spin filter described in

Ref. [10] proposed by Ting et al. [12] is considered. In this device, the electrons tunnel

through the valence band of the active region rather than the conduction band. This

allows the electron spins to interact with the strongly spin orbit split valence band

states. The focus will fall on how the inclusion of bulk inversion asymmetry (BIA)

affects the tunneling properties on which the device is based.

Section 7.2 describes the method used to find the transmission coefficients for

the resonant tunneling structures. In Sec. 7.4, the principles of operation of the

asymmetric resonant tunneling diode (aRTD) is reviewed and the effects of BIA on the

aRTD are studied. Section 7.5 does the same for the asymmetric resonant interband

tunneling diode (aRITD). Finally, a summary of the results is presented.
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7.2 Theoretical method

The method used to find the transmission coefficients is the multiband quantum

transmitting boundary method (MQTBM) described in Ref. [13] adapted to the k ·p
formalism. This adaptation differs from the one in Ref. [14] in that the method used

here to obtain the bulk imaginary band structure is less accurate, but is consistent

with the rest of the procedure and thus it avoids the introduction of small spurious

solutions. The MQTBM is based on the single band formalism by Frensley [15]. It

does not have the stability problems of the transfer matrix method [16, 17] while

keeping the efficiency that the S-matrix method [18] loses when solving the stability

issues. Also, the k ·p implementation allows for the use of a wide body of parameters

available in the literature and the easy inclusion of strain and magnetic field effects.

7.2.1 The MQTBM

The MQTBM is a method for specifying the boundary conditions appropriate for

tunneling in heterostructures. The calculation of the transmission coefficients starts

with the construction of the Hamiltonian of the system. For that purpose, the effective

mass approximation (EMA) Hamiltonian is implemented as described in Sec. 5.4. In

that section, it was shown that the solution of the EMA equations in the finite

difference method (FDM) required the solution of a set of equations

Hσ,σ−1Fσ−1 +Hσ,σFσ +Hσ,σ+1Fσ+1 = EFσ, (5.47)

where the symbols were defined in Sec. 5.4. For the case of tunneling, Eq. (5.47) is

more conveniently written as

Hσ,σ−1Fσ−1 + H̄σ,σFσ +Hσ,σ+1Fσ+1 = 0, (7.1)

where H̄σ,σFσ = Hσ,σFσ − EFσ.

Figure 7.1 shows a schematic of a general structure under an applied bias V for

which the transmission coefficients are sought. The arrows represent the incoming (I),
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Figure 7.1: Band diagram of a conduction band RTD under an applied bias V . The
arrows represent the incoming (I), reflected (r) and transmitted (t) components. The
left (right) electrode is labeled by (L) [(R)].

reflected (r) and transmitted (t) components. As plotted, the figure would represent

an intraband device—tunneling through the same band as in the incoming state

(conduction band in this case), but the development in this section is general to any

tunneling structure. The electrodes at the left (L) and right (R) are assumed to have

bulk properties and to be in the flat band condition. Under these conditions, the

envelope function components of a Bloch state will have the form

Fk, flat band, Bloch = Bk = eik·rCk, (7.2)

where the Ck are 8-component vectors whose components weight the contribution of

each of the bulk zone center states. In particular, the Bk will satisfy

Bσ = eikzdBσ−1, (7.3)

where σ is the mesh point index in the discretized structure, d is the mesh point

separation and kz is the electron wavevector in the z direction. The Bloch states Bk
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of course satisfy Eq. (5.47), which can be rewritten in a transfer matrix form [13]





−H−1
σ,σ−1H̄σ,σ −H−1

σ,σ−1Hσ,σ+1

1 0









Bσ

Bσ+1



 = e−ikzd





Bσ

Bσ+1



 . (7.4)

The above 16×16 eigensystem yields the Bloch states and their corresponding

wavevectors—which can be complex, describing in that case evanescent states—for

a given energy of the state E and an in-plane wavevector k‖. On the other hand,

a general state in the left electrode with a definite energy and k‖ will be a linear

combination of the Bloch states found in the solution of Eq. (7.4)

|L〉 = |I〉+ |r〉 =
8
∑

j=1

Ij|Bk‖,kz,j , L〉+
16
∑

j=9

rj|Bk‖,kz,j , L〉, (7.5)

where the kz’s and the Bloch states

|Bk‖,kz,j , L〉 = eik‖·reikz,jz|uk‖,kz,j〉 = eik‖·reikz,jzC l
k‖,kz,j

|ul
Γ〉 (7.2’)

have been ordered so that first 8 eight kz,j correspond to propagation towards the

right (i.e., kz,j is either positive real or has positive imaginary part for electron states

and viceversa for holes) and the last eight to propagation towards the left. Similarly,

for the transmitted state

|R〉 = |t〉 =
8
∑

j=1

tj|Bk‖,kz,j , R〉. (7.6)

Following Ting et al. [13], equations for the envelopes at the left and right bound-

aries can be written by letting I, r and t be the column 8-vectors obtained from

putting together the coefficients {Ij}, {rj} and {tj}, respectively:





F0

F1



 = DL





I

r



 =





DL
11 DL

12

DL
21 DL

22









I

r



 (7.7)
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and





FN−2

FN−1



 = DR





t

0



 =





DR
11 DR

12

DR
21 DR

22









t

0



 , (7.8)

where DL and DR are 16×16 matrices whose column vectors are the normalized

eigenvectors, arranged in the same order as the eigenvalues, from the solution of

Eq. (7.4) in the left or right electrodes. For degenerate kz’s, the eigenvectors from

Eq. (7.4) are orthogonalized. Each D matrix is divided into submatrices Dij for

convenience.

The incident state I is specified in the statement of the problem. Therefore,

Eq. (7.7) can be viewed as a system of two equations for the three 8-vector unknowns

r, F0 and F1. It can be transformed in a single equation with two unknowns

F0 −DL
12D

L
22

−1
F1 =

(

DL
11 −DL

12D
L
22

−1
DL

21

)

I. (7.9)

Similarly, t can be eliminated from Eq. (7.8) to yield the other boundary condition

−DR
21D

R
11

−1
FN−2 + FN−1 = 0. (7.10)

Including the boundary conditions into Eq. (5.48), the wavefunction is found by
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solving the sparse linear system





























1 −DL
12D

L
22

−1
0 . . . . . . . . . 0

H1,0 H̄1,1 H1,2 0 . . . . . . 0

0 H2,1 H̄2,2 H2,3 0 . . . 0
... . . .

. . . . . . . . .
...

...

0 . . . . . . 0 HN−2,N−3 H̄N−2,N−2 HN−2,N−1

0 0 . . . . . . 0 −DR
21D

R
11

−1
1

























































F0

F1

F2

...

FN−2

FN−1





























=





























(

DL
11 −DL

12D
L
22

−1
DL

21

)

I

0

0
...

0

0





























. (7.11)

Once the envelope function components for the entire wavefunction have been

found, the coefficients of the transmitted part in terms of the Bloch states for the

right electrode can be found from Eq. (7.8):

t = DR
21

−1
FN−1. (7.12)

And from there, the transmission coefficient can be expressed as the sum of trans-

mission coefficients into each Bloch state channel1:

T
(

E, k‖
)

=
8
∑

j=1

∣

∣tj
(

E, k‖
)∣

∣

2

∣

∣vj
(

E, k‖;R
)∣

∣

∣

∣vI
(

E, k‖;L
)∣

∣

, (7.13)

where vI
(

E, k‖;L
)

and vj
(

E, k‖;R
)

are the velocities along the z direction of the

incident and the transmitted bulk plane wave states respectively.

1The sum should only include terms due to transmitting, as opposed to evanescent, components.
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7.2.2 Computation of the velocity of the states

In appendices C and D it has been shown that

vj
(

E, k‖;R
)

=
1

~
∂E(k‖, kz;R)

∂kz

∣

∣

∣

∣

kz,j

=
1

~

〈

Bk‖,kz,j , R

∣

∣

∣

∣

∣

∂H(k)

∂kz

∣

∣

∣

∣

kz,j

∣

∣

∣

∣

∣

Bk‖,kz,j , R

〉

.

(7.14)

The expansion in Eq. (5.43) can be used to evaluate ∂H(k)/∂kz and obtain

vj
(

E, k‖;L
)

=
1

~

〈

Bk‖,kz,j , R
∣

∣

∣2H
(2)
R kz,j +H

(1)
R

(

k‖
)

∣

∣

∣Bk‖,kz,j , R
〉

, (7.15)

which can be written in matrix notation because, apart from an overall phase factor,

the components of |Bk‖,kz,j , R〉 in the zone center basis are given by the j-th column

of DR
11, D

R
11,j :

vj
(

E, k‖;L
)

=
1

~
DR

11,j

†
(

2H
(2)
R kz,j +H

(1)
R

)

DR
11,j . (7.16)

Incidentally, the operator

v̂ =
1

~
(

2H(2)kz +H(1)
)

(7.17)

coincides with the current density operator found by Wu et al. [19].

7.2.3 Preparation of the incoming states

Since the transmission properties of the spin filter structure are assumed to be spin-

dependent, one has to carefully prepare the incoming state and have control over

its spin (for electrons) or total angular momentum (for holes). The method used to

achieve this is described below.

Electrons

When electrons are injected into the resonant structure, the incoming state can only

be a linear combination of right propagating Bloch states in the conduction band

(CB) for the left electrode. Since the electrons are assumed to have a given energy E
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and parallel component of the wavevector k‖, the intervening Bloch states will have

that E and k‖.

The incoming state is given by the first summand in Eq. (7.5):

|I〉 =
∑

j∈CB

Ij|Bk‖,kz,j , L〉, (7.18)

where the sum over Bloch states only includes the two in the CB satisfying the E

and k‖ requirements.

If the electron spin is required to point in the θ, ϕ direction, first one must

construct the dimensionless spin operator in an arbitrary direction σθ,ϕ:

σθ,ϕ = σx sin θ cosϕ+ σy sin θ sinϕ+ σz cos θ, (7.19)

where the σi’s are derived from Eqs. (5.37)-(5.39).

At first it would seem logical to look for eigenstates of σθ,ϕ, but states away from

the zone center will have a finite hole component. This will cause electron states to

cease being spin eigenstates because holes don’t have a definite spin. Therefore, one

must satisfy oneself with requiring that the expectation value of σθ,ϕ is maximized.

That is, one seeks a set of {Ij}’s such that

〈σθ,ϕ〉I =
∑

j,l∈CB

I∗l Ij

〈

Bk‖,kz,l , L |σθ,ϕ|Bk‖,kz,j , L
〉

(7.20)

is maximized. These matrix elements are taken with respect to the primitive cell in

the left electrode right before entering the active region of the device. This is so to

make sure the electron is coming into the structure with the desired spin. If the matrix

elements were taken all over the crystal, the elements relating states with kz,l 6= kz,j

would vanish by the space group selection rules. Physically, this translates into the

fact that, when the Kramers degeneracy is broken, it is impossible to construct a

state that will maximize 〈σθ,ϕ〉I at all points of the space at the same time because

the difference in kz’s will affect the relative phases of the Bloch states. This is seen
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in the following example. Consider a free electron described by the wavefunction

Ψ(x, t) = ei[kx−ωt]





1/
√
2

0



+ ei[(k+∆k)x−ωt]





0

1/
√
2



 , (7.21)

where the same ω indicates that even if the two components have different wavevec-

tor, there is some (spin-dependent) mechanism putting their energies together. It is

easily seen that the expectation value of the, say, x component of the spin is space

dependent:

〈σx〉(x) = Ψ†σxΨ = cos∆k x, (7.22)

and that is why 〈σθ,ϕ〉I is maximized as close to the active region as possible.

In structures presenting Rashba splitting (cf. Chapter 2), the separation between

the kz’s with the same energy is of the order of ∆k ≈ 10−3Å−1. At typical values of the

Fermi radius kF , it takes about 3000Å for the relative phase of the two Bloch states

to change by π. Of course, real electrons in a crystal will have some wavepacket size.

As long as this wavepacket size is substantially smaller than these 3000Å, one can

say that the spin of the electron is the same throughout its spatial extent. Another

way to think about it is that the spin of the electron will be independent of space

if the spread in k space corresponding to its localization is bigger than ∆k. If this

condition is not fulfilled, taking a snapshot in time and looking along the z direction

one would see the spin precessing in a helix-like fashion.

Therefore, instead of maximizing the expression in Eq. (7.20), one should construct

|I〉 =
∑

j∈CB

Ij|uk‖,kz,j〉 (7.23)

and maximize

〈σθ,ϕ〉I = 〈I |σθ,ϕ| I〉 (7.20’)

subject to the constraint

〈I|I〉 = 1. (7.24)
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This is an optimization problem that can be solved with the standard Lagrange

multiplier technique. Since the |uk‖,kz,j〉’s in |I〉 need not be orthogonal with one

another, it easily seen that the optimization procedure leads to the solution of a

generalized eigenvalue problem

σ̂I = λĝI, (7.25)

where, for electrons, σ̂ is a 2× 2 matrix whose matrix elements are

σjl =
〈

uk‖,kz,j |σθ,ϕ|uk‖,kz,l

〉

, (7.26)

and ĝ is a metric tensor with elements

gjl = 〈uk‖,kz,j |uk‖,kz,l〉. (7.27)

Holes

The determination of the coefficients I for holes is quite similar to the electron case.

The main difference is that one is presented with the dilemma of choosing the incoming

state to have a given spin or making it have a given total angular momentum. Of

course, the same discussion as for the electron case applies, and, for a fixed E and k‖,

only states that maximize the expectation value of the chosen measurable quantity

can be constructed. Physically, holes in the valence bands of bulk zincblendes are

better characterized by their total angular momentum, so the incoming states will be

constructed maximizing the expectation value of

〈Jθ,ϕ〉I =
∑

j,l∈CB

I∗l Ij

〈

Bk‖,kz,l , L |Jθ,ϕ|Bk‖,kz,j , L
〉

, (7.28)

where Jθ,ϕ is the (dimensionless) total angular momentum along an arbitrary axis,

and is defined analogously to Eq. (7.19). The angular momentum components along
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Figure 7.2: Bands of InAs for k‖ = (0.01, 0)Å−1 as a function of kz. The horizontal
lines indicate possible energies of the incoming particle, and the circles signal the
states whose linear combination creates an incoming state with heavy or light hole
character.

the x, y and z axes are given by

Ji =











J
1/2
i 0 0

0 J
3/2
i 0

0 0 J
1/2
i











, (7.29)

with

J1/2x =





0 1

1 0



 J1/2y =





0 −i
i 0



 J1/2z =





1 0

0 −1



 (7.30)
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and

J3/2x =

















0
√
3 0 0

√
3 0 2 0

0 2 0
√
3

0 0
√
3 0

















J3/2y =

















0 −
√
3i 0 0

√
3i 0 −2i 0

0 2i 0 −
√
3i

0 0
√
3i 0

















J3/2z =

















3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

















, (7.31)

and the rest of the procedure is analogous to the electron case.

7.2.4 Transmission coefficients and transmitted spin for an

ensemble of electrons

In normal operation of the device, the incoming spins will be randomly oriented. If

the approximations that a) they come from degenerate bands and b) that spin is a

good quantum number are used to simplify the calculations, they can be described

by the following density matrix

ρ̂I =
1

4π

∫

Ω

| ↑Ω〉〈↑Ω |dΩ, (7.32)

where the integral is over spins pointing in any direction with equal probability and

| ↑Ω〉 is a spin pointing in the direction given by the solid angle Ω. This integral can

be easily performed to obtain

ρ̂I =
1

2
(| ↑θ,ϕ〉〈↑θ,ϕ |+ | ↓θ,ϕ〉〈↓θ,ϕ |) , (7.33)

where | ↑θ,ϕ〉 (| ↓θ,ϕ〉) labels a spin up (down) along the direction given by the polar

angles θ and ϕ. Note that Eq. (7.33) will hold no matter what the choice for θ and



132

ϕ is, therefore the angle labels are dropped.

If tij denotes the component of the transmitted state for spin j when the incident

state is a spin i, the density matrix for the transmitted ensemble will be

ρ̂t =
1

2

∑

i,j,k∈↑,↓
tijt

∗
ik|j〉〈k|. (7.34)

The transmission coefficient will be given by the ratio of currents of the trans-

mitted respect to the incident state. From Appendix C it is easily seen that ratio of

probability currents can be given as

T
(

E, k‖
)

=
tr(ρ̂tv̂)

tr(ρ̂I v̂)
, (7.35)

where v̂ is the velocity operator as defined in Appendix D. Evaluating the traces in

this equation using the | ↑〉, | ↓〉 basis yields

T
(

E, k‖
)

=
(|t↑↑|2 + |t↓↑|2)v⊥↑,t + (|t↓↓|2 + |t↑↓|2)v⊥↓,t

v⊥↑,I + v⊥↓,I
, (7.36)

where the dependencies of tij and vi on E and k‖ are not explicitly shown. With the

assumptions stated at the beginning of this section, one has v⊥↑ = v⊥↓, and Eq. (7.36)

can be rewritten as

T
(

E, k‖
)

=
1

2

(|t↑↑|2 + |t↑↓|2)v⊥,t + (|t↓↓|2 + |t↓↑|2)v⊥,t

v⊥,I

=
1

2
[(T↑↑ + T↑↓) + (T↓↓ + T↓↑)], (7.37)

where

Tij ≡
|tij|2v⊥,t

v⊥,I

(7.38)

Thus it has been shown that, in the approximation where the bands are degen-

erate, the transmission coefficient for a random population of spins will simply be

the average of the coefficients for spin up and down in an arbitrary direction even

when the properties of the barrier are spin-dependent and it might introduce “channel
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mixing.”

A good measure of the filtering efficiency of a spin filter can be given by the ratio

of transmitted spin polarized current to the incoming current

η
(

E, k‖
)

=
| tr(ρ̂tσv̂)|
tr(ρ̂I v̂)

, (7.39)

where η
(

E, k‖
)

measures the filtering efficiency for a given energy and k‖ of the

incoming particles. This measure gives the maximum possible efficiency, which is

achieved when the transmitted spins are analyzed in the same direction as tr(ρ̂tσv̂).

To evaluate the trace in the numerator of Eq. (7.39), it is convenient to define

raising and lowering operators

σ+ =
1

2
(σx + iσy) =





0 1

0 0



 , (7.40)

σ− =
1

2
(σx − iσy) =





0 0

1 0



 , (7.41)

where the z axis is chosen along to be parallel with the | ↑〉 spin.
Then

tr(ρ̂tσ+v̂) =
1

2
(t↑↓t

∗
↑↑ + t↓↓t

∗
↓↑)v⊥,t (7.42)

tr(ρ̂tσ−v̂) =
1

2
(t∗↑↓t↑↑ + t∗↓↓t↓↑)v⊥,t (7.43)

tr(ρ̂tσzv̂) =
1

2
(|t↑↑|2 + |t↓↑|2)v⊥,t − (|t↓↓|2 + |t↑↓|2)v⊥,t, (7.44)

or, in cartesian components

tr(ρ̂tσxv̂) = <
[

(t↑↓t
∗
↑↑ + t↓↓t

∗
↓↑)v⊥,t

]

(7.45)

tr(ρ̂tσyv̂) = =
[

(t↑↓t
∗
↑↑ + t↓↓t

∗
↓↑)v⊥,t

]

(7.46)

tr(ρ̂tσzv̂) =
1

2
(|t↑↑|2 + |t↓↑|2)v⊥,t − (|t↓↓|2 + |t↑↓|2)v⊥,t (7.47)



134

and, from here, the efficiency will be

η
(

E, k‖
)

=

√

[ tr(ρ̂tσxv̂)]2 + [ tr(ρ̂tσyv̂)]2 + [ tr(ρ̂tσzv̂)]2

v⊥,I/2
. (7.48)

The spin polarization p, defined as the magnitude of the spin polarized current

divided by the transmitted current, is related to the filter efficiency by

η
(

E, k‖
)

= p
(

E, k‖
)

T
(

E, k‖
)

. (7.49)

These expressions adopt simpler forms when the incoming spins are chosen to be

resonant with the barrier (i.e., there is no up-down channel mixing). This translates

into t↑↓ = t↓↑ = 0, which simplifies the above expressions considerably to

η = T↑↑ − T↓↓ (7.50)

and

p =
T↑↑ − T↓↓
T↑↑ + T↓↓

. (7.51)

7.3 Resonant tunneling in asymmetric double bar-

riers

In this section the basic operating principle of the Rashba spin filters is explained.

To do that, a barrier structure comprised of AlSb/GaSb/InAs/AlSb clad by InAs

electrodes is considered (see Fig. 7.3), with the GaSb and InAs layer thicknesses

chosen to yield a large Rashba splitting (cf. Chapter. 3).

The quasi-bound states for the structure in Fig. 7.3 without the inclusion of bulk

inversion asymmetry (BIA) effects [20] are described in Sec. 5.6.1. The spin of these

quasi-bound states has a k‖ dependence shown in Fig. 7.4.

Consider now an incoming electron whose spin is pointing according to the direc-

tions in Fig. 7.4, belonging to either the lower or the highest conduction subband.
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Figure 7.3: aRTD structure at zero bias. The AlSb, GaSb and InAs layers are 8
monolayers (MLs) each (3.048 Å/ML), and the electrodes are InAs.

A schematic of this situation is shown in Fig. 7.5. The transmission coefficient of

such an electron, with k‖ = (0.02, 0)Å−1 and the spin pointing in the ±y direction,

is shown in Fig. 7.6. It is seen that the transmission curves appear decoupled due to

the incident electron interacting with only one of the quasi-bound states. The trans-

mission peaks are split by the Rashba effect. Looking at the spin of the transmitted

electron it is seen that it does not change after going through the barrier. Therefore,

Fig. 7.4 also indicates the spin of the transmitted electrons as a function of their k‖.

7.4 Asymmetric resonant tunneling diode (aRTD)

The aRTD spin filter is based in the intraband tunneling phenomena through an

asymmetric structure as described in the previous section. The origin of that asym-

metry can be different barrier thicknesses [10], different constituent materials of the

barrier [10, 12] or the inclusion of spatially dependent doping profiles [21].
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Figure 7.4: Spin directions for the quasi-bound states in the aRTD (same as Fig. 2.3).

Looking at Fig. 7.4 it must be noted that, for an electron gas with thermal dis-

tribution, the spin contribution for each incoming electron with some k‖ will be

compensated by an electron with −k‖. Therefore, in order to obtain spin injection an

anisotropy in the distribution of k‖ must be created. This can be done, for example,

with the addition of a lateral electric field that gives the incoming electrons a nonvan-

ishing average k‖ component [10]. Then, if the lateral electric field points, say, in the

x direction, the transmitted current should be analyzed along the y axis to obtain a

maximum effect. Calculations for this family of devices show current polarizations p

of the order of 20% [12].

The inclusion of BIA effects does not change the qualitative picture for the aRTD

very much. The biggest change is due to the spins of the quasi-bound states being

tilted respect to when no BIA was considered (see, for example, Fig. 5.19). As shown

in Fig. 7.7, this introduces supplementary peaks in the transmission curves if the

incoming spins are left unchanged. This is just due to the fact that spins pointing

along ±y are no longer resonant when BIA is taken into account. However, the peak

strength is very little affected by the inclusion of the BIA terms and one expects the

current polarization prediction to be similar, with the caveat that the spin analysis

must be made along the new resonant direction.

There are mainly two effects that limit the performance of the aRTD as a spin
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Figure 7.5: Resonant spin of an electron incident into an aRTD structure.
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Figure 7.6: Transmission coefficient for the aRTD structure described in Fig. 7.3.
The incoming electrons are assumed to have k‖ = (0.02, 0)Å−1 and the spin pointing
in the ±y direction. This direction is chosen for the electron to couple only to one of
the two quasi-bound states.
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Figure 7.7: As in Fig. 7.6, but with BIA effects included.

filter (see Fig. 7.8):

I. Cancelation of net spin between spin split subbands:

The two conduction subbands have spins pointing in different directions. Since

an electron has to tunnel through a barrier state, the amount of current polar-

ization will go as the ratio in the number of quasi-bound states in the barrier

below the emitter Fermi level (i.e., the area enclosed by the Fermi circles for

each subband). Therefore, the amount of polarization will only be appreciable

when the Fermi level of the emitter lines close to the conduction band edge of

the barrier.

II. Cancelation in the same band:

Even within a subband there is cancelation because of the spins in the barrier

states pointing in a circular fashion (cf. Fig. 7.4). This will also decrease the

filter efficiency.
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Figure 7.8: k‖ dependence of the spin of the transmitted states in an aRTD and
illustration of the difficulties in the aRTD. Not only do electrons tunneling through
different subbands have opposite spin (the net contribution is represented by the big
arrow), but also the spin contribution within a subband cancels out for states where
both k‖ and −k‖ participate in the tunneling process. The big arrows indicate the
total spin contribution for each subband.

7.5 Asymmetric resonant interband tunneling

diode (aRITD)

The aRITD [12] attempts to deal with some of the problems of the aRTD mentioned

above by making the transmitted electrons tunnel through the barrier valence band

states rather than the conduction band. A typical aRITD structure is shown in

Fig. 7.9. The aRITD would be a low voltage device because of the little voltage

(always less than ∼200 mV) necessary to align the barrier quasi-bound valence band

states with the Fermi level of the emitter.

A typical tunneling transmission curve through an aRITD structure is shown in

Fig. 7.10. The resonant peaks where the energy and k‖ of the incident electron

match those of the quasi-bound barrier states are clearly shown. As for the aRTD,

choosing the incoming spins to be ±y for k‖ along [100] decouples the two peaks.

It can be seen that having the spins point in-plane and perpendicular to k‖ (e.g.,

clock and counterclockwise) also decouples the peaks exactly when k‖ is along the

[110] direction and to a very good approximation for a general k‖’s intervening in
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Figure 7.9: aRITD structure at zero bias. The AlSb and InAs layers are 8 monolayers
(MLs) each (3.048 Å/ML), the GaSb is 18 MLs thick and the electrodes are InAs.

the tunneling process. A surprising feature of this curve is that the peak strength is

heavily dependent on the incident spin orientation. This is also found in calculations

using the effective bond orbital model method. This effect can be used to minimize

the contribution of the upper subband to the transmitted current. Thus, the impact

of one of the difficulties mentioned earlier for the aRTD can be lessened.

Figure 7.11 (a) shows how the emitter (strained to a GaSb substrate) conduction

band and the barrier valence states match up for the aRITD. The structure can be

designed in such a way that, for the operating bias, tunneling takes place through the

HH1 bands only. The fact that the bands have opposite curvatures makes that only

states with big k‖ can tunnel. This allows the device to work far from the zone center,

where the splitting vanishes. Plots (b) and (c) show the effect of the application of a

lateral electric field on the states participating in the tunneling process. The Fermi sea

tilts [22] and some of the channels used at zero lateral field no longer contribute due to

the lack of incident states at that k‖. In the structure studied here, the transmitted
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Figure 7.10: Transmission coefficient for the aRITD structure described in Fig. 7.9.
The incoming electrons are assumed to have k‖ = (0.02, 0)Å−1 and the spin pointing
in the ±y direction. This direction is chosen for the electron to couple only to one of
the two quasi-bound states. Note the asymmetry in the peak strengths.

current will mainly originate from tunneling through the lower HH1 subband (cf.

Fig. 7.10). As the applied lateral electric field gets larger, the Fermi sea will tilt more

and the number of unwanted k‖ channels within a band reducing the average spin

will decrease. Thus, the aRITD is less sensible to within band cancelation effects.

The reduction of the two aforementioned adverse effects allows the increase of the

spin polarization levels up to ∼ 60% [12]. The curves in that reference, reproduced

in Fig. 7.12, show that the amount of filtering is strongly dependent on the electrode

doping. Alternatively, the regime of high filtering can be achieved with the application

of an appropriate bias across the barrier.

Figure 7.13 shows the effect in the transmission curves of the inclusion of BIA,

with the incoming spin directions left unchanged. The spin preferred directions of

the holes in the barrier are more sensitive to the BIA terms than its conduction band

(CB) counterparts. This makes new peaks appear in the transmission curves. The

asymmetry in peak strengths for the lowest and highest energy peaks (considering

the sum of both spin contributions at a given energy) isn’t affected very much by the
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Figure 7.11: a) Bands of the aRITD structure and operation with a lateral electric
field. The short dashed line shows the conduction band of bulk InAs strained to a
GaSb substrate. The desired position of the Fermi level of the emitter respect to the
barrier bands is indicated. (b) [c)] shows the participating channels and their spin
contribution of the upper (lower) HH1 subband. The light grey arrow signifies the
weaker peak strength for transmission through the upper HH1 subband (cf. Fig. 7.10).

inclusion of BIA. So, one of the key aspects of the operation of the device is still there

with the BIA terms present. The origin of the asymmetry in the peak strength is a

subject still under investigation. The direction where the spins should be analyzed

for optimum performance will change, and depends on the interplay of BIA and SIA

(structural inversion asymmetry) effects for a particular structure, but that is not

expected to influence heavily on the magnitude of the polarization.
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Figure 7.12: Spin polarization of the current as a function of lateral field for several
emitter electron densities (reproduced from Ref. [12]).

7.6 Summary

In summary, a method for calculating spin-dependent transmission properties of tun-

nel structures has been presented. The multiband quantum transmitting boundary

method, originally formulated in the tight binding context [13], has been adapted to

the k · p formalism. This method has been employed to calculate spin-dependent

transmission curves for candidate structures for a spin filter. Calculations without

BIA effects show the same features as equivalent calculations using the effective bond

orbital model method. Two devices, the aRTD and the aRITD, have been studied.

For the aRTD, it has been shown that the inclusion of bulk inversion asymmetry

(BIA) effects changes only slightly the transmission properties of the resonant struc-

ture. Finally, for the aRITD, it has been seen that BIA plays a role on the choice of
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Figure 7.13: As Fig. 7.10, with BIA effects included. The numbers indicate the sum
of the transmission coefficients for both peaks.

the transmitted spin direction, but doesn’t affect appreciably the main working prin-

ciple of the device, namely, the highly asymmetric peak strengths of the transmission

resonances through the HH1 subbands.
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Chapter 8 Photon generation for a

Monte Carlo ray tracing LED simulator

8.1 Introduction

A requirement for the development of spintronic devices is the achievement of reliable

spin injection. Once a candidate for a spin injector has been identified, there must

be a means of quantifying its performance. This leads to mainly two families of ex-

periments for measuring spin injection; namely, electrical experiments [1] and optical

experiments [2–4].

In electrical experiments the spin polarized electrons inside the material of interest,

which will be considered to be a semiconductor but could be a metal as well, are

collected by a ferromagnetic contact. Then, depending on the relative orientation

of the majority electron spins and the magnetization of the collector, a higher or

lower resistance is measured. From that data, the existence of spin injection can be

established. However, in recent years electrical measurement methods have fallen into

disgrace due to the possibility of the presence of spurious local Hall voltages due to

the ferromagnetic contact fringing fields [5]. Another inconvenience is that it has also

been shown [6, 7] that one should expect only a very small effect in the standard

ferromagnet-semiconductor-ferromagnet configuration.

Optical detection of spin injection is based on the polarization state of the photon

emitted after a direct interband electron-hole recombination. If we consider the light

coming from direct transitions, say in a III-V zincblende semiconductor, the polar-

ization state of the emitted photons will depend on the direction of emission and the

initial and final states of the electron making the transition. By analyzing the emit-

ted light, one can obtain statistical information about the initial electron states, and

from there the spin polarization of the electrons before making the transition. This
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method is considered to be more direct and less subject to criticism than the electrical

detection method. It has been successfully employed to detect significant amounts of

electrical spin injection both from a semiconductor into another semiconductor [3, 4],

and from a ferromagnet into a semiconductor [8].

However, the effects of refraction on the polarization of the emitted light have

been mostly overlooked. Ichiriu et al. [9] have investigated these effects using a

Monte Carlo ray tracing algorithm that follows the photons from their generation at

the p-n junction until they hit the detector. They conclude that, for emissions that

aren’t parallel or perpendicular to the junction plane, the effect of refraction will be

to increase the observed degree of polarization with respect to that actually emitted

in the bulk of the semiconductor.

In order to perform this kind of calculations, a method that generates single pho-

tons with the adequate polarization is needed. This article describes in detail such

a method. In the discussion in Sec. 8.2, it is shown how Fermi’s golden rule does

not specify the polarization of the emitted photon. The time-dependent perturbation

theory is used instead to derive the polarization of a photon emitted in an arbitrary

direction for transitions between two bands of a crystal in Sec. 8.3. In Sec. 8.4, the

formalism is applied to zincblende and wurtzite bulk and quantum well semiconduc-

tors. Section 8.5 describes the use of a Monte Carlo scheme to generate single photons

ready for use in a ray tracing algorithm and yielding the ensemble results derived in

Sec. 8.3. Finally, Sec. 8.6 shows results from the application of the method to a bulk

zincblende.

A reader not familiar with group theoretical arguments might find it useful to

refer to Appendix B for a utilitarian introduction to group theory.
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Figure 8.1: Schematic of the interband photon emission process.

8.2 The interaction Hamiltonian and Fermi’s

golden rule

Figure 8.1 describes schematically the photon emission process under study. Πσ (Πλ)

is the label of the initial (final) irreducible representation. These labels indicate the

starting and final bands between which the interband transition takes place. |i〉 and
|f〉 denote the specific initial and final states, respectively, inside each band. Their

corresponding energies are Ei and Ef . Finally, |γ〉 represents the state of the emitted

photon.

To study this process, consider a plane wave interacting with a crystal. The plane

wave can be described by just its vector potential in the radiation gauge [10]:

A = A0a cos (q · r− ωt) , (8.1)

where A is the vector potential, A0 is the amplitude of the wave, a is a unit vector

in the direction of A, q is the wavevector of the wave and ω is its frequency. The

electric and magnetic fields can be found using the usual relations:

E = −∂A
∂t

(8.2)

B = ∇×A, (8.3)
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where the radiation gauge condition ∇ ·A = 0 has been used. From Eq. (8.2) it is

seen that a determines the polarization of the plane wave. a can take complex values

to describe an elliptical polarization state.

The Hamiltonian of a crystal coupled to an applied electromagnetic plane wave

can be written, in the low-intensity limit and dipole approximation (i.e., the photon

wavelength much bigger than the primitive cell size), as [11]:

H = H0 −
e

mo

P ·A, (8.4)

where the dipole magnetic term has been omitted because it is much weaker than

the dipole electric term, e is the absolute value of the electron charge, mo is the free

electron mass and P is the momentum operator.

Following Ridley [12], the cosine in Eq. (8.1) can be expanded into a sum of com-

plex exponentials and introduced into Eq. (8.4) to yield, by selecting the appropriate

terms, the space part of the Hamiltonian describing the photon emission process:

Hν em = − e

mo

{

~ (nν + 1)

2V ενων

}1/2

a ·P, (8.5)

where ~ is the reduced Planck constant, nν is the number of photons present corre-

sponding to the mode ν and having a frequency ων , εν is the optical permittivity of

that mode and V is the volume of the crystal. The time part of the Hamiltonian

leads to the appearance of the Dirac delta factor in energy in Eq. (8.6).

On the other hand, Fermi’s golden rule can be used to find Wi→f , the probability

per unit time that an initial state |i〉 will make a transition to any |f〉 belonging to

a family with dSf degenerate states due to the action of a perturbation Hν em. It

states [12]:

Wi→f =
2π

~
|〈f |Hν em| i〉|2 δ (Ei − Ef ) dSf . (8.6)

Thus, the probability of spontaneous emission into a solid angle dΩ per unit time

Wem can be obtained by taking nν = 0 in Eq. (8.5) and plugging this equation into
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Eq. (8.6):

Wem =
e2

4πε0

4

~ων

|a ·Pfi|2
2m2

ηrω
2
ν

c3
dΩ

4π
, (8.7)

where ε0 is the vacuum permittivity, c is the speed of light, ηr is the crystal refractive

index and Pfi is the momentum matrix element between the initial and the final

states.

The important point about Eq. (8.7) is that the probability of emission is pro-

portional to the scalar product of the polarization vector of the plane wave and the

matrix element of the momentum operator between the initial and final states. If

only transitions between two bands are of interest, as is commonly the case in semi-

conductors, all the photons emitted will have the same frequency and the only thing

that will change between two emission events will be the |a ·Pfi|2 factor. There-

fore, the knowledge of that factor is the only thing needed to determine the relative

transition rates between some initial and final states belonging to two given bands.

Mathematically, this can be written as:

Wi→f,a

Wi′→f ′,a′
=
|a ·Pfi|2

|a′ ·Pf ′i′ |2
. (8.8)

8.2.1 The Wigner-Eckart theorem for point groups applied

to momentum matrix elements

The expression in Eq. (8.8) can be further simplified by making use of symmetry

considerations. The Wigner-Eckart theorem for point groups (see Ref. [13] and ap-

pendix B.3) isolates the symmetry effects from other contributions in the matrix

elements of tensor operators. In particular, the momentum matrix elements can be

written as follows:

Pm
µ fi =

〈

f
∣

∣Pm
µ

∣

∣ i
〉

=
∑

k∈κ

∑

l∈λ
〈f |κ, k〉

〈

κ, k
∣

∣Pm
µ

∣

∣λ, l
〉

〈λ, l|i〉 =

〈κ ‖Pµ‖λ〉
∑

k∈κ

∑

l∈λ
〈f |κ, k〉〈µ,m;λ, l|κ, k〉〈λ, l|i〉, (8.9)
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Td SO(3)
Γ5 |l = 1〉
Γ6 |l = 0〉 ⊗ |s = 1/2〉
Γ7 |l = 1〉 ⊗ |s = 1/2〉 such that j = 1/2
Γ8 |j = 3/2〉

Table 8.1: Table of selected irreducible representations (irreps) of the zincblende point
group Td and their equivalent full rotation group SO(3) irreps.

where the initial and final states have been expanded into the basis states corre-

sponding to their irreducible representation (irrep). Greek indices label irreps and

latin indices label specific basis states inside an irrep. 〈κ ‖Pµ‖λ〉 is the so-called re-

duced matrix element [14], and will not depend on |i〉 nor |f〉 as long as these are taken
as linear combinations of basis states belonging to the Πλ and Πκ bands, respectively.

The symbol 〈µ,m;λ, l|κ, k〉 represents the complex conjugate of the Clebsch-Gordan

coefficient for the point group under consideration.

8.2.2 Application to III-V zincblendes

To exemplify this abstract formalism, consider a transition between the conduction

band and the valence band of a III-V zincblende at the zone center. For most of the

III-Vs, the conduction band edge is described by the Γ6 irrep of the Td point group;

while the valence band edge is described by the Γ8 irrep, where the Koster-Dimmock-

Wheeler-Statz (KDWS) [15] notation is being used. The treatment of Td is simplified

by the fact that some of their irreps can be identified with full rotation group irreps

according to Table 8.1. Assume also that the electron in the conduction band has

spin up in the z axis and it can go to either the heavy hole state |3/2,+3/2〉 or the
light hole |3/2,−1/2〉, and the photon is being emitted along the z direction. The
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relative transition rates will be given by the ratio of the momentum matrix elements:

Ws↑→|3/2,+3/2〉
Ws↑→|3/2,−1/2〉

=

∣

∣

∣

∣

∣

〈3/2 ‖PΓ5‖ s〉
∑

k∈Γ8

∑

l∈Γ6

〈3/2,+3/2|3/2, k〉〈1,+1; 1/2, l|3/2, k〉〈1/2, l|1/2,+1/2〉
∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

〈3/2 ‖PΓ5‖ s〉
∑

k∈Γ8

∑

l∈Γ6

〈3/2,−1/2|3/2, k〉〈1,−1; 1/2, l|3/2, k〉〈1/2, l|1/2,+1/2〉
∣

∣

∣

∣

∣

2 .

(8.10)

The reduced matrix elements in Eq. (8.10) cancel out and, using the orthonor-

mality of the basis kets, one is left with the simple expression:

Ws↑→|3/2,+3/2〉
Ws↑→|3/2,−1/2〉

=
|〈1,+1; 1/2,+1/2|3/2,+3/2〉|2

|〈1,−1; 1/2,+1/2|3/2,−1/2〉|2
=

1

1/3
= 3, (8.11)

where the Clebsch-Gordan coefficients are for the full rotation group, and can be

found in any standard quantum mechanics book.

8.2.3 Complications following the path of Fermi’s golden rule

In the previous two subsections it has been shown how to find ratios between the

probabilities that a photon be emitted from a transition into a given band using

Fermi’s golden rule. This might seem good enough to achieve the goal of generat-

ing single events using a random number generator. However, in the derivation of

Eq. (8.11), the formalism has left discretionary choices that make it unsuitable for

event generation. Some of the questions that arise are

• What set of final states must be chosen?

In Sec. 8.2.2, it was assumed that the initial state transitioned to either

|3/2,+3/2〉 or |3/2,−1/2〉, where the quantization axis for the final sates was

chosen to point along the z axis. However, had another quantization axis been

chosen, the matrix element Pfi would have taken another value and the re-



154

sults for the probability of emission and photon polarization would have been

different.

• What polarization of the emitted photon must be chosen?

Also in Sec. 8.2.2, it was implicitly assumed that the polarization vector a was

parallel to Pfi. The polarization of the emitted photon is given by the vector a

[cf. Eq. (8.1)]. In principle, one might think that the polarization of the emitted

photon should be independent of the choice of polarization basis vectors. But

in this formalism, falling back to the example in Sec. 8.2.2 and considering

emission along the z axis; the following choice of polarization modes: a1 = x̂,

a2 = ŷ with x̂ (ŷ) a unit vector along the x (y) axis, would have generated

photons with linear polarizations only. This is clearly unacceptable because it

is known that when the electron spin points along the z axis and light is emitted

along that axis too, a circular polarization of 50 % is expected [16].

In principle, one could overcome these difficulties by adopting the prescription

that any basis set spanning the final state subspace can be chosen, and then pick a

polarization that is in the same direction as P⊥ fi, where P⊥ is the component of P

perpendicular to the direction of emission. Alas, this is an ad hoc prescription, which

does not shed any insight on the nature of the radiative process. But this prescription

yields, indeed, the correct results. In the next section a more natural and univocal

way of obtaining a prescription is shown.

8.3 Polarization of the emitted photon

Spontaneous emission is a purely quantum-field-theoretical effect. Consider, for the

sake of argument, an atom in an excited state. Quantum mechanics states that if the

electron is in an eigenstate of the system, it will remain there forever. The difference

between classical and quantum fields manifests itself in the definition of system. In

the classical viewpoint the electromagnetic bath surrounding that atom can totally

vanish, therefore the system is the electron and its interaction with the nucleus, and
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the electron will remain in the excited state. In the quantum field theory (QFT)

viewpoint, the electromagnetic bath has a finite amplitude even at its ground state,

so it must be included in the system. These zero point fluctuations will interact with

the electron and cause the emission process.

In a sense, spontaneous emission is nothing more than stimulated emission caused

by the ground state of the electromagnetic environment.

The Hamiltonian in Eq. (8.4) can be rewritten [10] in terms of the photon creation

and annihilation operators a†s and as, where the s is an index including the wavevector

k and the polarization mode:

H = H0 +HDE(t) = H0 −
e

m

∑

s

√

2π

kV

[

as (P · as) e
−iωt + a†s (P · a∗s) eiωt

]

, (8.12)

where HDE(t) is the perturbation to the crystal Hamiltonian.

The two possible polarization modes are conveniently chosen to be the polar and

azimuthal unit vectors. This way, any polarization of the photon will be described in

terms of these two direction dependent linear polarization modes:

aθ̂ϕ = êθ = cos θ cosϕ x̂+ cos θ sinϕ x̂− sin θ ẑ (8.13)

aθϕ̂ = êϕ = − sinϕ x̂+ cosϕ ŷ. (8.14)

All this said, now the Hamiltonian (8.12) can be applied to an initial state

|i〉 ⊗ | . . . 0θ̂ϕ0θϕ̂ . . .〉 to generate the time evolution of that state. The symbol |i〉
represents the initial state of solely the electron, and the symbol | . . . 0θ̂ϕ0θϕ̂ . . . 〉 says
that there are no photons propagating in the θ, ϕ direction with either êθ or êϕ po-

larization. The formalism of first-order time-dependent perturbation theory will be

applied to find the quantum state after a time t has elapsed, and the question of the

probability that a photon has been emitted can be answered.

Note that this method shows the physics underlying the transition process in a

much clearer way. Once the initial state and the Hamiltonian of the system are given,

the state at any time, including the photon polarization, is fully determined. The only
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arbitrary choice in this approach is the basis with which the states are represented;

but, of course, that does not alter the physics of the problem.

Following Ref. [14], the final state can be written as follows:

|f(t)〉electron ⊗ |f(t)〉photon =

∑

k∈κ

∫

dΩ

4π
e−iEκt/~|κ, k〉 ⊗

(

bkκ,i,θ̂ϕ(t)| . . . 1θ̂ϕ0θϕ̂ . . .〉+ bkκ,i,θϕ̂(t)| . . . 0θ̂ϕ1θϕ̂ . . .〉
)

+

∑

l∈λ

∫

dΩ

4π
e−iEλt/~|λ, l〉 ⊗

(

1− blλ,i,θ̂ϕ(t)− blλ,i,θϕ̂(t)
)

| . . . 0θ̂ϕ0θϕ̂ . . .〉, (8.15)

where λ represents the initial band, κ the final band, Eλ and Eκ are their respective

energies, and

bkκ,i,θ̂ϕ(t) =

〈κ, k| ⊗ 〈1θ̂ϕ0θϕ̂|HDE(0)|i〉 ⊗ |0θ̂ϕ0θϕ̂〉
2i~

[

1− ei(ωκi+ω)t

ωκi + ω
+

1− ei(ωκi−ω)t

ωκi − ω

]

=

− e

m

√

2π

kV

〈κ, k |P| i〉 ·
〈

1θ̂ϕ0θϕ̂
∣

∣

∑

s

(

asas + a†sa
∗
s

)∣

∣ 0θ̂ϕ0θϕ̂

〉

2i~
×

[

1− ei(ωκi+ω)t

ωκi + ω
+

1− ei(ωκi−ω)t

ωκi − ω

]

bkκ,i,θϕ̂(t) =

〈κ, k| ⊗ 〈0θ̂ϕ1θϕ̂|HDE(0)|i〉 ⊗ |0θ̂ϕ0θϕ̂〉
2i~

[

1− ei(ωκi+ω)t

ωκi + ω
+

1− ei(ωκi−ω)t

ωκi − ω

]

=

− e

m

√

2π

kV

〈κ, k |P| i〉 ·
〈

0θ̂ϕ1θϕ̂
∣

∣

∑

s

(

asas + a†sa
∗
s

)∣

∣ 0θ̂ϕ0θϕ̂

〉

2i~
×

[

1− ei(ωκi+ω)t

ωκi + ω
+

1− ei(ωκi−ω)t

ωκi − ω

]

(8.16)

are the time-dependent coefficients of the expansion in terms of the chosen basis

set. These coefficients can be simplified by the proper action of the creation and
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annihilation operators:

bkκ,i,θ̂ϕ(t) = −
e

m

√

2π

kV

〈κ, k |P| i〉 · a∗
θ̂ϕ

2i~
g (t;ω)

bkκ,i,θϕ̂(t) = −
e

m

√

2π

kV

〈κ, k |P| i〉 · a∗θϕ̂
2i~

g (t;ω) , (8.17)

where

g (t;ω) ≡
[

1− ei(ωκi+ω)t

ωκi + ω
+

1− ei(ωκi−ω)t

ωκi − ω

]

(8.18)

has been defined.

Once the final state is known, expectation values for the polarization of a photon

emitted along a given direction can be found. For this purpose, the following photon

polarization operators are first defined following the Stokes parameters’ notation for

plane waves (see, for example, Ref. [17] for an introduction to the Stokes parameters)

Q|1θ̂ϕ〉 = +1|1θ̂ϕ〉 Q|1θ̂ϕ〉 = +1|1θ̂ϕ〉

Q|1θϕ̂〉 = −1|1θϕ̂〉 Q|1θϕ̂〉 = −1|1θϕ̂〉 (8.19)

U
1√
2

(

|1θ̂ϕ〉+ |1θϕ̂〉
)

= +1
1√
2

(

|1θ̂ϕ〉+ |1θϕ̂〉
)

U |1θ̂ϕ〉 = +1|1θϕ̂〉

U
1√
2

(

|1θ̂ϕ〉 − |1θϕ̂〉
)

= −1 1√
2

(

|1θ̂ϕ〉 − |1θϕ̂〉
)

U |1θϕ̂〉 = +1|1θ̂ϕ〉 (8.20)

V
1√
2

(

|1θ̂ϕ〉+ i|1θϕ̂〉
)

= +1
1√
2

(

|1θ̂ϕ〉+ i|1θϕ̂〉
)

V |1θ̂ϕ〉 = +i|1θϕ̂〉

V
1√
2

(

|1θ̂ϕ〉 − i|1θϕ̂〉
)

= −1 1√
2

(

|1θ̂ϕ〉 − i|1θϕ̂〉
)

V |1θϕ̂〉 = −i|1θ̂ϕ〉, (8.21)

and the expectation values for the measurement of polarization for a photon emitted

in the θ, ϕ direction can be evaluated, for example, for V:

〈f(t) |V | f(t)〉 = 〈f(t)|f(t)〉electron 〈f(t) |V | f(t)〉photon =
∑

k′∈κ

∑

k∈κ
〈κ, k′|κ, k〉×

(

b∗
k′κ,i,θ̂ϕ

(t)〈1θ̂ϕ0θϕ̂|+ b∗k′κ,i,θϕ̂(t)〈0θ̂ϕ1θϕ̂|
)

V
(

bkκ,i,θ̂ϕ(t)|1θ̂ϕ0θϕ̂〉+ bkκ,i,θϕ̂(t)|0θ̂ϕ1θϕ̂〉
)

=

∑

k∈κ
ibkκ,i,θ̂ϕ(t)b

∗
kκ,i,θϕ̂(t)− ib∗kκ,i,θ̂ϕ(t)bkκ,i,θϕ̂(t). (8.22)
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Equations (8.17) can be plugged into the previous expression to obtain:

〈f(t) |V | f(t)〉 = e2

m2

2π

kV

|g (t;ω)|2
4~2

×

i
∑

k∈κ

(

〈κ, k |P| i〉 · a∗
θ̂ϕ
〈κ, k |P| i〉∗ · aθϕ̂ − 〈κ, k |P| i〉∗ · aθ̂ϕ 〈κ, k |P| i〉 · a∗θϕ̂

)

. (8.23)

At this point, a comment about this result is required. The question that the

above equation is answering is: “Given an initial state |i〉, what is the probability that

a photon is detected along a certain direction and has a given circular polarization

after a time t?”, rather than the more adequate question: “Given an initial state

|i〉 and that a photon has been detected along a certain direction after a time t, what

is the probability that it has a given circular polarization?” In order to answer this

last question, Eq. (8.23) must be divided by the probability that a photon has been

emitted along the required direction. That yields the expectation value of the circular

polarization for a single photon or, equivalently, the measured circular polarization

for an ensemble of photons Vmeas:

Vmeas =
i
∑

k∈κ

(

〈κ, k |P| i〉 · a∗
θ̂ϕ
〈κ, k |P| i〉∗ · aθϕ̂ − 〈κ, k |P| i〉∗ · aθ̂ϕ 〈κ, k |P| i〉 · a∗θϕ̂

)

∑

k∈κ

(

∣

∣

∣
〈κ, k |P| i〉 · a∗

θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
)

(8.24)

The two other measured Stokes parameters can be found by an analogous calcu-

lation, yielding

Qmeas =

∑

k∈κ

(

∣

∣

∣〈κ, k |P| i〉 · a∗
θ̂ϕ

∣

∣

∣

2

−
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
)

∑

k∈κ

(

∣

∣

∣〈κ, k |P| i〉 · a∗
θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
) (8.25)

Umeas =

∑

k∈κ

(

〈κ, k |P| i〉 · a∗
θ̂ϕ
〈κ, k |P| i〉∗ · aθϕ̂ + 〈κ, k |P| i〉∗ · aθ̂ϕ 〈κ, k |P| i〉 · a∗θϕ̂

)

∑

k∈κ

(

∣

∣

∣〈κ, k |P| i〉 · a∗
θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
)

(8.26)

where the common denominator in Eqs. (8.24)-(8.26) yields the angular distribution
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of light intensity. It can also be thought of as the Stokes parameter S:

Smeas =
∑

k∈κ

(

∣

∣

∣〈κ, k |P| i〉 · a∗
θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
)

. (8.27)

Finally, all reference to the momentum operator can be eliminated by means of

the Wigner-Eckart theorem as in Eq. (8.9). Symmetry considerations will govern

completely the polarization of the emitted photons as long as:

• Only two bands are involved in the light emission process.

• The direction towards which the light is being emitted is such that all the

relevant momentum components belong to the same irrep of the point group of

the crystal.

In that case,

Qmeas =

∑

k∈κ

∑

l∈λ

∑

m∈µ

(

∣

∣

∣〈µ,m;λ, l|κ, k〉〈λ, l|i〉êm · a∗θ̂ϕ
∣

∣

∣

2

−
∣

∣〈µ,m;λ, l|κ, k〉〈λ, l|i〉êm · a∗θϕ̂
∣

∣

2
)

∑

k∈κ

∑

l∈λ

∑

m∈µ

(

∣

∣

∣〈µ,m;λ, l|κ, k〉〈λ, l|i〉êm · a∗θ̂ϕ
∣

∣

∣

2

+
∣

∣〈µ,m;λ, l|κ, k〉〈λ, l|i〉êm · a∗θϕ̂
∣

∣

2
)

(8.28)

Umeas =

2<
{

∑

k∈κ

∑

l,l′∈λ

∑

m,m′∈µ
〈µ,m;λ, l|κ, k〉〈κ, k|µ,m′;λ, l′〉〈λ, l|i〉〈λ, l′|i〉 êm · a∗θ̂ϕ ê

∗
m′ · aθϕ̂

}

∑

k∈κ

∑

l∈λ

∑

m∈µ

(

∣

∣

∣
〈µ,m;λ, l|κ, k〉〈λ, l|i〉êm · a∗θ̂ϕ

∣

∣

∣

2

+
∣

∣〈µ,m;λ, l|κ, k〉〈λ, l|i〉êm · a∗θϕ̂
∣

∣

2
)

(8.29)
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Vmeas =

−2=
{

∑

k∈κ

∑

l,l′∈λ

∑

m,m′∈µ
〈µ,m;λ, l|κ, k〉〈κ, k|µ,m′;λ, l′〉〈λ, l|i〉〈λ, l′|i〉 êm · a∗θ̂ϕ ê

∗
m′ · aθϕ̂

}

∑

k∈κ

∑

l∈λ

∑

m∈µ

(

∣

∣

∣〈µ,m;λ, l|κ, k〉〈λ, l|i〉êm · a∗θ̂ϕ
∣

∣

∣

2

+
∣

∣〈µ,m;λ, l|κ, k〉〈λ, l|i〉êm · a∗θϕ̂
∣

∣

2
)

(8.30)

where < and = mean real and imaginary parts respectively, and êm is a unit vector

pointing in the same direction as the basis function of the irrep µ to which it is related.

8.4 Application to semiconductor structures

The abstract formalism developed in the previous section can be employed to predict

measured polarizations for several materials of interest. In particular, it can be used

to design experiments for optical spin injection detection. The optimal location of the

light detector with respect to the predominant spin can be found this way. Several

cases of interest are explicitly worked out in the following subsections. In these

examples, it is assumed that the electrons that are spread close to a symmetry point

can be well approximated as being in that symmetry point.

8.4.1 Bulk zincblende luminescence

Bulk zincblendes possess a Td point group symmetry. The character table and basis

functions for Td, adapted from Ref. [15], are shown in Table 8.2.

In a number of direct band gap zincblendes, the conduction band minimum is

situated at the Brillouin zone center, and it is described by the Γ6 irrep. The valence

band maximum is also at the zone center, and it is described by the Γ8 irrep. This

irrep splits away from the zone center into the heavy and light hole bands, as seen in

Fig. 8.2.

Consider, for example, an electron that has been injected into the conduction

band (CB) with its spin pointing up in the z direction. The initial electron state will
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Td E Ē 8C3 8C̄3
3C2

3C̄2
6S4 6S̄4

6σd

6σ̄d
Basis Functions

Γ1 1 1 1 1 1 1 1 1 R or xyz
Γ2 1 1 1 1 1 -1 -1 -1 SxSySz

Γ3 2 2 -1 -1 2 0 0 0 (2z2 − x2 − y2),
√
3 (x2 − y2)

Γ4 3 3 0 0 -1 1 1 -1 Sx, Sy, Sz

Γ5 3 3 0 0 -1 -1 -1 1 x, y, z

Γ6 2 -2 1 -1 0
√
2 -
√
2 0 |s = 1/2,−1/2〉, |s = 1/2,+1/2〉

Γ7 2 -2 1 -1 0 -
√
2
√
2 0 Γ6 × Γ2

Γ8 4 -4 -1 1 0 0 0 0
|j = 3/2,−3/2〉,|j = 3/2,−1/2〉,
|j = 3/2,+1/2〉,|j = 3/2,+3/2〉

Table 8.2: Character and basis functions table for Td

be |i〉 = |s = 1/2,−1/2〉. If the luminescence due to recombination with the valence

band (VB) Γ8 is under study, the expressions in Eqs. (8.28)—(8.30) can be used to

calculate the light polarization in an arbitrary direction.

We know that the initial state belongs to the Γ6 irrep, the final state to the Γ8

irrep and Table 8.2 shows that the momentum operator transforms according to the

Γ5 irrep. The Clebsch-Gordan coefficients for Td (aka. coupling coefficients) can be

looked up, for example, in Table 83 of Ref. [15]. In this table the notation is confusing,

in the sense that the basis functions for O and Td are reshuffled, and the table can be

employed as is for O only. The equivalence between the O and the Td basis functions

is shown in Table 8.3. Table 8.4 shows the coefficients in a ready-to-use way for Td.

O Td

|Γ8,−3/2〉 |Γ8,+1/2〉
|Γ8,−1/2〉 |Γ8,+3/2〉
|Γ8,+1/2〉 |Γ8,−3/2〉
|Γ8,+3/2〉 |Γ8,−1/2〉

Table 8.3: Equivalence table of basis functions for O and Td.
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|x〉5|−12 〉6 |x〉5|+12 〉6 |y〉5|−12 〉6 |y〉5|+12 〉6 |z〉5|−12 〉6 |z〉5|+12 〉6
7〈−1/2| 0 −i√

3
0 −1√

3
i√
3

0

7〈+1/2| −i√
3

0 1√
3

0 0 −i√
3

8〈−3/2| −i√
2

0 −1√
2

0 0 0

8〈−1/2| 0 i√
6

0 1√
6

i
√

2
3

0

8〈+1/2| −i√
6

0 1√
6

0 0 i
√

2
3

8〈+3/2| 0 i√
2

0 −1√
2

0 0

Table 8.4: The Clebsch-Gordan coefficients for Γ5 ⊗ Γ6 belonging to Td, with |j〉i a
shorthand for |Γi, j〉.

Therefore, for the degree of circular polarization:

Vmeas =

−2=
{

∑

k∈Γ8

∑

m,m′∈Γ5

〈Γ5,m; Γ6,+1/2|Γ8, k〉〈Γ8, k|Γ5,m
′; Γ6,+1/2〉 êm · a∗θ̂ϕ ê

∗
m′ · aθϕ̂

}

∑

k∈Γ8

∑

m∈Γ5

(

∣

∣

∣〈Γ5,m; Γ6,+1/2|Γ8, k〉êm · a∗θ̂ϕ
∣

∣

∣

2

+
∣

∣〈Γ5,m; Γ6,+1/2|Γ8, k〉êm · a∗θϕ̂
∣

∣

2
)

(8.31)

and plugging in the numbers, one obtains

Vmeas = −
2
3
cos θ

4/3
= −1

2
cos θ, (8.32)

where θ is the angle between the injected electron spin and the direction of emission.

The denominator in Eq. (8.31) yields the angular distribution of the emitted radiation,

which is isotropic for this case.

Similarly, for the two modes of linear polarization:

Qmeas = 0 Umeas = 0. (8.33)
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k
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CB

HH
LH
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Eg

Figure 8.2: Band structure for a zincblende near the zone center. The irreps at k = 0
are labeled, and their respective bands too. A transition between Γ6 and Γ7 has been
depicted, yielding a photon having the gap energy Eg.

8.4.2 Quantum well luminescence

In this section, only quantum wells (QWs) constructed with zincblende semiconduc-

tors will be considered.

Most of the times, the confining and the active layers will not have the same

lattice parameter. This will produce stress in the active layer which, in turn, will

cause the lifting of the degeneracy between heavy holes and light holes at the zone

center of zincblendes. Another source of splitting will be the reduction of symmetry

due to the quantum confinement of the electrons. Stress and confinement will reduce

the symmetry point group of the active layer from Td to D2d or C2v [18], depending

respectively on whether the [110] and [1̄10] directions are equivalent or not. The

interplay of confinement and stress effects will determine whether the heavy hole or

light hole bands will remain at the top of the valence band.
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D2d E Ē 2S4 2S̄4
C2

C̄2

2C ′
2

2C̄ ′
2

2σd

2σ̄d
Basis Functions

Γ1 1 1 1 1 1 1 1 R
Γ2 1 1 1 1 1 -1 -1 Sz

Γ3 1 1 -1 -1 1 1 -1 (x2 − y2)
Γ4 1 1 -1 -1 1 -1 1 xy or z
Γ5 2 2 0 0 -2 0 0 Sx, Sy

Γ6 2 -2
√
2 -
√
2 0 0 0 |s = 1/2,−1/2〉, |s = 1/2,+1/2〉

Γ7 2 -2 -
√
2
√
2 0 0 0 Γ6 × Γ3

Table 8.5: Character and basis functions table for D2d

QWs with D2d symmetry

QWs with symmetric walls, common atom and an even number of monolayers in the

active layer (eg. AlSb/GaSb/AlSb) have D2d symmetry. The character table of D2d

is shown in Table 8.5.

By checking the Clebsch-Gordan coefficients in Ref. [15] or the compatibility rela-

tions for the basis states of C4v [19], it can be deduced that the conduction band edge

states and the top1 heavy hole-like (HH1) state will transform according to Γ6, while

the top light hole-like (LH1) and split-off-like (SO) states will transform according to

Γ7.

The polarization of the emitted light will depend on whether the valence band edge

is described by states with predominantly HH or LH character (see Fig. 8.3). The

other valence states are assumed to lie deep enough in energy that no transitions are

made. Table 8.6 shows the appropriate Clebsch-Gordan coefficients for the transitions

depicted in Fig. 8.3. When studying case a), it can be seen from Eq. (8.30) that, for

vertical emission and for a single spin injected,

Vmeas =
−2={〈Γ5, x; Γ6,+1/2|Γ6,−1/2〉〈Γ6,−1/2|Γ5, y; Γ6,+1/2〉}
|〈Γ5, x; Γ6,+1/2|Γ6,−1/2〉|2 + |〈Γ5, y; Γ6,+1/2|Γ6,−1/2〉|2

= −1, (8.34)

while no net linear polarization would be measured.

1HHodd and LHeven (HHeven and LHodd) states transform according to Γ6 (Γ7) [18]. Even
and odd also label the parity of the total wavefunction. The even-odd mixing is due to the fact
that zincblendes don’t possess inversion symmetry, explaining the observation of parity forbidden
transitions [20].
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|x〉5| − 1
2
〉6 |x〉5|+ 1

2
〉6 |y〉5| − 1

2
〉6 |y〉5|+ 1

2
〉6

6〈−1/2| 0 i√
2

0 −1√
2

6〈+1/2| i√
2

0 1√
2

0

7〈−1/2| 0 i√
2

0 1√
2

7〈+1/2| i√
2

0 −1√
2

0

Table 8.6: The Clebsch-Gordan coefficients for Γ5 ⊗ Γ6 belonging to D2d, with |j〉i a
shorthand for |Γi, j〉.
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b)

Figure 8.3: Band structure near the zone center for a QW with D2d symmetry. (a)
shows the case where the heavy hole band has higher energy, while (b) shows the case
where the light hole band has higher energy.

When the LH band is the one having higher energy [see Fig. 8.3, (b) ], a similar

analysis yields

Qmeas = 0 Umeas = 0 Vmeas = +1. (8.35)

The fact that the z basis function—therefore Pz—belongs to a different irrep than

x and y will make an exact statement about the polarization for a direction other

than along z impossible. However, some good approximations can be made in the

case where a few assumptions are valid.

When the symmetry of a system is reduced, levels that were previously degenerate

split in energy. Another consequence of the symmetry reduction is the mixing of

states. But the mixing of states can only take place between original irreps that will
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transform into the same irrep of the reduced symmetry group. To exemplify this,

consider the CB, HH, LH and SO bands of bulk GaSb as a starting point. Inside a

symmetric quantum well, the electron in a GaSb active layer will see an environment

with D2d symmetry. Unless the well is very narrow, the well states will keep most of

the character of the bulk states they come from [21].

So, when the HH1 band is on the VB edge, the approximation can be made that

the action of Pz is negligible because these states will have only a small pz component.

In that case, and assuming that the electron in the CB is the initial state |Γ6,+1/2〉,
the different polarizations will be given by plugging the coefficients in Table 8.6 into

Eqs. (8.28)—(8.30):

Smeas ∝
1 + cos2 θ

2

Qmeas =
1− cos2 θ

1 + cos2 θ
Umeas = 0 Vmeas = −

2 cos θ

1 + cos2 θ
. (8.36)

These results are plotted for both input spins in Fig. 8.4. Note that, although

some linear spin polarization can be measured, reaching a maximum for emission in

the plane of the QW, it will not be spin-dependent. So, only optical measurements

of circular polarization can be used for electron spin detection. Clearly, the direction

perpendicular to the well is favored because of its higher amount of signal for a totally

spin polarized electron population.

In the case of Fig. 8.3 (b), when the approximation that the top of the VB has

LH character holds, a similar analysis can be performed. The polarizations that one

obtains for all initial spins in the |Γ6,+1/2〉 state are

Smeas ∝
5− 3 cos2 θ

6

Qmeas = 1− 2

5− 3 cos2 θ
Umeas = 0 Vmeas =

2 cos θ

5− 3 cos2 θ
. (8.37)

These results are plotted for both input spins in Fig. 8.5. Again, the only means

to detect spin injection is through measurements of circular polarization. The amount

of polarization expected for emission perpendicular to the QW plane is the same as
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Figure 8.4: Approximate intensity pattern, linear and circular polarization for radia-
tion coming from band-to-band recombination for a QW with D2d symmetry. These
results are valid only when the top of the valence band is HH-like.

in CB-HH1 transitions. However, if one is forced to perform measurements off-axis,

it is clearly more convenient to resort to a CB-HH1 structure because of the greater

maximum attainable signal.

QWs with C2v symmetry

All of the QWs having asymmetric confinement layers (eg. an AlSb/InAs/GaSb/AlSb

QW), most of the QWs having symmetric walls but noncommon atom (eg.

AlSb/InAs/AlSb) and QWs with common atoms and an odd number of monolay-

ers [18] (eg. AlSb/GaSb/AlSb) possess C2v point group symmetry. In this class of
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Figure 8.5: As in Fig. 8.4, but the top of the valence band is LH-like.

QWs, as opposed to the D2d QW’s, a rotation of 180 ◦ about the x or y axes will not

result in the same structure. Its character table, adapted from Ref. [15], is shown in

Table 8.7.

The x and y axis are not equivalent for this family of quantum wells. Of course,

the z axis, being the direction of growth, will not be equivalent to any of those,

either. Therefore, in a strict sense, symmetry arguments cannot help in determining

the average polarization of the emitted photons, and Eqs. (8.24)—(8.26) should be

employed.

However, in some cases the reduction of the symmetry from D2d to C2v is due

to small effects. For example, in an AlSb/InAs/AlSb QW, the symmetry is reduced
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C2v E Ē
C2

C̄2

σv

σ̄v

σ′d
σ̄′d

Basis Functions

Γ1 1 1 1 1 1 z
Γ2 1 1 -1 1 -1 Sy or x
Γ3 1 1 1 -1 -1 Sz or xy
Γ4 1 1 -1 -1 1 Sx or y
Γ5 2 -2 0 0 0 |s = 1/2,−1/2〉, |s = 1/2,+1/2〉

Table 8.7: Character and basis functions table for C2v
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Γ5 ~Γ6

Γ5 ~ Γ6

Figure 8.6: Band structure near the zone center for a QW with C2v symmetry. Γ5

is the exact irrep for any band, and their approximate counterpart irreps in D2d are
also shown.

because of the different nature of the interface bonds; Sb-In at one interface and

As-Al at the other. This is only an interface contribution, which should cause a

very small mixing between the D2d Γ6 and Γ7 states. Following the k · p spirit, these

interface effects can be neglected, and it can be assumed that all the C2v states behave

according to their original D2d irreps (see Fig. 8.6). When these assumptions hold,

the analysis performed for D2d QWs will also be valid for asymmetric QWs.

8.4.3 Bulk wurtzite luminescence

Bulk wurtzites, such as the stable phase at room temperature of GaN, AlN, InN [22,

23], possess a C6v point group symmetry. The character table for this point group

is given in Table 8.8. In that table the notation from Koster et al. [15] has been
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C6v E Ē
C2

C̄2
2C3 2C̄3 2C6 2C̄6

3σd

3σ̄d

3σv

3σ̄v
Basis Functions

Γ1 1 1 1 1 1 1 1 1 1 R or z
Γ2 1 1 1 1 1 1 1 -1 -1 Sz

Γ3 1 1 -1 1 1 -1 -1 1 -1 x3 − 3xy2

Γ4 1 1 -1 1 1 -1 -1 -1 1 y3 − 3yx2

Γ5 2 2 -2 -1 -1 1 1 0 0 (Sx − iSy), −(Sx + iSy)
Γ6 2 2 2 -1 -1 -1 -1 0 0 Γ3 × Γ5
Γ7 2 -2 0 1 -1

√
3 -
√
3 0 0 |1/2,−1/2〉, |1/2,+1/2〉

Γ8 2 -2 0 1 -1 -
√
3
√
3 0 0 Γ7 × Γ3

Γ9 2 -2 0 -2 2 0 0 0 0 |3/2,−3/2〉, |3/2,+3/2〉

Table 8.8: Character and basis functions table for C6v.

used. The reader must be careful because often in literature Herring’s scheme [24]

is used. In this scheme, the Γ5 and Γ6 irreps are interchanged respect to Koster’s

sequence [25].

Figure 8.7 (a) shows the band structure of GaN near the zone center. As opposed

to zincblendes, the top of the valence band in wurtzites is split into two spin degener-

ate bands. The uppermost—heavy hole (HH)—transforms according to the Γ9 irrep

of C6v, while the light hole (LH) and the crystal split band (CR) transform according

to Γ7. The crystal split band receives this name because, even when the spin orbit

interaction is not considered, that band is split from the others due to the crystal field

being different along z than along x and y. Panel (b) shows the splittings between

the different subbands. The numeric values are for GaN, but the behavior shown is

also applicable to InN. That panel also shows the allowed dipole transitions and their

polarization for vertical emission depending on the incoming spin (quantized along

the z axis).

At low temperatures, the thermal occupancy factor will make transitions to bands

other than the HH highly improbable. In that case (or, for that matter, whenever

transitions to the HH can be resolved spectroscopically), the polarization of the emit-

ted light in an arbitrary direction can be determined. The Clebsch-Gordan coefficients

for transitions from the CB into the HH band are basically the same than in the case

of D2d QWs, except for an overall factor. This is understandable, because in D2d
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Figure 8.7: Band structure near the zone center for GaN. (a) has been adapted from
Ref. [26]. The band structure for InN is the same except for the numerical values of
the splittings and the band gap. (b) shows the allowed dipole transitions and their
polarization for vertical emission as a function of the electron spin (taken along the
z direction).

heterostructures the x and y are also equivalent, while the z axis is singled out.

Therefore, the results shown in Fig. 8.4 will also be valid for transitions from the CB

into the Γ9 band in wurtzites.

8.5 Monte Carlo photon generation

At this point a single event generation scheme can be devised in order to reproduce

the above results and, once the photons are generated, study phenomena that might

alter their behavior depending on their polarization, such as interface refraction,

magneto-optical Kerr effect, passage through polarizers...

After that, it will be shown that the time-dependent perturbation picture and

the Monte Carlo scheme yield the same results when a large number of photons is
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considered.

8.5.1 Single event generation scheme

Figure 8.8 displays the general steps to generate a single photon using random num-

bers in such a way that their electric fields have the adequate polarization to re-

produce the results predicted by the time-dependent perturbation theory derivation.

This paragraph will discuss the steps inside the dashed rectangle in Fig. 8.8, namely

how to assign an electric field to a generated photon.

The recipe and its application to photon generation for a bulk zincblende are

described in the following steps:

I. A basis set of states {|κ, k〉} spanning the arrival band must be chosen.

II. A direction of propagation for the photon is generated according to the inten-

sity distribution given by Eq. (8.27). In the cases with axial symmetry, the

probability of emission towards a solid angle dΩ will depend only on the polar

angle θ:

p (θ, ϕ) dΩ =
f (cos θ)

2π
d (cos θ) dϕ, (8.38)

with f (cos θ) properly normalized to 1 and, if x is the generated random number

between 0 and 1, the appropriate cos θ can be found by solving the following

equation:

x =

∫ cos θ

−1
f (cos θ′) d (cos θ′) . (8.39)

III. A quantization axis for the electron spin must be chosen. The direction of the

electron spin is determined according to whether it is required to be random,

all or predominantly pointing in one direction...

IV. The momentum matrix element between the initial state and all the possible

arrival basis states 〈κ, k |P| i〉 is found.

V. The transition from |i〉 to the final state is partitioned to transitions to basis
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Figure 8.8: Flowchart for the Monte Carlo photon generation process.
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states |κ, k〉, each taking place with a probability

p (κ, k) =

∣

∣

∣〈κ, k |P| i〉 · a∗
θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2

∑

k′∈κ

(

∣

∣

∣
〈κ, k′ |P| i〉 · a∗

θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k′ |P| i〉 · a∗θϕ̂
∣

∣

2
) . (8.40)

VI. Generate a random number between 0 and 1, and choose the state to which

the transition has taken place according to the probabilities calculated in the

previous step.

VII. The electric field of the photon is set to

E = 〈κ, k |P| i〉 · a∗
θ̂ϕ
aθ̂ϕ + 〈κ, k |P| i〉 · a∗θϕ̂ aθϕ̂, (8.41)

where the units here are of no importance because in the end the electric field

will be renormalized. The components of the electric field can also be thought

of as the coefficients of the photon state.

VIII. Propagate the photon through the desired structure.

IX. Normalize the electric field of the photon to one. The amplitude of the electric

field given before carries information about the probability that the photon is

emitted along that direction. Since, by construction, the photon has made it to

the present point, the probability that it is there is one. With the normalization,

all photons will have the same weight when averaging electric fields.

X. Compute the Stokes parameter for that photon.

XI. Perform the average of the Stokes parameters for all photons hitting the desired

location.
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8.5.2 Equivalence of the Monte Carlo and the time-

dependent perturbation pictures

The fact that the prescription given in Sec. 8.5.1 yields the same results as

Eqs. (8.24)—(8.26) is not obvious at first sight, and requires some thought. Here the

equivalence will be shown for the light emitted in the semiconductor structure, when

its polarization has not been affected by any extraneous element.

In Sec. 8.5.1 different quantum states are being generated according to a classical

probability. Denstity matrices [27] are the ideal tool to describe this situation. In

particular, the density matrix describing a generated photon will be

ρ =
∑

k∈κ
p (κ, k) |κ, k〉〈κ, k|⊗

〈κ, k |P| i〉 ·
(

a∗
θ̂ϕ
|1θ̂ϕ〉+ a∗θϕ̂|1θϕ̂〉

)(

aθ̂ϕ〈1θ̂ϕ|+ aθϕ̂〈1θϕ̂|
)

· 〈κ, k |P| i〉∗
∣

∣

∣
〈κ, k |P| i〉 · a∗

θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
, (8.42)

where p (κ, k) is given by Eq. 8.40 and the denominator comes from the normalization

of the electric field or, in other words, the normalization of the photon state. The

expectation value of an operator, say the linear polarization parameter Q, will be

given by the trace over the photon and electron states of that operator times the

density matrix:

Qmeas = Tr (ρQ) =
∑

k′∈κ

∑

s′∈θ̂,ϕ̂

(〈κ, k′| ⊗ 〈1s′ |) ρQ (|κ, k′〉 ⊗ |1s′〉) =
∑

k∈κ

∑

s′∈θ̂,ϕ̂

p (κ, k)×

〈κ, k |P| i〉 · 〈1s′ |
(

|1θ̂ϕ〉aθ̂ϕ + |1θϕ̂〉aθϕ̂

)(

aθ̂ϕ〈1θ̂ϕ|+ aθϕ̂〈1θϕ̂|
)

Q|1s′〉 · 〈κ, k |P| i〉∗
∣

∣

∣〈κ, k |P| i〉 · a∗
θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
,

(8.43)

and we can use the action of operator Q as defined in Eq. (8.19) to arrive at the
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previously given expression:

Qmeas =

∑

k∈κ

(

∣

∣

∣
〈κ, k |P| i〉 · a∗

θ̂ϕ

∣

∣

∣

2

−
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
)

∑

k∈κ

(

∣

∣

∣
〈κ, k |P| i〉 · a∗

θ̂ϕ

∣

∣

∣

2

+
∣

∣〈κ, k |P| i〉 · a∗θϕ̂
∣

∣

2
) . (8.25)

The proof of equivalence for the other polarization operators U and V goes in a

very similar manner.

8.6 Application to a bulk zincblende

The general steps outlined in Sec. 8.5.1 can be made more explicit for the case of bulk

zincblendes due to the high symmetry they show. The following list is the equivalent

of the one previously shown, but adapted to bulk zincblendes:

I. The obvious choice for the basis for the arrival space are the {|3/2,mj〉} states
quantized along the z axis, due to the fact that tables of Clebsch-Gordan coef-

ficients are readily available for them.

II. The emission process—without taking polarization into account—is isotropic.

Therefore, two random numbers must be generated to obtain the polar angles

θ and ϕ of the unit vector along the direction of propagation of the photon. A

random number between -1 and 1 will yield cos θ; and a number between 0 and

2π will yield ϕ.

III. The quantization axis for the electron spin is chosen to be the z axis. Again, this

is because it is the convention used in the existing tables. Once the direction

where the spin is pointing has been set, the initial state is set to [27]

|i〉 = cos

(

θ

2

)

|Γ6,+1/2〉+ sin

(

θ

2

)

eiϕ|Γ6,−1/2〉 ≡

b+|Γ6,+1/2〉+ b−|Γ6,−1/2〉. (8.44)
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State p (κ, k)

|3/2,−3/2〉 |b−|2
4

(3 + cos(2θ))

|3/2,−1/2〉 |b+|2
6

(1 + cos2 θ) + 2|b−|2
3

sin2 θ

|3/2,+1/2〉 |b−|2
6

(1 + cos2 θ) + 2|b+|2
3

sin2 θ

|3/2,+3/2〉 |b+|2
4

(3 + cos(2θ))

Table 8.9: Transition probability for a state in the conduction band and arbitrary
spin into each of the states forming a basis in the valence band edge space.

IV. By virtue of the Wigner-Eckart theorem, the only component of the momentum

matrix element between the initial state and all the possible arrival basis states

〈3/2, k |P| i〉 will be given by the Clebsch-Gordan coefficients in Table 8.4.

V. The probability of transition to each of the states will be given by the application

of Eq. (8.40), and the results are listed in Table 8.9.

VI. Generate a random number between 0 and 1, and choose the state to which

the transition has taken place according to the probabilities calculated in the

previous step.

VII. The electric field of the photon is set to

E =
∑

j=x,y,z

(b+〈Γ5, j; Γ6,+1/2|κ, k〉+ b−〈Γ5, j; Γ6,−1/2|κ, k〉) ̂ · a∗θ̂ϕ aθ̂ϕ+

∑

j=x,y,z

(b+〈Γ5, j; Γ6,+1/2|κ, k〉+ b−〈Γ5, j; Γ6,−1/2|κ, k〉) ̂ · a∗θϕ̂ aθϕ̂, (8.45)

where ̂ can be x̂, ŷ or ẑ.

VIII. Propagate the photon through the desired structure.

IX. Normalize the electric field of the photon to one.

X. Compute the Stokes parameter for that photon.

XI. Perform the average of the Stokes parameters for all photons hitting the desired

location.
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Figure 8.9: Monte Carlo calculation of photon polarization for a zincblende for spin
down electrons. The data points and their standard deviation are shown. The lines
correspond to the theoretical values.
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Figure 8.9 shows the results for a Monte Carlo (MC) simulation of the light emitted

by a GaAs substrate [9]. It shows the different Stokes parameters for the generated

photons as a function of the cosine of the polar angle. The representation in terms of

the cosine of the polar angle is preferable because an interval in solid angle maps into

the same interval in cos θ no matter what the θ is. The points are the values obtained

following the steps just mentioned; while the error bars correspond to one standard

deviation. It is clearly seen that the photons generated using the MC method follow

the theoretical predictions of Eqs. (8.32)-(8.33). Of course, the MC values show the

fluctuations inherent to the statistical nature of that method.

8.7 Summary

In summary, a method for determining the polarization of light emitted in arbitrary

directions for an arbitrary initial electron spin population has been developed. This

method allows the generation of single photons having a polarization such that, when

averaged over a large number of events, reproduce the results from first-order time-

dependent perturbation theory. The limitations of Fermi’s golden rule for single

photon generation have been shown.
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Appendix A Explicit form of the 8-band

k · p Hamiltonian

The calculations in Chapters 5, 6 and 7 are based in the 8-band k · p Hamiltonian

derived by Trebin et al. [1]. This Hamiltonian has the nice property that it has been

constructed using the theory of invariants [2], and thus it correctly describes the Td

symmetry of bulk zincblendes. In particular, it includes terms breaking the spin

degeneracy of the bands at a general point in the Brillouin zone, making it ideal for

the study of inversion asymmetry effects. It also accounts for the effects of strain and

an external magnetic field.

Although the Hamiltonian is explicitly shown in Ref. [1], it will be rewritten here

to provide a higher degree of self containment to this thesis. Some typos present in

the original work by Trebin et al. are removed and, hopefully, no new ones will be

introduced.

The 8-band k · p Hamiltonian will be expressed in the basis
{

|Γ6,+1
2
〉 , |Γ6,−1

2
〉,

|Γ8,+3
2
〉, |Γ8,+1

2
〉, |Γ8,−1

2
〉, |Γ8,−3

2
〉, |Γ7,+1

2
〉, |Γ7,−1

2
〉
}

. It can be written in a block

diagonal form

H =











Hcc Hcv Hcs

Hvc Hvv Hvs

Hsc Hsv Hss











, (A.1)

where, of course,
(

Hαβ
)†

= Hβα, c refers to the two conduction band (CB) states, v

to the four heavy hole (HH) and light hole (LH) states and s to the two spin-orbit

split off (SO) states.

The constituent blocks of the Hamiltonian are shown in Table A.1. The meaning

of the different parameters is listed in Table 5.4 in the main text. The phases of

the wavefunctions and the prefactors in Table A.1 are chosen in a way that all the

parameters are real. The σ and the ρ matrices are the Pauli matrices; the T matrices
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Hcc=Ev + Eg +
~2k2
2m

+ A′k2 − gs e~
4mc

σ ·H+ C1 trε

Hvv=Hvv
k +Hvv

ε +Hvv
kl +Hvv

εk

Hvv
k =−~2

m

{

1
2
γ1k

2 − γ2
[(

J2x − 1
3
J2
)

k2x + cp
]

− 2γ3 [{JxJy} {kxky}+ cp]
}

−
e~
mc
{(κJx + qJ3x)Hx + cp}

Hvv
ε =Dd trε+ 2

3
Du

[(

J2x − 1
3
J2
)

εxx + cp
]

+ 2
3
D′

u [2 {JxJy} εxy + cp]

Hvv
kl =

2√
3
C
[{

Jx
(

J2y − J2z
)}

kx + cp
]

Hvv
εk =[C4 (εyy − εzz) kx + C ′

5 (εxyky − εxzkz)] Jx + cp

Hss=−∆so +
~2
2m
γ1k

2 − 2κ e~
2mc

σ ·H+Dd trε

Hcv=
√
3 [P (kxTx + cp) + iB (Tx {kykz}+ cp) + iC2 (Txεyz + cp)]

Hcs=− 1√
3
[P (kxρx + cp) + iB (ρx {kykz}+ cp) + iC2 (ρxεyz + cp)]

Hvs=Hvs
k +Hvs

ε +Hvs
εk

Hvs
k =− ~2

2m
[−3γ2 (Uxxk

2
x + cp)− 6γ3 (Uxy {kxky}+ cp)]− e~

mc
3
2
(UxHx + cp)

Hvs
ε =2Du (Uxxεxx + cp) + 2D′

u (2Uxyεxy + cp)

Hvs
εk=

3
2
[C4 (εyy − εzz) kx + C ′

5 (εxyky − εxzkz)]Ux + cp

cp means cyclic permutation, {AB} = 1
2
(AB +BA), trε = εxx + εyy + εzz

Table A.1: Matrix elements of the 8-band k · p Hamiltonian.

are given by

Tx = 1
3
√
2

(

−
√
3 0 1 0

0 −1 0
√
3

)

Ty = −i
3
√
2

(√
3 0 1 0

0 1 0
√
3

)

Tz =
√
2
3
( 0 1 0 0
0 0 1 0 )

Txx = 1
3
√
2

(

0 −1 0
√
3

−
√
3 0 1 0

)

Tyy = 1
3
√
2

(

0 −1 0 −
√
3√

3 0 1 0

)

Tzz =
√
2
3
( 0 1 0 0
0 0 −1 0 )

Tyz =
i

2
√
6

(

−1 0 −
√
3 0

0
√
3 0 1

)

Tzx = 1
2
√
6

(

−1 0
√
3 0

0
√
3 0 −1

)

Txy = i√
6

(

0 0 0 −1
−1 0 0 0

)

.

(A.2)

The matrices U are simply given by Ui = T †
i .
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Appendix B Group theory for band

structures

In this thesis an extensive use of group theoretical arguments is made. The following

lines are meant to be a utilitarian crash course on group theory for the reader not

familiar with the group theory (GT) concepts and language applied to semiconductor

band structure theory. This appendix is not by any means rigorous in the derivations,

proofs or definitions, but hopefully it is with the results. What will be presented here

is mainly a repetition, rephrasing or elaboration on the notes from the Ph129 course

by Kerry Vahala and the textbook used there [1]. Falicov [2] wrote another excellent

textbook with more emphasis on the applications of GT to solid-state physics.

B.1 Definitions

First, a group G consists of a set of elements and an operation that sends a pair

of elements back into another1 element of the set. The operation must satisfy the

following three properties for the set to be a group:

• The operation must be associative: a(bc) = (ab)c for all a, b, c ∈ G

• There must be an identity element e such that ae = a for all a ∈ G.

• For each a ∈ G there must be an inverse element a−1 such that aa−1 = e.

Then, the symmetry group of a crystal will be the set of operations that send a

crystal to itself, which can be shown to form a group. This group is called the space

group of the crystal, and there are 230 of them [3]. For each space group, there will be

a subset of operations that leave a certain point in the crystal invariant. This subset

1It does not need to be different from the original two.
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also forms a group and is called the point group of a crystal. There are 32 of these

crystallographic point groups [4] (i.e., point groups compatible with the existence of

a crystal). An example of a point group not being a crystallographic point group

would be the symmetry group of a molecule with pentagonal symmetry.

Now, focusing in the electronic band structure of a solid, one must consider that

the points in the Brillouin zone will have symmetry properties associated with the

point group of the parent crystal. In particular, it can be shown [2] that a state in

the zone center has the same symmetry properties as the underlying lattice, and that

the symmetry of a general state at k inside the Brillouin zone will be governed by the

subset of operations of the point group that leave k invariant. This set of operations

forms the “small group of k.”

At this point, a mathematical object satisfying the group multiplication table is

needed. If the group is commutative (aka. Abelian), plain numbers will do the job.

If the group is not, one has to resort to matrices. A set of numbers or matrices

that satisfies the group multiplication table, each one associated to a group member

and acting on a vector space V , constitutes a representation. If the elements of a

representation can (cannot) be put in a block diagonal form all at the same time,

the representation is called reducible (irreducible). The trace of a matrix belonging

to a representation is called the character. Obviously, the character of the matrix

representing the identity element will yield the dimensionality of the representation.

There exist published tables of characters for irreducible representations of the most

important groups.

B.2 Degeneracies, splittings and eigenstates

Finally, a point has been reached where one of the most important results of GT with

regard to crystals can be enunciated [1]:

Lemma 1 (Schur’s 1st) Let U(G) be an irreducible representation of a group G on

the vector space V , and H be an arbitrary operator on V . If H commutes with all
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the operators {U(g), g ∈ G}, then H must be a multiple of the identity operator I, i.e.

H = λI, where λ is a number.

On the other hand, the crystal Hamiltonian at a point k will commute with all

the symmetry operations S belonging to the small group of k:

SH(k) = H(k)S. (B.1)

Putting Eq. (B.1) together with Schur’s first lemma, one obtains that the sub-

space upon which an irreducible representation of the small group of k acts will be

degenerate. From this conclusion the power of GT to predict degeneracies at points

of high symmetry in the Brillouin zone is drawn.

Once this has been said, the recipe to find degeneracies at a given k point inside

the Brillouin zone2 can be stated:

I. Find the small group G(k) corresponding to k.

II. Look at the character table of G(k). Koster et al. [4] provide a good compilation

of tables for the crystallographic point groups.

III. The character of the identity element yields the degeneracy of the level trans-

forming according to the selected irreducible representation. If basis functions

are listed, they indicate the symmetry of the states.

An example the procedure described above can be the degeneracy of the levels

at the zone center in GaN. GaN has wurtzite structure. The point group at the

zone center (Γ point) is C6v. From Table 65 in page 67 in Koster et al. [4] it is

seen that (spin resolved) states at the zone center can transform according to three

different irreducible representations, each one of them twofold degenerate. A single

electron can transform only according to the irreducible representations that change

sign under a 2π rotation3. Looking at the tables of bases, and in the cases where the

2The treatment for points on the Brillouin zone boundary is more complicated.
3The irreducible representations above the line are useful for the study of systems with an even

number of electrons.
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states come from s or p states (that is, an sp model), one can see that the Γ9 states

will be proportional to |x+ iy〉| ↑〉 and |x− iy〉| ↓〉. Less can be said about the Γ7 and

Γ8. d type orbitals are needed to generate Γ8 states, so they will not appear in an

sp description, but that is not an inconvenient when describing the lower conduction

band and the upper valence bands of wurtzites.

B.3 Matrix elements

The consistency of the matrix elements of an operator O with the crystal symmetry

imposes certain restrictions on these matrix elements. The Wigner-Eckart theorem

exploits these restrictions to show that the matrix elements between states belong-

ing to given irreducible representations factor into a very small number of operator-

dependent constants and the rest is determined only by symmetry.

Theorem 1 (Wigner-Eckart) If {P α
i } is a set of components of the operator P

transforming according to the irreducible representation (irrep) α, then the matrix

element between states |vβj 〉 where β denotes the irrep and j labels the specific state

inside the β irrep is given by

〈

vγn |P α
i | vβj

〉

=
∑

k

cβ,γk Uαβ,γ∗

ij,n , (B.2)

where k runs over the number of times that the irrep Γγ is contained in Γα⊗Γβ, cβ,γk

is the irreducible matrix element, and does not depend on the indices i, j or n4, and

Uαβ,γ
ij,n is the Clebsch-Gordan coefficient for the appropriate point group connecting

states transforming according to the product group Γα ⊗ Γβ to states that transform

under the irrep Γγ.

The importance of this theorem is that it provides with selection rules and strength

ratios between matrix elements. As an example, one can evaluate the ratio of the

4It does, of course, also depend on the operator P .
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matrix elements
〈

Γ8,−3/2 |P 5
x |Γ6,−1

2

〉

〈

Γ8,+1/2 |P 5
x |Γ6,−1

2

〉 =
−ic6,81 /

√
2

−ic6,81 /
√
6
=
√
3 (B.3)

just by the application of the Wigner-Eckart theorem and looking up the coefficients

in Table 8.4.
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Appendix C Derivation of the formula

for the transmission coefficients

The aim of this appendix is to prove the formula for the transmission coefficients due

to tunneling

T
(

E, k‖
)

=
8
∑

j=1

∣

∣tj
(

E, k‖
)∣

∣

2

∣

∣vj
(

E, k‖;R
)∣

∣

∣

∣vI
(

E, k‖;L
)∣

∣

. (7.13)

C.1 Expansion to the Hellmann-Feynman theorem

In order to prove the formula above, the following generalization to the Hellmann-

Feynman theorem will be useful.

Theorem 2 Let A(λ) be a Hermitian operator, and let |u(λ)〉 and |v(λ)〉 be two

eigenvectors of A(λ) having the same eigenvalue a(λ). If 〈v(λ)|u(λ)〉 does not depend
on λ, then

〈

v(λ)

∣

∣

∣

∣

∂A(λ)

∂λ

∣

∣

∣

∣

u(λ)

〉

=
∂a(λ)

∂λ
〈v(λ)|u(λ)〉. (C.1)

Proof: Following the original proof of the Hellmann-Feynman theorem (see, for

example, Ref. [1]), the left hand side of Eq. (C.1) can be written as

〈

v(λ)

∣

∣

∣

∣

∂A(λ)

∂λ

∣

∣

∣

∣

u(λ)

〉

+ a(λ)

{[

∂

∂λ
〈v(λ)|

]

|u(λ)〉+ 〈v(λ)|
[

∂

∂λ
|u(λ)〉

]}

, (C.2)

where the assumption that 〈v(λ)|u(λ)〉 does not depend on λ has been used. Now,

since A is Hermitian, a(λ)|u(λ)〉 = A(λ)|u(λ)〉 and 〈v(λ)|A(λ) = a(λ)〈v(λ)|, therefore
the above equation becomes

〈

v(λ)

∣

∣

∣

∣

∂A(λ)

∂λ

∣

∣

∣

∣

u(λ)

〉

+

[

∂

∂λ
〈v(λ)|

]

A(λ)|u(λ)〉+ 〈v(λ)|A(λ)
[

∂

∂λ
|u(λ)〉

]

=

∂

∂λ
〈v(λ) |A(λ)|u(λ)〉 = ∂

∂λ
[a(λ)〈v(λ)|u(λ)〉] , (C.3)
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which proves Eq. (C.1) because of the assumption that 〈v(λ)|u(λ)〉 is independent of
λ.

The Hellmann-Feynman theorem is recovered taking A→ H and |u(λ)〉 = |v(λ)〉
(properly normalized) into Eq. (C.1):

〈

v(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

v(λ)

〉

=
∂E(λ)

∂λ
. (C.4)

Another useful case is when 〈v(λ)|u(λ)〉 = 0. Then, a straightforward application

of Eq. (C.1) shows
〈

v(λ)

∣

∣

∣

∣

∂A(λ)

∂λ

∣

∣

∣

∣

u(λ)

〉

= 0. (C.5)

In particular, this is useful when evaluating matrix elements of operators that are

a derivative of the Hamiltonian respect to some parameter. The above equation is

saying that ∂H(λ)
∂λ

is diagonal within a degenerate subspace of states.

C.2 Transmission coefficient

The transmission coefficient for the tunneling process in a heterostructure is given by

the ratio of probability currents flowing across a plane perpendicular to the growth

direction (chosen to be z) of the transmitted state respect to the incident state1:

T
(

E, k‖
)

=

∫

R

〈

t
∣

∣

∣
Ĵz(r)

∣

∣

∣
t
〉

dx dy

∫

L

〈

I
∣

∣

∣
Ĵz(r)

∣

∣

∣
I
〉

dx dy
, (C.6)

where L and R refer to the left and right electrode, respectively, and the current

operator is given by [2]

Ĵ(r0) =
1

2m
[Pδ(r− r0) + δ(r− r0)P] . (C.7)

1The ratio should only include the current due to transmitting, as opposed to evanescent,
components.
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Figure C.1: Illustration of the independence of
∫

Jzdx dy with respect to the plane
of integration. σ and σ′ are equivalent through the cyclic boundary conditions. The
thick lines represent current lines, and the hexagons are primitive zone boundaries.
The number of current lines cutting through the plane z0 is independent its z position.
Also, an appropriate control volume V for the mathematical proof and its boundary
S are shown.

It is easily seen that the usual value for the probability current is recovered by taking

the expectation value of Ĵ(r):

J(r) =
〈

ψ
∣

∣

∣
Ĵ(r)

∣

∣

∣
ψ
〉

=
~

2mi
[ψ∗(r) (∇ψ(r))− (∇ψ(r))∗ ψ(r)] . (C.8)

However, in quantum mechanics one is normally more comfortable taking volume

integrals (i.e., matrix elements) than integrals over a plane. To progress towards that

direction, first it must be shown that the integrals over the plane in Eq. (C.6) are

independent of the position z0 of the plane. To do this, only the bulk properties of the
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crystal need be considered. Cyclic boundary conditions for a bulk crystal are chosen

to facilitate the argument. A control volume V is defined in such a way that encloses

all the crystal along the x and y directions, but has an arbitrary thickness along the

z direction. Figure C.1 shows V limited by the closed surface S.

Since the current is being sought for a stationary state, ∂ρ
∂t

= 0, therefore

∇ · J(r) = 0. (C.9)

This equation can be integrated over V to obtain

0 =

∫

V

∇ · J(r)dx dy dz =

∫

S

J · dS =

∫

z1

Jzdx dy −
∫

z0

Jzdx dy, (C.10)

where in the last step the fact that the planes σ and σ′ (and the set perpendicular to

y) are equivalent under the cyclic boundary conditions has been used. Since z1 and

z0 were arbitrary, the independence of
∫

z
Jzdx dy on z has been proved.

Now, each of the integrals appearing in Eq. (C.6) can be trivially integrated respect

to z, with the limits chosen as described in Fig. C.2. Therefore,

T
(

E, k‖
)

=

∫ zR+dhkl,R
zR

(∫

R
Jz,t(r)dx dy

)

dz/dhkl,R
∫ zL+dhkl,L
zL

(∫

L
Jz,I(r)dx dy

)

dz/dhkl,L
, (C.11)

where dhkl,L (dhkl,R) denotes the distance between planes with Miller indices [khl] in

the left (right) electrode and Jz,t =
〈

t
∣

∣

∣
Ĵz(r)

∣

∣

∣
t
〉

. Note that the indices don’t need to

be the same in both electrodes.

The integrals in Eq. (C.11) can be transformed into integrals over the electrode

volume as follows

∫ zR+dhkl,R

zR

(∫

R

Jz,t(r)dx dy

)

dz = nhklS

∫

PC

Jz,t(r)dV, (C.12)

where nhkl is the number of lattice points per unit surface in the [hkl] plane, S is the

transverse area of the crystal and the PC symbol means that the integral is to be

performed over a primitive cell. Following Feynman [3], the integral of the current
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Figure C.2: Integration region for Jz. dhkl is the distance between [hkl] planes,
perpendicular to which the heterostructure is grown.

density over the primitive cell becomes

∫

PC

Jz,t(r)dV =

〈

t

∣

∣

∣

∣

Pz

m

∣

∣

∣

∣

t

〉

, (C.13)

but Pz/m is simply vz, the z component of the velocity operator. Therefore

∫

PC

Jz,t(r)dV = 〈t |vz| t〉 = vz(E, k‖; t)〈t|t〉, (C.14)

where vz(E, k‖; t) is the group velocity of the transmitted state. An analogous ex-

pression is obtained for the current of the incoming state.
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Now, using Eqs. (C.14) and (C.12), the average current through a crystal plane

can be obtained
∫

R
Jz(r)dx dy
∫

R
dx dy

=
〈t|t〉vz(E, k‖; t)

VPC,R

, (C.15)

where VPC,R is the primitive cell volume of the right electrode and z is the direction

perpendicular to the plane under study. This is the same result shown in Shock-

ley [4], but generalized to states that are not pure Bloch states. From Eq. (C.15) and

Eq. (C.6)

T
(

E, k‖
)

=
〈t|t〉vz(E, k‖; t)/VPC,R

〈I|I〉vz
(

E, k‖; I
)

/VPC,L

. (C.16)

More progress can be made substituting the expression for |t〉 in terms of the

Bloch states

|t〉 = tj|Bk‖,kz,j , R〉, (C.17)

with |Bk‖,kz,j , R〉 given by Eq. (7.2’) and being orthogonal to each other, into

Eq. (C.13):
〈

t

∣

∣

∣

∣

Pz

m

∣

∣

∣

∣

t

〉

=
1

m
t∗l tj

〈

Bk‖,kz,l , R |Pz|Bk‖,kz,j , R
〉

. (C.18)

The Einstein summation convention is used. The matrix element on the right hand

side will only be different from zero when kz,l = kz,j because of the space group

selection rules for a position independent operator2. The matrix element between

Bloch states can be further developed considering the following two cases:

• kz,l = kz,j and l = j

The matrix element yields the velocity of the state |Bk‖,kz,j , R〉

1

m

〈

Bk‖,kz,j , R |Pz|Bk‖,kz,j , R
〉

= vj
(

E, k‖;R
)

. (C.19)

Since

vj
(

E, k‖;R
)

=
1

~
∂E(k‖, kz)

∂kz

∣

∣

∣

∣

kz,j

=
1

~

〈

uk‖,kz,j

∣

∣

∣

∣

∂H(k‖, kz)

∂kz

∣

∣

∣

∣

uk‖,kz,j

〉

, (C.20)

2Implicitly, the assumption is made that the tunneling process does not involve states in the edge
of the Brillouin zone.
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where the Hellmann-Feynman theorem has been used in the last step, a velocity

operator appropriate for application to the periodic part of the Bloch states can

be defined [5]:

v̂ =
1

~
∇kH(k‖, kz). (C.21)

Remember that now k in H(k‖, kz) plays the role of three parameters in the

k · p Hamiltonian.

• kz,l = kz,j and l 6= j

In this case, it is easily seen that

1

m

〈

Bk‖,kz,l , R |Pz|Bk‖,kz,j , R
〉

=
1

m

〈

uk‖,kz,l |Pz|uk‖,kz,j

〉

, (C.22)

and, using the form (C.21) for the velocity operator,

1

m

〈

Bk‖,kz,l , R |Pz|Bk‖,kz,j , R
〉

=
1

~

〈

uk‖,kz,l

∣

∣

∣

∣

∂H(k‖, kz)

∂kz

∣

∣

∣

∣

uk‖,kz,j

〉

= 0, (C.23)

where the result in Eq. (C.5) has been used in the last step.

Therefore, one is only left with the diagonal elements of the velocity operator.

Collecting Eqs. (C.23), (C.19), (C.18) and (C.15) into Eq. (C.16) one obtains

T
(

E, k‖
)

=

∑8
j=1

∣

∣tj
(

E, k‖
)∣

∣

2
vj(E, k‖;R)/VPC,R

∑8
l=1

∣

∣Il
(

E, k‖
)∣

∣

2
vl(E, k‖;L)/VPC,L

. (C.24)

The volume factors appear because |I〉 and |t〉 are subject to normalization over the

whole structure, as can be seen if one considers a case where an electron propagates

in free space and partitions one region with cells of volume VPC,L and another with

cells of volume VPC,R. But if one solves for coefficients of the envelope function, as

usually done, then each Bloch state is normalized to one within a primitive cell and

the volume factors can be dropped off, resulting in

T
(

E, k‖
)

=

∑8
j=1

∣

∣tj
(

E, k‖
)∣

∣

2
vj(E, k‖;R)

∑8
l=1

∣

∣Il
(

E, k‖
)∣

∣

2
vl(E, k‖;L)

, (C.25)
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which reduces to Eq. (7.13) when the incident state is supposed to be a pure Bloch

state.
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Appendix D Velocity operator in the

k · p formalism

Probably the following development or something very similar to it is already some-

where else, but since I came up with it and it helped me clarify some aspects of the

k · p formalism and understand better the origin of

vg =
∂E(k)

∂k
, (D.1)

I decided to include it in this thesis.

The eigenstates of the Hamiltonian of a crystal can also be chosen to be eigenstates

of the translation operations corresponding to that crystal. By Bloch’s theorem [1],

these states will have the form

Ψk = eik·run
k, (D.2)

where n labels the band and k is the electron wavevector.

The Schrödinger equation with spin-orbit interaction states

HΨk =

{

P 2

2m
+ V (r) +

~
4m2c2

[∇V (r)×P] · σ
}

Ψk = EΨk. (D.3)

Plugging Eq. (D.2) into the Schrödinger equation, and equation that the un
k’s must

satisfy is obtained [2]:

Hun
k =

{

H +
~
m
k ·P+

~2k2

2m
+

~
4m2c2

[∇V (r)× k] · σ
}

un
k = Eun

k. (D.4)

Note that, although H is commonly called the Hamiltonian of the crystal, it is really

not a true Hamiltonian because of the presence of the extra terms. However, to stick

with the convention, the term Hamiltonian is used throughout this thesis for H or
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H indistinctly. From a more mathematical point of view, H is just an operator that

happens to have the same spectrum as the true Hamiltonian of the system.

A velocity operator in quantum mechanics consistent with the Ehrenfest theorem

can be defined by

dr

dt
=
−i
~

[r, H] ⇒ dr

dt
=

P

m
+

~
4m2c2

[σ ×∇V (r)] . (D.5)

Now, keeping with the philosophy of using the un
k’s instead of the Ψk’s, one looks

for a velocity operator v̂ such that

〈

Ψn′
k′

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

Ψn
k

〉

=
〈

un′
k′ |v̂|un

k

〉

. (D.6)

Plugging Eq. (D.5) into Eq. (D.6) one obtains

〈

un′
k′ |v̂|un

k

〉

=

〈

Ψn′
k′

∣

∣

∣

∣

P

m
+

~
4m2c2

[σ ×∇V (r)]

∣

∣

∣

∣

Ψn
k

〉

, (D.7)

and from Eq. (D.2)

〈

un′
k′ |v̂| un

k

〉

=
~k
m

〈

un′
k′

∣

∣

∣
ei(k−k′)·r

∣

∣

∣
un

k

〉

+

〈

un′
k′

∣

∣

∣

∣

ei(k−k′)·rP

m

∣

∣

∣

∣

un
k

〉

+

〈

un′
k′

∣

∣

∣

∣

ei(k−k′)·r ~
4m2c2

[σ ×∇V (r)]

∣

∣

∣

∣

un
k

〉

. (D.8)

Comparing the equation above with Eq. (D.4), one sees that the matrix elements

of the tentative velocity operator must satisfy1

〈

un′
k′ |v̂|un

k

〉

=

〈

un′
k

∣

∣

∣

∣

1

~
∂H
∂k

∣

∣

∣

∣

un
k

〉

δk′k, (D.9)

and from here the definition of the velocity operator [3] in the k · p formalism

v̂ =
1

~
∂H
∂k

(D.10)

1Note that, since this offers a prescription for the evaluation of matrix elements between any
Bloch state, it is also valid for arbitrary states.
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follows. However, it must be emphasized that, as shown in the above derivation, this

definition only applies when looking at matrix elements between states with the same

k.

At this point, one can find the expectation value of the velocity of a Bloch state

quite easily:

vnk =

〈

Ψn
k

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

Ψn
k

〉

=

〈

un
k

∣

∣

∣

∣

1

~
∂H
∂k

∣

∣

∣

∣

un
k

〉

=
1

~
∂En(k)

∂k
, (D.11)

where, in the last step, the theorem proved in Sec. C.1 has been used.
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