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Chapter 2

Physics of Tunneling Spectroscopy

Electron tunneling spectroscopy in artificial solid-state tunneling structures was pioneered by the

work of Esaki on semiconductor p-n junctions in 1958 [108]. Shortly after, Fisher and Giaever

succeeded in fabricating thin-film metal-insulator-metal junctions with reproducible behavior in

1959 [109]. Furthermore, by cooling to below the transition temperature of lead, Giaever [110] di-

rectly observed the superconducting energy gap in the differential tunneling conductance (dI/dV

vs. V ) of an aluminum-oxide-lead junction. The importance of this discovery is two-fold. For one

thing, this is the first unequivocal evidence that tunneling current in a well-formed junction ac-

counts entirely for the total current across the junction. For another, it demonstrates that tunneling

spectroscopy is a powerful high-energy-resolution tool to study the electronic structures of super-

conducting material. In this thesis, we employed a specific configuration of tunneling technique, the

scanning tunneling spectroscopy, with a normal-metal tip as the counter-electrode to study high-

temperature superconductors. To set the foundation for understanding the physics encoded in the

tunneling spectra, we first review the theories related to the normal-metal-insulator-superconductor

(N-I-S) tunneling process and summarize the equations relevant to data analysis and numerical

simulations in later chapters.

2.1 Tunneling Hamiltonian

The most commonly adopted approach to solving the tunneling problem in a many-body system is

the transfer Hamiltonian formalism [111, 112, 113] The central assumption of the theory is that the
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tunneling barrier separates the two electrodes into two nearly independent subsystems, HL and HR,

with a weak residual perturbation, HT , coupling the ground state to the excited states in which a

bare electron is transferred from one electrode to the other. The Hamiltonians for the uncoupled

left and right electrodes are

HL =
∑
p

εpc
†
pcp = µLN̂L +

∑
p

ξpc
†
pcp (2.1)

and

HR =
∑
q

εqc
†
qcq = µRN̂R +

∑
q

ξqc
†
qcq (2.2)

where cp and c†q are the particle operators, {cp, c†q} = 0, and

HT =
∑
p,q

Tp,q{c†pcq + c†qcp} (2.3)

is the tunneling Hamiltonian, also called the transfer Hamiltonian. In Eqs. (2.1)−(2.3), εp and εq

are the single-particle eigen-energies, µL and µR the chemical potentials, N̂L and N̂R the number

operators and ξp and ξq the single-particle eigen-energies referenced to µL and µR respectively.

The tunneling matrix element, Tp,q, is the probability amplitude to transfer an electron across the

insulating barrier. Using first-order time-dependent perturbation theory, Bardeen [111] showed that

Tp,q is determined by the quantum mechanical current density operator evaluated within the barrier,

Tp,q = − h̄2

2m

∫ {
ψ∗p∇2ψq − ψ∗q∇2ψp

}
dτ = − h̄2

2m

∫ {
ψ∗p∇ψq − ψ∗q∇ψp

}
· d~S, (2.4)

where dτ is the volume element, and d~S is the area element.

After summing over all relevant states, the total tunneling current at the bias voltage V given

by the Fermi golden rule is

I(V ) =
4πe
h̄

∑
p,q

|Tp,q|2 [f (ξp)− f (ξq)] δ(ξp − ξq + eV ), (2.5)
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where ψp and ψq are the single-particle wavefunctions of the left and right electrodes, and f is the

Fermi function, f(ξ) = 1
1+e−ξ/kBT .

Equation (2.5) is valid only in a non-interacting, single-particle approximation. When generalized

to an interacting system that contains all the many-body effects, the tunneling current should be

written in terms of the spectral functions of the two electrodes AL (p, ωp) and AR (q, ωq) [114, 113],

I(V ) =
4πe
h̄

∑
p,q

|Tp,q|2
∫
dωp

2π

∫
dωq

2π
[f (ωp)− f (ωq)]AL (p, ωp)AR (q, ωq) δ(ωp − ωq + eV ) (2.6)

where ωp and ωq are two dummy energy variables to be integrated over. In the non-interacting

limit, AL (p, ωp) = 2πδ(ωp − ξp), AR (q, ωq) = 2πδ(ωq − ξq), and (2.6) reduces to (2.5).

It is generally assumed that the junction surface is sufficiently smooth so that barrier transmission

is specular and that the band structure varies sufficiently slowly so that the WKB approximation is

valid [115, 116]. In this case, the evaluation of the matrix element, Tp,q, reduces to a one-dimensional

tunneling problem. For metallic electrodes with parabolic band structures,

|Tp,q|2 ≈ ∂ξp
∂pL

∂ξq
∂qL

|D(ξp,pT )|2 δ (pT − qT )

D(ξp,pT ) = exp
[
−

∫
dx κ(x, ξp,pT )

]
κ(x, ξp,pT ) =

√
2m

[
U(x, V )− ξp + h̄2p2

T /2m
] , (2.7)

where the subscript L indicates the longitudinal component of the momentum, T indicates the

transverse component, D is the transmission coefficient, and κ is the wave vector inside the tunneling

barrier U(x, V ). Under the assumption that the longitudinal energy (ξp−h̄2p2
T /2m) of the tunneling

particle is sufficiently smaller than the barrier height U(x, V ), the barrier transmission D(ξp,pT ) is

approximately a constant.

With Eq. (2.7), when converting the summation over momenta in (2.5) into energy integrals, the
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longitudinal band structure is eliminated by the group velocity factors ∂ξpL

∂pL
and ∂ξqL

∂qL
. As a result,

I(V ) =
4πe
h̄

∑
pT

∫
dξp

∣∣Dξp,pT

∣∣2 [f(ξp)− f(ξp + eV )] ∝ |D|2
∫
dξ [f(ξ)− f(ξ + eV )] , (2.8)

where the normal state band structure drops out entirely from the expression,1 and the tunneling

current is ohmic at low-bias voltages, I(V ) ∝ |D|2 eV . For electrodes with more complicate band

structures, the cancellation between the Jacobian and the group velocity factors in the tunneling

matrix element Tp,q are not complete. Therefore, the tunneling conductance generally contains

convoluted information of the band structure.2

In contrast to the subtleties involved in the interpretation of metal-insulator-metal (N-I-N)

tunneling and metal-insulator-semiconductor tunneling spectra in terms of band structure anoma-

lies [115, 117], the N-I-S tunneling current has a surprisingly simple form [110],

I(V ) ∝
∫ ∞

−∞
dξ |D|2 [f(ξ)− f(ξ + eV )]NS(ξ + eV ), (2.9)

where NS(ξ) ∝ |ξ|√
ξ2−∆2

is the density of states of the superconducting electrode, and ∆ is the energy

gap of the superconductor. Assuming D varies slightly with energy, the differential conductance

measures directly the BCS (Bardeen-Cooper-Schrieffer) density of states in the low-temperature

limit,

dI
dV (V ) ∝ |D|2

∫∞
−∞ dξ NS(ξ)

[
−∂f(eV+ξ)

∂(eV )

]
∝ |D|2NS (eV ) .

(2.10)

This simple relation between the tunneling conductance and the BCS density of states arises
1More precisely, the summation over the transverse momentum pT in Eq. (2.8) still contains transverse band

structure information. However, for tunneling process between simple metals where a large number of transverse
momentum states are available, the exponential function in D(ξp,pT ) limits the effective tunneling to electrons at
nearly normal incidence. Consequently, the transverse band structure effect is also suppressed [116].

2Most textbooks on many-body physics or superconductivity treat the the tunneling matrix element Tp,q as a
constant and pull it out of the momentum summation in Eqs. (2.5) and (2.6). As a result, converting the momentum
sum into energy integrals lumps the band structure effect into two density of states factors NL and NR in the tunneling
current expression

I(V ) ∝ |T |2
Z
dξ NL(ξ)NR(ξ + eV ) [f(ξ)− f(ξ + eV )] ,

which strictly speaking is incorrect. Using tunneling spectroscopy to determine single-particle band structure informa-
tion, such as the band edge of semiconductors, generally suffers from the complicated functional form of the tunneling
matrix element and other model-dependent uncertainties. More details are given in the classic books on tunneling by
Wolf [117] and Duke [115].
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from the fact that, although tunneling current does not probe the bare band structure directly, it

contains direct information about the spectral function of the many-body system. More explicitly, by

identifying AL(p, ωp) and AR(q, ωq) in (2.6) with the free electron and the superconducting spectral

functions, respectively,

AL(p, ωp) = 2πδ(ωp − ξp)

AR(q, ωq) = 2πu2
qδ(ωq − Eq) + 2πv2

qδ(ωq + Eq),
(2.11)

where uq and vq are the coherence factors and Eq =
√
ξ2q + ∆2 the quasiparticle eigen-energy,

Eq. (2.6) can be shown to be equivalent to (2.9) under some general assumptions. Interestingly, in

the final result, the coherence factors u and v drop out, and a naive semiconductor representation

works in the N-I-S tunneling problem.

We postpone the derivation of Eqs. (2.6) and (2.9) to §2.1.1 and end this section by pointing out

the limitations of the tunneling Hamiltonian formalism. There are three primary difficulties with

the theory [118, 119]. First, there are ambiguities in decomposing the Hamiltonian into HL, HR,

and HT . Second, it is impossible to find a set of single-particle wavefunctions that are complete on

the left (right) electrode and, at the same time, orthogonal to all the wavefunctions on the right

(left) electrode, so that HL and HR commute. Third, the first-order time-dependent perturbation

theory does not provide an estimate of the errors. Feuchtwang studied these issues thoroughly to

investigate the validity of tunneling Hamiltonian formalism [119]. In the report [119], a procedure

to calculate Bardeen’s transfer matrix element was established and the matrix element was inter-

preted as a pseudopotential representing the boundary conditions at the interface. The resulting

expression for computing the tunneling current formally agrees with the results obtained from the

tunneling Hamiltonian approach. Thus, despite the aforementioned problems, the simple tunneling

Hamiltonian picture gives us an answer both easy to understand and consistent with the result of a

more sophisticated theory. More details are given in [119] and references therein.
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2.1.1 Normal-insulator-superconductor tunneling

Giaever’s N-I-S tunneling result [110] that states that the differential conductance is directly propor-

tional to the BCS density of states is somewhat surprising because, when calculating most transition

rates in a BCS superconductor, the BCS coherence factors generally have important consequences. It

is therefore remarkable that they drop out completely from the expression for the tunneling process.

This interesting fact stems from normal electrons tunneling into both electron- and hole-branches of

the quasiparticles in the superconductors. We now derive (2.6) and (2.9) via the tunneling Hamil-

tonian approach [112].

The total Hamiltonian is H = HN + HS + HT (N: normal metal, S: superconductor), where

HT =
∑

p,q,σ{Tp,qc
†
p,σcq,σ + T ∗p,qc

†
q,σcp,σ}. Current flowing through the junction equals to

I = 〈Î〉 = e〈 ˙̂
NS〉 =

e

ih̄

〈[
N̂S ,H

]〉
=

e

ih̄

〈[
N̂S ,HT

]〉
=

e

ih̄

∑
p,q,σ

〈
Tp,qc

†
p,σcq,σ − T ∗p,qc

†
q,σcp,σ

〉
.

(2.12)

To first-order in HT , linear response theory gives

I =
e

h̄2

∑
p,q,σ

∫ ∞

−∞
dt′Θ(t− t′)

〈[
HT (t′) , Tp,qc

†
p,σ (t) cq,σ (t)− T ∗p,qc

†
q,σ (t) cp,σ (t)

]〉
, (2.13)

in which c†q,σ (t), cq,σ (t), c†p,σ (t), and cp,σ (t) are defined in the interaction picture. The first two

operators are the creation and annihilation operators for electrons in the superconducting electrodes,

while the last two are those for the electrons in the normal metal.

In the tunneling process where a definite number of electrons are transferred into a supercon-

ductor, Josephson’s definition [120] of the quasiparticle operators (γe(h),σ and γ†e(h),σ) proved to be

superior to the ordinary Bogoliubov operators, for the former create an exact charge e or −e in the
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superconductor. The Josephson quasiparticle operators are defined by

γ†e,q↑ = uqc
†
q↑ − vqS

†c−q↓

γ†h,q↑ = uqSc
†
q↑ − vqc−q↓ = Sγ†e,q↑

γ†e,q↓ = uqc
†
−q↓ + vqS

†cq↑

γ†h,q↓ = uqSc
†
−q↓ + vqcq↑ = Sγ†e,q↓,

(2.14)

where S† and S are the pair creation and annihilation operators. The inverse operators of (2.14)

are

c†q↑ = uqγ
†
e,q↑ + vqγh,q↓

c†−q↓ = uqγ
†
e,q↓ − vqγh,q↑.

(2.15)

Taking into account the chemical potential difference with a bias voltage, µN − µS = eV , the

unperturbed Hamiltonian and the operators in the interaction picture are written out as

HN = µN N̂N +
∑
pσ ξpc

†
pσcpσ

HS = µSN̂S +
∑
qσ Eq

(
γ†e,qσγe,qσ + γ†h,qσγh,qσ

) (2.16)

c†pσ (t) = e
i
h̄HN tc†pσe

− i
h̄HN t = e

i
h̄ (ξp+µN )tc†pσ

cpσ (t) = e
i
h̄HN tcpσe

− i
h̄HN t = e−

i
h̄ (ξp+µN )tcpσ

(2.17)

c†q↑ (t) = uqγ
†
e,q↑ (t) + vqγh,q↓ (t) = uqe

i
h̄ (Eq+µS)tγ†e,q↑ + vqe

− i
h̄ (Eq−µS)tγh,q↓

cq↑ (t) = uqγe,q↑ (t) + vqγ
†
h,q↓ (t) = uqe

− i
h̄ (Eq+µS)tγe,q↑ + vqe

i
h̄ (Eq−µS)tγ†h,q↓

c†q↓ (t) = uqγ
†
e,q↓ (t)− vqγh,q↑ (t) = uqe

i
h̄ (Eq+µS)tγ†e,q↓ − vqe

− i
h̄ (Eq−µS)tγh,q↑

cq↓ (t) = uqγe,q↓ (t)− vqγ
†
h,q↑ (t) = uqe

− i
h̄ (Eq+µS)tγe,q↓ − vqe

i
h̄ (Eq−µS)tγ†h,q↑.

(2.18)

In Eqs (2.16)−Eqs (2.18), Eq =
√
ξ2q + ∆2

q is the quasiparticle excitation energy, µN and µS are the

chemical potentials of the normal metal and the superconductor, ξp and ξq are the single-particle

energies referenced to µN and µS , respectively, and N̂N and N̂S are the number operators of the
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normal and superconducting electrodes.

Substituting (2.17) and (2.18) into (2.13) and keeping in mind that 〈c†pσcpσ〉 = f (ξp), 〈cpσc†pσ〉 =

1 − f (ξp), 〈γ†e,qσγe,qσ〉 = 〈γ†h,qσγh,qσ〉 = f (Eq), and 〈γe,qσγ†e,qσ〉 = 〈γh,qσγ†h,qσ〉 = 1 − f (Eq), we

find that the integral in (2.13),
∫∞
−∞ dt′θ (t− t′)

〈[
HT (t′) , Tp,qc

†
p,σ (t) cq,σ (t)− T ∗p,qc

†
q,σ (t) cp,σ (t)

]〉
,

equals to

ih̄
u2

qf(ξp)[1−f(Eq)]

ξp−Eq+eV+iδ + ih̄
v2qf(ξp)f(Eq)

ξp+Eq+eV+iδ

−ih̄u
2
qf(ξp)[1−f(Eq)]

ξp−Eq+eV−iδ − ih̄
v2qf(ξp)f(Eq)

ξp+Eq+eV−iδ

−ih̄u
2
qf(Eq)[1−f(ξp)]

ξp−Eq+eV+iδ − ih̄
v2q [1−f(ξp)][1−f(Eq)]

ξp+Eq+eV+iδ

+ih̄u
2
qf(Eq)[1−f(ξp)]

ξp−Eq+eV−iδ + ih̄
v2q [1−f(ξp)][1−f(Eq)]

ξp+Eq+eV−iδ ,

(2.19)

Recall 1
x−x0±iδ = P 1

x−x0
∓ iπδ (x− x0). The principal integrals in (2.19) cancel each other. Only

the delta functions are left. Thus,

I = 4πe
h̄

∑
p,q |Tp,q|2 {u2

q [f (ξp)− f (Eq)] δ (ξp − Eq + eV )

−v2
q [1− f (ξp)− f (Eq)] δ (ξp + Eq + eV )}.

(2.20)

For a state q+ with Eq+ and uq+ , there is another state q− with the same energy Eq− = Eq+

but ξq− = −ξq+ , such that
∣∣uq+

∣∣2 +
∣∣uq−

∣∣2 =
∣∣uq+

∣∣2 +
∣∣vq+

∣∣2 = 1, and
∣∣vq+

∣∣2 +
∣∣vq− ∣∣2 =

∣∣vq+

∣∣2 +∣∣uq+

∣∣2 = 1. Moreover, because q+ and q− are both near the same point on the Fermi surface,∣∣Tp,q+

∣∣ ≈ ∣∣Tp,q−
∣∣. Thus, when summing over all possible q values, the coherence factors u2

q and v2
q

drop out, and

I =
4πe
h̄

∑
p,q

|Tp,q|2 [f (ξp)− f (Eq)] δ (ξp − Eq + eV )− [1− f (ξp)− f (Eq)] δ (ξp + Eq + eV )}.

(2.21)

Recall that in Eq. (2.7), assuming specular transmission and bare parabolic band structures, the

tunneling matrix element is approximately

|Tp,q|2 ≈
∂ξp
∂pL

∂ξq
∂qL

|D(ξp,pT )|2 δ (pT − qT ) , (2.22)
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where the subscript L indicates the longitudinal component and T the transverse component of the

momenta. When converting the momentum summation in (2.21) into energy integrals, assuming

|D|2 varies slowly, the tunneling current can be expressed as

I(V ) ∝ |D|2NS (0)
∫∞
−∞ dξp

∫∞
0
dEq

(
∂ξq
∂Eq

)
{[f (ξp)− f (Eq)] δ (ξp − Eq + eV )

− [1− f (ξp)− f (Eq)] δ (ξp + Eq + eV )},
(2.23)

where NS(0) is the density of states of the superconducting electrode around the Fermi level. Define

NS (Eq)
NS (0)

=
∣∣∣∣ ∂ξq∂Eq

∣∣∣∣ = {
|Eq|√
E2

q−∆2
(|Eq| > ∆)

0 (|Eq| < ∆) ,
(2.24)

where we have assumed an s-wave superconductor so that ∆ is independent of q. We note that by

using 1− f (−ξp − eV ) = f (ξp + eV ), we arrive at the Giaever’s simple formula:

I(V ) ∝ |D|2
∫∞
−∞ dξp{NS (ξp + eV ) [f (ξp)− f (ξp + eV )]Θ(ξp + eV )

−NS (−ξp − eV ) [1− f (ξp)− f (−ξp − eV )] [1−Θ(ξp + eV )}]

∝ |D|2
∫∞
−∞ dξNS (ξ + eV ) [f (ξ)− f (ξ + eV )] ,

(2.25)

The subscript p is dropped in the very last equation. At low temperatures, (2.25) reduces to

dI

dV
(V ) ∝ |D|2NS (eV ) . (2.26)

Thus, measuring the differential conductance spectrum is equivalent to measuring the superconduct-

ing density of states.

The transfer Hamiltonian formalism, and hence Eq.( 2.26), applies only to tunneling processes

with a large barrier height. Furthermore, in deriving ( 2.26) we sum over the momenta values for

both electrodes, so the momentum-dependent information of the tunneling spectral weight is lost.

As a result, Eqs.( 2.25) and ( 2.26) are valid only for tunneling into a conventional superconductor

whose pairing potential is isotropic, or to those processes that sample over all possible momentum
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distribution in an unconventional superconductor, such as the c-axis tunneling of a d-wave super-

conductor where the surface normal direction of the superconducting electrode aligns along its c

crystalline axis.

In the following section, we will introduce another formalism, the generalized Blonder-Tinkham-

Klapwijk (BTK) theory, that goes beyond the tunneling limit and analyzes tunneling processes

with an arbitrary barrier strength within the same framework. More importantly, BTK theory

allows us to simulate the tunneling spectra that retain the momentum-dependent information of

an unconventional superconductor. For instance, the zero-bias conductance peak that appears in

the tunneling spectrum taken on a {110}-oriented d-wave superconductor reveals existence of nodes

and the phase change of the d-wave order parameter, while the U-shape spectral gap in the {100}

tunneling spectra of a d-wave superconductor reveals the maximum value of the pairing potential.

Thus, BTK theory serves as an important tool to extract the pairing symmetry and pairing potential

of any unconventional superconducting order parameter.

2.2 Pairing symmetry and tunneling spectra: generalized

Blonder-Tinkham-Klapwijk (BTK) model

Another way of treating the N-I-S tunneling process is to view it as a scattering problem. Analogous

to solving the Schrodinger equation in the N-I-N scattering problem, here we solve the Bogoliubov–de

Gennes (BdG) equation where the superconducting order parameter serves as a position-dependent

off-diagonal potential ∆ (x) and the interface as a diagonal delta-function potential with a variable

barrier strength Hδ (x). This approach has the advantage of capturing an important process that

the tunneling Hamiltonian failed to, i.e., the Andreev reflection in the low-barrier N-S tunneling

limit [121]. Andreev realized that, when an electron (or hole) of energy E approaches the N/S

interface from the N region, it will be reflected as a hole (or electron) where |∆| rises above E,

provided that the length scale over which ∆ varies is much larger than the Fermi wavelength.

Andreev reflection arises naturally from the Bogoliubov–de Gennes (BdG) equation with a spatially
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slowly varying order parameter and a vanishing barrier strength [121].

To take into account the Andreev process and to generalize the N-I-S tunneling problem to

acount for arbitrary barrier strength, Blonder et al. [122] proposed to calculate the tunneling current

through the use of the BdG equation. In the BTK formalism, the BdG equation is set up such that

the interface between N and S is modeled as a delta function with a variable dimensionless barrier

strength Z = mH/h̄2kf . The order parameter ∆ (x) is approximately zero on the N side and a

constant on the S side. By matching the boundary conditions, the probability current of normal

reflection B(E) and that of Andreev reflection A(E) are derived [Appendix A]. The tunneling

current as a function of the bias voltage V is given in terms of A(E) and B(E),

I ∝ NN

∫ ∞

−∞
dE [f (E − eV )− f (E)] [1 +A (E)−B (E)] . (2.27)

While ordinary reflection associated with B(E) reduces the tunneling current, Andreev reflection

associated with A(E) enhances it by transmitting a Cooper pair over the interface for one incident

electron.

The Andreev process not only plays an important role in the N-I-S tunneling for a conventional

BCS s-wave superconductor in the low-barrier limit, but is also fundamental in the formation of a

novel zero-energy surface state of an unconventional superconductor [123]. Kashiwaya and Tanaka

generalized the BTK formalism [124, 125, 126] to study the important consequence of this bound

state—the zero-bias conductance peak (ZBCP) in the tunneling spectra. It is the ZBCP feature

that makes tunneling spectroscopy a phase-sensitive measurement for superconductors with uncon-

ventional pairing symmetries.

In this section, we will review the generalized BTK formalism, discuss the origin of the zero-energy

bound state and the ZBCP, and present the numerical simulations of the quasiparticle tunneling

spectra on a d -wave superconductor along different crystalline orientations. We will also discuss

the tunneling results of mixed pairing symmetry superconductors and point out the important

signatures in the spectra. A summary of the original BTK formalism for tunneling into an s-wave
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superconductor is provided in Appendix A as a reference.

2.2.1 Generalized Blonder-Tinkham-Klapwijk formalism—A mean-field

description

The Bogoliubov–de Gennes (BdG) equation generalizes the BCS formalism to treat superconductors

with spatially varying pairing strength, chemical potential, and Hartree potential. In an inhomoge-

neous anisotropic even-parity (such as d-wave) superconductor, the Bogoliubov–de Gennes (BdG)

equation reads [127]

Ef(r1) = ĥ0(r1)f(r1) +
∫
dr2∆(r1, r2)g(r2)

Eg(r1) = −ĥ0(r1)g(r1) +
∫
dr2∆(r1, r2)f(r2).

(2.28)

To be consistent with the notation of [124, 125], the quasiparticles wavefunction is written as two-

component column vector,

Ψ(r1) =

 f(r1)

g(r1)

 . (2.29)

In (2.28), ĥ0(r1) = −h̄2∇2
r1
/2m−µ+V (r1), µ is the chemical potential, V (r1) the Hartree potential,

and ∆(r1, r2) the pairing potential.

Rewrite the pairing potential in terms of the relative coordinates r = r1−r2 and R = (r1+r2)/2,

∆(r1, r2) = ∆̃(r,R),

and Fourier transform ∆̃(r,R) into

∆(k,R) =
∫
dre−ik·r∆̃(r,R) ≡ ∆(γ̂,R), (2.30)

where γ̂ = k/ |k| ≈ k/kf denotes the direction of the quasiparticle momentum and kf is the

magnitude of the Fermi momentum. Then ∆(k,R) describes, in the quasiclassical approximation,
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the pairing potential which quasiparticles with momentum k experience at position R. Introducing

two envelope functions u(γ̂, r1) and v(γ̂, r1) to factor away the fast atomic-scale oscillations

Ψ(r1) =

 f(r1)

g(r1)

 = eikf γ̂·r1

 u(γ̂, r1)

v(γ̂, r1)

 (2.31)

and using Eqs. (2.30) and (2.31), the BdG equation (2.28) is recast into

Eu(γ̂, r1) = −i h̄
2kf

m γ̂ · ∇ru(γ̂, r1) + ∆(γ̂, r1)v(γ̂, r1)

Ev(γ̂, r1) = i
h̄2kf

m γ̂ · ∇rv(γ̂, r1) + ∆∗(γ̂, r1)u(γ̂, r1).
(2.32)

In deriving (2.32) only terms of the lowest order in (kfξ0)−1 are retained, since the scale for spatial

variation of the pairing potential given by the coherence length ξ0 is much larger than k−1
f .

Following the logic of the original BTK theory [Appendix A], we first identify the allowed elastic

tunneling processes across the N-I-S junction and write down the incident, reflected, and transmitted

wavefunctions in the normal and the superconducting electrode. By matching the boundary condi-

tions at the interface, the Andreev reflection coefficient a(E, θ)and the normal reflection coefficient

b(E, θ) are extracted to compute the differential tunneling conductance.

For electrons incident from the normal-metal side with energy E and an angle of incidence θN ,

there are four possible trajectories [Fig. 2.1]. They can be Andreev reflected as holes (A) with an

angle θN , normal reflected as electrons (B) with an angle of reflection θ′N = θN , transmitted as

electron-like quasiparticles (C) with an angle of refraction θS , or transmitted as hole-like quasipar-

ticles (D) with an angle θS = θ′S . In the normal electrode, the unit vector of the momentum of the

incident electrons is denoted as γ̂N , that of the reflected electrons as γ̂′N , and the pairing potential

∆(γ̂N ,R) = ∆(γ̂′N ,R) = 0. Solving (2.32) gives us the form of the wavefunction on the N side

ΨN (r) = eikfN
γ̂N ·re

i E
h̄kfN

/m
γ̂N ·r

 1

0
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Figure 2.1: Adapted from Fig. 1(b) of [125]. Schematic diagram of the transmission and reflection
processes at the N-I-S interface. For an electron incident from the normal metal with an angle of
incidence θN , it can be Andreev-reflected as a hole (A), normal-reflected as an electron (B) with an
angle θN , transmitted as an electron-like quasiparticle (ELQ) (C) with an angle θS , or transmitted
as a hole-like quasiparticle (HLQ) (D). All the electron-like excitations are denoted by solid lines and
hole-like excitations dashed lines. The arrows indicate the directions of the group velocities of the
particles, and note that, for hole-like quasiparticles, the wave vector and the group velocity point in
the opposite directions. The components of the wave vectors parallel to the interface are conserved.

+a(E) eikfN
γ̂N ·re

−i E
h̄kfN

/m
γ̂N ·r

 0

1

 + b(E) eikfN
γ̂′N ·re

i E
h̄kfN

/m
γ̂′N ·r

 1

0

 , (2.33)

where a is the amplitude for Andreev reflection, b the amplitude for normal reflection, and kfN
the

Fermi momentum in the normal electrode. Since kfN
� Em/h̄kfN

, (2.33) is approximately

ΨN (r) ≈ eikfN
γ̂N ·r

 1

0

 + a(E) eikfN
γ̂N ·r

 0

1

 + b(E) eikfN
γ̂′N ·r

 1

0

 . (2.34)

In the superconducting electrode, we denote the unit vector of the momentum of the transmitted

electron-like quasiparticles (ELQ) as γ̂S , that of the transmitted hole-like quasiparticles (HLQ) as

γ̂′S , the pairing potential experienced by the ”ELQ’s” as ∆(γ̂S ,R) = |∆(γ̂S ,R)| eiφ(γ̂S) = |∆+| eiφ+ ,

and that experienced by the ”HLQ’s” as ∆(γ̂′S ,R) = |∆(γ̂′S ,R)| eiφ(γ̂′S) = |∆−| eiφ− . Then the
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wavefunction for the transmitted electron-like and hole-like quasiparticles reads

ΨS(r) = c(E) eikfS
γ̂S ·re

i

√
E2−|∆+|2
h̄kfS

/m
γ̂S ·r


√

E+
√
E2−|∆+|2
2E

e−iφ+

√
E−
√
E2−|∆+|2
2E



+d(E) eikfS
γ̂′S ·re

−i
√

E2−|∆−|2
h̄kfS

/m
γ̂′S ·r

 eiφ−
√

E−
√
E2−|∆−|2
2E√

E+
√
E2−|∆−|2
2E

 (2.35)

ΨS(r) ≈ c(E) eikfS
γ̂S ·r


√

E+
√
E2−|∆+|2
2E

e−iφ+

√
E−
√
E2−|∆+|2
2E

 + d(E) eikfS
γ̂′S ·r

 eiφ−
√

E−
√
E2−|∆−|2
2E√

E+
√
E2−|∆−|2
2E

 ,
(2.36)

where kfS
is the Fermi momentum in the superconducting electrode.

The insulating interface is modeled as a δ-function Hartree potential V (r) = Hδ(r). By solving

for the coefficients a(E)− d(E) under the boundary conditions (1) ΨN (0) = ΨS(0) = Ψ(0) and (2)

h̄
2m

dΨS(0)
dx − h̄

2m
dΨN (0)
dx = HΨ(0), and taking into account the momentum conservation parallel to

the interface, we arrive at the following expression for the probability current tunneling across the

N-I-S junction at zero temperature:

σS(E, θN ) ≡ σN

[
1 + |a(E, θN )|2 − |b(E, θN )|2

]
= σN

1 + σN |Γ+|2 + (σN − 1) |Γ+Γ−|2∣∣1 + (σN − 1)Γ+Γ−ei(φ−−φ+)
∣∣2 , (2.37)

where

Γ± = E−
√
E2−|∆±|2
|∆±| ,

σN =
4

kfS
kfN

cosθS
cosθN

(1+
kfS
kfN

cosθS
cosθN

)2+4( Z
cosθN

)2
,

Z = mH
h̄2kfN

.

In an s-wave superconductor where ∆+ = ∆− = ∆, Eq.(2.37) reduces to the original BTK formula

(A.12), (A.13), and (A.14).
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2.2.2 Tunneling spectra of a d-wave superconductor and the Andreev

bound state

Having derived (2.37), we can now calculate the tunneling conductance spectra of superconductors

with unconventional pairing symmetries in a real scanning tunneling spectroscopy (STS) experi-

ment. Taking into account a finite transverse momentum distribution for the incident particles by

considering a finite tunneling cone β, the resulting tunneling conductance is

dI

dV
(V ) ∝

∫
dθ

[
1 + |a(E, θ)|2 − |b(E, θ)|2

]
e
− θ2

β2 . (2.38)

For simplicity, kfS
/kfN

≈ 1 is assumed, and thus θN ≈ θS ≡ θ. Since in the STS configuration

we usually operate in the tunneling limit, the following simulations are done with a large effective

barrier height. We focus on the spectra of d-, (d+ s)-, (d+ is)-, and (d+ id′)-wave superconductors

which are the most relevant to later chapters on the hole-doped cuprates.

_

+

_
(100)

(010)

�

+

�

k

d-wave superconductor

n

Figure 2.2: Momentum dependence of a d-wave pairing potential. ∆(k) = ∆(θ) = ∆d cos(2θ − 2α).
θ is the angle between the surface normal and the wave vector k, and α is the angle between the
surface normal and (100)-axis of the superconductor.

In a d-wave superconductor, ∆(k) = ∆(θ) = ∆d cos(2θ) [Fig. 2.2]. The pairing potentials ∆+
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Figure 2.3: Simulated tunneling spectra of a d-wave superconductor taken with the average quasi-
particle momentum parallel to (a) the anti-nodal (100) direction, (b) the c-axis (001) direction, and
(c) the nodal (110) direction. The scanning tunneling spectroscopy configuration is usually operated
in the tunneling limit. Thus, these BTK simulation curves are carried out with a large effective
barrier height.

and ∆− that the ELQ’s and the HLQ’s experience are

∆+ = ∆d cos(2θ − 2α)

∆− = ∆d cos(2θ + 2α),
(2.39)

where α is the angle between the normal vector of the interface and (100)-axis of the supercon-

ductor. When the normal vector ~n of the interface is oriented along the anti-nodal (100) or (010)

direction (i.e., α = 0 and ∆+ = ∆−), the tunneling spectrum shows a U-shape feature as in a BCS

superconductor, with two coherence peaks located at the maximal pairing potential ±∆d and no

density of states found within the gap [Fig. 2.3(a)]. When ~n is parallel to the (001)-axis, the incident

electrons sample over all possible θ values and hence the tunneling cone completely opens up in this

case (β ≈ ∞). In addition, the conservation of the momentum parallel to the interface implies that

∆+ = ∆− for c-axis tunneling. The resulting spectrum has a V-shape feature with the coherence

peaks located at ±∆d [Fig. 2.3(b)].

Most interestingly, when the normal vector ~n of the junction surface is oriented along the nodal

(110) direction, the pairing potentials experienced by the ELQ’s and the HLQ’s are opposite in

sign, ∆+ = −∆−. Consequently, the tunneling spectrum displays a conductance peak at zero

bias [Fig. 2.3(c)]. In the high-barrier low-transmission limit (σN → 0), the normalized tunneling

conductance reduces to the surface density of states [125, 126]. Therefore, the zero-bias conductance
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peak (ZBCP) reflects the existence of a zero-energy surface state, called the Andreev bound state

(ABS), at the superconductor-insulator interface.

hole

N S

electron

Andreev

reflected by �
�

Andreev

reflected by �
�

Figure 2.4: Trajectories of the Andreev bound states at the surface of a d-wave superconductor.
(Taken from Fig. 7 of [126].) The existence of the surface states is stable even in the limit of
vanishing normal metallic layer. The solid lines denote the trajectories of the electrons, and the
dashed lines the trajectories of the holes. When the electrons Andreev reflected from the N/S
interface, they experience a pairing potential ∆+, while the Andreev reflection of holes experiences
∆−. When the normal vector of the interface is parallel to the nodal (110) direction, the two pairing
potentials have equal magnitude but opposite signs, giving rise to a bound state at E = 0.

Mathematically, the energy of the bound state is determined by the zero of the denominator in

(2.37),

1− Γ+Γ−ei(φ−−φ+) = 0, σN → 0. (2.40)

Given that φ− − φ+ = π and |∆+| = |∆−|, the bound state energy is always at E = 0. Physically,

an intuitive visualization of the formation of ABS at the surface of a d-wave superconductor is given

by [126]. As illustrated in Fig. 2.4, assume that the surface of the superconductor is capped with a

thin layer of normal metal of thickness dN . The trajectories of the quasiparticles form closed loops

through two Andreev reflections at the N/S interface (one converting electrons to holes and the other

converting holes to electrons) and two specular reflections at the surface. Applying the quantization

condition that the phase shift is a multiple of 2π for a bound quasiparticle along a closed path of

the classical trajectory, and taking into account that the phase shifts picked up by the two Andreev

reflections are different because of different pairing potentials the ELQ’s and the HLQ’s experience,
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Figure 2.5: Tunneling spectra taken along the nodal direction for different pairing symmetries.
The spectra of pure d-wave and (d + is)-wave superconductors have been shifted for clarity. As
shown in the figure, a small imaginary component (e.g., 10% the gap value of a 30 meV d-wave
superconductor) can produce appreciable splitting (> 6 meV) of the zero-bias conductance peak
(ZBCP). For a (d + id′) superconductor, the amount of the ZBCP splitting is comparable to that
of a (d + is) superconductor, provided that the percentage of symmetry mixing is the same. For
a (d + s)-wave superconductor (not shown), the shape and width of the ZBCP is indistinguishable
from that of a pure d-wave superconductor within experimental resolution.

we obtain the equation that dictates the bound state energy:

−tan−1(

√
|∆+|2 − E2

E
)− tan−1(

√
|∆−|2 − E2

E
)− (φ+ − φ−) + 2φN = 2nπ, (2.41)

where n is an integer and φN is the phase shift accumulated when traveling around the metallic

layer, φN = mdNE/(h̄2kfN
). In a real system where the thickness of the metallic layer is vanishingly

small, the quantization condition (2.41) reduces to (2.40), and N-I-S tunneling along (110) into these

zero-energy surface states gives rise to the ZBCP in the conductance spectrum.

In the presence of a small imaginary component mixed to the predominantly d-wave order pa-

rameter, e.g., d + is, the degeneracy of the zero-energy bound states is lifted because of broken

time-reversal symmetry. The resulting splitting in the ZBCP provides an estimate of the weight of
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Figure 2.6: Tunneling spectra taken along the c-axis. (a) Tunneling spectrum of a pure d-wave, (b)
a (d+ s)-wave, and (c) a (d+ is) or (d+ id′) superconductor. The gap values are chosen so that the
position of the coherence peaks and the subgap features stays the same for all three figures.
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the imaginary component [Fig. 2.5(a)]. On the contrary, as shown in [Fig. 2.5(b)], because time-

reversal symmetry is still respected, a small real s-component mixing does not break the degeneracy.

Therefore, tunneling spectra taken along the nodal direction cannot distinguish between d-wave and

d+ s-wave pairing symmetry.

Although the existence of a small s-wave component does not modify the shape and the mag-

nitude of the ZBCP, it does have other observational consequences on the tunneling spectra. For

example, tunneling spectra along (100) and (010) reveal two different gap values, ∆d±∆s. Similarly,

the c-axis tunneling spectrum of a (d+ s)-wave superconductor shows two corresponding sets of co-

herence peaks [Fig. 2.6(b)] in contrast to that of the pure d-wave superconductor [Fig. 2.6(a)]. For

comparison, the c-axis tunneling spectrum of a (d+is)-wave superconductor is plotted in Fig. 2.6(c).

Owing to the small imaginary component mixing, the low-energy excitation is fully gapped within

the secondary pairing potential ∆s (or ∆d′). Therefore, around zero bias the c-axis tunneling shows

a small U-shape feature [Fig. 2.6(c)] in contrast to the V-shape feature in the d- and (d + s)-wave

cases.

As a final remark, we note that the generalized BTK theory is based on the mean-field Bogoliubov–

de Gennes equation. Therefore, quantum/thermal fluctuations and residual interactions, such as

quasiparticle scattering and quasiparticle coupling with the bosonic modes of the system, are not

accounted for.

In conclusion, the existence of a zero-energy Andreev surface state turns quasiparticle tunneling

spectroscopy into a phase-sensitive technique to uncover the sign change of the order parameter

across the nodal axis in an unconventional superconductor. At the mean-field level, the symmetry of

the order parameter, the magnitude of the pairing potential and the amount of secondary symmetry

mixing can be extracted by means of the generalized Blonder-Tinkham-Klapwijk formalism. We

will present an example of applying the BTK formalism to study the tunneling spectra of the hole-

doped cuprate YBa2Cu3O6+δ [§4], which demonstrates that, for YBCO, mean-field theory is a good

approximation and the Bogoliubov quasiparticle description captures most of the important physics

in the superconducting state. In contrast, deviation from the BTK formalism is observed in the
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electron-doped Sr1−xLaxCuO2, indicating that the mean-field approximation is not adequate for

this compound. The implication of the breakdown will be discussed in detail in §5 and §6.


