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Chapter 5

Gravitational Wave Signal
Processing

In this chapter, we describe the matched filtering that is done in order to search for a signal of

known form within data that also contains noise, as is the case for analyzing GW data.

This problem has been well studied within the field of signal-processing, and the optimal tool for

extracting the signal from the noise has been found to be the Weiner Filter [120], also known as the

matched or optimal filter.

5.1 The Optimal Filter

Let us assume we have a data stream s(t) that is the sum of a stationary, Gaussian noise n(t) and

a signal h(t)

s(t) = n(t) + h(t) . (5.1)

Since n(t) is stationary, the mean of n(t) can be taken to zero by defining

n(t) ≡ nraw(t)− 〈nraw〉 , (5.2)

where the brackets denote the expectation value. Since this is true for any stationary series, from

here we will assume n(t) has a mean of zero. The two-sided power spectral density (PSD) Sn(f) of
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this Gaussian noise is defined by

〈ñ(f)ñ(f ′)〉 ≡ δ(f − f ′)Sn(f) . (5.3)

Let us define a real-valued filter F (t) as

A =

∞∫
−∞

F (t)a(t)dt =

∞∫
−∞

F̃ ∗(f)ã(f)df , (5.4)

where A is the filtered value of a(t). Above we have used the convolution theorem and transformed

from the time domain to the frequency domain using the Fourier transform of a function, defined by

ã(f) =

∞∫
−∞

a(t)e−2πiftdt . (5.5)

Using the above properties of the noise, we find

〈
N2
〉

=
∫ ∞
−∞

∫ ∞
−∞

F̃ ∗(f)F̃ ∗(f ′) 〈ñ(f)ñ(f ′)〉df ′df

=
∫ ∞
−∞

∫ ∞
−∞

F̃ ∗(f)F̃ ∗(f ′)δ(f − f ′)Sn(f)df ′df

=
∫ ∞
−∞

∣∣∣F̃ (f)
∣∣∣2 Sn(f)df , (5.6)

where we have also used the property of real-valued functions that ã∗(f) = ã(−f) in the last line.

We now wish to find the form of the filter F (t), or in this case F̃ (f), which will optimally extract

the signal from the noise. We measure this by maximizing the ratio of filtered values

H2

〈N2〉 =

∣∣∣∫∞−∞ F̃ ∗(f)h̃(f)df
∣∣∣2∫∞

−∞

∣∣∣F̃ (f)
∣∣∣2 Sn(f)df

=

∣∣∣∫∞−∞ F̃ ∗(f)
√
Sn(f) h̃(f)/

√
Sn(f)df

∣∣∣2∫∞
−∞

∣∣∣F̃ (f)
∣∣∣2 Sn(f)df

. (5.7)
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We can use the Cauchy-Schwarz inequality,

∣∣∣∣∣∣
∞∫
−∞

A(f)B(f)df

∣∣∣∣∣∣
2

≤
∞∫
−∞

|A(f)|2df
∞∫
−∞

|B(f)|2df , (5.8)

to argue that in order for the ratio of equation (5.7) to be maximized, the functions corresponding

to A(f) and B(f) must be equal up to a constant C, where A(f) = F̃ ∗(f)
√
Sn(f) and B(f) =

h̃(f)/
√
Sn(f). Equation (5.7) then becomes

H2

〈N2〉 =
C

(∫∞
−∞

∣∣∣F̃ (f)
∣∣∣2 Sn(f)df

)(∫∞
−∞

∣∣∣h̃(f)
∣∣∣2 /Sn(f)df

)
∫∞
−∞

∣∣∣F̃ (f)
∣∣∣2 Sn(f)df

= C

∫ ∞
−∞

h̃∗(f)h̃(f)
Sn(f)

df . (5.9)

From this exercise we find that

F̃ ∗(f) = C
h̃(f)
Sn(f)

, (5.10)

which is the definition of the optimal filter for h(t) embedded in stationary, Gaussian noise.

Let us use the optimal filter to define an inner product of the data s with the template h:

(h|s) =
∫ ∞
−∞

h̃∗(f)s̃(f)
Sn(f)

df . (5.11)

An interesting interpretation of equation (5.11) is to split the PSD Sn(f) into two amplitude

spectral density (ASD) terms
√
Sn(f) that can be associated with the data and the template sepa-

rately,

(h|s) =
∫ ∞
−∞

h̃∗(f)√
Sn(f)

s̃(f)√
Sn(f)

df . (5.12)

This ends up weighting both the template and the data by the inverse of the ASD, which can be seen

as “whitening” both the template and the data. The reason this is known as whitening is because

for stationary, white, Gaussian noise the PSD is frequency independent resulting in an optimal filter
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of the form

(h|s) =
∫ ∞
−∞

h̃∗(f)s̃(f)df . (5.13)

If we define h̄(f) = h̃∗(f)√
Sn(f)

and s̄(f) = s̃∗(f)√
Sn(f)

, equation (5.12) comes into the same form as equation

(5.13)

(h|s) =
∫ ∞
−∞

h̄∗(f)s̄(f)df . (5.14)

5.2 The Waveform Overlap

Now that we have an optimal filter for extracting a signal for noisy data, let us use it to define the

overlap M of two vectors a and b

M = (a′|b′) , (5.15)

where the “′” denotes a normalization such that

a′ =
a

σa
, (5.16a)

and

σ2
a = (a|a) , (5.16b)

and similarly for b.

This definition of the overlap will take its largest value of 1 when a′ and b′ are the same function,

which can be seen by

(a′|a′) =
(
a

σa
| a
σa

)
=

1
σ2
a

(a|a)

= 1 .

Since we are interested in the strength of the signal that matches the template h in the data s,
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we compute the signal-to-noise ratio (SNR) by normalizing the overlap with respect to the template

but not the data

SNR =
1
σh

(s|h) . (5.17)

The value of the SNR will then be proportional to the amplitude of the signal buried in the noise.

So far we have defined the overlap between s and h where we have assumed the template to be

of the same length as our data. However, what we are actually interested in is the matched filter of

s using h where the data s(t) is an extended time series whose length is longer than the template

time series h(t). The matched filter output as a time series is given by

(s(t)|h) =
∫ ∞
−∞

s̃∗h̃e−2πiftdf . (5.18)

For real-valued time series s and h, this filter outputs a real-valued time series that, in the absence

of signal, is χ2distributed with one degree of freedom.

5.2.1 Matched Filtering for Compact Binary Signals

As derived in chapter 2, the GWs we are searching for come in two polarizations: the plus (+) and

cross (×) polarizations. The actual signal seen by a detector is a combination of the two polarizations

that can be calculated using the antenna pattern of the detector and the parameters of the source.

Specifically, the signal seen by the detector h(t) is given by

h(t) = F+h+(t) + F×h×(t) , (5.19)

where h+ and h× are the plus and cross polarizations of the signal respectively, and F+ and F× are

the antenna patterns of the detector giving the sensitivity to the plus and cross polarizations of GW

signals respectively. Descriptions of these are given in chapter 3.

Due to the nature of GW signals from the inspiral phase of CBCs (see chapter 2 for a discus-

sion), we find that the phase evolution of the cross polarization is 90◦ out of phase with the plus
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polarization, given by

h+(t) = A(t) cos (φ(t)) , (5.20)

h×(t) = A(t) sin (φ(t)) , (5.21)

where A(t) is the amplitude evolution of the signal and φ(t) is the phase evolution of the signal.

From this, we find a simple relation between the Fourier transform of the two polarizations:

h̃+ = ih̃× . (5.22)

When we filter s = (Xh+/σh) + (Y h×/σh) with the template h+, we obtain the matched-filter

real-time series z+

z+ = (s|h+) =
X

σh
(h+|h+) +

Y

σh
(h×|h+) . (5.23)

Using equation (5.22), we find

(h×|h+) =
∫ ∞
−∞

h̃∗×h+ + h̃∗+h×

Sn
df

=
∫ ∞
−∞

(
ih̃+

)∗
h+ + h̃∗+ih+

Sn
df

=
∫ ∞
−∞

−ih̃∗+h+ + h̃∗+ih+

Sn
df

= 0 ,

which then implies

z+ = Xσh , (5.24a)

where we have used equation (5.16b) for the definition of σh. A similar procedure shows that when

we filter s with the template h×, we obtain the matched filter time series z×

z× = Y σh . (5.24b)
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From equation (5.24) we construct our SNR ρ using the combination

ρ =
1
σh

√
|z+|2 + |z×|2 . (5.25)

This is referred to as a two-phase filter, which has twice the degrees of freedom of a single-phase

filter. The bonus of extracting information from both polarizations of the GW comes with the cost

of increasing the expectation value of ρ when there is no signal present.

By combining the definition of the SNR (equation (5.25)) with the template normalization σh

(equation (5.16b)) we can define an effective distance for a given trigger

Deff =
σh
ρ
. (5.26)

We choose a normalization distance of 1 Mpc to set the templates’ amplitudes. This results in the

units of the effective distance being Mpc.

5.2.2 Template Bank Construction

The manifold of waveforms is a continuous space in the component masses, of which we are only

able to search discrete points. In order to make sure we do not miss a signal because its parameters

are slightly different from what we are searching for, we construct a bank of templates in such a way

as to minimize the loss of a signal’s SNR. This is done by computing the overlap of waveforms with

different parameters using equation (5.15).

As noted above, the overlap of a waveform with itself is unity. Any mismatch, 1 −M, between

two waveforms will show up as a reduction of the recovered SNR when searching for one waveform

with the other. When constructing a template bank, it is useful to view this mismatch as a measure

of the distance between two templates. With this in mind, we can create a metric that will tell us

the distance between two templates of different parameters. This is done by defining the parameter

space in which the metric exists, and then computing the mismatch between templates. For two
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templates infinitesimally far apart in the parameter space θµ, the mismatch is [121, 122]

1−M ≈ 1− (h (θµ + dθµ) |h (θν))

≈ 1
2

[1 + 1− 2 (h (θµ + dθµ) |h (θν))]

≈ 1
2

[(h (θµ) |h (θν)) + (h (θµ + dθµ) |h (θν + dθν)) (5.27)

− (h (θµ + dθµ) |h (θν))− (h (θµ) |h (θν + dθν))]

≈ 1
2

[(h (θµ + dθµ)− h (θµ) |h (θν + dθν)− h (θν))]

≈ 1
2

[(
∂h

∂θµ
dθµ| ∂h

∂θν
dθν
)]

≈ 1
2

[(hµ|hν)] dθµdθν

≈ 1
2
gµνdθ

µdθν , (5.28)

where hµ ≡ ∂h
∂θµ , and we have used the symmetry (a|b) = (b|a). The above equation defines the

metric gµν to be of the quadratic form

gµν ≡ (hµ|hν) . (5.29)

The metric (equation (5.29)) can be used to predict to quadratic order how quickly the mismatch

grows as we move in different directions in parameter space away from a particular point. Using this

metric we place templates such that the furthest distance any point is from a template is less than a

tolerance value ε. This will ensure that no more than ε of the SNR is lost due to our discretization

of parameter space.

The question we must now ask is which parameter space to use. Answering this question specifies

which directions we will use when taking partial derivatives of the templates. In the end, it is useful

to choose those directions such that the metric is as flat as possible across the space. This helps in

developing an algorithm that most efficiently covers the parameter space. Such a space has been

found (equations (23) and (24) in Ref. [123]) whose directions correspond to the chirp times of a

waveform. Using 2.0 PN order waveforms for nonspinning binary objects in quasi-circular orbital
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evolution, there are chirp times τi for i = 0, 2, 3, 4, corresponding to the chirp times proportional

to (v/c))i in the PN expansion of the phase. These chirp times are given in terms of the mass

parameters as [124, 125, 122]

τ0 =
5

256 (πf0)8/3
M−5/3 , (5.30a)

τ2 =
5

192η2/5 (πf0)2

(
743
336

+
11
4
η

)
M−1 , (5.30b)

τ3 =
π

8η3/5 (πf0)5/3
M−2/3 , (5.30c)

τ4 =
5

128η4/5 (πf0)4/3

(
3 058 673
1 016 064

+
5429
1008

η +
617
144

η2

)
M−1/3 , (5.30d)

where M is the total mass of the binary, η = m1m2/M
2 is the symmetric mass ratio, M = η3/5M

is the chirp mass, and f0 is some fiducial frequency. If f0 is chosen to be the starting frequency for

the waveform generation, then the chirp times correspond to the 0PN length of the chirp for τ0, and

the (i/2)PN correction to the chirp time for i = 2, 3, 4. For the search described in later chapters,

we have chosen to use (τ0, τ3) as the parameter space in which we lay our templates, however we

compute a 3D metric that additionally includes the difference in coalescence times of two waveforms

for use in other portions of the search. Although the metric is not perfectly flat for PN order greater

than 1.0PN, we assume it is slowly varying, and thus flat in the local vicinity of a point. When

constructing the bank, we use the hexagonal placement algorithm [123], which is the most efficient

placement algorithm for a flat, 2D space.

5.2.3 Signal-Based Vetoes

Signal-based vetoes are discriminators that can be used to separate triggers arising from either a

random instantiation of the Gaussian noise or transient excess power in the data from triggers arising

from actual signals. These vetoes work by comparing how a particular aspect of the data should

behave in the presence of a signal and not.

In the following sections we discuss several signal-based vetoes that look at different aspects of the

data. The first two signal-based vetoes described below, the χ2and r2vetoes, use information from
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a single detector. Since we require triggers to be coincident between multiple detectors, which we

will discuss in more detail in chapter 6, there are addition signal-based vetoes we can perform using

information from more than one detector. The effective distance cut and the amplitude consistency

check are examples of this, using information from two coaligned detectors.

5.2.3.1 The χ2Veto Calculation

The χ2veto tests the consistency of the data with what we expect from a signal by looking at how the

SNR, ρ, is accumulated from different parts a template. This is done by breaking up the template

into p continuous bins such that each is expected to provide ρ/p to the SNR calculation in the

presence of a real signal. This calculation is described by

χ2 =
p∑
i=1

(
ρi − ρ

p

)2

, (5.31)

where p is the number of χ2bins, ρi is the SNR from the ith bin of the template, and ρ is the total

SNR.

With this formulation, in the presence of Gaussian noise, χ2is a quantity that is χ2distributed

with 2p− 2 degrees of freedom: 〈
χ2
〉

N
= 2p− 2 . (5.32)

Normally such a quantity would be χ2distributed with p− 1 degrees of freedom, however there is an

extra factor of 2 because ρ2 is calculated from a two-phase filter, which has an expectation value of〈
ρ2
〉

= 2 in Gaussian noise.

The χ2is not actually the quantity we threshold on when applying the χ2veto. This is because

the expectation value of χ2in the presence of signal is not the same as in Gaussian noise. Since we

are using a discrete template bank to search for signals in a continuous parameter space, we will not

recover a signal with a template of those exact parameters. If we calculate the expectation value

of χ2in the presence of signal without noise, evaluated at the time when the SNR is maximized, we
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find 〈
χ2
〉

S
= δρ2 , (5.33)

where δ is the mismatch between the template and the signal. Since a real signal can have a large

value of χ2for high SNRs, we end up thresholding on a normalized χ2, ξ2, where we veto triggers

with

ξ2 ≡ χ2

p+ δρ2
> ξ2
∗ . (5.34)

For the χ2veto, p, δ, and ξ∗ are tunable parameters.

It should be noted that in order to do this calculation, p additional inverse Fourier Transforms

of the data need to be computed for the p different parts of the template.

5.2.3.2 The r2Veto Calculation

Another signal-based veto that has been developed is the r2veto. This veto is also a measure of

how much the data looks like an actual signal. The difference between the r2veto and the χ2veto is

that the r2veto looks over a stretch of data rather than at a single point in time. Specifically, the

r2veto measures the amount of time the χ2time series spends above a particular threshold for the

T seconds prior to an trigger. The duration r2
duration is given as

r2
duration =

d

fsampling
, (5.35)

where d is the number of data points in the time window (t0 − T, T ) that have χ2/p > r2
∗, and

fsampling is the sampling rate of the data. For the r2veto, T and r2
∗ are tunable parameters.

5.2.3.3 The Effective Distance Cut

When looking for coincident triggers between detectors that are coaligned, we apply an effective

distance cut. Coaligned detectors, such as the two collocated Hanford detectors H1 and H2, have

the interesting property of sharing the same antenna patterns. The effective distance seen by a
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particular detector for a given CBC GW signal is

Deff =
D√

F 2
+ (1 + cos2 ι)2

/4 + F 2
× cos2 ι

, (5.36)

which is only dependent on the distance to the source D, the inclination angle ι between the orbital

plane and the line of site between the source and the detector, and the detector antenna patterns

F+ and F×. In terms of measured quantities, the effective distance is defined in equation (5.26).

Since coaligned detectors have the same antenna patterns, they should see the same Deff for triggers

coming from a real CBC GW signal.

Since noise fluctuations in the different detectors can separately change the effective distance

seen by each detector, we do not require the effective distances to agree perfectly. Instead we allow

for some variation and veto coincident triggers that have a fractional effective distance difference κ

greater than a given threshold κ∗ (i.e., κ > κ∗). We compute κ as

κ =
2 |Deff,A −Deff,B|
Deff,A +Deff,B

, (5.37)

where Deff,A is the effective distance from detector A, Deff,B is the effective distance from detector

B.

This veto is only applied between coaligned detectors due to the fact that the same signal can

be seen by two nonaligned detectors with very different amplitudes, and thus effective distances,

since the blind spots of the detectors’ antenna patterns do not coincide. The blind spots are a very

small portion of the sky and thus it is not unreasonable to apply a similar veto between nonaligned

detectors. In that case, the fraction of true signals being vetoed can be calculated by looking at the

volume of the universe in which such a signal would originate, bounded by the distance at which

each detector would see a signal with an SNR above a particular threshold.
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5.2.3.4 The Amplitude Consistency Check

In this section we describe the calculation of an amplitude consistency check. This check is very

similar to the effective distance cut, however instead of checking the consistency between two triggers

that make up a coincident trigger, we are checking whether the lack of a trigger from one coaligned

detector is consistent with the measured parameters of the trigger in the other detector.

As always, we use the PSD from each interferometer to calculate a template normalization σ

(equation (5.16b)) for a given time. With this, we compute a horizon distance for a canonical mass

BNS template as the distance to which we would see an optimally located and oriented signal with

an SNR of 8. Similar to the effective distance (equation (5.26)), this is given as

Dhorizon =
σ

8
. (5.38)

We can rearrange the effective distance cut (equation (5.37)) using the effective distance (equation

(5.26)) for the trigger from detector A and the horizon distance (equation (5.38)) from detector B.

Solving for ρA, we find the veto to be

ρA >

(
2 + κ∗
2− κ∗

)(
Dhorizon,A

Dhorizon,B

)
ρthreshold,B . (5.39)

In order to use this equation to veto triggers from detector A when there is no coincident trigger in

detector B, we have substituted the SNR threshold of detector B ρthreshold,B in the place of ρB. This

veto tells us to veto triggers from detector A when the ratio of the horizon distances in detectors A

and B is small enough such that there should have also been a trigger above the SNR threshold of

detector B. The factor (2 + κ∗) / (2− κ∗) allows for noise fluctuations to change ρA, Dhorizon,A, and

Dhorizon,B by some amount.

This veto is also only applied between coaligned detectors due to the fact that the there exist

locations in the sky and polarizations of a signal such that for two different, nonaligned detectors,

one of them should see the signal above the SNR threshold, while the other should not. As in the
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case for the effective distance cut, a similar veto can be constructed for nonaligned detectors if one

is willing to veto a fraction of true signals.

5.3 Previous Detection Statistic: Effective SNR

For the previous searches, a detection statistic was developed to separate signals from background.

This statistic is the combined effective SNR and is constructed as follows.

The single-detector SNR ρ is produced by matched filtering the data against our templates. From

ρ we define the effective SNR, ρeff , as

ρ2
eff =

ρ2√(
χ2

2p−2

)(
1 + ρ2

250

) , (5.40)

where p is the number of bins used by the χ2veto, 2p − 2 is the number of degrees of freedom of

the χ2veto in Gaussian noise, and the 250 is a tunable parameter that helps to further separate

signals from background. This definition of the effective SNR reduces the apparent significance of

nonGaussian instrumental artifacts since it weights the SNR by the χ2. This effectively reduces the

significance of outliers to the expected SNR distribution due to Gaussian noise (i.e., nonGaussian

instrument artifacts) while minimally affecting the apparent significance triggers of real signals.

We then combine the effective SNRs for the single-detector triggers that form a coincident trigger

into the combined effective SNR, ρc, for that coincident trigger using

ρ2
c =

N∑
i=1

ρ2
eff,i . (5.41)


