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Chapter 4

Astrophysics of Compact Binaries

This chapter is broken up into two sections. The first (section 4.1) presents evidence for the ex-

istence of compact objects (i.e., neutron stars and black holes). The second (section 4.2) presents

predicted rates for the coalescence of binary compact objects based on observations and theoretical

considerations.

4.1 Evidence for Neutron Stars and Black Holes

To date, there have been many observations of compact objects, which confirm the existence of

neutron stars and strongly suggest the existence black holes. The theoretical maximum mass for

an electron-degenerate star is given by the Chandrasekhar mass limit of ∼1.4 M�. This limit is

implicated in multiple types of stellar explosions, including Type Ia/b/c and II supernovae, in which

either the mass of an electron-degenerate, white dwarf approaches this limit (Type Ia), or the core

of a massive a star approaches this limit (Type 1b/c II). For the latter situation, the observations

of the remnant object has been linked to compact object observations, as in the case of Cassiopeia

A [87].

Compact objects with a tightly orbiting companion are good testing grounds for differentiating

between neutron stars and stellar mass black holes. If the companion object is close enough, it fills

its Roche Lobe, the boundary at which the gas of the companion object is no longer gravitationally

bound to its parent star, and leaks onto the compact object. This gas then forms an accretion disk

around the compact object as it is transferred. By measuring properties of the binary system as well
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as of the accretion disk, we can learn many things about the compact object. Studying the orbital

parameters of the binary will tell us the mass of both the compact object and companion object. If

the mass of the compact object is larger than the Chandrasekhar Limit, then the compact object

must be either a neutron star or a black hole. If thermonuclear explosions are seen as matter falls

onto the compact object, it is determined to be a neutron star. In the case of black holes, studying

the profile of Fe-lines in the accretion disk can allow the spin of the black hole to be determined [88].

In addition, observation of binary pulsars such the Hulse-Taylor pulsar [89] have also yielded

evidence for compact objects. The two objects, roughly 1.44 and 1.39 M�, in this system are

orbiting each other once every 8 hours, corresponding to a separation of ∼1 R�. Additionally, this

system is seen to lose orbital energy at the rate predicted by GW emission in general relativity.

At this separation, if the objects were ordinary stars, there should be some other much stronger

force causing them to depart from this prediction. Electromagnetic observations have also found no

counterpart, which at a distance of 8 kpc, excludes these objects from being white dwarfs.

4.2 Predicted Compact Binary Coalescence Rates

In this section we summarize a number of different ways the rate of CBC are predicted. These

methods are broken up into three categories, namely extrapolations from merging binary neutron star

(BNS) observations (section 4.2.1), population synthesis of field binaries (section 4.2.2), dynamical

simulations of star clusters (section 4.2.3), and extrapolations from short Gamma Ray Burst (GRB)

observations (section 4.2.4) [90].

4.2.1 Extrapolations from Merging Binary-Neutron-Star Observations

Observations of binary systems involving pulsars that will coalesce within a Hubble time can be

extrapolated in order to obtain a BNS merger rate. There are currently four known systems of

binary pulsars that will merge within a Hubble time, and one more possible system, all in our

galaxy. These systems are PSR B1913+16 (the Hulse-Taylor pulsar), PSR B1534+12, J0737-3039A,

J1756-2251, and possibly J1906+0746.
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In [91, 92], the authors use these binary pulsar systems to calculate a combined probability on

the rate of coalescences in our galaxy. To do this they combine the number Ntot of observed Galactic

pulsars, the fraction of Galactic pulsars with pulse and orbital characteristics similar to those of a

particular type, the lifetime τlife of each of the observed systems, and the upward correction factor

f−1
b due to pulsar beaming. For each type of pulsar population, with the ratio α of the mean number

of observed pulsars 〈Nobs〉 to the total number of pulsars Ntot for that population

α =
〈Nobs〉
Ntot

, (4.1)

they obtain a probability density function P (R) for the rate given by

P (R) = (ατlifefb)
2
Re−(ατlifefb)R . (4.2)

These probability distributions can be combined (Appendix A of [93]) to obtain the most probable

rate of R ≈ 71 MWEG−1 Myr−1 and a 90% confidence interval of ∼15–240 MWEG−1 Myr−1 [94]

without the inclusion of J1906+0746 and a factor of 2 larger with its inclusion, where an MWEG is

a Milky Way Equivalent Galaxy. This can be converted to 7.1× 10−1 Mpc−3 Myr−1 using a galaxy

number density of 10−2 MWEG Mpc−3.

4.2.2 Population Synthesis of Field Binaries

Population synthesis simulations have been used to estimate the rate of binary coalescences for

BNS, binary black-hole neutron-star (BHNS), and binary black hole (BBH) systems in the binary

evolution scenario (i.e., stars formed as binaries during their stellar formation). These simulations

start with stars distributed according to an initial mass function. These systems are then evolved

keeping track of their evolutionary details. At the end of the simulation, observational constraints

can be imposed on the results such that the results are consistent with the observed sample of

merging Galactic BNS, wide Galactic BNS, white dwarf–neutron star binaries, the observed rate of

Type Ib/c, Type II supernovae, etc.
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With these constraints imposed, the final rates can be can be obtained by looking at the num-

ber of BNS, BHNS, and BBH with orbits tight enough to merge within a Hubble time. Results

suggest that the range of merger rates are 1–103 MWEG−1 Myr−1 for BNS [91, 92], 5 × 10−2–

1 × 102 MWEG−1 Myr−1 for BHNS [95], and 4 × 10−2–1 × 102 MWEG−1 Myr−1 for BBH [96]

systems.

4.2.3 Dynamical Simulations of Star Clusters

In this section we summarize arguments of [97, 98, 99, 100] for predicting the CBC rate from different

types of star clusters. Star clusters may provide the necessary breeding ground for BBH due to their

increased star formation rate and their increased density. Studies have shown [101] that in such

an environment, mass segregation occurs through dynamical interactions within the cluster, driving

the higher mass objects toward the center, increasing the possibility of forming stellar mass BBH

systems.

For a cluster of mass Mcl, since stars form according to a power-law mass distribution [102], the

number of stars that are massive enough to form black holes after supernova (i.e., those with masses

greater than 20 M�) is roughly 3× 10−3(Mcl/M�). These objects undergo rapid evolution forming

their black holes quickly (on a timescale of about tSN ∼ (M)−2.5 × 1010 yr). Then, since these are

the most massive objects, they tend to sink toward the center with a timescale of

trelax ' tcross × 0.1N/ lnN , (4.3)

where tcross is the typical crossing time of the cluster [103]. This happens through a mechanism

known as equipartition, which is a statistical tendency for objects undergoing two-body interactions

to equilibrate their kinetic energy. This tendency causes the lower mass object to leave a two-body

interaction with a larger average speed than the higher mass object, thus causing the higher mass

object to sink further in the potential well of the cluster.

Another effect that occurs in the mass segregation process is the accumulation of high mass
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binaries. When a binary interacts with a third object, the two most massive objects tend to leave

the interaction as a binary [104]. In these interactions, the binding energy of the binary tends to

increase. These interactions thus favor the formation of tight binaries from the highest mass objects

in the cluster.

The combination of mass segregation and binary exchanges continue until the recoil speed from

the three-body interactions is large enough such that even the BBH systems receive a recoil larger

than the escape velocity of the cluster [105, 106]. At that point, the binary has hardened enough

that even though it leaves the cluster, the time until merger due to gravitational radiation is less

than a Hubble time.

These arguments have been applied to globular clusters in [98]. They find that the rate of

mergers from globular clusters is given by ∼gclgevap Mpc−3 Myr−1, where gcl is the fraction of total

star formation that occurs in clusters and gevap is the fraction of cluster-forming mass that possesses

the birth conditions necessary for this process to occur.

These arguments have also been applied to nuclear star clusters both in the presence of a super-

massive black hole (SMBH) [99], and not [100]. In [99], they found a wide range of merger rates in

the presence of a SMBH with rates varying between 1.5× 10−6 and 2× 10−4 Myr−1 per galaxy (not

Milky Way equivalent galaxy) depending on the model chosen. In [100], they argue for merger rates

in the absence of a SMBH of a few times 10−3 Mpc−3 Myr−1.

4.2.4 Extrapolations from Short-Gamma-Ray-Burst Observations

Here we present arguments used in [107] for estimating the rate of mergers of dynamically formed

BNS and BHNS systems in globular clusters from short GRB observations. Short GRBs are theorized

to originate in the merger of two compact objects forming a black hole surrounded by an accretion

disk [108, 109, 110, 111]. In order for an accretion disk to form, there must be matter present in the

system from either one or both objects, which excludes the possibility of short GRB coming from

BBH systems.

BNS and BHNS systems can form in one of two ways. The objects were originally binary stars
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that both underwent core collapse forming a binary of compact objects, or the objects separately

underwent core collapse and then dynamically formed through companion capture and possible

exchange interactions. The former we will refer to as “primordial” systems, which can be found in

the field. Results from population synthesis have shown that primordial systems that will merge

within a Hubble time do so soon after their formation, thus the redshift associated with such systems

should closely follow the star formation rate of the universe [112, 113, 114]. On the other hand,

dynamically formed systems will be delayed by the relaxation time trelax of the cluster, which can

be on the order of a Hubble time.

Using this time delay, the short GRB rate can be calculated from the star formation rate history

using

RGRB(z) ∝
∫ t(z)

0

RSFR(t− τ)P (τ)dτ , (4.4)

where RSFR(t) is the star formation rate at time t, P (τ) is the distribution of time delays τ before

merger, which goes as P (τ) ∼ 1/τ for primordial systems [115, 116] while it increases for increasing

time delays for dynamically formed systems [117].

Using equation (4.4) and the distribution of observed luminosities for short GRB, [107] calculate

the local rate of events to be 1.3× 10−3 and 4.0× 10−3 Mpc−3 Myr−1 assuming all observed events

come from primordial or dynamically formed systems respectively. Given the observed distribution

of redshifts associated with short GRB, the best fit of the data comes from a 60% contribution from

dynamically formed systems. Reducing the contribution from dynamically formed systems such

that the Kolmogorov-Smirnov probability that the observed distribution comes from the expected

distribution reaches a value of 0.1, the contribution from dynamically formed systems is found

to be at least 10%. These two combinations yield a local event rate of 2.9 × 10−3 and 1.6 ×

10−3 Mpc−3 Myr−1 for 60% and 10% fraction of dynamically formed mergers respectively.

The above rate calculations have only taken into account the observed rate, which ignores the

effects of beaming at the source. In [118] and [119], the authors have estimated the beaming factor to

be on the order of f−1
b ∼ 100, where fb is the fraction of the total solid angle within which the GRB is

emitted. Taking this into account, the beaming-corrected rates are found to be 2.9(f−1
b /100)×10−1
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and 1.6(f−1
b /100) × 10−1 Mpc−3 Myr−1 for 60% and 10% fraction of dynamically formed mergers

respectively.


