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ABSTRACT 

Changes in the wetting properties of thin films of polyethyleneglycol (PEG) end-capped 

with fluoroalkyl groups are measured when the films are equilibrated at various relative 

humidity (RH). At high RH, the advancing contact angle (θadv) on the surfaces is 20º higher 

than θadv measured at low RH. The surprising transition to non-wetting character at high 

RH is attributed to fluoroalkyl groups ordering at the air-hydrogel interface when they are 

liberated by dissolution of PEG crystallites above 85% RH.   

 

The structure and tribology of a semi-interpenetrating hydrogel of agarose and an anionic 

polysaccharide (either hyaluronic acid or dextran sulfate) were studied. The porous 

structure of agarose allows incorporation of up to 2% dextran sulfate without weakening 

the gel’s mechanical properties. Addition of the polyelectrolyte endows the gels with shape 

memory upon drying and reswelling; the gel can be dehydrated and rapidly swollen back to 

its original dimensions. The addition of both dextran sulfate and hyaluronic acid (HA) 

increases the lubricity of agarose when tested against hydrophilic clean glass or 

hydrophobic fluorinated glass. Migration of the polyelectrolytes out of the gel is believed to 

make the gels self-lubricating.  

 

A variety of hydrophilic polymers were screened to identify those polymers which enhance 

the viscosity of HA solutions. Because HA degrades quickly in water, more stable 

polymers might form mixtures in which the mechanical properties of the solution are less 

sensitive to decreases in HA molecular weight during storage. Four polymers, all 

polysaccharides with persistence lengths greater than HA, were found to enhance HA 

viscosity. This viscosity enhancement was hypothesized to be due to greater concentration 

fluctuations in these solutions.   

  

Finally, hydrophilic polymers were functionalized with photoresponsive hyrophobes in an 

attempt to control polymer self-assembly with light. Micelles of PEG end-capped with 

azobenzene molecules showed no change in size when the solutions were irradiated with 

UV light. PEG block copolymers were also functionalized with azobenzene and used to 



 vi
modify gold surfaces, but photoresponsive contact angles could not be measured. Finally, 

acrylamides copolymerized with the vinyl derivatives of malachite green were also studied, 

but the copolymers proved unsuitable for use at moderate pH.  
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