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ABSTRACT

The thermal theory of laminar flame propagation for hydrogen-
bromine mixtures is described. The method of analysis follows the
earliei' work of von Kirmdn and Milldn and of von K§rmdn and Pen-
ner. The problem is materially simplified by introducing the" steady-
state approximation of classical chemical kinetics for the concentra-
tions of H- and Br-atoms.

The general formulation of the problem is presented in Sec-
tion IIL.

Approximate solutions of the relevant mathematical problems,
utilizing various procedures developed by von Karman and his collabo-
rators, are given in Sections III to V for bromine-rich, stoichiometric,
and hydrogen-rich mixtures, respectively.

Numerical values for the physico-chemical parameters, which
aré required for the calculation of absolute values for the burning
velocities, are considered in Section VI.

The calculated burning velocities are compared in Section VII
with experimental results obtained by R. C. Anderson and his col-
laborators. Reference to Section VII shows that the variation of the
observed burning velocities with mixture ratio is predicted correctly
by the theoretical calculations. Absolute values for the laminar
burning velocity cannot be estimated with certainty because of the
possible existence of large errors resulting from extrapolation of

low-temperature kinetics and heat conducti\;ity data.



"PART

II

II1

Iv

Vi

Vil

iii

TABLE OF CONTENTS

TITLE

-INTRODUCTION

GENERAL EQUATIONS FOR THE THERMAL
THEORY OF LAMINAR FLAME PROPAGATION
IN HYDROGEN-BROMINE FLAMES WITH THE
STEADY STATE APPROXIMATION FOR H- AND
Br-ATOMS

BROMINE-RICH FLAMES

THE STOICHIOMETRIC MIXTURE
HYDROGEN-RICH FLAMES

A. The Mixture Containing 43.3%0 of Bromine
B. Hydrogen-rich Flames

PHYSICO-CHEMICAL PARAMETERS

'A. Egquilibrium Constant for the Reaction

Br, == 2Br.

B. The Specific Rate Constant for the Reaction
between Br and Hj.

C. Ratio of the Reaction Rates k4/k3 for the Re-
moval of Hydrogen Atoms.

D. The Adiabatic Flame Temperatures and -
Equilibrium Compositions for Hp-Brp Mixtures.

E. Thermal Conductivities in Hp-Br, Mixtures.

F. The Average Specific Heat.

COMPARISON OF CALCULATED AND OBSERVED
BURNING VELOCITIES

PAGE

16
21

21
.26

29

29
30
31
32

32
34

36



iv
LIST OF FIGURES

1. Plot of log (KP/T') vs. 104/T for the reaction Br,& 2Br,
where Kp is expressed in atmospheres., The data have been

taken from a compilation prepared by the Bureau of Standards.

2. Adiabatic flame temperature T, as a function of composition

for HZ--BI'2 mixtures (p = 1 atmos. , T0 = 3230K).

3. Equilibrium mole fractions as a function of gas composition

for H2 - Br2 mixtures (p = 1 atmos., 'I'o = 3230K).

4, Thermal conductivity )‘f as a function of composition for

HZ—BrZ flames,

5. Average specific heat ¢_ as a function of composition for .

the H,-Br, flame (p = | atmos., T_= 3239K).

2 2

6. Comparison of observed and calculated values for the lami-

‘nar burning velocity in HZ—BI‘Z mixtures,

LIST OF TABLES

1. Logarithm of the equilibrium constants KP, for the reac-
tion Brz,—_'ZBr, as a function of temperature, taken from

Reference 13.

II. Ratio of reaction rates k, calculated from Egs. (79) and

(79a) as a function of temperature.

III. Adiabatic flame temperatures and equilibrium mole
fractions as a function of composition (p = 1 atmos.,
T, = 323°K). ’

IV. Thermal conductivities A ¢ calculated from Eq. (82)
and based on the data of Campbell and Hirschfelderw)' as

a function of gas composition.



v
LIST OF TABLES (Cont'd)

V. Average specific heat E-p as a function of composition

for HZ—B'rz flames,

VI. Calculated laminar burning velocities, u,,for H2 —Brz

flames as a function of composition.



vi

LIST OF SYMBOLS

SYMBOLS INTERPRETATION

Subscript 1 property of HBr

Subscr.ipt 2 property of Br,

Subscript 3 property of HZ

Subscript 4 property of H

Subscript 5 property of Br

Subscript j property of j'th chemical species

Subscript o property at initial conditions

Subscript property at flame temperature

Subscript t property at arbitrary 'transition' temperature
Subscript i property at ignition temperature |
Subscript £ property of £'th chemical reaction

Xj_ mole fraction of j'th chemical species

Yj weight fraction of j'th chemical species

h;’ standard specific enthalpy of j'th chemical species
Wj molecular weight of j'th chemical spécies
w average molecular weight of initial mixture
T temperature in °K

Tf. adiabatic flame temperature in °k

Q reduced temperature = T/T;

) pressure in atmospheres

R molar gas constant

a initial mole fraction of H,

Ep average specific heat

A effective thermal conduction coefficient

m mass flow rate of mixture per unit area = Polo



vii

LIST OF SYMBOLS (Cont'd)

burning velocity in cm/sec

dimensionless parameter defined by Eq. (21)
dimensionless parameter defined by Eq. (29)
dimensionless parameter defined by Eq. (30)
dimensionless parameter defined by Eq. (42)
dimensionless parameter defined by Eq. (75)
initial mixture density = p M/R T,

specific reaction rate constant for A'th reaction
-01/0

=B, 0%

a fixed number

frequency factor for [ 'th reaction

'~ a characteristic reduced temperature; if El is the

activation energy for the L'th reaction then 91 =El /R Tf
dimensionless parameter defined by Eq. (20)

linear distance

error integral

equilibrium constant expressed in terms of concen-
tration ratios

equilibrium constant expressed in terms of pressure
ratios

""third body"



I. INTRODUCTION

In recent years a large number of publications have appeared
on experimental measurements and theoretical studies of laminar flame
propagation in premixed gases. For a complete bibliography reference
should be made to the books of Lewis and von Elbe(l) and of .Toét<2) or
to a survey paper by Evans(s). Experimental measurements on hydrogen-
bromine flames have been described by Anderson and his ‘coll‘aborators(‘l’s),
As yet incomplete theoretical studies on this flame have been published by
J.O.Hirschfelder and his collaborators(6’7) , who are attempting to carry
out a rigorous numerical solution of the complete flame eqﬁations for the
stoichiometric mixture ratio.

The method of approach which is followed in the present investiga~
tion differs in scope and purpose from the type of calculations carried out
by Hirschfelder. We follow the work of von Karmén and Milla/n(s) and of
(9. 10)

von KArmdn and Penner in that we shall content our se-ilvesy with an
approximate solution of the flame equations for a thermal theory, on the
grounds that the required physico-chemical parameters are not known

with sufficient ;.ccuracy to justify numerical soh;tions .. On the other,

hand, in order to obtain a reasonably severe empirical checkrof the
Physical model and of the mathematical approximations, complete calcula-
tions as a ‘function of mixture ratio are carried out. In order to obtain the

" desired results, we shall utilize the steady-state approximation of classical
reaction kinetics for the chain car'r'iers , as suggested for flames by

von K&rméan and Penner(g); although the steady-state approximation cannot

be justified for Br atoms at elevated temperatures, it appears that the
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calculated burning velocities are nevertheless approximately correct® .
There is a well-known cold boundary-value difficulty which

ernters into the solution of the one-dimensional laminar flame equations,

We shall not discuss this problem except to note that a convenient method

for avoiding complications is to utilize the concept of an ignitioﬁ temper-~

(11).

ature .

* This result can be established by an extended analysis cemparing
reaction rates with and without the steady-state approximation. The
relevant analysis has been carried out by von Kirman and Milldn.
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II. GENERAL EQUATIONS FOR THE THERMAL THEORY OF
LAMINAR FLAME PROPAGATION IN HYDR OGEN-BR OMINE
FLAMES WITH THE STEADY-STATE APPROXIMATION FOR

H AND Br

For the theoretical study of laminar flame propagation in hydrogen-
bromine flames, we shall utilize the accepted reaction scheme for isother-
mal production of HBr in stationary systems at temperatures of the order

of 500°K., The required equations are:(lz)

k

X! +Br2 1, 2Br + X', (1)
k .

Br+H2 -2 HBr + H , (2)
k

H + BrZ 3 HBr + Br , (3)
k

H + HBr_4 H, +Br , _ (4)
k

2Br + X' _§ Brz + X', (5)

Here X' denotes the "third body",; i.e. any of the chemical species

H, Br, HZ’ Brz, or HBr, The specific reaction rate constants k, to

1
k5 for the five reaction steps are indicated above each of the arrows.
It is well-known that the steady-state approximation for H- and

Br-atoms leads to the relation(lz)

I 1/2 o 1/2
Zkz('k-g) (H,) (Br,)

dt *2 (a@B1) ©)

1+ K, (Br,)
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where the chemical symbols in parentheses denote concentrations for
the chemical species and t represents the time, For thermal flame
theories it is convenient to introduce mole fractions, X; we identify

HBr, Brz, and H2 by the subscripts 1, 2, and 3, respectively. Then

X
_p P 1
(Hy)) =57 X3 =gpT (X3,0 " 2 (7)
and
P p !
(Bry) =gg X, =g7 (X3, - 7)) (8)

where p denotes pressure, R is the molar gas constant, T is the temp-
erature, and the subscript o identifies initial conditions.
For flames without inert diluents it is convenient to ide.ntify the

initial composition by the parameter a. Let X3 o= @ X2 0= l-a. Then

Eq. (6) becomes

X x 3/2

1/2 3/2

1 1
ax,) 2% ®r) (- pl-ag) o
RT ~dt . K, .
(1-2)-z - ) Xy

tw WZ’ and W3 denote the molecular weights of HBr, Br

1’ 20
and HZ’ respectively, then
W i(_x_l) L2
1 dt RT

represents the rate of change of the mass of bromine per unit volume

with time. But this quantity is also equal to
W, dX '

Tl e

w dx

1

if m is the mass flow rate per unit area of the mixture (i.e. the eigen-
value for the problem of laminar flame propagation), x equals distance,

and



W:? WX, (10)

is the average molecular weight of the gas mixture. Hence Eq. (9)

becomes 1/2 3/2

K, i x, x, 3/2

ax, ZkZ(Tc-S—) (gg) (a-zl-a-57)
= = = - . (11)
W

(1-a) - (3 'r%) X,

In the absence of diffusion the general energy equation for-one-

(9)

dimensional flow can be written in the form

o

(Y. - Y. .)h.

A de (0 -1)+ g_w( J J:f) )
— dx T

me ) P £

(12)

where A equals the thermal conductivity; the reduced temperature is

e = T/Tf, with the subscript f identifying equilibrium conditions at the
adiabatic flame temperature; Yj is the weight fraction of the j'th chemical
species; h?j equals the standard specific enthalpy of formation at te'mper-
ature To of the j'th species; the average specific heat 'EI') is given by the

(9)

expression

1 Z o
=~ (Y., . -Y. )h. . (13
(Y ¢ = Y5, 00 )
For the present approximate calculations we shall ignore the

- production of bromine and hydrogen atoms at the equillibrium conditions . *

In this case it is found from Eqs. . (12) and (13) that

#* This assumption is in line with the steady-state postulate but is not
correct at elevated temperatures where appreciable concentrations of
bromine atoms may form in bromine-rich mixtures., The required
corrections have been worked out and have been found to be relatively
small.
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(o]

A_ 4o Z(YJ Y5, 6
- =(6-1)- (1Q)Z(Y Y, _JRO
- mc J J,O J

o o
(Y -Y f)hl +(Y2"Yz,f)h2

= (0-1)-(1-0_) . ! o
(Y, l,o)hl PR PN
(X,-X, JWHOHX,-X, JW,h
"(9”(19)(:&1 1,f )W +(X2£ Z)th‘
:0 , ,0 22
since hg = 0, But
1
(X, - X, ) =5(X-X; )
and
1
(X, ¢ - %, o) =34y ¢ - % o) -
Hence
A dG (W;h? +§Wh2)
- =(8-1)-(1-0 NX,-X, f)(X )(Wh°+1/2Wh
mc 2 2)

We shall be interested only in flames for which X = 0. Hence

the energy equation reduces to the following simple expression:

X,
A gg (0-1) +(1- 0)(1-——-——) ) (14)
mE'p l f

Following the conventionél procedure for solving problems in
laminal" flame propagation, we now divide the continuity equation
given in Eq. (11) by the energy equation given in Eq. (14) in order
to eliminate the distance x as the independent variable. In this

manner it is found that
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X X
1
m% ax K 1232 (@ - haasth)
P ot =2k, () () (15)
Aw 9¢ 2 kg RT 1 K . . ‘ :
| [1—3.-(7- I%—)Xl]{(O-l)+(l—90)(1-X1/Xl f)]
We now introduce the as sumptionég) that
1/2
1/2 —92/9 ~
k, =B, 0 e ) ‘ (17)
k. B, -0,/0
k—l‘ '—'-B—l e 1 . (18)
5 5 :
Equation (15) now becomes
- — - -0
ax, 'de B, 1/2 . 3/2 -1/2 92/9 : 1
™ S|—= ‘) BT} ° x (19)
m ¢ 5 f
! p
( X 3/2
(Za—Xl)(l-a—T) ‘
) N | X ’
[(1-2)-(5 - E_)Xll [o-nv-e)-7 ) |
! 3 1,f
where
v 1 ' 2
0, =0,+>06, . (20)
It is now convenient to introduce the parameter /1. through the
relation
= 1 3
P AW B, /2 , /2 , .
=——— Bz (rT) ; e



whence Eq. (19) becomes

X 3/2
-1/2 -04/0 1.
ax; o7 T2 (2a-X))(1-a-5") -
de i 1
(9-1)+(1-oo)(1-}-(—1—-f) [(1—3,)-(—2- - k4/k3)X1]
The boundary conditions are:
6 =9, when X, =0 (23)
and
X, g=2a foracx 1/2
6 =1 when ,J X, g=2a foras= 1/2 - (24)
X, f=.7.’.(1 -a)fora>l/2

The solution of the boundary value problems is discussed in the
fblldwing Sections III, IV, and V for a < 1/2, a =1/2, and a 7 1/2

respectively,
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III. BROMINE-RICH FLAMES
For the bromine-rich flames, solution of the boundary-value
problem can be effected conveniently by use of the von Karman-

Milldn technique.(s) The boundary conditions are

8 =0, when X, = 0
i 1
and . _ (24)
0=1 when X1 = 2a
From Eq. (22)
d —-;: -6,/0 ﬁ 3/2
X1 Ae %e (2a-X3)(1-a- 5 )

25)
ao X7 (
(9—1)+(1-Oo)(1-?5) (1-a-0.381X1)

where the appropriate numerical value of k4 /k3 has been introduced
(see Section VIC for details).

Rearranging Eq. (25), we get

-% -05/0 44 (1-a-0.38IX)) (0-1)+1-0 )(1-;cl

Ao “e T g = 372 o (20)
1 (1- a-—-X ) 2a-X,

from which it follows that Lo

y [hm &) - (7;3’]

Ne 2 1im (@9, (1-1.7622) 0—1 %4 (27)

' 01 K (1-24)372 ’

—_— -2a) ~1

or

lim  do | ‘9' , (1-1.762a) _1-95) 1.1, 762a) (28)

0—s1 dX (1 2a)3 12 2 (124307

Defining
$ (a) _}__]:._7_6?27&.2_ (29)

(1-2a)
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and
1-90
b'(2,8 ) = ——— , (30)
then Eq. (28) becomes
1
lim  do é(a) b'(a,8,) 31
0—1'3X T - (31)

1 Ae 2 +6(a)

Introduction of Eq. (31) on the left hand side of Eq. (26) for

e~1, X1~ 2a, leads to the following relation:
X
1
1
n ‘92 b'(a,Oo) _ (Q'l)ﬂl'go)(l"za')
e 5 =
Ne 2+<5(a) Za-Xl
or, using Eq. (30),
H
se 2
1-0 =b'a, 0 }2a-X,) |1 - S
o 1 -92
e +48(a)
or
1-6 = b'(a, 8_)(2a-X,) é (a) ) | (32)
o 1 —92
Ae +5(a)
Introduction of Eq. (32) on the right-hand side of Eq. (26)
yields
1
-= -0./0 (1-2-0.381X.)
Ae 2. %49 . 1 bYa,0)|1- a) | (33)
dX,; (1- 1 )3/2 o -8
a 7™ Ne “+4a

integration of this last relation between Qt, Xt and 6 = 1, Xl = 2a,

leads to the result

1L _g1/0 -0, (%2 (1-a-0.381X,)
S 0 Ze 2 _b'(a,80)e * 1

de L ax, . (34)
=01 T 372z %

) Ae 2+8(a) (1-a-7 X))
t
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For 0~ 0,, X;~ 0, we get from Eq. (26)

-3 =0y/0 o =[(9-1)+(1-90) (1-2-0.381 X, )

; (35)
ax; Za (1- a_z o )372
the integral of Eq. (35) from 6,0 to gt’Xt is
% 1 Xy
-> -02/9
@ e a0 = 52 (1-2:2:-38°X1) ax, . (36)
5. (0-1)#(1-0_) g (1- a—EXI)
But(g)
% -1 or/e S % 1 g0
z "2 -= -0./0
LA Sy g— - 0 e % ae
(0-TJH1-0_) (0,-T)HI-9_)
1 1
whence
% 1 Xy
-5 -05/0 (0,-1)+(1-0_) (1-a-0.381X,)
0 e do= —7z 4. (37)
0. zatd o (amzX)

Since __dO is to be continuous at 0,_, X, it follows from Egs.
d.X1 £t
(35) and (33) that

(9,-1)H1-0_) . (1-2-0.381X))
P T -0.79 372 C
Ao, Ze 2t (1-a "z'Xl)
1-a-0.381X ' |
: Lo bla,0,) | 1- —Sl
1-a-Ix)3/2 T 0570, o -0}
Tany A JIQt Ze Ae + 8(a)
whence
]
_Qz

(0,-1)4(1-8,)  Db'(a,0,) e

- —o! (38)
2a e 2 +6(a)
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In view of Eq. (38), Egs. (34) and (37) can be added to yield

the result
1 1 -G'Z 2a _
-5 -O'Z/O b'(a, 00) e (1-a-0. 381X1)
1 o e ~ do= ; dax. . (39)
-92 (l—a-l X )3 /2 1
0, Ae “+d(a) O 21 -
In order to evaluate the integral
1
1
-5 -01/0
J 0 %e % ae
0,
i
we set
L ooy, 3=v% - =y" andae=-5% ay.
ye- 0 Y
Subsﬁtution of these relations yields
1

1 1 L2 o
"7 "800 B ey
e " e de = -2 v e Tdy=2 e dy.
| y _—
% 43 1Y
V53

But
1 L
oy _a1y? ye; -01y”
e 2 dy = —ZO'Z ye dy
-2y#0!
1 1 ~ Y52
1
or 2| o= —
! .
_QZY )ré: 91 _g,yz
= 1 1 1 2
= - e - 557 —5— e dy.
Zyg'z 2 vy
1 1

Comparison of the two preceding relations leads. to the result



2
0 5
Yoy 2
2 0,
-0! -0! /0, , 2 C 2
-_-(Ze 220 e ° 1)+4y—o'2 etdt-S e at .
0 0

11 \ w0
-5 -05/6 , =95 -05 /0] |2 2
0 ‘e de = (Ze -2 )8 e -2yo(2 |e™ at-2| &7 at
0. 0 0

% 0/%) . o
=(Ze -2 )8 e ) -2 Y=o} [1-:«:2()'0'2)]

where YF'_
2 2
| T L 2 : B -t
() E,(B) = 5 EVO)) = J e dt.
. _
But
1]
1 ' "2 1 1.3 1.3.5
(z): [hEZ(YGE)]N'?—— l-ggr Y= -5t
2)'0'2 2 (20)) (20})

- ———

*In the practical applications considered here, Q'Z/Qi' is sufficiently

large to justify the approximations made here.
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whence, finally,

1 | |
1
-= -0}/@ -0! -0!
Jozez a0xze Z-ze 2 |1-pgretd 32
. 2 (205)% (203)°
i ] '
or
1
1 -e!
-1 er/e 2
0 fe % a0 S 1-(26,3)4-1'3 > . . (40)
! 2 2! (20
i
N

Equation (39) can now be solved for A e 2 with the result

(1-0_je 02 (% (1-a- 0. 381X)) dX1
_at o 1 3/2
1% § (-a-3X)) 1-1.762a
e = —n -
s (12272
5, 13 1:35
ar - y T T e e
o | @ (2012

or 2a
| S (1-a-0.381 X, )
-0, (1-0_)6! Tz |
e 2. 2 0 laIZX) (117624 (41)

3/2
[y 13 1.3 5 i (1-2a)
Za{l (ﬁg (Zg ) ..-} | 7

where 0 (a) and b'(a, 90) have been replaced according to Eqgs. (29‘)

and (30) respectively. It is now necessary to evaluate the integral

2a 2a 2a
(1-a-0.381X,) 11 X, dx
J 1 ax, = (1-a) ax, - 0.381 1 1

T
S (1a-xx)° 2 (1-a-1 x)3/2 (1-a-3X

> X)) 0 > Xy) 0 v

Evidently

3/2
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2a
; (l-a)Xm ) , 1 1
% I ey B Gt "
0 (1-a—-2-X1) ' Y 1-2a Yl-a
and
2a
' X, dX v
0.381 X 1 11 s7z = 0.381 | 8a 16()’ 1-2a -y 1-a
0 (1—a-7X1) Yl-Za :
Therefore
2a
(1-a-0.381X,) ] :
T 373 Xm = [ 4(1-a)~-3.05a-6.10+12.20a}.
& (l-a--z— Xl) Yi-2a
1 \ v
- 4(1-a)-6.10(1-2)
Y1-a
_ 5.15a-2.10 +2. 10(1-a)‘_:£(a). (42)
yi-2a Y1-a '
The final result for bromine-rich flames becomes
-gv _a \ao! ' : '
e 0y _ (1-6,)851(a) _ (1-1.762a) C(a3)
" 1-3 , 1-3°5 (1-2a)372 |
Za 1*(29')+ 2"..0
2 (20"2)

from which the eigenvalue /L can be obtained for bromine-rich mix-

tures, The mass burning rate m is then determined through Eq. (21).
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| IV. THE STOICHIOMETRIC MIXTURE

orTr

For the case a = 1 and Xl = 1 the basic differential equation,

2 ,

Eq. (22), becomes

1 5/2
L e
X, a/yz e %e 2 -x)
a@ " Te-DHI-O X))  (I-0.761X))
1 5/2
Lolerze (1-x)) | |
2, 2 1 g = (0-1)¥(1-0_)(1-X)) . (44)

(1-0. 761X1) Xm

In order to integrate Eq. (44) we apply an ingenious, as yet un-

published, method invented by Dr. Theodore von Karman, We replace

the singular point (6 =1, X, =1) by (0 = 1, X, = X!< 1); then Eq. (44)
g p 1 1° ™ q

becomes, for (0 - 1') small compared to (1-00)(1-X1),

1

-5 -05L/0
A 0 %e & a9 _ 19 | (45)
z 1-0.761 X, dX (1--)(1537Z _ » |
Integrating Eq. (45) from (Q*,X.f‘) to (I,Xi) leads to the result
1 . X,
IR 1 (1-0.761 X)
—_ : de = (1-0 ) —7z 94X - (46)
0% X *

For 9%~ 1, the preceding expression becomes
i
e! *1 )
A 72 : (1-0.761 X
— e “(1-0%)= (1-0) |. 1
2 » (1-X,)
X

372 Xm . (46a)

i

If Eq. (45) holds, as a first approximation, from (Qi’ 0) to

(1, Xi.), then
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1 Xi
n e“;z/9 (1-0.761X))
E _—)7_6‘_ de = (1-90) m Xm (47)
) 0. 0

i
or, utilizing the result obtained previously for the integral appearing

on the left side of Eq. (47),

__gl -
4 e 2 1.3 1-35 (1-0761X,)dX,
T —Ti_— ]. (ZQ ) + 2 T s e e /-‘3(1‘9 ) 3/2 . (48)
yz 2 2’ (20%) o (1-X)

From the original differential equation it is apparent that the

limiting slope at the hot boundary is

de
ax, = (1-9)
1
to which we join the curve of Eq. (463.') at (Q*,Xi’ﬂ). Therefore, at
(0 *, Xf‘):
(1-0%) = (1-0_) (1-X3) - | (49)
From Eqs. (46a) and (49)
X
-0! (1-0.761X,)
Yz (1-X;)
X
W thﬁ = (1-0 ), Eq. (45) becomes at (0%, X"’)'
dX ol = ’
-0!
A e ? (1-X )3/2 -1 (51)
7 (T-0.T6IXF) il :

We next integrate Eq. (50) noting that X and Xi are very
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close together so that we may approximate (1 - 0. 761X1) in the inter-

val Xf‘ to Xi by (1 - 0. 761X=§). Hence Eq. (50) becomes

. Xl
1
-Q' dX 1-X% - l—X'I
'-{_—L- (1 X») =(1-0. 761X'i) S _ﬁz = 2(1-0. 761X=:<))/ 1 )/
V2 (1- X )/1 XIN1-
%% (1-X])(1-X%)
or
-9! \3/2 -
A StuxPrwp g 2
— =2 . 52
yZ (1-0.761X>i) Y_l-:S(—l‘—
From Egs. (51) and (52) we now see that
2 =T 2 =1
1-X,
or
/ 1-X>3i 3
l‘-X1' -2
whence

5 .
-7 - (53)

The next step is to obtain an explicit expression foer' from

Eqgs. (48) and (50). Egquation (50) may be written in the form

X!
-0}, 1
A e .1 (1-0.761 X )dX1 (54)
— -k
VZ oy O {I-X¥) 1 (1_X1)3/z
X3
' 1
or, using Eq. (48), e '_Xl
(1-0,) 1(1-0.761X,)dX,; | _ |
o (1-%)3 72 _ (1-0.761X,)dX,;
13 1+3:5 O I-XF) (1-x,)°" 4
28]) 7 (26})° X%
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Replacing X*i in terms of Xi according to Eq. (53) in the preceding

expression leads to the following explicit relation for Xi:

X! X!
13,1035 S
260 Tzeny2 T (1-0.761X,) (1-0. 761X,)
92 2 35 ax, = (1- 90)—-—/-—1-dxl.
A1-X1) 0} (1-X)) (1-X,)
Ixr-2 0
2% 71

(55)

Integration of Eq. (55) leads to the following first app-roximation

for XI!:

1 [1 1-3  1-3:5
(Zg—_y (ZO )2 . e & )
Xi=1- : | (56)
200y (1-0,)

Hence, from Eq. (53.),

1.3  1-3-5 ]
| (203 (2032
X{=1- 307 (1-0) - (57)
2 o ?
and,from Eq. (49),
| - [1_1-3 g 10305 ] .
30}

Comparison of Eqs. (56) and (57) shows that X’1 ‘and X"wi are indeed
so close together as to justify the approximation made ih the deriva-
tion of Eq. (52). |
In order to obtain a first approximation to ./Le'-g we proceed
from Eq. (54) as follows: »
A -Q'ZN 2(1-0. 761X * ' 1 1
vz oo 1-Xy { TXT TR ]

1-0. 761X% 1-0.761(3; X ——)

(1'Xﬁ)3/2 [l (le 4) ]5/(.
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after replacing Xi according to Eq. (56) it is found that
1- 1-3 + 1-3:‘2 -

(203) (262)

Y 0.239+0. 761 50T 10
. 2 _ 2 o
—=—e "= : —37> (59)
Y2 [1_ 1+3 +1‘3'5_ ] '
@) " (205)°
39'2 (1-00)
Therefore, for the range of values of 0'2 actually encountered,
-0'2
Ae 2= Y6 YOOy [0.761 +0.717 04(1-0_) ] (592)

from which the eigenvalue 4l for the stoichiometric mixture ratio

can be calculated.
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V. HYDROGEN-RICH MIXTURES

The mathematical technique which we have employed for
stoichiorﬁetric mixtures can be used also to solve the boundary-
value problem for hydrogen-rich mixtures. However, since the
calculation is somewhat laborious, we follow another suggestion
by Dr. von Kf{rm4n, according to which we test a more highly ap-
- proximate procedure for mixtures containing 43, 3% Br'z, for
which the solutions become particularly simple., The success of
the simplified procedure for mixtures containing 43. 3% Br2 gives
us confidence in the results obtained for hydrogen-rich mixtures,
in general, for which we utilize a method of calculation in which
the limiting slope of the @ vs. X, curve does not have the correct
value at the hot boundary.

A. The Mixture Containing 43.3%0 of Bromine

For mixtures containing 43, 3%/0 of Brz a considerable
simplification is noted in the basic differential equation. For

these mixtures Xl £ = 2(1-a) and it is seen that
2

2a =422 1.3 =0.433;

Equa.tion (22) becomes, for (8 - 1) small compared to (_1-00)(1-X1),

X, 3/2 X

1 1
(l-a->) -1/2 -05/8 5o (1-0.) (1-a- )
0.381 A0 € ax,” 1-2) . (60)

(1) Direct Integration of Eq. (60)

Without regard to the limiting slope at the hot boundary,

we can integrate Eq. (60) directly with the result
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1 2(1-2)
1] X
-0,/8 0.381(1-0 ) ax |
A | E—eyae = — > . (61)
— 172 0.433 ""“"'—7‘)(1 172
0. ° 0 (1'a".2_)
1
since 1-a = 0,433, Hence
. 2(1-a)
-Q! '
fe 2 13,135 ) 0.381(1-0_)(-4) 1-a-3(—1
- - T = e e e -
o) (263) (29,2)2 0.433 Z .
= 2.318(1-0 )
and
-9! 2.318(1-6 ) 0!
Ne 2 - o 2 . (62)
1-3 1-3:5
1- l. + = e mo
(287) (zoé)z

The fact that Eq. (62) yields a fair approximation to the solution
of the boundary-value problem will now be established. by a more
careful integr‘at‘ion in which 4@ /Xm has its correct limiting value
at the hot boundary. On the basis of this result, we shgll iﬁte-

rgr;.a,te the flame equation for all hydrogen-rich mixtures directly

in Section VB.

(2) Integration of Eq. (60) With the Correct Limiting

Slope at the Hot Boundary

Integration of Eq. (60) from (0%, Xﬁ) to (1, Xi) leads to

the relation:
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1 -02/¢ X1 dx
- 0. 381, 1
A ﬁ— 40 = (1-6,)(57733) G e (63)
Q% X]:f:
For 0% — 1
X
-9"2 Xm - ‘
b3
Xi,k (1-a- _)

If Eq. (63) holds from (9,0} to (1 Xi), then

-0
AS ___7__d9-0880(1 0,) _T_ﬂz

o, 0 (l-a- =)
or
1
ey Xy |
dx :
Ne 1-3 1-3-5 1 (65)
1 + ~ e a0 NO 880(1 O ) . )
oy | @ (z0p)? (1-a- 3L )172
0
We now join Eq. (64) to
' 1-6
de  _ o 2 x
axX, “xTa) at (0f, X%) .

since do /dX, = (1-90)/2(1—a) is the correct limiting slope obtained

from Eq. (22). At 0 = 0%, X, = X% :

1 = X%
1-0
1-0% - o
2(12)-X% - 2(T%a) ' (66)

and, from Eqs. (64) and (65),
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Xl

X 1
"glz (1—3--2—) Xm
s
With
de o (1_00)
ﬁl ~ 2(1-a)
Eq. (60) becomes at (0%, X’i) for 0% = 1:
x4 1/2
-85, (l-a->-) .
Ae W = 0,880 . (68)
From Eq. (67)
1/2 *.1/2
-8! X! X
Ne 2 LZ-‘-%-('——{“_)%?-] - -3.520 [(1-3,)- 2 - [(1—a)-—-2—1-} . (69)

But, from Egs. (68) and (69):
| 1/2 X /2 [ Xpl/2
YZ x 0.880 [2(1-a)-X¢ ] = 3.520 [(1-a)- —Z-] - [(1.,.—,1)- -

or
‘ *

1/2 \1/2 /2
X X 1 X
(1-a)- = - [(1-a)- = =5{(l-a) - -
whence
(70)

From Eq. (67):
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_o! 1
Ae 2 2(1-a)0.880 J aX;
or 01[2(1-a)-x=§ - X, 11/2
2 9% 1
Lo -3

i

and, using Eq. (65),

1 1
Xl X

0.880 (1-0 ) Xm 0.880(1-a) 1 Xm
1.3 35_ X 172~ X% XAz
[ (202'5 (20, "'] [(l-a)—T} e! [1 a-—-—] {(l-a)-—z—l
b X .
Thus
1-3 1+3+5 .

(1-a) THE M A

a [ (28%) (29.)2 } Xy 1/2 x| 1/2 |

X"j (1-a- —Z—) - (l-a- -——-) =
(1-6,) 0 [(1 a)--—J

1/2 X 1/2
(1-a) - (1-a- ——) .

Using Eq. (70) to eliminate Xi, the preceding expression becomes

i3 ,1'3°5
2 (1-a) [1 “(20Y) " (205)2 J a2 xp 12
X% 1172 = (1-a) z a5
(19)9'[(la)-—] |
which yields
1/2 1z
X% 1/2
i _ 1 1.3 [ 1435 .

(ra-5=)  =(-a) g1~ {1 AL [1 (z0%) (20‘2)2} o

Combining Egs. (68) and (71'), and noting that (1-a) = 0.433, we get

-0!
2 .
Ae = 1.16 . (72)

/2
P YRS W | A4 1-3~5-...]
(T-0,)e5| (292) (204)2




-26-
The fact that Eqs. (62) and (72) yield similar results can
be seen by expanding the denominator of Eq. (72) for large values
of (I—Oo) O"Z. In this manner it is found that

-0!
Ae 2 =~ 2.32(1-6,)6) (72a)

which is seen to be practically identical with Eq. (62) for large
values of 0'2. On the basis of this result we are encouraged to
integrate the basic differential equation for hydrogen-rich mix-
tures directly between Oi, 0 and 1, 2(1-2) after neglecting the
term in (0-1). Details concerning this work are described in

the following Section VB.

V.B. Hydrogen-Rich Flames with Arbitrary Concentrations of

- Bromine

The result for the general case of hydrogen-rich flames
is obtained most conveniently by using direct integration of the
differential equation with the term in (0-1) neglected. For

‘hydrogen-rich flames a7%— and X1 £ = Z(I-a). Equation (25)

becomes
' . 2(1- - '
_/LSI 6'92/9 z (1-00) J e [0.1321 _Xl] Xm (73)
- d0=0,381 y2 ———— (7
< ol72 1-a o (2a-X) [2(1-:1)-)(1]1/2

But
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2(1-a) 2a
1-a 1-1.762a
j [_"‘"‘"0.381 - Xl] dX; B [ ~0.381 '+Y] dy
7z —
e (2a-x)) [201-2)-% | 2 Y, Yy Yy
2a 2a
g e F e
’ 4a_2YYY"(4a“2) 42-2 y-(4a-2)
or
2(1-a)
l-a '
[_0.3'8“1 'Xl]dxl f1-1.762a] 2 e
1727 3381 | == |c°% =) ea
(2a-X;) [2(1-a)-x1] YZa-2

0

and Eq. (73)becomes

1 -05/0 | (1-0)
A] & age-= Y7x0.381—(T£T x
SR

1'10'73%213 2 cos_l(yza;l‘ﬁ 2Y272z | . (14)
¢ Y4a-2 i .

Since 90 is not a sensitive function of a we shall treat it as
a constant. Then
1 ‘
-8} /e

AJ & —— a0 =0.539(1-6 ) g(a)

(742a)

where g(a) is defined as

v= 1 |} 1-1.762a 2 -1, [/2a-1 ‘
gl(a) —l-a£ 9381 — cos 5 Y+ 2 YZ2-2a ] . (75)
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Finally, integration of Eq. (74a) yields the result

-8!

T¥2 _, 0.539 (1-04) 02 g(a)
e = [1_ -3 % ‘ (76)
(Zg[ ) \ 2 - ew -]
2’ (20})

from which the eigenvalue /L for hydrogen-rich mixtures can be
calculated. For (1-a') = 0.433, 1.762a = 1, and Egs. (75) and (76)
reduce, of course, to Eq. (62). .
We have now obtained analytic expressions for ./l.e-g for
all possible hydrogen-bromine mixtures. Before summarizing the
basic expressions for the laminar burning velocity, we pr_éceed to

consider the relevant physico-chemical parameters which must

be used in order to obtain numerical results.
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Vi. PHYSICO-CHEMICAL PARAMETERS

A. Egquilibrium Constant for the Reaction Brzz-—’— 2Br

The value of the equilibrium constant Kp (i.e., of the equilib-
rium constant expressed in terms of partial pressure ratios) for the
bromine molecule-bromine atom system have been taken from the

(13)

Bureau of Standards compilation which covers the temperature
range between 298°K and 1500°K. Equilibrium constants at 1 600°K
and 1700°K were obtained by extrapolation of the Bureau of Standards
data., Equilibrium constants as a function of temperature are sum-
marized in Table I,

The data given in Table I have been fitted to an expression
of the form |
K, = BTe A/RT
by plotting log(Kp/T) vs. (1/T). The plot is shown in Fig. 1. Ap-

propriate numerical values derived from Fig. 1 are

A = 45,210 cal. /mole  and B = 230.5 atmos. /°K .
The equilibrium constant K, expressed in terms of concen-

tration ratios, for the reaction

Br

«— 2Br,

2
is related to Kp through the expression KC = KP/RT.

Hence it follows that

K = 230.5T -45,210/RT
c - 8z.o7T °©
= 2.808 e;45’ 210/RT moles /crn3

. . . 3
if concentrations are expressed in moles/cm~. But

K, =k /kg
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where k1 and k5 are the specific reaction rate constants for the proe
cesses described in Egs. (1) and (5), respectively.
Iﬁ terms of the parameters needed for the calculation of lami-

nar burning velocities we find, therefore, that

BI/B5 = 2,808 moles/cm3 ’ (77)
and

0, =45, 210/RT,. ’ (78)

B. The Specific Reaction-Rate Constant for the Reaction Between

Br and H2

The specific reaction-rate constant for the process

kZ
Br+H2-——+ HBr + H

is based on careful experimental studies carried out by Bodenstein
“and Lind. (14) The experimental results have been re-evaluated by
Pease(lz) who finds that

e—18, 780/RT

12—
k, = 4.56 x 10°9T cm? /(mole-sec),

2

1}

(79)
whence

B 4.56 x 1012 YT, cm3 /{mole-sec).

2
We shall utilize Eq. (79) for the specific reaction-rate constant kz

in preference to slightly different forms proposed by other investi-
gators. (6, 7 However, it is important to note that alternate correla-
tions of the available experimental data lead to greatly different pre-
dicted values for kz at elevated temperatures. Thus Hirschfelder

(6)

and his collaborators recommend the relation

k. = 3.45 x 1010 T 16, 640/RT

2 m3/(mole-sec). (79a)
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A comparison of the calculated values of kz determined from Egs.
(79) and (79a) is shown in Table II for the temperature range which
is of inte.rest in connection with calculations of laminar burning ve-
locities for HZ'-BI'2 mixtures. Reference to Table II shows, for
example, that the values of kz calculated from Eq. {79) at 1500°K
could be too large by roughly a factor of 1.7. Hence the laminar
burning velocities, which vary as the square root of kZ’ -could be
too large by perhaps a factor of 1. 3.

C. Ratio of the Reaction Rates k4£/k3 for the Removal of Hy-

drogen Atoms

The ratio of the reaction rates k4/k3 for the removal of H-
atoms according to the processes

H+Br. —3» HBr + Br

2

and k

H~!-HB:c'-——‘—L->H2 + Br

is again based on the experimental work of Bodenstein and Lind(l4)
and Bodenstein and Jung. (15) The value

ky/ky = 1/8.4 (80)
 does not vary with temperature over the relatively narrow temper-
éture range for which experimental measurements are made. We
assume that this result can be extrapolated from about 600°K to
temperatures as high as 1700°K. Since the activation energies for
the reactions (3) and (4) are probably very small, this extrapolation
should not introduce a large error even if the activation energies

for reactions (3) and (4) are not identical.
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D. The Adiabatic Flame Temperatures and Equilibrium Composi-

tions for HZ—Br2 Mixtures

Adiabatic flame temperatures and equilibrium compositions
have been determined by the use of standard procedures. (16) The
results for Tf as a function of composition of the gas mixture are
plotted in Fig. 2.; the equilibrium mole fractions of HBr, HZ’ Brz,
and Br as a function of composition are shown in Fig. 3. Relevant
numerical values are summarized in Table III.

E. Thermal Conductivities in H2 -Erz Mixtures

Values of flf as a function of composition for HZ-BJ.‘2 mix-
tures have been calculated by Cooley and Anderson(S) on the basis
of the elementary kinetic theory of gases, which does not include
proper allowance for the influence on thermal conductivity of energy
transfer between internal and translational degrees of freedom. The
results of Cooley and Anderson, which represent lower limits for
the thermal conductivities, are summarized in Fig. 4, where we
have plotted f\f as a function of composition. Reference to Fig. 4
shows that /\f increases slightly with Tf and more rapidly with the
concentration of H, in the gas mixture, |

Actually the problem of estimating appropriate thermal con-
duction coefficients is greatly complicated for flames by the inevi-

table composition changes occurring during reaction. Campbell and

Hirschfelder(6) propose a relation of the form
A=A AT, (81)

where both A' and A " are parameters which must be determined

separately for each gas mixture., Our formulation of the problem
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of flame propagation does not permit the use of this two-parameter
expression for A without a complete recalculation of the results,
because of the change in the assumed temperature dependence of A.
In view of the crudeness of the approximations for A , we do not
feel that the additional labor is warranted. For this reason we have

(

used the following relation 16) for the thermal conductivity of a

mixture of species i and j:
Aj )‘j

A=A . (T)=—1- AX.+A X, + : . 82
f mixture' " { 0 B s T | (X, W’ij Y/Ti—)z (82)

Equation (82) yields reasonable results for binary mixtures in which
the pure components have greatly different thermal conductivities.
Thus Eq. (82) is particularly well suited for making estimates of )\f
in hydrogen-rich flames. In order to calculate the thermal conduc-
tivities of the pure components, we utilize the following relations
(6)

proposed by Campbell and Hirschfelder, and neglect again the con-

tributions of Br and H at Tf to the thermal conductivity:

AH,(T,) = 5.13 x 107% / (83)

T
=373
ABr.(T,) = 1.20 10‘5'”——Tf (84)
T, (Tg) = 1.20 x Y373
VT,

6.08 x 10‘6 _
AHBr(T,) = 3 (85)
: 1 +1.275x 10

where /\f is expressed in cal/(cm sec 0K).
Numerical values for A gasa function of mixture ratio are given in
Table IV and are plotted in Fig., 4 as a function of composition.

It should be noted that our method for calculating (\f
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emphasizes the numerical values at temperatures close to Tf. This
procedure receives partial support through the well-known result that
most of the chemical reactions in a flame occur at temperatures
close to Tf.

F. The Average Specific Heat

A more exact expression for the average specific heat than was

used in the derivation of Eq. (14) can be obtained from Eq. (13), viz.,

CR— [Wlx RO+ N2y x )nS
P Tfil-Oo) W 1,71 W 2 f 72, 2
- - (85)
+—2X, hY+— X, h
W ’ w !
since X =X =X = 0 and h} = 0 if the subscripts 4 and 5 iden-
1,0 4,0 5,0 3 . i

tify, respectively, the species H and Br, Although the contributions
of H and Br are small, they have been included in Eq. (85). Average
specific heats as a function of composition have been calculated both
wit;h and without allowance for dissociation into hydrogen and bromine
atoms. The results are listed in Table V. Reference_to the data given
in Téble V shows that the influence of the atomic speci‘es on the aver-
age specific heat is negligibly small except for near-stoichiometric
mixtures.

If dissociation into atoms is neglected, then simple explicit re-
lations can be obtained for the average specific heats. After introduc-

tion of appropriate numerical values* the following relations are ob-

tained:
. 1
for Xl,f = 2a, XZ,f - XZ,o =(l-2a)~(1-a) = -a, i.e,, for a<-z ,
4 .
T - 2.466 x 10" a . (86)
p (159.8-157. 8a)Tf(1-Oo) !
* Appropriate numerical values are
(13)

w; h(f= -8660 cal/mole and W2 h® = 7340 cal/mole

2
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_ . )
2(1-a), X, ;- X, = -(1-a), i.e., fora 7 >,

for Xl, £

o 2,466 x 10* (1-a)
P (159.8 - 157. 8a)’Tf(1—90)

H

ol
!

since
W=2.0l6a +159.8 (1-a2) = 159.8 - 157. 8a.

(87)

The values of ¢_ calculated from Egs. (86) and (87) are plotted in

Fig. 5.
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VIiI. COMPARISON OF CALCULATED AND OBSERVED BURNING

VELOCITIES

In order to calculate the laminar burning veldcity as a func-
tion of_> mixture ratio, it is convenient to summarize first the rele-
vant theoretical relations.

The laminar burning velocity u,is given in terms of the param-

eter ~L through the basic relation expressed in Eq. (21), viz.,

. RT_ /A; B1 7z - 372

o P (‘c‘ W) 5
Introduction of appropriate numerical values for BZ’ B1 /BS’ and R

for p = 1 atmos. leads to the relation

T o
u=8.31x10% /—f ° 0, cm/sec o (89)
° : cPW

if Wis expressed in g/mole, /\f in cal/cm sec °K, T, in °K, —C-p in

cal/g °K, and T, in °K.

f
-Q! :
For the eigenvalue /e 2 we have obtained in Sections III,
IV, and V the relations listed below.

Bromine-Rich Mixtures (a4 %, X1 £ 2a):

- .Q! (1-8.)6, [5~15a—2.10 +2.1o(1-a)]
A Z ~ y1l-2a y1-z
) B 1 3. 5 j
' P
[ (292 (20} ) ] 3
(1-2a)3/2
Stoichiometric Mixtures (a = l, Xl ;= 1'):
r’l ~ 1.3 +l 3.5 j
0.239 + 0.761 = T?'D";\ (z65)2 ~
2 30! (1-0
./Le‘g'z ~ )2 5 | o) 59)

L. L3 L35 17372

39'2 (1-00)
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=~ YEOL(I-0.) [0.761 + 0.7179'2(1-90)] . (59a)
- Hydrogen-Rich Mixtures for 2a = 1-a/0.381, X; ¢ = 2(l-a):
- _g! 2.32 (1-0,)05
Ae 2= [1_1;3_+1-3.5_ (62)
(zg') , Z ...]
2 (292)
or, in somewhat better approximation,
-9!
2 1.16
_ T ] . = 8 o
(1-8,)8; (265) (203) }

Hydrogen-Rich Mixtures (a)%—, X1 £ = 2-2a):

05(1-6_)

-02  0.339 1-1.762a -1 Za-1
Ae = 13 1.3°5 , 1.1/2 °°° { a ) (76)
{1 - (737) +—2-...] 0.381(a-5)

) (20))

+z>'z-—zez] .

Explicit relations for us,can be obtained readil§ by combining
Eq. (89) with Eqs. (43), (59), (72) and (76).

Laminar burning velocities as a function of mixtur»e compo-
sition, computed by use of the preceding relations, are plotted in
Fig. 6 and recorded in Table VI. The data shown in Fig. 6 and Table
VI correspond to the two extremé sets of values of thermal conduc-
tivity discussed in Section VI.E. Also ploﬁ:ed in Fig. 6 are the ex-
perimentally determined values for the laminar burning velocity |

reported by Anderson and his collaborators.
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Reference to Fig., 6 shows that the calculated values for the
burning velocity are appreciably larger than the observed results.
Although iaminar burning velocities determined from Bunsen burner
experiments are ﬁotably unreliable, it appears likely that the major
source of the discrepancy between theory and experiment is the re-
sult of uncertainties in the chemical kinetics data and in the thermal
conductivities used in our calculations. For example, on the basis
of the ratios of rate constants listed in Table II, it is not unreason-
able to reduce the largest calculated values of the burning velocities
by as much as a factor of 1.3, thereby producing much better agree-
ment between theory and experiment than is indicated in Fig. 6.
Furthermore, our calculations are based on the steady-state approxi-
mation for hydrogen and bromine atoms. We neglect, therefore,
the influence of diffusion. It is well-known that the effect of diffu-
sion on burning velocity is to decrease the burning velocity. (9)
Finally, it has been demonstrated that the steady-state approxima-
tion for bromine atoms cannot apply exactly at elevate& temperatures
for the bromine-rich and near-~stoichiometric mixture compositions.
Details concerning the corrections required because of failure of
the steady-state approximation for Br- atoms’ have been worked out
by von Karm&n and Milldn and will not be given here.

In spite of the discrepancies noted for the absolute values of
calculated and observed burning velocities, it is evident that the cal-
culated burning velocities have the correct functional dependence on
composition, This resﬁlt gives us confidence that, except for the
questionable approximation concerning the steady-state approxima-

tion for Br- atoms, we have a valid first approximation to the physico-

chemical processes occurring in a hydrogen-bromine flame.
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Table I. Logarithm of the equilibrium constants Kp’ for the

reaction Brzi‘——" 2Br, as a function of temper-

ature, taken from reference 13

T(OK) -log Kp (p in atmos, ) .
298,16 28.318
300 28.110
400 19.7096
500 14,6528
600 11,2754
700 8.8570
800 | 7.0392
900 5.6220
1000 4,4858
1100 3.5536
1200 2.7746
1300 2.1136:
1400 - 1.5454
1500 1.0512
1600 . 5730

1700 .0175
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Table II. The ratio of reaction rates, kZ’ calculated from

Egs. (79) and (79a) as a function of temperature

T (°K) k2 from Eq. (79)/k2 from Eq. (79a)
500 : . 69
600 .91

1000 1.42

1500 1.67

1700 1.72
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Adiabatic flame temperatures and equilibrium

mole fractions as a function of composition (p = 1 atmos.

T, = 323 °K, a

initial mole fraction of H3)

1-a  TA°K) Xy, ;o Xy Xpr Xpt Xpos
2,f 2, ¢
.1 675 .20 .80 I e e
.2 1014 .40 .60 8.0x10°°  —--- _————
.3 1324 .60 . 40 - e oo
.4 1585 .79 21 1.6x107% 2.5x107° 7.3x10”
.5 1683 .95  2.7x107% 2.9x107> 2.2x107° 4.9x10”
.57 1475 .86 3.5x10°% .085  3.3x1077 7.9x10°
.6 1395 .80  7.6x107° .162  4.3x10"° 6.0x10"
.7 1182 .60 7.1x107% 378 1.2x107? 3.4x10"
.8 923 .40 ceee .60 cemm e
.9 725 .20 ceee .80 el

3

2

2

2

2
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Table IV. Thermal conductivities A as a function of

composition, calculated from the empirical relation given in

Eq. (82) and based on the data of Campbell and Hirschfelder (6)

1-a Ag x10*> (cal/cm sec °K)
0.1 | 43.2
0.2 39.6
0.3 33.1
0.4 25.0
0.5 14.1
0.6 8.8
0.7 6.0
0.8 3.6
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Table V. Average specific heat -C-P as a function of composition

for the H,-Br, flames

1-a | Z:-P(callg °K)(dissociation neglected)* —c_P(cal/g OK)* *
0.1 0.394 - 394
0.2 0.213 S . 213
0.3 0.151 . . 151
0.4 .0.119 , | .116
0.433 0.116 114
0.5 0.112  Lo98
0.6 0.095 | . 076
0.7 0.071 .. 065
0.8 0.064 064
0.9 | 0.043 . 043

* Calculated from Egs. (86) and (87)

* %k Calcﬁlated from Eq. (85)
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Table VI. Calculated laminar burning velocities, us,for

H,-Br, flames as a function of mixture composition

l1-a ug{cm/sec)* u{cm/sec)* *
0.1

0.13 0.27
0.2 3.18 6.9 |
0.3 22.7 52.0
0.4 57.5 121
0.433 61.0 122

0.5 45,5 70. 2
0.6 23.9 31.9
0.7 9.75 12.2
0.8 0.48 0. 56
0.9 ' 0.020 0. 027

(5)

*Based on the thermal conductivity data of Cooley and Anderson.
% %*Based on thermal conductivities calculated from Eq. (82) and

the data of Campbell and Hirschfelder. (6)
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Fig. 1 Plot of log (K_/T) vs. 104/T for the reaction Br, @ 2Br,
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Fig. 2 Adiabatic flame temperature Tf as a function of composition

for HZ-BrZ mixtures {(p = 1 atmos,, To = 3230K)
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2,f

2, f Br,f{

i f

l1-a

Fig. 3 Equilibrium mole fractions as a function of gas composition
for Hz—Br2 mixtures (p = 1 atmos., T, = 323°K). The values
of XH ¢ are so small that they cannot be shown on this plot

(see Table III for data on XH f).
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® Thermal conductivities calculated
without Eucken correction by Cooley
and Anderson from the elementary
kinetic theory of gases. (5

A Thermal conductivities calculated
from Eq. (82) and the g)ata of Camp-
bell and Hirschfelder! .
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Fig. 4 The thermal conductivity Af as a function of mixture composition

for HZ--BI“2 flames,
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Fig. 5 Average specified heat Ep as a function of composition for the

HZ—BrZ flame (p = 1 atmos., To = 323 c,K). The effect of dis-

sociation on Ep has been neglected.
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o Calculated data using thermal conductivities of Cooley & Anderson( 2)
A Calculated data using thhermal conductivities calculated from the data

of Campbell and Hirschfelder
f)experimental regults with burner size and inert atmosphere
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Fiz. 6 Comparison of observed and calculated values for the laminar

burning velocity in HZ—BrZ mixtures.



