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Chapter 11

The Alternating Character

Since Foulkes’ Conjecture is based on the trivial character, it is natural to ask whether

the ideas hold for the alternating character. The first question is, what we mean by

the alternating character in terms of induced modules.

Consider, the ‘alternating’ character of the form ((−1)Sab
↓SaoSb

) ↑Sab , that is the

usual alternating character of Sab restricted to the subgroup Sa o Sb, which is induced

back up to Sab. A brief computer check of Foulkes’ Conjecture using this character

shows it holds for some small values of a and b. In fact, Foulkes’ Conjecture is

equivalent to the following conjecture using the alternating character.

Conjecture 3 (Foulkes’ Conjecture for Alternating Characters). If a ≤
b then every irreducible character occurring in ((−1)Sab

↓SboSa) ↑Sab occurs in

((−1)Sab
↓SaoSb

) ↑Sab with multiplicity greater than or equal to its multiplicity in

((−1)Sab
↓SboSa) ↑Sab .

Naturally, this conjecture also generalizes to:

Conjecture 4 (Generalized Foulkes’ Conjecture for Alternating Charac-

ters). Given n = ab, a ≤ b, if c, d are such that cd = n, and c, d ≥ a, then every

irreducible character occurring in ((−1)Sn ↓SboSa) ↑Sn occurs in ((−1)Sn ↓SdoSc) ↑Sn with

multiplicity at least as large.

Showing the equivalences of Conjecture 1 or Conjecture 2, (Foulkes’ Conjecture

for trivial characters), and Conjectures 3 or 4 (Foulkes’ Conjecture for alternating

characters) is straightforward. We will assume Conjecture 1 (or Conjecture 2) holds
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and prove the alternating character version. The same argument shows the reverse

equivalence.

Proof. First recall that if S is a subgroup of finite index in G, F an S-module and

E a G-module over a field, then there is an isomorphism IndG
S (ResS(E) ⊗ F ) '

E ⊗ IndG
S (F ). (See Chapter XVIII §7 of [16].)

Note that here we have used Ind for induction and Res for restriction of modules.

Also, let G = Sn, S = Sa o Sb and T = Sb o Sa or Sd o Sc as appropriate. Let E be the

G-module corresponding to the character (−1) on G. Since we are working over C,

we will use C to denote the trivial module over any group.

The characters we’re comparing are χS = IndG
S (ResS(E)) =(−1)Sab

↓SboSa↑Sab and

χT = IndG
T (ResT (E)). Then χS ' IndG

S (ResS(E)⊗C) ' E ⊗ IndG
S (C) by the isomor-

phism mentioned above. Similarly for χT . Switching notation back to characters, we

get χS ' (−1)G1G
S and χT ' (−1)G1G

T .

Since we’ve assumed Foulkes’ Conjecture on trivial characters, we have 1G
S = 1G

T +ψ

for some character ψ. Then χS = (−1)G(1G
T + ψ) = (−1)G

T 1G
T + (−1)Gψ. Hence

χS ≤ χT as desired.

Since we’ve proven Theorem 1 the argument above shows:

Theorem 14. If 2 ≤ b then every irreducible character occurring in

((−1)S2b
↓SboS2) ↑S2b occurs in ((−1)S2b

↓S2oSb
) ↑S2b with multiplicity greater than or

equal to its multiplicity in ((−1)S2b
↓SboS2) ↑S2b .

Similarly, Theorem 2 gives:

Theorem 15. Given n = 3b, 3 ≤ b, if c, d are such that cd = n, and c, d ≥
3, then every irreducible character occurring in ((−1)Sn ↓SboS3) ↑Sn occurs in

((−1)Sn ↓SdoSc) ↑Sn .

While Theorem 3 shows:
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Theorem 16. Let n = 3b = cd, with c, d ≥ 3 and let λ = [λ1, λ2] be a two row

partition of n. Then every irreducible character χλ occurring in ((−1)Sn ↓SboS3) ↑Sn

occurs in ((−1)Sn ↓SdoSc) ↑Sn with multiplicity at least as large.

Given the success of replacing the trivial character in Foulkes’ Conjecture with this

‘alternating’ character, it is natural to investigate if other definitions of an alternating

character yield similar results. One suggestion was to try (−1)Sab
SaoAb

− (−1)Sab
SaoSb

for an

induced alternating character in place of 1Sab
SaoSb

in Foulkes’ Conjecture. Alas, a simple

computer check via GAP [9] shows Foulkes’ Conjecture for this character fails when

a = 3 and b = 4. Other variations on this character, such as (−1)Sab
AaoSb

− (−1)Sab
SaoSb

also fail at those values.
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Chapter 12

Discussion of General Results

Theorems 1, 2, and 3 extend the current research on Foulkes’ Conjecture. Although,

the proof used combinatorial techniques on Young tableaux, the results correspond-

ingly apply to areas such as Shur functions, Rational Homotopy Theory, and other

means of interpreting Foulkes’ Conjecture. In addition we may interpret the Foulkes’

Conjecture using the alternating character via these theorems, which we discussed in

Chapter 11.

While the construction of the tableaux themselves are cumbersome, the develop-

ment of the theory illustrates new approaches to Young tableaux. These concepts

could be carried forth in contexts involving tableaux other than its usage here. Al-

though the main theorems are specific to the cases a = 2 and a = 3, some general

results arise from this study.

The main theoretical techniques of this paper are that of weight-set counting in

Theorem 4, the application of Theorem 8, and the use of maximality to show linear

independence.

The theory and technique of weight-set counting developed in this paper can

be implemented in general, as can the concept of maximal form. While we only

used tableaux with three or fewer rows, the theoretical foundations of weight-set

counting have been laid for tableaux of an arbitrary number of rows. Although the

computations are impractical for a random tableau, the counting works smoothly for

tableaux with suitable symmetries, particularly those tableaux in maximal form.

Moreover, the technique of weight-set counting is not dependent on a filling of



192

content [ba]. However, for non-uniform contents, one must watch carefully the ac-

tion of Sa; the weight-set counting may need to count all rows and the definition of

maximality will need adjustment.

Similarly, the usage of Theorem 8 in constructing larger tableaux will also work

for other contents and row quantities. The use of the Lemma 3.4.9, to show weight-set

disjointness by maximality, however, has only been defined for three row partitions.

It should be possible to generalize it for other partitions.

Tableau maximality is a very useful concept for showing weight-set disjointness

and applying Theorem 8. It is vital in proving linear independence of tableaux. Linear

independence through tableau maximality should allow more progress on issues such

as multiplicity.

The methods of proving Theorem 2 could also apply to proving Conjecture 2

with other a’s, not including multiplicities. Unfortunately, the computations are

likely to be somewhat cumbersome, especially the establishments of non-zero shapes

as done by Theorem 9. However, should those parameters be established through

other techniques, the tableaux constructed for Theorem 2 should provide nearly all

the needed shapes with three or fewer rows, thus reducing the work substantially.

Moreover, the reduction procedures will also apply.

Specifically, given any n = ab = cd, if the shapes having multiplicity zero in

Sb o Sa are bounded, then to prove the generalized Foulkes’ Conjecture for arbitrary

c, d ≥ a, we should only need to prove it for a limited number of c’s. For instance,

suppose a shape had multiplicity zero only if λi − λi+1 ≤ fi. (For n = 3b, we had

f1 = f2 = 4.) Assume d is even (the odd case, though more cumbersome should

follows analogously). Then given a tableau, we can ‘peel off’ a column block of size

d with the appropriate row length, for instance, U1(d) and P1(d) are the two and

three row versions. We can repeat this process so long as λi − λi+1 > d + fi (and

there are at least as many elements as there are rows). Hence in the end, we need

only construct a tableau with λi − λi+1 ≤ d + fi. This tableau will need at most

1
d

∑
i i(d+ fi) elements, hence c will be bounded by this number. This should imply,

given the fi, if the generalized Foulkes’ Conjecture is true for c up to some bound,
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it is true for all c. (Presumably, if these tableaux exists, we can find versions with

maximal/disjoint weight sets as needed.) The existence of the fi seems probable since

Theorem 2 implies f1, f2 ≤ 4 if 3|n. It may be the case, as in Theorem 1 that the

parity of λi strongly effects the multiplicity. However, since the ‘peeling off’ does not

change the parity, this process should still go through.

In addition to this procedure, the investigations of Theorems 1 and 2 yield some

general results. Take the character 1Sab
SaoSb

and consider the irreducible Sλ correspond-

ing to λ = [λ1, λ2]. Then Sλ always has non-zero multiplicity whenever λ1 and λ2 are

even. Moreover, this multiplicity is zero whenever λ2 = 1 regardless of the choice of

a and b. These theorems also have implications regarding the generalized Gaussian

polynomial, as discussed in Chapter 10.

Finally, the techniques within the proof of Theorem 3 should extend beyond two

row tableaux. Specifically, Theorem 2 can probably be strengthened to include multi-

plicities for all partitions. Such a result should follow the ideas of Theorem 3, though

sufficient linearly independent three row tableaux for c = 4, 5, and 6 must first be es-

tablished. However, weight-set maximality should be sufficient to demonstrate linear

independence. In all, these results provide a strong foundation for those wishing to

study the representation theory of wreath products of symmetric groups via tableaux.
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