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Abstract

Stochastic partial differential equations (SPDEs) are important tools in modeling com-

plex phenomena, and they arise in many physics and engineering applications. Developing

efficient numerical methods for simulating SPDEs is a very important while challenging

research topic. In this thesis, we study a numerical method based on the Wiener chaos

expansion (WCE) for solving SPDEs driven by Brownian motion forcing. WCE represents

a stochastic solution as a spectral expansion with respect to a set of random basis. By

deriving a governing equation for the expansion coefficients, we can reduce a stochastic

PDE into a system of deterministic PDEs and separate the randomness from the computa-

tion. All the statistical information of the solution can be recovered from the deterministic

coefficients using very simple formulae.

We apply the WCE-based method to solve stochastic Burgers equations, Navier-Stokes

equations and nonlinear reaction-diffusion equations with either additive or multiplicative

random forcing. Our numerical results demonstrate convincingly that the new method is

much more efficient and accurate than MC simulations for solutions in short to moderate

time. For a class of model equations, we prove the convergence rate of the WCE method.

The analysis also reveals precisely how the convergence constants depend on the size of the

time intervals and the variability of the random forcing. Based on the error analysis, we

design a sparse truncation strategy for the Wiener chaos expansion. The sparse truncation

can reduce the dimension of the resulting PDE system substantially while retaining the

same asymptotic convergence rates.

For long time solutions, we propose a new computational strategy where MC simula-

tions are used to correct the unresolved small scales in the sparse Wiener chaos solutions.

Numerical experiments demonstrate that the WCE-MC hybrid method can handle SPDEs

in much longer time intervals than the direct WCE method can. The new method is shown

to be much more efficient than the WCE method or the MC simulation alone in relatively
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long time intervals. However, the limitation of this method is also pointed out.

Using the sparse WCE truncation, we can resolve the probability distributions of a

stochastic Burgers equation numerically and provide direct evidence for the existence of

a unique stationary measure. Using the WCE-MC hybrid method, we can simulate the

long time front propagation for a reaction-diffusion equation in random shear flows. Our

numerical results confirm the conjecture by Jack Xin [76] that the front propagation speed

obeys a quadratic enhancing law.

Using the machinery we have developed for the Wiener chaos method, we resolve a

few technical difficulties in solving stochastic elliptic equations by Karhunen-Loeve-based

polynomial chaos method. We further derive an upscaling formulation for the elliptic system

of the Wiener chaos coefficients. Eventually, we apply the upscaled Wiener chaos method

for uncertainty quantification in subsurface modeling, combined with a two-stage Markov

chain Monte Carlo sampling method we have developed recently.
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Chapter 1

Introduction

1.1 Overview

Stochastic partial differential equations (SPDEs) are known to be an effective tool in model-

ing complex physical and engineering phenomena. Examples include wave propagation [82],

diffusion through heterogeneous random media [83], randomly forced Burgers and Navier-

Stokes equations (see e.g. [7, 23, 24, 25, 71, 85, 86, 92, 93] and the references therein).

Additional examples can be found in materials science, chemistry, biology, and other areas.

In those problems, the large structures and dominant dynamics are governed by deter-

ministic physical laws, while the unresolved small scales, microscopic effects, and other

uncertainties can be naturally modeled by stochastic processes. The resulting equations are

usually PDEs with either random coefficients, random initial conditions, or random forcing.

Unlike deterministic PDEs, solutions of stochastic PDEs are random fields. Hence, it is

important to be able to study their statistical characteristics, e.g., mean, variance, and

higher order moments.

Due to the complex nature of SPDEs, numerical simulations play an important role

in studying this class of PDEs. For this reason, quite a few numerical methods have been

developed for simulating SPDEs, such as the moment equations, probability density function

(PDF) method, etc. The method of moment equations relies on deriving effective equations

for the statistical moments. For nonlinear problems, however, the moment equations are

not closed, with lower order moments depending on higher order moments. The hierarchy

system for the different moments is quite complicated, and there is no easy way to tell

whether the method will converge or not. Truncating the moment equations may cause

serious numerical errors, or even yield unphysical results, such as negative second order



2

moments. So the moment equation method works only for limited applications.

The PDF method aims to derive a Fokker-Planck equation for the probability density

function of the random solution. The PDF is a function of the spatial-temporal variables as

well as the state variables for the random solution itself. It provides a detailed description

of the statistical information of the random solution. For nonlinear equations, the Fokker-

Planck equation for the PDF usually involves derivatives of conditional expectations [24,

23, 31], which are very difficult to handle in numerical computations. Moreover, the PDF

is usually a high dimensional function. For example, the PDF of a stochastic Navier-Stokes

equation in 2-D is a function with five dimensions, and in 3-D, it would be a function with

seven dimensions. Even when there exists an approximate Fokker-Planck equation for the

PDF, solving it numerically is still far from an easy job. So the PDF method is more useful

for theoretical analysis than as a tool for numerical simulation.

Currently, Monte Carlo (MC) methods are still the most popular numerical method

in simulating solutions of SPDEs [53, 84]. The idea of MC simulations is to sample the

randomness in the SPDEs and solve the stochastic equations realization by realization.

For each given realization of the randomness, the SPDEs become deterministic and can be

solved by regular numerical methods. To estimate the statistical information of the random

solution, one can solve the SPDEs many times with different realizations and compute the

ensemble averages. To sample the source randomness in the SPDEs, MC simulations rely

on pseudo random number generators. MC simulations are very general and robust, and

can handle many different sources of randomness. MC simulations are also very easy to

implement. Once we know how to sample the source randomness, we can use the existing

deterministic code to simulate the stochastic equations.

Based on the law of large number, Monte Carlo ensemble averages converge at the rate

of 1/
√
M , where M is the total number of realizations. This is a rather slow convergence

rate. To reduce the error by a factor of 2, we need to increase the number of realizations by

a factor of 4. To compensate the slow convergence of MC simulations, various accelerating

techniques have been developed, such as quasi-Monte Carlo methods, antithetic variables,

control variates, importance sampling, etc. Please see [9, 53, 84] and the reference therein.

Though these methods can be quite effective for numerical integration problems, their

applications to simulating SPDEs, especially nonlinear SPDEs, are quite limited. In MC

integration problems, the probability distributions are known explicitly. So we can tune
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and engineer the acceleration technique based on the concrete distributions. For SPDEs,

however, the distribution of the random solution is not known explicitly, due to the nonlinear

dynamics of the SPDEs. The ensemble averages (expectations) are taken against an implicit

distribution determined by the dynamical equations. Since the dynamics of the SPDEs will

evolve and transform the randomness presented in the equation, the random solution may

have very different distributions from the randomness source. It is not surprising that

acceleration techniques based on the source randomness may not work very well for the

random solution itself.

There exist a few other acceleration techniques designed specifically for simulating

SPDEs, such as measure transformations, martingale representations, or conditional ex-

pectations, etc. These methods seek to reduce the variance of the MC simulations by ex-

ploiting the inherent stochastic structures of the SPDEs. They often rely on the analytical

information of the random solutions, and therefore only work for simple stochastic ordinary

differential equations. For complicated nonlinear stochastic partial differential equations, it

is very difficult to apply those methods. Due to the above reasons, MC simulations combined

with various acceleration techniques are still very expensive in simulating SPDEs. Alterna-

tive numerical methods are much desired for solving SPDEs with complicated randomness

and dynamical structures.

1.2 Stochastic Spectral Method Based on Polynomial Chaos

Expansion

In recent years, polynomial chaos expansion has received much attention as a promising

numerical method in solving SPDEs. The polynomial chaos was originally developed by the

great mathematician Norbert Wiener [95, 96] in 1938. Using Hermite polynomials, Wiener

constructed an orthonormal random basis for expanding homogeneous chaos depending

on white noise, and used it to study problems in statistical mechanics. Following Wiener’s

proposition, Meecham et al. [68] applied the Wiener-Hermite expansion to study turbulence

solutions of Burgers equations. They assumed that the initial velocity field is a homogeneous

Gaussian process, and expanded the turbulent solution as a second order Wiener-Hermite

expansion. This approach for Burgers turbulence was critically examined by many authors

[13, 16, 81] and it was pointed out that the second order Wiener-Hermite expansion cannot
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faithfully represent the dynamics of the Burgers solution. However, including higher order

terms was technically very difficult based on Wiener’s formulation, and no such attempt had

been made. The Wiener’s formalism for studying turbulence phenomena had been largely

abandoned.

Based on Wiener’s original idea, Cameron and Martin [10] developed a more explicit

and intuitive formulation for the Wiener-Hermite expansion. Their development is based

on an explicit discretization of the white noise process through its Fourier expansion, which

was missed in Wiener’s formalism. The approach developed by Cameron and Martin is

much easier to understand and more convenient to use, and hence replaced Wiener’s original

formulation. This Fourier-Hermite expansion was commonly called Wiener chaos expansion

(WCE) thereafter. Since Martin and Cameron’s elegant work, Wiener chaos expansion has

become a useful tool in stochastic analysis involving white noise (Brownian motion) [43, 45].

Rozovskii et al. [70, 72, 71] derived Wiener chaos propagator equations for several important

SPDEs driven by Brownian motion forcing, such as stochastic parabolic equations and

Navier-Stokes equations. Their original work laid down a new framework for simulating

those stochastic PDEs numerically. For the nonlinear filtering problem, Lototsky et al.

[60, 61] proposed a new numerical method for solving the Zakai equation based on its

Wiener chaos expansion. The convergence rate of the method was also proved.

Another incarnation of Wiener chaos (or polynomial chaos) expansions as a numeri-

cal method is largely due to the original work by Ghanem and Spanos [39], where they

designed a new numerical method for solving elliptic equations with random coefficients.

Using Karhunen-Loeve expansion (KLE), they first expanded the random coefficients (a

Gaussian field in space) as a series of Gaussian random variables. Then the random solution

was represented as a Hermite expansion of those Gaussian random variables. By projecting

the stochastic elliptic equations onto the probability space, they solved the equations nu-

merically within the framework of finite element method. This method is called stochastic

finite element method. Ghanem et al. further applied this method in modeling transport

in porous media [35, 34], solid mechanics and structures [37, 38]. Using Fourier-Hermite

expansion for modeling non-Gaussian processes is also investigated [90, 36, 33]. Ghanem’s

approach for solving stochastic elliptic equations was further developed and generalized by

many other researchers, notably Babuska et al. [5, 4, 3], Schwab et al. [91, 32] and Keese

el al. [67, 51]. Le Maitre et al. [64, 65] extended the applications of polynomial chaos
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to thermo-fluid modelings. Xiu and Karniadakis [102] generalized the Hermite polynomial

expansion to include other orthogonal polynomials, and used it to study flow-structure in-

teractions [101, 103] and linear convection problems [48]. Zhang et al. [104, 63] combined

moment perturbation method with polynomial chaos expansion, and used it to study the

saturation flows in heterogeneous porous media.

For most SPDEs considered in the KLE-based approach, the source randomness is usu-

ally represented by a fixed number of random variables. This assumption is introduced

either directly, or via a truncated Karhunen-Loeve expansion. The dimension of the source

randomness will not change in time. In most cases, the randomness originates from modeling

uncertainty in certain physical quantities, such as the permeability field [39, 34, 5, 4, 104],

diffusivity or viscosity constants [64, 65], stiffness and damping coefficients [101, 103], bound-

ary conditions or initial conditions [100, 68, 81]. Hence the source of the randomness usually

contains only a small number of random variables. For those cases, the polynomial chaos

expansion based on Karhunen-Loeve expansion provides powerful tools for the uncertainty

quantification purpose. However, if the source randomness keeps changing and has very

short correlation length in time, such as white noise, then the KLE-based method may fail

to capture the randomness correctly.

1.3 Wiener Chaos Method for SPDEs with Brownian Motion

Forcing

In this thesis, we will study how to solve SPDEs driven by Brownian motion forcing based

on Wiener chaos expansion (WCE). A SPDE with Brownian motion forcing has the general

form

ut = L(u) + σ(x, t, u) · dWt, (1.1)

where L(u) is a differential operator (linear or nonlinear) in space, and Wt is a Brownian mo-

tion (scaler or vector). We will focus on stochastic equations arising in fluid mechanics, such

as stochastic Burgers equations, Navier-Stokes equations, and nonlinear reaction-diffusion

equations, with either additive or multiplicative random forcing. SPDEs with Brownian

motion forcing are generally much more difficult to solve than the SPDEs considered in

the KLE based approaches. In the SPDE (1.1), independent increments of the Brownian
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motion forcing keep entering the PDE system, which makes the problem complicated even

on very short time intervals. If we want to use a polynomial chaos type expansion for

the random solution, we have to deal with a constant influx of new randomness. This is

an essential difference from the SPDEs considered in the previous KLE-based polynomial

chaos approach. Since the random forcing in (1.1) is white in time and has delta covariance

function, its Karhunen-Loeve expansion will diverge (see Section 7.1 for details about the

convergence of Karhunen-Loeve expansion). For those reasons, the KLE based polynomial

chaos method simply can not be applied to solve the SPDEs (1.1) directly.

Instead of using Karhunen-Loeve expansion, we adopt the Martin-Cameron version of

the Wiener chaos expansion in designing our numerical methods. The solution of the SPDE

(1.1) is a random process depending on the realizations of the Brownian motion forcing

u = u(x, t; W t
0), (1.2)

where W t
0 denote the Brownian motion paths up to time t. A Brownian motion can be

decomposed as a linear combination of independent Gaussian random variables. Conse-

quently, the random solution (1.2) can be expanded as a Fourier-Hermite series of those

Gaussian random variables. More specifically, we can represent the random solution as an

infinite series

u(x, t; W t
0) =

∑

α

uα(x, t)Tα, (1.3)

where uα(x, t) are deterministic functions, and Tα are multi-variable Hermite polynomials of

Gaussian random variables. The Gaussian random variables are constructed by discretizing

the Brownian motion W t
0 as a Fourier expansion with respect to a set of deterministic basis

functions in L2([0, t]).

The Wiener chaos expansion (1.3) can separate the deterministic effects from the ran-

domness in the random solution. By plugging it in the original SPDE, we can derive a

deterministic system for the Wiener chaos coefficients uα, which we call the WCE propaga-

tor of the corresponding SPDEs. The WCE propagator is equivalent to the original SPDE

and captures the deterministic dynamics responsible for evolving the inherent randomness.

Once the WCE propagator is derived, standard deterministic numerical methods can be

applied to solve it efficiently. The main statistics, such as the mean, covariance, and higher

order statistical moments, can be calculated by simple formulae involving only the deter-
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ministic WCE coefficients. In the WCE approach, there is no randomness directly involved

in the computations. One does not have to rely on pseudo random number generators, and

there is no need to solve the stochastic PDEs repeatedly for many realizations. Instead, the

propagator system is solved only once. Furthermore, the WCE provides a detailed descrip-

tion about the stochastic structures of the random solution. Particularly, we can construct

realizations of the random solution very easily based on its Wiener chaos expansion. These

properties of Wiener chaos expansions can be very useful in certain applications.

1.4 Summary of the Thesis

Based on the framework developed by Rozovskii et al. [70, 72, 71], we have derived explicit

WCE propagators for stochastic Burgers equations, stochastic Navier-Stokes equations,

and nonlinear stochastic reaction-diffusion equations. Since the WCE propagator is an

infinite system, we design a sparse truncation strategy based on the asymptotic decaying

rate of the WCE coefficients. The sparse truncation can reduce the dimensions of the

WCE propagator substantially while retain the asymptotic convergence rate of the method.

Without the compression provided by the sparse truncations, the resulting WCE propagator

may have too many equations to be numerically solvable. By building a generic and robust

numerical solver, we can easily handle a nonlinear WCE propagator comprised of hundreds

of PDEs. By applying the WCE method to a wide range of problems in fluid mechanics, we

convincingly demonstrate that the numerical method based on WCE is much more efficient

than the MC simulation for short to moderate time integrations.

When the Brownian motion forcing is spatially independent, we have discovered semi-

analytical solutions for both stochastic Burgers equations and stochastic Navier-Stokes

equations. By applying the WCE method to these model equations, we demonstrate the

convergence rate of the truncated WCE method both numerically and theoretically. The

WCE is an expansion with respect to an infinite number of Gaussian random variables and

arbitrary order of Hermite polynomials. The WCE truncation is characterized by the num-

ber K of Gaussian random variables and order N of the Hermite polynomials retained. For

a stochastic Burgers equation with spatially independent additive forcing, we established

that the error of a (K, N)-truncated WCE solution in a time interval ∆t is given by the
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formula

O




(
σ2 (∆t)3

N + 1

)N+1
2

+

(
σ2 (∆t)3

K3

)1/2


 , (1.4)

where σ2 is the variance of the Brownian motion forcing. The error estimate (1.4) demon-

strates that the WCE method converges exponentially fast in the polynomial order N , while

only algebraically in the number K of retained Gaussian random variables. The analysis

also quantifies precisely how the convergence rate depends on the length of the time interval

and the variability of the random forcing, which provides very useful guidelines for trun-

cating WCE solutions in general cases. The error estimate (1.4) also implies that the WCE

method converges globally at the rate O(
√

∆t). To our best knowledge, no other analytical

result exists on the WCE error analysis for nonlinear equations.

From both the numerical experiments and the error analysis (1.4), we find that WCE

methods converge faster in short time intervals. However, as the SPDEs are solved in

longer time intervals, the required number of WCE coefficients will increase very fast, and

the resulting WCE propagator quickly becomes unmanageable numerically. To overcome

these difficulties, we propose to combine WCE methods with MC simulations for long time

integrations. We first solve the SPDE on the long time intervals by a sparse WCE truncation

with only a few dozens of coefficients. The sparse WCE solution is equivalent to a coarse-

scale discretization of the random solution in the probability space and hence is not very

accurate locally. To capture the unresolved small scales in the WCE solution, we further

use MC simulations to refine the computations. To do that, we subtract the WCE solution

from the true solution, and use MC simulations to correct the errors in the WCE solution.

This procedure is possible because the WCE solution realizations are very easy to construct

for given Brownian motion paths. Since the error of the sparse WCE solution has relatively

small variance, the MC correction step can be made very efficient. This WCE-MC hybrid

method is a generalization of Chorin’s estimator for Monte Carlo integrations [12]. The

WCE-MC hybrid method can handle SPDEs in much longer time intervals than the direct

WCE method. Numerical results demonstrate that the new WCE-MC hybrid method is

scores of times more efficient than the direct WCE method or the MC simulations in solving

SPDEs in relatively long time intervals.

However, the WCE-MC method is still sensitive to the length of the time intervals. For

arbitrarily long time integrations, the error in the sparse WCE solution may be very large
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and hence the performance of the WCE-MC will not be much better than that of MC simu-

lations, especially when the overhead in the hybrid method is taken into account. Designing

more efficient WCE-type numerical methods that are not sensitive to the integration time

is still a challenging and open problem. Nevertheless, the sparse WCE truncation strategy

and the WCE-MC hybrid method already enable us to study some interesting problems

numerically, such as:

Verification of invariant measure

For stochastic Burgers equations with additive forcing, it has been proven by Sinai [92,

93] that there exists a unique invariant measure (stationary distribution) for the random

solution, due to the balance between the viscosity term and the random forcing. Using

the WCE method, we are able to resolve the invariant measure of the random solution

numerically, which is represented by a stationary Wiener chaos solution. The WCE solutions

provide direct numerical evidence for the existence of the invariant measure and can be used

to study its property numerically.

Simulating reaction-diffusion front propagation

Using the WCE-MC hybrid method, we are able to simulate the long time front propagation

of a class of nonlinear reaction-diffusion equations in random shear flows. This simulation

is otherwise extremely expensive if only the WCE method or MC simulation is used. Our

numerical results demonstrate that the front speed obeys the quadratic enhancing law in

white shear flows with small magnitudes. This numerical result confirms the conjecture by

Xin et al. [76] about the precise asymptotical relations of the front speed in white-in-time

shear flows.

1.4.1 Stochastic Elliptic Equations and Uncertainty Quantification

In the second part of the thesis, we reexamine the KLE-based polynomial chaos approach

for solving stochastic elliptic equations (Ghanem et al. [39]). The new ingredient of our

analysis is an explicit and analytical formula for the stiffness coefficients. Based on the

explicit derivation, we argue that there is no need to truncate the chaos expansions of the

random permeability, which is contrary to the practice in previous work [4, 5, 32, 104].

Without truncating the random permeability in the stochastic elliptic equation, we can

preserve the lower uniform elliptic condition and avoid a few serious technical difficulties.
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To solve the resulting elliptic system for the polynomial chaos expansion, we generalize the

upscaling formulation [19, 47] for scaler elliptic equations to elliptic systems, and obtain

an upscaled elliptic system for the polynomial chaos expansion. Combining upscaling with

polynomial chaos expansion is a novel practice. The upscaled formulation provides an

efficient way for solving the stochastic elliptic equations by polynomial chaos.

The central work of the second part of the thesis is to develop an efficient multiscale

strategy for uncertainty quantification in reservoir modeling. Uncertainties in the detailed

description of reservoir permeability are major contributors to the errors in reservoir per-

formance forecasting. To quantify these uncertainties, one can estimate the probability

distribution of the model predictions based on a large number of reservoir realizations. It is

essential that the permeability realizations adequately reflect the uncertainty in the reser-

voir properties. To reduce the uncertainty and improve the model prediction, one should

sample the reservoir permeability field conditioned on dynamical production data.

The prediction of permeability fields based on dynamic data is a challenging problem

because permeability fields are typically defined on a large number of grid blocks. The

Markov chain Monte Carlo (MCMC) method and its modifications have been used previ-

ously to sample the posterior distribution of the permeability field. However, due to the

large dimension of the permeability fields, the MCMC method has a very small acceptance

rate. To accept just a few permeability samples, a large number of proposals need to be

tested. Since each acceptance-rejection test involves a forward simulation of a nonlinear

PDE system on the fine grid, the naive MCMC method is extremely expensive.

To sample the permeability fields conditioned on dynamical production data, we de-

signed an efficient two-stage Markov chain Monte Carlo (MCMC) method. Using a coarse-

scale model based on multiscale finite element, we first test each permeability proposal on

coarse-grid, which only involves solving the nonlinear model equations on coarse-scale. If

the permeability proposal is accepted by the coarse-grid test, then a fine-scale simulation

will be performed at the second stage to determine its accurate acceptance rate. Otherwise,

the proposal will be rejected by the coarse-scale test and new permeability sample will be

generated. The coarse-scale model can effectively filter unacceptable permeability samples

and avoid the expensive fine-scale simulations for them. The key step of the new method is

to construct an effective coarse-scale model, which can be done using the idea of multiscale

finite element method. Using the multiscale bases precomputed at the first step, we can
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conduct the fine-scale simulation at the second stage very efficiently. The two-stage MCMC

method seeks to exploit the multiscale structure of the problem and use coarse-scale models

to precondition fine-scale simulations. Extensive numerical experiments are performed, and

the new method is shown to be ten times more efficient than the regular MCMC sampling

techniques for both single- and two-phase flow simulations.

Based on the upscaled polynomial chaos method for stochastic elliptic equations, we de-

signed a new coarse-scale model for the reservoir model equations. By solving the upscaled

polynomial chaos system numerically, we can construct an explicit coarse-scale distribution

for the permeability fields. Using this coarse-scale distribution, we can generate problem-

adapted permeability samples using the Langevin diffusion algorithm. As in the previous

two-stage MCMC method, the Langevin proposals will be first tested by the coarse-scale

model. The only difference is that no coarse-scale forward simulation is needed in this

method, since the coarse-scale distribution is explicitly available from the solution of the

upscaled polynomial chaos system. If the Langevin proposal is accepted by the coarse-scale

test, then a fine-scale simulation will be conducted to estimate the accurate acceptance

rate. The coarse-scale distribution serves as a preconditioner to the fine scale simulation,

and plays the same role as the coarse-scale model based on multiscale finite element method.

Compared with the previous two-stage MCMC method using a deterministic coarse-scale

model, the Langevin algorithm-based two-stage MCMC method can avoid solving the non-

linear two-phase flow problems repeatedly on coarse scales. Instead, the upscaled stochastic

system is solved only once. Preliminary numerical results show that this new method is

quite promising, and further research is still going along this direction.
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Chapter 2

Hermite Polynomials and Wiener

Chaos Expansions

In this chapter, we will review the main facts of the Hermite polynomials and present the

theory of the Wiener chaos expansions. A few useful lemmas are proved in this chapter,

which are the main tools we will use in the later studies.

2.1 Hermite Polynomials

Consider functions on the real axis R = (−∞, +∞) equipped with the Gaussian measure

µ(dx) = ρ(x)dx, ρ(x) =
1√
2π
e−

x2

2 , (2.1)

where dx is the Lebesgue measure. We denote the space of square integrable functions with

the Gaussian measure µ as

L2(R, µ) =

{
f(x);

∫ +∞

−∞
f(x)2µ(dx) <∞

}
.

The inner product on this space is defined as

(f, g)µ =

∫ +∞

−∞
f(x)g(x)µ(dx) =

∫ +∞

−∞
f(x)g(x)ρ(x)dx.

Suppose ξ is a standard Gaussian random variable with distribution N(0, 1), then

(f, g)µ = E[f(ξ)g(ξ)],
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where E denotes the expectation operator. So the Hilbert space L2(R, µ) can also be

interpreted as the space of functions of a unit Gaussian random variable with finite variance.

The un-normalized Hermite polynomials are defined as

Pn(x) = (−1)ne
x2

2
dn

dxn

(
e−

x2

2

)
, n = 0, 1, 2, . . . . (2.2)

Pn(x) are orthogonal polynomials with respect to the Gaussian measure:

(Pn, Pm)µ = E[Pn(ξ)Pm(ξ)] = n! δn,m.

Hence the normalized Hermite polynomials are defined as

Hn(x) =
Pn(x)√
n!

= (n!)−
1
2 (−1)ne

x2

2
dn

dxn

(
e−

x2

2

)
. (2.3)

It is well known [15, 94] that {Hn(x); n = 0, 1, . . .} are a complete orthonormal basis in the

Hilbert space L2(R, µ). Since H0(x) = 1, particularly we have

E[Hn(ξ)] =

∫ +∞

−∞
Hn(x)dµ(x) = (Hn, 1)µ = 0, if n 6= 0. (2.4)

So a Hermite polynomial of a standard Gaussian random variable has zero mean if its order

is bigger than zero.

Like most orthogonal polynomials, Hermite polynomials have a generating function [15]:

ψ(x, z) = e−
z2

2
+xz. (2.5)

Expanding ψ(x, z) into a Taylor series of variable z (treating x as a parameter), we have

ψ(x, z) =

∞∑

n=0

∂nψ(x, z)

∂zn

∣∣∣
z=0

(
zn

n!

)
.

On the other hand,

ψ(x, z) = e
x2

2 e−
(z−x)2

2 = e
x2

2

∞∑

n=0

(−1)n

n!

dn

dxn

(
e−

x2

2

)
zn =

∞∑

n=0

Pn(x)

n!
zn. (2.6)

So the coefficients of the Taylor expansion of ψ(x, z) are exactly the un-normalized Hermite
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polynomials.

Pn(x) =
∂nψ(x, z)

∂zn

∣∣∣
z=0

. (2.7)

The generating function (2.5) is a powerful tool in studying the properties of Hermite

polynomials. We will use it repeatedly in our later derivations.

Differentiating (2.2) directly we get

P ′
n(x) = xPn(x) − Pn+1(x). (2.8)

On the other hand, by differentiating both sides of (2.6) with respect to x we have

∂

∂x
ψ(x, z) = zψ(x, z) =

∞∑

n=0

Pn(x)

n!
zn+1 =

∞∑

n=0

P ′
n(x)

n!
zn.

Shifting the summation index and comparing the coefficients of zn suggests that

P ′
n(x) = nPn−1(x). (2.9)

Combining (2.8) and (2.9) together, we get the recursive relation of the un-normalized

Hermite polynomials

Pn+1(x) − xPn(x) + nPn−1(x) = 0, n = 1, 2, . . . , (2.10)

with P−1(x) = 0, P0(x) = 1. From the recursive relation, we can easily get the first six

un-normalized Hermite polynomials:

P0(x) = 1,

P1(x) = x,

P2(x) = x2 − 1,

P3(x) = x3 − 3x,

P4(x) = x4 − 6x2 + 3,

P5(x) = x5 − 10x3 + 15x.
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For the normalized Hermite polynomials, the recursive relation becomes

√
n+ 1Hn+1(x) − xHn(x) +

√
nHn−1(x) = 0 (2.11)

H−1(x) = 0, H0(x) = 1, (2.12)

and the differential rule is

H ′
n(x) =

√
nHn−1(x). (2.13)

As the reverse of formula (2.13), we have the following useful fact:

Lemma 2.1

ρ(x)Hn+1(x) =
1√
n+ 1

d

dx
[ρ(x)Hn(x)] , (2.14)

where ρ(x) is the Gaussian density (2.1).

Proof By direct differentiation and the recursive relation (2.11) we have

d

dx
[ρ(x)Hn(x)] = ρ′(x)Hn(x) + ρ(x)H ′

n(x)

= −x ρ(x)Hn(x) +
√
n ρ(x)Hn−1(x)

=
√
n+ 1 ρ(x)Hn+1.

Dividing both sides by
√
n+ 1, we immediately get (2.14). �

By differentiation, the order of the Hermite polynomial decreases in formula (2.13),

while it increases in formula (2.14). The formula (2.14) plays a crucial role in obtaining the

decaying rate of the coefficients of the Fourier-Hermite expansion.

Since the product of two Hermite polynomials is still a polynomial, it can be expanded

as a linear combination of Hermite polynomials. This simple fact turns out to be very useful

in the Hermite spectral method for nonlinear equations, particularly in the Wiener chaos

expansion method. Next we will derive an analytical formula for expanding the product of

two arbitrary Hermite polynomials. The expansion of products of more than two Hermite

polynomials can be obtained using this formula recursively.
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Lemma 2.2 For any nonnegative integer α and β, denote α ∧ β = min{α, β}. We have

Hα(x)Hβ(x) =
∑

p≤α∧β
B(α, β, p) Hα+β−2p(x), (2.15)

where

B(α, β, p) =

[(
α

p

)(
β

p

)(
α+ β − 2p

α− p

)] 1
2

. (2.16)

Proof From equation (2.6) we have

ψ(x, z)ψ(x, w) =

∞∑

α=0

∞∑

β=0

Pα(x)Pβ(x)

α!β!
zαwβ . (2.17)

On the other hand,

ψ(x, z)ψ(x, w) = e−
z2+w2

2
+(z+w)x = ezwe

x2

2 e−
(z+w−x)2

2

=
∞∑

p=0

(z w)p

p!

∞∑

k=0

Pk(x)

k!
(z + w)k

=

∞∑

p=0

∞∑

k=0

Pk(x)

p!

∑

0≤m≤k

1

k!

(
k

m

)
zm+pwk+p−m.

Let k = m+ ν, then m ≤ k is equivalent to ν ≥ 0. The above formula can be rewritten as

=
∞∑

p=0

∞∑

m=0

∞∑

ν=0

Pm+ν(x)

p! m! ν!
zm+pwν+p.

Denote m+ p = α, ν+ p = β. Since m = α− p ≥ 0, ν = β− p ≥ 0, we have p ≤ α∧β. The

above summation changes to

=

∞∑

α=0

∞∑

β=0

(
∑

m+p=α
ν+p=β

Pm+ν(x)

p!m! ν!

)
zαwβ

=

∞∑

α=0

∞∑

β=0

∑

p≤α∧β

Pα+β−2p(x)

p! (α− p)! (β − p)!
zαwβ .

So we have

ψ(x, z)ψ(x, w) =
∞∑

α=0

∞∑

β=0

∑

p≤α∧β

Pα+β−2p(x)

p! (α − p)! (β − p)!
zαwβ . (2.18)
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Comparing the above equation with (2.17) we get

Pα(x)Pβ(x) =
∑

p≤α∧β

α!β!

p! (α− p)! (β − p)!
Pα+β−2p(x). (2.19)

Plugging Pn(x) = (n!)
1
2Hn(x) in the above formula immediately yields formula (2.15). �

As we have pointed out in (2.4), E[Hn(ξ)] = 0 if n > 0 and ξ is a standard Gaussian

random variable. Next we prove a related result, which will be used in later applications.

Lemma 2.3 Suppose Hn(x) is the nth order normalized Hermite polynomial and ξ is a

standard Gaussian random variable, then

E[Hn(ξ + a)] =
an√
n!
,

where a is an arbitrary constant.

Proof From the generating function (2.6) we have

ψ(x+ a, z) =

∞∑

n=0

Pn(x+ a)

n!
zn.

On the other hand,

ψ(x+ a, z) = e−
z2

2
+xzeaz =

( ∞∑

i=0

ai

i!
zi

)


∞∑

j=0

Pj(x)

j!
zj





=

∞∑

n=0

(
n∑

i=0

ai

i!

Pn−i(x)
(n− i)!

)
zn.

Comparing the above two formulae we conclude that

Pn(x+ a) =

n∑

i=0

ai

i!

n!

(n− i)!
Pn−i(x).

Note that E[Pk(ξ)] = δk,0, we have

E[Hn(ξ + a)] =
E[Pn(ξ + a)]√

n!
=

an√
n!
.

�
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2.2 Fourier-Hermite Expansions of Functions of Gaussian Ran-

dom Variables

Since Hermite polynomials are orthonormal bases in L2(R, µ), for any function f(x) ∈
L2(R, µ) there exists a Fourier-Hermite expansion

f(x) =
∞∑

n=0

fnHn(x), fn =

∫ ∞

−∞
f(x)Hn(x)µ(dx).

On the other hand, we can think of f ∈ L2(R, µ) as a function of a unit Gaussian random

variable ξ with E[f2(ξ)] < +∞. So the random function f(ξ) has the Fourier-Hermite

expansion

f(ξ) =
∞∑

n=0

fnHn(ξ), fn = E[f(ξ)Hn(ξ)]. (2.20)

By the definition of f0, we have

E[f(ξ)] = f0.

This is consistent with the Fourier-Hermite expansion (2.20) since E[Hn(ξ)] = 0 for n > 0.

From Parseval’s theorem we have

E[f2(ξ)] =
∞∑

n=0

|fn|2. (2.21)

Denote the truncated Fourier-Hermite expansion of f(ξ) as

fN (ξ) =

N∑

n=0

fnHn(ξ). (2.22)

The truncated Hermite expansion (2.22) converges very fast if the function f(x) is very

smooth. Traditionally, the Fourier-Hermite expansion is formulated for deterministic func-

tions in the regular space L2(R) with Lebesgue measure. Define the Hermite functions

as

ψn(x) = ρ1/2(x)Hn(x),

where ρ(x) is the Gaussian distribution (2.1). The Hermite functions {ψn(x)} form an
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orthonormal basis in L2(R). For any function g(x) ∈ L2(R), there exists the expansion

g(x) =
∑

n

gnψn(x), fn =

∫

R
g(x)ψn(x)dx. (2.23)

The convergence rate of the Fourier-Hermite expansion (2.23) depends not only on the

smoothness (location of singularities) of g(x), but also upon the rate at which g(x) decays

to zero as |x| → ∞. For example, if g(x) is an entire function and decays exactly like a

Gaussian kernel

g(x) = O
(
e−p|x|

2
)
,

then the expansion (2.23) has the fastest (geometric) convergence rate [8]

gn = O
(
e−qn

)
.

To relate the expansion (2.20) to (2.23), for any function f(x) ∈ L2(R, µ) denote

F (x) = f(x)ρ1/2(x),

then the expansion (2.20) is equivalent to

F (x) =
∑

n

Fnψn(x), Fn =

∫

R
F (x)ψn(x)dx.

Since the new function F (x) is exactly a Gaussian-type function, the above expansion (and

(2.20)) has the geometric convergence rate if f(x) is also an entire function. For functions

that are not entire, the convergence rate of the Fourier-Hermite coefficients depend on the

smoothness of the function f(x). As an illustration, we have the following simple results:

Lemma 2.4 Suppose f(x) ∈ Ck(R), then the Fourier-Hermite coefficients fn = (f,Hn)µ

decay as

fn =






(−1)n√
n!
Eµ
[
f (n)(ξ)

]
, n ≤ k,

(−1)k√
n...(n−k+1)

Eµ
[
f (k)(ξ)

]
, n > k,

(2.24)

where Eµ is the expectation with respect to the unit Gaussian measure µ. If the function
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f(x) is infinitely smooth, then fn decays exponentially

fn = O
(
e−qn

)
. (2.25)

Proof Based on formula (2.14) we have

fn =

∫ +∞

−∞
f(x)Hn(x)ρ(x)dx

=
1√
n

∫ +∞

−∞
f(x)

d

dx
[Hn−1(x)ρ(x)]

=
−1√
n

∫ +∞

−∞
f ′(x)Hn−1(x)ρ(x)dx.

By induction we can easily get formula (2.24). If f(x) is infinitely smooth, using the Stirling

formula

n! = O
(
nn+1/2 e−n

)
,

we can get the estimate (2.25). �

The convergence rate of the Fourier-Hermite expansion is quite complicated in general.

John Boyd gives a nice survey of the convergence results of Fourier-Hermite expansions in

his classic book [8]. Using the convergence rate of the Fourier-Hermite coefficients, it is not

difficult to obtain the mean convergence rate for the truncated expansion (2.22).

The Fourier-Hermite expansion (2.20) can be easily extended to multi-dimensions. For

a finite index α = (α1, α2, . . . , αd) with nonnegative integer components, define the multi-

variable Hermite polynomial by the tensor product

Hα(x) =
d∏

i=1

Hαi(xi).

Then {Hα(x)} is an orthonormal basis in the Hilbert space L2(Rd, µd), where µd is the

d−multiple Gaussian measure on Rd. Denote ξ = (ξ1, . . . , ξd) as the standard Gaussian

random vector with independent components. Suppose u(ξ) is a function of the random

variables ξ with E|u2(ξ)| < +∞, then u(·) ∈ L2(Rd, µd) and there exists a Fourier-Hermite

expansion

u(ξ) =
∑

α

uα Hα(ξ) where uα = E[u(ξ)Hα(ξ)]. (2.26)
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Furthermore, we have

E[u(ξ)] = u0, E|u2(ξ)| =
∑

α

|uα|2.

This expansion is valid for any finite dimensional space L2(Rd, µd) with d <∞.

2.3 Wiener Chaos Expansions of Functionals of Brownian

Motions

In this thesis, we are interested in a class of stochastic partial differential equations (SPDEs)

ut(x, t) = L(u) + σ Ẇ (t), (2.27)

where L(u) is a general linear or nonlinear differential operator in spatial variables, andW (t)

is a Brownian motion. The derivative of the Brownian motion Ẇ (t) is usually understood

as a model of the white noise. The solution of (2.27) not only depends on the spatial-time

variable (x, t), but also the Brownian motion path. In other words, u = u(x, t) is a functional

of {W (s), 0 ≤ s ≤ t}, which comprises all the possible Brownian motion realizations up to

time t. We want to generalize the finite dimensional Fourier-Hermite expansion to the

stochastic solution u(x, t) with respect to its random dependence. Although Brownian

motion {W (s), 0 ≤ s ≤ t} is by no means a finite number of Gaussian random variables,

the goal can be achieved in a relatively straightforward way.

For any fixed time t > 0, assume mi(s), i = 1, 2, . . . , are a set of complete orthonormal

bases in the Hilbert space L2([0, t]). Define the Ito integral (see Appendix A for the

definition)

ξi =

∫ t

0
mi(s)dW (s), i = 1, 2, . . . . (2.28)

Next we use Ws to denote W (s) when no confusion is incurred. When we want to refer

to the derivative of W (s), we always write explicitly as Ẇ (s). Naively, we can interpret

(2.28) as the projection of the white noise Ẇ (s) onto the L2 basis function mi(s), because

ξi = (mi, Ẇs). Obviously, ξi, i = 1, 2, . . . are Gaussian random variables and E(ξi) = 0.
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Furthermore, from the isometry property (A.5) of the Ito integrals, we have

E[ξi ξj] =

∫ t

0
mi(s)mj(s)ds = δi,j.

So ξi, i = 1, 2, . . ., are independent standard Gaussian random variables.

As a useful fact, the Brownian motion path {W (s), 0 ≤ s ≤ t} can be decomposed as

a linear combination of the Gaussian random variables ξi. Suppose the orthonormal bases

mi(s) in L2([0, t]) are chosen as the trigonometric functions

m1(s) =
1√
t
, mk(s) =

√
2

t
cos

(
(k − 1)πs

t

)
, k = 2, 3, . . . , 0 ≤ s ≤ t. (2.29)

We have the following result:

Theorem 2.1 The Brownian motion {Ws; 0 ≤ s ≤ t} has the Fourier expansion

W (s) =

∞∑

i=1

ξi

∫ s

0
mi(τ)dτ, 0 ≤ s ≤ t, (2.30)

and the expansion (2.30) converges in the mean square sense for all s ≤ t:

E

[
W (s) −

N∑

i=1

ξi

∫ s

0
mi(τ)dτ

]2

≤ t

πN
. (2.31)

Proof Denote the characteristic function of the interval [0, s] by χ[0, s](τ). Obviously

χ[0, s](τ) ∈ L2([0, t]) and has the expansion

χ[0, s](τ) =

∞∑

i=1

(χ[0,s], mi)mi(τ) =

∞∑

i=1

mi(τ)

∫ s

0
mi(τ)dτ.

It follows that

W (s) =

∫ s

0
dWτ =

∫ t

0
χ[0, s](τ)dWτ

=

∫ t

0

( ∞∑

i=1

mi(τ)

∫ s

0
mi(τ)dτ

)
dWτ

=
∞∑

i=1

ξi

∫ s

0
mi(τ)dτ.
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Denote the mean square error of the finite-term truncation of (2.30) as

I(N) = E

[
W (s) −

N∑

k=1

ξk

∫ s

0
mk(τ)dτ

]2

.

Since ξi are independent unit Gaussian variables, we have

I(N) =

∞∑

k=N+1

(∫ s

0
mk(τ)dτ

)2

=

∞∑

k=N

2t

k2π2
sin2

(
kπs

t

)

≤
∞∑

k=N

2t

k2π2
≤ 2t

π2

(
1

N2
+

∫ ∞

N

dx

x2

)

≤ t

πN
.

So the expansion (2.30) converges in the mean square sense uniformly for all s 6 t. �

If mi(s), i = 1, 2, . . ., are chosen as Haar wavelets, then the expansion (2.30) is exactly

the Levy-Ciesielski construction [27] of the Brownian motion, and (2.30) converges uniformly

in s for almost all Brownian motion realizations.

Since the random solution u(x, t) of (2.27) is a functional of the Brownian motion path

{W (s); 0 ≤ s ≤ t}, which in turn is a linear combination of unit Gaussian random variables

ξi, i = 1, 2, . . . , we can formally interpret u(x, t) as a function of the standard Gaussian

random variables ξi:

u(x, t) = U(x, t; ξ1, ξ2, . . . , ξn, . . .).

Analogous to the finite dimensional Fourier-Hermite expansion (2.26), the solution u(x, t)

admits a similar expansion. To make this analogy more precise and rigorous, we need to

introduce some notations first.

Denote a set of multi-indices as

J =
{
α = (αi, i ≥ 1)

∣∣∣ αi ∈ {0, 1, 2 . . .}, |α| =

∞∑

i=1

αi <∞
}
.

So J is the set of integer indices with only finite number of nonzero components. For α ∈ J ,

define the Hermite polynomial of ξi, i = 1, 2, . . . by the tensor product

Tα(ξ) =

∞∏

i=1

Hαi(ξi). (2.32)
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Since |α| < ∞, the above product comprises only finite number of factors. The random

functions Tα(ξ) are often called Wick polynomials. The order of the polynomial Tα(ξ) is

defined as |α|. For convenience, we set Tα(ξ) = 0 if the index α has negative components

αi < 0.

We shall summarize some of the important properties of the Wick polynomials. For any

α, β ∈ J , denote α ∧ β = (min{αi, βi}, i ≥ 1), and α ∨ β = (max{αi, βi}, i ≥ 1). We say

β ≤ α if βi ≤ αi for all i ≥ 1. The operation α ± β is also defined component-wise. As a

convention, we denote α! =
∏
i αi!. We have the following facts:

(i) {Tα(ξ), α ∈ J } are orthonormal bases:

E(TαTβ) =





0 if α 6= β,

1 if α = β.

(ii) Since T0(ξ) = 1, where 0 = (0, 0, . . .) is the zero index, we have E(T0) = 1, and

E(Tα) = E(TαT0) = 0 if α 6= 0.

(iii) As a generalization of Lemma 2.2, it can be shown that

Tα(ξ)Tβ(ξ) =
∑

p≤α∧β
B(α, β, p)Tα+β−2p(ξ). (2.33)

As a nontrivial generalization of the finite Fourier-Hermite expansion, Cameron and

Martin [10] proved the following theorem, which forms the theoretical foundation of the

numerical algorithm we will discuss later.

Theorem 2.2 (Cameron-Martin) [10] Assume that for any x and s ≤ t, the solution

u(x, s) of (2.27) is a functional of the Brownian motion {Ws; 0 ≤ s ≤ t} with E |u(x, s)|2 <
∞, then u(x, s) has the following Fourier-Hermite expansion:

u(x, s) =
∑

α∈J
uα(x, s)Tα(ξ), uα(x, s) = E[u(x, s)Tα(ξ)], (2.34)

where Tα(ξ) are the random Wick polynomials defined by (2.28) and (2.32). Furthermore,
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the first two statistical moments of u(x, s) are given by: the mean

E[u(x, s)] = u0(x, s), (2.35)

and the variance

E[u2 (x, s)] =
∑

α∈J , α6=0

|uα (x, s) |2. (2.36)

When constructing the Wick polynomials Tα(ξ), we first fix a time t > 0, then project

the Brownian motion {W (s), 0 ≤ s ≤ t} onto L2([0, t]) and obtain the Gaussian random

variables ξi, i = 1, 2, . . .. So the Wick polynomials Tα(ξ) always carry a parameter t implic-

itly. The expansion (2.34) is valid only for s ≤ t.

The Fourier-Hermite series (2.34) is usually called the Wiener chaos expansion (WCE) of

u(x, s). The WCE is a spectral expansion of the stochastic solution in the probability space.

It represents the randomness of the solution analytically by a set of random bases with

deterministic coefficients. If we have a way to compute the deterministic WCE coefficients

uα(x, s) dynamically, we can recover all the probability information of u. For example,

we can compute its statistical moments, construct pathwise solutions for given Brownian

motion realizations, or even derive its probability density function.

For index α with |α| = 1, the Wick polynomials Tα(ξ) = ξi are Gaussian. We can

separate the WCE (2.34) into two parts:

u(x, s) =
∑

|α|≤1

uα(x, s)Tα(ξ) +
∑

|α|≥2

uα(x, s)Tα(ξ). (2.37)

The first part is the Gaussian approximation of u(x, s), while the second part is the higher

order non-Gaussian terms. Gaussian approximations are widely used in literatures for

studying SPDEs. It would be interesting to see how the Gaussian approximations fit in

the framework of the Wiener chaos expansion. We will demonstrate by numerical examples

that the Gaussian approximation is usually a bad approximation for nonlinear problems,

especially when high order statistics are concerned.

The WCE is a spectral expansion in the probability space. Usually, a spectral method is

most convenient for linear problems. However, the following theorem enables us to handle

polynomial nonlinearities rather easily:



27

Theorem 2.3 Suppose u, v have Wiener chaos expansions

u =
∑

α∈J
uα Tα(ξ), v =

∑

β∈J
vβ Tβ(ξ).

If E(|uv|2) <∞, then the product u v has the Wiener chaos expansion

uv =
∑

θ∈J

(∑

p∈J

∑

0≤β≤θ
C(θ, β, p) uθ−β+p vβ+p

)
Tθ(ξ), (2.38)

where

C(θ, β, p) =

[(
θ

β

)(
β + p

p

)(
θ − β + p

p

)]1
2

. (2.39)

Proof From property (2.33), we have

uv =
∑

α∈J

∑

β∈J
uαvβTαTβ

=
∑

α∈J

∑

β∈J
uα vβ

∑

p≤α∧β

(
α

p

)(
β

p

)
p!

√
(α+ β − 2p)!√

α! β!
Tα+β−2p.

Let α̃ = α−p, β̃ = β−p, then p ≤ α∧β is equivalent to α̃, β̃ ≥ 0. Alternatively, α = α̃+p,

β = β̃ + p and the above summation can be rewritten as

=
∑

α̃∈J

∑

β̃∈J

∑

p∈J
uα̃+puβ̃+p

(
α̃+ p

p

)(
β̃ + p

p

)
p!

√
(α̃+ β̃)!

√
(α̃+ p)! (β̃ + p)!

Tα̃+β̃.

For simplicity, we still denote α = α̃ and β = β̃. Let θ = α + β, then α = θ − β > 0 and

0 6 β ≤ θ. The above summation is equivalent to

=
∑

θ∈J

∑

α+β=θ

∑

p∈J
uα+p uβ+p

(
α+ p

p

)(
β + p

p

)
p!

√
θ!√

(α+ p)! (β + p)!
Tθ

=
∑

θ∈J

∑

0≤β≤θ

∑

p∈J
uθ−β+p uβ+p

(
θ − β + p

p

)(
β + p

p

)
p!

√
θ!√

(θ − β + p)! (β + p)!
Tθ

=
∑

θ∈J

(∑

p∈J

∑

0≤β≤θ
C(θ, β, p)uθ−β+p uβ+p

)
Tθ,

which completes the proof. �
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Theorem 2.3 is very useful because it provides an analytical formula for the WCE of

polynomial nonlinear terms. It is a powerful tool in deriving the governing equations for

the WCE coefficients in nonlinear equations. The Cameron-Martin theorem gives explicit

formula for the mean and variance of the random solution in terms of its WCE coefficients.

As a simple application of Theorem 2.3, we can also derive formulae for the higher order

statistics of the random solution in terms of its Wiener Chaos coefficients.

Lemma 2.5 Suppose u(x, s) =
∑

α uα(x, s)Tα. If E(u3) and E(u4) exist, then they have

the following expressions:

Eu3(x, s) =
∑

α∈J

(∑

p∈J

∑

0≤β≤α
C(α, β, p) uα−β+puβ+p

)
uα, (2.40)

Eu4(x, s) =
∑

α∈J

(∑

p∈J

∑

0≤β≤α
C(α, β, p) uα−β+p uβ+p

)2
. (2.41)

Proof From Theorem 2.3 we have

u2 =
∑

θ∈J

(∑

p∈J

∑

0≤β≤θ
C(θ, β, p) uθ−β+p vβ+p

)
Tθ(ξ).

Note that E(u3) = E(u · u2) and E(u4) = E(u2 · u2). From the orthogonality of Tα(ξ), we

immediately get formula (2.40) and (2.41). �

2.4 Wiener Chaos Expansions: A Martingale Approach

While presenting the general theory of the Wiener chaos expansion in Section 2.3, we

intentionally avoided the peculiar stochastic calculus language. In this section, we will

study the WCE in a more analytical way and derive a few interesting results for the Wick

polynomials. Those results are powerful tools in deriving the governing equations for the

WCE coefficients.

Denote FW
s as the σ-algebra generated by the Brownian motion {W (τ); 0 ≤ τ ≤ s}.

Obviously FW
s1 ⊂ FW

s2 if s1 < s2. So the σ-algebra family FW
s is increasing in time s. For

fixed t > 0, denote the probability space of {Ws; 0 ≤ s ≤ t} as (Ω, FW
t , P ), where Ω is

the sample space and P is the probability measure. Define the set of all square integrable
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functionals of the Brownian motion {Ws; 0 ≤ s ≤ t} as

L2(Ω, FW
t , P ) =

{
f(Ws; 0 ≤ s ≤ t)

∣∣∣ E(f2) <∞
}
. (2.42)

The functional space L2(Ω, FW
t , P ) is a Hilbert space with respect to the Brownian motion

measure P . Based on Cameron-Martin Theorem 2.2, the Wick polynomials {Tα(ξ); α ∈ J }
is a complete orthonormal basis in L2(Ω, FW

t , P ).

Consider the general SPDE again

ut(x, t) = L(u) + σ Ẇ (t). (2.43)

Denote {T tα(ξ), α ∈ J } as the orthonormal basis of L2(Ω, FW
t , P ) for a fixed time t > 0.

Suppose u(x, s) is a solution of (2.43) for 0 ≤ s ≤ t. We assume that u(x, s) is a well-

defined random process and has second order moment for any fixed x and s 6 t, which is

usually true from the existence results. So u(x, s) ∈ L2(Ω, FW
s , P ). Since FW

s ⊂ FW
t for

s ≤ t, it follows that L2(Ω, FW
s , P ) ⊂ L2(Ω, FW

t , P ). So u(x, s) also belongs to the space

L2(Ω, FW
t , P ) and hence has the Wiener Chaos expansion:

u(x, s) =
∑

α

E
[
u(x, s)T tα(ξ)

]
T tα(ξ). (2.44)

Note that the expansion (2.44) is valid for all s ≤ t and u(x, s) has a universal Wiener chaos

expansion on the interval s ∈ [0, t]. When plugging the expansion (2.44) into the SPDE

(2.43), we can derive the governing equations for the WCE coefficients.

Take expectation of (2.44) with respect to the σ-algebra FW
s . Since u(x, s) only depends

on {Wτ ; 0 ≤ τ ≤ s}, we have

u(x, s) =
∑

α

E
[
u(x, s)T tα(ξ)

]
E
[
T tα(ξ) | FW

s

]
.

Define

Tα(s) := E(T tα
∣∣ FW

s ), 0 ≤ s ≤ t. (2.45)

Tα(s) is the filtered version of T tα(ξ) against the σ-algebra family {FW
s }0≤s≤t, and Tα(s) ∈
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L2(Ω, FW
s , P ). Moreover, the coefficients of the expansion

E
[
u(x, s)T tα(ξ)

]
= E E

[
u(x, s)T tα(ξ)

∣∣∣FW
s

]

= E
{
u(x, s)E

[
T tα(ξ)

∣∣∣FW
s

]}

= E [u(x, s)Tα(s).]

So we also have

u(x, s) =
∑

α

E [u(x, s)Tα(s)] Tα(s).

As a result, we have the following conclusion:

Theorem 2.4 {Tα(s); α ∈ J } defined by (2.45) is a complete set of basis in the space

L2(Ω, FW
s , P ) for any s 6 t.

However, Tα(s) are no longer orthogonal to each other. It can be shown that Tα(s)

defined by (2.45) is a martingale with respect to the σ-algebra family FW
s and can be

rewrite as an Ito integral. Please see Appendix A for the definition of martingale and its

relations with Ito integrals. The following result belongs to Boris et al. [60, 70, 71].

Theorem 2.5 Tα(s) defined by (2.45) satisfies the stochastic differential equation

d Tα(s) =

∞∑

i=1

mi(s)
√
αi Tα−

(i)
(s) dWs, 0 ≤ s ≤ t, (2.46)

or equivalently

Tα(s) = I{α=0} +

∫ s

0

∞∑

i=1

mi(τ)
√
αi Tα−

(i)
(τ) dWτ , (2.47)

where I{α=0} = 1 if α = 0 and is zero otherwise; and α−
(i) is a multi-index defined as

α−
(i)(j) =






αj, j 6= i,

αi − 1, j = i.

Theorem 2.5 is very useful in deriving the governing equations of the WCE coefficients

when applying the WCE to solve SPDEs. To prove Theorem 2.5, we need to prove two

lemmas first.
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Suppose mi(s), i = 1, 2, . . . is a set of orthonormal basis in L2([0, t]), where t is a fixed

time instance. For any real sequence z = (z1, z2, . . . , ) with finite number of nonzero com-

ponents, define

X(z, s) =

∫ s

0

∞∑

k=1

zkmk(τ)dWτ −
1

2

∫ s

0

∣∣∣∣∣

∞∑

k=1

zkmk(τ)

∣∣∣∣∣

2

dτ. (2.48)

Denote

Ps(z) = eX(z,s), 0 6 s 6 t. (2.49)

The following lemma says that Ps=t(z) is the generating function of the Wick polynomials.

Lemma 2.6

Tα(ξ) :=
∞∏

i=1

Hαi(ξi) =
1√
α!

∂α

∂zα
Pt(z)

∣∣∣
z=0

. (2.50)

Proof From the orthogonality of mk(s) and the definition (2.28), it is easy to show that

X(t) =

∞∑

k=1

zk

∫ t

0
mk(τ) dWτ −

∞∑

k=1

1

2
z2
k =

∞∑

k=1

(
zkξk −

1

2
z2
k

)
.

Hence

Pt(z) = exp

[ ∞∑

k=1

(
zkξk −

1

2
z2
k

)]
=

∞∏

k=1

exp

(
−z

2
k

2
+ zkξk

)
.

So Pt(z) is the generating function of the multi-variable Hermite polynomials of ξ1, ξ2, . . .,

and Lemma 2.6 follows immediately from property (2.7). �

The Ps(z) defined by (2.49) is a martingale and can be expressed as an Ito integral.

Lemma 2.7

dPs(z) =
∞∑

k=1

zkmk(s)Ps(z) dW (s), 0 ≤ s ≤ t.

So Ps(z) is a martingale with respect to FW
s and

E
(
Pt(z)

∣∣ FW
s

)
= Ps(z) for s ≤ t.

Proof Note that

dX(s) =

∞∑

k=1

zkmk(s)dWs −
1

2

∣∣∣∣∣

∞∑

k=1

zkmk(s)

∣∣∣∣∣

2

ds.
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Then from Ito’s formula (A.8) we have

dPs(z) = d
(
eX(s)

)
= eX(s)dX(s) +

1

2
eX(s) [dX(s)]2

= eX(s)




∞∑

k=1

zkmk(s) dWs −
1

2

∣∣∣∣∣

∞∑

k=1

zkmk(s)

∣∣∣∣∣

2

ds



+
1

2
eX(s)

∣∣∣∣∣

∞∑

k=1

zkmk(s)

∣∣∣∣∣

2

ds

=
∞∑

k=1

zkmk(s)Ps(z)dWs.

Ps(z) is a martingale because it can be expressed as an Ito integral. �

Now we are ready to prove Theorem 2.5.

Proof From the definition of Tα(s) and Lemma 2.6, we have

Tα(s) = E

(
1√
α!

∂α

∂zα
Pt(z)

∣∣
z=0

∣∣∣ FW
s

)

=
1√
α!

∂α

∂zα
E
(
Pt(z)

∣∣∣ FW
s

) ∣∣∣
z=0

=
1√
α!

∂α

∂zα
Ps(z)

∣∣
z=0

.

The above formula gives the precise expression of Tα(s). From Lemma 2.7 we have

d Tα(s) =
1√
α!

∂α

∂zα
∂Ps
∂s

(z)
∣∣∣
z=0

=
1√
α!

∂α

∂zα

( ∞∑

i=1

zimi(s)Ps(z)dWs

)∣∣∣∣∣
z=0

=
∞∑

i=1

mi(s)

(
αi√
α!

∂α
−
i

∂zα
−
i

Ps(z)dWs

) ∣∣∣∣∣
z=0

=

∞∑

i=1

mi(s)
√
αi Tα−

i
(s) dWs,

which completes the proof. �
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Chapter 3

WCE Methods for Stochastic

Burgers Equations

Stochastically forced Burgers equations have been an active research subject in recent years.

Unlike the unforced Burgers equations, which have purely dissipative solutions, the ran-

domly forced Burgers equations have much richer structures. Based on the Cole-Hopf

transformation [52], the unforced Burgers equation is mapped to a heat equation, while the

forced Burgers equations is mapped to a kind of imaginary-time Schrödinger equation with

the primitive function of the random forcing as the potential [6]. The randomly forced Burg-

ers equations appear frequently in nonequilibrium statistical physics where strong nonlinear

effects are present, such as vortex lines in superconductors, directed polymers, and kinetic

roughening of growing surfaces. As a testing model, randomly forced Burgers equations are

also studied intensively in the context of turbulence, either for their own sake as Burgers tur-

bulence, or in the spirit of forced Navier-Stokes equations. For theoretical discussions about

the stochastic Burgers equations and their applications, please see [6, 23, 24, 25, 56, 92, 93]

and the references therein.

In this chapter, we will use the stochastic Burgers equations as a test model for the

Wiener chaos method. We will consider the stochastic Burgers equations with additive

forcing or multiplicative forcing. By comparing the numerical results of the WCE method

with those by Monte Carlo simulations, we will demonstrate the efficiency and accuracy of

the WCE method. Our numerical results also verify the existence of an invariant measure

for the stochastic Burgers equation with additive forcing.
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3.1 Stochastic Burgers Equations with Additive Random Forc-

ing

In this section, we consider the following 1-D stochastic Burgers equation






ut +
1
2 (u2)x = µuxx + σ(x)Ẇ (t),

u(x, 0) = u0(x), u(0, t) = u(1, t)
(t, x) ∈ (0, T ] × [0, 1], (3.1)

where W (t) is a Brownian motion. For simplicity, we assume that the initial condition u0(x)

is deterministic and limit our discussion to the periodic case. It is known (see e.g., [86]) that

if ‖u0‖L2
<∞ and ‖σ‖L2

<∞, then equation (3.1) has a unique solution with finite second

order moments. Therefore, the solution of (3.1) admits a Wiener chaos expansion. Below,

we will apply the WCE to the stochastic Burgers equation (3.1) and derive a deterministic

PDE system for its WCE coefficients. The resulting nonlinear PDE systems can be solved

numerically by the well-developed deterministic algorithm.

3.1.1 Equations for the WCE Coefficients

First we need to derive the governing equations for the WCE coefficients, so that we can com-

pute them numerically. We choose an arbitrary orthonormal basis in L2([0, T ]), such as the

trigonometric functions (2.29). Define the Gaussian random variables ξk =
∫ T
0 mk(t)dW (t)

and the Wick polynomials {Tα(ξ), α ∈ J }. In practice, we don’t really need to compute

the variables ξk and form Tα(ξ). As we will see later, only the L2 base functions mk(t) are

involved in the coefficient equations explicitly.

Since the stochastic solution u(x, t) of (3.1) is well defined and has second order moment

for any fixed x and t, from Theorem 2.2, u(x, t) admits the Wiener chaos expansion

u(x, t) =
∑

α∈J
uα(x, t) Tα, uα(x, t) = E

[
u(x, t)Tα

]
. (3.2)

This expansion is valid for all t ≤ T . Rewriting the equation (3.1) in integral form, we have

u(x, t) = u0(x) +

∫ t

0

[
µuxx(x, τ) −

1

2
u2
x(x, τ)

]
dτ + σ(x)W (t).
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Multiplying both sides by Tα and taking expectations, we get

uα(x, t) = u0(x)I{α=0} +

∫ t

0

[
µ∂xxuα − 1

2
∂xE

(
u2Tα

)]
dτ + σ(x)E[W (t)Tα], (3.3)

where the indicator function I{α=0} is defined as

I{α=0} =






1 α = 0,

0 otherwise.

Set v = u in Theorem 2.3, and use the orthogonality of Tα, we obtain that

E[u2Tα] =
∑

p∈J

∑

0≤β≤α
C(α, β, p) uα−β+p uβ+p. (3.4)

Recalling the expansion (2.30) for W (t), we have

E
[
W (t)Tα

]
=

∞∑

i=1

∫ t

0
mi(τ)dτE

(
ξi Tα

)
.

Note that H1(x) = x, so ξi = T{αj=δij}. From the orthogonality of Tα we get

E
[
W (t)Tα

]
=

∞∑

i=1

I{αj=δij}

∫ t

0
mi(τ)dτ. (3.5)

Plugging (3.4) and (3.5) into equation (3.3), we arrive at

uα(x, t) = u0(x)I{α=0} +

∫ t

0
µ∂xxuα(x, τ)dτ + σ(x)

∞∑

i=1

I{αj=δij}

∫ t

0
mi(τ)dτ

− 1

2

∑

p∈J

∑

0≤β≤α
C(α, β, p)

∫ t

0
∂x(uα−β+puβ+p)(x, τ) dτ.

Hence the WCE coefficients satisfy the PDE system

∂

∂t
uα(x, t) +

1

2

∑

p∈J

∑

0≤β≤α
C(α, β, p)

∂

∂x
(uα−β+p uβ+p)(x, t)

= µ
∂2

∂x2
uα(x, t) + σ(x)

∞∑

i=1

I{αj=δij}mi(t).

(3.6)

The coefficient C(α, β, p) is defined in (2.39). Since the initial condition u0(x) is determin-
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istic, the initial conditions for the WCE coefficients are

uα(x, 0) =






u0(x) α = 0,

0 α 6= 0.
(3.7)

Clearly, all the WCE coefficients satisfy the periodic boundary condition uα(0, t) = uα(1, t).

The PDE system (3.6) is valid for 0 ≤ t ≤ T . If we solve it to an intermediate time t < T ,

we can still recover the statistics of u(x, t). We call (3.6) the WCE propagator of the

corresponding stochastic Burgers equation.

The WCE propagator (3.6) shares the same nonlinearity of the original stochastic prob-

lem. The random bases {Tα, α ∈ J } do not appear explicitly in the WCE propagator.

But their properties are implicitly built into the system. The system (3.6) is completely

deterministic. The effect of the random forcing is captured by the L2 functions mi(t). More

specifically, the first WCE coefficient u0(x, t), which is the mean of the stochastic solution,

satisfies

(u0)t +
1

2
(u2

0)x +
1

2

∑

|α|6=0

(u2
α)x = µ(u0)xx. (3.8)

The mean u0 is not driven by the random forcing directly, since the forcing has zero mean.

However, because of the nonlinearity, the mean is forced by higher order WCE coefficients,

which represent the randomness of the solution. For indices {α, αj = δij}, i = 1, 2, . . ., the

corresponding WCE bases Tα = ξi are Gaussian random variables. Their WCE coefficients

satisfy

(uα)t +
∑

p∈J
(pi + 1)

1
2 (upup+α)x = µ(uα)xx + σmi(t), i = 1, 2, . . . .

The coefficients {uα, |α| = 1} of the Gaussian part are forced by the random input directly.

That is how the random effect enters the WCE propagator. For higher order coefficients

uα with |α| > 1, they are not driven by the stochastic forcing directly. Instead they are

forced by the Gaussian part {uα, |α| = 1}. Note that the initial condition uα(x, 0) = 0 for

all α 6= 0. If σ = 0, then the Gaussian part {uα, |α| = 1} will never grow from zero. As

a result, all the higher order coefficients will also stay zero. Then the WCE propagator

reduces to the unforced deterministic equation.

The hierarchy structure of the WCE propagator (3.6) has a profound impact on numer-

ical computations. Since (3.6) is an infinite system, in practice we need to truncate it at
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finite terms. Naturally, the efficiency of the WCE method highly depends on how many

coefficients we need to keep in the computation. In the WCE propagator, higher order

coefficients are driven by lower order coefficients, and at the bottom, the Gaussian coeffi-

cients are driven by the random forcing directly. So the lower order coefficients are usually

dominant in magnitude, and the coefficients uα decay fast as the order of Tα increases. In

practice, even we keep only a few dozens of leading order coefficients, we can still capture

quite a significant part of the information of the random solution. The truncated WCE

system can be regarded as a closure of the moment equation for the nonlinear problem.

3.1.2 Truncating the WCE Propagator

The WCE propagator (3.6) is an infinite PDE system. In practice we need to truncate it

at finite terms. Recall that WCE is a double infinite expansion in the number of Gaussian

random variables ξi and the order of the Wick polynomials:

u(x, t) =
∑

α∈J
uα(x, t)

∞∏

i=1

Hαi(ξi).

Therefore we need to truncate the expansion in both directions. Suppose we want to keep

K Gaussian random variables and maximum Nth order Wick polynomials in the WCE

approximation. Define the truncated index set

JK,N = {α = (α1, . . . , αK); |α| ≤ N}.

Then the truncated WCE can be denoted as

uK,N(x, t) =
∑

|α|≤N
uα(x, t)

K∏

i=1

Hαi(ξi) =
∑

α∈JK,N
uα(x, t)Tα. (3.9)

It is shown in Theorem 5.1 that for a model problem the error of the WCE truncation (3.9)

is

O

[(
σT 3/2

)N+1

√
(N + 1)!

+ σ

(
T

K

)3/2
]
, (3.10)

where σ is the magnitude of the forcing, and T is the size of the time interval. We can

choose the truncation parameter N and K accordingly based on the estimate (3.10) and

the error tolerance.
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The simple truncation (3.9) has altogether

N∑

n=0

(
K + n− 1

n

)
=

(K +N)!

K!N !

terms. The number of terms will increase very fast with both N and K. For a moderate

truncation such as K = 6 and N = 4, the finite WCE propagator will have 210 coefficients.

Though there is no problem for our numerical solver to handle such a large PDE system, it is

neither efficient nor necessary to retain so many WCE coefficients in the computation. The

simple truncation (3.9) is far from optimal, since a lot of the coefficients in the truncations

are very small and contribute little to the final solution. We will prove in Theorem 5.2 that

the WCE coefficients uα, α = (α1, α2, . . .) decay asymptotically as

uα = O

[
1√
α!

∞∏

k=2

(
1

k − 1

)2αk
]
,

where the factor 1√
α!

reflects the decaying rate of the expansion in terms of the Wick poly-

nomial order, and the factor
∏∞
k=2

(
1

k−1

)2αk
stems from the decaying rate of the Gaussian

expansion (2.30) of the Brownian motion. With the same polynomial order |α|, the Wick

base Tα(ξ) depending on ξk with higher subscript k is less important than the one depending

on ξk with lower subscript k. Instead of using Hermite polynomials with the same order

for all ξk, k ≤ K, it is more advisable to use lower order polynomials for ξk with higher

subscripts. To introduce such an adaptivity in the WCE truncation, we define an adaptive

index

r = (r1, r2, . . . , rK) with N = r1 ≥ r2 ≥ . . . ≥ rK ,

and define the sparse index truncation as

J r
K,N = {(α1, . . . , αK); |α| ≤ N, αi ≤ ri}.

Instead of using the simple truncation (3.9), we truncate the WCE adaptively by the sparse

truncation index:

urK,N(x, t) =
∑

α∈J r
K,N

uα(x, t)Tα. (3.11)

W call this type of truncation a sparse truncation. The idea of the sparse truncation is
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Figure 3.1: Illustration of the sparse truncation for K = 6 and N = 4. The left is the simple truncation.
The right is the sparse truncation with the adaptive index as r = (4, 4, 2, 1, 1, 1).

similar to the one used by Schwab [32] in the context of stochastic finite elements for

random elliptic problems. We will show (Theorem 5.3) that the optimal adaptive index r

is given by balance conditions

r1 = N,
1√
rk!

(
1

k − 1

)2rk

≃ 1√
N !

.

For this optimal choice of r, the resulting sparse truncation (3.11) has similar asymptotic

convergence rate as the simple truncation (3.9). For the truncation with K = 6 and N = 4,

the optimal choice of the control index is r = (4, 4, 2, 1, 1, 1). The resulting sparse truncation

is illustrated in Figure 3.1. Using the sparse truncation technique, we can reduce the

dimension of the truncated WCE system dramatically. For the hypothetical case K = 6

and N = 4, the number of coefficients will be reduced from 210 to 57. The larger the

parameters N,K, the more effective the sparse truncation.

The idea of sparse truncation can be pursued even further in practice. Since the WCE

decays both in the number of retained Gaussian random variables and the order of the Wick

polynomials, we can include less Gaussian random variables in constructing higher order

Wick polynomials. In the sparse truncation K = 6, N = 4, and r = (4, 4, 2, 1, 1, 1), six

Gaussian random variables are included in constructing the Wick polynomials. However,

we don’t need to use all the six Gaussian random variables in constructing higher order

Wick polynomials. We can, for example, use only the first three ξi in the third order Wick

polynomials, and the first two ξi in the fourth order Wick polynomials. This practice will

reduce the number of the retained WCE bases further by eliminating unimportant crossing



40

products between different ξi. To implement this local adjustment, we only need to adjust

the length of the adaptive index r = (r1, r2, . . . , rK). For the current hypothetical case, the

composite sparse truncation can be implemented as below.

Sparse Truncation of the WCE index α

1. Set K = 6 and N = 4,

2. Set the adaptive index as r = (4, 4, 2, 1, 1, 1),

(i) For |α| = 3, set r = (4, 4, 2),

(ii) For |α| = 4, set r = (4, 4).

In summary, the idea of the sparse truncation is to put favor in the Gaussian variables ξi

with smaller subscript i and trim the WCE bases by using lower order polynomials for ξi with

bigger subscript i. These sparse truncation techniques can be implemented automatically

and systematically when we generate the index α by induction. Using the sparse truncation

techniques, we can bring down the total number of the WCE coefficients dramatically.

3.1.3 Numerical Solutions of the WCE Propagator

Next we discuss how to solve the WCE propagator (3.6) numerically. Since the random

solution u(x, t) is periodic in [0, 1], so are all its WCE coefficients uα(x, t). We approximate

each WCE coefficient uα by its truncated Fourier series

uα(x, t) =

M/2∑

k=−M/2+1

ûα(k, t)e2 π i k x.

Then the Fourier coefficients ûα(k, t) are determined by the following ODE systems:

(ûα)t + i π k
∑

p∈J

∑

0≤β≤α
C(α, β, p)û(β+p)u(α−β+p)

= −µ4π2k2ûα + σ̂

∞∑

i=1

I{αj=δij}mi(t).

(3.12)

To compute the convolution ûγuθ, we first transform the Fourier coefficient ûγ , ûθ to physical

space and do the multiplication there, then transform the product uγuθ back to the Fourier

space. Such a method is called pseudo-spectral method. The diffusion term −µ4π2k2ûα
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poses stiff stability conditions for solving the ODE system (3.12) numerically. To avoid

extremely small time steps, we can integrate the diffusion term analytically by the linear

propagator method [46]. Denote λ = 4π2k2µ,, then the ODE system (3.12) can be rewritten

as

d

dt

[
ûα(k, t)e

λ t
]

= eλ t



σ̂
∞∑

i=1

I{αj=δij}mi(t) − i π k
∑

p∈J

∑

0≤β≤α
C(α, β, p)û(β+p)u(α−β+p)





(3.13)

To solve the ODE system (3.13) numerically, we use the fourth order Runge-Kutta method.

In the following numerical example, the initial condition of the stochastic Burgers equa-

tion (3.1) is chosen as

u0(x) =
1

2
(ecos 2πx − 1.5) sin 2π(x+ 0.37). (3.14)

We choose such a nontrivial initial condition because it has multi-modes in the Fourier

space. We take the spatial part of the random forcing as

σ(x) =
1

2
cos(4πx),

and set the viscosity µ = 0.005. We first solve the problem (3.1) to T = 0.8 by the WCE

method. Based on Theorem 5.1, the error induced by truncating the Gaussian expansion of

the Brownian motion is O
[
σ
(
T
K

)3/2]
, where σ is the magnitude of the random forcing, T

is the length of the time interval, and K is the number of Gaussian random variables. For

a given error tolerance ǫ, we can approximately set

K ≃ T
(σ
ǫ

)2/3
.

In the current case, T = 0.8 and |σ| ≤ 0.5. Following the above guideline, we set K = 8 and

project the Brownian motion {W (t), 0 ≤ t ≤ T} onto eight cosine bases. The error for such

a truncation is approximately O(10−2). For the Wick polynomial order, we set N = 1, 2, 3,

that is, we truncate the WCE propagator to the first order, second order, and third order,

respectively. The total numbers of coefficients in the simple WCE truncation is 9, 45, and

165. However, using the sparse truncation strategy, the WCE coefficients are reduced to 9,

19, and 35, respectively. The centered statistical moments computed from the different order
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of WCE approximations are compared in Figure 3.2. As we mentioned before, the first order

WCE approximation is a Gaussian approximation. With only nine coefficients, the mean

of the solution is captured quite well. That is because the Gaussian modes are dominant

in magnitude and hence provide the leading order correction to the mean equation (3.8).

Since the stochastic solution of a nonlinear equation is by no means a Gaussian process, the

first order WCE approximation is inadequate for higher order moments. For example, the

third order moment of the Gaussian approximation is zero, which is obviously incorrect.

Including second order coefficients improves the numerical solutions significantly, especially

for the variance and third order moment. The numerical results of the third order WCE

approximation are very accurate and almost identical to the MC solutions with 100,000

realizations.

Figure 3.3 is the L2 norm of the WCE coefficients with third order truncation. We order

the multi-indices in the following way: if |α| 6= |β|, then the index with smaller summation

is listed first. Otherwise, the first component is compared. The index α will be listed ahead

of β if α1 > β1. If α1 = β1, then the second component is compared, and so on and so

forth. In Figure 3.3, the first coefficient is the mean, and coefficients 2 to 9 correspond to the

Gaussian part of the solution. The Gaussian coefficients decay quickly and the coefficients

of ξ8 is already very small. This confirms the truncation choice K = 8 as predicted by

Theorem 5.1. The coefficients of ξk, k = 5, 6, 7, 8 are relatively small comparing with those

of ξi, i = 1, 2, 3, 4, which justifies the argument for the sparse truncation. The coefficients

10 to 19 correspond to the second order Wick polynomials. They are quite important

in magnitude and provide significant correction to the first order WCE approximation.

The coefficients 20 to 35 correspond to the third order Wick polynomials. The numerical

results show that high order WCE coefficients are important in resolving strongly nonlinear

problems, such as Burgers equations. Figure 3.3 shows that the WCE coefficients decay

quickly as the order of Wick polynomials increases. However, the rate of decay will depend

on the variability σ and the length T of the time interval, as indicated by our error analysis

in Section 5. Larger variability and longer time interval will lead to slower decay in the

WCE coefficients.

For comparison purpose, we also solve the stochastic Burgers equation (3.1) by MC

simulation. We first discretize the spatial derivatives by the pseudo-spectral method. The
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Figure 3.2: Statistical moments computed by WCE method with 9, 19, and 35 coefficients, respectively,
corresponding to first order, second order, and third order WCE approximations. The exact solution is
computed by MC simulation with 100,000 realizations. The first order WCE approximation is a piecewise
Gaussian approximation. It is obviously not accurate, especially for high moments. Including second order
correction improves the results significantly. The results by third order truncation are almost identical to
the exact solutions.

resulting equations for the Fourier coefficients are

ût + iπkûu = −µ4π2k2û+ σ̂Ẇ (t).

After integrating the diffusion term analytically, we get a simple ODE system

d
(
ûeλ t

)
= −iπkeλ tûu dt+ eλ tσ̂ dW (t), λ = 4π2k2µ. (3.15)

In MC simulation we need to solve the stochastic Burgers equation (3.1) realization by real-
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Figure 3.3: L2 norm of the WCE coefficients at third order truncation. The coefficients decay very fast.
The first 9 coefficients correspond to the Gaussian part of the solution; coefficients 10–19 correspond to the
second order Wick polynomials; coefficients 20–35 correspond to the third order Wick polynomials. The
coefficients of the Gaussian part are dominant in magnitude. However, higher order coefficients are also
important.

ization, which requires discretizing the stochastic ordinary differential equations (SDE). Due

to the peculiar differential rules of the Brownian motion calculus, the numerical schemes for

discretizing SDE are usually much more complicated than their deterministic counterparts.

In Appendix B we will provide a review of the numerical schemes for discretizing SDEs

in MC simulation. In this thesis, we choose to use the weakly second order Runge-Kutta

method (B.4) in all the MC simulations (unless specified otherwise). For the additive sto-

chastic Burgers equation, the weakly second order Runge-Kutta scheme is reduced to the

simple modified Euler scheme.

To compute realizations of the stochastic solution, we need to sample the Brownian

motion path by generating Gaussian random variables W (tn+1) − W (tn) =
√

∆tN(0, 1)

repeatedly. We adopt the standard Gaussian random number generator gasdev from Nu-

merical Recipes in C [87], which is based on an analytical transformation of a uniform

random variable in [0, 1]. We use ran2, also from [87], as the source of uniform generator

for gasdev. The pseudo random number generator ran2 is believed to be able to generate

perfect random numbers within the limit of floating-point precision. It also has a very long

period (> 2× 1018). For the problems under consideration, there is no need to worry about
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the exhaustion of the pseudo random numbers in the period.

To compute the statistic moments of the random solution, we need to average many

realizations in the MC simulation. For example, the mean E(u) of the random solution is

estimated by the MC ensemble average

uMC
M (x, t) =

1

M

M∑

k=1

u(x, t, ωk),

where u(x, t, ωk) is a realization computed by the MC simulation, andM is the total number

of realizations. To assess the convergence behavior of the MC simulation, we compute the

relative errors of the statistic moments for each M ∈ [10, 10, 000]. For example, the relative

error of the mean is computed as

εu(M) =
‖uMC

M − E(u)‖2

‖E(u)‖2
,

where E(u) is the benchmark mean computed by MC simulation with 100,000 realizations,

and ‖·‖2 is the L2 norm in x variable. The relative error of the other moments are computed

similarly. Since the MC ensemble average uMC
M is a random variable itself, so is the relative

error εu(M). Based on the central limit theorem [30], for large M

εu(M) ∼M−1/2N(0, 1),

where N(0, 1) is the standard Gaussian distribution. We repeat the MC simulation 20 times

to compute the root mean square (RMS) error E[ε2u(M)]1/2 for each realization number M .

The RMS errors of the MC estimations for other statistical moments can be computed

similarly. Figure 3.4 is the RMS error (in log-log scale) of the MC estimations with differ-

ent realization numbers. The RMS errors decay slowly as the number of the realizations

increases. For all the statistic moments computed, the RMS errors are reduced by only one

order when the realization number increases by two orders (from 100 to 10,000). So the

convergence rate of the MC estimations is proportional to O
(

1√
M

)
for all the statistical

moments, which is consistent with the Central Limit Theorem. With 10,000 realizations,

the RMS errors of the MC ensemble averages are 0.8%, 1.4%, 6.4%, and 3.2% for the mean,

variance, and third and fourth order moments, respectively. The errors are slightly different

for difference statistical moments, which is caused by the different proportional constants in
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Figure 3.4: Log-log convergence of the MC simulation with different realizations. The relative RMS errors
are computed by repeating the simulations 20 times for each realization number. The “exact” solutions are
computed by MC with 100,000 realizations. With 10,000 realizations, the RMS relative errors of the MC
simulation are 0.8%, 1.4%, 6.4%, and 3.2% for the mean, variance, and third and fourth order moments,
respectively.

the convergence rate O
(

1√
M

)
. From the convergence study, we find that 10,000 realizations

are required for the MC simulation to reach an accuracy of O(10−2).

Figure 3.5 is the comparison between the WCE method with 35 coefficients and the MC

simulation with 10,000 realizations. The numerical results by the WCE method have very

similar accuracy as those by MC simulation. However, the CPU time is only 2 seconds for

the WCE method, as opposed to 315 seconds for MC simulations. Therefore, the WCE

method is more efficient than MC simulation in this case. In this thesis, all the numerical

experiments are conducted on a PC with a 2.60 GHz CPU.

In the MC simulations, we also tried various kind of acceleration techniques (see Ap-

pendix B). However, most of the variance reduction techniques are not readily applicable
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Figure 3.5: Convergence comparison between WCE method and MC simulation. The WCE method with
35 coefficients has the same accuracy as MC simulation with 10,000 realizations. However, the CPU time is
only 2 seconds for the WCE method, as opposed to 315 seconds for the MC simulation.

here since they require prior knowledge of the distribution of the stochastic solutions. We

did implement antithetic variables in our MC simulations. The motivation of using anti-

thetic variables is to preserve the symmetry of the Brownian motion and reduce the noise

in the samples of the forcing. We found that the antithetic variable can only improve the

convergence of the MC simulation slightly, usually no more than a couple of times. This is

because the distribution of the random solution is quite different from that of the Brownian

motion forcing, and in particular, it is not symmetric. The antithetic variable based on

the Brownian motion forcing may not be able to reduce the variance of the random solu-

tion effectively. With the improvement provided by the acceleration techniques, the MC

simulation is still far less efficient than the WCE method.
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3.1.4 Convergence Verification of the WCE Method

To demonstrate the convergence of the WCE method, we compare its numerical solutions

with those of MC simulation. However, it is difficult to obtain accurate solutions by MC

simulation, due to its slow and nonmonotone convergence. In this subsection, we will test

both WCE method and MC simulation on a model equation, where a semi-analytical solu-

tion is available. The semi-analytical solution can be computed accurately by deterministic

numerical algorithms, without the need of generating random numbers. Using it as the

benchmark, we will compare the performance of both WCE method and MC simulation

quantitatively.

In stochastic Burgers equation (3.1), suppose the spatial part σ(x) of the random forcing

is a constant. In this particular case the solution of the stochastic Burgers equation can

be obtained by a nonlinear stochastic perturbation of its deterministic counterpart. More

specifically, the following theorem holds:

Theorem 3.1 If σ is a constant, then the solution of (3.1) is given by

u(x, t) = v

(
x− σ

∫ t

0
W (s)ds, t

)
+ σW (t), (3.16)

where v(x, t) is a solution of the unforced deterministic Burgers equation






vt + 1
2(v2)x = µvxx,

v(x, 0) = u0(x), v(0, t) = v(1, t).

(3.17)

Proof Let

X(x, t) = x− σ

∫ t

0
W (s)ds,

then u(x, t) = v(X, t) + σW (t) and

ux(x, t) = vx(X, t), uxx(x, t) = vxx(X, t).

Since v satisfies equation (3.17), we have

vt(X, t) = µvxx(X, t) − v(X, t)vx(X, t).
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It follows that

ut(x, t) = vx(X, t)Xt + vt(X, t) + σ Ẇ (t)

= −σW (t) vx(X, t) + µvxx(X, t) − v(X, t) vx(X, t) + σ Ẇ (t)

= µvxx(X, t) −
[
v(X, t) + σW (t)

]
vx(X, t) + σ Ẇ (t)

= µuxx(x, t) − u(x, t)ux(x, t) + σ Ẇ (t).

So formula (3.16) satisfies the differential equation of (3.1). It is easy to check that it also

satisfies the initial and boundary condition. So (3.16) is indeed the solution of the stochastic

Burgers equation (3.1). �

Theorem 3.1 states that the random solution of the stochastic Burgers equations is the

unforced deterministic solution compounded with a random perturbation along the flow

characteristics. Formula (3.16) provides a convenient way to compute the statistical mo-

ments of u numerically. Instead of solving the stochastic equation (3.1) by MC simulations

with many realizations, we can first solve the deterministic equation (3.17) and then com-

pute the statistical moments by numerical integrations.

In formula (3.16) denote

Y (ω, t) = σW (t), Z(ω, t) = σ

∫ t

0
W (s)ds.

Obviously, both Y and Z are Gaussian random variables with zero mean. By simple sto-

chastic calculus, we can show that

E(Y 2) = σ2t, E(Z2) = σ2t3/3, E(Y · Z) = σ2t2/2.

Since the joint distribution of Gaussian random variables is determined uniquely by their

means and covariance, we have

(Y, Z) ∼ N(0, Σ), with Σ = σ2



 t t2/2

t2/2 t3/3



 ,

where N(0, Σ) denotes the Gaussian distribution with mean zero and covariance Σ. Denote
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y = (y, z)T , then the joint probability density function of random variables (Y, Z) is

ρ(y, z) =
1

2π|Σ|1/2 exp

[
−1

2
y′Σ−1y

]

=

√
3

πσ2t2
exp

(
−2y2

σ2t
+

6yz

σ2t2
− 6z2

σ2t3

)
.

From (3.16) it is easy to see that

E [u(x, t)]n =

∫

R2

[v(x− z, t) + y]n ρ(y, z) dydz. (3.18)

Integrating the variable y analytically, we can further get

Eu(x, t) =

∫ +∞

−∞
v(x− z, t)ρ(z)dz, (3.19)

Eu2(x, t) =

∫ +∞

−∞

[
v2(x− z, t) + v(x− z, t)

3z

t

]
ρ(z)dz + σ2t, (3.20)

Eu3(x, t) =

∫ +∞

−∞

[
v3 + v2

(
9z

2t

)
+ v

(
3σ2t

4
+

27z2

4t2

)]
ρ(z)dz, (3.21)

Eu4(x, t) =

∫ +∞

−∞

[
v4 + v3

(
6z

t

)
+ v2

(
3σ2t

2
+

27z2

2t2

)

+ v

(
9σ2z

2
+

27z3

2t3

)]
ρ(z)dz + 3σ4t2,

(3.22)

where ρ(z) is the marginal probability density function of random variable Z

ρ(z) =
1√
2πγ

exp

(
− z2

2γ2

)
, γ2 = σ2t3/3. (3.23)

To compute the statistical moments of u, we first solve the deterministic Burgers equa-

tion (3.17) and obtain the solution v. Then we compute the integral (3.19)–(3.22) by

numerical quadratures. Since all the computations are deterministic, we can quantify and

hence control the numerical error at each step. By carefully choosing the deterministic

algorithms, we can compute the statistical moments of u very accurately.

To solve the unforced deterministic equation (3.17), we use the pseudo-spectral method

in space and the fourth order Runge-Kutta method in time. To compute the integrals
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CPU seconds Mean Variance Third order Fourth order

WCE 3 0.08% 1.3% 4.3% 5.2%

MC 319 0.18% 2.1% 3.8% 4.1%

Table 3.1: Relative L2 error of the WCE method with 40 coefficients and MC simulation with 10,000
realizations

(3.19)–(3.22) numerically, we first truncate the infinite integral domain by [−M,M ], where

M is an integer about ten times large as the variance of ρ(z). Since the Gaussian kernel

ρ(z) decays exponentially, such a truncation is very accurate. For the same reason, the

integrands in (3.19)–(3.22) can be treated as compact supported and hence periodic in

[−M,M ]. Then we use the trapezoidal rule to compute the integrals in the truncated

domain. It is well known [57] that the trapezoidal rule has spectral accuracy for periodic

and infinitely smooth integrands. Since both the solution v of equation (3.17) and the

Gaussian kernel ρ(z) are infinitely smooth, the trapezoidal integrator has spectral accuracy

for the integrals (3.19)–(3.22). As we can expect, such computed statistical moments will

be very accurate.

In the following numerical test, we consider the Burgers equation (3.1) with the same

setup as in Section 3.1.3. The only difference is that the spatial part of the random forcing is

chosen as a constant σ = 0.1. We first solve the problem to T = 0.8 by the semi-analytical

approach and obtain the benchmark statistics of u. Then we solve the same problem by the

WCE method. We project the Brownian motion in [0, T ] onto the first eight cosine bases,

and truncate the WCE expansion at fourth order Wick polynomials. The resulting WCE

propagator has 40 coefficients. According to Theorem 5.1, the error for such a truncation

is approximately O(10−2). For comparison, we also solve the problem by MC simulation

with 10,000 realizations. In all the three methods, we use the same spatial mesh N = 128

and time step ∆t = 0.001. We compare the numerical solutions of the WCE method and

MC method in Table 3.1. In the table, the relative error for the WCE Mean is defined

as ‖E(uWCE) − E(u)‖2/‖E(u)‖2, where u is the semi-analytical solution, and ‖ · ‖2 is the

L2 norm in x variables. The errors for the other moments are defined similarly. To

reach a comparable accuracy, the WCE method takes only 3 seconds, while MC simulation

takes 319 seconds. So the WCE method is much faster than MC simulation for that 1-D

stochastic Burgers equation. Furthermore, we indeed observed an accuracy of O(10−2) for

the WCE method, as predicted by Theorem 5.3 for the sparse WCE truncation.
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Figure 3.6: Log plot of the relative error of the WCE method with different polynomial orders. The errors
decrease exponentially when the Wick polynomial order increases.

To study the convergence of the WCE truncations, we solve (3.1) again by the WCE

method with first order, second order, third order, and fourth order Wick polynomials

sequentially. In all the cases, eight Gaussian random variables are retained. Figure 3.6

is the log plot of the relative errors of the statistical moments computed by the WCE

method with different polynomial orders. The errors decay linearly in log scale when the

polynomial order increases. So the WCE method converges exponentially in terms of the

Wick polynomial order, which is consistent with Theorem 5.1.

For comparison, we also compute the RMS error of the MC simulation with 500, 1,000,

2,000, 4,000, 8,000 realizations, respectively. We repeat the simulations 20 times to estimate

the RMS errors for each realization number. Figure 3.7 is the log-log plot of the RMS errors.

The numerical results show that the MC simulation converges quite slowly and the errors

decay linearly in the log-log scale. It is not a surprise that MC simulations require 10,000

realizations to achieve the similar accuracy as the WCE method with only 40 coefficients.
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Figure 3.7: Log-log plot of the relative RMS errors of the MC simulation with 500, 1,000, 2,000, 4,000,
8,000 realizations, respectively. Twenty simulations are performed to estimate the RMS errors for each
realization number.

It is worth pointing out that the performance of the WCE method is not sensitive to

the choice of the L2 basis function mk(t), as long as they are orthonormal. In addition to

the cosine base (2.29), we also tried the Haar wavelets [17] and the sine basis

mk(t) =

√
2

T
sin

(k − 1/2)πt

T
, 0 ≤ t ≤ T, k = 1, 2, . . . (3.24)

in our numerical experiment. The numerical results are almost the same for the different

choice of mk(t).
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3.2 Stochastic Burgers Equations with Multiplicative Ran-

dom Forcing

Stochastic equations with multiplicative random forcing are usually much more difficult to

handle than those with additive forcing. A random forcing is classified as multiplicative

if it depends on the solution itself. Due to the peculiar differential rules of the stochastic

calculus, SPDEs with multiplicative forcing require special care. In this section we consider

the following stochastic Burgers equation:






du+ uuxdt = µuxxdt− σux ◦ dW (t),

u(x, 0) = u0(x), u(0, t) = u(1, t),

(3.25)

where the stochastic integral σux ◦ dW (t) is defined in the Stratonovich’s sense (A.4). The

random forcing in (3.25) involves the unknown function ux, so the SPDE (3.25) has a

multiplicative type random forcing. We can formally rewrite (3.25) as

ut +
(
u+ σẆ

)
◦ ux = µuxx, (3.26)

which reveals that the equation has a stochastic convection velocity. We propose the sto-

chastic forcing in Stratonovich’s sense because it always gives rise to a well-posed equation.

In the next section, we will give an example to show that if we propose the random forcing

in Ito’s sense, we may have an ill-posed problem. For the definitions and differential rules

of Stratonovich integrals, please see Appendix A, or the reference [77].

Since the Stratonovich integral is not a martingale, we prefer to rewrite it in Ito’s form.

Denote

b(x, ∂x) = −σ ∂x,

then the random forcing in (3.25) can be formally rewritten as

−σux ◦ dW (t) = b (x, ∂x) u ◦ dW (t).
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From the relations between Ito integrals and Stratonovich integrals, we can formally get

b (x, ∂x) u ◦ dW (t) = b (x, ∂x) u · dW (t) +
1

2
b (x, ∂x) b (x, ∂x) udt

= −σ ux · dW (t) +
1

2
σ(σ ux)x dt.

Then the equation (3.26) can be rewritten in Ito’s form:

ut +
[
u+ σẆ (t)

]
· ux = µuxx +

1

2
σ(σux)x. (3.27)

The equivalence between (3.26) and (3.27) can be established rigorously based on the def-

inition of Stratonovich integrals. From the form (3.27), it becomes clear that the random

perturbation is along the characteristic velocity field. This consideration is motivated by

Kraichnan’s turbulence model [54] for transport equations.

3.2.1 Derivation of the WCE Propagator

In this section we derive the WCE propagator for the stochastic Burgers equation (3.27).

Suppose the solution of (3.27) has a Wiener chaos expansion for t ∈ [0, T ]

u(x, t) =
∑

α∈J
uα(x, t)Tα(ξ)

with

uα(x, t) = E[u(x, t)Tα(ξ)] = E[u(x, t)Tα(t)],

where

Tα(t) = E
(
Tα(ξ)

∣∣ FW
t

)

is the Wick polynomials filtered by the σ-algebra FW
t . Recall that Tα(t) is a martingale

and satisfies the differential equation (Theorem 2.5):

dTa(t) =

(
∑

k

mk(t)
√
αk Tα−

(k)
(t)

)
dW (t).
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Rewriting the equation (3.27) in differential form

du =

[
µuxx +

1

2
σ (σ ux)x − uux

]
dt− σ ux dW (t), (3.28)

we have

d[uTα(t)] = Tα(t) du+ u d Tα(t) + du · dTα(t)

= Tα(t)

[
µuxx +

1

2
σ (σ ux)x − uux

]
dt− Tα(t)σ ux dW (t)

+u

(
∑

k

mk(t)
√
αk Tα−

(k)
(t)

)
dW (t)

−σ ux
(
∑

k

mk(t)
√
αk Tα−

(k)
(t)

)
dt.

Taking expectation of the above formula, the terms involving Ito integrals will disappear

since they are mean zero. Plugging in the expression uα = E[uTα(t)] we have

duα =

{
µ(uα)xx +

1

2
σ[σ(uα)x]x − E[uux Tα(t)]

}
dt

−σ
(
∑

k

mk(t)
√
αk

∂

∂x
uα−

(k)

)
dt.

Expanding the nonlinear term E[uux Tα(t)] by formula (2.38), we get the Wiener chaos

propagator of equation (3.27):

(uα)t =µ(uα)xx +
1

2
σ[σ(uα)x]x − σ

∑

k

mk(t)
√
αk

∂

∂x

(
uα−

(k)

)

− 1

2

∑

p∈J

∑

06β6α

C(α, β, p)(uα−β+puβ+p)x.

(3.29)

The multi-index α−
(k) is defined as

α−
(k)(j) =





αj if j 6= k,

αk − 1 if j = k.
(3.30)
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The index α−
(k) can be obtained from α by subtracting 1 from the component αk. For

example, if

α = (4, 3, 0, 1),

then

α−
(1) = (3, 3, 0, 1), α−

(2) = (4, 2, 0, 1), α−
(3) = (4, 3,−1, 1), α−

(4) = (4, 3, 0, 0).

The index α−
(3) has a negative component so it is not a valid index. If α /∈ J , we simply set

the corresponding WCE coefficient as zero uα ≡ 0.

Since the initial condition in (3.25) is deterministic, the corresponding initial conditions

for the WCE coefficients are

uα(x, 0) =





u0(x) if α = 0,

0 if α 6= 0.
(3.31)

Since the solution of (3.25) is periodic, all the WCE coefficients also satisfy the periodic

boundary condition

uα(0, t) = uα(1, t). (3.32)

The deterministic PDE system (3.29) augmented with the initial condition (3.31) and

boundary condition (3.32) is equivalent to the random equation (3.25). By solving a trun-

cated version of the WCE propagator (3.29), we can obtain a finite term Wiener chaos

solution of (3.25), which represents the random solution as a functional of the white noise

forcing. In particular, we can compute the statistic moments of the random solution based

on Theorem 2.2 and Lemma 2.5.

3.2.2 Monte Carlo Simulation

For comparison purpose, we will also solve the multiplicative stochastic Burgers equation

(3.27) by MC simulation. The MC simulation for SPDEs with multiplicative forcing is much

more complicated than the one for additive random forcing. We will use the weakly second

order Runge-Kutta scheme (B.4) in the MC simulation. Higher order numerical schemes

exist but are all extremely complicated and have little practical use. Please see Appendix B

for a detailed discussion about the numerical schemes for discretizing stochastic differential
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equations in MC simulation.

Rewrite the differential form (3.28) of the stochastic Burgers equation in an abbreviated

form

du = a(x, u) d t + b(x, u) dW (t),

where

a(x, u) = µuxx +
1

2
σ (σ ux)x − uux

and

b(x, u) = −σ ∂xu.

Here the variable x is treated as a parameter. From Appendix B, the weakly second order

Runge-Kutta method (B.4) has the following form:

un+1 = un +
1

2
[a(x, un) + a(x, ûn+1)]∆t

+
1

4
[2b(x, un) + b(x, u+

n ) + b(x, u−n )]∆Wn

+
1

4
[b(x, u+

n ) − b(x, u−n )] {(∆Wn)
2 − ∆t}/

√
∆t,

(3.33)

where

ûn+1 = un + a(x, un)∆t+ b(x, un)∆Wn,

and

u±n = un + a(x, un)∆t± b(x, un)
√

∆t.

Based on the specific form of b(x, u), the Runge-Kutta scheme (3.33) can be simplified as

un+1 = un +
1

2
[a(x, un) + a(x, ûn+1)]∆t

+ b(x, un)∆Wn −
1

2
σ∂x[a(x, un)]∆t∆Wn

+
1

2
σ ∂x [σ ∂x (un)]{(∆Wn)

2 − ∆t}.

The above numerical scheme has a weakly second order accuracy in time. Comparing

with the weakly first order Euler scheme, the second order Runge-Kutta scheme involves

the extra terms ∆t∆Wn and (∆Wn)
2 − ∆t, which have the order of (∆t)

3
2 . That is why

the numerical scheme can achieve second order accuracy O(∆t)2 in time discretization. For
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stochastic differential equations with additive forcing, those extra terms will disappear and

the numerical scheme degenerates to the regular modified second order Euler schemes. That

is the main reason that SDEs with additive forcing is much easier to solve than SDEs with

multiplicative forcing. Note that the solution of equation (3.25) is periodic in space; we

discretize the spatial derivatives by the spectral method using fast Fourier transform.

An additional complexity in solving multiplicative SPDEs by MC simulation is the

special CFL condition. For the stochastic Burgers equation (3.27), the CFL condition

requires that
|σ∆Wn|

∆x
6 C, (3.34)

where ∆Wn is the increment of the Brownian motion at the nth step. However, the Gaussian

random variable ∆Wn ∼ N(0,∆t) does not have a compact support. In practice it is usually

enough to bound ∆Wn by four times its standard deviation, that is, assume |∆Wn| 6 4
√

∆t

since the probability P (|∆Wn| > 4
√

∆t) = O(10−5). So the CFL condition (3.34) can be

approximated by

4|σ|
√

∆t

∆x
6 C. (3.35)

The condition (3.35) requires that ∆t ∼ O(∆x)2, which is an order smaller than the CFL

condition ∆t ∼ O(∆x) for the additive stochastic Burgers equation.

3.2.3 Numerical Experiments

Next we solve the multiplicative stochastic Burgers equation (3.25) by the WCE method,

and compare its numerical results with those by MC simulation. We take the initial condi-

tion of (3.25) as

u0(x) =
1

2
(ecos 2πx − 1.5) sin[2π(x+ 0.37), (3.36)

and set µ = 0.01. The spatial part of the random forcing is chosen as σ(x) = 0.1 sin(2πx).

We solve the stochastic Burgers equation (3.25) to T = 0.8 by the WCE method.

The WCE propagator (3.29) is an infinite system and we need to truncate it for com-

putational purpose. We will show in Theorem 5.4 that for the model equation if we keep K

number of Gaussian random variables and maximum Nth order Wick polynomials in the
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finite WCE, the error of the truncation would be

O

[(
σT 1/2

)N+1

√
(N + 1)!

+ σ

(
T

K

)1/2
]
,

where σ is the magnitude of the random forcing, and T is the size of the time interval for the

solution. This error estimate is very similar to the one for the additive stochastic Burgers

equation. Guided by this error estimate, we project the Brownian motion {W (t); 0 6 t 6

T} onto eight cosine functions and truncate the WCE at maximum fourth order Wick

polynomials. That is, we set K = 8, N = 4 and truncate the WCE of the solution as

uK,N =
∑

|α|6N
uα(x, t)

K∏

k=1

Hαk(ξk). (3.37)

The error for such a simple truncation is expected to be O(10−2).

Similar to the additive stochastic Burgers equation, we can apply the sparse truncation

strategy for the multiplicative stochastic Burgers equation. Based on Theorem 5.6, we set

the adaptive index as

r = (4, 4, 3, 2, 1, 1, 1, 1).

The optimal adaptive index r is decided by the error balance condition (5.29). Define the

sparse index set

J r
K,N = {(α1, . . . , αK); |α| 6 N, αi 6 ri} .

Then the sparse WCE truncation of the solution can be denoted as

urK,N =
∑

α∈J r
K,N

uα(x, t)Tα(ξ). (3.38)

We will see later (Theorem 5.6) that the sparse truncation (3.38) has the same asymptotic

convergence rate as the simple truncation (3.37).

Since the WCE decays both in the number of retained Gaussian random variables and

the order of the Hermite polynomials, we should include less Gaussian random variables

in constructing higher order Wick polynomials. For example, we can include only the first

four ξk in the third order Wick polynomials, and the first three ξk in the fourth order Wick

polynomials. This practice is based on the asymptotic decaying rate of the WCE coefficients
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Figure 3.8: The mean and variance computed by the WCE method using 41 coefficients and MC simulation
with 10,000 realizations. The results by the two different methods agree with each other quite well. However,
the CPU time for the WCE method is only 25 seconds, as opposed to 1,466 seconds for the MC simulations.

(Theorem 5.5). By eliminating the unimportant crossing products between different ξk at

higher polynomial order, we can reduce the dimension of the truncated WCE further. Using

these sparse truncation techniques, the resulting WCE propagator has only 41 coefficients,

as opposed to 495 coefficients in the simple truncation (3.37). We solve the finite WCE

propagator by spectral method using fourth order Runge-Kutta method.

For comparison, we also solve the stochastic Burgers equation (3.25) by MC simulation

using the weakly second order Runge-Kutta method (B.4). We compute the mean and

variance of the solution by averaging 10,000 MC realizations. Figure 3.8 is the comparison

of the numerical results obtained by the WCE method and the MC simulation. The variance

of the solution is much larger near the sharp layers than in the smooth region of the solution.

With only 41 coefficients, the results of the WCE method agree quite well with those by the

MC simulation with 10,000 realizations. However, the WCE method takes only 25 seconds,

as opposed to almost 25 minutes required by the MC simulation.

3.2.4 Convergence Verification of the WCE Method

Since the MC simulation converges very slowly, it is quite difficult to assess the accuracy

of the results by the MC method. Next, we will test the convergence of the WCE method

and the MC simulation in a special case, where a semi-analytical solution exists and can be

computed very accurately.

In the stochastic Burgers equation (3.25), suppose the spatial part σ(x) of the random
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forcing is a constant. In this particular case the solution of the stochastic Burgers equation

(3.25) can be obtained by a stochastic perturbation of its deterministic counterpart. More

specifically, we have the following theorem:

Theorem 3.2 If the spatial part σ of the random forcing in equation (3.25) is a constant,

then its solution has the expression

u(x, t) = v
(
x− σW (t), t

)
, (3.39)

where v(x, t) is the solution of the unforced deterministic Burgers equation





vt + 1

2(v2)x = µvxx,

v(x, 0) = u0(x), v(0, t) = v(1, t).
(3.40)

Proof Let

X(x, t) = x− σW (t),

then the formula (3.39) changes to u(x, t) = v(X, t). We have

ux(x, t) = vx(X, t), uxx(x, t) = vxx(X, t).

Since v satisfies the differential equation (3.40), we have

vt(X, t) = µvxx(X, t) − v(X, t)vx(X, t).

From the differential rules of Stratonovich integrals, we have

du(x, t) = vt(X, t) dt − σ vx(X, t)◦ dW (t)

=
[
µ vxx(X, t) − v(X, t) vx(X, t)

]
dt− σ vx (X, t)◦ dW (t)

=
[
µuxx(x, t) − u(x, t) ux(x, t)

]
dt − σ ux (x, t)◦ dW (t).

So formula (3.39) indeed satisfies the differential equation of (3.25). It is easy to check that

(3.39) also satisfies the initial condition and the periodic boundary condition. �

Note As we emphasized before, the multiplicative forcing in the stochastic Burgers
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equation (3.25) should be proposed in Stratonovich’s sense rather than in Ito’s sense. Oth-

erwise, the resulting SPDEs can be ill-posed. That is a subtle but important difference

between stochastic partial differential equations and stochastic ordinary differential equa-

tions. It reflects some of the extra difficulties in studying SPDEs. In stochastic ordinary

differential equations, the stochastic integral can be defined in either way, and it is very

easy to change from one form to the other. For SPDEs, the transformation between Ito

integrals and Stratonovich integrals is a little bit more tricky due to the presence of the

spatial derivatives.

Based on Theorem 3.2, we can construct a simple example to demonstrate the necessity

of proposing multiplicative SPDEs in Stratonovich’s sense. Consider the following 1-D

stochastic heat equation in the real axis

du(x, t) = µux x(x, t)d t + σux · dW (t), (3.41)

where σ is a constant and the stochastic integral σux · dW (t) is in Ito’s sense. We can

rewrite (3.41) in Stratonovich’s sense

du(x, t) =

(
µ− 1

2
σ2

)
ux x(x, t)d t + σux ◦ dW (t).

Similar to Theorem 3.2, the solution of (3.41) has the analytical expression

u(x, t) = v
(
x− σW (t), t

)
, (3.42)

where v satisfies the deterministic heat equation

vt(x, t) =

(
µ− σ2

2

)
vxx(x, t). (3.43)

If σ2/2 > µ, then the deterministic heat equation (3.43) has negative diffusion and is ill-

posed. As a result, the solution of (3.41) is also ill-posed because it is a stochastic translation

of the ill-posed solution v.

However, if the equation (3.41) is proposed in Stratonovich’s sense

du(x, t) = µux x(x, t)d t + σux ◦ dW (t),
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then the formula (3.42) still holds, but v satisfies a different heat equation

vt(x, t) = µ vxx(x, t),

which is well-posed for all positive µ. In this example, the Stratonovich integral automat-

ically provides a diffusion mechanism to balance its strong “dispersion” along the charac-

teristic velocity, which is critical for multiplicative SPDEs.

Theorem 3.2 states that for spatially independent random forcing, the stochastic solution

can be obtained by a random translation of the corresponding deterministic solution. The

explicit formula (3.39) provides a very convenient way to compute the statistic moments of

the solution of (3.25). Define the random variable Y = σW (t), then Y ∼ N(0, σ2t) and its

probability density function is

ρ(y) =
1

σ
√

2πt
e−

y2

2tσ2 .

Then the statistical moments of u has the explicit form

E[un(x, t)] = E[vn(x− Y, t)] =

∫ +∞

−∞
vn(x− y, t)ρ(y) dy.

Since v(x, t) is periodic, we have

E[un(x, t)] =
∞∑

n=−∞

∫ n+1

n
vn(x− y, t)ρ(y) dy

=

∫ 1

0
vn(x− y, t)

∞∑

n=−∞
ρ(y + n) dy.

Denote

ρd(y) =
∞∑

n=−∞
ρ(y + n) ,

then

E[un(x, t)] =

∫ 1

0
vn(x− y, t) ρd(y) d y. (3.44)

Because of the symmetry of the Gaussian kernel ρ(y), it can be shown that ρd(y) is periodic

in the interval [0, 1]. Hence the integration (3.44) is a convolution of two periodic functions,

which can be computed by FFT very easily. Note that ρd(y) is defined by an infinite
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summation, we need to truncate it at finite terms. Since ρ(y) is a Gaussian kernel and

decays exponentially, the truncation can be made very accurate.

Next we test the convergence of the WCE method and the MC simulation on the model

equation using the semi-analytical formula (3.44). We choose the same initial condition

(3.36) and set σ = 0.1. The viscosity µ = 0.01 remains the same. We compare the numerical

solutions of the WCE method and MC simulation at T = 0.8. We first solve v from the

deterministic equation (3.40) by the spectral method in space and the fourth order Runge-

Kutta in time. Then we compute the mean and variance of the random solution based on

formula (3.44) by FFT. Such computed mean and variance do not involve random number

generations and are very accurate.

Then we solve the same problem by the WCE method. Based on Theorem 5.4, we

project the Brownian motion onto eight cosine bases and use maximum fifth order Hermite

polynomials. The expected error for such a truncation would be O(10−2). Based on The-

orem 5.6, we choose the optimal adaptive index as r = (5, 4, 3, 2, 1, 1, 1, 1). As before, we

include only the first four ξk in the third order Wick polynomial, and the first three ξk in the

fourth and fifth order Wick polynomial. Such a sparse truncation can reduce the number

of WCE coefficients from 1287 to 51. We solve the resulting finite WCE propagator by the

fourth order Runge-Kutta method. In the MC simulation, we average 10,000 realizations

to compute the mean and variance. Figure 3.9 is the mean and variance computed by the

WCE method and the MC simulation. Comparing with the semi-analytical solutions, the

numerical results of the WCE method and MC simulation are both quite accurate. Table

3.2 is the relative error of the two methods. For both the mean and variance, the relative

error of the WCE solution is about O(10−2), which is consistent with the error prediction

based on Theorem 5.6. With 51 coefficients, the WCE method has similar accuracy as the

MC simulation with 10,000 realizations. However, the WCE method only takes 43 seconds,

as opposed to the 1,466 seconds for the MC simulation. So the WCE method is much more

efficient than the MC simulation at this case.

In Figure 3.10, we plot the errors of the WCE method truncated at first, second, third,

fourth, and fifth order Wick polynomials, respectively. The relative error is plotted in log

scale using the semi-analytical solution as the benchmarks. The errors decays linearly in the

log scale. So the WCE truncation converges exponentially in terms of the Wick polynomial

orders, which is consistent with the error estimate given in Theorem 5.4.
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Figure 3.9: The mean (left) and variance (right) computed by the WCE method with 51 coefficients and
MC simulation with 10,000 realizations. Both methods agree quite well with the semi-analytical solution.
However, the CPU time for the WCE method is only 43 seconds, as opposed to 1,466 seconds for MC
simulations.

For comparison purpose, we also compute the RMS errors for MC simulations with 500,

1,000, 2,000, 4,000, 8,000 realizations, respectively. We repeat the simulations 20 times to

estimate the RMS errors for each realization number. Figure 3.11 is the log-log plot of the

RMS errors with respect to the different realization numbers. Based on the decaying rate of

the RMS error, the MC simulations indeed require 10,000 realizations to achieve the same

accuracy as the WCE method with a fifth order truncation.

CPU Time (s) Mean Error Variance Error

WCE 43 0.09 % 1.8 %

MC 1466 0.46 % 1.2 %

Table 3.2: Relative errors of the mean and variance by the WCE method with 51 coefficients and MC
simulation with 10,000 realizations. The WCE method has similar accuracy as the MC simulation, but is
more efficient in terms of CPU time. The WCE method is more accurate in computing the mean than in
computing the variance.

3.3 Numerical Verification of Stationary Measure of Stochas-

tic Burgers Equations

In the above numerical experiments, we only presented the numerical results by the WCE

method up to time T = 0.8. Next we solve the stochastic Burgers equation (3.1) by the

sparse WCE method in longer time intervals. A sparse WCE truncation is equivalent

to a coarse-grid discretization of the random solution in the probability space. We will
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Figure 3.10: Log plot of the relative error of the WCE method with first, second, third, fourth, and fifth
order Wick polynomials, respectively. The convergence is approximately exponential in terms of the Wick
polynomial orders, which is consistent with the error estimate Theorem 5.6.
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Figure 3.11: Log-log plot of the relative errors of the mean (left plot) and variance (right plot) computed
by MC simulation with 500, 1,000, 2,000, 4,000, 8,000 realizations, respectively. The MC method reaches
the similar accuracy as the WCE method with 51 coefficients when 8,000 realizations are computed.

show that the sparse WCE truncation can capture the large-scale structure of the random

solution in relatively long time intervals with a small number of coefficients. That is a very

important and unique feature of the WCE method. Using the sparse WCE method, we will

verify numerically the existence of a stationary measure for the additive stochastic Burgers

equation (3.1).

We assume that the random forcing in (3.1) has zero mean in space. So σ(x) satisfies

the condition ∫ 1

0
σ(x)dx = 0. (3.45)
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Integrating the equation (3.1) in the period [0, 1] and using the periodicity, we have

d

dt

∫ 1

0
u(x, t, ω)dx = µux

∣∣∣
1

0
− u2

2

∣∣∣
1

0
− Ẇ

∫ 1

0
σ(x)dx = 0.

So the integral
∫ 1
0 u(x, t, ω)dx is conserved in time even though it is a random process.

Denote the function space

Dc =
{
u ∈ C[0, 1], u(0) = u(1),

∫ 1

0
u(x)dx = c

}
.

If the initial condition u0(x) belongs to the space Dc, then all the later solutions will stay

in the same space Dc. In this section, we will focus on the space D0 only, that is, we only

consider initial conditions with zero mean in space. The numerical results for Dc with c 6= 0

are very similar.

The solution of the stochastic Burgers equation (3.1) is a Markov process in time. The

state of the solution at later time only depends on the current state and the equation itself.

It does not depend on the history of the solution. Denote the transition kernel of the Markov

chain generated by equation (3.1) as Kt(u, v), where u(x), v(x) ∈ D0 are two states of the

random solution. The transition kernel Kt(u, v) measures the probability that the solution

will be in state v(x) at time t when its initial state is u(x). For any measurable subset

A ⊂ D0, denote the transition probability

Kt(u,A) =

∫

A
Kt(u, v)dv.

A measure π(du) is called a stationary (invariant) measure of the stochastic Burgers equa-

tion (3.1) if the following condition is satisfied:

π(A) =

∫
Kt(u, A)π(du).

The stationary measure means that if the initial state (initial condition) of the equation

(3.1) satisfies the distribution π(u), then its solution at later time will always satisfy the

same distribution π(u). In other words, the distribution of the solution does not change in

time and is stationary with respect to the transitional kernel Kt(u, v).

It has been proven in [92, 93] that there exists a unique invariant measure for the
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stochastic Burgers equation (3.1) when the condition (3.45) is satisfied. In the equation

(3.1), the random forcing continuously supplies energy into the system, while the viscous

term is responsible for dissipating the energy in the system. The existence of the invariant

measure is a direct result of the balance between these two opposite effects. It is crucial

that the spatial part of the random forcing satisfies the zero mean condition (3.45). To

guarantee the existence of the invariant measure, we should not force the zero mode of the

random solution since it is not dissipated by the viscosity.

Even though an invariant measure exists for the equation (3.1), a numerical verification

of its existence is quite difficult. Suppose P (u, x, t) is the probability density function (PDF)

of the random solution u(x, t, ω). The PDF P (u, x, t) denotes the probability distribution

of the solution u at the point (x, t). If there exists an invariant measure for the equation

(3.1), then the PDF P (u, x, t) must have a steady state when t is large. However, it is

impossible to compute the PDF function P (u, x, t) directly, since there is no closed form

of Fokker-Planck equations for the PDF P (u, x, t), due to the nonlinearity of the problem

[23].

The WCE method provides an alternative for studying the invariant measure of the

stochastic Burgers equation (3.1) numerically. Denote the WCE of the random solution of

(3.1) as

u(x, t) =
∑

α

uα(x, t)Tα(ξ), t ≤ T.

The random bases Tα(ξ) are fixed in the time interval [0, T ] and do not change in time. Hence

the PDF of u(x, t) is uniquely determined by the WCE coefficients uα(x, t). Theoretically, if

all the WCE coefficients uα(x, t) are known, we should be able to derive the PDF of u(x, t)

precisely. In particular, if all the WCE coefficients uα(x, t) do not change in time, then

the PDF of the random solution u(x, t) has a steady state, which is direct evidence of the

existence of an invariant measure. So the existence of an invariant measure for equation

(3.1) is equivalent to the existence of a stationary solution for its WCE propagator (3.6).

Next we solve the stochastic Burgers equation (3.1) by the sparse WCE method and

see whether it can resolve the invariant measure of the solution. We set the spatial part of

the forcing as σ(x) = 0.5 cos(2πx). Obviously, σ(x) has zero mean in space. The viscosity
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constant is chosen as µ = 0.01. We first consider the initial condition

u0(x) = 0.5 cos(4π x),

which has zero mean in space. So all the later states of the random solution will stay in the

same space D0. If there exists an invariant measure for the system (3.1), then that measure

must be supported in the space D0.

We solve the stochastic Burgers equation by the WCE method to T = 6.0. We keep

12 Gaussian random variables and truncate the WCE at fifth order Wick polynomials. For

the sparse truncation, we set the optimal adaptive index as r = (5, 4, 3, 2, 1, . . . , 1) and

reduce the number of Gaussian random variables at higher order polynomials. Specifically,

we only include the first six ξk in the second and third order Wick polynomials, and the

first three ξk in the fourth and fifth order Wick polynomials. This is a very sparse WCE

truncation for T = 6.0. The resulting WCE truncation has only 91 coefficients, as opposed

to 6188 coefficients in the simple truncation. We plot the evolution history of the mean

and variance of the random solution in Figure 3.12. The mean and variance profiles are

plotted for every ∆t = 0.1. There are 61 curves in each plot. Due to the viscosity effects,

the mean curve decays monotonously initially. However, the dissipation is quickly slowed

down by the constant supply of energy from the random forcing. Soon these two opposite

mechanisms balance each other and the mean converges to a steady state (attractor). The

variance is initially zero and grows rapidly due to the random forcing. As the variance

increases and develops a steep overshoot, the viscose effect becomes dominant and smears

the rough structure of the variance. Eventually, the variance also converges to a steady

state.

To access the invariance of the mean and variance in time, we compute the L2 norm of

the differences between consecutive time steps. For example, the incremental change of the

mean in time is measured by

e(n) = ‖u0(·, tn+1) − u0(·, tn)‖2,

where tn = n∆t and ∆t = 0.1. The changes of the variance is measured similarly. We

plot the incremental changes of the mean and variance in time in Figure 3.13. Though

fluctuating quite a bit at the beginning, both the mean and variance change very little
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Figure 3.12: Time history of the mean and variance of the stochastic Burgers equation for t ≤ 6.0,
computed by the WCE method with 91 coefficients. The mean decreases monotonously and converges to a
steady state very quickly. The variance increases from zero gradually and also converges to a steady state.
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Figure 3.13: Incremental changes of the statistic moments at sequential time steps, measured by
‖u(x, tn+1) − u(x, tn)‖2. The time step size is ∆t = 0.1. The mean and variance fluctuate very little
when t > 2.0, indicating that all the WCE coefficients are stationary for t > 2.0.

after t > 2.0, which indicates that all the WCE coefficients are stationary after t = 2.0.

In fact, we indeed observed in the numerical results that all the WCE coefficients become

stationary when t > 2.0. As we pointed out before, the existence of a stationary WCE

solution is equivalent to the existence of a stationary measure. So the numerical result

by the WCE method is a direct evidence that the stochastic Burgers equation (3.1) has a

stationary measure. In addition, the sparse WCE method indeed successfully resolved the

stationary measure numerically.

Next we consider a different initial condition

u0(x) = 0.5 sin(2π x),
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Figure 3.14: Time history of the mean and variance of the stochastic Burgers equation with a different
initial condition. The mean and variance converge to the same steady states as in the first example, even
though the convergence pattern is quite different.

which is orthogonal to the initial condition used in the previous test. We solve the problem

to T = 6.0 again and truncate the WCE in the same way as above. We plot the time history

of the mean and variance in Figure 3.14. Not surprisingly, the mean and variance converge

to the same steady states, even though the convergence pattern is quite different. Figure

3.15 is the comparison of the statistics at T = 6.0 for the two different initial conditions.

They are indeed very similar to each other. We also tested many other deterministic and

random initial conditions in the space D0 and found that they all converge to the same

steady states. These results are consistent with the uniqueness of the invariant measure.

The numerical experiments also suggest that the invariant measure is a global attractor

in the state space D0. If this is true, then starting from an arbitrary initial state u0, the

transition kernel Kt(u0, ·) generated by the dynamics of (3.1) will always converge to the

unique invariant measure at large t. The global convergence of the invariant measure is

closely related to the egordicity of the stochastic dynamics system (3.1).

In the above numerical experiments, we used a very sparse truncation in the WCE

solution, with only 91 coefficients for T = 6.0. Based on the error estimate (3.10), such a

sparse truncation may seem not sufficient. Surprisingly, the sparse WCE method captures

the large-scale structures of the random solution quite well, and it indeed converges to the

right stationary state. The sparse WCE method may not very accurate in small scales

at the transitional stage. However, as the time t increases, the sparse WCE solution still

resolves the invariance measure of the random solution correctly.

It is worth pointing out that no invariant measure exists for the stochastic Burgers equa-
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Figure 3.15: The means and variances at T = 6.0 from different initial conditions. The random solutions
converge to the same steady state, which suggests that the unique invariant measure is a global attractor.

tions with multiplicative forcing (3.25). In the equation (3.25), the random perturbation is

along the velocity gradient and it only enhances the convection of the solution. It does not

supply energy into the system to balance the dissipation mechanism caused by the viscosity.

Hence the stochastic Burgers equation (3.25) is a purely decaying system and no invariant

measure can exist.

3.4 Random Forcing with Large Variability

Based on the error estimate (3.10), the accuracy of the WCE truncation also depends on

the magnitude of the random forcing. Next, we test how the magnitude of the random

forcing affects the performance of the WCE method. In the stochastic Burgers equation

(3.1), we set the spatial part of the random forcing as

σ(x) = A cos(2πx),

where A is a constant. The viscosity is chosen as µ = 0.02. We solve the problem to

T = 0.8 for A = 1.0, 2.0, 4.0, respectively. The numerical results are plotted in Figure

3.16. When the magnitude of the random forcing increases, we need to include more and

more WCE coefficients to achieve similar accuracy. When the random forcing is very large,

the dynamics of the system is dominated by the random effect. For A = 4.0, the variance of

the solution is already bigger than its mean. So the random solution will vary dramatically

from realization to realization. Theoretically, the increase of the magnitude of the forcing
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Figure 3.16: Mean (first row) and variance (second row) for different magnitudes of forcing. The first
column: A = 1.0; the second column: A = 2.0; the third column: A = 4.0. In all three cases, 10, 000
realizations are computed in MC simulation. When A increases from 1.0 to 4.0, we need more and more
WCE bases to achieve similar accuracy. However, the WCE method can approximate the right solution
reasonably well when enough coefficients are retained

does not lead to a blowup of the WCE method, as long as the solution still has finite

variance. Our numerical experiments indicate that the WCE method is quite stable and

does not blow up even when hundreds of the coefficients are included.

The sparse WCE method captures the mean and variance fairly well for A = 1.0 and

A = 2.0. However, for A = 4.0 the direct WCE method tends to deviate from the MC

simulation near the rough region of the solution. Increasing the order of the WCE truncation

will improve the WCE solution, but not very significantly. The reason is that the WCE

coefficients at increasingly higher order truncations are smaller and smaller, hence contribute

less and less to the WCE solution. Since there are so many of those small coefficients at

higher orders, it is impossible to capture their aggregated effects by keeping only a few

dozens more of them. In Chapter 6, we will study an alternative computational strategy for

the WCE method, where the coarse-scale WCE solution is refined by the MC simulations.

By combining the merits of the WCE method and the MC simulation, we can design a

more efficient computational strategy for solving SPDEs in long time intervals or with large

random forcing. We will revisit this problem in Section 6.3 using the new WCE-MC hybrid

method.
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Chapter 4

WCE Methods for Stochastic

Navier-Stokes Equations

In this section, we apply the WCE method to solve a 2-D stochastic Navier-Stokes (SNS)

equation. We consider a temperature distribution convected by a stochastic velocity field

~u, where ~u = (u, v) is governed by the Navier-Stokes equation driven by Brownian motions:






θt + ~u · ∇θ = µ∆θ,

~ut + ~u · ∇~u = ν∆~u−∇P + σ ~̇W (t),

∇ · ~u = 0,

(4.1)

where θ is the scaled temperature, and ~W (t) = (W1, W2)
T is a Brownian motion vector

with independent components. The matrix σ(x, y) = diag(σ1, σ2) accounts for the spatial

dependence of the random forcing. µ and ν are the temperature diffusivity and fluid viscos-

ity, respectively. The temperature θ is convected by the random flow passively, and serves as

a visualization media for the fluid particle path. This problem is not only a challenging test

for the WCE method, but also an interesting setup for studying the mixing effect induced

by the random forcing.

In our numerical experiment, we take the computational domain as [0, 1]2, and assume

that θ and ~u are doubly periodic in the domain. We consider the following initial condition

for the vorticity ω = vx − uy:

ω(x, y, 0) = C − 1

2δ
exp

(
−I(x)(y − 0.5)2

2δ2

)
, (4.2)
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where I(x) = 1+ǫ(cos(4πx)−1), and C is a constant to make the initial vorticity mean zero:
∫
[0,1]2 ω(x, y, 0)dxdy = 0. The initial vorticity is concentrated in a narrow layer centered

at y = 0.5. It describes a flat shear layer of characteristic width δ. However, the width is

perturbed sinusoidally with amplitude ǫ. If δ goes to zero, the initial vorticity approaches

to a perturbed flat vortex sheet.

The initial condition for the temperature is chosen to be

θ(x, y, 0) =






Hδ(y − 0.25) y ≤ 0.4,

1 − 2Hδ(y − 0.5) 0.4 < y < 0.6,

−Hδ(0.75 − y) y ≥ 0.6,

(4.3)

where Hδ(x) is the mollified Heaviside function

Hδ(x) =






0 if x < −δ,

x+ δ

2δ
+

sin(πx/δ)

2π
if |x| ≤ δ,

1 if x > δ.

(4.4)

The initial temperature is comprised of four smoothly connected layers. The interfaces

between the different layers have the same thickness δ as the initial vorticity. To visualize

the particle path of the fluid, one of the temperature interfaces is chosen to coincide with

the shear layer.

In this paper we choose δ = 0.025, which gives rise to a very sharp shear layer and

temperature interfaces. The perturbation to the initial vortex layer is set to ǫ = 0.3. The

initial vorticity and temperature are plotted in Figure 4.1. Due to the Kelvin-Helmholtz

instability, the vorticity will roll up and suck in the nearby fluid. As a result, the temperature

layers will be convected and mixed up by the rotation of the fluid. The roll-up of a thin

shear layer is a well-known challenging problem in computational fluid mechanics [62]. With

the extra complexity of the Brownian motion forcing, the stochastic problem (4.1) provides

a severe test for the WCE method.
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Initial ω Initial θ

Figure 4.1: Initial vorticity ω and temperature θ

4.1 The WCE method

In this section, we discuss how to solve the stochastic Navier-Stokes equation (4.1) by the

WCE method. In the two-dimensional case, the SNS equation (4.1) can be rewritten in

the stream function-vorticity formulation. Define the vorticity variable ω = vx − uy, and

introduce the stream function ψ such that ~u = (ψy,−ψx), we can rewrite the original system

(4.1) as 




θt + ~u · ∇θ = µ∆θ,

ωt + ~u · ∇ω = ν∆ω + (σ2)xẆ2 − (σ1)yẆ1,

−∆ψ = ω,

u = ψy, v = −ψx.

(4.5)

We assume that the stream function ψ is also doubly periodic in the domain [0, 1]2.

To solve the stochastic system (4.5) by the WCE method, we proceed exactly as we did

for the one-dimensional stochastic Burgers equation. We choose an arbitrary orthonormal

basis mi(t), i = 1, 2, . . . , in L2([0, T ]), where [0, T ] is the time interval in which we want to

solve the problem. Then we project each Brownian motion component {Wk(t), 0 ≤ t ≤ T}
onto the L2 bases:

ξki =

∫ T

0
mi(t)dWk(t), i = 1, 2, . . . , k = 1, 2. (4.6)
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Let α = (αki , i = 1, 2, . . . , k = 1, 2) be a multi-index with nonnegative integer components.

Denote the finite multi-index set as

J = {α, |α| =
∑

i,k

|αki | <∞}.

For α ∈ J , define the Wick polynomials by the tensor products

Tα(ξ) =

2∏

k=1

∞∏

i=1

Hαki
(ξki ). (4.7)

Suppose θ, ω, ~u and ψ admit the Wiener Chaos expansions:

θ(x, y, t) =
∑

α∈J
θα(x, y, t)Tα(ξ), ω(x, y, t) =

∑

α∈J
ωα(x, y, t)Tα(ξ),

~u(x, y, t) =
∑

α∈J
~uα(x, y, t)Tα(ξ), ψ(x, y, t) =

∑

α∈J
ψα(x, y, t)Tα(ξ).

Similar to 1D stochastic Burgers equation, we can derive the WCE propagator for the

system (4.5):






(θα)t + Lα(u, θ)x + Lα(v, θ)y = µ∆θα,

(ωα)t + Lα(u, ω)x + Lα(v, ω)y = ν∆ωα

+ (σ2)x

∞∑

j=1

I{α2
j=1,|α|=1}mj(t) − (σ1)y

∞∑

i=1

I{α1
i=1,|α|=1}mi(t),

−∆ψα = ωα,

uα = (ψα)y, vα = −(ψα)x.

(4.8)

In the above formula, the bilinear operator Lα(·, ·) is defined as

Lα(f, g) =
∑

p∈J

∑

0≤β≤α
C(α, β, p) fβ+p gα−β+p (4.9)

for f =
∑

α∈J fα Tα and g =
∑

β∈J gβTβ . The coefficient C(α, β, p) is defined by (2.39).
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And I{α1
i=1,|α|=1} is the indicator function

I{α1
i=1, |α|=1} =






1 α1
i = 1, |α| = 1,

0 otherwise.

I{α2
i=1,|α|=1} is defined similarly.

Since all the unknowns in (4.5) are doubly periodic in the domain, so are all their WCE

coefficients. We solve the WCE propagator (4.8) by pseudo-spectral method in space and

the fourth order Adams predictor-corrector scheme [42] in time.

In the following numerical experiment, we set diffusivity as µ = 0.0002, and the viscosity

as ν = 0.0002. In the stream function-vorticity formulation (4.5), the spatial parts of the

random forcing are taken as

(σ1)y = 0.1π cos(2πx) cos(2πy), (σ2)x = 0.1π sin(2πx) sin(2πy).

We solve the problem to T = 1.0 by the WCE method. We choose to project each Brownian

motion component onto the first four Haar wavelet bases, and truncate the WCE approxi-

mation at fourth order Wick polynomials. The resulting system should have 495 coefficients.

However, using the sparse WCE truncation, the total number of coefficients can be reduced

to 56. We discretize the computational domain by a 256 × 256 square mesh, and choose

∆t = 0.00125. Then we solve the truncated WCE propagator on the domain [0, 1]2 by the

Fourier pseudo-spectral method described above. The CPU time is 8.1 hours. We plot the

mean and variance of θ and ω in Figure 4.2. Due to the Kelvin-Helmholtz instability, the

mean vorticity rolls up and forms a pair of concentrated vortex eyes. The temperature lay-

ers are convected and diffused by the random velocity. The sharp edges of the interface are

smeared, due to both the diffusivity and the random forcing. The variances of the vorticity

and temperature all concentrate along the sharp layers of the interface and are almost zero

at the constant regions. In this sense, the random forcing acts as an extra diffusion for the

mean equation, even though a closed form of the mean equation is not available.

Another observation is that the third order moment of both the vorticity and temper-

ature are not zero. Actually, they have the same magnitude and similar structure as the

respective variances. This shows that the solution of the stochastic Navier-Stokes equation
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is far from being a Gaussian process.

To reach similar accuracy as the WCE method, MC simulation needs thousands of

realizations, which will take more than two days to compute. For this 2-D stochastic

Navier-Stokes equation, it is clear that the WCE method is more efficient than the MC

simulation for short time integrations. Since it is not easy to obtain a benchmark solutions

by MC simulation or any other method, we will demonstrate the convergence of the WCE

method for a special case in the next section.

4.2 Convergence Verification of the WCE Method

To test the convergence of WCE method, we consider a special case of the SNS equation

(4.1), where a semi-analytical solution is available. Similar to the 1-D stochastic Burgers

equation, we have the following result:

Theorem 4.1 In system (4.1), if the spatial part σ(x, y) of the random forcing is a constant

matrix, then the stochastic solutions of (4.1) can be expressed as

θ(~x, t) = θ′(~x−
∫ t

0
σ ~W (s) ds, t), (4.10)

~u(~x, t) = ~u′(~x−
∫ t

0
σ ~W (s) ds, t) + σ ~W (t), (4.11)

P (~x, t) = P ′(~x−
∫ t

0
σ ~W (s) ds, t),

where θ′, ~u′, P ′ are solutions of the corresponding unforced deterministic equations






θ′t + ~u′ · ∇θ′ = µ∆θ′,

~u′t + ~u′ · ∇~u′ = ν∆~u′ −∇P ′,

∇ · ~u′ = 0.

(4.12)

Theorem 4.1 can be verified easily by direct differentiations. For the random vorticity

ω, we can further obtain

ω(~x, t) = ω′
(
~x−

∫ t

0
σ ~W (s) ds, t

)
, (4.13)
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ω third moment θ third moment

Figure 4.2: Mean, variance, and third order moments of vorticity ω and temperature θ at T = 1.0,
computed by WCE method with 51 coefficients.
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where ω′ = v′x − u′y is the deterministic vorticity of the unforced problem (4.12).

The semi-analytical forms (4.10) and (4.13) state that the stochastic solutions are the

deterministic solutions of the corresponding unforced problem compounded with a random

perturbation along the flow characteristics. That observation can help us better understand

the effects of the random forcing. Formula (4.10) and (4.13) also provide a convenient way

to compute the statistical moments of θ and ω numerically. Indeed, for any fixed x, t and

integer n = 1, 2, . . ., it is easy to show that

E [θ(~x, t)]n =

∫

R2

[
θ′(~x− ~z, t)

]n
ρ(~z, t)d~z, (4.14)

E [ω(~x, t)]n =

∫

R2

[
ω′(~x− ~z, t)

]n
ρ(~z, t)d~z, (4.15)

where

ρ(~z, t) =
3

2πσ1σ2t3
exp

(
− 3z2

1

2σ2
1t

3
− 3z2

2

2σ2
2t

3

)
.

To obtain the benchmark statistics of θ and ω, we can first solve the deterministic equation

(4.12) by the pseudo-spectral method, then compute the statistical moments from (4.14)

and (4.15) by numerical integrations.

For ~z = (z1, z2) ∈ [0, 1]2, define

ρd(z1, z2, t) =

+∞∑

n=−∞

+∞∑

m=−∞
ρ(z1 + n, z2 +m, t). (4.16)

Since both θ′ and ω′ are doubly periodic in [0, 1]2, formula (4.14) and (4.15) can be rewritten

as

E [θ(~x, t)]n =

∫

[0, 1]2

[
θ′(~x− ~z, t)

]n
ρd(~z, t) d~z. (4.17)

E [ω(~x, t)]n =

∫

[0, 1]2

[
ω′(~x− ~z, t)

]n
ρd(~z, t) d~z. (4.18)

Because of the symmetry of the Gaussian kernel ρ, ρd is doubly periodic in the unit square

[0, 1]2. So the integrals (4.17) and (4.18) are convolutions of two doubly periodic functions,

which can be easily computed by FFT. Note that ρd is defined by an infinite summation, we

need to truncate it at finite terms. Since ρ is a Gaussian kernel and decays exponentially,

the truncation can be made very accurate. Under this framework, all the computations are
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deterministic. No random number generation is needed. By carefully choosing the deter-

ministic algorithms, we can compute the benchmark statistics of θ and ω very accurately.

When the random forcing is spatially independent, we cannot solve the equation (4.1)

by its stream function-vorticity formulation anymore. Since the spatial parts of the random

forcing are not mean zero in the physical space, they will induce net flows in the domain.

So the velocity ~u would not remain mean zero in space at a later time. That is obvious

from formula (4.11): there is a random net flow σ ~W (t) in the domain at any instance. As

a result, the random stream function ψ =
∫
udy − vdx is no longer doubly periodic in the

computational domain. Generally, we don’t know how to prescribe its boundary condition

consistently. Instead, we need to work on the primitive formula (4.1) and deal with the

incompressibility constraint directly.

In the next numerical experiment, we set the temperature diffusivity as µ = 0.0005,

and the fluid viscosity as ν = 0.0005. The constants in the random forcing are chosen as

σ1 = 0.02, σ2 = 0.02. Since the random forcing is spatially independent, its effect will not

be damped out in time by viscosity. To avoid excessive smearing induced by the random

forcing, we deliberately choose σ1, σ2 not much larger than the physical viscosity ν.

We first solve the problem to T = 1.0 by the semi-analytical method and obtain the

benchmark statistics. To test the performance of the WCE method and the MC simulation,

we apply both of them to the same problem and compare their numerical solutions with that

of the semi-analytical approach. For the WCE method, we project each Brownian motion

component onto the first four Haar wavelet bases, and truncate the WCE propagator at

fourth order Wick polynomials. Altogether 56 coefficients are retained in the computation.

The maximum mean square error for such a truncation is approximately O(10−2), based

on the error analysis similar to that in Theorem 5.1. We also solve the problem to T = 1.0

by MC simulation with 1,000 realizations. For a fair comparison, the same spatial mesh

256×256 and time step ∆t = 0.00125 are used for all three different methods. The numerical

CPU Hours E(ω) E(θ) V ar(ω) V ar(θ)

WCE 9.3 0.028% 0.044% 1.2% 1.7%

MC 44.7 0.23% 0.36% 8.2% 8.8%

Table 4.1: Relative L2 error on the domain [0, 1]2 of the WCE method with 56 coefficients and the MC
simulation with 1,000 realizations
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solutions are compared in Table 4.1. The WCE method with 56 coefficients is more accurate

than the MC simulation with 1,000 realizations for all the statistical moments computed.

In addition, the WCE method is also several times faster than the MC simulation. To reach

the same accuracy as the WCE method, the MC simulation may need much more than 1,000

realizations, which will take even more CPU time. However, the WCE method requires

more computer memory than the MC simulation since a coupled PDE system for the WCE

coefficients has to be solved simultaneously. For the 1-D and 2-D problems considered in

this paper, the memory usage is not a big issue and all the computation can be done on

a standard PC. For 3-D stochastic Navier-Stokes equations, we expect that the memory

usage will become a bigger concern to the WCE method when many WCE coefficients have

to be retained.
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Chapter 5

Error Analysis of the WCE

Method

Due to the nonlinear coupling in the WCE propagator, it is very difficult to conduct an

error analysis of the truncated WCE method in the general setting. In this section, we only

establish an error bound for the WCE approximation when the random forcing is indepen-

dent of the spatial variables. In this case the solutions of the stochastic Navier-Stokes and

Burgers equations could be obtained from the respective deterministic counterparts by a

stochastic Galilean transformation. Though a special case, the error bound in this particu-

lar setting sheds light on the general performance of the WCE method. For simplicity, we

will prove the result in the context of the stochastic Burgers equation. For the stochastic

Navier-Stokes equation, the proof and results are very similar.

5.1 Convergence Analysis for SPDEs with Additive Forcing

Consider the stochastic Burgers equation






ut +
1
2 (u2)x = µuxx + σ(x)Ẇ (t),

u(x, 0) = u0(x), u(0, t) = u(1, t)
(t, x) ∈ (0, T ] × [0, 1], (5.1)

where σ is a constant. According to Theorem 3.1, the solution of (5.1) can be expressed as

u(x, t) = v

(
x− σ

∫ t

0
W (s)ds, t

)
+ σW (t), (5.2)
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where v(x, t) is the solution of the unforced deterministic Burgers equation






vt + 1
2(v2)x = µvxx,

v(x, 0) = u0(x), v(0, t) = v(1, t).

(5.3)

Suppose the basis functions mk(s) in the space L2([0, t]) are chosen as the cosine func-

tions (2.29). Denote the truncated index set as

JK,N = {(α1, . . . , αK); |α| ≤ N}. (5.4)

That is, we keep K number of Gaussian random variables and maximum Nth order Wick

polynomials in the truncated WCE. The main result of this chapter is as follows:

Theorem 5.1 (Simple Truncation) Denote the truncated WCE of the solution of (5.1)

as

uK,N (x, t) =
∑

α∈JK,N
uα(x, t)Tα, where uα(x, t) = E[u(x, t)Tα]. (5.5)

Then, the error estimate holds:

max
x

√
E
∣∣u(x, t) − uK,N(x, t)

∣∣2 ≤ BN+1

(
σt3/2

)N+1

√
(N + 1)!

+B1σ

(
t

K

)3/2

, (5.6)

where Bn = supx
∣∣ ∂n
∂xn v(x, t)

∣∣ and v is the solution of the deterministic equation (5.3).

Proof Denote

Z(t) =

∫ t

0
W (s)ds.

Due to the expansion (2.30), the Brownian motion process {W (s); 0 ≤ s ≤ t} admits the

following expansion:

W (s) =
s√
t
ξ1 +

∞∑

k=2

ξk

√
2t

(k − 1)π
sin
((k − 1)πs

t

)
. (5.7)

Consequently, we have

Z(t) =

√
t3

2
ξ1 +

∞∑

k=2

ak

√
t3

(k − 1)2
ξk, (5.8)
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where ak =
√

2
π2

[
1 + (−1)k

]
. Denote Z = ZK + ZR, where

ZK =

√
t3

2
ξ1 +

K∑

k=2

ak

√
t3

(k − 1)2
ξk,

ZR =
∞∑

k=K+1

ak

√
t3

(k − 1)2
ξk, (5.9)

Obviously ZK and ZR are orthogonal in that E(ZKZR) = 0.

Note that W (t) =
√
t ξ1 and the solution (5.2) can be rewritten as

u(x, t) = v(x− σZK − σZR, t) + σ
√
t ξ1. (5.10)

Expanding v(x−σZK −σZR, t) in Taylor’s series, firstly with respect to ZR and then with

respect to ZK , we arrive at

u(x, t) = v(x− σZK , t) + I1 + σ
√
t ξ1

= v(x, t) +
N∑

n=1

(−σZK)n

n!

∂nv

∂xn
(x, t) + I2 + I1 + σ

√
t ξ1,

where

I1(x, t) = −∂v
∂x

(x− σZK − θ1, t)σZR,

I2(x, t) =
(−σZK)N+1

(N + 1)!

∂N+1v

∂xN+1
(x− θ2, t)

are the Lagrange residuals of the Taylor expansions.

Denote

ũK,N(x, t) = v(x, t) + σ
√
t ξ1 +

N∑

n=1

(−σZK)n

n!

∂nv

∂xn
(x, t). (5.11)

Obviously, ũK,N (x, t) is a polynomial of ξ1, . . . , ξK with maximum order N . Since the WCE

truncation uK,N(x, t) is a Hermite polynomial expansion, which is an orthogonal (optimal)
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projection with respect to the Gaussian measure, it follows that

√
E|u(x, t) − uK,N(x, t)|2 ≤

√
E|u(x, t) − ũK,N(x, t)|2

≤B1σ
√
E|Z2

R| +BN+1
σN+1

(N + 1)!

√
E|Z2N+2

K |, (5.12)

where Bn = supx
∣∣ ∂n
∂xn v(x, t)

∣∣. From formula (5.9) we have

E|Z2
R| ≤

8t3

π4

∞∑

k=K+1

1

(k − 1)4
<

8t3

π4

( 1

K4
+

∫ ∞

K

dx

x4

)
<

t3

K3
. (5.13)

Note that ZK is a linear combination of centered Gaussian random variables, so it is a

centered Gaussian itself. Due to properties of Gaussian random variables, we have

E|Z2N+2
K | = (E|Z2

K |)N+1(2N + 1)!! < (E|Z2|)N+1(2N + 1)!!, (5.14)

where (2N+1)!! = (2N+1)(2N−1) . . . 1. It is easy to show that E|Z2| = t3/3. Substituting

(5.13) and (5.14) into (5.12), we obtain

√
E|u(x, t) − uK,N(x, t)|2 ≤ BN+1

√
(2N + 1)!!

(N + 1)!
σN+1

(
t3

3

)N+1
2

+B1σ

(
t

K

)3/2

≤ BN+1

(
σt3/2

)N+1

√
(N + 1)!

+B1σ

(
t

K

)3/2

.

Since the right-hand side does not depend on x, taking the maximum in x recovers the

estimate (5.6). This completes the proof. �

Remark The first term in the error estimate (5.6) reflects the error of truncating the

polynomial order in the Fourier-Hermite expansion of the solution. Making use of the

Stirling formula, one can easily check that the asymptotic of this term is given by

(
σt3/2

)N+1

√
(N + 1)!

= O
( σ2t3e

N + 1

)N+1
2
.

This confirms our numerical observation that the WCE approximation converges exponen-

tially in terms of the Wick polynomial order N .

The second term in (5.6) stems from the truncation error of the Fourier expansion (5.7).
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As we have shown in Theorem 2.1, the Fourier expansion of W (s) converges at the rate

E

[
W (s) −

K∑

k=1

ξk

∫ s

0
mk(τ)dτds

]2

< C
t

K
.

The slow convergence of the second term is a reflection of the irregularity of the Brownian

motion forcing.

Both the numerical experiments and Theorem 5.1 indicate that the convergence rate of

the WCE method critically depends on the time span [0, t] and the magnitude of the random

forcing σ. Clearly, the smaller the time interval [0, t], the faster the convergence. Note that

Brownian motion has independent increments. When long time simulations are of interest,

one can divide a large time interval into small ones and apply the WCE method repeatedly

on those small intervals. If the time subinterval is of size ∆t, then by Theorem 5.1 the error

of approximation for each step is O
(
∆t
) 3

2 . Hence, the global rate of convergence should be

O
(√

∆t
)
.

A smaller forcing would increase the rate of convergence of the WCE method. In a

broad class of SPDEs arising in physics and engineering, the large structures and dominant

dynamic effects are captured by the deterministic physical laws, while the unresolved small

scales, microscopic effects, and other uncertainties are often modeled as stochastic perturba-

tions with small amplitudes. We expect that the WCE method will be especially effective in

applications to this class of problems. In Section 6.4, we will use the WCE method to study

the front propagation in a reaction-diffusion equations with the Kolmogorov-Petrovsky-

Piskunov (KPP) nonlinearity, where the random forcing is naturally formulated as a small

perturbation. The numerical results show that the WCE method is quite effective for this

problem.

The proof of Theorem 5.1 is based on the explicit semi-analytical solutions (5.2), which

is only true in the case of spatially independent random forcing. In general, the solution

of an SPDE is a complicated functional of the Brownian motion path u = u(x, t; W t
0). It

does not have an explicit formula as simple as (5.2). However, as we explained in Section

2.3, we can always interpret the stochastic solution u(x, t; W t
0) as a general function of the

Gaussian random variables:

u(x, t; W t
0) = U(x, t; ξ1, ξ2, . . . , ), (5.15)
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Figure 5.1: The deterministic solution v and the error of the mean computed by WCE methods. The
error of WCE solution is indeed much larger near the sharp layers (smoothed shocks) of the deterministic
solution v.

where U is an unknown ghost function. Then we can still prove Theorem 5.1 formally

based on the unknown function U . In that sense, the error analysis presented in Theorem

5.1 is quite general and has captured the essence of the convergence behavior of the WCE

method. In numerical computations, we can still use the special error estimate (5.6) as a

guide in choosing the truncation parameters K and N . Numerical results in Chapter 3 and

Chapter 4 have shown that truncation decisions based on the error estimate (5.6) work well

even in general cases.

Based on Theorem 5.1, the convergence constant of the WCE method depends on the

smoothness of the deterministic solution v. Consequently, the error of the WCE method

would be larger at the sharp gradient regions of v. Figure 5.1 shows the deterministic

solution v and the error of the mean computed by the WCE method. The error of the

WCE solution is indeed much larger near the sharp layers of v. This indicates that at large

gradient regions more WCE coefficients are needed to achieve the same accuracy.

In the numerical experiments, we have observed that the simple truncation (5.4) is

not optimal, and we should use an adaptive truncation strategy to reduce the dimension

of the WCE propagator. The following theorem is the rigorous justification for such a

consideration.

Theorem 5.2 For the solution of the stochastic Burgers equation (5.1), its WCE coeffi-
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cients decay asymptotically as

uα = O

[
1√
α!

∞∏

k=2

(
1

k − 1

)2αk
]
. (5.16)

Proof Denote the semi-analytical solution (5.2) as

u = V (ξ1, ξ2, . . . , ). (5.17)

Here we have suppressed the variable (x, t) in the expression. From expansion (5.8), the

function V (ξ) has the form

V (ξ) = v

(
x− σt3/2

2
ξ1 −

∞∑

k=2

ak
σt3/2

(k − 1)2
ξk, t

)
+ σ

√
tξ1.

Based on Lemma 2.4 we have

uα = E[uTα(ξ)] =
(−1)|α|√

α!
E [DαV (ξ)]

=
C√
α!
E

[
d|α|

dx|α|
v(x− σZ, t)

] ∞∏

k=2

(
1

(k − 1)2

)αk

= O

[
1√
α!

∞∏

k=2

(
1

k − 1

)2αk
]
.

�

Theorem 5.2 reveals the asymptotic decaying rate of the WCE coefficients uα in terms of

the polynomial order index α. As we emphasized before, the Wiener chaos expansion decays

both in the order of the Wick polynomials and the number of retained Gaussian variables.

In the asymptotical formula (5.16), the factor 1√
α!

reflects the decaying rate induced by

the polynomial expansion, and the factor
∏∞
k=2

(
1

k−1

)2αk
reflects the decaying rate by the

Gaussian expansion of the Brownian motion. For WCE coefficients uα with the same order

|α|, the ones depending on ξk with larger subscript k are smaller in magnitude. For example,

in the truncation (5.4) the WCE coefficient with α = (N, 0, . . . , 0) has a magnitude of

O
(

1√
N !

)
, while the coefficient with α = (0, . . . , 0, N) has a magnitude of O

(
1√

N !(K−1)2N

)
.

So the coefficient u(0,...,0,N) is much smaller than the coefficients u(N,0,...,0). Instead of using
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the same maximum order of Hermite polynomials for every ξk, it makes more sense to use

lower order Hermite polynomial for ξk with larger subscript k. For this purpose, we define

an adaptive index

r = (r1, r2, . . . , rK), with rK ≤ . . . ≤ r2 ≤ r1 = N. (5.18)

In addition to the simple truncation (5.4), we keep only those Wick polynomials Tα(ξ) such

that αi ≤ ri. More precisely, we truncated the WCE expansion by the new index set.

J r
K,N = {(α1, . . . , αK); |α| ≤ N, αi ≤ ri}. (5.19)

To determine the optimal adaptive index r = (r1, r2, . . . , rK), consider the single-mode

index

ek = (0, . . . , 0, rk, 0, . . . , 0).

We choose rk so that the all the coefficients uek , k = 1, 2, . . . ,K have similar magnitudes.

From Theorem 5.2, the coefficient uek has the magnitude

uek ≃
1√
rk!

(
1

k − 1

)2rk

.

Note that r1 = N and we always have ue1 ≃ 1/
√
N !. So the rk is determined by the balance

condition uek ≃ ue1 . Consequently, we have

r1 = N,
1√
rk!

(
1

k − 1

)2rk

≃ 1√
N !

. (5.20)

By balancing the magnitudes of the smallest coefficients, we can effectively exclude unim-

portant coefficients and hence reduce the dimension of the WCE truncations. To estimate

the optimal rk, we just need to solve the equation (5.20) numerically. Since the WCE decays

faster in terms of N than in K, in practice we always choose K > N so that the two terms

in the error bound (5.6) will balance each other. In real computations, the total order N

of the Wick polynomials rarely goes beyond 10. Under this practical assumption, a nearly

optimal adaptive index can be set as

r = (N, N, N − 1, . . . , 2, 1, . . . , 1). (5.21)



93

Numerical results in Chapter 3 and Chapter 4 has shown that the simple adaptive index

(5.21) is usually suffice in most numerical computations.

In the above adaptive truncations, we excluded all the WCE coefficients with magnitudes

less than O(1/
√
N !), which has the same order as the first term in the error estimate (5.6).

The extra error introduced by such an adaptive truncation will be no more than O(1/
√
N !).

So the adaptive truncation will not change the asymptotics of the first term in the error

estimate (5.6). Note that the adaptive truncation deals with how to choose the optimal

maximum polynomial order for each Gaussian random variable ξk, it does not change the

total number of retained Gaussian random variables. Since the second term in the error

estimate (5.6) does note depend on the polynomial order, it would not be affected by the

adaptive truncation. So the adaptive truncation will not change the asymptotical behavior

of the error bound (5.6) for the simple truncation. Based on the above arguments, we have

the following conclusion:

Theorem 5.3 (Sparse Truncation) Denote the sparse WCE solution of (5.1) as

urK,N(x, t) =
∑

α∈J r
K,N

uα(x, t)Tα(ξ), (5.22)

where J r
K,N is defined by (5.19), and r = (r1, r2, . . . , rK) is determined by the balance

condition (5.20). Then the sparse WCE truncation urK,N has the same asymptotic accuracy

as the simple truncation uK,N defined by (5.5).

Using the sparse truncation, we can reduce the dimension of the WCE propagator

dramatically while keep the same asymptotic convergence rate. For the simple truncation

K = 8 and N = 5, the total number of WCE coefficients would be 1,287. So the resulting

WCE propagator will have 1,287 equations, which is almost impossible to solve numerically.

However, using the sparse truncation, the total number of WCE coefficients can be reduced

to 51. That is a very substantial dimension reduction and the resulting WCE propagator

can be solved easily. The numerical results in Chapter 3 and Chapter 4 have shown that

computations based on sparse truncations indeed can achieve the same accuracy as the

simple truncations.
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5.2 Convergence Analysis for SPDEs with Multiplicative Forc-

ing

In this section, we will discuss the convergence properties of WCE methods for solving

multiplicative SPDEs. As in the previous section, we will focus on stochastic Burgers

equations only. Since the analysis and results are very similar, we only provide the final

results without proof. The motivation of the analysis is to help understand the performance

of the WCE method and provide guidance for numerical computations.

Consider the multiplicative stochastic Burgers equation






ut +
(
u+ σẆ

)
◦ ux = µuxx,

u(x, 0) = u0(x), u(0, t) = u(1, t),

(5.23)

where σ is a constant. From Theorem 3.2, the solution of (5.23) is given by

u(x, t) = v
(
x− σW (t), t

)
, (5.24)

where v(x, t) is the solution of the unforced deterministic Burgers equation






vt + 1
2(v2)x = µvxx,

v(x, 0) = u0(x), v(0, t) = v(1, t).

(5.25)

Similar to the additive stochastic Burgers equation, we have the following result:

Theorem 5.4 (Simple Truncation) Denote the truncated WCE solution of (5.23) as

uK,N (x, t) =
∑

α∈JK,N
uα(x, t)Tα, uα(x, t) = E[u(x, t)Tα], (5.26)

where the index set JK,N is defined by (5.4). Then, the error estimate holds

max
x

√
E
∣∣u(x, t) − uK,N (x, t)

∣∣2 ≤ BN+1

(
σt1/2

)N+1

√
(N + 1)!

+B1σ

(
t

K

)1/2

, (5.27)

where Bn = supx
∣∣ ∂n
∂xn v(x, t)

∣∣ and v is the solution of the deterministic equation (5.25).

The proof of Theorem (5.4) is very similar to that of Theorem (5.1). Comparing the
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error estimate 5.27 with 5.6, we notice that the WCE decays slower for multiplicative SPDE

than for additive SPDE in terms of the number of retained Gaussian random variables. This

explains why multiplicative SPDEs are more difficult to solve than additive SPDEs. In this

particular case, the semi-analytical solutions (5.2) for the additive SPDE involves an integral

of the Brownian motion, while the semi-analytical solution (5.24) for the multiplicative

SPDE only involves the Brownian motion itself. As functionals of the Brownian motion,

solution (5.2) has better regularity than solution (5.24) and hence decays faster in terms of

the Gaussian expansion of the Brownian motion.

Based on the semi-analytical formula (5.24) for the random solution, we can prove a

similar asymptotic formula for its WCE coefficients.

Theorem 5.5 For the solution of the stochastic Burgers equation (5.23), its WCE coeffi-

cients decay asymptotically as

uα = O

[
1√
α!

∞∏

k=2

(
1

k − 1

)αk]
. (5.28)

In the asymptotical formula (5.28), the factor 1√
α!

reflects the decaying rate induced by

the polynomial expansion, while the factor
∏∞
k=2

(
1

k−1

)αk
reflects the decaying rate induced

by the Gaussian expansion of the Brownian motion. Comparing formula (5.28) with formula

(5.16), it becomes very clear that the WCE coefficients decay slower for the multiplicative

SPDE than for the additive SPDE.

As in the case for solving additive SPDEs, we should truncate the polynomial orders

for the Wiener chaos expansion adaptively. Instead of using the simple truncation (5.26),

we should design a sparse truncation based on the asymptotic decaying rate (5.28) of the

WCE coefficients. As before, we set an optimal adaptive index r = (r1, r2, . . . , rK), where

rk is determined by the balance condition between the WCE coefficients:

r1 = N,
1√
rk!

(
1

k − 1

)rk
≃ 1√

N !
. (5.29)

Using the optimal adaptive index r, we can construct a sparse truncation index set J r
K,N

as in (5.19). Based on the same reasons as in additive SPDEs, such constructed sparse

truncation will not affect the asymptotic convergence rate of the simple truncation. So we

have the following conclusion:
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Theorem 5.6 (Sparse Truncation) Denote the sparse WCE solution of (5.1) as

urK,N(x, t) =
∑

α∈J r
K,N

uα(x, t)Tα(ξ), (5.30)

where the adaptive index r = (r1, r2, . . . , rK) is determined by the balance condition (5.29).

Then the sparse WCE truncation urK,N has the same asymptotic accuracy as the simple

truncation uK,N defined by (5.26).
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Chapter 6

Long Time Integrations of the

WCE Method

The WCE method converges very quickly for short time intervals and small random forc-

ing. However, for long time computations, we need more Gaussian random variables to

represent the Brownian motion forcing, and higher order polynomials to captures the non-

linear dynamics of the equation. As a result, the number of WCE coefficients will increase

very quickly as the integration time increases. For a WCE truncation with K Gaussian

random variables and maximum Nth order polynomials, the total number of Wiener chaos

coefficients would be

I(K,N) =

(
K +N

K

)
=

(K +N)!

K!N !
.

The number increase very fast as K and N increase. Using the sparse truncation techniques,

we can reduce the number of WCE coefficients dramatically without losing much accuracy.

Still, it is expected that the direct and naive WCE method will be less efficient for long

time integrations.

Similarly, if the magnitude of the random forcing σ(x, t) is large, then the WCE may

converge much slower. More terms need to be included in the WCE propagator to achieve

similar accuracy. The difficulty with large random forcing is equivalent to that with long

time integration, since we can always rescale the time variable t to transform one case into

the other. Empirically, the L2 norm of the random forcing

E

[∫ T

0
σ(x, t)dW (t)

]2

=

∫ T

0
σ2(x, t)dt

measures the strength of the random input. Larger T or σ means stronger random input.



98

Consequently, more WCE bases are required to resolve the randomness in the stochastic

solution. To avoid the explosion of dimensions in long time integrations, we need to design

a new computational strategy for the WCE method.

In this chapter, we apply the WCE method to a stochastic transport equation, and

use it to illustrate the convergence behavior of the WCE method for long time integration.

Motivated by the numerical find-outs, we introduce a new computational strategy for long

time integration using WCE method. The basic observation is that a sparse WCE solution

can capture the coarse-scale variability of the random solution in the probability space, even

though it may not be very accurate in small scales. We can first solve the SPDE by a sparse

WCE truncation and obtain a coarse-scale WCE solution in the probability space. Then

we correct the WCE solution by a small number of MC simulations. To do that, we use the

coarse-scale WCE solution as a control variate and subtract it from each MC realization.

The coarse-scale WCE solution can reduce the variance of the MC simulation substantially

and accelerate the MC convergence by tens to hundreds of times. The combined WCE-

MC method is shown to be more efficient than the WCE method or the MC simulation

alone in long time integrations. Then we apply the WCE-MC hybrid method to simulate

a stochastic reaction-diffusion equation with the Kolmogorov-Petrovsky-Piskunov (KPP)

type nonlinearity. The numerical results confirm the quadratic enhancing law of the front

propagation speed, as conjectured by Jack Xin in a recent work [76].

6.1 Long Time Integrations of Stochastic Transport Equa-

tions

In this section we apply the WCE method to solve a stochastic transport equation on the

unit square Ω = [0, 1]2

θt + (V ◦ ∇) θ = µ∆θ + f, (6.1)

where θ is a temperature distribution (or the density of other physical quantities), V is a

given stochastic velocity field, and f is a deterministic forcing. As before, the stochastic

integral (V ◦ ∇) θ is defined in Stratonovich’s sense. The linear transport equation (6.1) is

widely studied as a prototype model in understanding the anomalous diffusion in turbulence

[54, 55, 28, 29]. In the current study, we only use the linear transport equation (6.1) as a
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test model for the WCE method, and motivate how to improve the WCE method in long

time integrations.

We assume that θ is periodic on the unit square Ω, and consider the following random

velocity field

V = (uẆ , vẆ ),

where W (t) is a Brownian motion. Hence the transport equation (6.1) can be reformulated

as

θt + [uθx + vθy] ◦ Ẇ = µ∆θ + f. (6.2)

Denote the spatial part of the velocity field as b =



 u

v



. We assume that b is a “cellular

flow” generated by the stream function

ψ(x, y) = A sin

(
2πx

δ

)
sin

(
2πy

δ

)
,

where δ is the characteristic length scale of the flow, and A is a normalization factor. Since

b = ∇⊥ψ =



 −ψy
ψx



 ,

we have

u = −2πA

δ
sin

(
2πx

δ

)
cos

(
2πy

δ

)
,

v =
2πA

δ
cos

(
2πx

δ

)
sin

(
2πy

δ

)
.

The level sets of the stream function (streamlines) with δ = 0.25 are plotted in Figure 6.1.

The velocity vector is tangent to the streamlines. Obviously, the random velocity field V

is incompressible at any time instance:

∇ · V = (∇ · b) Ẇ =
(
∇ · ∇⊥ψ

)
Ẇ = 0.

Since the random velocity V is white-in-time, it flips its directions (the sign) very quickly

in time. Such a random velocity field can be regarded as an extreme case of temporally

periodic flows with infinitesimal periods.
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Figure 6.1: The stream function of the “cellular flow” with δ = 0.25.

The stochastic differential equation (6.2) can be rewritten in Ito’s sense

θt + [(b · ∇θ)] · Ẇ = ∇ · (µI + D)∇θ + f, (6.3)

where

D =
1

2
b · bT =

1

2



 u2 uv

vu v2



 . (6.4)

The tensor D is the convection-enhanced diffusivity tensor, which is only semi-positive

definite. Suppose the random solution of (6.3) has the Wiener chaos expansion:

θ(x, y, t) =
∑

α∈J
θα(x, y, t)Tα(ξ), 0 6 t 6 T.

Similar to the stochastic Burgers equation with multiplicative forcing (see Section 3.2.1),
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we can derive the WCE propagator for equation (6.3):

(θα)t +
∑

i

mi(t)
√
αi

[
b · ∇θα−

(i)

]
= ∇ · (µI + D)∇θα + fI{α=0}, (6.5)

where the index α−
(i) is defined by (3.30). In the WCE propagator (6.5), the higher order

WCE coefficients depend on the lower order ones, but not vice versa. In particular, the first

WCE coefficient θ0, which is the mean, does not depend on the other WCE coefficients:

(θ0)t = ∇ · (µI + D)∇θ0 + f. (6.6)

So the first equation in the WCE propagator is a closed moment equation for the mean.

That is a unique property for the linear transport equation. However, there is no closed

moment equation for other order moments.

For highly oscillatory cellular flows (characterized by the small parameter δ), the velocity

field b is very strong, and so is the convection-induced diffusivity. When the diffusivity

tensor D is large in magnitude, the diffusion term ∇ · D∇θα poses serious difficulty for

solving the WCE propagator (6.5) numerically. If we discretize the time derivative by

explicit schemes such as

θn+1
α − θnα

k
= ∇ · (µI + D)∇θnα + fI{α=0} −

∑

i

mi(t)
√
αi

[
b · ∇θn

α−
(i)

]
,

and the spatial derivative by central differences, then the CFL condition imposed by the

diffusion term would be

k = O(h2), (6.7)

where k is the time step and h is the spatial grid size. This constraint on the time step

size is very severe for small spatial grid h. To avoid over-small time step sizes, implicit

discretizations in time would be necessary. A nature choice is to use explicit schemes for

the convection term while implicit schemes for the diffusion term, such as the following one

[2]:
θn+1
α − θnα

k
= ∇ · (µI + D)∇θn+1

α + fI{α=0} −
∑

i

mi(t)
√
αi

[
b · ∇θn

α−
(i)

]
.

The above time evolution scheme requires solving a potentially ill-conditioned linear system
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at every time step

[1 − k∇ · (µI + D)∇] θn+1
α = θnα + kfI{α=0} − k

∑

i

mi(t)
√
αi

[
b · ∇θn

α−
(i)

]
.

The popular iterative solvers such as GMRES or multi-grid method are not very efficient if

µ is relatively small comparing to the magnitude of D.

To avoid the above difficulty, we can add and subtract an artificial diffusion term λ∆θα

in the numerical scheme, where λ is a constant. Then we use the implicit scheme for

one term and the explicit scheme for the other. More specifically, we discretize the WCE

propagator using the following splitting scheme:

θn+1
α − θnα

k
= ∇ · (µI+D−λI)∇θnα+λ∆θn+1

α + fI{α=0}−
∑

i

mi(t)
√
αi

[
b · ∇θn

α−
(i)

]
. (6.8)

The constant λ is chosen to make µI+D−λI a negative definite tensor so that it poses no

stability constraint on the time step size. Hence we can choose any λ satisfying

µ+
1

2
(u2 + v2) 6 λ. (6.9)

In the splitting scheme (6.8), we still need to solve a linear system at every time step:

(1 − kλ∆)θn+1
α = θnα + k

[
∇ · (µI + D − λI)∇θnα + fI{α=0}

]
− k

∑

i

mi(t)
√
αi

[
(b · ∇θn

α−
(i)

]
.

Since λ is a constant and the problem is periodic, we can use FFT to invert the Laplace

operator very easily.

The implicit diffusion term λ∆θn+1
α in (6.8) will help to stabilize the scheme and the

CFL condition of the new method is imposed by the convection term only. It can be shown

by standard Fourier analysis that the scheme (6.8) is stable if

k = O(h). (6.10)

The CFL condition (6.10) is much less restrictive than (6.7). For a moderate spatial size

h = O(10−2), the splitting scheme (6.8) can increase the time step size by two orders and

hence reduce the CPU time dramatically.
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6.1.1 Full Sparse WCE Solutions

In the numerical experiment, we set µ = 0.001, δ = 0.25 andA = 0.1δ/2π. The deterministic

forcing is chosen as

f(x, y) = 0.5 cos(8πx) cos(8πy).

We solve the equation (6.3) to T = 10.0 and use the cosine basis functions (2.29) to expand

the Brownian motion forcing. To truncate the WCE propagator (6.5) in [0, 10.0], we keep

ten Gaussian random variables and maximum sixth order Wick polynomials. In the sparse

WCE truncation, we set the adaptive index for the Wick polynomial orders as

r = (6, 5, 4, 3, 2, 1, 1, 1, 1, 1). (6.11)

Moreover, we include only the first six Gaussian random variables in the second and third

Wick polynomials, and the first three Gaussian variables in the fourth, fifth, and sixth

order Wick polynomials. To implement the sparse truncation, we reduce the length of the

adaptive index r as the order of the polynomial increases.

Sparse truncation

1. Set K = 10, N = 6,

2. Set the adaptive index as r = (6, 5, 4, 3, 2, 1, 1, 1, 1, 1),

(i) For 2 6 |α| 6 3, change the adaptive index to r = (6, 5, 4, 3, 2, 1),

(ii) For 4 6 |α| 6 6, change the adaptive index to r = (6, 5, 4).

Using the above sparse truncation, we can bring down the total number of WCE coeffi-

cients to 118, as opposed to 8,008 in the simple truncation. The truncated WCE propagator

can be solved numerically, and it takes approximately the same CPU time as computing

118 MC realizations. Figure 6.2 is the L2 norm of the computed WCE coefficients, ordered

in the same way as in Figure 3.3. The legends 1st, 2nd, etc., in the plot indicate the starts

of the different order WCE coefficients. The WCE coefficients decay fast as the polynomial

order |α| increases. Within the same polynomial order, the WCE coefficients also decay

when the Wick basis Tα(ξ) shifts it dependence to ξi with bigger subscript i. The L2 norm

of the WCE coefficients is a convenient way to access the convergence of the Wiener chaos
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Figure 6.2: L2 norm of the WCE coefficients for the full sparse truncation (118 coefficients). The legends
1st, 2nd, etc., indicate the start of the first, second, etc., polynomial orders of the WCE coefficients. The
coefficients decay both in terms of the order of the Wick polynomials and the Gaussian random variables.

expansions.

For comparison purpose, we also solve the equation (6.3) by MC simulations with 50, 000

realizations. The mean and variance computed by the MC simulation are presented in Figure

6.3. We plot the difference between the WCE solutions and the MC solutions in Figure 6.4.

Since the “cellular” flow is periodic from cell to cell, we only compare the results in one cell.

The mean computed by the WCE method agrees with the MC simulation very well, with

a relative error less than 2%. That is because in the WCE method the mean is computed

from the closed moment equation (6.6). The difference is actually caused by the error in

the MC simulations. However, the relative error for the variance is quite significant, closing

to 10% in some local region. And the error is only improved slightly if we keep increasing

the number of coefficients in the WCE truncation. The reason is that each individual WCE

coefficient captures less and less information of the random solution at the higher order.

However, the number of WCE coefficients increases very quickly as the order of truncation

increases. For fixed K number of Gaussian random variables, there are

(
K + n− 1

n

)
=

(K + n− 1)!

(K − 1)!n!

number of Wick polynomials with order n. For K = 10, there would be 11,440 number of
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Wick polynomials with the order N = 7. Though each individual coefficient is very small

at this range and can be ignored, their aggregated effect is not completely negligible. Since

there are so many of those small coefficients at high orders, it is almost impossible to resolve

their aggregated effect by keeping only a few dozens more of them. That is why the sparse

WCE method has nearly 10% error in the variance and including more coefficients can only

improve the accuracy slightly.

For short time solutions, the above difficulties are much less severe. As we have demon-

strated, in short time integrations we only need to keep a small number of Gaussian random

variables, and relatively low order Wick polynomials. As the time interval increases, more

Gaussian random variables and higher order polynomials are needed, which will increase

the number of WCE bases very quickly. To make matters worse, the energy of the solution

spreads equally among those high order coefficients and their aggregated effects are very

difficult to resolve. That is the main difficulty in applying the WCE method for long time

integrations.

6.1.2 Aggressive Sparse WCE Solutions

Since the WCE coefficients at higher order are much less important, we can keep even less

WCE coefficients than in the full sparse truncation. At the risk of being less accurate,

the resulting coarse-scale WCE solution will still capture most information of the random

solution. In the next numerical experiment, we keep only 6 Gaussian random variables and

maximum fifth order Wick polynomials in the WCE truncation. We trim the finite WCE

further by the adaptive index

r = (5, 4, 3, 2, 1, 1),

and reduce the number of Gaussian random variables at higher order Wick polynomials.

More specifically, we adopt the following aggressive sparse WCE truncation:
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Figure 6.3: Mean (above) and variance (bottom) of θ at T = 10.0, computed by MC simulation with 50, 000
realizations. The maximum variance concentrates on the edges of each cell, where the random velocity will
convect the particles from cell to cell and enhance the mixing.
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Figure 6.4: Error of the mean (left) and variance (right) of the WCE solution with full sparse truncations
(118 coefficients) at T = 10.0. The mean has a relative error less than 2%, while the variance has a relative
error closing to 10%. Increasing the number of WCE coefficients can only improve the accuracy of the
variance slightly.

Aggressive sparse truncation

1. Set K = 6, N = 5,

2. Set the adaptive index as r = (5, 4, 3, 2, 1, 1),

(i) For 2 6 |α| 6 3, change the adaptive index to r = (5, 4, 3, 2),

(ii) For 4 6 |α| 6 6, change the adaptive index to r = (5, 4).

With only 37 coefficients, the aggressive sparse truncation is expected to be less accurate

than the full sparse truncation. We solve the resulting WCE propagator by the same implicit

splitting method (6.8). Figure 6.5 is the L2 norm of the WCE coefficients for the aggressive

sparse truncation. Comparing Figure 6.5 with Figure 6.2, we found that the aggressive

sparse truncation shares all the important coefficients with the full sparse truncation. In

Figure 6.6 we plot the errors of the mean and variance of the aggressive sparse WCE

solution. The error of the mean is the same as in Figure 6.4 since it is solved from the same

closed mean equation (6.6). For the variance, the error of the aggressive sparse solution

is not much worse than that of the full sparse solution either. That is quite surprising,

considering the variance is the square summation of all the WCE coefficients, and much

less coefficients are used in the aggressive sparse truncation. In fact, this is a very typical

convergence behavior of the WCE solution: The low order WCE coefficients capture most
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Figure 6.5: L2 norm of the WCE coefficients with aggressive sparse truncation (37 coefficients). The
legends 1st, 2nd, etc., indicate the start of the first, second, etc., polynomial orders of the WCE coefficients.
The coarse-scale WCE truncation shares all the dominant coefficients with the full WCE truncation.

information of the random solution; the coefficients at increasingly higher order contribute

less and less to the WCE solution; the incremental gain by adding more coefficients decreases

rapidly as the order of the coefficient increases. That is why the full sparse WCE solution

is only slightly better than the aggressive sparse truncation, even though the number of

coefficients is tripled. This convergence property poses serious difficulties in computations

if we want to resolve all the small scales of the random solution by the WCE method.

However, this property of the WCE method can also work to our advantage if we exploit it

wisely. Motivated by this observation, we have designed the sparse WCE truncation, which

is proven to have the same asymptotical convergence as the simple truncation. Next we will

use this same fact to design a long time integration strategy for the WCE method.

6.2 Refining the WCE Solution by MC Simulations

The WCE method is less efficient for long time integration since the required number of

coefficients increases dramatically. With an aggressive sparse truncation, the WCE method

still captures a large part of the random information of the solution. Adding more co-

efficients to the WCE truncation will improve the accuracy, but the gain for each added

coefficient will decrease quickly as the order of the coefficients increases. To resolve the
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Figure 6.6: Error of the variance by the WCE method with the aggressive sparse truncation (37 coefficients)
at T = 10.0. With only one-third of the number of coefficients of the full truncation, the error of the aggressive
truncation is just slightly worse.

random solution by its WCE to the desired accuracy may require an overwhelmingly large

number of coefficients. However, each high order coefficient contributes very little to the

WCE solution, even though their aggregated effect is not negligible.

Instead of resolving all the small scales of the random solution by adding more and more

WCE coefficients, we can first solve the problem by the WCE method with an aggressive

truncation. The sparse WCE solution may not very accurate locally, but it will capture

the large structure of the random solution. If we subtract the WCE solution from the

true solution, the error will be localized and more or less homogeneous. Then we use MC

simulations to correct the error in the WCE solution. Using the coarse WCE solution as a

control variate, the variance of the MC estimator is reduced substantially and the correction

process can be made very efficient.

6.2.1 Reducing the Variance of MC Simulations Using WCE Solutions

In most applications, the purpose of MC simulation is to estimate the statistical moments of

the random solution. Suppose θ(x, t, ω) is the random solution of a SPDE, where ω denotes

the random dependence (Brownian motion realizations). Denote the statistical moments of

θ as E[g(θ)], where g(x) = xn, n = 1, 2, . . .. To simplify the notation, we have suppressed

the spatial and temporal variables in the function θ. However, the expectation E[g(θ)] is

always understood as a function of spatial and time variables.

Suppose θ(ωk), k = 1, 2, . . . N are independent realizations of the random solution
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computed by MC simulations. Then the expectation E[g(θ)] can be approximated by the

MC ensemble average

IN [g(θ)] =
1

N

N∑

k=1

g(θ(ωk)). (6.12)

Denote the error of the MC estimator (6.12) as

ǫg(N) = E[g(θ)] − IN [g(θ)].

The error ǫg(N) itself is a random variable. By the Central Limit Theorem [30], the root

mean square error (RMSE) of the MC estimator (6.12) decays as

√
E
[
ǫ2g(N)

]
≃ σ[g(θ)]√

N
, (6.13)

where σ2[g(θ)] is the variance of g(θ):

σ2[g(θ)] =

∫
[g(θ) − Eg(θ)]2 dω.

So the ensemble average (6.12) converges to E[g(θ)] at the rate of N−1/2 with a proportional

constant that is the variance of g(θ). To reduce the RMSE of (6.12) by a factor of 2, we

need to increase the realization number by a factor of 4. This slow convergence rate is an

inevitable result of the Central Limit Theorem.

To accelerate the convergence of the MC ensemble average (6.12), we can instead reduce

the proportional constant σ[g(θ)], that is, the variance of the MC estimator. Suppose there

exists a function p(θ), which is a good approximation of g(θ), and whose expectation E[p(θ)]

is known. We can split E[g(θ)] into two parts

E[g(θ)] = E[p(θ)] + E[g(θ) − p(θ)],

and use MC simulation to estimate E[g(θ) − p(θ)] only. As a result we have

E[g(θ)] ≃ E[p(θ)] +
1

N

N∑

k=1

[
g(θ(ωk)) − p(θ(ωk))

]
. (6.14)
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The error of the estimation (6.14) is

ǫg−p(N) = E[g(θ) − p(θ)] − 1

N

N∑

k=1

[g(θ(ωk)) − p(θ(ωk))] .

Based on the Central Limit Theorem, the RMSE of the estimation (6.14) is

√
E
[
ǫ2g−p(N)

]
≃ σg−p√

N
, (6.15)

where σ2
g−p is the variance of the function g(θ) − p(θ):

σ2
g−p =

∫ {
[g(θ) − Eg(θ)] − [p(θ) − Ep(θ)]

}2
dω.

If p(θ) − Ep(θ) is a good approximation of g(θ) − Eg(θ) in the mean square sense, then

σg−p ≪ σg,

and the RMSE (6.15) would be much smaller than the RMSE (6.13). In other words,

the ensemble average (6.14) would converge much faster than (6.12). Suppose the error

tolerance for the MC estimation is ε, then the number of required realizations is

N ≃ σ2

ε2
.

If we can reduce σ by a factor of 2, then the required number of MC realizations can

be reduced by a factor of 4. In particular, suppose σg−p is one-tenth of σg, then (6.14)

will converge 100 times faster than (6.12). So the variance reduction is quite effective in

accelerating the convergence of the MC estimations if we can find a good approximation

function p(θ). Such a function p(θ) is usually called the control variate of the MC simulation.

To make the above variance reduction work, the control variate p(θ) should “mimic” the

random variability of the estimator g(θ). More precisely, p(θ) − E[p(θ)] should be a good

approximation of g(θ)− g[p(θ)] in the mean square sense. Note that the mean of p(θ) does

not have to approximate that of g(θ) very well. The crucial point is that p(θ) fluctuates

around its mean in a similar way as g(θ) does. Ideally, the realization p(θ(ωk)) has to be

easily computable for any give Brownian motion path ωk. Furthermore, the mean E[p(θ)]
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should have a closed form. In practice, it is very difficult to find a control variate p(θ) with

all these rare properties, especially when θ = θ(x, t, ω) is an unknown random process we

are looking for.

The WCE solution provides a very effective control variate for variance reduction in MC

simulations. Suppose

θWCE(ω) =
∑

θαTα(ξ(ω)) (6.16)

is a truncated WCE solution with a small number of coefficients. As our previous numerical

results demonstrate, the coarse-scale WCE solution can capture a major part of the random

variability of the solution. By subtracting the WCE solution θWCE from the true solution,

we can estimate E(θ) by the MC ensemble average

E(θ) ≃ E(θWCE) +
1

N

N∑

k=1

[θ(ωk) − θWCE(ωk)] . (6.17)

In the above formula, we estimate the mean E[θ] by splitting it into two parts. The first term

E[θWCE] = θ0 is the mean computed by the WCE method, and the second term represents

the MC correction to the WCE solution. For each given Brownian motion realization ωk,

θ(ωk) is computed by MC simulations. To evaluate the WCE realization θWCE(ωk), we first

compute the Gaussian random variables ξi numerically from the Ito integrals

ξi(ωk) =

∫ T

0
mi(t)dWt(ωk) ≃

∑

n

mi(tn)∆Wn(ωk), i = 1, 2, . . . ,

where ∆Wn = W (tn+1) −W (tn) is the independent increment of the Brownian motion.

Plugging ξi(ωk) into the WCE formula (6.16), we can easily get the WCE realization

θWCE(ωk). Note that

σ2[θ − θWCE] 6 E[(θ − θWCE)2],

and θWCE is a fairly good approximation to θ in the mean square norm, σ2[θ − θWCE] is

expected to be much smaller than σ2[θ]. So the ensemble average (6.17) will converge much

faster than the direct ensemble average

E(θ) ≃ 1

N

N∑

k=1

θ(ωk). (6.18)
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In practice, only a few hundreds of MC realizations are needed to obtain a very accurate

correction to the WCE solution.

To compute the second order moment E[θ2], we can use the same WCE-MC hybrid

method

E(θ2) ≃ E(θ2
WCE) +

1

N

N∑

k=1

[
θ2(ωk) − θ2

WCE(ωk)
]
. (6.19)

The first term E(θ2
WCE) =

∑
θ2
α is the second order moment estimated by the WCE method,

and the second term is the MC correction. Since θWCE is a good approximation to θ, so is

θ2
WCE to θ2. It is expected that σ2[θ2 − θ2

WCE] ≪ σ2(θ2), and the ensemble average (6.19)

will converge much faster than the direct ensemble average

E(θ2) ≃ 1

N

N∑

k=1

θ2(ωk). (6.20)

In the above computational framework, the MC simulation is understood as a correc-

tion step to the WCE solution. Alternatively, we can also interpret the WCE solution as

a precomputation step to obtain a control variate for MC simulations. This approach is a

generalization of the original idea by Chorin [12], where he proposed using Hermite expan-

sions as control variates for MC numerical integrations. To obtain a Hermite expansion of

the integrand, MC simulations were employed again to compute the coefficients. Maltz and

Hitzl [66] careful analyzed the variance of Chorin’s estimator and generalized it to compute

high dimensional integrals. Chorin’s student Chang [11] applied the same idea in simulat-

ing a SODE with constant diffusion, where Chorin’s estimator was used at consecutive time

steps based on a recursive relation. Chang’s approach was particularly designed for constant

diffusion problems and cannot be generalized to other SODEs. In our current approach,

a Wiener chaos solution is used as a control variate to estimate the statistical moments,

which can be regarded as a generalized Chorin estimator. However, a key difference here

is that the statistical moments of a random solution are integrals with respect to an un-

known measure. Without introducing the Wiener chaos expansion, we cannot transform

the measure of the random solution into a multi-dimensional Gaussian measure. Another

unique feature of our approach is that the control variate is solved from a deterministic

PDE system (WCE propagator), instead of computed by MC computations. When many

expansion coefficients need to be computed at the same time, the PDE-based approach will
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be much more efficient and accurate than the MC simulations.

6.2.2 The Strongly Convergent Numerical Schemes for MC Simulations

A very important issue in the above variance reduction procedure is that we have to com-

pute the MC realizations θ(ωk) using a strongly convergent numerical scheme. Note that

the WCE solution θWCE is a strong solution to the SPDE (6.3). That is, θWCE(ω) will

approximate the true solution θ(ω) for each Brownian motion realization ω. Similarly, the

MC solution should also approximate the true solution realization by realization. Approxi-

mating the solution by distribution is not enough for the variance reduction purpose. As a

result, we have to use strongly convergent numerical schemes in the MC simulation. Par-

ticularly, the MC solution should be in the same probability space as the Brownian motion.

And we need to compute the MC realization θ(ωk) and the WCE realization θWCE(ωk) us-

ing the same Brownian motion path ωk. Please see Appendix B for the difference between

strongly convergent and weakly convergent schemes for discretizing SDE.

To discretize the SPDE (6.3), we choose the strongly first order Milstein scheme (B.3),

which can be reduced to the following form for equation (6.3):

θn+1 = θn+k [∇ · (µI + D)∇θn + f ]− (b ·∇θn)∆Wn+∇· (D∇θn)
[
(∆Wn)

2 − k
]
. (6.21)

We can further cancel the term k∇ · (D∇θn) in the above scheme to get

θn+1 = θn + k (µ∆θn + f) − (b · ∇θn)∆Wn + ∇ · (D∇θn)
[
(∆Wn)

2
]
.

If we discretize the spatial derivatives by central difference scheme, then the CFL condition

posed by the diffusion term is k = O(h2) and by the convection term is

∆Wn 6 O(h).

Since ∆Wn = W (nk + k) −W (nk) has the order of
√
k, the CFL condition posed by the

convection term is effectively

k 6 O(h2).

So in the numerical scheme (6.21), the convection term poses similar CFL condition as the
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diffusion term.

6.2.3 Numerical Results of the WCE-MC Hybrid Method

Next we test the efficiency of the WCE-MC hybrid method on the linear transport equation

(6.3). We first solve the problem to T = 10.0 by the aggressive sparse WCE method as

in Section 6.1.2. This coarse-scale WCE solution captures a major part of the random

variability of the solution. Though the mean is quite accurate, the variance has a maximum

error of 10%. To refine the numerical results by the WCE method, we compute 100 MC

realizations and correct the variance by the ensemble averages (6.19). The CPU time for

this WCE-MC hybrid method is approximately the same as the MC simulation with 200

realizations. Figure 6.7 is the error of the variance after the MC correction. Comparing

with Figure 6.6, the accuracy of the variance is improved significantly. The maximum error

of the variance is reduced from 0.2 to 0.03, and the relative error is less than 2%. So the

MC correction step is indeed very efficient since only 100 realizations are computed.

We also plot the error of the mean by the WCE-MC method in Figure 6.7, even thought

the mean of the WCE solution is quite accurate and needs no MC corrections. Alternatively,

we can regard the WCE solution solely as a control variate for the MC simulation. As we

emphasized before, how well the mean of the control variate approximates that of the

estimator is irrelevant for the variance reduction purpose. The only thing that matters

is the control variate fluctuates around its own mean in a similar way as the estimation

target, i.e., the control variate captures the random variability of the estimator. Figure

6.7 demonstrates that the WCE solution is indeed a very effective control variate for the

MC simulation. With only 100 MC simulations, both the mean and variance reach a

relative error within 2% when the WCE solution is used as a control variate. To reach

the same accuracy, the direct MC simulation need to compute at least 10,000 realizations.

So the WCE-MC hybrid method is more than 50 times faster than the MC method in

this case. To achieve the same accuracy by the direct WCE method, an overwhelming

number of coefficients may be needed, and the resulting WCE propagator quickly becomes

unmanageable numerically. So the WCE-MC hybrid method has significant advantages over

the MC method or the direct WCE method in long time integrations.

The substantial acceleration in the WCE-MC convergence is due to the reduced propor-

tional constant in the convergence rate O
(
N−1/2

)
. While estimating the mean E(θ) by the
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Figure 6.7: Errors of the mean and variance computed by the WCE-MC hybrid method with 37 WCE
coefficients and 100 MC realizations. The WCE-MC hybrid converge more than 50 times faster than the
MC simulation.
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Figure 6.8: The convergence constants for estimating E(θ) by different ensemble averages: The left plot
is the convergence constant σ2[θ] for the direct MC ensemble average; the right plot is the convergence
constant σ2[θ − θWCE] for the WCE-MC ensemble average. Since σ2[θ − θWCE] is less than one-twentieth of
σ2[θ], the WCE-MC ensemble average converges much faster than the direct MC ensemble average.

direct MC method (6.18) and the WCE-MC hybrid method (6.17), the constants in front

of the convergence rates are σ[θ] and σ[θ − θWCE], respectively. We plot the constant σ2[θ]

and σ2[θ−θWCE] for these two different ensemble averages in Figure 6.8. As we can see, the

constant σ2[θ − θWCE] is less than one-twentieth of σ2[θ]. That is why the MC estimator

(6.17) which uses the WCE solution as the control variate converges much faster than the

direct MC ensemble average (6.18).

Similarly, while estimating the second order moment E(θ2) by the direct MC method

(6.20) and the WCE-MC hybrid method (6.19), the constants in front of the convergence
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Figure 6.9: The convergence constants for estimating E(θ2) by different ensemble averages: The left plot
is the convergence constant σ2[θ2] for the direct MC ensemble average; the right plot is the convergence
constant σ2[θ2 − θ2

WCE] for the WCE-MC ensemble average. Since σ2[θ2 − θ2
WCE] is less than one-tenth of

σ2[θ2], the WCE-MC ensemble average converges much faster than the direct MC ensemble average.

rates are σ[θ2] and σ[θ2 − θ2
WCE], respectively. In Figure 6.9, we plot the constant σ2[θ]

and σ2[θ − θWCE] for these two different ensemble averages. The constant σ2[θ2 − θ2
WCE] is

less then one tenth of σ2[θ2]. That is why the WCE-MC ensemble average (6.19) converges

much faster than the direct MC ensemble average (6.20).

In summary, the WCE-MC hybrid method can solve SPDEs in much longer time inter-

vals than the direct WCE method can. By using the WCE solution as a control variate,

the WCE-MC hybrid method converges more than 50 times faster than the direct MC sim-

ulations. To achieve the same accuracy, the direct WCE method needs an overwhelming

number of coefficients. The resulting WCE propagator will have too many equations to be

numerically solvable. To obtain an approximate control variate by the WCE method, only

a very sparse WCE truncation will suffice. So the explosion of dimensions can be partly

avoided in long time computations. Comparing with the WCE method or the MC method

alone, the WCE-MC hybrid method combines the merits of both methods and has greater

flexibility.

However, the WCE-MC hybrid method is still sensitive to the length of the time inter-

vals. For arbitrarily long time integrations, the error in the sparse WCE solution may be

very large, and hence the performance of the WCE-MC will not be much better than that

of MC simulations. Designing more efficient WCE-type numerical methods that are not

sensitive to the integration time is still a challenging and open question. Nevertheless, the

WCE-MC hybrid method can extend the application of WCE method to much longer time
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Figure 6.10: Mean (first row) and variance (second row) for random forcing with different magnitudes.
The first column: A = 1.0; the second column: A = 2.0; the third column: A = 4.0. We correct the WCE
results with 200 MC simulations in all three cases. The WCE-MC hybrid method can achieve the same
accuracy as the MC simulations with only a fraction of the computational costs.

intervals, which already enables us to study some interesting SPDEs numerically.

6.3 Stochastic Burgers Equations with Large variability

In Section 3.4, we studied how the variability of the random forcing affects the convergence of

the WCE method. We found that when the magnitude of the random forcing increases, the

WCE method needs to include more and more coefficients to achieve similar accuracy. For

random forcing with very large magnitude, the error of the WCE method is quite significant

in the rough region of the solution. Nevertheless, the WCE solutions still capture the large

structures of the random solution. In this section, we will test the WCE-MC hybrid method

on the same stochastic Burgers equation (3.1) with large random forcing. Our numerical

results demonstrate that the WCE-MC hybrid method can improve the accuracy of the

WCE method for nonlinear problems with large random forcing as well.

We consider the same setup as in Section 3.4, where the spatial part of the random

forcing is

σ(x) = A cos(2πx),

with A = 1.0, 2.0, 4.0, respectively. To apply the WCE-MC hybrid method, we first solve
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the problem by the WCE method with an aggressive sparse truncation. Though the sparse

WCE solutions are not very accurate in the rough regions, they successfully capture the

large structure of the random solution. To correct the unresolved small scales in the WCE

results, we compute 200 MC realizations and compute their ensemble averages using the

WCE solutions as the control variate. For comparison, we also solve the problems by MC

simulations with 10,000, 20,000 and 50,000 realizations, respectively. For stronger random

forcing, the random solution has much larger variance, hence we have to average more MC

realizations to estimate its statistic moments. We compare the numerical results of WCE-

MC with those of MC simulation in Figure 6.10. Since the coarse-scale WCE solutions

already capture most of the variability of the random solution, the MC simulation with the

WCE solution as the control variate provides very effective correction to the WCE solution.

As we can see, the numerical results by the WCE-MC method agree very well with those

by the MC simulations. However the WCE-MC hybrid method is 50 to 100 times more

efficient than the MC simulations.

6.4 Front Propagation Speeds of Stochastic Reaction-Diffusion

Equations

Front propagation in heterogeneous fluid flows appears in many scientific disciplines, such

as combustion of premixed flames, reactive pollutant transports in porous media, etc. (see

the review [98] and the reference therein). It is known that the large-scale front speed can be

enhanced due to the presence of multi-scales in the fluid flows. A fundamental issue is how

to characterize and compute the large time front speed, an upscaled quantity that depends

on the statistics of the random flows in a highly nontrivial manner. Analysis of prototype

models has been an efficient way to improve our understanding of front propagation with

complex structures.

In this section, we consider the front propagation through a random shear flow in a

two-dimensional channel D = R × Ω, where R = (−∞,+∞) and Ω is an interval. The

model equation is a reaction-diffusion (R-D) equation

ut = µ∆u+ δ V · ∇u+ f(u), (6.22)
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Figure 6.11: Illustrations of the front propagation for R-D equations

where V = (ξ(y, t), 0) is a given shear flow, and f(u) = u(1 − u) is the Kolmogorov-

Petrovsky-Piskunov (KPP) nonlinear reaction term. The small parameter δ measures the

strength of the shear flow. We assume that

u(−∞, y, t) = 1, u(+∞, y, t) = 0,

and zero Neumann boundary condition ∂u/∂y=0 at ∂Ω. For the combustion problem,

u = 1 stands for the hot burned region, and u = 0 represents the cold reactant region.

The burning front is moving along the x-direction from the left to the right, and we are

interested in how the front propagation speed depends on the shear strength δ in long time.

The setup of this problem is illustrated in Figure 6.11

If the shear field V is deterministic and periodic in both space and time, the speed c∗(δ)

of the front obeys the quadratic enhancement law [74]:

c∗(δ) = c0(1 + α δ2 + h.o.t), δ ≪ 1, (6.23)

where α is a positive constant depending only on ξ, c0 is the pure R-D front speed with

δ = 0, and h.o.t is short for higher order terms.

However, the situation becomes more complicated if the flow field V is random, in which

case the front speed c∗(δ, ω) is a random variable. Suppose ξ = ξ(y) is a stationary random

process in space (does not depends on time) with zero ensemble mean, then the quadratic

law (6.23) is still valid for the ensemble averaged speed E[c∗(δ, ω)] [75]. If ξ = ξ(y, t) is a
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white-in-time, stationary, and ergodic Gaussian process, it was proved [99] that the front

speed c∗(δ, ω) is almost surely a constant c∗(δ) provided that the channel is the whole two-

dimensional space. And the quadratic law (6.23) is shown to be true for the speed limit c∗(δ).

For a bounded channel with a finite cross section, Xin et al. [76] derived an exact formula

as well as upper bounds for the front speed c∗(δ, ω). Based on a variational analysis, their

results reveal that the random front speed c∗(δ, ω) converges to a deterministic constant

c∗(δ) almost surely when t is sufficiently large. However, no precise asymptotical relation as

(6.23) has been found for the steady front speed c∗(δ). Their numerical simulations with an

Ornstein-Uhlenbeck process suggest that the front speed still obeys a quadratic law. Due

to the computational intensity [76], no numerical result is available yet for the interesting

case where the shear flow is white-in-time and homogeneous in space.

For the white ergodic Gaussian shear flow, the almost surely convergence of the random

front speed c∗(δ, ω) is due to the ergodicity and self-averaging of the fluid flow in the y-

direction or in the time direction. With the ergodicity assumption, we can replace the

spatial or time average by the ensemble average. Instead of computing a single realization

for infinitely long time (T = 30, 000 was used in [76]), we can compute the mean front

speed for many realizations in a relatively short time. The ensemble average generally yields

more accurate and stable numerical results than a single realization. For this purpose, we

apply the WCE-MC hybrid method to solve the R-D equation with a white-in-time and

homogeneous shear flow. Our numerical results confirm that the front speed indeed obeys

the quadratic enhancement law (6.23).

6.4.1 Problem Setup

We consider a random shear flow ξ(y, t) which is mean zero, white-in-time and homogeneous

in space, with the covariance function given by

E[ξ(y1, t1)ξ(y2, t2)] = Γ(|y1 − y2|) δ(t1 − t2). (6.24)

Obviously, the spatial covariance function Γ(|y1 − y2|) is symmetric and semi-positive def-

inite. We assume the cross section of the channel is Ω = [0, 1]. Consider the eigenvalue

problem: ∫ 1

0
Γ(|y1 − y2|)ψk(y2)dy2 = λkψk(y1). (6.25)
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Suppose the eigenvalues are sorted in descending order by magnitude: λ1 > λ2 > . . . > 0.

For convenience, we assume that the eigenfunctions ψk(y) are normalized so that ‖ψk‖L2 =

1. It can be shown that {ψk; k = 1, 2, . . .} form an orthonormal basis in L2[Ω]. Furthermore,

the spatial covariance function has the decomposition

Γ(|y1 − y2|) =
∞∑

k=1

λk ψk(y1)ψk(y2), (6.26)

and the Gaussian process ξ(y, t) can be decomposed as

ξ(y, t) =

∞∑

k=1

√
λkψk(y) Ẇk(t), (6.27)

where Wk(t) are independent Brownian motions. The expansion (6.27) is a special case

of the Karhunen-Loeve expansion. Please see Section 7.1 for a detailed discussion about

Karhunen-Loeve expansion. It is easy to verify that the random process given by formula

(6.27) is indeed a stationary Gaussian process and has (6.24) as its covariance function.

Since ξ(y, t) is white-in-time, the random convection term in the R-D equation (6.22) should

be proposed in Stratonovich’s sense. Consequently, the R-D equation (6.22) can be rewritten

as

ut = µ∆u+ δ

∞∑

k=1

√
λkψk(y) Ẇk(t) ◦ ux + f(u), (x, y) ∈ R× [0, 1]. (6.28)

From the relations between Stratonovich’s integrals and Ito’s integrals, we have

δ

∞∑

k=1

√
λkψk(y) Ẇk(t) ◦ ux = δ

∞∑

k=1

√
λkψk(y) Ẇk(t) · ux +

δ2

2

∞∑

k=1

λk ψ
2
k(y)uxx

= δ

∞∑

k=1

√
λkψk(y) Ẇk(t) · ux +

δ2

2
Γ(0)uxx.

So we can rewrite the SPDE (6.28) in Ito’s form:

ut = µ∆u+
1

2
δ2 Γ(0)uxx + δ

∞∑

k=1

√
λkψk(y) Ẇk(t) · ux + u(1 − u). (6.29)

We are interested in the average front speed of the equation (6.29) at the regime δ ≪ 1.
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We consider the shear flow ξ(y, t) with the spatial covariance function

Γ(|y1 − y2|) = cos(2kπ(y1 − y2)), (6.30)

where k is a given integer. Obviously, the covariance function (6.30) is symmetric and

semi-positive definite. The eigenvalue problem (6.25) has only two nonzero eigenvalues:

λ1 = λ2 = 1
2 , and

(λ1, ψ1) =

(
1

2
,
√

2 cos(2kπy)

)
, (λ2, ψ2) =

(
1

2
,
√

2 sin(2kπy)

)
.

All the other eigenvalues are zero λk = 0, k > 3. As a result, the Gaussian process ξ(y, t)

has a simple representation

ξ(y, t) = cos(2kπy)Ẇ1(t) + sin(2kπy)Ẇ2(t). (6.31)

The random process given by (6.31) is a spatially mean zero, white-in-time, and stationary

Gaussian process. For the covariance function (6.30), we have Γ(0) = R(y, y) = 1. Hence

the R-D equation (6.29) can be simplified as

ut = µ∆u+ δ
[
cos(2kπy)Ẇ1(t) + sin(2kπy) Ẇ2(t)

]
· ux +

δ2

2
uxx + u(1 − u). (6.32)

This is the final model equation we will be working with.

6.4.2 Wiener Chaos Propagator for the R-D Equation

Next we derive the WCE propagator for the equation (6.32) in a finite time interval [0, T ].

Suppose {mi(t); i = 1, 2, . . .} is an orthonormal basis in the Hilbert space L2[0, T ]. Define

the independent Gaussian random variables

ξki =

∫ T

0
mi(t)dWk(t), i = 1, 2, . . . , k = 1, 2.

Let α = (αki ; i = 1, 2, . . . , k = 1, 2) be a multi-index with nonnegative integer components.

Denote the finite multi-index set as J =
{
α; |α| =

∑
i,k α

k
i <∞

}
. For α ∈ J , define the
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Wick polynomial

Tα(ξ) =
2∏

k=1

∞∏

i=1

Hαki
(ξki ).

Denote Ft as the σ-algebra generated by the Brownian motions {W1(s),W2(s); 0 6 s 6 t}.
Define Tα(t) = E(Tα(ξ) | Ft), then Tα(t) is a martingale and satisfies the differential

equation:

dTa(t) =

(
∑

i

mi(t)
√
α1
i Tα−

(1,i)
(t)

)
dW1(t) +

(
∑

i

mi(t)
√
α2
i Tα−

(2,i)
(t)

)
dW2(t). (6.33)

where

α−
(k,i)(l, j) =





αki − 1 if l = k, j = i,

αlj else .

The proof of (6.33) is very similar to Theorem 2.5 with one Brownian motion.

Suppose the solution of the SPDE (6.32) has the following Wiener chaos expansion

u(x, y, t) =
∑

α∈J
uα(x, y, t)Tα(ξ), 0 6 t 6 T. (6.34)

Similar to the multiplicative stochastic Burgers equation in Section 3.2.1, we can obtain the

WCE propagator for the equation (6.32):

(uα)t = µ∆uα +
δ2

2
(uα)xx + uα −

∑

p∈J

∑

06β6α

C(α, β, p)uα−β+puβ+p

+δ cos(2kπy)
∑

i

mi(t)
√
α1
i

∂

∂x

(
uα−

(1,i)

)
+ δ sin(2kπy)

∑

i

mi(t)
√
α2
i

∂

∂x

(
uα−

(2,i)

)
.

By solving the WCE propagator numerically, we can compute the ensemble average of the

front speeds very easily.

6.4.3 Numerical Simulations

In the numerical simulations, we consider a finite channel with D = [0, L]× [0, 1]. We choose

a front-like (step function) initial condition

u(x, y, 0) = 1 for 0 6 x 6 1, u(x, y, 0) = 0 for 1 < x 6 L. (6.35)
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On the opening ends of the channel, u satisfies the Dirichlet boundary condition

u(0, y, t) = 1, u(L, y, t) = 0. (6.36)

On the upper and bottom solid boundary, the zero Neumann boundary condition is specified.

For a given parameter δ, we solve the WCE system numerically and compute the integral

I(t) =

∫ L

0

∫ 1

0
E[u(x, y, t, ω)]dydx =

∫

D
u0(x, y, t)dydx, (6.37)

where u0 is the first WCE coefficient. I(t) is the average area of the burned region behind the

flame front. Since the area of the cross section of the channel is one, I(t) is also the average

location of the front along the x-direction. We compute the integral (6.37) numerically by

composite Simpson rule. Then we approximate the average front speed c∗(δ) as the optimal

slope for I(t) at the time interval [t1, T ]:

c∗(δ) = arg min
b

∫ T

t1

|I(t) − bt− a|2dt. (6.38)

We will solve the R-D equation to a sufficiently long time T so that the front location I(t)

is already well stabilized at the time interval [t1, T ].

In the numerical experiment, we set µ = 0.02 and L = 10.0. By some trial computations,

we found that the front speed becomes stable after t = 4.0 (dimensionless). We solve the

WCE propagator to T = 8.0 and fit the front speed by (6.38) on the time interval [5.0, 8.0].

In the WCE method, we represent each Brownian motion by eight cosine functions, and

truncate the Wick polynomials at maximum third order. Using the sparse WCE truncation,

the resulting WCE propagator has only 61 coefficients. Note that the nonlinearity in the

R-D equation only involves the function itself, but not its derivatives. So the nonlinearity

in the R-D equations is relatively weaker than that of the stochastic Burgers or stochastic

Navier-Stokes equations. Furthermore, the random shear flow has small magnitude in the

regime δ ≪ 1.0. As we have shown before, small random forcing will greatly accelerate the

convergence of the WCE method. Due to these reasons, the above moderate order of WCE

truncation is fairly accurate in computing the mean front. We further refine the mean of

the WCE solution by 50 MC simulations. The MC simulation provides minor corrections

to the WCE solution near the sharp front regions. To simulate the same problem by MC
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Figure 6.12: Ensemble average front speed computed by the WCE-MC hybrid method. In the left plot,
the front speed c∗(δ) can be fitted by a parabola c∗(δ) ≃ c0(1 + rδ2) almost perfectly, with c0 = 0.22183
and r =4.6901. The right plot is the log-log plot of c∗(δ)− c0 against δ. The curve can be fitted by a linear
function with a slop ν = 2.012. So the front speed c∗(δ) indeed obeys the quadratic enhancement law.

simulations alone, thousands of MC realizations need to be computed for each value of

δ. So the WCE-MC hybrid method is scores of times more efficient than the simple MC

simulations.

To find out how c∗(δ) scales as a function of δ, we solve the R-D equation by the WCE-

MC hybrid method repeatedly with different δ. The parameter δ takes value in the range

[−0.1, 0.1] with an increment of 0.01. We plot the average front speed c∗(δ) as a function

of δ in Figure 6.12. The curve can be fitted by a quadratic polynomial very accurately, with

c∗(δ) ≃ 0.22183 + 1.0404 δ2 = 0.22183(1 + 4.6901 δ2).

In Figure 6.12, we also plot c∗(δ) as a function of δ in log-log scale. We found that the

exponent ν in the relation c∗ − c0 ≃ O(δν) is 2.012. So the numerical results confirm that

c∗(δ) indeed satisfies the quadratic enhancement law (6.23).

The Wiener chaos expansion also provides a useful tool for studying the stochastic R-D

problem (6.22) theoretically. Using the WCE method, we can reduce the stochastic R-

D equation into a deterministic PDE system (WCE propagator). The WCE propagator

is equivalent to the original stochastic R-D equation and resembles a deterministic R-D

equation system with spatial-temporal periodic shear flows. Since the front propagation

problems have been well studied in deterministic periodic cases, we can translate those
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techniques and results to the WCE system, and use it to analyze the properties of the

original stochastic equation. This approach is quite different from the variational principles

used by Xin et al. [75, 76], where they choose to attack the stochastic R-D equation directly.

It is expected the WCE perspective can bring new tools to the research of the stochastic

reaction-diffusion problems.
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Chapter 7

WCE Methods and Upscaling for

Stochastic Elliptic Equations

In simulating fluid flows in porous media, people often need to consider the elliptic problem

∇ · k∇P = 0, (7.1)

where P is the pressure, and k(x) is the permeability field of the subsurface media. Due to

lack of data, it is almost impossible to obtain a detailed description of k(x). To model the

uncertainty in describing the permeability field, people usually introduce a certain level of

random variability to k(x) and assume that k(x) is a stochastic process. As a result, the

solution P (x) is also a random field, which reflects how the uncertainty in the input will

propagator and affect the output of the model.

Since k(x) is modeled as a random process, (7.1) becomes a stochastic elliptic equation.

In an original work, Ghanem and Spanos [39] developed a new method, called stochastic

finite element method, for solving the equation (7.1) numerically. Based on Karhunen-Loeve

expansions, they first expanded the random input as a series of random Gaussian variables.

Then the random solution was represented as a Fourier-Hermite expansion of those Gaussian

random variables. Once the governing equations of the expansion coefficients are solved

numerically, they can quantify the uncertainly in the random solution (the response) based

on the deterministic coefficients and the random Hermite bases. This novel approach for

solving stochastic elliptic equations was further studied by many others, notably, Babuska

et al. [5, 4, 3], Schwab et al. [91, 32], Keese et al. [67, 51], Roman et al. [89], etc.

An important assumption made in previous work [5, 4, 91] for the stochastic elliptic

equation (7.1) is that the random coefficient k(x) satisfies the strong elliptic condition.
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That is, there exist two constants kmin and kmax such that

0 < kmin ≤ k(x, ω) ≤ kmax <∞. (7.2)

However, the assumption (7.2) is usually not true for the widely used Gaussian models,

where k(x, ω) is not uniformly bounded. How to model the permeability field k(x) is still a

challenging problem to be addressed. In previous work [32, 5, 4, 3], the authors proposed

truncating the Karhunen-Loeve expansion of the permeability field k(x, ω) first, and obtain

a finite dimensional approximation kM (x, ω). Then they approximate the original equation

by the following one:

∇ · kM (x, ω)∇P = 0.

A potential problem with this approach is that the truncated permeability kM (x, ω) may

violate the elliptic assumption (7.2) if the Karhunen-Loeve expansion of k is not uniformly

convergent. However, the uniform convergence of the Karhunen-Loeve expansion is available

only for very special cases.

In this chapter, we will study the stochastic elliptic equations (7.1) in the context of

reservoir modeling. We will follow Ghanem’s stochastic finite element approach, but re-

derive the WCE system for the stochastic elliptic equation using the formulae developed

in Chapter 2. A new ingredient of our derivation is an explicit and exact formula for

the stiffness coefficients. Based on this explicit formula, we find that even though the

permeability field is represented by an infinite series, only finite terms will contribute to

each stiffness coefficients. So there is no need to truncate the permeability field.

In the following, we first introduce the Karhunen-Loeve expansion for a stochastic

process, which is the base for solving the stochastic elliptic problem (7.1) by WCE method.

Then we derive an elliptic system for the WCE coefficients and analyze its property. At the

end we will present an upscaling formulation for the WCE elliptic system. Multi-scale finite

element methods and upscaling for scaler elliptic equations have been studied by many au-

thors [19, 20, 26, 21, 47]. However, the upscaling of elliptic systems is relatively less studied.

Combining the WCE method with the multiscale upscaling is a novel practice. In Chapter

8, we will apply the upscaled WCE method to the uncertainty quantification in subsurface

modeling.
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7.1 Karhunen-Loeve Expansion

Suppose Y (x, ω), x ∈ Ω, is a random process with finite second order moment

∫

Ω
E[Y 2(x, ω)]dx <∞.

For simplicity, we assume that E[Y ] = 0. For a given orthonormal basis {ψk} in L2(Ω), we

can expand Y (x, ω) as a generalized Fourier series

Y (x, ω) =

∞∑

k=1

Yk(ω)ψk(x), (7.3)

where

Yk(ω) =

∫

Ω
Y (x, ω)ψk(x)dx, k = 1, 2, . . .

are random variables with zero means. We look for a special basis {φk} that makes Yk

uncorrelated: E(YiYj) = 0 for all i 6= j. Denote the covariance function of Y (x, ω) as

R(x, y) = E [Y (x, ω)Y (y, ω)]. Then the special basis functions {φk} should satisfy

E[YiYj ] =

∫

Ω
φi(x)dx

∫

Ω
R(x, y)φj(y)dy = 0, i 6= j.

Since {φk} is complete and orthonormal in L2(Ω), it follows that φk(x) are eigenfunctions

of R(x, y): ∫

Ω
R(x, y)φj(y)dy = λjφj(x), j = 1, 2, . . . , (7.4)

where λj = E[Y 2
j ] > 0. If we choose the basis functions φk(x) as the solutions of the

eigen problem (7.4), then the random variables Yk(ω) are indeed uncorrelated. Denote

θk = Yk/
√
λk, we have the following expansion:

Y (x, ω) =

∞∑

k=1

√
λk θk(ω)φk(x), (7.5)

where θk satisfy E(θk) = 0 and E(θiθj) = δij . If Y (x, ω) is a Gaussian process, then Yk(ω)

are independent Gaussian random variables. The expansion (7.5) is called the Karhunen-

Loeve expansion (KLE) of the stochastic process Y (x, ω). The KLE resembles the eigenvalue

decomposition of a symmetric semi-positive definite matrix. For finite discrete processes,
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the KLE reduces to the principal component decomposition.

The KLE (7.5) represents the stochastic process as a series of uncorrelated random

variables. The L2 basis functions φk(x) are deterministic and resolve the spatial dependence

of the random process. The KLE converges to the random process Y (x, ω) in the mean

square sense

lim
N→∞

∫

Ω
E|Y (x, ω) − YN (x, ω)|2 dx = 0, (7.6)

where

YN =
N∑

k=1

√
λk θk φk (7.7)

is a finite term KLE. For the Fourier expansion (7.3) with an arbitrary basis {ψk}, it can

be shown that

∫

Ω
E
∣∣Y (x, ω) − YN (x, ω)

∣∣2 dx = min

∫

Ω
E
∣∣Y (x, ω) −

N∑

k=1

Ykψk(x)
∣∣2 dx. (7.8)

So among all the Fourier expansions (7.3), the KLE with the basis function φk(x) determined

by the eigen problem (7.4) has the fastest convergence rate.

The convergence rate of the KLE only depends on the smoothness of the covariance

function, but not on the specific probability structure of the process being expanded. The

KLE converges fast if the covariance function R(x, y) is very smooth. In this case, we only

need to keep the leading order terms (quantified by the magnitude of λk) in the finite KLE

and still capture most of the energy of the stochastic process Y (x, ω). For the finite KLE

(7.7), we define its energy ratio as

e(N) :=

∫
ΩE|YN |2dx∫
ΩE|Y |2dx =

∑N
k=1 λk∑∞
k=1 λk

. (7.9)

If the eigenvalues λk, k = 1, 2, . . . , decay very fast, then the finite term KLE would be good

approximations of the stochastic process. Figure 7.1 shows the eigenvalues of KLE with a

Gaussian covariance function

R(x, y) = σ2 exp
(
−|x− y|2

2L2

)
, (7.10)

where σ = 1.0 and L = 0.1 is the correlation length. Since the Gaussian covariance

function is infinitely smooth, the eigenvalues decay exponentially fast [32]. The finite KLE
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Figure 7.1: The first 20 eigenvalues of the KLE with a Gaussian covariance function. The right plot is the
energy ratio (7.9) of the finite KLEs with different number of terms. The eigenvalues decay very fast and
the KLE with ten terms captures 99% of the total energy of the random process.

can capture 99% of the total energy of the random process by keeping only ten terms.

If the covariance function is less smooth, then the KLE will decay slower. Consider the

exponential covariance function

R(x, y) = σ2 exp
(
−|x− y|

L

)
, (7.11)

where σ = 1.0, and L = 0.1 is the correlation length. It has been shown that the eigen-

values of the exponential covariance function (7.11) only decay algebraically, since (7.11) is

piecewise smooth. Figure 7.2 is the first 40 eigenvalues of the KLE. The eigenvalues indeed

decay much slower. With 20 terms, the finite KLE only captures 90% of the total energy

of the random process.

The convergence rate of the eigenvalues also depends on the correlation length L of

the covariance function. The smaller the correlation length, the slower the convergence

rate. Figure 7.3 shows the eigenvalues of the same exponential covariance function (7.11)

with a larger correlation length L = 0.4. Comparing with Figure (7.2), we notice that the

eigenvalues indeed decay faster. The finite KLE captures 95% of the total energy of the

random process with only ten terms.
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Figure 7.2: The first 40 eigenvalues of the KLE with the exponential covariance function with L = 0.1.
The right plot is the energy ratio of the finite KLE with different number of terms. The KLE with 20
terms only captures 90% of the total energy of the random process. The KLE converges much slower for the
exponential covariance function.
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Figure 7.3: The first 40 eigenvalues of the exponential covariance function with L = 0.4; The right plot is
the energy ratio of the finite KLE with different number of terms. For the same type of covariance function,
the KLE converges much faster with larger correlation length.

7.2 WCE Methods for Stochastic Elliptic Equations

Consider the stochastic elliptic equation






∇x · [k(x, ω)∇xP (x,w)] = q(x), x ∈ D.

P (x, ω) = 0 on ∂D,

(7.12)

where P is the pressure, k is the permeability field, and q(x) is the (deterministic) source

term. The random permeability field k(x, ω) is assumed to be

k(x, ω) = k0(x) + δ eY (x,ω), (7.13)
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where k0(x) is a deterministic function, δ > 0 is a constant, and Y (x,w) is a homogeneous

isotropic Gaussian field. If we think of k0(x) as the reference permeability field, then

δ eY (x,ω) is the random variability to model the uncertainty in the description of k0(x). We

assume that k0(x) satisfies the uniform lower bound

0 < a1 6 k0(x), forx ∈ D.

This is a reasonable assumption because the permeability field is always positive. Since

δ > 0, it follows immediately that

0 < a1 6 k0(x) 6 k(x, ω), for x ∈ D, ω ∈ Ω. (7.14)

So the random permeability field k(x, ω) is uniformly bounded from below.

Define the Hilbert space

H1
0 (D, k) =

{
v(x, ω) : v|∂D = 0, E

∫

D
k(x, ω)|∇xv(x, ω)|2dx < +∞

}
. (7.15)

The inner product on the Hilbert space H1
0 (D, k) is defined as

a(u, v) = E

∫

D
k(x, ω)∇xu(x, ω)∇xv(x, ω)dx .

Denote

(q, v) = E

∫

D
q(x) v(x, ω)dx .

The weak form of the problem (7.12) is proposed as: Find P (x, ω) ∈ H1
0 (D, k) such that

a(P, v) = (q, v), ∀ v ∈ H1
0 (D, k). (7.16)

We have the following result:

Theorem 7.1 The elliptic problem (7.12) has a unique weak solution in the space H1
0 (D, k).

Proof We first prove that (q, v) is a bounded functional on the Hilbert space H1
0 (D, k).

From the Cauchy-Schwartz inequality,

(q, v)2 6

∫

D
q2(x) dx

∫

D
E[v2(x, ω)] dx .
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Since k(x, ω) is bounded uniformly from below, we have

a1

∫

D
E|∇xv(x, ω)|2dx 6 E

∫

D
k(x, ω)|∇xv(x, ω)|2dx. (7.17)

Combining the Poincare inequality and (7.17), we can show that

∫

D
E[v2(x, ω)]dx .

∫

D
E|∇xv(x, ω)|2dx . E

∫

D
k(x, ω)|∇xv(x, ω)|2dx .

So (q, v) is indeed a bounded functional on the Hilbert space H1
0 (D, k). Based on the Riesz

lemma, there exists a unique P ∈ H1
0 (D, k) such that a(P, v) = (q, v). �

If the permeability k(x, ω) satisfies the strong elliptic condition (7.2), then a unique

weak solution exists for (7.12) in the Hilbert space

H1
0 (D) =

{
v(x, ω) : u|∂D = 0, E

∫

D
|∇v(x, ω)|2dx < +∞

}
.

Since Y (x, ω) is a Gaussian process, the permeability (7.13) is not uniformly bounded from

above. For any constant kmax, there is always a positive probability that k(x, ω) > kmax.

That is why the weak solution of (7.12) has to be proposed in the new space H1
0 (D, k),

which depends on the property of k(x, ω).

Since Y (x, ω) is a Gaussian process, its distribution is determined uniquely by its mean

and covariance function. For simplicity, we assume E[Y (x, ω)] = 0. Denote the covariance

function of Y (x, ω) as R(x, y) = E[Y (x)Y (y)]. The typical covariance function used for

Y (x, ω) is the Gaussian covariance function

R(x, y) = σ2 exp

[
−(x1 − y1)

2

2L2
1

− (x2 − y2)
2

2L2
2

]
, (7.18)

or the exponential covariance function

R(x, y) = σ2 exp

[
−|x1 − y1|

L1
− |x2 − y2|

L2

]
. (7.19)

In either case, we always have

E[Y (x)]2 = R(x, x) = σ2.
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So Y (x, ω) determined by (7.18) or (7.19) is indeed homogeneous in space.

Denote the Karhunen-Loeve expansion of Y (x, ω) as

Y (x, ω) =

∞∑

i=1

√
µi θi(ω)ψi(x), (7.20)

where ψi(x) and µi are eigenfunctions and eigenvalues of the integral equation

∫

D
R(x, y)ψi(y) dy = µi ψi(x).

Since Y (x, ω) is a Gaussian process, so θi are independent Gaussian random variables.

Denote θ = (θ1, θ2, . . .), we can define the Wick polynomials of θ as before

Tα(θ) =

∞∏

i=1

Hαi(θi),

where α = (α1, α2, . . .) is a finite multi-index with integer component. Denote J as the set

of all the finite multi-indices α. Since k(x, ω) = k0(x) + δ eY (x,ω) has finite variance, we can

expand the permeability field k(x, ω) into a Fourier-Hermite series of θ :

k(x, ω) =
∑

α∈J
kα(x)Tα(θ), kα(x) = E[k(x)Tα(θ)]. (7.21)

With Y (x, ω) given by the KLE (7.20), we can derive an exact formula for the WCE

coefficient kα(x).

Lemma 7.1 Suppose k(x, ω) = k0(x) + δ eY (x,ω) has the WCE expansion (7.21), then the

WCE coefficients kα(x) are given by the formulae

k0(x) = k0(x) + δeσ
2/2

and

kα(x) = δ eσ
2/2

∞∏

i=1

[√
µiψi(x)

]αi
√
αi!

, for α 6= 0,
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Proof For any fixed x, we have

E[eY (x,ω)Tα(θ)] =
∞∏

i=1

(∫ +∞

−∞
e
√
µiψiθiHαi(θi)

1√
2π

e−
θ2i
2 dθi

)

=

∞∏

i=1

e
1
2
µiψ2

i

∫ +∞

−∞
Hαi(θi)

1√
2π

e−
(θi−

√
µiψi)

2

2 dθi

=

∞∏

i=1

e
1
2
µiψ2

iE[Hαi(θi +
√
µiψi)].

Note that σ2 = E(Y 2) =
∑
µiψ

2
i . Using Lemma 2.3, we have

E[eY (x,ω)Tα(θ)] = eσ
2/2

∞∏

i=1

(
√
µiψi)

αi

√
αi!

.

Consequently, we have

k0(x) = E[k(x, ω)] = k0(x) + E[δ eY (x,ω)] = k0(x) + δeσ
2/2,

and for α 6= 0

kα(x) = E[δ eY (x,ω)Tα(θ)] = δ eσ
2/2

∞∏

i=1

(
√
µiψi)

αi

√
αi!

�

Lemma 7.1 provides an exact and explicit formula for the WCE coefficients of the

permeability field. Once the KLE of Y (x, ω) is available, we can easily compute the WCE

coefficients kα(x). We will see later that the availability of an exact formula for kα is very

important in obtaining a well-posed WCE elliptic system of the problem (7.12).

Since the permeability field k(x, ω) depends on the Gaussian random variables θi, i =

1, 2, . . ., so does the random solution P (x, ω). As we have shown, the random solution P

belongs to the Hilbert space H1
0 (D, k). Based on the uniform lower bound of k(x, ω) and

the Poincare inequality, we can easily show that E[P 2(x, ω)] <∞ for almost all x ∈ D (see

the proof of Theorem 7.1). So P (x, ω) has a finite variance and admits a Wiener chaos

expansion

P (x, ω) =
∑

α∈J
Pα(x)Tα(θ). (7.22)
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Multiply both sides of (7.12) by Tα(θ) and take expectations, and we have

E[q Tα] = ∇ ·E [(k∇P ) Tα]

= ∇ ·E
[
k
(∑

γ∈J
∇Pγ Tγ

)
Tα

]

= ∇ ·
∑

γ∈J
E[k Tα Tγ ]∇Pγ .

Denote

Aα,γ(x) = E[k Tα Tγ ].

Expanding the product of the Wick polynomial Tα Tγ by formula (2.33) and using the

orthogonality of Tα, we get

Aα,γ(x) =
∑

p≤α∧γ
B(α, γ, p) E (k Tα+γ−2p)

=
∑

p≤α∧γ
B(α, γ, p) kα+γ−2p(x).

Therefore, we have the following result:

Theorem 7.2 The WCE coefficients Pα(x) of the expansion (7.22) satisfy the elliptic sys-

tem

∇ ·




∑

γ∈J
Aα,γ(x)∇Pγ(x)



 = qI{α=0}, α ∈ J , (7.23)

where

Aα,γ(x) =
∑

p≤α∧γ
B(α, γ, p) kα+γ−2p(x). (7.24)

The elliptic system (7.23) has infinite number of equations. For numerical purposes, we

need to truncate it to finite terms. However, the truncation should be done very carefully.

For the stochastic elliptic equation (7.12), it is critical that the permeability k(x, ω) satisfy

the uniform lower bound condition (7.14). Otherwise, the equation (7.12) can be ill-posed

and no solution would exist. When truncating the WCE system (7.23), we have to preserve

the lower bound condition (7.14) for elliptic system (7.23). In the literature [3, 4, 32], the
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authors assume a Karhunen-Loeve expansion for the permeability directly:

k(x, ω) = k0(x) +
∞∑

i=1

√
µi θiψi(x). (7.25)

Then they truncate the KLE of k(x, ω) and obtain a finite dimensional permeability field

kM (x, ω). At the end, they propose to solve the following approximate elliptic equation:

∇x · [kM (x, ω)∇xP (x,w)] = q(x). (7.26)

Since kM (x, ω) has only a finite number of random variables, they can apply the polynomial

chaos expansion to solve it numerically.

A problem with the above approach is that the truncated permeability kM (x, ω) may

no longer satisfy the elliptic condition (7.2), even though the original permeability k(x, ω)

does. For kM (x, ω) to satisfy a condition similar to (7.2), the KLE of k(x, ω) has to converge

uniformly both in x and in ω variables so that the truncation error can be controlled.

In lots of practical cases, the random variables θk are not uniformly bounded, such as

the Gaussian random variables or exponential random variables, and the KLE does not

converge uniformly. For any constant kmin, there is always a positive probability that

kM (x, ω) < kmin. It has been shown by Babuska et al. [5] that even condition (7.2) is only

violated with a very small but positive probability, system (7.26) can still be ill-posed. For

those cases, the approach adopted by [32, 4, 3] is not readily applicable.

If we look at the infinite elliptic system (7.23), it becomes clear that there is no need to

truncate the permeability field at all. We only need to truncate the WCE of the random

solution P (x, ω). Denote

PK,N (x, ω) =
∑

JK,N
kα(x)Tα(θi),

where JM is a finite (truncated) subset of the index set J . As a result, the full elliptic

system (7.23) is reduced to the finite system

∇ ·




∑

γ∈JM
Aα,γ(x)∇Pγ(x)



 = qI{α=0}, α ∈ JM . (7.27)

However, to get the finite system (7.27) we never need to truncate the expansion of k(x, ω).

For any given index pair (α, γ), the formula for Aα,γ(x) is still Aα,γ(x) = E[kTαTγ ], instead
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of Aα,γ(x) = E[kMTαTγ ]. Using the analytical formula for products of Wick polynomials,

we can obtain an explicit formula (7.24) for Aα,γ(x). Even though k(x, ω) is an infinite

series, the formula for Aα,γ(x) is a finite summation and is easily computable from the

coefficients kα. The summation in (7.24) will include all the eligible terms even if the index

α+ γ − 2p /∈ JM . That is the precise difference between truncating and not truncating the

permeability k(x, ω).

Both Matthies et al. [67] and Roman et al. [89] pointed out that there is no need to

truncate the WCE expansion (7.21) or the KLE expansion (7.25) for the permeability field.

A new ingredient of the current work is an analytical and explicit formula (7.24) for the

stiffness coefficients Aα,β. The formula (7.24) clearly illustrates that even though k(x, ω) is

an infinite series, the stiffness coefficients Aα,γ are still computable, hence no truncation of

the permeability is needed.

While deriving the finite elliptic system (7.12), it is important that we have an exact

and easily computable formula (Lemma 7.1) for the WCE coefficients kα(x). That will

avoid any other forms of truncations of the permeability field. In the papers [48, 104], the

authors used Taylor expansion of eY (x,θ) to estimate the WCE coefficients kα(x). When they

truncated the Taylor expansion, they essentially truncated the permeability field, which will

inevitably destroy the lower bound condition (7.14).

7.2.1 Property of the Truncated Elliptic Systems

It is important that the truncated WCE elliptic system (7.27) preserves the properties of

the original elliptic equation. Note that Aαβ(x) = E (k Tα Tβ), it is obvious that

Lemma 7.2 The elliptic system (7.27) is symmetric:

Aα,β(x) = Aβ,α(x).

Since the original stochastic elliptic equation is positive definite (uniformly bounded from

below), we expect that the elliptic system (7.27) is also positive definite. Indeed we have

Lemma 7.3 For any uα ∈ Rd, α ∈ JM , we have

0 < a1|u|2 6
∑

α,β∈JM
uTαAα,β(x)uβ , x ∈ D,
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where |u|2 =
∑

α∈JM |uα|2 and a1 is the same lower bound (7.14) for k(x, ω). Therefore,

the elliptic system (7.27) is symmetric and positive definite.

Proof From the formula of Aα,β(x) we have

∑

α,β

uTα Aα,β(x)uβ =
∑

α,β

uTαE (k Tα Tβ) uβ

= E

[(∑

α

uα Tα

)T
k
(∑

β

uβ Tβ

)]

> a1E

[(∑

α

uα Tα

)T(∑

β

uβ Tβ

)]

= a1 |u|2

�

As we can see, the truncated elliptic system (7.27) preserves the lower bound (7.14)

since we did not truncate the permeability field. So the truncated elliptic system (7.27) is

well-posed.

7.3 Upscaling of the WCE Elliptic System

Since the permeability field k(x, ω) usually has multi-scale structures, so do the stiffness

coefficients Aα,β(x). In practice, it is impossible and unnecessary to resolve all the scales

in the solution. In stead, we can capture the net effects of the small scales by deriving an

upscaled equation. In this section, we will generalize the upscaling formulation for a single

elliptic equation to the WCE elliptic system (7.27).

Consider the elliptic system

∂

∂xi

[
Aijαβ

(
x,
x

ε

) ∂

∂xj
Pβ(x)

]
= 0. (7.28)

In the above formula, the summation over the repeated indices is assumed. Denote y = x/ε.

We assume that x ∈ Ω and y ∈ Y , and Aαβ(x, y) is periodic in y. Expand the solutions in

multiscales:

Pβ = P 0
β

(
x,
x

ε

)
+ εP 1

β

(
x,
x

ε

)
+ ε2P 2

β

(
x,
x

ε

)
+ . . . . (7.29)
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Note that for any function f
(
x, xε

)
,

∂

∂x
f
(
x,
x

ε

)
=

∂

∂x
f(x, y) +

1

ε

∂

∂y
f(x, y).

Applying the chain rule to (7.28), we get

[
∂

∂xi
+

1

ε

∂

∂yi

]{
Aijαβ (x, y)

[
∂

∂xj
+

1

ε

∂

∂yj

]
Pβ (x, y)

}
= 0.

Substitute the multiscale expansion (7.29) of Pβ into the above equation, we get

∂

∂xi

(
Aijαβ (x, y)

∂

∂xj
P 0
β (x, y)

)
+

1

ε

∂

∂yi

(
Aijαβ (x, y)

∂

∂xj
P 0
β (x, y)

)
+

1

ε

∂

∂xi

(
Aijαβ (x, y)

∂

∂yj
P 0
β (x, y)

)
+

1

ε2
∂

∂yi

(
Aijαβ (x, y)

∂

∂yj
P 0
β (x, y)

)
+

ε
∂

∂xi

(
Aijαβ (x, y)

∂

∂xj
P 1
β (x, y)

)
+

∂

∂yi

(
Aijαβ (x, y)

∂

∂xj
P 1
β (x, y)

)
+

∂

∂xi

(
Aijαβ (x, y)

∂

∂yj
P 1
β (x, y)

)
+

1

ε

∂

∂yi

(
Aijαβ (x, y)

∂

∂yj
P 1
β (x, y)

)
+

ε2
∂

∂xi

(
Aijαβ (x, y)

∂

∂xj
P 2
β (x, y)

)
+ ε

∂

∂yi

(
Aijαβ (x, y)

∂

∂xj
P 2
β (x, y)

)
+

ε
∂

∂xi

(
Aijαβ (x, y)

∂

∂yj
P 2
β (x, y)

)
+

∂

∂yi

(
Aijαβ (x, y)

∂

∂yj
P 2
β (x, y)

)
+ · · · = 0.

Collect all the ε−2 terms we get

∂

∂yi

[
Aijαβ (x, y)

∂

∂yj
P 0
β (x, y)

]
= 0.

Multiply both sides by P 0
α(x, y) and integration by part. From the periodicity in Y and

Lemma 7.3, we have

0 =

∫

Y
Aijαβ (x, y)

∂

∂yj
P 0
β (x, y)

∂

∂yi
P 0
α (x, y) dy ≥ a1

∫

Y

∑

α

∣∣∣
∂

∂yi
P 0
α (x, y)

∣∣∣
2
dy.

As a result, we have

P 0
β (x, y) = P 0

β (x) . (7.30)
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Without Lemma 7.3, we cannot reach such a conclusion. So it is indeed crucial to preserve

the positiveness for the truncated elliptic system.

By collecting the ε−1 terms, we get

∂

∂yi

[
Aijαβ (x, y)

∂

∂xj
P 0
β (x, y)

]
+

∂

∂xi

[
Aijαβ (x, y)

∂

∂yj
P 0
β (x, y)

]

+
∂

∂yi

[
Aijαβ (x, y)

∂

∂yj
P 1
β (x, y)

]
= 0.

Because of (7.30), the second term in the above formula is zero and we can separate the

first term. Consequently, we have

∂

∂yi
Aijαβ (x, y)

∂

∂xj
P 0
β (x) +

∂

∂yi

[
Aijαβ (x, y)

∂

∂yj
P 1
β (x, y)

]
= 0.

Assume that

P 1
β (x, y) = N j

βγ (x, y)
∂

∂xj
P 0
γ (x) , (7.31)

then N j
βγ satisfies the following equation:

∂

∂yi

[
Aijαβ (x, y)

∂

∂yj
Nk
βγ (x, y)

]
= − ∂

∂yi
Aikαβ (x, y) . (7.32)

By collecting the ε0 terms, we have

∂

∂xi

[
Aijαβ (x, y)

∂

∂xj
P 0
β (x)

]
+

∂

∂xi

[
Aijαβ (x, y)

∂

∂yj
P 1
β (x, y)

]

+
∂

∂yi

[
Aijαβ (x, y)

∂

∂xj
P 1
β (x, y)

]
+

∂

∂yi

[
Aijαβ (x, y)

∂

∂yj
P 2
β (x, y)

]
= 0.

Let 〈·〉 be the spatial average over Y , and note that

〈∇y · f〉 =

∫

∂Y
f (x, y) · n dl = 0

if f (x, y) is periodic in y. If we average the above equation over the period Y , the last two
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terms will disappear. Plugging in formula (7.31), we have

0 =
∂

∂xi

[〈
Aijαβ (x, y)

〉 ∂

∂xj
P 0
β (x)

]
+

∂

∂xi

〈
Aijαβ (x, y)

∂

∂yj
P 1
β (x, y)

〉

=
∂

∂xi

[〈
Aijαβ (x, y)

〉 ∂

∂xj
P 0
β (x)

]
+

∂

∂xi

〈
Aijαβ (x, y)

∂

∂yj
Nk
βγ (x, y)

∂

∂xk
P 0
γ (x)

〉
.

Denote
(
Aijαβ

)⋆
=
〈
Aijαβ (x, y)

〉
+

〈
Aikαγ (x, y)

∂

∂yk
N j
γβ (x, y)

〉
, (7.33)

then the previous equation for the ε0 terms is reduced to

∂

∂xi

[(
Aijαβ

)⋆ ∂

∂xj
P 0
β (x)

]
= 0. (7.34)

Equation (7.34) is the upscaled equation for the leading order terms P 0
β , with

(
Aijαβ

)⋆
as

the effective stiffness coefficients.

In order to compute the effective coefficients
(
Aijαβ

)⋆
, we must first find Nk

βγ (x, y). In

practice, the coefficients Aijαβ(x) have no explicit separation of scales, and they are not

periodic either. To apply the above upscaling formulations, we partition the computational

domain Ω into coarse blocks Ω =
⋃K
k=1 Ωk. Then we solve the cell problem (7.32) on each

coarse block Ωk:

∂

∂xi

[
Aijαβ (x)

∂

∂xj
Nk
βγ (x) +Aikαβ (x)

]
= 0, x ∈ Ωk.

If we write Aikαβ = Aijαγδγβδjk then we can simplify the above equation as

∂

∂xi

[
Aijαβ

(
∂

∂xj
Nk
βγ + δβγδjk

)]
=

∂

∂xi

[
Aijαβ

∂

∂xj

(
Nk
βγ (x, y) + δβγxk

)]
= 0.

Therefore, we only need to solve the following local problems

∂

∂xi

(
Aijαβ

∂

∂xj
ϕβγ

)
= 0, x ∈ Ωk (7.35)

with certain boundary conditions. Once ϕβγ is available, we can compute the effective
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stiffness coefficients on each block by the local average

(
Aijαβ

)⋆
Ωk

=

〈
Aijαβ (x)

∂

∂xj
ϕβγ

〉

Ωk

. (7.36)
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Chapter 8

Uncertainty Quantification in

Reservoir Modeling

8.1 Introduction

Uncertainties in the detailed description of reservoir lithofacies, porosity, and permeabil-

ity are major contributors to uncertainty in reservoir performance forecasting. Making

decisions in reservoir management requires efficient ways for quantifying the uncertainty.

Large uncertainties in reservoirs can greatly affect the production and decision making on

well drilling. Thus, quantifying and reducing the uncertainty is an important problem in

subsurface modeling. Additional dynamic data, such as the production data, can be used

to improve the predictions and reduce the uncertainty. To predict future reservoir perfor-

mance, the reservoir properties, such as porosity and permeability, need to be conditioned

to dynamic data. In general it is difficult to calculate this posterior probability distribution

because the process of predicting flow and transport in petroleum reservoirs is nonlinear.

Instead, people estimate this probability distribution from the outcomes of flow predictions

for a large number of realizations of the reservoir. It is essential that the permeability (and

porosity) realizations adequately reflect the uncertainty in the reservoir properties, i.e., we

correctly sample this probability distribution.

The prediction of permeability fields based on dynamic data is a challenging problem

because permeability fields are typically defined on a large number of grid blocks. The

Markov chain Monte Carlo (MCMC) method and its modifications have been used previ-

ously to sample the posterior distribution of the permeability field. Oliver et al. [78, 79]

proposed the randomized maximum likelihood (RML) method, which generates uncondi-
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tional realizations of the production and permeability data and then solves a deterministic

gradient-based inverse problem. The solution of this minimization problem is taken as a

proposal and accepted with probability 1 because the rigorous acceptance probability is very

difficult to estimate. In addition to the need of solving a gradient-based inverse problem,

this method does not guarantee a proper sampling of the posterior distribution. Developing

efficient and rigorous MCMC calculations with high acceptance rates remains a challenging

problem.

In this chapter, we study a two-stage MCMC method for sampling the permeability

fields, where coarse-scale models of the fluid flows are used to increase the acceptance rate

of the MCMC simulations. In the two-stage MCMC method, we first test each MCMC pro-

posal by a coarse-scale model. If the proposal is accepted at the first-stage, then a fine-scale

simulation will be performed to determine the acceptance probability of the proposal. The

first stage of the MCMC method filters unlikely proposals and avoids expensive fine-scale

computations for them. Compared with the regular MCMC method, the two-stage MCMC

method generates a modified Markov chain by incorporating the coarse-scale information

of the problem. Under some technical assumptions, we can prove that the modified Markov

chain is ergodic and converges to the correct posterior distribution. The validity of the as-

sumptions for our application is discussed in the paper. Our numerical results show that the

two-stage MCMC method can be ten times more efficient than the regular MCMC method.

We would like to note that two-stage MCMC algorithms have been used previously (e.g.,

[14, 44, 58, 80]) in different situations.

In the second part, we employ the Langevin algorithms to generate proposals for the

two-stage MCMC methods. Langevin algorithms provide efficient sampling techniques be-

cause they use the gradient information of the target distributions. In fact, the popular

RML sampler designed by Oliver et al. [78, 79] can be regarded a variation of the Langevin

algorithm. However, the direct Langevin algorithm is very expensive because the compu-

tation of the distribution gradients requires solving the nonlinear PDE on fine scales many

times. Alternatively, we can compute the Langevin proposal using the coarse gradient of

the target distribution. Using the upscaled WCE method, we can represent the random so-

lution as a stochastic spectral expansion and obtain an explicit formula for the coarse-scale

target distribution. Then we can generate the Langevin proposals easily using this explicit

coarse-scale distributions, without the need for solving the nonlinear PDE repeatedly. It
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is important that we have derived an upscaling formulation for the WCE elliptic equations

so that it can be solved efficiently on the coarse-grid. The Langevin algorithms can be

combined with the two-stage MCMC method, and hence provide a very efficient way for

sampling the permeability fields.

8.2 The Model Equations and Problem Setting

We consider two-phase flows in a domain Ω under the assumption that the displacement is

dominated by viscous effects. We neglect the effects of gravity, compressibility, and capillary

pressure. The two phases are referred to as water (aqueous phase) and oil (nonaqueous

phase liquid), designated by subscripts w and o, respectively. We write Darcy’s law, with

all quantities dimensionless, for each phase as follows:

vj = −krj(S)

µj
k · ∇p, (8.1)

where vj, j = w, o, is the phase velocity, k is the permeability tensor, krj is the relative

permeability of the phase j, S is the water saturation (volume fraction), and p is the

pressure. In this work, a single set of relative permeability curves is used and k is taken

to be a diagonal tensor. Combining Darcy’s law with a statement of conservation of mass

allows us to express the governing equations in terms of the so-called pressure and saturation

equations:

∇ · (λ(S)k∇p) = q, (8.2)

∂S

∂t
+ v · ∇f(S) = −qw, (8.3)
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where λ(S) is the total mobility, q and qw are the source terms, v is the total velocity, and

f(S) is the flux function, which are respectively given by

λ(S) =
krw(S)

µw
+
kro(S)

µo
, (8.4)

v = vw + vo = −λ(S)k∇p, (8.5)

f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo
. (8.6)

The above description is referred to as the fine model of the two-phase flow problem. For

the single-phase flow, we have λ(S) = 1 and f(S) = S. Throughout, the porosity is assumed

to be constant.

The dynamical data of the two-phase flow problem include the fractional flow curve,

defined as

F (t) = 1 −
∫
∂Ωout f(S) vn dl∫

∂Ωout vn dl
, (8.7)

where ∂Ωout is the outflow boundary and vn = v ·n is the normal velocity on the boundary.

The fractional flow F (t) (denoted simply by F thereafter) is the fraction of oil in the

produced fluid and is observable from the production data. Based on geological surveys, the

permeability field k(x) is usually known at some sparse location k(xi) = ki, i = 1, 2, . . . , N .

The problem under consideration is: How do we sample the permeability fields k(x) based

on the fractional flow F and the static data kk?. Since the fractional flow is an integrated

response, the map from the permeability field to the fractional flow is not one-to-one. Hence

this problem is ill-posed in the sense that there exist many different permeability realizations

for the given production data.

From the probabilistic point of view, this problem can be regarded as sampling the

permeability field conditioning on the fractional flow data with measurement errors. Con-

sequently, our goal is to sample from the conditional distribution P (k|F ), where k is the

fine-scale permeability field and F is the fractional flow curve measured from the production

data. Using the Bayes formula we can write

P (k|F ) ∝ P (F |k)P (k). (8.8)
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In the above formula, P (k) is the prior distribution of the permeability field, which is as-

sumed to be known. The prior distribution P (k) will also incorporate the information of the

permeability field at the sparse locations. The likelihood function P (F |k) denotes the con-

ditional probability that the outcome of the measurement is F when the true permeability

is k.

In practice, the measured fractional flow F contains measurement errors. Denote the

fractional flow for a given k as Fk, which can be computed by solving the model equation

(8.1)–(8.3) on the fine-grid. The computed Fk will contain a modeling error as well as a

numerical error. In this paper, we assume that the combined errors from the measurement,

modeling, and numerics satisfy a Gaussian distribution. That is, the likelihood function

P (F |k) takes the form

P (F |k) ∝ exp
(
−‖F − Fk‖2

σ2
f

)
, (8.9)

where F is the observed fractional flow, Fk is the fractional flow computed by solving the

model equations (8.1)–(8.3) on the fine-grid for a given k, and σf is the precision associated

with the measurement F and the numerical solution Fk. Since both F and Fk are functions

of t, ‖F − Fk‖2 denotes the L2 norm

‖F − Fk‖2 =

∫ T

0
[F (t) − Fk(t)]

2 dt.

It is worth noting that the method discussed in this paper does not depend on the specific

form of the error functions. A more general error model can be used in the simulations. We

would like to emphasize that different permeability fields may produce the same fractional

flow curve. Thus, the likelihood distribution P (F |k) is a multi-modal function of k with

multiple local maxima.

Denote the posterior distribution as

π(k) = P (k|F ) ∝ exp
(
−‖F − Fk‖2

σ2
f

)
P (k). (8.10)

Sampling from the distribution π(k) can be accomplished by using the Markov chain Monte

Carlo (MCMC) method. The main idea of MCMC method is to generate a Markov chain

with π(k) as its stationary distribution. A key step to this approach is to construct the

desired transition kernel for the Markov chain. In this paper, we use the Metropolis-Hasting
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algorithm. Suppose q(y|x) is a general transitional probability distribution, which is easy

to sample and has an explicit form. The Metropolis-Hasting MCMC algorithm (see, e.g.,

[88]) consists of the following steps.

Algorithm I (Metropolis-Hasting MCMC [88])

• Step 1. At state kn generate k from q(k|kn).

• Step 2. Accept k as a sample with probability

p(kn, k) = min

(
1,

q(kn|k)π(k)

q(k|kn)π(kn)

)
, (8.11)

i.e., take kn+1 = k with probability p(kn, k), and kn+1 = kn with probability 1 −
p(kn, k).

Starting with an arbitrary initial permeability sample k0, the MCMC algorithm gener-

ates a Markov chain {kn}. At each iteration, the probability of moving from state kn to a

next state k is q(k|kn)p(kn, k), so the transition kernel for the Markov chain {kn} is

K(kn, k) = p(kn, k)q(k|kn) +
(
1 −

∫
p(kn, k)q(k|kn)dk

)
δkn(k).

Using the explicit formula of the transition kernel, it is not difficult to prove that the target

distribution π(k) is indeed the stationary distribution of the Markov chain {kn}. As a

result, we can take kn as samples of the distribution π(k) after the chain reaches steady

state.

8.3 Preconditioning MCMC Simulations Using Coarse-scale

Models

8.3.1 The Preconditioned MCMC method

In the above Metropolis-Hasting MCMC algorithm, the major computational cost is to

compute Fk in the target distribution π(k), which involves solving the coupled nonlinear

PDE system (8.1)–(8.3) on the fine-grid. Generally, the MCMC method requires thousands

of iterations before it converges to the steady state. To quantify the uncertainty of the
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permeability field accurately, one also needs to generate a large number of different samples.

However, the acceptance rate of the direct MCMC method is very low, due to the large

dimensionality of the permeability field. The algorithm needs to test many proposals to

accept only a few permeability samples. Most of the CPU time is spent on simulating the

rejected samples. That makes the direct (full) MCMC simulations prohibitively expensive

in practice.

One way to improve the direct MCMC method is to increase its acceptance rate by

modifying the proposal distribution q(k|kn). In this work, we propose an algorithm in

which the proposal distribution q(k|kn) is adapted to the target distribution using the

coarse-scale model. Instead of testing each proposal by fine-scale computations directly, the

algorithm first tests the proposal by the coarse-scale model. This is achieved by comparing

the fractional flow curves on the coarse grid first. If the proposal is accepted by the coarse-

scale test, then a full fine-scale computation will be conducted and the proposal will be

further tested as in the direct MCMC method. Otherwise, the proposal will be rejected

by the coarse-scale test and a new proposal will be generated from q(k|kn). The coarse-

scale test filters the unacceptable proposals and avoids the expensive fine-scale tests for

those proposals. The filtering process essentially modifies the proposal distribution q(k|kn)
by incorporating the coarse-scale information of the problem. That is why the modified

method is called a preconditioned MCMC method.

Recall that the fine-scale target distribution is given by (8.10). We approximate the

distribution π(k) on the coarse scale by

π∗(k) ∝ exp
(
−‖F − F ∗

k ‖2

σ2
c

)
P (k), (8.12)

where F ∗
k is the fractional flow computed by solving a coarse-scale model of (8.1)–(8.3) for

the given k, and σc is the precision associated with the coarse-scale model. The proposed

coarse-scale model consists of upscaling the pressure equation (8.2) to obtain the velocity

field on the coarse-grid, and then using it in (8.3) to resolve the saturation on the coarse-grid.

The pressure equation is upscaled using the multiscale finite element method. The details

of the method are presented in Appendix C. Since no subgrid modeling is performed for the

saturation equation, this upscaling procedure introduces errors. In Figure 8.1, we present

a comparison of the typical fractional flows computed by fine- and coarse-scale models.
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Figure 8.1: Typical fine- and coarse-scale fractional flows.

The fractional flows are plotted against the dimensionless time “pore volume injected”

(PVI). The pore volume injected (PVI) at time T is defined as 1
Vp

∫ T
0 qt(τ)dτ , where qt is

the combined flow rates of water and oil at the production edge, and Vp is the total pore

volume of the system. PVI provides the dimensionless time for the flow displacement.

Using the coarse-scale distribution π∗(k) as a filter, the preconditioned MCMC can be

described as follows:

Algorithm II (preconditioned MCMC)

• Step 1. At kn, generate a trial proposal k′ from distribution q(k′|kn).

• Step 2. Take the real proposal as

k =






k′ with probability g(kn, k
′),

kn with probability 1 − g(kn, k
′),

where

g(kn, k
′) = min

(
1,
q(kn|k′)π∗(k′)
q(k′|kn)π∗(kn)

)
. (8.13)
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Therefore, the final proposal k is generated from the effective instrumental distribution

Q(k|kn) = g(kn, k)q(k|kn) +
(
1 −

∫
g(kn, k)q(k|kn)dk

)
δkn(k). (8.14)

• Step 3. Accept k as a sample with probability

ρ(kn, k) = min

(
1,
Q(kn|k)π(k)

Q(k|kn)π(kn)

)
, (8.15)

i.e., kn+1 = k with probability ρ(kn, k), and kn+1 = kn with probability 1 − ρ(kn, k).

In the above algorithm, if the trial proposal k′ is rejected by the coarse-scale test (Step

2), kn will be passed to the fine-scale test as the proposal. Since ρ(kn, kn) ≡ 1, no further

(fine-scale) computation is needed. Thus, the expensive fine-scale computations can be

avoided for those proposals that are unlikely to be accepted. In comparison, the regular

MCMC method requires a fine-scale simulation for every proposal k, even though most of

the proposals will be rejected at the end.

It is worth noting that there is no need to compute Q(k|kn) and Q(kn|k) in (8.15) by

the integral formula (8.14). The acceptance probability (8.15) can be simplified as

ρ(kn, k) = min

(
1,
π(k)π∗(kn)
π(kn)π∗(k)

)
. (8.16)

In fact, (8.16) is obviously true for k = kn since ρ(kn, kn) ≡ 1. For k 6= kn,

Q(kn|k) = g(k, kn)q(kn|k) =
1

π∗(k)
min

(
q(kn|k)π∗(k), q(k|kn)π∗(kn)

)

=
q(k|kn)π∗(kn)

π∗(k)
g(kn, k) =

π∗(kn)
π∗(k)

Q(k|kn).

Substituting the above formula into (8.15), we immediately get (8.16).

Since the computation of the coarse-scale solution is very cheap, Step 2 of the precon-

ditioned MCMC method can be implemented very fast to decide whether or not to run the

fine-scale simulation. The second step of the algorithm serves as a filter that avoids unnec-

essary fine-scale runs for the rejected samples. It is possible that the coarse-scale test may

reject an individual sample that will otherwise have a (small) probability to be accepted in

the fine-scale test. However, that doesn’t play a crucial role, since we are only interested
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in the statistical property of the samples. As we will show later that the preconditioned

MCMC algorithm converges under some mild assumptions.

We would like to note that the Gaussian error model for the coarse-scale distribution

π∗(k) is not very accurate. We only use it in the filtering stage to decide whether or not

to run the fine-scale simulations. The choice of the coarse-scale precision parameter σc is

important for increasing the acceptance rate. If σc is too large, then too many proposals

can pass the coarse-scale tests and the filtering stage will become less effective. If σc is too

small, then eligible proposals may be incorrectly filtered out, which will result in biased

sampling. Our numerical results show that the acceptance rate is optimal when σc is of

the same order as σf . The optimal value of σc can be estimated based on the correlation

between ‖F − Fk‖ and ‖F − F ∗
k ‖ (cf. Figure 8.2).

Based on the Gaussian precision models (8.10) and (8.12), the acceptance probability

(8.16) has the form

ρ(kn, k) = min

(
1,
π(k)π∗(kn)
π(kn)π∗(k)

)
= min


1,

exp
(
−Ek−Ekn

σ2
f

)

exp
(
−E∗

k
−E∗

kn

σ2
c

)


 , (8.17)

where

Ek = ‖F − Fk‖2, E∗
k = ‖F − F ∗

k ‖2.

If E∗
k is strongly correlated with Ek, then the acceptance probability (8.17) could be close

to 1 for certain choices of σc. Hence a high acceptance rate can be achieved at Step 3 of

the preconditioned MCMC method. To demonstrate that E∗
k is indeed strongly correlated

with Ek, we simulate Ek and E∗
k for many different permeability samples k, and plot Ek

against E∗
k in Figure 8.2. We find that the correlation coefficient between E∗

k and Ek is

approximately 0.9. If the correlation between Ek and E∗
k is strong, we can write

Ek ≃ αE∗
k + β.

Substituting this into (8.17) and choosing σ2
c = σ2

f/α, we can obtain the acceptance rate

close to 1 in Step 3. In practice, however, one does not know a priori the correlation

constant α. The approximate value of α can be estimated by a priori numerical simulations

where Ek and E∗
k are computed for a number of permeability samples.
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Figure 8.2: Cross-plot between the fine fractional error Ek = ‖F − Fk‖
2 and the coarse fractional error

E∗
k = ‖F − F ∗

k ‖
2. These two quantities are strongly correlated.

The preconditioned MCMC method employs multiscale finite element methods in the

preconditioning step. If a proposal is accepted by the coarse-scale test (Step 2), one can use

the precomputed multiscale basis functions to reconstruct the velocity field on the fine-scale.

Then the transport equation can be solved on the fine-grid coupled with the coarse-grid

pressure equation [26, 49, 50, 1]. This approach provides an accurate approximation to the

production data on the fine-grid and can be used to replace the fine-scale computation in

the second-stage (step 3). In this procedure, the basis functions are not updated in time, or

updated only in a few coarse blocks. Thus the fine-scale computation in the second-stage

of the preconditioned MCMC method (step 3) can also be implemented fast. Since the

basis functions from the first-stage are reused for the fine-scale computation, this combined

multiscale approach can be very efficient for our sampling problem.
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8.3.2 Analysis of the Preconditioned MCMC Method

Next we will analyze the preconditioned MCMC method in more detail. Denote

E =
{
k; π(k) > 0

}
,

E∗ =
{
k; π∗(k) > 0

}
,

D =
{
k; q(k|kn) > 0 for some kn ∈ E

}
.

(8.18)

The set E is the support of the posterior (target) distribution π(k). E contains all the

permeability field k that has a positive probability of being accepted as a sample. Similarly,

E∗ is the support of the coarse-scale distribution π∗(k), which contains all the k acceptable

by the coarse-scale test. D is the set of all the proposals which can be generated by the

instrumental distribution q(k|kn). For the preconditioned MCMC method to work properly,

the conditions E ⊆ D and E ⊆ E∗ must hold (up to a zero measure set) simultaneously. If

one of these conditions is not true, say, E 6⊆ E∗, then there will exist a subset A ⊂ (E \ E∗)

such that

π(A) =

∫

A
π(k)dk > 0 and π∗(A) =

∫

A
π∗(k)dk = 0,

which means no element of A can pass the coarse-scale test and A will never be visited by

the Markov chain {kn}. Thus, π(k) cannot be sampled properly.

For most practical proposals q(k|kn), such as the random walk samplers and independent

samplers, the conditions E , E∗ ⊂ D can be naturally satisfied. By choosing the parameter

σc in π∗(k) properly, the condition E ⊂ E∗ can also be satisfied (see the discussion below).

As a result, we have E ⊂ E∗ ⊂ D. In this case, E∗ is identical to the support of the effective

proposal Q(k|kn):
E∗ =

{
k; Q(k|kn) > 0 for some kn ∈ E

}
.

Next we will discuss the stability property of the preconditioned MCMC method. We

shall show that the preconditioned MCMC method shares the same convergence property

as the regular MCMC method. Denote by K the transition kernel of the Markov chain {kn}
generated by the preconditioned MCMC method. Since its effective proposal is Q(k|kn) as
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defined by (8.14), we get

K(kn, k) = ρ(kn, k)Q(k|kn) for k 6= kn, (8.19)

K(kn, {kn}) = 1 −
∫

k 6=kn
ρ(kn, k)Q(k|kn)dk. (8.20)

That is, the transition kernel K(kn, ·) is continuous when k 6= kn and has a positive proba-

bility for the event {k = kn}.
As in the regular MCMC method, it is easy to show that K(kn, k) satisfies the detailed

balance condition

π(kn)K(kn, k) = π(k)K(k, kn) (8.21)

for any k, kn ∈ E . In fact, the equality (8.21) is obviously true when k = kn. If k 6= kn,

then from (8.19) we have

π(kn)K(kn, k) = π(kn)ρ(kn, k)Q(k|kn) = min
(
Q(k|kn)π(kn), Q(kn|k)π(k)

)

= min

(
Q(k|kn)π(kn)

Q(kn|k)π(k)
, 1

)
Q(kn|k)π(k) = ρ(k, kn)Q(kn|k)π(k) = π(k)K(k, kn).

So the detailed balance condition (8.21) is always satisfied. Using (8.21), we can easily show

that π(A) =
∫
K(k,A)dk for any A ∈ B(E), where B(E) denotes all the measurable subsets

of E . Thus, π(k) is indeed the stationary distribution of the transition kernel K(kn, k).

In the regular MCMC method, the proposal q(k|kn) is usually chosen to satisfy

q(k|kn) > 0 for any (kn, k) ∈ E × E , (8.22)

which guarantees that the resulting regular MCMC method is irreducible. The similar

statement is true for the preconditioned MCMC method.

Lemma 8.1 If the proposal distribution q(k|kn) satisfies (8.22) and E ⊂ E∗ holds, then the

chain {kn} generated by the preconditioned MCMC method is strongly π-irreducible.

Proof According to the definition of strong irreducibility, we only need to show that
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K(kn, A) > 0 for all kn ∈ E and any measurable set A ⊂ E with π(A) > 0. Note that

K(kn, A) ≥
∫

A\kn
K(kn, k)dk =

∫

A\kn
ρ(kn, k)Q(kn, k)dk

=

∫

A\kn
ρ(kn, k)g(kn, k)q(k|kn)dk.

In the above inequality, the equal sign holds when kn 6∈ A. Since π(A) =
∫
A π(k)dk > 0,

it follows that m(A) = m(A \ kn) > 0, where m(A) is the Lebesgue measure. Since A ⊂ E
and E ⊂ E∗, both ρ(kn, k) and g(kn, k) are positive for k ∈ A. Combining the positivity

assumption (8.22), we can easily conclude that K(kn, A) > 0. �

Most practical proposal distributions, such as random walk samplers or independent

samplers, satisfy the positivity condition (8.22). Thus condition (8.22) poses only a mild

restriction in practice. As we will see later, the proposals used in our numerical experiment

naturally satisfy the condition (8.22).

Based on the stability property of Markov chains [88, 69], the following convergence

result is readily available:

Theorem 8.1 [88] Suppose (8.22) is true and E ⊂ E∗ holds, then the preconditioned

Markov chain {kn} is ergodic: For any function h(k),

lim
N→∞

1

N

N∑

n=1

h(kn) =

∫
h(k)π(k)dk. (8.23)

If the chain {kn} is also aperiodic, then the distribution of kn converges to π(k) in the total

variation norm

lim
n→∞

sup
A∈B(E)

∣∣Kn(k0, A) − π(A)
∣∣ = 0 (8.24)

for any initial state k0.

To get convergence property (8.24), we need to show that the Markov chain {kn} gen-

erated by the preconditioned MCMC method is indeed aperiodic. Recall that a simple

sufficient condition for aperiodicity is that K(kn, {kn}) > 0 for some kn ∈ E . In other

words, the event {kn+1 = kn} happens with a positive probability in the preconditioned
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MCMC method. From the definition (8.20), we have

K(kn, {kn}) = 1 −
∫

k 6=kn
ρ(kn, k)Q(k|kn)dk = 1 −

∫

k 6=kn
ρ(kn, k)g(kn, k)q(k|kn)dk.

Consequently, K(kn, {kn}) ≡ 0 requires g(kn, k) = 1 and ρ(kn, k) = 1 for almost all k ∈ D,

which means that all the proposals generated by q(k|kn) are correct samples of distributions

π(k) and π∗(k). This is obviously not true in practice. Thus, the practical preconditioned

MCMC method is always aperiodic and converges to the target distribution π(k) in the

sense of (8.24).

Next we discuss the necessary condition E ⊆ E∗, which is essential to guarantee the con-

vergence of the preconditioned MCMC method. Due to the Gaussian form of the posterior

distribution, π(k) and π∗(k) do not have a compact support and the domain E (or E∗) is the

whole space spanned by all k. However, if the precision parameters σf and σc are relatively

small, then π(k) and π∗(k) are very close to zero for most proposals. From the numerical

point of view, the proposal k is very unlikely to be accepted if π(k) or π∗(k) is close to zero.

Consequently, the support of the distributions should be interpreted as E = {k;π(k) > δ}
and E∗ = {k;π∗(k) > δ}, where δ is a small positive number.

If k ∈ E , then π(k) > δ and ‖Fk − F‖2/σ2
f is not very large. To make k ∈ E∗,

‖F ∗
k − F‖2/σ2

c should not be very large either. If ‖F ∗
k − F‖2 is bounded by ‖Fk − F‖2

up to a multiplicative constant, then the condition E ⊆ E∗ can be satisfied by choosing

the parameter σc properly. For most upscaled models, the coarse-scale quantity is indeed

bounded by the corresponding fine-scale quantity. For example, the upscaled velocity v
∗ in

the saturation equation is obtained by averaging the fine-scale velocity v over the coarse-grid

blocks

v
∗(x) =

∑

i

(
1

|Ωi|

∫

Ωi

v(y)dy

)
1Ωi(x),

where Ωi ⊂ Ω are the coarse blocks. It is easy to show that

‖v∗‖2
L2(Ω) =

∑

i

1

|Ωi|
(∫

Ωi

v(y)dy
)2

≤
∑

i

1

|Ωi|
(∫

Ωi

1(y)2dy
)(∫

Ωi

v
2(y)dy

)
= ‖v‖2

L2(Ω).

(8.25)

Thus, the coarse-scale velocity is bounded by the corresponding fine-scale one. We would
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like to remark that for some nonlinear averaging operators, one can also show that the

coarse-scale quantities are bounded by the corresponding fine-scale quantities. One of the

examples is the homogenization operator for linear elliptic equations.

In general, it is difficult to carry out such estimates for fractional flows. However, coarse-

scale fractional flows can be interpreted as some type of average of the corresponding fine-

scale fractional flows. Indeed, the fine-scale fractional flow curve can be regarded as the

travel times along the characteristics of the particles that start at the inlet. The coarse-

scale fractional flow, on the other hand, represents an average of these travel times over

characteristics within the coarse domain. In general, the estimation similar to (8.25) does

not hold for fractional flow curves, as our next counter-example shows. For simplicity, we

present the counter-example for the single-phase flow in porous media with four layers. This

example can be easily generalized. Denote by ti, i = 1, 2, 3, 4 the breakthrough times for

the layers. Consider two fine-scale (with four layers) permeability fields with breakthrough

times t1 = T1, t2 = T2, t3 = T1, t4 = T2 and t1 = T1, t2 = T1, t3 = T2, t4 = T2, respectively.

These two fine-scale permeability fields will give the same fractional flows, since the times

of the flights are the same up to a permutation. Now we consider the upscaling of these two

fine-scale permeability fields to two-layered media. Upscaling is equivalent to averaging the

breakthrough times. Consequently, the breakthrough times for the corresponding upscaled

models are t∗1 = 0.5(T1 + T2), t
∗
2 = 0.5(T1 + T2), and t∗1 = 0.5(T1 + T1) = T1, t

∗
2 =

0.5(T2 +T2) = T2, respectively. Thus, the coarse-scale models give different fractional flows,

even though the fractional flows are identical for the fine-scale models. However, this type of

counter-example can be avoided in practice, because the near-well values of the permeability

are known, and consequently, permutation of the layers can be avoided.

8.3.3 Numerical Results

In this section we discuss the implementation details of the preconditioned MCMC method

and present the numerical results. Suppose the permeability field k(x), where x = (x, z),

is defined on the unit square Ω = [0, 1]2. We assume that the permeability field k(x) is

a log-normal process and its covariance function is known. The observed data include the

fractional flow curve F and the values of the permeability at sparse locations. We discretize

the domain Ω by a rectangular mesh and the permeability field k is represented by a matrix

(thus k is a high dimensional vector). For the boundary conditions, we assume that p = 1,
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S = 1 on the boundary x = 0, and p = 0 on the boundary x = 1. We assume no flow

conditions on the lateral boundaries z = 0 and z = 1. We will consider both single-phase

and two-phase flow displacements in the simulation.

Using the Karhunen-Loeve expansion [59, 97], the permeability field can be expanded in

terms of an optimal L2 basis. By truncating the expansion we can represent the permeability

matrix by a small number of random parameters. To impose the hard constraints (the

values of the permeability at prescribed locations), we will sample a linear subspace of the

random parameter space, which will automatically yield permeability fields satisfying the

hard constrains.

Denote Y (x, ω) = log[k(x, ω)], where the random element ω is included to remind us

that k is modeled as a random field. Suppose Y (x, ω) is a second order stochastic process.

Without loss of generality, we assume that E[Y (x, ω)] = 0. Denote the covariance function

of Y as R(x,y) = E [Y (x, ω)Y (y, ω)]. Suppose Y (x) has the KLE

Y (x, ω) =

∞∑

k=1

√
λk θk(ω)φk(x), (8.26)

where φk and λk satisfy

∫

Ω
R(x,y)φk(y)dy = λkφk(x), k = 1, 2, . . . . (8.27)

We assume that the eigenvalues λk are ordered in descending order λ1 ≥ λ2 ≥ . . ..

Suppose the permeability field k(x, ω) is a log-normal homogeneous stochastic process.

Then Y (x, ω) is a Gaussian process and θk are independent standard Gaussian random

variables. We assume that the covariance function of Y (x, ω) has the form

R(x,y) = σ2 exp
(
−|x1 − y1|2

2L2
1

− |x2 − y2|2
2L2

2

)
, (8.28)

where L1 and L2 are the correlation lengths in each dimension, and σ2 = E(Y 2) is a

constant. In our first example, we set L1 = 0.2, L2 = 0.2 and σ2 = 2. We first solve

the eigenvalue problem (8.27) numerically and obtain the eigenpairs {λk, φk}. In Figure

8.3 the first 50 eigenvalues are plotted. As we can see, the eigenvalues of the KLE decay

very fast. It has been shown in [32] that the eigenvalues decay exponentially fast for the

covariance function (8.28). Therefore, only a small number of terms need to be retained
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Figure 8.3: Eigenvalues of the KLE for the Gaussian covariance with L1 = L2 = 0.2. The eigenvalues
decay very fast.

in the truncated expansion (8.26). We can sample Y (x, ω) easily from the truncated KLE

(8.26) by generating independent Gaussian random variables θk.

For a different covariance function such as

R(x,y) = σ2 exp
(
−|x1 − y1|

L1
− |x2 − y2|

L2

)
,

the eigenvalues of the integral equation (8.27) may decay slowly (only algebraically [32]). To

achieve the same accuracy, more terms should be retained in the truncated expansion (8.26),

which will increase the dimension of the parameter space to represent the permeability.

As a result, sampling the permeability from the distribution will be more expensive for

both the direct MCMC method and the preconditioned MCMC method. However, small

parameter space does not favor the preconditioned MCMC method and the preconditioning

technique is applicable independent of the problem dimension. For permeability with higher

dimensional parameters, the acceptance rates of the direct MCMC method will be even

lower. Consequently, the preconditioned MCMC method will be preferable since its filtering

procedure can increase the acceptance rates dramatically. Note that if the permeability field

is not a log-normal process, then θk in the expansion (8.26) are not necessarily Gaussian

random variables. However, we can still sample the permeability field from the truncated
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expansion (8.26) by sampling the random variables θk.

In the numerical experiments, we first generate a reference permeability field by the full

KLE (8.26) and compute the corresponding fractional flow. To propose permeability fields

from the prior (unconditioned) distribution, we keep 20 terms in the KLE. Suppose the

permeability field is known at eight distinct points. This condition is imposed by setting

20∑

k=1

√
λkθkφk(xj) = αj , (8.29)

where αj (j = 1, . . . , 8) are prescribed constants. For simplicity, we set αj = 0 for all

j = 1, . . . , 8. In the simulations we propose 12 θi and calculate the rest of θi by solving

the linear system (8.29). In all the simulations, we test 50,000 proposals and iterate the

Markov chain 50,000 times. Because the direct MCMC computations are expensive, we do

not select the large model problems, and only consider 40×40 and 60×60 fine-scale models.

However, the preconditioned MCMC method is applicable independent of the size of the

permeability field.

We have considered two types of instrumental proposal distributions q(k|kn): the inde-

pendent sampler and the random walk sampler. In the case of independent sampler, the

proposal distribution q(k|kn) is chosen to be independent of kn and equal to the prior (un-

conditioned) distribution. In the random walk sampler, the proposal distribution depends

on the previous value of the permeability field and is given by k = kn + ǫn, where ǫn is a

random perturbation with prescribed distribution. If the variance of ǫn is chosen to be very

large, then the random walk sampler becomes similar to the independent sampler. Although

the random walk sampler allows us to accept more realizations, it often gets stuck in the

neighborhood of a local maximum of the target distribution. For both proposal distribu-

tions, we have observed consistently more than ten times of increase in the acceptance rate

when the preconditioned MCMC method is used. In this thesis we only report the results

using the independent samplers.

For the first set of numerical tests, we use 40 × 40 fine-scale permeability field and

10 × 10 coarse-scale models. The permeability field is assumed to be log-normal, with

L1 = L2 = 0.2 and σ2 = 2 for the covariance function (7.10). In Figure 8.4, the acceptance

rates are plotted against different coarse-scale precisions σc. Here the acceptance rate refers

to the ratio between the number of accepted permeability samples and the number of fine-
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Figure 8.4: Acceptance rate of the preconditioned MCMC with different coarse-scale precisions. Single-
phase flow and σ2

f = 0.001.

scale simulations that are performed. The acceptance rate for the direct (full) MCMC is

plotted using dashed line, and it is equal to 0.001. The vertical doted line marks the coarse-

scale precision σc = σf . If σc is very small, then the total number of accepted realizations

is also small, even though the acceptance rate is higher. We have found that if σc is of the

same order as σf then the preconditioned MCMC method accepts almost the same number

of proposals as the direct MCMC, but requires only 10% of the fine-scale runs. Note that as

σc increases the acceptance rate decreases and reaches the acceptance rate of full MCMC.

Indeed, if σc is very large, then all the proposals will be accepted by the coarse-scale test,

and there is no gain in preconditioning. In general, one can estimate the optimal σc based

on a limited number of simulations, prior to the full simulations as described above.

In Figure 8.5 we plot the fractional flows of the accepted permeability realizations. The

bold solid line is the reference fractional flow curve and the dotted lines are the fractional

flows of accepted samples. As we can see, the fractional flows of accepted realizations are

very close to the observed fractional flow, because the precision is taken to be σ2
f = 0.001.

In Figure 8.6, we plot the fractional flow error Ek = ‖F −Fk‖2 of the accepted samples for

both the direct and preconditioned MCMC methods. We observe that the errors of both

of the Markov chains converge to a steady state within 20 accepted iterations (corresponds
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Figure 8.5: The reference fractional flow (solid line) and fractional flows of accepted permeability samples
(dotted lines). The fractional flow of the sampled permeability fields are very close to the reference fractional
flow.

to 20,000 proposals). Note that we can assess the convergence of the MCMC methods

based on the fractional flow errors. This is a reasonable indicator for the convergence and

is frequently used in practice. Given the convergence result of the MCMC method, a longer

chain can be easily generated when it is needed.

We present the last five accepted permeability realizations generated by the precondi-

tioned MCMC method in Figure 8.7. The first plot is the reference (true) permeability field

and the others are the last five accepted permeability realizations. Some of these realiza-

tions closely resemble the true permeability field. And they are all eligible samples because

their fractional flows are in good agreement with the reference (true) fractional flow. One

can use these permeability samples for the uncertainty quantifications.

For the next numerical examples, we consider the anisotropic permeability case with

L1 = 0.4, L2 = 0.05, and σ2 = 2. We consider a 60×60 fine grid. As in the previous example,

we use eight conditioning points and truncate the KLE expansion of the permeability field

with 20 terms to maintain a sufficient accuracy. In Figure 8.8, we plot the acceptance

rates for 6× 6 and 10× 10 coarse-scale models with different coarse-scale precision σ2
c . The

acceptance rate for the direct (full) MCMC is 0.0008 and it is designated by the dashed

line. The acceptance rates is increased by more than ten times in the preconditioned MCMC
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Figure 8.6: Fractional flow errors for the accepted permeability samples

method when σc is slightly larger than σf (the vertical doted line marks the choice σc = σf ).

We also observe higher acceptance rate for 10× 10 coarse-scale model than for 6× 6 coarse-

scale model. This is because 10× 10 coarse-scale model provides more accurate predictions

of the fine-scale results compared to the 6× 6 coarse-scale model. As in the previous cases,

when the σc is slightly larger than σf , the preconditioned MCMC method can accept the

same number of samples as the underlying full MCMC but performs only 10 percent of

the fine-scale simulations. Moreover, both the direct (full) MCMC and the preconditioned

MCMC methods converge to the steady state within 20 accepted iterations, which indicates

that both chains have the similar convergence properties. In Figure 8.9, we plot the last five

accepted samples of the permeability field generated by the preconditioned MCMC method

using 6× 6 coarse-scale model. Some of these samples closely resemble the reference (true)

permeability field.

Our next set of numerical experiments are for the two-phase flow simulations. We have

observed very similar rate increases for two-phase flow simulations, and thus restrict our

numerical results to only a few examples. We consider µw/µo = 5.0 and krw(S) = S2,

kro(S) = (1− S)2. Typically, the upscaling error for two-phase flows is very similar to that

of the single-phase flows. We consider 40 × 40 fine-scale log-normal permeability field with

L1 = L2 = 0.2 and 10 × 10 coarse-scale models. In Figure 8.10, the acceptance rate with
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Figure 8.7: The last five accepted realizations of the log permeability field. The “+” sign marks the
locations of the hard data. Some of these realizations closely resemble the exact permeability field.
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Figure 8.8: Acceptance rate of the preconditioned MCMC method with 6 × 6 and 10 × 10 coarse-scale
models. Anisotropic single-phase flow and σ2

f = 0.001.

fine-scale precision σ2
f = 0.001 is plotted. As in the case of the single-phase flow simulations,

we observe more than ten times increase in the acceptance rate. The preconditioned MCMC

method accepts the same amount of samples as in the full MCMC with less than 10% of the

fine-scale runs. To study the relative convergence of the preconditioned MCMC method, we

plot the fractional flow error for both full and preconditioned MCMC simulations in Figure

8.11. It can be seen from this figure that both the full and preconditioned MCMC methods

reach the steady state within 20 accepted iterations. This indicates that the direct and

preconditioned MCMC methods have similar convergence properties. The typical samples

for the two-phase flow are very similar to those for the single-phase flow, and we do not

present them here.

As we mentioned earlier, the full MCMC method and the preconditioned MCMC method

accept approximately the same amount of samples for a fixed number of tested proposals.

Denote N as the total number of tested proposals, then the direct MCMC method requires

exactly N number of fine-scale simulations. Suppose M < N is the number of fine-scale

simulations conducted in the preconditioned MCMC method. Denote tf and tc as the CPU

times for a single fine-scale and coarse-scale forward simulation. Then the computational

costs for the direct MCMC method and the preconditioned MCMC method would be Ntf
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Figure 8.9: The last five accepted realizations of log permeability fields for the anisotropic single-phase
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Figure 8.10: Acceptance rate of the preconditioned MCMC method with different coarse-scale precisions.
Two-phase flow and σ2

f = 0.001.

and Ntc+Mtf respectively. Therefore, the CPU cost for the preconditioned MCMC method

is only tc
tf

+ M
N of that of the direct MCMC method. The coarse-scale computational cost

tc is usually much smaller than the fine-scale computational cost tf . Suppose the fine-scale

model is upscaled five times in each direction. Then solving the pressure equation at each

time step is about 25 times faster on the coarse grid than on the fine grid. Moreover, the

saturation equation is also solved on the coarse grid and with larger time steps. This makes

the overall coarse-scale computations of the two-phase flow equation at least 25 times faster

than the fine-scale computations, i.e., tc ≈ 0.04tf . If the acceptance rate is increased by

more than ten times in the preconditioned MCMC method, as in our numerical experiments,

then M
N < 0.1, and the overall CPU cost of the preconditioned MCMC method would be

only 10% of the CPU costs of the direct MCMC method. Note that using very coarse-scale

models (fewer coarse blocks) reduces tc but increases the fine-scale run ratio M
N . On the other

hand, using finer coarse-scale models reduces the ratio M
N but increases tc. Consequently, a

somewhat moderate coarsening (five to ten times coarsening in each direction for large-scale

fine models) can provide an optimal choice in the preconditioning of the MCMC simulations.
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Figure 8.11: Fractional flow errors for the accepted permeability samples in two phase-flow.

8.4 WCE Methods and Coarse Gradient Langevin Algorithms

8.4.1 Proposal Distributions Based on Langevin Diffusions

In the above numerical method, we used the independent sampler as the proposal distribu-

tion for the preconditioned MCMC method. Another important type of proposal distribu-

tion can be derived from the Langevin diffusion, as proposed by Grenander and Miller [41].

The Langevin diffusion is defined by the stochastic differential equation

dkτ =
1

2
∇ log π(kτ )dτ + dWτ , (8.30)

where Wτ is the standard Brownian motion vector with independent components. Denote

the probability density distribution (pdf) of kτ at time τ as

p(k, τ) = P
(
kτ = k

∣∣ k{τ=0} = k0

)
,
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then the pdf p(k, τ) satisfies the Fokker-Planck equation






∂
∂τ p(k, τ) + 1

2∇ ·
(
∇ log π(k) p(k, τ)

)
= 1

2∆p(k, τ),

p(k, 0) = δ(k − k0).

The above equation is a heat equation with time independent coefficients. Its solution

converges to a steady state when τ goes to infinity. In other words, the Markov chain kτ

determined by (8.30) has a stationary distribution when τ is large. Denote

P (k) = lim
τ→∞

p(k, τ),

then P (k) satisfies the equation

∇ ·
(
∇ log π(k)P (k)

)
= ∆P (k). (8.31)

It is easy to check that P (k) = π(k) is the solution of the elliptic equation (8.31). So π(k)

is the stationary distribution of the random solution kτ of the diffusion equation (8.30).

Suppose we discretize the equation (8.30) by a numerical scheme, such as

kn+1 = kn +
∆τ

2
∇ log π(kn) +

√
∆τ ǫn,

where ǫn are independent standard normal distributions. Since π(k) is the stationary distri-

bution of kτ , it may be tempting to take kn as samples from the distribution π(k) for large

n. However, the discrete solution kn can have quite different asymptotic behavior from the

continuous diffusion process kτ [88]. In general, the discrete solution kn does not necessarily

have π(k) as its stationary distribution. Instead of taking kn as samples directly, we use

them as test proposals for the MCMC algorithm. The samples will be further tested and

corrected by the Metropolis acceptance-rejection step (8.11). Consequently, we can choose

the proposal generator q(Y |kn) in Algorithm I as

Y = kn +
∆τ

2
∇ log π(kn) +

√
∆τ ǫn. (8.32)

Since ǫn are independent Gaussian vectors, the transition distribution of the proposal gen-
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erator (8.32) is

q(Y |kn) ∝ exp

(
−‖Y − kn − ∆τ

2 ∇ log π(kn)‖2

2∆τ

)
,

q(kn|Y ) ∝ exp

(
−‖kn − Y − ∆τ

2 ∇ log π(Y )‖2

2∆τ

)
.

(8.33)

The proposal (8.32) can be regarded as a problem-adapted random walk. The gradient

of the target distribution is included to move the samples to regions with larger probability.

The use of the gradient information in inverse problems for subsurface characterization is

not new. In an original work, Oliver et al [78, 79] developed the randomized maximum

likelihood method, which uses the gradient information of the target distribution. This ap-

proach uses unconditional realizations of the production and permeability data and solves

a deterministic gradient-based minimization problem. The solution of this minimization

problem is taken as a proposal and is accepted with probability 1, since the acceptance

probability is very difficult to estimate. In addition to the need of solving a gradient-based

inverse problem, this method does not guarantee a proper sampling of the posterior distri-

bution. Though the Langevin formula (8.32) shares the same spirit with the randomized

maximum likelihood method, it is more efficient and rigorous, and one can compute the

acceptance probability easily. The Langevin algorithms also allow the MCMC method to

achieve high acceptance rates.

However, the Langevin algorithms require computing the gradients of the target distri-

bution π(k), which is very expensive. As we emphasized before, to valuate the distribution

π(k) for a given k, we need to solve the nonlinear PDE system (8.1)–(8.3) numerically.

To compute the gradient of π(k) numerically, we need to solve the nonlinear PDE system

(8.1)–(8.3) multi times. Following the idea of the preconditioned MCMC method where

coarse-scale models are used, we propose to compute the gradients of the distribution π(k)

based on its coarse-scale models.

To model π(k) on the coarse-scale, we define a coarse-grid map F ∗
k between the per-

meability field k and the fractional flow F . The coarse scale map F ∗
k can be constructed

explicitly from the upscaled WCE solution of the PDE system (8.1)-(8.3). We will discuss

the details of constructing F ∗
k in the next section. Based on the coarse-scale fractional flow
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F ∗
k , the target distribution π(k) can be approximated on the coarse-scale as

π∗(k) ∝ exp

(
−‖F − F ∗

k ‖2

σ2
c

)
P (k), (8.34)

where σc is the precision of the coarse-scale models. Then we generate the Langevin samples

(8.32) using the gradient of the coarse-scale target distribution

Y = kn +
∆τ

2
∇ log π∗(kn) +

√
∆τ ǫn. (8.35)

The transition distribution of the coarse-grid proposal (8.35) is

q∗(Y |kn) ∝ exp

(
−‖Y − kn − ∆τ

2 ∇ log π∗(kn)‖2

2∆τ

)
,

q∗(kn|Y ) ∝ exp

(
−‖kn − Y − ∆τ

2 ∇ log π∗(Y )‖2

2∆τ

)
.

(8.36)

Since the coarse-scale distribution π∗(kn) can be constructed explicitly from the WCE so-

lution, computing its gradient is straightforward. There is no need to solve the nonlinear

PDE system (8.1)–(8.3) repeatedly. The coarse-scale distribution π∗(k) serves as a regu-

larization of the original fine-scale distribution π(k). By replacing the fine-scale gradient

with the coarse-scale gradient, we can reduce the computational cost dramatically but still

direct the proposals to regions with larger probabilities.

Because of the discretization errors, the proposals generated by the Langevin algorithms

are not exact samples from its stationary distribution. We still need to test them by the

Metropolis acceptance-rejection step. Using the coarse-scale Langevin algorithm as the

proposal distribution for the preconditioned MCMC method, we get the following revised

MCMC algorithm:

Algorithm III (preconditioned coarse-gradient Langevin algorithm)

• Step 1. At kn, generate a trial proposal Y from the coarse Langevin algorithm (8.35).

• Step 2. Take the proposal k as

k =





Y with probability g(kn, Y ),

kn with probability 1 − g(kn, Y ),
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where

g(kn, Y ) = min

(
1,
q∗(kn|Y )π∗(Y )

q∗(Y |kn)π∗(kn)

)
.

Therefore, the proposal k is generated from the effective instrumental distribution

Q(k|kn) = g(kn, k)q
∗(k|kn) +

(
1 −

∫
g(kn, k)q

∗(k|kn)dk
)
δkn(k). (8.37)

• Step 3. Accept k as a sample with probability

ρ(kn, k) = min

(
1,

Q(kn|k)π(k)

Q(k|kn)π(kn)

)
, (8.38)

i.e., kn+1 = k with probability ρ(kn, k), and kn+1 = kn with probability 1 − ρ(kn, k).

Using the Karhunen-Loeve expansion (8.26), the permeability field k is represented

as Hermite polynomial expansions of the Gaussian random variables θ. By changing the

variables from k to θ, we can reduce the dimension of the permeability dramatically. To

sample the permeability k, we only need to sample the random parameters θ. Consequently,

we can rewrite the posterior distribution π∗(k) in the θ parameter space and apply Algorithm

III to sample θ. For this purpose, denote

Π∗(θ) = π∗(k(θ)),

then we can generate samples of θ using the following Langevin algorithm:

dθs =
1

2
∇ log Π∗(θs) + dWs. (8.39)

For each sample of θ, we can easily get the corresponding sample for the permeability field

k(x). In the next section, we construct the coarse-scale distribution Π∗(θ) explicitly using

the upscaled WCE method. With the explicit formula for Π∗(θ), we can generate samples

for θ by the Langevin algorithm (8.39) very easily, without the need of solving any nonlinear

PDEs.
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8.4.2 Constructing Π∗(θ) Explicitly by the Upscaled WCE Method

To construct the coarse-scale distribution Π∗(θ), we only need to find out the nonlinear

map between θ and the coarse-scale fractional flow F ∗ = F ∗(θ). To do that, we first solve

the flow problem (8.1)–(8.3) by the WCE method and represent all the random solutions as

spectral expansions of θ. Then the fractional flow map F ∗(θ) can be constructed explicitly

based on its definition (8.7).

Next we will discuss how to solve the nonlinear PDE system (8.1)–(8.3) by the WCE

method. For the ease of presentation, we will focus on the single phase flows only. The same

procedure can be applied to two-phase flows in a very similar way, though the formulae are

more complicated. More specifically, we consider the following PDE system






∇ · (k∇P ) = q,

v = −k∇P,
∂S
∂t + ∇ · (vS) = 0.

(8.40)

The domain and boundary conditions are the same as in Section 8.3.3.

Since the permeability field k is a function of the Gaussian random variables θ, so are

all the random solutions of equation (8.40). Denote their WCEs as

S(x, t) =
∑

α∈J
Sα(x, t)Tα(θ),

v(x, t) =
∑

α∈J
Sα(x, t)Tα(θ),

P (x, t) =
∑

α∈J
Pα(x, t)Tα(θ).

The WCE coefficients satisfy the following PDE system:






∇ ·
(∑

γ∈J
Aα,γ(x)∇Pγ(x)

)
= qI{α=0},

vα = −
∑

γ∈J
Aα,γ(x)∇Pγ(x) ,

∂Sα
∂t

+
∑

p∈J

∑

0≤β≤α
C(α, β, p) ∇ · (vα−β+p Sβ+p) = 0,

(8.41)

where the coefficient Aα,γ(x) is defined by formula (7.24) and C(α, β, p) is defined by (2.39).
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To solve the WCE system (8.41) numerically, we first solve the elliptic system by the

upscaled WCE method (see Chapter 7). Then we construct the coarse-scale velocity field

from the pressure solution, and use it resolve the coarse-scale saturation from the transport

equation. This procedure is very similar to the upscaling of the deterministic single-phase

flow problem. Once the WCE coefficients of the random solutions are available, we can

construct the coarse-scale fractional flow map explicitly

F ∗(θ, t) = 1 −
∫
∂Ωout S vndl∫
∂Ωout vndl

= 1 −
∑

α fα(t)Tα(θ)∑
α gα(t)Tα(θ)

, (8.42)

where

fα(t) =
∑

p

∑

β6α

∫

∂Ωout
C(α, β, p)Sα−β+pvβ+p · ndl,

and

gα(t) =

∫

∂Ωout
vα · ndl.

With the coarse-scale fractional flow map F ∗(θ, t) available explicitly, the coarse-scale

distribution Π∗(θ) becomes explicit also. We can immediately generate permeability pro-

posals based on the coarse-scale Langevin algorithm (8.39), and apply Algorithm III for

the dynamic data integration. Since the formula for Π∗(θ) is available explicitly, we don’t

need to solve the nonlinear PDE system (8.1)–(8.3) repeatedly using the coarse-scale model

based on the multiscale finite element. Instead, the upscaled WCE system (8.41) is solve

only once. So the Algorithm III combines the merits of the Langevin algorithm and up-

scaled WCE method with that of the two-stage MCMC sampling. In a recent [18] work, we

did extensive numerical experiments for the coarse-gradient Langevin algorithm combined

with the two-stage MCMC method, but without using the upscaled WCE method as the

coarse-scale model. Instead the regular coarse-scale model based on the multiscale finite ele-

ment was used. That intermediate version of Algorithm III was shown to be ten times more

efficient than the regular MCMC method. In the future, we will incorporate the upscaled

WCE solver into the algorithm and avoid the repeated simulations of the coarse-model in

the first stage. It is expected the upscaled WCE solver will reduce the computational cost

further and accelerate the two-stage MCMC sampling.
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Chapter 9

Concluding Discussions

In this thesis we explored a numerical method based on Wiener chaos expansions for solving

SPDEs driving by Brownian motion forcing. Using the exact expansions for products of

WCE bases, we were able to derive explicit Wiener chaos propagators for a wide range of

SPDEs arising in fluid mechanics. We also derived analytical formulae for high order statis-

tical moments in terms of the Wiener chaos coefficients. Based on the asymptotic decaying

rate of Wiener chaos coefficients, we designed a sparse truncation strategy for the WCE

propagator, which can substantially reduce the dimension of the problem while retaining

the same asymptotic convergence rate. By building a generic and robust numerical solver,

we can handle nonlinear WCE propagators with hundreds of PDEs in our computations.

We applied the WCE method to a wide range of applications and carefully studied its per-

formance. Our numerical results convincingly demonstrate that the WCE-based method

is more efficient and accurate than MC simulation for short to moderate time solutions.

To better understand the performance of the WCE method, we conducted a rigorous error

analysis for a model equation, where a semi-analytical solution can be constructed. The

analysis reveals the important convergence properties of the WCE method and provides

guidance for the numerical computations.

Though quite efficient and accurate in short time intervals, the WCE method has serious

difficulties for long time integrations. When the SPDEs are solved in longer time intervals,

the required number of WCE coefficients will increase very quickly. If truncated at a limited

order, the WCE solutions will have difficulty resolving the small structures of the random

solutions. To solve this problem partially, we proposed a new computational strategy where

MC simulations are used to correct the unresolved small scales in the Wiener chaos solutions.

Since it is very easy to construct realizations from the Wiener chaos solution, we can subtract
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the Wiener chaos solution from each MC realization, and hence substantially reduce the

variance of the MC simulation. The numerical experiments demonstrate that this WCE-

MC hybrid method can handle SPDEs in much longer time intervals or with larger random

forcing than the direct WCE method can. The WCE-MC hybrid method is also shown to

be more efficient than the Wiener chaos method or the MC simulation alone in relatively

long time intervals.

Using the new numerical methods we had designed, we verified numerically the existence

of a unique stationary measure for a stochastic Burgers equation. For the reaction-diffusion

equation in random shear flows, our numerical results demonstrate that the front propa-

gation speed obeys the quadratic enhancement law, which confirms the conjecture by Jack

Xin et al. [76] about the precise asymptotical relations of the front speed in white-in-time

shear flows.

In the second part of the thesis, we revisited the stochastic finite element method for

solving stochastic elliptic equations, and resolved a few technical difficulties in this ap-

proach. We further derived an upscaling formulation for the elliptic system of the Wiener

chaos coefficients, and applied it for uncertainty quantification in subsurface modeling. Un-

certainty quantification is a very important research topic in petroleum engineering. An

effective way to reduce the uncertainties in the reservoir simulation is to sample the reservoir

properties conditioned on dynamical production data. For this purpose, we have developed

a two-stage MCMC method to sample the reservoir permeability. The new method employs

multiscale finite element method as the coarse-scale model and uses it to filter unacceptable

permeability proposals. The coarse-scale model can effectively reduce the fine-scale compu-

tational costs and increase the acceptance rate of the MCMC sampling. We applied the new

method to both single-phase flows and two-phase flows. Numerical results demonstrate that

the two-stage MCMC method is ten times more efficient than the regular MCMC sampling

method.

9.1 Future Work

The WCE-MC method can extend the application of the WCE method to much longer

time intervals. However, the WCE-MC method is still sensitive to the size of the time

interval. In an arbitrarily long time interval, the sparse WCE solution can only resolve
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limited information of the random solution, hence the WCE-MC will not be much more

efficient than the MC simulation combined with other acceleration techniques. Designing

efficient numerical methods based on Wiener chaos expansion remains to be an open and

challenging research problem.

In our current study, we choose to apply the WCE method to a single large time intervals.

Since Brownian motion forcing has independent increments, it would be more desirable to

divide the large time interval into small ones, and apply the WCE method repeatedly on

those small intervals. The difficulty with this approach is that we have to deal with random

initial conditions with rapidly increasing dimensions. At each small time interval, the initial

condition is the final solution in the previous time interval, so it is already represented as

a Wiener chaos expansion of the historical randomness. The dimension of the random

initial condition will increase very quickly. How to compress efficiently the random initial

conditions is the key for this approach to work. Initially, we tried to compress the initial

conditions by its Karhunen-Loeve expansion (7.5). As we have pointed out, the Karhunen-

Loeve expansion is an optimal expansion and hence an ideal candidate for the compression

purpose. However, the initial conditions on the subsequent small time intervals are non-

Gaussian processes. As a result, the uncorrelated random variable θk in the KLE of the

initial conditions are not Gaussian variables. In fact, their distributions are not known

explicitly, and we don’t know how to incorporate them in the framework of the Wiener chaos

expansion. In other words, it is very difficult to evolve the initial randomness correctly if

we compress them by their KLEs. How to effectively reduce the dimension of the random

initial condition is the most difficult part in designing a practical localized WCE method.

Much more research efforts are required to make any progress along this direction.

Using the WCE method, we can reduce the stochastic reaction-diffusion equation (6.22)

into a deterministic system, which opens a door for analyzing the asymptotical behavior

of the stochastic system. Since the front propagation problems have been well studied

in deterministic cases, we can naturally translate those techniques and results to the de-

terministic WCE system, and use it to analyze the properties of the original stochastic

systems. This approach is quite different from the variational principles used by Xin et

al. [75, 76], and is expected to be able to bring new perspectives to the research of the

stochastic reaction-diffusion problems.
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Appendix A

Stochastic Integrals

In this appendix we will give an introduction to the stochastic integrals, both in Ito’s

sense and Strotonovich’s sense. The presentation of this appendix follows the textbook by

Øksendal [77], and the note by Evans [27].

Suppose Wt is a one-dimensional Brownian motion defined on the probability space

(Ω, F , P ). Since Wt is nowhere differentiable, the stochastic differential equation

dXt = a(Xt, t)dt + b(Xt, t) dWt

is always interpreted as an integral equation

Xt = X0 +

∫ t

0
a(Xs, s)ds +

∫ t

0
b(Xs, s)dWs. (A.1)

To study the integral equation (A.1), we must first define the stochastic integral

∫ T

0
f(t, ω) dWt (A.2)

for a wide class of stochastic process f(t, ω). Since Wt has unbounded total variation, the

stochastic integral (A.2) will behave quite differently from the deterministic integrals.

Denote Ft as the σ-algebra generated by the Brownian motion {Ws(ω); s 6 t}. {Ft}t>0

is an increasing family of σ-algebra in the probability space (Ω,F , P ). A random process

f(t, ω) is called Ft-adapted if for each t > 0 the random variable f(t, ω) is Ft-measurable.

We first describe the class of functions for which the stochastic integral (A.2) will be defined.
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Definition A.1 Let V(0,T) be a class of stochastic process

f(t, ω) : [0,∞) × Ω → R

such that

(i) (t, ω) → f(t, ω) is B × F-measurable, where B is the Borel σ-algebra on [0,∞),

(ii) f(t, ω) is Ft-adapted,

(iii) E
∫ T
0 f2(t, ω)dt <∞.

Suppose 0 = t0 < t1 < . . . < tN = T is a partition of the time interval [0, T ]. Denote

∆ = max{∆tn}, where ∆tn = tn+1− tn. For any f(t, ω) ∈ V(0, T ), the Ito integral of (A.2)

is defined as ∫ T

0
f(t, ω) · dWt = lim

∆→0

N−1∑

n=0

f(tn, ω) (Wn+1 −Wn) , (A.3)

where Wn = W (tn, ω), and the Stratonovich integral of (A.2) is defined as

∫ T

0
f(t, ω) ◦ dWt = lim

∆→0

N−1∑

n=0

f(tn+1/2, ω) (Wn+1 −Wn) , (A.4)

where tn+1/2 = (tn + tn+1)/2. Both (A.3) and (A.4) converge in the mean square sense in

the probability space (Ω,F , P ).

The Ito integral and Stratonovich integral are particular cases of the regular Riemann-

Stieltjes integrals
∫ T

0
f(t)dt = lim

∆→0

N−1∑

n=0

f(t∗n) (tn+1 − tn),

where the representative point t∗n ∈ [tn, tn+1] is arbitrary. In the Ito integral we take

t∗n = tn, while in the Stratonovich integral we take t∗n = (tn+tn+1)/2. Due to the unbounded

variation ofWt, the different choices of t∗n indeed result in quite different stochastic integrals.

Next we will describe the differences and connections between Ito integrals and Stratonovich

integrals.

Definition A.2 A stochastic process {Mt}t>0 on (Ω,F , P ) is called a martingale with re-

spect to the increasing σ-algebra family {Ft}t>0 if

(i) Mt is Ft-measurable for all t,
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(ii) E|Mt| <∞ for all t,

(iii) E(Ms|Ft) = Mt for all s > t.

The Ito integral (A.3) has the following properties:

Theorem A.1

(i) The Ito integral (A.3) is mean zero: E
[∫ T

0 f(t, ω) · dWt

]
= 0,

(ii) F (t, ω) =
∫ t
0 f(s, ω) · dWs is a martingale with respect to {Ft}t>0,

(iii) The Ito integral (A.3) satisfies the isometry property

E

[∫ T

0
f(t, ω) · dWt

]2

= E

∫ T

0
f2(t, ω)dt. (A.5)

In general, the above properties are not shared by the Stratonovich integrals (A.4). That

is, the Stratonovich integral is not mean zero, not a martingale, and does not satisfy the

isometry relation (A.5). Because of the nice properties of the Ito integrals, they are usually

easier to handle than Stratonovich integrals. For this reason, it is important that we known

how to transform one integral form to the other. Suppose the stochastic integral equation

(A.1) is proposed in Stratonovich’s sense:

Xt = X0 +

∫ t

0
a(Xs, s)ds +

∫ t

0
b(Xs, s) ◦ dWs, (A.6)

then it is equivalent to the following integral equation in Ito’s sense

Xt = X0 +

∫ t

0
a(Xs, s)ds+

1

2

∫ t

0
bxb(Xs, s)dt+

∫ t

0
b(Xs, s) · dWs. (A.7)

Using the above relation, we can easily transform the Stratonovich integral into the Ito

integral, and vice versa. If b = b(t) does not depend on Xt, then the Stratonovich integral

is the same as the Ito integral.

Due to the unbounded total variation of the Brownian motion, the calculus rules of the

stochastic integrals are quite different from the deterministic ones. In particular, stochastic

integrals have different differential chain rule, which is described by the Ito formula.
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Theorem A.2 (the one-dimensional Ito formula)

Let Xt be a stochastic process satisfying the stochastic differential equation

dXt = a dt+ b dWt.

Let g(x, t) be a function with continuous derivatives ∂g
∂t ,

∂g
∂x and ∂2g

∂x2 . Then the stochastic

process

Yt = g(Xt, t)

satisfies the differential equation

dYt =
∂g

∂t
(Xt, t)dt +

∂g

∂x
(Xt, t)dXt +

1

2

∂2g

∂x2
(Xt, t) · (dXt)

2, (A.8)

where (dXt)
2 = dXt · dXt is computed according to the rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt.

The Ito formula (A.8) describes the differential chain rule for functions of stochastic

processes. Comparing with the deterministic chain rule, the stochastic chain rule (A.8) has

an extra term
1

2

∂2g

∂x2
(Xt, t) · (dXt)

2 =
1

2

∂2g

∂x2
(Xt, t) · b2(dWt)

2.

Heuristically, the “derivative” of the stochastic process Yt is the leading order term in the

Taylor expansion:

Y (t+ ∆t) − Y (t) =
∂g

∂t
(Xt, t)∆t+

∂g

∂x
(Xt, t)∆Xt +

1

2

∂2g

∂x2
(Xt, t) · b2(∆Wt)

2 +O(∆t∆W + ∆t2)

≃ A∆t+O(∆t∆W + ∆t2).

Since the Brownian motion increment ∆Wt = W (t+ ∆t) −W (t) has the Holder property

E[∆Wt]
2 = ∆t,

we need to include the term (∆Wt)
2 in the leading order term A∆t. That is why the

stochastic chain rule is different from the deterministic chain rule.
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Appendix B

Monte Carlo Simulations of

Stochastic Differential Equations

In this appendix, we will briefly discuss how to solve a general stochastic differential equation

(SDE)

dXt = a(t,Xt)dt + b(t,Xt) · dW (t). (B.1)

by Monte Carlo simulations. For more details, please see the comprehensive references

[53, 84].

The idea of Monte Carlo simulation is very simple: sample the random forcing and solve

the equation (B.1) realization by realization. For each given sample path (realization) of the

Brownian motion, the equation (B.1) becomes deterministic. It may be tempting to solve

the resulting equations by the well-developed deterministic numerical schemes. However,

the Brownian motion trajectory has unbounded variation and is nowhere differentiable. Due

to the unique differential rules (Ito formula) of stochastic integrals, the numerical schemes

for discretizing B.1) are quite different from the ones for smooth deterministic differential

equations. In this appendix we will briefly discuss the subtle nature of time discretizations

for SDEs and present a few popular numerical schemes for solving SDEs. We will also

introduce several useful variance reduction techniques in MC simulations.

B.1 Strong and Weak Convergence

Suppose

0 = t0 < t1 < t2 < . . . < tN = T
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is a uniform partition of the time interval [0, T ], where tn = nh and h = T
N . Suppose

Xh(t) is a discrete solution to (B.1). Then Xh(t) should be an approximation to the true

solution X(t) in some sense. Motivated by the needs of applications, there are two major

approximation criteria:

(a) approximate the same path of the random solution for each Brownian motion realiza-

tion, or

(b) approximate the distributions of the random solution.

The first approximation criterion is useful when we need to study individual realizations of

the random solution. The second criteria is useful if we are only interested in the statistical

property of the random solution. Accordingly, the numerical schemes for solving SDEs can

be roughly divided into two categories: strongly convergent schemes and weakly convergent

schemes.

Definition B.1 Strong convergence: We say that the numerical solution Xh converges to

the solution Xt strongly with order γ > 0 if there exists a finite constant K such that

E(|Xt −Xh|) ≤ Khγ .

Strong convergence emphasizes that the numerical solution approximates the exact so-

lution realization by realization. However, approximating the solution realization by re-

alization is not necessary in many practical situations. For example, if only the statistic

moments of the random solution are the interests, approximating the distribution of the

solution will be suffice. That is why the weak convergence is considered:

Definition B.2 Weak convergence: Suppose that all the statistical moments of Xt exist.

We say that Xh converges to Xt weakly with order β if for any polynomial g(x) there exists

a finite constant Kg such that

∣∣E[g(Xt)] − E[g(Xh)]
∣∣ ≤ Kgh

β .

Weak convergence emphasizes that the numerical solution has approximate probability

distribution as the true solution. Weak convergence leaves much more freedom in designing

numerical schemes for SDEs. To approximate the distribution of X, the numerical solution
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Xh can even in a different probability space than X. Take g(x) = xn, we immediately

conclude that all the statistical moments of the numerical solution will converge under the

weak convergence criterion. That is why weak convergence is useful in practice.

To see the difference between strong convergence and weak convergence, let us consider

the Euler discretization of (B.1):

Xn+1 = Xn + a(tn,Xn)h+ b(tn,Xn)∆Wn, (B.2)

where ∆Wn = W (tn+1) −W (tn). If b depends on Xt, it is known that the Euler scheme

(B.2) converges strongly with order γ = 1
2 , and weakly with order β = 1. That is quite

different from the deterministic Euler scheme, which always has first order accuracy. The

reason is that ∆Wn has the order of (∆t)1/2 only. To achieve first order strong convergence

in (B.2), we also need to include the terms depending on (∆Wn)
2. To modify the Euler

scheme, Milstein [73] proposed the following strongly first order numerical scheme:

Xn+1 = Xn + a(tn,Xn)h+ b(tn,Xn)∆Wn +
1

2
b bx(t,X){(∆Wn)

2 − h}. (B.3)

Comparing with the Euler scheme (B.2), the Milstein scheme has an extra term that involves

(∆Wn)
2. That is why it can achieve strongly first order accuracy. For additive forcing where

b does not depend on Xt, the Milstein scheme (B.3) reduces to the Euler scheme. Hence

for additive random forcing, the Euler scheme converges with first order for both weak and

strong convergence criteria.

Generally, the strongly convergent numerical schemes are much more complicated than

the weakly convergent ones. Strongly convergent numerical schemes with orders higher

than 1 are all unpleasantly complicated. In this thesis, we will use the Milstein scheme only

when strong convergence is needed. For the weak convergence, we use the popular weakly

second order Runge-Kutta method [53] throughout this paper:

Xn+1 = Xn +
1

2

[
a(tn,Xn) + a(tn+1, X̂ )

]
h

+
1

4

[
2b(tn,Xn) + b(tn+1,X

+) + b(tn+1,X
−)
]
∆Wn (B.4)

+
1

4

[
b(tn+1,X

+) − b(tn+1,X
−)
] {

(∆Wn)
2 − h

}
h−1/2,
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where

X̂ = Xn + a(tn,Xn)h+ b(tn,Xn)∆Wn

and

X± = Xn + a(tn,Xn)h± b(tn,Xn)
√
h.

The above numerical scheme has a weakly second order accuracy. Comparing with the first

order Euler scheme, the second order scheme involves the extra terms ∆t∆Wn and (∆Wn)
2−

∆t, which have the order of (∆t)
3
2 . That is why the above numerical scheme can achieve

weakly second order accuracy O(∆t)2 in the time discretization. For stochastic differential

equations with additive forcing, those extra terms will disappear and the numerical scheme

(B.4) is reduced to

Xn+1 = Xn +
1

2

[
a(tn,Xn) + a(tn+1, X̂ )

]
h+

1

2
[b(tn) + b(tn+1)]∆Wn.

B.2 Variance Reduction of MC Simulations

In lots of applications, the purpose of MC simulation is to estimate the expectation E[g(Xt)],

where g(x) is a deterministic function. For example, we can set g(x) = xn if we want

to compute the statistic moments of the random solution. The MC estimation of the

expectation takes the form

E[g(Xt)] ≃
1

N

N∑

k=1

g(Xt(ωk)), (B.5)

where Xt(ωk), k = 1, 2, . . . N are independent realizations of the random solution, and N is

the total number of realizations. Denote the error of the estimation as

ǫg(N) = E[g(Xt)] −
1

N

N∑

k=1

g(Xt(ωk)).

The error of the estimator is a random variable itself. By the Central Limit Theorem [30],

the error decays as
√
E(ǫ2g) ≃

σ[g(Xt)]√
N

,
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where σ2[g(X)] is the variance

σ2[g(X)] =

∫ [
g(X) − E g(X)

]2
dω.

The error of the MC estimator decays rather slowly, in the order of O(N−1/2). If we want to

reduce the error by a factor of 2, we need to increase the realization number by a factor of

4. Figure B.1 is a typical convergence behavior of MC simulations with different realization

numbers. The MC estimator converges faster at the beginning but slows down quickly.

Eventually it reaches a flat region where the gain by increasing the number of realizations

becomes smaller and smaller.
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Figure B.1: Asymptotic convergence rate of MC simulations with different realization numbers. The MC
method converges faster at the beginning but slows down quickly. Eventually it reaches a flat region where
incremental computational costs only improve the estimation very slightly.

There are two typical ways to accelerate the convergence of the MC estimation: increase

the order of the convergence, or reduce the proportional constant σ[g(X)]. For the first

approach, a modification of the regular MC method, called quasi Monte Carlo method [9],

can increase the convergence order of MC from O(N−1/2) to O
(
(logN)kN−1

)
. This is a

nearly optimal convergence rate for MC estimations since only N number of realizations are

computed. The idea of quasi MC method is to generate deterministic (rather than random

or pseudo-random) sequences, which are correlated (rather than independent) to provide

greater uniformity. quasi MC is designed specifically for numerical integration purpose and
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is not directly applicable for simulating solutions of stochastic differential equations.

Another way to accelerate the MC method is to reduce the variance of the estimator

σ[g(X)]. Suppose the error tolerance of the MC estimation is ε, then the number of required

MC realizations to achieve such an accuracy would be

N ≃ σ2[g(X)]

ε2
.

For a fixed error ε, if we can reduce σ[g(X)] by a factor of 2, then the required number of

realization can be reduced by a factor of 4. So variance reduction is a quite effective way to

improve the convergence of the MC method. Next we will introduce two popular variance

reduction methods which can be applied to simulate statistics of SDEs.

B.2.1 Antithetic Variables

Antithetic variable method is one of the simplest and most widely used variance reduction

techniques. The method works as follows: for each sample path ωk of the Brownian motion,

also use the sample path −ωk. The resulting MC estimator is

E[g(X)] ≃ 1

2N

N∑

n=1

{
g(X(ωk)) + g(X(−ωk))

}
.

For example, suppose ωk = (∆W1,∆W2, . . .∆WL) is a discrete sample of the Brownian

motion increments, then we also include −ωk = (−∆W1,−∆W2, . . . ,−∆WL) as a sample

of the Brownian motion. The use of antithetic variables is motivated by an expansion for

small values of the variance. Consider, for example, the expectation E[g(X)] in which X

is an N(0, σ2) random variable with small σ. Set X = σX̂. The Taylor expansion of g(X)

for small σ is

g(X) = g(0) + g(0)σX̂ +O(σ2).

Since the distribution of X̂ is symmetric about 0, the average E(X̂) is 0. In a standard

MC estimation of E[g(X)], this term does not cancel exactly, so that the MC error is

proportional to σ. With antithetic variables, on the other hand, the linear term cancel

exactly, so that the remaining error is proportional to σ2.

The antithetic variable method is very easy to apply and can be combined with other

variance reduction method, such as the control variate method. However, for nonlinear
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SDE, the random solution X is by no means a Gaussian random variable or symmetric. The

acceleration provided by antithetic variables is quite limited, as our numerical experiments

with nonlinear SPDEs have demonstrated.

B.2.2 Control Variates

The idea of control variate is to use a function p(X), which has similar variability as g(X)

and has known expectation E[p(X)]. Then the expectation E[g(X)] can be rewritten as

E[g(X)] = E[p(X)] + E[g(X) − p(X)] .

Since E[p(X)] is already known, the MC method is employed to compute E[g(X) − p(X)]

only:

E[g(X) − p(X)] ≃ 1

N

N∑

k=1

{
g(X(ωk)) − p(X(ωk))

}
. (B.6)

The error of the above MC estimator has the form

√
E(ǫ2g−p) ≃

σg−p√
N
,

where σ2
g−p is the variance of the random function g(X) − p(X):

σ2
g−p =

∫ {
[g(X) − E g(X)] − [p(X) − E p(X)]

}2
dω. (B.7)

If p(X) is a good approximation of g(X) in the mean square sense and hence

σg−p ≪ σg,

then the ensemble average (B.6) will converge much faster than the ensemble average (B.5).

For example, if σg−p is only one-tenth of σg, then the convergence of (B.6) can be accelerated

100 times. Note that to make the control variate work efficiently, the mean of p(X) does

not have to approximate the mean of g(X). As we can see from (B.7), the crucial point is

that p(X) fluctuate around its mean in a similar way as g(X) does.

There exist many other variance reduction techniques for MC simulations, such as im-

portance sampling, matching moments, stratification, etc. However, those methods are

more suitable for MC integrations than for simulating stochastic differential equations. For
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more details, please see [9, 84] and the references therein.
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Appendix C

Coarse-scale Models Using

Multiscale Finite Element Methods

In this appendix, we will describe the details of the coarse-scale model we used in Section

8.3 for preconditioning MCMC simulations. As we noted earlier, this model is similar to

single-phase upscaling methods. However, instead of coarsening the absolute permeability,

we use pre-computed multiscale finite element basis functions. The key idea of the method

is the construction of basis functions on the coarse grids such that these basis functions

capture the small scale information on each of these coarse grids. The method that we use

follows its finite element counterpart presented in [47]. The basis functions are constructed

from the solution of the leading order homogeneous elliptic equation on each coarse element

with some specified boundary conditions. Thus if we consider a coarse element K which has

d vertices, the local basis functions φi, i = 1, · · · , d satisfy the following elliptic problem:

−∇ · (k · ∇φi) = 0 inK

φi = gi on ∂K,
(C.1)

for some function gi defined on the boundary of the coarse element K. Hou et al. [47] have

demonstrated that a careful choice of boundary condition would guarantee the performance

of the basis functions to incorporate the local information and hence improve the accuracy

of the method. The function gi for each i varies linearly along ∂K. Thus, for example, in the

case of a constant diagonal tensor the solution of (C.1) would be a standard linear/bilinear

basis function. We note that, as usual, we require φi(ξj) = δij . Finally, a nodal basis

function associated with the vertex ξ in the domain Ω is constructed from the combination

of the local basis functions that share this ξ and are zero elsewhere. These nodal basis
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functions are denoted by {ψξ}ξ∈Z0
h
.

Having described the basis functions, we denote the space of our approximate pressure

solution as V h, which is spanned by the basis functions {ψξ}ξ∈Z0
h
. Now we may formulate

the finite dimensional problem corresponding to the finite volume element formulation of

(8.2). A statement of mass conservation on a control volume Vξ is formed from (8.2), where

now the approximate solution is written as a linear combination of the basis functions.

Assembly of this conservation statement for all control volumes would give the corresponding

linear system of equations that can be solved accordingly. The resulting linear system has

incorporated the fine-scale information through the involvement of the nodal basis functions

on the approximate solution. To be specific, the problem now is to seek ph ∈ V h with

ph =
∑

ξ∈Z0
h
pξψξ such that

∫

∂Vξ

λ(S)k · ∇ph · ~ndl =

∫

Vξ

f dA, (C.2)

for every control volume Vξ ⊂ Ω. Here ~n defines the unit normal vector on the boundary

of the control volume, ∂Vξ, and S is the fine scale saturation field at this point. We note

that, concerning the basis functions, a vertex-centered finite volume difference is used to

solve (C.1), and a harmonic average is employed to approximate the permeability k at the

edges of fine control volumes.

Furthermore, the pressure solution may be used to compute the total velocity field at

the coarse-scale level, denoted by v = (vx, vz) via (8.5). In general, the following equations

are used to compute the velocities in horizontal and vertical directions, respectively:

vx = − 1

hz

∑

ξ∈Z0
h

pξ

(∫

E
λ(S)kx

∂ψξ
∂x

dz

)
, (C.3)

vz = − 1

hx

∑

ξ∈Z0
h

pξ

(∫

E
λ(S)kz

∂ψξ
∂z

dx

)
, (C.4)

where E is the edge of Vξ. Furthermore, for the control volumes Vξ adjacent to the Dirichlet

boundary (which are half control volumes), we can derive the velocity approximation using

the conservation statement derived from (8.2) on Vξ. One of the terms involved is the

integration along part of the Dirichlet boundary, while the rest of the three terms are known

from the adjacent internal control volumes calculations. The analysis of the two-scale finite
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volume method can be found in [40].

As for the upscaling of the saturation equation, we only use the coarse scale velocity to

update the saturation field on the coarse-grid, i.e.,

∂S

∂t
+ v · ∇f(S) = 0, (C.5)

where S denotes the saturation on the coarse-grid. In this case the upscaling of the satura-

tion equation does not take into account subgrid effects. This kind of upscaling techniques

in conjunction with the upscaling of absolute permeability are commonly used in applica-

tions (see e.g. [20, 21, 22]). The difference of our approach is that the coupling of the small

scales is performed through the finite volume element formulation of the pressure equation.
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