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Chapter 5

Optical Loss and Lasing Characteristics
of AlGaAs Microdisk Cavities with
Embedded Quantum Dots

5.1 Introduction

For future experiments in cavity QED with self-assembled quantum dots, the GaAs/AlGaAs system

is the most appropriate choice of material, due to the relative maturity of the growth of InAs/InGaAs

quantum dots [138, 139, 140] within this system. As the refractive index of GaAs and its alloys is

relatively close to that of Si (nGaAs ∼ 3.5 and nAlAs ∼ 2.9 at λ ∼ 1.25 µm), the PC cavity design of

chapter 2 remains applicable. Similarly, the high refractive index difference between GaAs/AlGaAs

and air suggests that the radiation-limited Qs for microdisk cavities would be quite high for all but

the smallest diameter disks. At the start of the work described in this chapter, what remained to

be seen was whether the fabrication processes and material losses within this new system would be

adequate to achieve a sufficiently high Q and small Veff for strong coupling experiments.

Recently, multiple research groups have demonstrated vacuum Rabi splitting in a semiconductor

system consisting of a single quantum dot (QD) exciton embedded in an optical microcavity [70, 71,

72]. These experiments have in many ways confirmed the potential of semiconductor microcavities

for chip-based cavity quantum electrodynamics (cQED) experiments. For future experiments, such

as those involving quantum state transfer in quantum networks [141], it will be important to further

improve upon the parameters of such QD-microcavity systems over what was demonstrated in the

above references. One clear improvement required is to move the system further within the regime

of strong coupling. In particular, the ratio of g (the QD-photon coupling rate) to the larger of κ

(the cavity decay rate) and γ⊥ (the QD decay rate) approximately represents the number of Rabi
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oscillations that can take place before the effects of dissipation destroy coherent energy exchange

[9]. In each of refs. [70, 71, 72], loss in the system was found to be dominated by the optical

cavity, with g � κ. As the low-temperature homogeneous linewidth in self-assembled InAs QDs

is typically a few µeV [142], corresponding to a QD dipole decay rate of γ⊥/2π ∼ 1 GHz, it will

be advantageous to develop cavities with quality factors such that κ/2π � 1 GHz, with further

improvements in Q serving mainly to improve the optical collection efficiency of emitted light. For

the λ ∼ 0.9-1.2 µm emission wavelength for InAs QDs [70, 71], this corresponds to an optical mode

quality factor of Q ∼ 1×105 (κ/2π = ω/4πQ). Achieving such low loss cavities is also important in

light of the difficulty in fabricating a structure where the QD is optimally positioned for maximum

coupling to the cavity mode.

In this chapter, we review results first presented in ref. [69], which details the creation of D=4.5

µm diameter AlGaAs microdisks that exhibit Q factors as high as 3.6×105 at λ ∼ 1.4 µm, a value

which, to our knowledge, exceeds the highest Q factors measured for AlGaAs microcavities to date

[13, 14, 70, 71]. These AlGaAs microdisks contain embedded quantum dots-in-a-well (DWELL)

[143, 144] that have a ground state emission at λ ∼ 1.2 µm, so that passive, fiber-taper-based mea-

surements are performed at λ ∼ 1.4 µm, where the QDs are relatively non-absorbing. The charac-

teristics of these devices are also investigated through photoluminescence measurements, and low

threshold, room temperature QD lasers are demonstrated.

5.2 Overview of microdisk cavity modes

5.2.1 Analytic approximation

In a perfectly circular microdisk structure, the cavity modes circulate around the periphery of the

device in traveling wave whispering gallery modes (WGMs). These WGMs are classified in terms

of their polarization (TE or TM), radial order (p), and azimuthal number (m).1 Unlike microspheres,

where the WGMs can be solved for analytically, microdisk modes do not have an analytic solution.

An approximate analytic solution can be easily found, however, and yields physical insight into the

properties of these modes. Such an approach has been considered by many authors; here, I follow

the derivation of Borselli et al., in ref. [65].

We begin with Maxwell’s equations in a charge-free, current-free medium:

1As the microdisks studied here are optically thin, only the first order TE and TM modes are considered.
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∇×E = −iωµ0H,

∇×H = +iωn2ε0E,

∇∇∇ · (n2ε0E) = 0,

∇ ·µ0H = 0,

(5.1)

where we have assumed that the fields oscillate in time as exp(iωt). For a piecewise homogeneous

medium, these equations can be used to derive the familiar wave equations:

∇∇∇2E+
n2ω2

c2 E = 0

∇∇∇2H+
n2ω2

c2 H = 0

(5.2)

As the form of equation (5.2) is the same for both E and H, from here on out we write everything

in terms of a single vector field F, which can stand for either of the two. In cylindrical coordinates

(ρ,φ,z), we can re-write this as:

(
∂2

∂ρ2 +
1
ρ

∂
∂ρ

+
1
ρ2

∂2

∂φ2 +
∂2

∂z2 +
(ω

c

)2
)

F = 0 (5.3)

We now invoke the major approximation used, which is to separate the modes into TE and TM

polarizations, which contain the field components {Eρ,Eφ,Hz} and {Hρ,Hφ,Ez}, respectively. For

actual structures, this separation is only approximate (it truly only holds within the center of the

slab WG). It provides the significant simplification of making equation (5.3) a scalar wave equation

in Fz, where Fz is Hz (Ez) for TE (TM) modes. We then use separation of variables [145] with

Fz = Ψ(ρ)Ω(φ)Z(z) to break up equation (5.3) into three equations, given as:

∂2Ω
∂φ2 +m2Ω = 0

∂2Z
∂z2 +

ω2

c2 (n2 − n̄2)Z = 0

∂2Ψ
∂ρ2 +

1
ρ

∂Ψ
∂ρ

+
(ω2n̄2

c2 − m2

ρ2

)
Ψ = 0

(5.4)
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where n̄ is the effective index. The first equation can immediately be solved, giving the azimuthal

dependence Ω(φ) = exp(imφ), where m is the azimuthal mode number (eigenvalue). The second

equation is nothing more than the standard equation for the mode of a slab waveguide, as discussed

in detail within ref. [126], for example. The third equation is used to solve for the radial dependence

of the cavity mode. The solutions to this equation are Bessel functions within the disk (ρ < R, where

R is the disk radius), and Hankel functions outside of it (ρ > R). As discussed in ref. [65], the Hankel

function solution can be approximated by a decaying exponential, so that the radial solution Ψ(ρ)

has the form:

Ψ(ρ) =

⎧⎪⎪⎨⎪⎪⎩
Jm(ω

c n̄ρ), ρ≤R

Jm(ω
c n̄R)exp(−α(ρ−R)), ρ≥R.

(5.5)

The decay constant α is given as α = ω
c (n̄2 − n0

2)1/2 (n0=1 for an air-clad disk). Finally, the

azimuthal mode number m is determined (for a given frequency ω, disk radius R, and effective index

n̄) by the boundary conditions on the fields at ρ = R. This yields the transcendental equation:

ω
c

n̄Jm+1(
ω
c

n̄R) =
(m

R
+ηα

)
Jm(

ω
c

n̄R) (5.6)

where η = n̄2/n2
0 for a TE mode and η = 1 for a TM mode.

For very rough estimates, a back of the envelope calculation of m can be useful. One that

is typically used is to require that m wavelengths fit in the circumference of the disk. Written

explicitly, this is stated as:

m
λm

ng
= 2πR (5.7)

where λm is the resonant wavelength of mode m, and ng is the group index of the waveguide mode,

which can be determined from the slope of the waveguide dispersion curve (through solving the

slab waveguide portion of equation (5.4) for ω as a function of β=n̄ω/c). The free spectral range

(FSR), which gives the separation between adjacent modes, is then:
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Δν = νm+1 −νm =
c

2πRng
(5.8)

This is nothing more than the standard equation for the FSR of a Fabry-Perot cavity with the round-

trip length of the cavity equal to the circumference of the microdisk.

5.2.2 Finite-element method simulations

To quantitatively study the properties of the microdisk cavities, we use finite-element eigenfre-

quency simulations based on the Comsol FEMLAB commercial software. The specific implemen-

tation I have used is based on the work of Matt Borselli [128, 137], who in turn received assistance

from Sean Spillane [136]. By assuming azimuthal symmetry of the disk structures, only a two-

dimensional cross section of the disk is simulated, albeit using a full-vectorial model. That is,

the explicit azimuthal symmetry package offered within the software is not appropriate, because it

forces the calculated modes to be azimuthally symmetric (i.e., m=0). Instead, we essentially solve

the wave equation (5.3) assuming an azimuthal dependence of exp(imφ). We seek solutions close to

some nominal wavelength λnom, and specify an m value as found by solution of the transcendental

equation (5.6). The FEMLAB solver then determines the precise frequency λ0 at which the mode

of azimuthal number m occurs. It also provides the spatial mode profile, which is used to calculate

the cavity mode effective volume according to the already-mentioned formula:

Veff =
∫
V ε(r)|E(r)|2d3r

max[ε(r)|E(r)|2] (5.9)

where ε(r) is the dielectric constant, |E(r)| is the electric field strength, and V is a quantization

volume encompassing the resonator and with a boundary in the radiation zone of the cavity mode

under study. The resonance wavelength λ0 and radiation limited quality factor Qrad are determined

from the complex eigenvalue (wavenumber) of the resonant cavity mode, k, obtained by the finite-

element solver, with λ0 = 2π/Re(k) and Qrad = Re(k)/(2Im(k)). For the microdisks studied in this

chapter and in chapter 6, Qrad is quite large (> 1014), and the finite element simulations are only

sparingly used. In chapter 7, however, we consider small enough diameter structures that Qrad is a

significant contributor to the overall Q of the devices. We will therefore consider these simulations
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in greater detail within that chapter.

5.2.3 Standing wave whispering gallery modes

For the devices studied in this thesis, the high-Q modes are not traveling waves but are instead stand-

ing waves. This is a result of coherent coupling between the forwards and backwards propagating

disk modes (i.e., modes of azimuthal number ±m) as a result of surface roughness. The key behind

this coherent coupling is that the modal loss (due to factors such as absorption, scattering, radiation,

etc.) is low enough that the backscattering rate caused by the surface roughness is significant in

comparison to it.

This modal coupling has been observed experimentally and explained by many other authors,

including those of refs. [146, 147, 148, 135, 64]. Here, we present a simple analysis of this coupling.

This analysis is essentially an abridged version of that which appears in a recent paper by Borselli

et al. [65].

Maxwell’s wave equation for the electric field vector in the microdisk structure is

∇∇∇2E−µ0

(
ε0 +δε

)∂2E
∂t2 = 0, (5.10)

where µ0 is the permeability of free space, ε0 is the dielectric function for the ideal microdisk

and δε is the dielectric perturbation that is the source of mode coupling between the cw and ccw

modes. Assuming a harmonic time dependence, the modes of the ideal structure are written as

E0
j(r, t) = E0

j(r)exp(iω jt), and are solutions of equation 5.10 with δε = 0. Solutions to equation

(5.10) with δε �= 0 (i.e., modes of the perturbed structure) are assumed to be written as

E(r, t) = e−iω0t ∑
j

a j(t)E0
j(r). (5.11)

Plugging into equation (5.10), keeping only terms up to first order, and utilizing mode orthogonality,

we arrive at the coupled mode equations
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dak

dt
+ iΔωkak(t) = i∑

j

β jka j(t) (5.12)

β jk =
ω0

2

∫
δε
(

E0
j(r)

)∗
E0

k((r))dr∫
ε0|E0

k(r)|2dr
. (5.13)

Reference [65] presents a functional form for β in situations involving a small amount of surface

roughness. We now explicitly assume that only two modes (the cw and ccw modes of a given

polarization (TE or TM), azimuthal mode number m, and radial mode number p) are involved,

and that the amplitude of the backscattering rates are equal, so that |βcw,ccw| = |βccw,cw| = |β|. The

coupled mode equations then read as

dacw

dt
= −iΔωacw(t)+ i|β|eiξaccw(t) (5.14)

daccw

dt
= −iΔωaccw(t)+ i|β|e−iξacw(t), (5.15)

where we have taken β = |β|eiξ. These equations represent the time evolution of the two mode

amplitudes (acw,accw) of an isolated system, without loss or coupling to an external waveguide. The

inclusion of such terms will be considered later in this thesis, in chapter 8.

These two coupled equations can be uncoupled by introducing the variables asw,1 and asw,2,

which represent the standing wave mode amplitudes:

asw,1 =
1√
2

(
acw + eiξaccw

)
(5.16)

asw,2 =
1√
2

(
acw − eiξaccw

)
. (5.17)

As we saw earlier within this chapter, for an ideal microdisk, acw and accw have an azimuthal spatial

dependence of eimφ (where m is the azimuthal mode number and is a nonzero integer), so that asw,1

and asw,2 will have an azimuthal spatial dependence that will be a mixture of cos(mφ) and sin(mφ),

with the precise dependence being a function of the phase ξ of the backscattering parameter β.

Rewriting the coupled mode equations in terms of the standing wave mode amplitudes, we arrive

at:
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dasw,1

dt
= −iΔωasw,1(t)+ i|β|asw,1(t), (5.18)

dasw,2

dt
= −iΔωasw,2(t)− i|β|asw,2(t). (5.19)

From these equations, we see that the standing wave modes resonate at frequencies ±|β| detuned

from the original resonance frequency.

For cavity QED applications, one very important consequence of the distinction between trav-

eling wave and standing wave modes is in the effective volume of the mode Veff. Standing wave

WGMs have approximately half the volume of the traveling wave WGMs, so that the coupling rate

g between a single quantum dot and a single photon in a standing wave cavity mode is expected

to be
√

2 times that when the quantum dot is coupled to a traveling wave cavity mode. This of

course assumes the single QD is positioned at an antinode of the standing wave mode; alternately,

if it happens to be positioned at a node, the coupling rate g will be zero. Chapter 8 considers the

coupling of a QD to standing wave modes in a microdisk in much greater detail, invoking quantum

master equation simulations [149] to aid in the analysis.

5.3 Fabrication

The specific devices we consider are AlGaAs/GaAs microdisk cavities with embedded quantum

dots (QDs). The epitaxy used was grown by Professors Andreas Stintz and Sanjay Krishna at the

Center for High Technology Materials (CHTM) at the University of New Mexico, and is shown in

table 5.1. It consists of a single layer of InAs quantum dots embedded in an InGaAs quantum well

[144], which is in turn sandwiched between layers of AlGaAs and GaAs to create a 255 nm thick

waveguide. This DWELL (short for dot-in-a-well) material has a room temperature ground state

emission peak at around 1190 nm (fig. 5.1(b)), and is grown on top of a 1.5 µm Al0.70Ga0.30As layer

that eventually serves as a support pedestal for the microdisk.

The cavities are created through: (i) deposition of a 200 nm SiNx mask layer, (ii) electron beam

lithography and subsequent reflow of the e-beam resist to produce smooth and circular patterns,

(iii) SF6/C4F8 inductively coupled plasma reactive ion etching (ICP-RIE) of the deposited SiNx

mask layer (fig. 5.2(a)), (iv) Ar-Cl2 ICP-RIE etching of the Al0.3Ga0.7As layer and removal of the

remaining SiNx layer, (v) photolithography and isolation of the microdisk onto a mesa stripe that
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Figure 5.1: (a) Schematic of the DWELL epitaxy from which microdisk cavities are formed. (b)
Photoluminescence from an unprocessed region of the 1DWELL material.

Table 5.1: Epitaxy for 1-DWELL microcavity lasers.

Layer Materials Thickness

Surface cap layer GaAs 100
◦
A

Top waveguide layer Al0.30Ga0.70As 400
◦
A

Top waveguide layer GaAs 740
◦
A

Quantum well layer In0.15Ga0.85As 60
◦
A

Quantum dot layer InAs 2.4 monolayer

Barrier layer In0.15Ga0.85As 10
◦
A

Bottom waveguide layer GaAs 740
◦
A

Bottom waveguide layer Al0.30Ga0.70As 500
◦
A

Sacrificial buffer layer Al0.70Ga0.30As 15000
◦
A

Substrate GaAs N/A

is several microns above the rest of the chip (fig. 5.2(d)), and (vi) HF acid wet chemical etching

of the underlying Al0.7Ga0.3As layer to form the supporting pedestal (fig. 5.2(b)-(c)). The e-beam

lithography and SiNx etch steps are particularly important, as any roughness in the mask layer is

transferred into the AlGaAs region. A resist reflow process originally developed for use with Si

microdisks [65] is employed to create an initial mask pattern that is as circular as possible, and

the subsequent SiNx etch has been calibrated to produce as smooth a sidewall surface as possible

(fig. 5.2(a)), without particular concern for its verticality. The subsequent Ar-Cl2 etch is highly

selective so that the angled mask does not result in erosion of the AlGaAs sidewalls. The fabricated
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Figure 5.2: Scanning electron microscope (SEM) images of DWELL-containing microdisk cavities
after the (a) SiNx etch, and (b)-(c) AlGaAs etch and undercut. (d) Fully processed device, showing
the isolation mesa that is incorporated in order to aid in the taper testing. An optical fiber taper
aligned to the side of a microdisk is also visible in this image.

microdisks studied in this chapter are D ∼4.5 µm in diameter.2 Additional fabrication details are

given in appendix C.

5.4 Cavity Q measurements in the 1400 nm band

Initial passive measurements to measure the cold-cavity Q factor of the microdisk resonant modes

were performed using the optical-fiber-based evanescent coupling technique. As was the case for

measurements of the PC cavities in chapter 4, the optical fiber taper is formed by heating and

adiabatically stretching a standard single mode fiber until it reaches a minimum diameter of ∼ 1

µm. A fiber-coupled scanning tunable laser (< 5 MHz linewidth) operating in the 1400 nm band is

spliced to the taper’s input, and when the taper is brought within a few hundred nanometer (nm) of

the cavity, their evanescent fields interact, and power transfer can result. A schematic illustrating

the coupling geometry for this system is shown in fig. 5.3(a). The devices are tested in the 1400 nm

band because it is significantly red detuned from the QD spectrum (fig. 5.1), so that absorption due

to the DWELL layer will be negligible at these wavelengths.

The Q of a cavity mode is determined by examining the linewidth of the resulting resonance

in the taper’s wavelength dependent transmission spectrum. In fig. 5.3(b), we show a doublet

resonance of a microdisk (D=4.5 µm, 1-DWELL structure) in the 1400 nm wavelength band when

2The AlGaAs sidewalls do show a pronounced angle; this angle does reduce the maximum achievable (radiation-
limited) Q of the cavity modes, but for TE-like modes, this reduction does not prevent the devices from exhibiting
radiation-limited Qs in excess of 108 (for D ∼ 4.5 µm), even in the presence of the slant. As surface roughness is
expected to be a more serious source of loss, the tradeoff between smoothness and verticality is acceptable.
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Figure 5.3: (a) Schematic geometry for probing the microdisk cavities through side-coupling via an
optical fiber taper. (b) Normalized taper transmission (T = Pout/Pin) of a 4.5 µm diameter microdisk
for a taper-disk lateral separation (Δx) of ∼ 800 nm. (c) Normalized taper transmission for the same
device with Δx ∼ 200 nm. The overlying solid green curves are Lorentzian fits to the data.

the taper is ∼ 1 µm to the side of the disk; the separation is kept large in order to reduce taper

loading effects [52, 64]. The double resonance peaks correspond to standing wave modes formed

from mixtures of the degenerate clockwise and counterclockwise whispering gallery modes that

couple and split due to the disk-edge surface roughness [64, 148, 146], as discussed earlier within

the chapter. The linewidth (Δλ) of the shorter wavelength resonance corresponds to Q ∼ 3.6×105.

Similarly, in fig. 5.3(c), we show the spectral response of the doublet when the taper is positioned

much closer (∼ 200 nm) to the edge of the disk, so that the amount of coupling has increased. The

combination of increased coupling as well as parasitic loading due to the presence of the taper has

increased the total loss rate of the resonant mode, yielding a loaded Q ∼ 1.0×105. The depth of

coupling, however, has also considerably increased from 10% to 60%, corresponding to a photon

collection efficiency η0 (the ratio of “good” coupling to all other cavity losses including parasitic

and intrinsic modal loss) of approximately 20% (see appendix E for the exact definition of η0). It

is believed that the high Q values achieved in these measurements are due to a combination of the

resist reflow process that reduces radial variations and subsequent Rayleigh scattering in the disk,

and the optimized dry etching processes that create very smooth disk-edge sidewalls.

The demonstrated Q is high enough that, if used in cQED, the cavity will have a decay rate
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κ/2π ∼ 0.35 GHz (at λ ∼ 1.2 µm), lower than the aforementioned typical low temperature QD

dipole decay rate of γ⊥/2π ∼ 1 GHz. After adjusting for the reduced wavelength of the QD reso-

nance, the current devices (D=4.5 µm) have a Veff ∼ 6(λ/n)3 for the standing wave resonant modes

studied here.3 For a maximally coupled InAs QD (spontaneous emission lifetime τ∼ 1 ns, oscillator

strength f ∼ 18 [110]), this mode volume corresponds to g/2π ∼ 11 GHz (refer to Appendices D

and H for the formulas used to calculate κ and g). Thus, even for the disk sizes considered here,

an appropriately positioned QD would place the system deep within the strong coupling regime. Of

additional importance is the fiber-based coupling technique used here. This method allows for the Q

to be accurately determined in a way that does not rely upon the (weak) background emission from

the QDs [70, 71, 72]; all that is required is a probe laser that can be slightly detuned from the QD

absorption lines. Furthermore, the taper also acts as a coupler that transfers light from an optical

fiber into the wavelength-scale mode volume of the cavity, where it can interact with the QDs, and as

a subsequent output coupler. Such integration could markedly improve the collection efficiency in

cavity QED experiments, particularly important for microdisk and photonic crystal cavities, which

typically do not have a radiation pattern that can be effectively collected by free-space optics or

a cleaved fiber [71]. Subsequent chapters further discuss the advantages of using the fiber taper

coupler in such experiments.

5.5 Initial measurements of lasing behavior

In addition to the fiber-based passive measurements of the microdisks at λ ∼ 1.4 µm, we performed

some initial room temperature photoluminescence measurements to study the QD emission in the

1.2 µm wavelength band. The cavities (D=5 µm in this case) were optically pumped at room tem-

perature using a pulsed 830 nm semiconductor laser, and the emitted laser light was collected by a

microscope objective and spectrally resolved in an optical spectrum analyzer (OSA). The setup that

was used was essentially identical to that used in chapter 3. Initial measurements were performed

on cavities containing 3 DWELLs due to their higher modal gain, roughly three times that of a

single DWELL layer [144]. Emission is observed for a small number (∼2-5) of modes in a given

microdisk (fig. 5.4(a)). Figure 5.4(b) shows a typical light-in-light-out (L-L) curve for a 3-DWELL

device pumped with a 300 ns period and 10 ns pulse width; the device exhibits lasing action with

an estimated threshold value of ∼22 µW.

3Our estimate of κ assumes that Q ∼ 3.6×105 is achievable at λ ∼ 1200 nm. In chapter 6, we present measurements
that show that such Qs are indeed achievable at the shorter wavelengths.
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Figure 5.4: (a) Photoluminescence spectrum of a 3-DWELL microdisk device (OSA resolution
bandwidth (RBW)= 1 nm). (b)-(d) L-L curves for: (b) pulsed 3-DWELL microdisk laser (inset
shows the subthreshold spectrum of a cavity mode), (c) pulsed 1-DWELL microdisk laser (inset
shows L-L curve near threshold), and (d) 1-DWELL microdisk laser under CW pumping conditions.
The dashed lines are least-square linear fits to the above-threshold data.

The saturated ground state modal gain for single DWELL structures has been estimated to be

∼ 3.6-5.4 cm−1 [144, 150]. Noting that modal gain approximately equals modal loss at threshold,

this indicates that a minimum cavity Q∼ 3-5×104 is required for this single layer of QDs to provide

enough gain compensation to achieve lasing. The fiber-based linewidth measurements described

earlier indicate that such Q factors should be achievable, and indeed, lasing from the QD ground

states is observed in these single dot layer devices (fig. 5.4(c)). The laser threshold pump power

for the 1-DWELL devices was measured to be as small as 16.4 µW, significantly lower than the 750

µW threshold values recently reported for similarly sized microdisk QD lasers [151]. Furthermore,

as shown in fig. 5.4(d), continuous wave (CW), room temperature lasing was also obtained, albeit

with a somewhat higher laser threshold.

The laser threshold values we report here are the peak pump powers incident on the sample

surface; the absorbed power is estimated to be roughly 16% of this value, determined by calculating

the expected reflectivities at the disk interfaces and assuming an absorption coefficient of 104 cm−1

in the GaAs and quantum well layers [152]. The threshold absorbed pump power for the 1-DWELL

lasers is thus ∼ 2.6 µW. From this, the equivalent threshold current density, useful for comparing the

performance of the microdisk lasers to previously demonstrated broad-area stripe lasers, can be esti-

mated. Given the pump spot size (∼ 16 µm2), and assuming an internal quantum efficiency ∼ 1, we

arrive at an equivalent threshold current density of 11 A/cm2 for the 1-DWELL devices. In compar-

ison, the estimated transparency current density in previous work on broad-area 1-DWELL lasers

was 10.1 A/cm2 [144]. The proximity of the demonstrated laser threshold to this transparency value

indicates that non-intrinsic optical losses within the microdisk cavity have largely been eliminated.

In conclusion, AlGaAs microdisks as small as 4.5 µm in diameter and supporting standing wave
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resonant modes with Q factors as high as 3.6×105 in the 1400 nm wavelength band have been

demonstrated. These cavities contain integral InAs quantum dots, and initial room temperature

photoluminescence measurements have yielded laser threshold values as low as 16.4 µW, nearing

the transparency level of the material. In the following chapters, we will extend this work along two

primary fronts: (i) use of the fiber taper within the photoluminescence measurements as a means

to effectively collect (and source) light from the cavities, thereby creating fiber-coupled lasers, and

(ii) consideration of smaller diameter disks, where the additional size reduction is important from

the standpoint of increasing the peak electric field strength within the devices, to push cavity QED

experiments further within the regime of strong coupling.




