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Abstract

The goal of this thesis is to develop a three-dimensional micromechanics-inspired

constitutive model for polycrystalline shape-memory alloys. The model is presented

in two forms: (1) The one-dimensional framework where we picture the ability of the

model to capture the main properties of shape-memory alloys such as superelasticity

and the shape-memory effect; (2) the three-dimensional model where micromechanics

origins of the model, the concepts that emerged from those analyses and their relation

to macroscopic properties in polycrystals are presented.

We use this framework to study the effects of the texture and anisotropy in ma-

terial behavior. Since phase transformation often competes with plasticity in shape-

memory alloys, we incorporate that phenomenon into our model. We also demonstrate

the ability of the model to predict the response of the material and track the phase

transformation process for multi-axial, proportional and non-proportional loading and

unloading experiments. We consider both stress-controlled and strain-controlled ex-

periments and develop the model for isothermal, adiabatic and non-adiabatic thermal

conditions. Adiabatic heating and loading rate both lead to apparent hardening at

high rates. We also visit this problem and examine the relative role of these two

factors.

Finally we extend our model to study the reversible α ↔ ε martensitic phase

transformation in pure iron. We consider a wide range of loading rates ranging from

quasistatic to high rate dynamic loading and use our model to describe the evolution

of the microstructure along with the effects of rate hardening and thermal softening.
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Chapter 1

Introduction

1.1 Shape-Memory Alloys

Shape-memory alloys are widely used for a variety of applications including micro-

actuators, cell phone antennas, energy absorption and biomedical devices. These

materials exhibit a strongly nonlinear thermomechanical behavior associated with

abrupt changes in their lattice structure called martensitic phase transformation.

Two common manifestations of this phase transformation is the shape-memory effect

wherein an apparently plastic deformation sustained below some critical temperature

is recovered on heating above it, and superelasticity wherein significant deformations

suffered under loading are recovered on unloading. A typical example of the supere-

lastic stress-strain response of a shape-memory alloy is shown in Figure 1.1. (see (35))

The shape-memory effect and superelasticity are consequences of a martensitic

phase transformation, which is a diffusionless first-order phase transformation be-

tween a high-temperature austenite phase and a low-temperature martensite phase.

At zero stress, shape-memory alloys are characterized by four transformation temper-

atures: austenite start As and austenite finish temperature Af during heating, and

martensite start Ms and martensite finish temperature Mf during cooling. Marten-

site start is the temperature at which a shape-memory specimen completely in the

austenite phase begins to transform to martensite during cooling, and As is the tem-

perature at which the specimen completely in the martensite begins to transform
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to austenite during heating. The Mf and Af indicate the temperatures at which

forward and reverse∗ phase transformation are finished under cooling and heating,

respectively. Figure 1.2 gives an overview of the martensitic phase transformation in

shape-memory alloys (35).

The shape-memory effect appears when an initially austenitic sample of a shape-

memory alloy is tested at a temperature between austenite finish and martensite start.

Under loading, the austenite transforms to martensite; in unloading, however, as the

stress-free state is reached, there is an apparent residual strain that does not recover

∗The austenite to martensite phase transformation is regarded as forward phase transformation
in this context. Reverse transformation indicates the transformation of the martensite to austenite
phase.
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until the temperature is subsequently raised above the austenite finish temperature.

Figure 1.3 schematically demonstrates this effect for a typical shape-memory alloy

(46).

The applications of shape-memory alloys and the need for a design tool have moti-

vated a number of macroscopic constitutive models for these materials. Several of the

existing models are developed in one dimension and capture the main characteristics

of SMAs such as the shape-memory effect and superelasticity. Prominent among the

earlier one-dimensional models are models developed by Tanaka (1986), Liang and

Rogers (1990), Abeyaratne and Knowles (1993) and Brinson (1993).

Tanaka (51) proposed a model to describe the thermomechanic response of shape-

memory alloys qualitatively. The model developed by Liang and Rogers (28) is based

on the Tanaka’s model. They proposed a new set of cosine functions to describe

the kinetics of phase transformation and to reproduce the behavior of these mate-

rials quantitatively. This model does not properly capture the material response at

temperatures below the martensite start temperature. It also fails at higher temper-

atures where temperature-induced martensite is present. Brinson (14) and (16) im-

proved the Liang model by dividing the martensite volume fraction to stress-induced
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and temperature-induced martensite. Abeyaratne and Knowles (2) explicitly con-

structed a Helmholtz free energy, a kinetic relation and a nucleation criterion for a

one-dimensional thermoelastic solid, capable of undergoing either mechanically- or

thermally-induced phase transitions and conducted a qualitative study of the macro-

scopic response predicted by their model in comparison to experimental results.

There have also been worldwide activities to simulate some of many characteristics

of SMAs effectively. A. Bhattacharyya et al. (1995) presented a one-dimensional

model to simulate the thermoelectric heat transfer of SMA actuators. This model (12)

takes into account the change in the heat capacity of a shape-memory alloy as phase

transformation proceeds. Naito et al. (2004) developed a one-dimensional model to

analyze the quasistatic behavior of the phase rearrangement and transformation of

the shape-memory alloys for a wire. This model (32) does not adequately capture the

tension-compression asymmetry of shape-memory alloys. Figure 1.4 is a schematic

demonstration of this feature. This is a typical loading-unloading experiment under

tension and compression where the stress level is assumed to be smaller than the

plastic yield stress. The loading is quasistatic and the ambient temperature is assumed

constant and above the austenite finish temperature. Notice in this figure that under

compression a wider hysteresis loop along the stress axis is observed. The stress level

required to start the forward phase transformation under compression is also higher

than that of the tension experiment and the size of the stress-strain hysteresis along

the strain axis is considerably smaller under compression.

Paiva et al. (2005) presented a model (36) to capture tension-compression asym-

metry and plasticity effects; however as it is developed for quasistatic conditions,

it does not capture the effect of dynamic loading and unloading rates as shown in

Figure 1.5 (see (33)).

Among the three-dimensional models there have been models adapted from other

phenomena like plasticity. The three-dimensional constitutive model of Auricchio et

al. (1995) (3) is one such example that is able to reproduce some of the basic features

of SMAs such as superelasticity and asymmetry.

Among others there are: The Lexcellent et al. (1996) (26) constitutive model
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Figure 1.6: The effect of texture and anisotropy in stress-strain response (23).

for shape-memory Cu-Zn-Al single crystals, where the asymmetry in the superelastic

stress-strain response of the alloy is reproduced; Brocca et al.’s (2002) (17) three-

dimensional phenomenological constitutive model for polycrystalline SMAs, which is

based on the microplane theory; Zhu et al.’s (2002) (56) constitutive model for stress-

induced phase transformation, capable of simulating thermomechanical behavior of

SMAs under proportional, non-proportional and cyclic loads; and Wang et al.’s (2003)

(55) extension of Brinson’s (1993) one-dimensional model into three dimensions where

both shape-memory effect and superelasticity are captured.

None of the aforementioned models capture the anisotropy in the shape-memory

alloy’s response and the effect of texture as experimentally observed by Inoue et al.

(23). To address micromechanical features such as texture, we need to understand

the microstructure of the material and its relation to macroscopic properties in both

single and polycrystals. Ball and James (1987) (5) developed a theoretical approach

fine based on minimization of free energy, which characterizes the microstructural

features involving fine mixtures of the phases. Experimental results show that some

materials have good shape-memory behavior as single crystals but little or none as

polycrystals, while others have good shape-memory behavior even as polycrystals.

Bhattacharya and Kohn (1997) (5) developed an analytical model based on elastic

energy minimization to study the effect of the texture on the amount of the recoverable
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transformation strains. This model explains why materials such as NiAl and FeNiC,

which undergo cubic-tetragonal transformations, make poor shape-memory polycrys-

tals and why specially textured CuAlNi polycrystals have much larger recoverable

strains than untextured ones. Abeyaratne and Knowles (1993) (2) studied the phase

transition from a continuum perspective. They explicitly constructed a Helmholtz

free energy, a kinetic relation and a nucleation criterion for a one-dimensional ther-

moelastic solid, capable of undergoing either mechanically or thermally induced phase

transitions. Sun and Hwang (1993) (50) constructed a micromechanics constitutive

model to describe the superelasticity and shape-memory behavior of polycrystalline

shape-memory alloys in uniaxial mechanical loading.

Marketz and Fischer (1996) (30) developed a micromechanical approach to pre-

dict the effect of microstructural rearrangements in a Cu-Al-Ni shape-memory alloy

in the fully martensitic state on the macroscopic mechanical behavior in uniaxial

tension. Boyd and Lagoudas (1996) (13) developed a thermodynamic constitutive

model for isotropic shape-memory alloys using a free energy function and a dissipa-

tion potential. They considered three different cases based on the number of internal

state variables in the free energy: (1) austenite plus a variable number of martensite

variants; (2) austenite plus two types of martensite; and (3) austenite and one type of

martensite. The single-martensite model was chosen for detailed study because of its

simplicity and its ease of experimental verification. Lu and Weng (1997) (29) devel-

oped a constitutive relation based upon the relationship between the shape-memory

behavior and the crystallographic origin of the martensite transformation. Their the-

ory is able to simulate the martensitic transformation and stress-strain relations of

shape-memory alloys. Huang and Brinson (1998) (22) proposed a three-dimensional

multivariant model for single crystal shape-memory alloy behavior. A key component

of the model is the formation of groups of variants, which represent the tendency of

the martensite plates to form self-accommodated groups to minimize energy. The sin-

gle crystal behavior of the material to temperature and mechanical loads is derived

using the concept of a thermodynamic driving force. The model exhibits appropriate

responses for uniaxial results on single crystals.
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Thamburaja and Anand (2001) (53) developed a crystal-mechanics-based con-

stitutive model for polycrystalline shape-memory materials to study the effect of

crystallographic texture. Niclaeys et al.(2002) (34) described the self-accommodation

structure observed in NiTi alloys by developing an interaction matrix for a single

crystal of austenite at a crystallographical scale. They also applied this model to

simulate cooling Cu-based SMAs at low stress levels. Lexcellent et al. (2002) (27)

proposed a phenomenological model and a micro-macro model to simulate the experi-

mental measurements of the phase transformation yield surface† in the principal stress

space under biaxial polycrystalline shape-memory alloys. The model describes well

this surface for CuAlBe, CuAlZn (where a cubic to monoclinic phase transformation

occurs) and CuAlNi (where cubic to orthorhombic phase transformation happens).

The prediction is not efficient in the important case of TiNi however.

The purpose of this thesis is to present a three-dimensional constitutive model

that builds on the concepts that have emerged from micromechanical analysis. For a

model to be usable in the context of design, it has to be relatively simple, and it should

be capable of being implemented in standard stress-analysis software. At the same

time, it has to incorporate realistic physics. Indeed, each object and function in the

model should in principle be computable from a lower-scale model, but possible to fit

to empirical data. For the model to be widely applicable it should have the following

characteristics: it has to be applicable in a wide range of temperatures so that it

captures both the shape-memory effect and superelasticity; it has to be adaptable to

a wide range of materials and textures; it has to hold for a wide range of loading rates;

it has to be able to work with multi-axial proportional and non-proportional loadings.

Finally, since phase transformation often competes with plasticity in shape-memory

alloys, the model should incorporate that phenomenon as well.

The plan of this thesis is as follows: Chapter 2 presents a constitutive model

for shape-memory alloys that builds on ideas generated from recent micromechanical

studies of the underlying microstructure of these materials. This chapter focuses on

†The surface in the stress space that determines the onset of stress-induced martensitic phase
transformations.
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development of the theory in one dimension. The model is valid for a wide range

of strain rates and incorporates plasticity. It is applicable in a wide temperature

range that covers both the shape-memory effect and superelasticity, which are conse-

quences of the martensitic phase transformation between a high-temperature austen-

ite phase and a low-temperature martensite phase. The crystallographic symmetry of

the austenite is higher than that of the martensite, and consequently one can have a

number of symmetry-related variants of martensite. The different variants of marten-

site, along with the austenite, form complex microstructures that can evolve with load

and temperature. A key difficulty in the constitutive modeling of these materials is to

find an effective means of describing this evolution, especially in polycrystals. This is-

sue is addressed here by introducing the idea of the effective transformation strain. It

is the average transformation strain of the different variants averaged over a represen-

tative volume containing multiple grains after the material has formed an allowable

microstructure. It is allowed to take any value in the set of effective transformation

strains, or set of effective recoverable strains. The micromechanical basis for this set

can be found in Bhattacharya and Kohn (9) (also see (11)). This set depends on the

material and the texture of the specimen, and can be easily fit to experiment. In

one dimension, it is the interval from the recoverable compressive to the recoverable

tensile strain as presented in (43). In full dimensions it is a five-dimensional surface in

the transformation strain space (44). It is also the convex dual of the transformation

yield set introduced by Lexcellent and his coworkers (27). Another important idea in

this model is the use of kinetic relations that cover a wide range of strain rates. The

usual balance laws do not fully determine the phase transformation growth and there

is a need for additional constitutive information in the form of a kinetic relation. The

kinetic relation is constructed such that the growth rate of the volume fraction of the

martensitic phase is a constitutive function of the thermodynamic driving force and

effectively stress. We need a relation that is characterized by a stick-slip behavior

at small driving forces. The kinetic relation needs to be rate-dependent at larger

driving forces and rate-independent at smaller driving forces to be consistent with

the experimental observations.
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This chapter is organized as follows: First we discuss the kinematics, we introduce

our field (internal) variables and explain the intervals that they belong to. Then it

comes to the balance laws. We assume the balance of linear momentum and balance

of energy hold. We use the second law of thermodynamics and derive the constitutive

relations in a one-dimensional setting. We then formulate the driving forces and ki-

netic relations governing the evolution of our internal variables. The chapter continues

with a thorough study of the capabilities of the model. First the ability of the model

to simulate the superelastic behavior as well as the tension-compression asymmetry

is demonstrated. Then the effect of loading rates, ambient temperature and the yield

strength is discussed. Simulations also show the ability of the model to reproduce

the shape-memory effect. We take a close look at the stress-strain hysteresis and dis-

cuss internal loops of the hysteresis for a simple applied stress. All of the above are

demonstrated under stress-control, which is rather difficult to attain experimentally.

In materials like shape-memory alloys that involve the evolution of internal variables,

the stress-strain curve varies with the methodology of the experiment. A particu-

larly popular means of measuring material properties at high deformation rates is

the Kolsky or split-Hopkinson bar. The chapter concludes with a brief introduction

to the methodology of this experiment followed by strain-controlled simulations, em-

phasizing the sensitivity of the stress-strain response to parameters such as ambient

temperature, pulse amplitude, pulse size and pulse shape.

Chapter 3 presents our micromechanics-inspired constitutive model for polycrys-

talline shape-memory alloys in three dimensions. The model is a generalization of

the one-dimensional model and remains applicable in a wide range of temperatures

and strain rates. It is able to reproduce the stress-strain response for complex pro-

portional and nonproportional loading patterns and can simulate the effect of texture

on a polycrystal of shape-memory alloy. The kinematics of the three-dimensional

model is discussed first, then the constitutive relations, thermodynamic driving forces

and kinetic relations are derived. In this chapter we consider two types of temper-

ature evolutions: adiabatic and non-adiabatic. Under non-adiabatic conditions we

demonstrate how the stress-strain behavior is affected by the changes in the thermal
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parameters such as convective heat transfer coefficient.

A major player in the present model is the idea of the effective transformation

strain. Transformation strain is postulated to live inside or on the boundary of a

set that is called the set of the recoverable strains or phase transformation yield

surface. In this chapter we present a form for such a set and carefully explain how

to estimate the parameters of the set for different materials and textures. The role

of the phase transformation surface in this context is similar to that of the yield

surface in elasto-plastic materials. It is to be noted that the phase transformation

locus is path-independent in the sense that a point on it may be approached by many

different loading paths within the untransformed region inside. We consider three

different cases for the transformation criterion: the isotropic and symmetric case, the

isotropic and asymmetric case, and the anisotropic and asymmetric case.

In the demonstration section, we first focus on the isotropic case and show how to

derive the phase transformation locus for an isotropic specimen. We start the analysis

by studying the stress-strain response of a set of proportional loading and unloading

experiments. We demonstrate thermomechanical coupling by studying stress-strain

behavior of uniaxial tension, uniaxial compression, pure shear and biaxial tension-

compression tests at different initial temperatures. We also study this coupling by

demonstrating the sensitivity of the stress-strain response to the changes of the con-

vective heat transfer coefficient of the air for non-adiabatic thermal conditions. To

show the applicability of model in complex loading experiments we demonstrate a

nonproportional loading experiment on a NiTi shape-memory alloy.

In this chapter we also show the ability of this model to reproduce Inoue and

coworkers’ (23) experimental observations on the effect of initial texture on the shape-

memory response. We study Shu and Bhattacharya’s (1998) (47) analytical model

and show how our model is able to capture the qualitative behavior of a polycrys-

tal alloy and its dependence on texture. We choose an anisotropic framework and

demonstrate a full parameter study for the phase transformation yield surface of

an anisotropic NiTi polycrystal. We carefully study the phase transformation pro-

cess, evolution of the internal variables and the stress-strain response for a number
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of non-proportional loading experiments under stress-controlled and strain-controlled

conditions. We compare these results for two different phase transformation sur-

face profiles. The chapter is completed by a demonstration of the effect of texture

on recoverable strains of a polycrystalline thin sheet of NiTi under uniaxial tensile

stress. It is also shown how the qualitative behavior of the combined tension-torsion

can depend on the texture. The results are in good agreement with experimental

observations.

Chapter 4 presents an extension of the aforementioned constitutive model to for-

mulate and study the martensitic phase transformations in pure iron under dynamic

loading. There is extensive literature on the experimental study of rate sensitivity of

iron and its deformation mechanisms. In this chapter we use our framework to de-

scribe the evolution of the microstructure as a reversible phase transformation occurs

from a (bcc) structure α to an (hcp) crystallographic structure ε over strain rates

ranging from ε̇ = 10−4(1/s) to ε̇ = 104(1/s).

Conclusions and future directions are given in Chapter 5.

Appendix A presents an example of a MATLAB code for the stress-controlled

three-dimensional analysis of anisotropic shape-memory alloys.
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Chapter 2

One-Dimensional Constitutive
Model for Shape-Memory Alloys

2.1 Constitutive Model

In this chapter, we develop and discuss a one-dimensional thermodynamically con-

sistent constitutive framework for the dynamic behavior of polycrystalline shape-

memory alloys. Our model builds on the concepts that have emerged from analysis of

the microstructure of shape-memory alloys and its relation to macroscopic properties

in both single and polycrystals. A generalization of the model in multiple dimensions

with both proportional and non-proportional loading conditions is presented in the

next chapter.

2.1.1 Kinematics

We are interested in a model that can be used at the macroscopic scale for the design

of devices and structures. So we take a multiscale point of view and think of each

material point of our continuum to correspond to a representative volume element

(RVE) consisting of a number of grains, each containing a complex microstructure of

austenite and variants of martensite. We introduce two kinematic or field or internal

variables to represent the consequence of microstructure in an RVE: the volume frac-

tion of martensite, λ(x, t), and the effective transformation strain of the martensite,

εm(x, t).



14

λ(x, t) denotes the net or average volume fraction of the martensite, i.e., this would

be the value we would obtain if we were to visit each grain in the RVE corresponding

to the material point x at time t, add up the volume of all variants of martensite

(self-accommodating, internally twinned, detwinned etc.) and divide by the total

volume of the RVE. To be precise, let χij denote the characteristic function of the

jth correspondence variant of martensite in the ith grain of the RVE. This function

is equal to 1 at all positions occupied by the jth variant in the i grain and is equal

to 0 otherwise. Then χi =
∑N

j=1 χij is the characteristic function of martensite in

the ith grain where N , the number of variants, is given by the crystallography of the

transformation. We define the volume fraction as

λ =
〈
χi

〉
=

〈
N∑

j=1

χij

〉
(2.1)

where 〈·〉 denotes mean or expected value over all grains in the RVE, i.e., over all i. λ

is constrained to lie between 0 and 1, with 0 signifying that the entire RVE is in the

austenite phase and 1 signifying that the entire element is in the martensite phase.

Since λ can not differentiate between the different microstructures of martensite

like self-accommodating, internally twinned, detwinned etc., we introduce the second

internal variable εm(x, t). This is the strain we would obtain if we were to visit every

grain in the RVE corresponding to the material point x at time t and average over the

transformation or stress-free strain of all the variants of martensite. To be precise,

let εij
m denote the transformation or stress-free strain of the jth variant of martensite

in the ith grain in the RVE. It is given by

εij
m = RT

i εj
mRi (2.2)

where εj
m is the transformation strain of the jth correspondence variant in a reference

crystal and is given by crystallography of the transformation, while Ri is the rotation

matrix that gives the orientation of the ith grain and is given by the texture of the
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material. We define the effective transformation strain as

εm =

〈
N∑

j=1

χijεij
m

〉
. (2.3)

As the material forms different microstructures, the arrangement of variants and

thus χij changes, and εm(x, t) takes different values. We are only interested in com-

patible microstructures, and thus we can not form any arbitrary mixture of variants.

Consequently εm can not take any arbitrary average value, but is restricted to those

that are obtained from compatible arrangements. We denote the set of all possible

values of εm as the set of effective transformation strains or the set of effective re-

coverable strains, P . This set P depends on the crystallography of the material and

the texture of the specimen. In a single crystal, P is the set of all possible average

transformation strains associated with compatible microstructures of the different

variants of martensite. In a polycrystal, the set P is the macroscopic averages of

locally varying strain fields, which can be accommodated within each grain by a com-

patible arrangement of the martensite variants. One can calculate this set in various

examples of interest and estimate them in others (9; 8; 11). Alternately, one can use

experimental measurements of recoverable strain to fit this set.

Note that we do not track the individual volume fractions of the different volumes

of martensite. This is too difficult, especially in a polycrystal where the different

grains behave differently depending on orientation, inter-granular constraints and

long-range cooperative effects. However, we implicitly account for these effects by

tracking the effective transformation strain and confining it to the set P , which de-

pends on material and texture. In other words, the set P incorporates information

about the material crystallography, specimen texture and also inter-granular con-

straints.

The set P can be quite complicated in multiple dimensions, but it is relatively

simple in one dimension. It is an interval [εc
m, εt

m] where εc
m < 0 denotes the largest

recoverable compressive strain and εt
m > 0 denotes the largest recoverable tensile

strain.
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In summary, the consequences of the microstructure at a material point is specified

by two internal variables λ and εm, which are subject to the following constraints.

λ ∈ [0, 1] and εm ∈ P = [εc
m, εt

m]. (2.4)

Finally, we introduce the plastic strain εp as an additional field variable. Putting

everything together, we say that the total strain can be divided into three parts,

elastic, transformation and plastic:

ε(x, t) =
∂u

∂x
= εe(x, t) + λ(x, t)εm(x, t) + εp(x, t). (2.5)

It is worth noting that the effective transformation strain of the RVE is λεm since λ

is the volume fraction of martensite, εm is the effective transformation strain of the

martensite and the transformation strain of the austenite is 0 by choice of reference

configuration.

2.1.2 Balance laws

We assume that the usual balance laws hold. First is the balance of linear momentum

ρutt = σx (2.6)

where ρ is the (referential) mass per unit length and σ is the (Piola-Kirchhoff) stress.

Second, we assume the balance of energy. Writing the balance of energy for any

part of the body, localizing and using (2.6), we obtain

ε̇ = − qx + r + σε̇ . (2.7)

Above, ε denotes the internal energy density, q the heat flux and r the radiative

heating or the heat supply per unit volume.

Finally, we write the second law of thermodynamics or the Clausius-Duhem in-
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equality, again in local form:

η̇ ≥
(
−q

θ

)
x

+
r

θ
⇒ θη̇ ≥ −qx +

qθx

θ
+ r. (2.8)

Here, η is the entropy density and θ the (absolute) temperature.

Using (2.7) in the second law (2.8), we obtain

−ε̇ + θη̇ + σε̇− qθx

θ
≥ 0 . (2.9)

It is now convenient to the introduce Helmholtz free energy density W = ε− θη and

rewrite the second law in the following form

−Ẇ − ηθ̇ + σε̇− qθx

θ
≥ 0 . (2.10)

2.1.3 Constitutive relations, driving forces and kinetic rela-

tions

We assume that the Helmholtz free energy density depends on the strain, the tem-

perature and the internal variables.

W = W (ε, λ, εm, εp, θ). (2.11)

We make similar assumptions on the stress. Substituting these in the second law,

(2.10), we obtain,

−
(

∂W

∂ε
− σ

)
ε̇− ∂W

∂λ
λ̇− ∂W

∂εm

ε̇m −
∂W

∂εp

ε̇p −
(

∂W

∂θ
+ η

)
θ̇ − qθx

θ
≥ 0.(2.12)

Using arguments similar to those of Coleman and Noll (19), we conclude that

σ =
∂W

∂ε
, η = −∂W

∂θ
. (2.13)
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We also assume Fourier’s law of heat transfer:

q = −kθx (2.14)

where k > 0 is the conductivity.

We define the driving forces associated with the internal variables to be the quan-

tities conjugate to their rates of change in (2.12):

dλ := −∂W

∂λ
, dεm := −∂W

∂εm

, dεp := −∂W

∂εp

. (2.15)

Substituting these back into (2.12), and using (2.13) and (2.14), we conclude that the

second law reduces to the requirement that

dλλ̇ + dεm ε̇m + dεp ε̇p ≥ 0 . (2.16)

We have to prescribe the evolution of the internal variables to be consistent with this

relation.

We assume that the evolution of the internal variables λ, εm depends on the driving

forces through the following kinetic relations, and subject to the constraints (2.4):

λ̇ = Kλ(dλ, λ, εm) λ ∈ [0, 1], (2.17)

ε̇m = Kεm(dεm , λ, εm) εm ∈ [εc
m, εt

m]. (2.18)

Finally we assume that the evolution of the internal variable εp is prescribed as in the

rate-independent theory of plasticity. We postpone its discussion till the next section.

2.1.4 Specific constitutive assumptions

We specialize to the following constitutive relation for the Helmholtz energy,

W =
E

2
(ε− εp − λ εm)2 + λ ω(θ)− cp θ ln

(
θ

θ0

)
(2.19)
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Figure 2.1: Schematic representation of the Helmholtz energy density.

where E is the elastic modulus (assumed to be equal in both the austenite and the

martensite), ω is the difference in chemical energy between the austenite and the

martensite, cp is the heat capacity (assumed to be equal in both the austenite and

the martensite), and ordinary thermal expansion is neglected. A schematic form of

this relation at some temperature above austenite finish temperature, where austenite

is the stable phase, is illustrated in Figure 2.1. We further assume that

ω(θ) =
L
θcr

(θ − θcr) (2.20)

where L is the latent heat of transformation and θcr is the thermodynamic transfor-

mation temperature. Both parameters are evaluated through experimental measure-

ments. Substituting (2.19) and (2.20) in (2.13), we obtain

σ = E(ε− εp − λ εm), (2.21)

η = λ
L
θcr

− cp

(
1 + ln

(
θ

θ0

))
, (2.22)

dλ = σεm − ω, (2.23)

dεm = λσ, (2.24)

dεp = σ. (2.25)

The kinetic relation describing the evolution of the martensite volume fraction λ
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Figure 2.2: The kinetic relation between λ̇ and the driving force dλ

is taken to be the following:

λ̇ =


λ̇+ (1 + (dλ − d+

λ )−1)−
1
p dλ > d+

λ and λ < 1

λ̇− (1 + (d−λ − dλ)
−1)−

1
p dλ < d−λ and λ > 0

0 otherwise

(2.26)

where λ̇±, d±λ , p are material parameters. This relation is shown in Figure 2.2. Note

that the kinetic relation is characterized by a “stick-slip” character at small driving

forces. The phase transformation requires a critical driving force before it can proceed,

i.e., the rate of change of volume fraction is 0 for driving forces below a critical driving

force. As one exceeds the critical driving force, note the curve is vertical meaning that

the rate of phase transformation is indeterminate or equivalently the driving force is

independent of rate of phase transformation. This is rate-independent behavior. The

reason for this is a combination of metastability (6) and pinning by defects (1; 7; 10).

However, at large driving forces, it becomes rate-dependent and in fact asymptotes to

a limiting rate. The reason for this is that phase boundaries require an unboundedly

increasing driving force for the propagation speeds to reach towards some sound

speed (10; 38). Note that this kinetic relation is consistent with the experimental

observations that say that for low driving forces, around d±λ , phase transformation

is rate-independent (35) and at large driving forces, material shows rate dependency

(33).
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The evolution of the effective transformation strain εm describes the twinning,

detwinning and other such processes that convert one martensitic variant to another.

We assume a rather simple law for its evolution:

ε̇m = Kεm (dεm , λ, εm) =
α

λ
dεm =

 ασ εm ∈ [εc
m, εt

m]

0 otherwise
(2.27)

where α is a material parameter and is chosen large enough to guarantee a very quick

process, so that εm is essentially equal to εt
m and εc

m under tension and compression

respectively.

Finally, we assume a rate-independent plasticity relation that neglects the Bauschinger

effect:

ε̇p = Kεp (dεp , σy) =
˙dεp

H
=

 σ̇
H

σ ≥ σy or σ ≤ −σy

0 otherwise
(2.28)

where H is the hardening parameter and σy is the plastic yield stress.

This completes the specification of the model.

2.1.5 Temperature evolution

The energy balance along with the constitutive relations describe the evolution of the

temperature. However, this is rather complicated, and therefore it is useful to make

some simplifying assumptions.

We begin by substituting for the internal energy in terms of the Helmholtz free

energy and entropy in the energy balance (2.7) to rewrite it as

Ẇ + θη̇ + θ̇η = −qx + r + σε̇. (2.29)

Using the constitutive assumption (2.19) for W to expand Ẇ , using the various

definitions of driving force and simplifying, we obtain

θη̇ = −qx + r + dλλ̇ + dεm ε̇m + dεp ε̇p. (2.30)
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Specializing now to the specific constitutive relation and in particular (2.22), we

obtain,

cpθ̇ = λ̇θ
L
θcr

− qx + r + dλλ̇ + dεm ε̇m + dεp ε̇p. (2.31)

In the sequel, we shall be interested in processes where we can neglect heat trans-

fer (q = r = 0). Further, it turns out that the latent heat of transformation is

large compared to the energy dissipated during transformation, martensitic variant

reorientation and plasticity during typical processes of interest. Therefore we assume

cpθ̇ = θλ̇
L
θcr

. (2.32)

Integrating this, we obtain a relation between temperature, volume fraction of marten-

site, latent heat and specific heat:

θ(t) = θ0 exp

(
(λ(t)− λ0)L

cpθcr

)
. (2.33)
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2.2 Demonstration

In this section the model is demonstrated using both stress-controlled and Kolsky

bar experiments. We demonstrate that our model is consistent with the observed

asymmetric response of shape-memory alloys under tension and compression. It is

able to capture the behavior under a wide range of temperatures spanning both the

shape-memory effect and superelasticity, and a wide range of loading rates. The

model is relatively easy to use, and this is demonstrated by designing the necessary

pulse for a constant strain rate in a Kolsky bar experiment. Throughout this section,

we calculate the response of a material point to a given load or deformation history.

2.2.1 Parameters

Consistent with typical experiments on NiTi (see for example (31)), we consider the

following parameters:

Ms = − 51.55 oC and As = − 6.36 oC

L = 79 (
MJ

m3 ) and cp = 5.4 (
MJ

m3 oK
) (2.34)

εc
m = − 2.5% and εt

m = 5%

E = 65 (GPa) and σy = 1500 (MPa)

where Ms and As are the martensite start and austenite start temperatures, respec-

tively∗. Recalling (2.26) and (2.23), we obtain

d+
λ = −ω(Ms), d−λ = −ω(As). (2.35)

Assuming further that

d+
λ = −d−λ , (2.36)

∗Ms is the temperature at which the specimen completely in the austenite phase begins to
transform to martensite during cooling and As is the temperature at which the specimen completely
in the martensite phase begins to transform to austenite during heating.
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we conclude that

d+
λ = −d−λ = L

(
As −Ms

As + Ms

)
, θcr =

As + Ms

2
. (2.37)

Note that one has to be careful to specify the absolute temperature in Kelvin to use

these formulas.

We also assume the following kinetic coefficients:

λ̇+ = −λ̇− = 1, α = 1, p = 2 and H =
E

50
.

Note that λ̇± control the evolution rate of the volume fraction of martensite, are

kept fixed in the entire chapter and chosen so that λ̇ εm is smaller than ε̇.

Parameter α is chosen to guarantee the fast speed of the evolution of phase trans-

formation strain εm both under tension and compression as described earlier. While

larger α’s do not change the results, smaller α’s may lead to slow evolution of εm,

which is not acceptable in this setting.

The power of the kinetic law p controls the shape of its function, for the given

value of p = 2 its form is shown in Figure 2.2. For higher values the kinetic relation

would get closer to a Heaviside function in the first and third quadrant.

2.2.2 Superelasticity

To demonstrate the capability of this model to reproduce the superelastic response

of shape-memory alloys, we here compare our simulation results with those of pure

tension experimental results of McNaney et al. (31) as shown in Figure 2.3. Ambient

temperature is set to be equal to the room temperature θ = 22 oC. Transformation

temperatures are characterized by differential scanning calorimetry in the experiment

and are equal to the ones mentioned earlier (2.34). It is good to note that austen-

ite finish temperature Af is equal to 18.13oC, which ensures that the material is

initially in the austenite phase, as we are above the austenite finish temperature.†

†All other parameters used are as described earlier in (2.34) except L = 8.8 J/g and E = 40 GPa.
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Figure 2.3: Comparison between the experiment (31) and the fit to the model.

This simulation is for a quasistatic case as strain rates are in the range of 10−5s−1 to

10−4s−1.

As illustrated in the figure the initial elastic response is followed by a stress plateau

where forward phase transformation occurs. The specimen transforms completely to

martensite at approximately 5.8% strain and upon further loading behaves elastically.

Unloading of the specimen is initially elastic, followed by a lower plateau where the

reverse phase transformation occurs. The material behaves elastically again when it is

totally transformed back to austenite. It is clear that the model is able to reproduce

the overall features of the experiment. However, we see some differences. First,

notice that the unloading begins with a greater slope in our model compared to the

experiment. This is because our model assigns the same elastic moduli for both the

austenite and the martensite while the experimental values are different. This may

be easily changed. Second, the experiment shows a slight overshoot in both loading

and unloading, but the model does not. This is related to localization and is beyond

the scope of this chapter.
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Figure 2.4: A typical stress-strain curve generated by the model.

2.2.3 Tension-compression asymmetry

In this section we evaluate the ability of the model to capture the tension-compression

asymmetry. We consider an applied stress of the form

σ(t) = A sin ωt (2.38)

with A = 1300 MPa and ω = 2π/T with T equal to 5×10−3 seconds unless otherwise

mentioned. In particular, this value of loading is below the chosen yield strength,

and thus plasticity is suppressed. We examine this aspect later in this chapter. We

integrate (2.26), (2.27), (2.28), (2.33) as well as (2.21) simultaneously subject to the

initial conditions

ε(0) = 0.0%, εp(0) = 0.0%, εm(0) = 0.0%, λ(0) = 0 and θ(0) = 22 oC.(2.39)

to obtain the time-trajectory of ε, εm, εp, λ and θ.

The result is shown in Figure 2.4. As we start loading, the material deforms

elastically till reaching the point at the top-left corner of the upper flag. At this point

the austenite to martensite phase transformation starts and this results in a change
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Figure 2.5: Effect of the relative values of the phase transformation strains in the
asymmetric response

of slope. It continues till the material fully transforms to martensite and we reach the

top-right corner of the upper flag. The material deforms elastically beyond that. As

material is unloaded, it deforms back elastically till the driving force gets equal to d−λ

at the bottom-right corner of the upper flag. The reverse phase transformation starts

as we traverse the lower side of the upper flag. The reverse phase transformation

continues till the material transforms back to austenite completely at the bottom-left

corner of the upper flag. The material undergoes the same process under compression;

however, the stress level required to nucleate the martensite phase from the parent

austenite phase is higher in compression than in tension; the transformation strain

measured in compression is smaller than that in tension; the hysteresis loop generated

in compression is wider (along the stress axis) than the hysteresis loop generated in

tension, consistent with the well-known asymmetry of shape-memory alloys.

Figure 2.5 schematically shows the effect of the relative values of the compres-

sive εc
m and tensile εt

m phase transformation strains in the shape of the stress-strain

response.
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2.2.4 Ambient temperature and the shape-memory effect

Figures 2.6 through 2.10 show the effect of change of the ambient temperature in

the stress-strain hysteresis. The initial temperature is taken to be the ambient tem-

perature (instead of that in (2.39)), and subsequently allowed to evolve according to

(2.33).

At the lowest ambient temperature, 200◦K, shown in Figure 2.6, λ quickly in-

creases to 1 as the austenite transforms to martensite and remains there independent

of loading. So the stress-strain curve reflects the evolution of εm, or reorientation

of martensitic variants. This changes as the ambient temperature increases through

Ms and As till at 295◦K, one is completely in the austenite at zero stress indepen-

dent of the loading history. So this stress-strain curve reflects the stress-induced

transformation. As the ambient temperature increases, stress required to induce the

transformation increases (faster in compression than in tension since the transforma-

tion strains are different), till no transformation is observed at 425◦K. All of this is

consistent with observations and the well known Clausius − Clapeyron relation (35).

It is worth remarking that these plots show that this model captures both the

shape-memory effect as well as the stress-induced transformation. The latter is ob-

served at 295◦K. To observe the former, suppose we cool the specimen with no stress.

As remarked above, the material transforms to martensite as λ increases to 1 as we

pass below Ms to say 200◦K. However, the transformation strain εm remains at 0,

and it follows from (2.21) that the strain ε remains at 0. Thus, transformation in-

duced by cooling produces no strain, something called self-accommodation, and this

is captured by the model. Now, deform the specimen. It is clear from stress-strain

curve at 200◦K, that unloading causes a residual strain or permanent deformation.

Finally heat the specimen to above Af to say 295◦K. Note from stress-strain curve

that the only strain consistent with zero stress is zero, and thus the specimen recovers

its permanent deformation. This is the shape-memory effect.

To study the temperature dependence of the critical phase transformation stress

we can also use the equation (2.23), which relates the thermodynamic driving force
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Figure 2.6: The stress-strain behavior at different ambient temperatures.
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Figure 2.7: The stress-strain behavior at different ambient temperatures.
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Figure 2.8: The stress-strain behavior at different ambient temperatures.
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Figure 2.9: The stress-strain behavior at different ambient temperatures.
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Figure 2.10: The stress-strain behavior at different ambient temperatures.



34

dλ to the stress σ. In order to find the critical stress at which forward transformation

from austenite to martensite starts one would write:

d+
λ = σ+t

εt
m − ω and d+

λ = σ+c

εc
m − ω (2.40)

Solving for the critical stress:

σ+t

=
d+

λ + ω

εt
m

and σ+c

=
d+

λ + ω

εc
m

. (2.41)

from (2.20) and (2.37) we have

ω(θ) =
L
θcr

(θ − θcr), d+
λ = L

(
As −Ms

As + Ms

)
and θcr =

As + Ms

2
.

It follows that,

d+
λ + ω(θ) =

L
θcr

(
As −Ms

2
+ θ − As + Ms

2
) =

L
θcr

(θ −Ms) (2.42)

which would be an equivalent for (2.41):

σ+t

=
L

θcr εt
m

(θ −Ms) and σ+c

=
L

θcr εc
m

(θ −Ms). (2.43)

The above relation could also be easily derived from the Clausius − Clapeyron rela-

tion.

2.2.5 Effect of loading rate on the deformation behavior

Figure 2.11 shows the results of both the tensile and compressive half-cycles of load-

ing at different loading rates. Each curve was generated by starting with the initial

conditions (2.39), and carrying through the calculation for a tensile or compressive

half-cycle of loading. As stress rate increases, the transformation begins at the same

level of stress, but the stress increases relatively faster than the strain can evolve,

giving rise to an apparent hardening and increase in the size of the hysteresis loop.
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Figure 2.11: Tensile and compressive half-cycles at different loading rates, ω 7→
0.375ω, 0.75ω, 1.25ω, 2.5ω, 5ω, 10ω.

This hardening is a result of both the particular kinetic relation (specifically the rate

dependence at high rates) and also an increase of temperature of the material. We

shall examine the two effects separately below. At higher rates we also notice two

other aspects. First, there is an apparent residual strain on full unloading. The

reason is that the stress unloads too fast to allow for the completion of the reverse

transformation. This is a consequence of the rate-dependence of the chosen kinetic

relation at high rates. Second, at the highest rate (10ω), the material appears to

soften as the loading proceeds. The reason is that the loading rate is so high that the

transformation is not complete as the load increases to its peak and thus the trans-

formation continues even as the load begins to decrease. All of these are consistent

with observations in the literature (33).

Figure 2.12 shows the results of a full tension-compression cycle starting with

tension.

Adiabatic heating affects the stress-strain response of the of shape-memory alloys.

In order to properly interpret the effect of loading rate here we examine the relative

role of the two factors that lead to the apparent hardening at high rates. Figure 2.13

shows the stress-strain response of the rate-independent (left) and rate-dependent

(center) kinetic relations. The kinetic relations are shown on the right. The rate-
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Figure 2.12: Complete tension-compression cycles at different loading rates, ω 7→
0.375ω, 2.5ω, 5ω.

dependent kinetic relation is the one stated earlier in (2.26). The rate-independent

kinetic relation may be described as follows

|dλ| ≤ d+
λ , λ̇ = 0 if |dλ| < d+

λ , (2.44)

and is shown as a dashed line on the right of Figure 2.13.

Let us begin with the rate-independent response shown on the left. If the load-

ing is quasistatic and in fact slow enough to dissipate the latent heat so that the

response is isothermal, one obtains the stress-strain response marked “Isothermal.”

As the loading rate increases, there is less time to dissipate the latent heat, and the

temperature rises as the transformation progresses. Consequently the stress required

to sustain the transformation increases with increasing volume fraction causing an

apparent hardening. We eventually reach the response marked “Adiabatic.” Further

increase in loading rate does not change the response.

We can estimate the amount of hardening for this rate-independent situation.

By combining the definition of driving force (2.23) with the constitutive assumption
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(2.20) for ω, we obtain

dλ = σεm −
L
θcr

(θ − θcr) . (2.45)

For rate-independent kinetics, (2.44), the driving force dλ = d+
λ for transformation to

proceed. Thus, the stress required for the transformation to proceed is given by

σ =
d+

λ

εm

+
L

εmθcr

(θ − θcr) . (2.46)

At the start of the transformation and for isothermal conditions, θ = θ0. However,

under adiabatic conditions, the temperature rises with transformation according to

(2.33), so that final temperature at the completion of transformation is given by

θf = θ0 exp

(
L

cpθcr

)
. (2.47)

Thus the difference in stress between the start and finish of transformation during

rate-independent adiabatic conditions‡ is given by

∆σ =
θ0 L

εm θcr

(
exp

(
L

cpθcr

)
− 1

)
. (2.48)

We now turn to the rate-dependent kinetic relation (2.26). The response is shown

in the center of Figure 2.13. Under quasistatic, isothermal loading the response

is identical to the rate-independent case and thus not shown. Since this kinetic

relation is rate-independent for small rates, we first see a transition from isothermal

to adiabatic, as before. Note that the response marked .375ω for the rate-dependent

case is identical to the adiabatic response of the rate-independent case. On increasing

the rate even further, we access the regime at which the kinetic relation becomes rate-

dependent and thus observe further hardening.

In conclusion, both the transition from isothermal to adiabatic conditions as well

as inherent rate dependence can give rise to hardening of the response with increasing

‡This is also equal to the difference in stress at the finish between adiabatic and isothermal
conditions.
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Figure 2.13: Comparison of the stress-strain relations for rate-independent (left) and
rate-dependent (center) transformation kinetics. The two kinetic relations are shown
on the right.

rate. However the former is limited to an increase of stress as described in (2.48).

Any further hardening is necessarily a manifestation of inherent rate dependence of

the transformation.

Figures 2.14 and 2.15 demonstrate how the power of the kinetic relation affects

the stress-strain response for an isothermal as well as an adiabatic thermal condition.

2.2.6 Effect of plastic yield strength

The results discussed so far do not consider any plasticity since the yield strength was

chosen to be higher than the maximum applied load. We now change that by taking

the amplitude of loading to 800MPa and then taking a range of yield strengths from

350 MPa to 850 MPa. The results are shown in Figure 2.16. There is no plasticity as

before when the yield strength is above stress amplitude (σy = 850 MPa). One begins

to observe plasticity as the yield strength decreases. At σy = 750, 650 MPa, note that

the yielding does not begin till the transformation is complete. The unloading is

similar as before, though offset by the residual plastic strain and this remains as a

permanent strain even after full unloading. At σy = 550 MPa, the transformation

begins at 500 MPa, the plasticity begins at 550 MPa (indicated by an arrow) even

before the transformation is complete, and proceeds even after the transformation is

complete (again indicated by an arrow. At σy = 350 MPa, the yield begins at 350
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Figure 2.14: The effect of the power of the kinetic relation on the stress-strain response
at loading rates: ω 7→ 1.25ω, 2.5ω, 5ω, 7.5ω, 10ω for an isothermal condition.
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Figure 2.15: The effect of the power of the kinetic relation on the stress-strain response
at loading rates: ω 7→ 1.25ω, 2.5ω, 5ω, 7.5ω, 10ω for an adiabatic condition.



40

0 10 20 30 40
0

200

400

600

800
θ= 22oC

ε  %

σ 
(M

Pa
)

σ
y
=350(MPa)

σ
y
=450(MPa)

σ
y
=550(MPa)

σ
y
=650(MPa)

σ
y
=750(MPa)

σ
y
=850(MPa)

Figure 2.16: The stress-strain relations at different yield strength.

MPa, and continues as the transformation begins at 500 MPa (indicated by an arrow)

and is complete (again indicated by an arrow). The unloading is as before.

2.2.7 Internal loops

Inspired by some experiments, we discuss internal loops of the stress-strain hysteresis

for a simple triangular applied stress function. In Figure 2.17 the applied stress func-

tion σ is shown at the top left corner, the strain ε evolution at top right, the evolution

of the martensitic volume fraction λ at the bottom left, and the stress-strain curves

in the bottom right. The stress-strain curves consist of two parallel, linearly elastic

branches and two almost horizontal lines where forward and reverse phase transfor-

mation happens. In particular, for the cases in which loading is interrupted before

material is fully transformed to martensite, material starts unloading along a path

parallel to the elastic loading-unloading branches and then starts the reverse phase

transformation and goes back to the initial austenite phase at an almost constant

stress level. This is consistent with the observations and arguments of Abeyaratne,

Chu and James (1) but not with those of Huo and Müller (21).

We also note that some of the curves appear to show a softening. This is a

consequence of the triangular applied load. The ramp-down begins before the trans-
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Figure 2.17: The internal hysteresis loops.

formation is complete: so during the initial ramp-down, the load is decreasing but still

high enough for the transformation to continue giving rise to an apparent softening.
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Figure 2.18: Kolsky bar and time-space diagram.

2.3 Kolsky bar

The previous section demonstrated the model under stress-control. However, this is

difficult to attain experimentally. In materials like shape-memory alloys that involve

the evolution of internal variables, the stress-strain curve varies with the methodology

of the experiment. A particularly popular means of measuring material properties at

high deformation rates is the Kolsky or split-Hopkinson bar. So we consider this in

this section. It also serves the emphasize how sensitively the stress-strain curve can

depend on the experimental methodology.

2.3.1 Kolsky bar

In the Kolsky or split-Hopkinson bar experiment shown in Figure 2.18, a thin spec-

imen is placed between an incident bar (left) and output bar (right), both made of

a linear elastic material and designed to have very little dispersion. A compression

stress wave of known amplitude, duration and shape is generated in an incident bar

through a striker bar (not shown). As this wave reaches the specimen, a portion is

reflected while another portion is transmitted into the output bar. The length of the

specimen is very small compared to the ratio of the wave speed to the duration of the
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pulse so that one may assume that the specimen is in equilibrium at any given time.

Since the input bar is linear elastic, the displacement in the bar is of the form

uL(x, t) = f(x− ct) + g(x + ct) (2.49)

so that the strain, the stress and the particle velocity are given by

εL(x, t) = (uL),x(x, t) = f ′(x− ct) + g′(x + ct) (2.50)

σL(x, t) = Eb (f ′(x− ct) + g′(x + ct)) (2.51)

vL(x, t) = (uL),t(x, t) = c(−f ′(x− ct) + g′(x + ct)) (2.52)

that includes both the incident and reflected waves. Above, the prime (′) denotes

differential with respect to its native variable. Similarly, the output bar is linear

elastic and

uR(x, t)left = h(x− ct) (2.53)

εR(x, t) = h′(x− ct) (2.54)

σR(x, t) = Eb h′(x− ct) (2.55)

vR(x, t) = −c h′(x− ct) (2.56)

since there is only a transmitted wave. Assuming the equilibrium of the specimen,

the stress in the specimen is uniform and one has continuity of forces so that

σ(t)As = σL(0, t)Ab = σR(0, t)Ab, (2.57)

where As and Ab are the cross-sectional areas of specimen and the input/output bars,

respectively. Further, the overall strain in the specimen is given as

ε =
uR(0, t)− uL(0, t)

ls
(2.58)
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where ls is the length of the specimen. It follows that

σ(t) =
Eb Ab

As

(f ′(−ct) + g′(+ct)) =
Eb Ab

As

h′(−ct), (2.59)

ε̇(t) =
c(−h′(−ct) + f ′(−ct)− g′(ct))

ls
. (2.60)

In a typical Kolsky bar experiment, f is applied, g and h are measured, and (2.59),

(2.60) are used to obtain the stress and strain rate.

To further simplify these equations we start with the second relation in (2.59) and

rewrite it as follows:

f ′(−ct) + g′(+ct) = h′(−ct) ⇒ g′(+ct) = h′(−ct)− f ′(−ct). (2.61)

This would simplify (2.59) and (2.60) to:

σ(t) =
Eb Ab

As

h′(−ct), (2.62)

ε̇(t) =
2 c (−h′(−ct) + f ′(−ct))

ls
. (2.63)

Our purpose here is to see how a material described by our model would behave

when subjected to a Kolsky bar experiment. So we apply a given input pulse f(t),

integrate equations (2.62) and (2.63) and apply (2.21), (2.26), (2.27), (2.28) and (2.33)

to obtain h, σ, ε, εm, εp, λ and θ. Reflected wave profile g can also be derived by

applying (2.61). The initial conditions are the same as before. We choose the same

parameters as described in the previous section. Further,

Diameterspecimen = 1.5 cm and Diameterkolsky bars = 2 cm

Especimen = 65 GPa and Ekolsky bars = 200 GPa (2.64)

Lengthspecimen = 0.5 cm and Wave Speedspecimen = 3500 m/s .

The yield strength is chosen high enough so that plasticity plays no role. We assume

that the incident wave f ′ is a square pulse with amplitude 1.5 × 10−3, duration
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Figure 2.19: The effect of ambient temperature on stress-strain response.

50× 10−4 sec and rise time 50× 10−6 sec unless otherwise stated.

2.3.2 Ambient temperature

Figure 2.19 shows the result for different ambient (initial) temperatures. The critical

stress at which phase transformation starts, rises as temperature increases. Therefore

at the highest temperature displayed, 30◦C, the transformation begins very late, just

before the unloading. Therefore the material does not have enough time to transform

fully, and consequently the amount of strain is small. It fully transforms back on

unloading. As the ambient temperature drops, the transformation begins earlier and

thus proceeds further, and the amount of strain increases. It continues to transform

back fully except at the lowest displayed temperature of −25◦C.

Notice that the shapes of the stress-strain curves are less boxy than those obtained

with the given stress history in the previous section. This is our first indication that

the stress-strain curve can depend on experimental methodology.

2.3.3 Pulse amplitude, size and shape

Figure 2.20 shows the effect of changing the pulse amplitude, while Figure 2.21 shows

the effect of changing pulse duration. As expected, the transformation is incomplete

with smaller or shorter pulses. Figure 2.22 shows the stress-strain curve for various
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Figure 2.20: Pulse amplitude’s effect in stress-strain hysteresis. The amplitude and
pulse duration are normalized with those described in (2.64).
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Figure 2.21: Pulse duration’s effect in stress-strain hysteresis. The amplitude and
pulse duration are normalized with those described in (2.64).
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Figure 2.22: The effect of the pulse shape in stress-strain hysteresis. The amplitude
and pulse duration are normalized with those described in (2.64).
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Figure 2.23: Design of the strain rate in the specimen.

pulse shapes. The shape of the stress-strain curve can vary widely with the input

pulse.

This points to the importance of designing an appropriate pulse shape in exper-

iments. The strain rate of the shape-memory alloy sample varies significantly as its

microstructure changes and obtaining a constant strain rate during the austenite to

martensite phase transformation in experiments is an issue of concern (33). We ad-

dress this by using the model to design a pulse that yields a desired strain rate history.

We set our given strain rate ε̇(t) and integrate equations (2.62) and (2.63) to solve

for the incident f and transmitted h waves. The reflected wave g can also be derived

by using (2.61) when f and h are quantified. We will apply (2.21), (2.26), (2.27),

(2.28) and (2.33) to obtain σ, εm, εp, λ and θ. The initial conditions are the same as

before. The results are shown in Figure 2.23 for two desired strain rates. The first

is a constant strain rate to investigate the loading. Note that the pulse can not have

constant amplitude but has to increase gradually in amplitude. The second is a jump

test to study both the loading and the unloading. Note that the wave profile on the

left is normalized and we are in fact plotting the slope f ′, which is unitless rather

than the incident wave profile f .
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Chapter 3

Three-Dimensional Constitutive
Model for Shape-Memory Alloys

3.1 Constitutive Model

In this chapter, we develop and discuss a three-dimensional constitutive model within

a continuum thermodynamic framework for polycrystalline shape-memory alloys. Mi-

cromechanics origins of the model, the concepts emerged from those analysis and their

relation to macroscopic properties in both single and polycrystals are presented.

3.1.1 Kinematics

Similar to the previous chapter, we use two kinematic or field or internal variables

to represent the consequence of microstructure in an RVE: the volume fraction of

martensite, λ(x, t), and the effective transformation strain of the martensite, εm(x, t).

λ(x, t) remains a scalar and is constrained to take values between 0 and 1. However

εm(x, t) is now a symmetric second-order tensor. It is constrained to lie inside a set

P , the set of all possible effective transformation strains. We postpone a detailed

discussion of this set till section 3.1.4, but note for now that it is a convex set in the

space of symmetric trace-free second-order matrices. Thus,

λ ∈ [0, 1] and εm ∈ P. (3.1)
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It is worth noting that the effective transformation strain of the RVE is λεm since

λ is the volume fraction of martensite, εm is the effective transformation strain of the

martensite and the transformation strain of the austenite is zero by choice of reference

configuration.

Finally, we introduce the plastic strain tensor εp as an additional field variable.

Putting everything together, we say that the total strain can be divided into three

parts, elastic, transformation and plastic:

ε(x, t) =
1

2
(∇u +∇uT ) = εe(x, t) + λ(x, t)εm(x, t) + εp(x, t). (3.2)

3.1.2 Balance laws

We assume that the usual balance laws hold. In local form, the balance of linear

momentum and energy may be stated as

ρutt = div (3.3)

σε̇ = −∇q + r + σ : ε̇ . (3.4)

where ρ is the (referential) mass per unit length, σ is the (Piola-Kirchhoff) stress, ε

is the internal energy density, q the heat flux and r the radiative heating.

(3.5)

We also use the local form of the second law of thermodynamics,

−Ẇ − ηθ̇ + σ : ε̇− q∇θ

θ
≥ 0 , (3.6)

where W = ε− θη is the Helmholtz free energy density, η the entropy density and θ

the (absolute) temperature.
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3.1.3 Constitutive relations, driving forces and kinetic rela-

tions

We assume that the Helmholtz free energy density depends on the strain, the tem-

perature and the internal variables:

W = W (ε, λ, εm, εp, θ). (3.7)

Specifically, we assume,

W =
1

2
(ε− εp − λ εm) C (ε− εp − λ εm) + λ ω(θ)− cp θ ln

(
θ

θ0

)
(3.8)

where C is a fourth-order tensor denoting the elastic modulus (assumed to be equal in

both the austenite and the martensite), ω is the difference in chemical energy between

the austenite and the martensite, cp is the heat capacity (assumed to be equal in both

the austenite and the martensite), and ordinary thermal expansion is neglected. This

relation is illustrated in Figure 2.1. We further assume that

ω(θ) =
L
θcr

(θ − θcr) (3.9)

where L is the latent heat of transformation and θcr is the thermodynamic transfor-

mation temperature. Arguing as in chapter 2, we obtain

σ = C(ε− εp − λ εm), (3.10)

η = λ
L
θcr

− cp

(
1 + ln

(
θ

θ0

))
, (3.11)

dλ = σ : εm − ω, (3.12)

dεm = λσ, (3.13)

dεp = σ. (3.14)

where dλ, dεm and dεp denote the driving forces associated with the rates of change

of their conjugate internal variables, λ, εm and εp respectively.
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The kinetic relation describing the evolution of the martensite volume fraction λ

is taken to be the following:

λ̇ =


λ̇+ (1 + (dλ − d+

λ )−1)−
1
p dλ > d+

λ and λ < 1

λ̇− (1 + (d−λ − dλ)
−1)−

1
p dλ < d−λ and λ > 0

0 otherwise.

(3.15)

where λ̇±, d±λ , p are material parameters. This relation is shown in Figure 2.2 and its

nature is discussed in section 2.1.4.

We assume the following plasticity relation:

ε̇p = Kεp (dεp , yield surface) =
˙dεp

H
=

 σ̇
H

σ ∈ yield surface

0 otherwise.
(3.16)

where H is the hardening parameter.

The evolution of the effective transformation strain εm describes the twinning,

detwinning and other such processes that convert one martensitic variant to another.

We assume a rather simple law for its evolution:

ε̇m = Kεm (dεm , λ, εm) =


α
λ

dεm εm ∈ P̆

α
λ

(dεm)∂P εm ∈ ∂P

0 otherwise

(3.17)

where P̆ denotes the interior of P , ∂P the boundary of P and A∂P the projection

of A to the tangent space of P . There are subtleties associated with this statement

which we presently discuss.

3.1.4 Set of effective transformation strains

In general the transformation strain εm is a symmetric tensor and thus has six in-

dependent components. It may appear therefore that we need a six-dimensional

transformation strain space to represent the set of effective transformation strains.
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Self-accommodation, however, dictates that the transformation strain εm tensor is

trace-free (8). It follows then that the set P lives on a subspace five-dimensional

space of trace-free symmetric matrices. Therefore viewed as a six-dimensional object,

P̆, the interior of P , is empty.

Further the tangent space is always contained in the five-dimensional subspace

of trace-free symmetric tensors or deviatoric tensors. Therefore, it is convenient to

restrict ourselves to the five-dimensional space of deviatoric tensors and rewrite (3.17)

as

ε̇m = Kεm (dεm , λ, εm) =


α
λ

d̂εm εm ∈ P̆

α
λ

(d̂εm)∂P εm ∈ ∂P

0 otherwise

(3.18)

where P̆ and ∂P are interpreted as the relative interior and relative boundary to this

subspace, and Â is the deviatoric part of the tensor A.

To elaborate on this point, suppose we define P through the following relation

P = {εm|tr(εm) = 0, g(εm) ≤ 0} (3.19)

for a suitable g : R3×3

dev
→ R. Then,

ε̇m =


α
λ
d̂εm g(εm) < 0

α
λ
(d̂εm − d̂εm : ∂g

∂εm

∂g
∂εm

| ∂g
∂εm

|2
) g(εm) = 0

0 otherwise.

(3.20)

Recalling that dεm = λ σ from (3.13),

ε̇m =


ασ̂ g(εm) < 0

α(σ̂ − σ̂ : ∂g
∂εm

∂g
∂εm

| ∂g
∂εm

|2
) g(εm) = 0

0 otherwise.

(3.21)
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We now discuss, three specific constitutive relations for P .

3.1.4.1 Isotropic and symmetric transformation

Isotropy states that

g(εm) = g( RT εm R ). (3.22)

for all rotations R. This implies that we can define the transformation strain function,

g(εm) by three principal values of the transformation strain, or its three invariants

I1(εm), I2(εm) and I3(εm) where,

I1(εm) = tr(εm), (3.23)

I2(εm) =
1

2
[tr(εm)2 − tr(εm

2)], (3.24)

I3(εm) = det(εm). (3.25)

As mentioned earlier, self-accommodation asks the transformation strain εm to be

trace-free, which forces I1(εm) to vanish, which simplifies I2(εm) as follows:

I2(εm) = −1

2
tr(εm

2). (3.26)

For an isotropic alloy with tension-compression symmetry the following would be

a reasonable choice for the set of effective transformation strains:

P = {εm|tr(εm) = 0, g(εm) = I2(εm)− b 6 0}. (3.27)

Equations (3.17) and (3.27) give the growth rule for the transformation strain as

ε̇m =


ασ̂ |εm| <

√
2 b

α(σ̂ − εm
εm: σ̂
|εm|2 ) |εm| =

√
2 b

0 otherwise.

(3.28)
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3.1.4.2 Isotropic and asymmetric transformation

Obviously I2(εm) does not change sign as transformation strain changes sign and a

set of effective transformation strains solely based on I2(εm) would not allow tension-

compression asymmetry to appear. This is why in general one would prefer using a

g(εm) function, where

g(εm) = g(I2(εm), I3(εm)). (3.29)

This changes the set of recoverable strains to

P = {εm|tr(εm) = 0, g(εm) = (−I2(εm))
3
2 − a I3(εm)− b 6 0}. (3.30)

Equations (3.17) and (3.30) give the growth rule for the transformation strain as

ε̇m =


ασ̂ g(εm) < 0

α(σ̂ − (3 |εm|√
8

εm − a cof(εm)T )
(
3 |εm|√

8
εm− acof(εm)

T
):σ̂

|( 3 |εm|√
8

εm− acof(εm)
T

)|
2 ) g(εm) = 0

0 otherwise.

(3.31)

3.1.4.3 Anisotropic and asymmetric transformation

In some circumstances such as for alloys that have been reduced in thickness by

cold rolling in one direction, the introduction of a degree of anisotropy in the theory

is necessary. In the isotropic case when g(εm) = g(RT εm R) ∀R we get g(εm) =

g(I1(εm), I2(εm), I3(εm)), which along with the self-accommodation of transformation

strain tensor εm simplifies g(εm) to the form (3.29). For the anisotropic case when

g(εm) = g(RT εm R) ∀R ê = ê we have

g(εm) = g(I2(εm), I3(εm), ê · εm ê, ê · εm
2 ê). (3.32)
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Here we propose to work with the following form:

g(εm) = (−I2(εm))
3
2 − a I3(εm)− b− c (ê · εm ê)3. (3.33)

This changes the set of recoverable strains to

P = {εm|tr(εm) = 0, g(εm) = (−I2(εm))
3
2 − a I3(εm)− b− c (ê · εm ê)3}. (3.34)

This changes the growth rule for the transformation strain (3.31) to

ε̇m =


α
λ

d̂εm g(εm) < 0

α
λ

(d̂εm − d̂εm : ∂g
∂εm

| ∂g
∂εm

|2
) g(εm) = 0

0 otherwise,

(3.35)

where

∂g

∂εm

=
3 |εm|√

8
εm − a cof(εm)T − 3 c (ê · ê) (ê · εm ê)2. (3.36)

The interesting interplay of parameters a, b and c and their impact on the shape of

the set of recoverable transformation strains be reviewed later in this chapter. Having

defined the set of recoverable strains and evolution of the transformation strain, we

describe how to find the critical stress where phase transformation is triggered.

3.1.5 Temperature evolution

The energy balance, along with the constitutive relations describe the evolution of

the temperature. Specializing to the specific constitutive relation and in particular

(3.11), we obtain

cpθ̇ = λ̇θ
L
θcr

−∇q + r + dλλ̇ + dεm : ε̇m + dεp : ε̇p. (3.37)
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3.1.5.1 Adiabatic conditions

For processes where heat transfer is negligible we have (q = r = 0). Further, it turns

out that the latent heat of transformation is large compared to the energy dissipated

during transformation, martensitic variant reorientation and plasticity during typical

processes of interest. Therefore we assume

cpθ̇ = θλ̇
L
θcr

(3.38)

Integrating this, we obtain a relation between temperature, volume fraction of marten-

site, latent heat and specific heat:

θ(t) = θ0 exp

(
(λ(t)− λ0)L

cpθcr

)
. (3.39)

3.1.5.2 Non-adiabatic conditions

Under non-adiabatic thermal conditions radiative heating r is no longer equal to zero

and in (3.37) we replace it with

r = −4h

ds

(θ − θ∗). (3.40)

where h is the convection heat transfer coefficient and for the air it is normally 10 to

100 J
m2 Ks. Parameter ds is the diameter of the specimen for a cylinder sample and

θ∗ is the ambient temperature. This changes (3.38) to

cpθ̇ = θλ̇
L
θcr

+ r ⇒ cpθ̇ = θλ̇
L
θcr

− 4h

ds

(θ − θ∗). (3.41)

Integrating this, we obtain a relation between temperature, volume fraction of

martensite, latent heat, specific heat and convection heat transfer coefficient:

θ(t) = exp
R t
0 ( L

cp θcr
λ̇(τ)− 4h

cp ds
)dτ

(
θ0 −

∫ t

0

4h

cp ds

exp
−
R τ
0 ( L

cp θcr
λ̇(τ∗)− 4h

cp ds
)dτ∗

dτ

)
.(3.42)
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d
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Figure 3.1: Initiation of the forward martensitic phase transformation.

3.1.6 Critical phase transformation stress

Consider a specimen of shape memory material in the austenite state (λ = 0) and

above Ms subjected to some proportional loading

σ = s Σ. (3.43)

for s > 0 and monotone increasing. Since we have chosen α to be so large that εm

evolves much faster than stress, εm reaches the boundary ∂P of the set of recoverable

phase transformation strains quickly and then evolves along it till the normal to

∂P becomes parallel to Σ. This value εm, does not evolve any further for constant

normalized Σ stress direction tensor and solves the following problem:

max
εm∈P

(σ : εm) = s max
εm∈P

(Σ : εm). (3.44)

The driving force for transformation is then given by (3.12)

dλ = σ : εm − ω = s max
εm∈P

(Σ : εm)− ω. (3.45)

Transformation begins when d = d+
λ . Then it follows that the initial stress for trans-

formation is given by

sc = (d+
λ + ω)/max

εm∈P
(Σ : εm). (3.46)
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This defines the radial extent of the transformation yield surface in stress space and

along the given stress direction Σ. Figure 3.1 shows how this point is related to

corresponding points on the stress-strain hysteresis and the kinetic law.
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3.2 Demonstration of the isotropic model

In this section we confine our simulations with the assumption of isotropy, suitable

for polycrystalline shape-memory alloys where the degree of anisotropy developed

during the phase transformation process is negligible. We demonstrate how to derive

the transformation surface in this model, conduct a parameter study and present

a series of proportional and non-proportional loading simulations. We then demon-

strate the effects of temperature by studying the adiabatic and non-adiabatic thermal

conditions.

3.2.1 Parameters

Consistent with typical experiments on NiTi (see for example (31)), we consider the

following parameters:

Ms = − 51.55 oC and As = − 6.36 oC

L = 79 (
MJ

m3 ) and cp = 5.4 (
MJ

m3 oK
) (3.47)

E = 65 (GPa) and σy = 1500 (MPa)

where Ms and As are the martensite start and austenite start temperatures, respec-

tively. Recalling (3.15) and (3.12), we obtain

d+
λ = −ω(Ms), d−λ = −ω(As). (3.48)

3.2.2 Set of effective transformation strains

For an isotropic polycrystal of a shape-memory alloy, the set of effective transforma-

tion strains is defined by two parameters a and b. In Figures 3.2 and 3.3 the effect of

changes of these two parameters on the shape and size of the phase transformation

locus. As illustrated in these figures parameter b is responsible for the size of the

transformation locus and parameter a controls the shape of the set.

This suggests that in order to understand fully the size and shape of the transfor-
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transformation surface.
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mation surface we only need to evaluate parameters a and b and this only needs two

data points at the onset of the transformation yield.

In the presence of such information, as described in section 3.1.6 we solve for two

different stress directions say,
∑

1 and
∑

2, in order to find P , the set of effective

transformation strains in the transformation strain εm space.

For a Ti - 49.75 Ni (at.%) with an austenite-twinned martensite interface we pick

the critical stress values in < 1 0 0 > and < 1 1̄ 0 > directions and derive the set of

effective transformation strains.

Direction < 1 0 0 >: (σ1, σ2) = (380, 0)(MPa) ⇒ sc1 = 380 (MPa),

Direction < 1 1̄ 0 >: (σ1, σ2) = (0,−240)(MPa) ⇒ sc2 = 339 (MPa).

Given the above two data points and εt
m = 5% we find unknown parameters a

and b in the following steps:

1. Find a relation b = F1(a) between parameters a and b given

max
εm∈P

(Σ1 : εm) = εt
m.

2. Use (3.46) to write

(d+
λ + ω) = sc1 max

εm∈P
(Σ1 : εm) = sc1 εt

m.

3. Find a relation b = F2(a) between parameters a and b given

max
εm∈P

(Σ2 : εm) =
(d+

λ + ω)

sc2

= εt
m

sc1

sc2

.

4. Given b = F1(a) and b = F2(a) solve for a and b.

Using the above procedure the transformation surface in the transformation strain

space is derived as shown in Figure 3.4. In this figure, values of parameters a and b

are 1.035 and 0.000049, respectively. In this figure there is a stress direction vector
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stress directions S1 and S2 to solve for a and b to parameterize T
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• Picking the critical stress values in {1,0,0} and {1,-1,0} directions, 
the yield surface is derived. The followings are the yield surface 
in strain and stress surface for NiTi ( a=1.035 , b=0.0000488 ):

Figure 3.4: Phase transformation surfaces of Ni-Ti in stress and strain space.

Σ for every point on the transformation locus. The value of (d+
λ + ω) is also known

from the above. Now using (3.46) the phase transformation surface in the principal

stress space is derived as in Figure 3.4. This figure is consistent with the experimen-

tal phase transformation yield points obtained for proportional biaxial loadings in

tension(compression)-torsion or bicompression (25),(37). By temperature variations,

the phase transformation yield locus in the stress space would naturally change size.

This is introduced by the temperature dependence of ω, according to (3.9). As tem-

perature grows, the difference in stress-free chemical energy of the austenite and the

martensite grows and this would lead to higher critical phase transformation stress

values and a larger stress phase transformation yield locus accordingly. In this model

it is assumed that the phase transformation yield locus in the εm space does not

change by temperature and thus parameters a and b remain constant.

3.2.3 Proportional loading

For the same material parameters as listed earlier and for the phase transformation

yield locus that we just derived, here we simulate a few different proportional loading

experiments. Figure 3.5 shows results of our simulations of the uniaxial tension-

compression tests for different initial temperatures θ. In these plots evolution of the
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Figure 3.6: Pure shear stress-strain curves under proportional loading.

volume fraction of martensite and the temperature changes in the sample are also

demonstrated. It should be noted that in these plots λ and θ have been tracked for

a full tension-compression test. Rate of loading and unloading under tension and

compression being kept fixed implies that to study the growth of martensite under

tension, one should follow λ plots from time t = 0.0 to t = 0.5 and to study the

growth of martensite under compression, one should follow λ plots from time t = 0.5

to t = 1.0. The same is valid about the temperature evolution under tension and

compression. Figure 3.6 shows the stress-strain response, growth of volume fraction

of martensite and temperature as a function of time for pure shear tests for different

initial temperatures θ.

Figure 3.7 shows results of application of the current model for a set of biaxial

tension-compression tests. In these simulations the initial temperature θ is assumed

to be equal to 280oK and adiabatic condition is considered, the biaxial stress tensor
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Figure 3.7: Biaxial proportional tension-compression loading of Ni-Ti.

is assumed to be as follows:

σ = σmax(t)


cos φ 0 0

0 sin φ 0

0 0 0

 . (3.49)

3.2.4 Non-adiabatic conditions

To illustrate the stress-strain behavior under non-adiabatic thermal conditions we

assume the following relation for the radiative heating r:

r = −4h

ds

(θ − θ∗).

where h is the convection heat transfer coefficient and for the air it is normally 10 to

100 J
m2 Ks. Parameter ds is the diameter of the specimen for a cylinder sample and
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Figure 3.8: Non-adiabatic conditions.

θ∗ is the ambient temperature.

This changes (3.38) to

cpθ̇ = θλ̇
L
θcr

+ r ⇒ cpθ̇ = θλ̇
L
θcr

− 4h

ds

(θ − θ∗) .

Integrating the above, we obtain a relation between temperature, volume fraction

of martensite, latent heat, specific heat and convection heat transfer coefficient.

θ(t) = exp
R t
0 ( L

cp θcr
λ̇(τ)− 4h

cp ds
)dτ

(
θ0 −

∫ t

0

4h

cp ds

exp
−
R τ
0 ( L

cp θcr
λ̇(τ∗)− 4h

cp ds
)dτ∗

dτ

)
.
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Figure 3.9: Non-adiabatic conditions.

Figure 3.8 shows the stress-strain hysteresis for a cylindrical NiTi specimen of

diameter ds = 4 mm and at ambient room temperature. In this figure the effect of

changes in the value of the convection heat transfer coefficient on the stress-strain

response of the material is demonstrated. The temperature profile as well as the

profile of the volume fraction of martensite are also demonstrated in this figure. As

illustrated in the figure the phase transformation and the heat convection are two

competing processes and for higher rates of phase transformation processes, the heat

convection effect is decreased. This is predictable from 3.42 as for larger λ̇+’s the

term 4h
cp ds

would be negligible compared to L
cp θcr

λ̇.
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In Figure 3.9 we study the effect of the ambient temperature on the heat convec-

tion. We pick a given maximum rate for the kinetic relation equal to λ̇+ = 102s−1

and in each row start the simulations with a given ambient temperature θ∗ = 275oK,

θ∗ = 295oK and θ∗ = 315oK, respectively.

3.2.5 Nonproportional loading

In this section, numerical simulation of nonproportional loading of a NiTi SMA is

presented. The simplified model proposed above is used to simulate the mechanical

behavior of the specimen. Transformation temperatures, latent heat and other ma-

terial parameters are chosen as listed previously; thermal condition is assumed to be

adiabatic however.

Figure 3.10 shows stress-controlled simulations of a tension-torsion test. This is

a stress-controlled test and the corresponding strain path is measured. On the path

demonstrated by blue lines, tension is applied first. After reaching a tensile stress

of 800 (MPa) tensile loading is halted and torsion starts. For a fixed tensile stress,

torsion continues to grow till we reach the same level stress for torsion as that of

tension. Then torsion is unloaded till zero torsion stress is achieved. At this time

tensile force is also decreased for a final stress-free state. The same pattern is repeated

for a torsion first, tension next loading case. This figure shows detailed information

regarding the growth of λ, stress and strain. For a strain-controlled test a similar

simulation can be conducted.

Figures 3.11, 3.12 and 3.13 show stress-controlled tension-torsion simulations of

the same NiTi sample on six additional stress paths. In these plots one could follow

the evolution of the internal variables λ and εm as well as the corresponding stress

and strain paths. It should be noted that the εm11-εm12 plot in Figures 3.13 is a

cross-section of the phase transformation surface in the εm11-εm12 plane.
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Figure 3.10: Nonproportional stress-controlled test.
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Figure 3.11: Nonproportional stress-controlled test.
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Figure 3.12: Nonproportional stress-controlled test.
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Figure 3.13: Nonproportional stress-controlled test.
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3.3 Demonstration of the anisotropic model

To address micromechanical features such as texture, we need to understand the

microstructure of the material and its relation to macroscopic properties in both single

and polycrystals. In some circumstances such as for alloys that have been reduced in

thickness by cold rolling in one direction, the introduction of a degree of anisotropy

to the theory is necessary. In fact there is much experimental evidence on the effect

of texture on properties of shape-memory alloys that, not considering the anisotropy

in a thermomechanical constitutive model, would definitely limit its applications. In

this section we demonstrate applicability of this model in modelling the anisotropy in

shape-memory alloys. After parameterizing the phase transformation surface for an

anisotropic alloy and further stress-controlled and strain-controlled simulations for a

given SMA, we review Shu and Bhattacharya’s (47) earlier work to model the effect of

texture as a crucial factor in determining the shape-memory effect in polycrystals. We

then show that our model is able to predict the qualitative behavior of a polycrystal

alloy and its dependence on texture.

3.3.1 Parameters

Consistent with the assumptions of the previous section we choose to work with

typical material parameter values of NiTi and consider the following parameters:

Ms = − 51.55 oC and As = − 6.36 oC

L = 79 (
MJ

m3 ) and cp = 5.4 (
MJ

m3 oK
) (3.50)

E = 65 (GPa) and σy = 1500 (MPa)

3.3.2 Set of effective transformation strains

As proposed earlier in (3.34) the set of recoverable strains for an anisotropic shape-

memory alloy has three different parameters: a, b and c. In this section we intend to

parameterize the phase transformation surface. It is good to note that parameter b
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is a size parameter, i.e., it does not change the shape of the surface and that is why

in the forthcoming sections we would fix b’s value to that of the isotropic case, i.e.,

0.000049 and only the interplay of changing parameters a and c is demonstrated.

3.3.3 Parameter study

Phase transformation strain tensor being trace-free has five independent components

and this would complicate a parameter study of the phase transformation surface if

not simplified further. Here at the first step we consider two different special cases,

one without any shear strain and one with shear. We study the effect of parameters

a and c and keep parameter b fixed. For now we will also fix vector e to < 1 0 0 >.

First we study the no-shear case, where phase transformation strain tensor is

assumed to be

εm =


εm11 0 0

0 εm22 0

0 0 −εm11 − εm22

 . (3.51)

Figure 3.14 shows the phase transformation surface in εm11 versus εm22 surface. For

three different values of a, parameter c is perturbed and the transformation locus is

plotted. Perturbing a while c is fixed results in Figure 3.15.

To consider cases where shear component is non-trivial, we also consider a phase

transformation strain tensor in the following form:

εm =


εm11 εm12 0

εm12 0 0

0 0 −εm11

 . (3.52)

Figure 3.16 shows the phase transformation surface in εm11 versus εm12 surface. Here

again for three different values of a, parameter c is perturbed and the transformation

locus is plotted. Perturbing a while c is fixed results in Figure 3.17. In all these plots,

the curves with a zero parameter c demonstrate the projection of the phase transfor-
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Figure 3.14: The effect of parameter c on the shape of the transformation surface.
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Figure 3.16: The effect of parameter c on the shape of the transformation surface.
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Figure 3.17: The effect of parameter a on the shape of the transformation surface.
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mation yield surface for an isotropic NiTi ploycrystalline. These plots correctly show

that the phase transformation surface is symmetric around the εm12 = 0% line in the

εm11-εm12 strain plane.

The analytical model of Shu and Bhattacharya (1998) (47) suggests that for their

combined tension ± torsion calculations of NiTi, the recoverable twist decreases with

increasing imposed recoverable extension in random texture and < 110 > texture

while < 100 > texture shows the opposite behavior. To simulate their model qualita-

tively, we choose the following two sets as values of the phase transformation surface

parameters:

• Profile I : a = 1.5, b = 0.000049 and c = −0.6

• Profile II: a = −1.5, b = 0.000049 and c = 0.6

3.3.4 Stress-controlled tests

In the following simulations we closely study the evolution of the internal variables

as well as stress-strain response of a ploycrystalline NiTi material. We continue to

work with the preceding section’s profile I and profile II. Fixing vector e to < 1 0 0 >

and using the same material parameters as listed in earlier sections, the evolution

of internal variables λ and εm as well as the stress-strain behavior is derived as in

Figure 3.18. Loading is tension/compression followed by torsion and the loading

pattern is shown in the bottom right of Figure 3.18. The initial temperature is

assumed to be θ0 = 295oK, which is higher than the austenite finish temperature

Af of NiTi, thus the material undergoes superelastic deformation under tension plus

torsion loads.

In this simulation σ11 and σ12 are the only non-trivial components of the stress

tensor. Figure 3.18 in fact combines results of four different simulations together.

These simulations are differentiated from each other by the sign of axial and shear

stress. In all of them we start by stress loading the material axially up to a maximum

load. Then shear stress starts increasing from zero while axial stress is kept constant,

shear stress is then released at constant axial stress and finally material is unloaded
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Figure 3.18: Stress-controlled behavior of an anisotropic NiTi polycrystalline: profile
I.
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Figure 3.20: Stress-controlled tension-torsion simulation and the corresponding strain
path of an anisotropic NiTi polycrystalline: profile I - Path 1.
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Figure 3.21: Stress-controlled tension-torsion simulation and the corresponding strain
path of an anisotropic NiTi polycrystalline: profile I - Path 2.

axially to zero stress. The first two boxes on top left of this figure show this stress

pattern; the next two boxes at the top are the axial and shear strain paths. Evolution

of volume fraction of martensite and transformation strain is also shown in the middle.

Figure 3.19 shows the same results derived for profile II.

Inspired by Sittner et al. (48) here we demonstrate six different types of tension-

torsion stress-controlled simulations for an anisotropic NiTi polycrystal. We use pro-

file I’s transformation surface parameters. We use stress as the control parameter and

the corresponding strain path is measured. Figures 3.20 through 3.26 show these

results.
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Figure 3.22: Stress-controlled tension-torsion simulation and the corresponding strain
path of an anisotropic NiTi polycrystalline: profile I - Path 3.
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Figure 3.23: Stress-controlled tension-torsion simulation and the corresponding strain
path of an anisotropic NiTi polycrystalline: profile I - Path 4.
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Figure 3.24: Stress-controlled tension-torsion simulation and the corresponding strain
path of an anisotropic NiTi polycrystalline: profile I - Path 5.
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Figure 3.25: Stress-controlled tension-torsion simulation and the corresponding strain
path of an anisotropic NiTi polycrystalline: profile I - Path 6.
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Figure 3.26: Stress-controlled tension-torsion simulation and the corresponding strain
path of an anisotropic NiTi polycrystalline: profile I - Path 7.
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3.3.5 Strain-controlled tests

In this section we present simulation results of a strain-controlled experiment. Mate-

rial parameters are unchanged and Figure 3.27 and Figure 3.28 show these simulations

for profile I and profile II, respectively.

In these simulations ε11 and ε12 are prescribed, ε22 is set to zero and other com-

ponents of the strain tensor are derived by assuming the following form for the stress

tensor:

σ =


σ1 τ 0

τ σ2 0

0 0 0

 . (3.53)

Here values of σ1, σ2 and τ are derived for each iteration based on the current values

of ε11 and ε12. Like the two preceding figures, these figures combine results of four

simulations, where material is strain-loaded axially and then a shear strain is forced

on the sample in the same fashion as that of the stress-controlled simulations of the

previous section.

3.3.6 Effect of texture

In this section the effect of texture on a polycrystal of shape-memory alloy is demon-

strated. Consider a thin sheet of the alloy under uniaxial tensile stress. We intend

to rotate vector e in the plane and record the change in the recoverable strain as

depicted in Figure 3.29.

Inoue et al. (23) have investigated planar anisotropy of shape-memory strain in

polycrystalline NiTi alloy sheets and for a number of different textures have measured

the recoverable tensile strain. Figure 3.30 shows how our model is capable of repro-

ducing experimental observations of PL-CR sheets as reported in (23). The measured

data are shown with a red line; the green line is simulation results for an isotropic

material that does not show a texture effect as expected. The simulation results for

anisotropic PL-CR sample sheets are shown with blue lines. One can use these re-
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Figure 3.27: Strain-controlled behavior of an anisotropic NiTi polycrystalline: profile
I.
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Figure 3.28: Strain-controlled behavior of an anisotropic NiTi polycrystalline: profile
II.
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Figure 3.29: Rolled sheet under tensile stress
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sults to parameterize the phase transformation yield surface and then to study the

stress-strain response of the material for different textures.

Figure 3.31 demonstrate results of the stress-controlled simulations of polycrys-

talline NiTi samples with isotropic, < 1 1 0 > and < 1 0 0 > fiber textures, respec-

tively. In all these simulations material parameters are equivalent to the ones listed

in 3.3.1 and ambient temperature is equal to θ0 = 295oK. These figures show the

recoverable torsion vs. the recoverable extension in TiNi polycrystals with random

texture as well as the two aforementioned textures. These results are qualitatively

comparable to predictions of Shu and Bhattacharya (47).

Notice that in Figure 3.31 the recoverable twist decreases with increasing recov-

erable extension in < 1 1 0 > fiber texture while < 1 0 0 > texture does not follow the

same path, for this texture twist initially increases by increasing extension and after

it saturates it starts decreasing as extension grows.
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with isotropic fiber textures.
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Chapter 4

Phase Transformation in Iron

4.1 Introduction

In this chapter we extend the constitutive framework, presented in chapter 2, to

study the martensitic phase transformation and thermomechanical behavior of pure

iron. For this material compared to SMAs, the transformation strains are larger, the

stresses are larger and the plasticity is more involved. There is extensive literature

on the experimental study of rate sensitivity of iron and its deformation mechanisms.

Here we base our analysis on recent experimental observations of Rittel et al. (41)

(also see (54)) on characterization of the shear dominant, large strain mechanical

response of pure iron over strain rates ranging from ε̇ = 10−4(1/s) to ε̇ = 104(1/s).

Under high strain rates iron undergoes a reversible phase transformation from a bcc

crystallographic structure α to an hcp crystallographic structure ε. We use the kinetic

relation as proposed in the two previous chapters to describe the evolution of the

microstructure. We also assume that the overall material response can be described

by the Johnson-Cook constitutive relation, which is a widely used phenomenological

model.

4.2 Model

We follow the model presented in chapter 2 with some modifications of the plasticity.

The stress-strain relation is given by (2.21). The evolution of the transformation
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strain is given by (2.27), while the evolution of λ is given by (2.26). We replace (2.28)

for plasticity with the Johnson-Cook model described in detail in section 4.2.1. The

energy equation (2.31) will be also modified slightly as described in section 4.2.2.

4.2.1 Johnson-Cook

At high strain rates material experiences thermal softening that would compete with

the strain rate hardening effect. Thermal softening is caused by the temperature rise

of the specimen, which happens as a result of the substantial amount of heat generated

in the process. In order to assess the contribution of thermal softening we assume that

the overall material response is described by the Johnson-Cook constitutive relation

that describes the response of a number of metals fairly well:

σ = (σ0 + B εp
n)

(
1 + C ln

(
ε̇p

ε̇0

)) (
1 − D exp(θ∗)

m

1 − D

)
, (4.1)

where

θ∗ =

(
θ − θr

θr − θm

)
. (4.2)

Here σ0, B, n, C, D and m are six model parameters and one needs to fit them to

experiments. In particular here we use experimental results of Rittel et al. (41) to

evaluate these model parameters. Further, θr is the reference temperature at which

σ0 is measured, θm is the melting temperature of the material and ε̇0 is a reference

strain rate at which yield occurs at σ0.

The Johnson-Cook constitutive relation has three distinct terms, covering the

strain hardening, strain rate dependence and temperature softening of the material,

respectively. In order to capture the nonlinear response of the material under both

quasistatic and dynamic loading conditions the Johnson-Cook model needs to be

modified. Experimental observations show that the flow stress of iron shows a dif-

ferent strain rate dependence under quasistatic and dynamic loading conditions. A

schematic representation of these observations is shown in Figure 4.1.
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Figure 4.1: Strain rate dependence of the flow stress.

As illustrated in this figure by following the commonly used techniques in the

literature, the flow stress can be described through applying two distinctive relations

for static and dynamic tests:

σ = (σ0 + B εp
n)

(
1 + C1 ln

(
ε̇p

ε̇01

)) (
1 − D exp(θ∗)

m

1 − D

)
for quasistatic case

σ = (σ0 + B εp
n)

(
1 + C2 ln

(
ε̇p

ε̇02

)) (
1 − D exp(θ∗)

m

1 − D

)
for dynamic case

where parameters C1, C2, ˙ε01 and ˙ε02 remain to be evaluated through experiments.

In order to make the transition between the quasistatic and the dynamic conditions

smooth, we use a continuous function as follows:

S(ε̇p, s1, s2, ε̇t) = s1 +
s2 − s1

2

(
1 + tanh

(
s ln

ε̇p

ε̇t

))
. (4.3)

Function S is close to a Heaviside function with a smooth and continuous variation

around the transition strain rate ε̇t. S is equal to s1 when ε̇ < ε̇t and equal to

s2 when ε̇ > ε̇t. Scaling factor s controls the size of the transition interval and

s = 4/ ln(1 + .01 δ) provides 99.9% of the transition from one region to the other

to happen within ± δ% vicinity of the transition strain rate ε̇t.

We use function S to smoothen the transition between C1 and C2 as well as ε̇01
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Figure 4.2: Schematic representation of the S function.

and ε̇02 as follows:

C = S(ε̇p, C1, C2, ε̇t) = C1 +
C2 − C1

2

(
1 + tanh

(
s ln

ε̇p

ε̇t

))
(4.4)

ε̇0 = S(ε̇p, ε̇01 , ε̇02 , ε̇t) = ε̇01 +
ε̇02 − ε̇01

2

(
1 + tanh

(
s ln

ε̇p

ε̇t

))
(4.5)

These modifications would enable the Johnson-Cook model to capture the different

strain rate hardening trends of the material under low and high strain rates properly.

4.2.2 Temperature evolution

In deriving the energy balance in chapter 2 we assumed that the entire plastic work is

converted to heat. Experimental observations show that this is not true and Rosakis

et al. (42) have studied this in detail. Adapting their derivation, we modify (2.31) to

be

cpθ̇ = λ̇θ
L
θcr

− qx + r + dλλ̇ + dεm ε̇m + βdεp ε̇p, (4.6)

where β is the fraction of the plastic work converted into heating.

Assuming adiabatic condition (q = r = 0) and neglecting the dissipation associ-
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ated with λ̇ and ε̇m and recalling that dεp = σ, we obtain

cpθ̇ = θλ̇
L
θcr

+ βσ ε̇p. (4.7)

Integrating this, we obtain a relation between temperature, volume fraction of

martensite, latent heat, specific heat and the plastic work:

θ(t) = exp

(
(λ− λ0)L

cp θcr

) (
θ0 +

∫ t

0

exp

(
−(λ− λ0)L)

cp θcr

)
βσε̇p

cp

dτ

)
. (4.8)

It should be noted that it is common to assume the fraction β of the plastic work

converted into heating to be a constant typically chosen between 0.8 and 1. This

was first observed through quasistatic experiments of Taylor et al. (52), (20) who

studied the remaining latent heat in a metal after cold working. More recently fully

dynamic experiments suggest that β depends strongly on both strain and strain rate

for various engineering materials. Here as we study the coupled thermomechanic

response of pure iron under a wide interval of strain rates we choose β as a function

of strain and strain rate both. We use experimental observations of Rittel et al. to

choose the form of this function.

4.2.3 Further approximation

Since we are interested in large strains, the plastic strain εp and transformation strain

εm are significantly larger than the elastic strain εe. Therefore we ignore it in the

sequel and the σ stress as a constraint stress and drop the stress-strain relation (2.21).

We also assume that εm evolves very fast to its limit and remains there. Therefore we

treat it as a constant and drop (2.27). In summary we solve (4.1), (4.8) and (2.26).
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4.3 Demonstration

In this section the model is demonstrated using strain-controlled experiments. We

demonstrate that our model is consistent with the observed stress-strain response

of pure iron for a wide range of strain rates. It is able to capture both the thermal

softening effects as well as the rate hardening. We first fit the Johnson-Cook model to

the experimental data and then, when the model is fully parameterized, we compare

our simulation results with experimental observations. Throughout this section, the

material parameters as well as the model parameters are kept constant.

4.3.1 Parameters

Consistent with typical experiments on pure iron (see for example (18)), we consider

the following parameter values:

Atomic mass = 55.85× 10−3 (kg/mol) and Density = 7870 (kg/m3)

∆S(α ↔ ε) = − 2.54 (J/K/mol) and ∆H(α ↔ ε) = 8.144× 104 (J/mol)

E = 190 (GPa) and cp = 3.5 (
MJ

m3 oK
)

In all the simulations ambient temperature is assumed to be equal to 295oK. We

further assume that εm is equal to zero for the α phase and equal to 5% for the ε

phase. Latent heat L of the phase transformation can be calculated from the above

table of parameters. Critical temperature θcr is assumed to be equal to 800oK. We

also assume the following kinetic coefficients:

λ̇+ = −λ̇− = 1, p = 2 .

Note that λ̇± control the evolution rate of the volume fraction of martensite, are

kept fixed in the entire chapter and chosen so that λ̇ εm is smaller than ε̇p. The power

of the kinetic law p controls the shape of its function as earlier described in preceding

chapters.
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Figure 4.3: Quasistatic stress-strain response of pure iron.

4.3.2 Fitting the model to the experiment

The Johnson-Cook model has seven parameters in the form presented in (4.1). Three

of these parameters (σ0, B and n) belong to the first multiplying component and are

determined by a fit to a quasistatic test. For such a test contributions of the strain

rate hardening and thermal softening in the second and third multiplying components

of the stress are negligible and these terms are essentially equal to 1. To determine

σ0, B and n we use experimental results of Rittel et al. for a quasistatic experiment

on pure iron. Figure 4.3 shows results of such simulation along with the experimental

results. Through the above simulation, values of the three parameters σ0, B and n

are determined:

σ0 = 32.6 (MPa) B = 430 (MPa) n = 0.1

Here σ0 is the yield stress, B is the pre-exponential factor, and n is the work-hardening

coefficient.

To include effects of the strain rate hardening we should determine factors C1, C2

and ε̇01 , ε̇02 . We assume the transition strain rate ε̇t to be equal to 100 (1/s) and set

the scaling factor s equal to 400, which provides that 99.9% of the transition from

the quasistatic region to the dynamic region will happen within ± 1% vicinity of the
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Figure 4.4: Flow stress dependence on strain rate.

transition strain rate ε̇t = 100 (1/s). Figure 4.4 demonstrates the rate dependence

of the flow stress and compares simulation results with experimental observations.

Through these simulations, values of C1, C2 and ε̇01 , ε̇02 parameters are determined

as follows:

ε̇01 = 4 × 10−5 C1 = .00008 ε̇02 = 344 C2 = .385

Here we have one extra C and one extra ε̇0 to capture the rate dependence of the flow

stress in pure iron properly. This is how Figure 4.4 is nicely comparable to Figure 4.1.

Finally we need to simulate the thermal softening effects in our simulations. This is

the phenomena captured in the third and final term in the Johnson-Cook constitutive

relation (4.1). In this term we have two unknown model parameters m and D as well

as two extra parameters θr and θm. Temperature θm is the melting temperature

and θr is a reference temperature. Figure 4.5 compares simulation results to the

experimental observations on the dependence of the yield stress on temperature. Here

we have assumed that θr = 295oK and θm = 1811oK. this figure completes the

parametrization of the Johnson-Cook model by giving the following values for the

remaining two parameters, m and D:

m = − 9 and D = − 4
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Figure 4.5: Temperature dependence of the yield stress.

Now we are ready to start our simulations using the Johnson-Cook model along

with the phase transformation criteria and the temperature growth rule as presented

in preceding sections. In order to include contribution of the plastic work in heating

the material we also need to quantify factor β. As discussed earlier for dynamic

conditions this factor is a function of strain and strain rate. Here we choose the

following form for β to capture the rate and strain dependence of β qualitatively as

suggested by experiments. Clearly we have made no attempt to be precise on β but

rather qualitatively capture its dependence on strain and strain rate.

β =
1

2

(
ε̇p

λ̇+

)2

(1 + 5 ε (1 − ε)) for ε ≤ 1 . (4.9)

Figure (4.9) schematically shows β as a function of strain ε for three different strain

rates. Note that here β is the equivalent to the βdif as stated elsewhere. In (40) βdif

and βint are defined as

βdif =
cp θ̇

σ ε̇p

βint =
cp θ∫

σ εp dεp

.

It should be noted that in absence of additional heat input it is expected that
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Figure 4.6: Schematic contribution of plastic work in generating heat as a function
of strain and strain rate.

βint ≤ 1. Rittel et al. (41) however report that for high enough strain rates surpris-

ingly βint values above 1 are consistently reached. This would be meaningful if an

internal heat source other than thermomechanical conversion of plastic work to heat

existed.

As stated in (4.7) here we include thermal effects of the reversible phase trans-

formation from α (bcc) to ε (hcp) phase of iron and modify the temperature growth

rule. This extra factor would change the relation for the βdif as

βdif =
cp θ̇

σ ε̇p

− θ λ̇L
σ ε̇p θcr

. (4.10)

4.3.3 Strain-controlled tests

We conclude this chapter by demonstrating the stress-strain response of pure iron

for a wide range of strain rates. For each simulation we compare our results with

experimental observations of Rittel et al. (41). Simulation results show that our

model is consistent with the observed response of pure iron in strain-rate-controlled

experiments.

As is apparent in the following simulations, the yield stress of iron increases by

increasing strain rate. This has also been illustrated in Figure 4.4, where rate de-
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pendency of the 10% flow stress is studied as a function of strain rate. It should be

noted that at high enough strain rates thermal softening would overcome effects of

strain hardening and material shows a gradual drop in the stress plateau as strain

increases. This is demonstrated for the strain rates ε̇ = 8400 (1/s), ε̇ = 9500 (1/s)

and ε̇ = 10, 000 (1/s) in Figures 4.10, 4.13 and 4.14.
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Figure 4.7: stress-strain response of pure iron for a quasistatic test.
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Figure 4.8: stress-strain response of pure iron for a dynamic test, ε̇ = 2800(1
s
).
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Figure 4.9: stress-strain response of pure iron for a dynamic test, ε̇ = 5800(1
s
).
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Figure 4.10: stress-strain response of pure iron for a dynamic test, ε̇ = 8400(1
s
).
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Figure 4.11: stress-strain response of pure iron for a dynamic test, ε̇ = 3500(1
s
).
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Figure 4.12: stress-strain response of pure iron for a dynamic test, ε̇ = 6300(1
s
).
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Figure 4.13: stress-strain response of pure iron for a dynamic test, ε̇ = 9500(1
s
).
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Figure 4.14: stress-strain response of pure iron for a dynamic test, ε̇ = 10, 000(1
s
).



103

0 0.5 1

0

5000

10000

time

St
ra

in
 ra

te
 (s

-1
)

0 0.5 1

0   

.25

.5

time

V
ol

um
e 

fr
ac

tio
n 

of
 ε

0 0.35 0.7

0

400

800

Strain

St
re

ss
 (M

Pa
)

0 0.35 0.7

20

85

150

Strain

Te
m

pe
ra

tu
re

 ( 
o C

 )

 

 

0.001 s-1 2800 s-1 5800 s-1 8400 s-1 10000 s-1

Figure 4.15: Phase transformation growth and temperature profile of pure iron for
different strain rate experiments.

Here we also include a record of the phase transformation process along with the

temperature growth in the material as a result of our simulations. As illustrated

here for the quasistatic case, there is not much temperature increase observed in the

material. This is qualitatively consistent with the observed phenomena in experiments

that suggest at low strain rates material has enough time to diffuse the generated heat

into the surroundings and temperature is almost constant in the deforming body. For

higher strain rates, however, material does not get enough time to conduct out the

generated heat and thus temperature of the body increases as deformation proceeds.

Figure 4.15 shows results of strain-controlled simulations for five different strain

rates shown in the upper left corner, ranging from quasistatic to rates as high as

10, 000(s−1). In the upper-right corner the growth of the volume fraction of the ε
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phase with respect to the time duration of the simulation is pictured. It should be

noted that the time duration of the test differs from one simulation to the other and

the time axis is normalized by the duration time of each individual test. It is good

to note that the release of thermal energy in the deforming body results in thermal

softening which for the ε̇ = 10, 000 s−1 results in a halt in the phase transformation

process as shown with the black color.
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Chapter 5

Conclusion

With their strongly nonlinear thermomechanical behavior, along with abrupt changes

in their lattice structure, shape-memory alloys have found many applications in a wide

variety of industries. These materials undergo a diffusionless solid to solid martensitic

phase transformation from a high-temperature austenite phase to a low-temperature

martensite phase. The martensite phase has a lower symmetry than austenite and

as a result it has a number of symmetry related variants that make it difficult to

fully describe the phase transformation process and the thermomechanically coupled

behavior of these alloys. In this thesis a three-dimensional micromechanics-inspired

constitutive model to describe the dynamic behavior of polycrystalline shape-memory

alloys is developed.

In chapter 2 we start with a one-dimensional framework and present a model

that builds on ideas generated from recent micromechanical studies of the underlying

microstructure of shape-memory alloys. The two important concepts introduced in

this chapter are the idea of the effective transformation strain and the use of kinetic

relations. The different variants of martensite, along with the austenite, form complex

microstructures that can evolve with load and temperature. A key difficulty in the

constitutive modeling of these materials is to find an effective means of describing this

evolution, especially in polycrystals. The effective transformation strain is the average

transformation strain of the different variants averaged over a representative volume

containing multiple grains after the material has formed an allowable microstructure.

Another important idea in this model is the use of kinetic relations that cover a
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wide range of strain rates. The usual balance laws do not fully determine the phase

transformation growth and there is a need for additional constitutive information

in the form of a kinetic relation. The kinetic relation is constructed such that the

growth rate of the volume fraction of the martensitic phase is a constitutive function

of the thermodynamic driving force and effectively of stress. The kinetic relation

as proposed here is rate-dependent at larger driving forces and rate-independent at

smaller driving forces, consistent with the experimental observations. This would

make the model capable to capture the dynamic behavior of these alloys under a

wide range of loading rates.

We demonstrated that the model captures both the superelasticity and the shape-

memory effect and compared our simulations with experimental results. We also

showed the ability of the model in capturing the tension-compression asymmetry and

studied the effect of ambient temperature and loading rate on the response of the

material. We note that adiabatic heating normally affects the stress-strain response

of the deforming body and in order to interpret the effect of loading rate properly we

examined the relative role of the two factors that lead to the apparent hardening at

high rates. For this we considered two different kinetic relations, a rate-dependent

and a rate-independent model. Through running a number of examples we showed

that both the transition from isothermal to adiabatic conditions as well as inherent

rate dependence of the kinetic relation can give rise to hardening of the response with

increasing rate. However the former is limited to an increase of stress as described

in chapter 2 and any further hardening is necessarily a manifestation of inherent rate

dependence of the phase transformation process. Inspired by recent experimental

observations, we discussed internal loops of the stress-strain hysteresis for a simple

triangular applied stress function. Finally since phase transformation often competes

with plasticity in shape-memory alloys, we incorporated that phenomenon into our

model and studied the interplay of the plastic yield and the phase transformation

process and their effects on the stress-strain response of the material.

In materials like shape-memory alloys that involve the evolution of internal vari-

ables, the stress-strain curve varies with the methodology of the experiment. A par-
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ticularly popular means of measuring material properties at high deformation rates

is the Kolsky or split-Hopkinson bar. We concluded chapter 2 by considering a sim-

ulation of the Kolsky bar experiment. We studied the effect of the pulse amplitude,

pulse shape, pulse duration and the ambient temperature on the phase transforma-

tion process as well as the stress-strain response of the material. Our simulations

emphasized how sensitively the stress-strain curve can depend on the input pulse

and pointed to the importance of designing an appropriate pulse shape in experi-

ments. The strain rate of the shape-memory alloy sample varies significantly as its

microstructure changes, and obtaining a constant strain rate during the austenite to

martensite phase transformation in experiments is fairly complicated. We addressed

this by using the model to design a pulse that yields a desired strain rate history.

We considered two desired strain rates: first a constant strain rate to investigate the

loading and then a jump test to study the loading and unloading together.

Chapter 3 presents our micromechanics-inspired constitutive model for polycrys-

talline shape-memory alloys in three dimensions. The model is a generalization of

the one-dimensional model and remains applicable in a wide range of temperatures

and strain rates. It is able to reproduce stress-strain response for complex propor-

tional and nonproportional loading patterns and can simulate the effect of texture

on a polycrystal of shape-memory alloy. Micromechanics origins of the model, the

concepts emerged from those analysis and their relation to macroscopic properties

in both single and polycrystals are presented. A major player of the present model

is the idea of the effective transformation strain. The role of the phase transforma-

tion surface in this context is similar to that of the yield surface in elasto-plastic

materials. We considered three types of transformation criterion: the isotropic and

symmetric, the isotropic and asymmetric, and the anisotropic and asymmetric. We

also showed how one can extract the shape and size of the phase transformation

surface using experimental data. We considered proportional and non-proportional

loading and unloading experiments. We also demonstrate thermomechanical coupling

by studying stress-strain behavior of uniaxial tension-compression, pure shear and bi-

axial tension-compression tests for different initial temperatures. We considered two
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types of temperature evolutions: adiabatic and non-adiabatic. We demonstrated the

sensitivity of the stress-strain response to the changes of the convective heat trans-

fer coefficient of the air for non-adiabatic thermal conditions. In order to study the

effects of texture on the shape-memory response we chose an anisotropic framework

and demonstrated how our model is able to predict the qualitative behavior of a

polycrystal alloy and its dependence on texture. We carefully studied the phase

transformation process, evolution of the internal variables and the stress-strain re-

sponse for a number of non-proportional loading experiments under stress-controlled

and strain-controlled conditions. Finally in chapter 4 we presented an extension of our

constitutive model to study the martensitic phase transformations in pure iron under

a wide range of loading rates ranging from quasistatic to high rate dynamic loading.

We used our model to describe the evolution of the microstructure as a reversible

phase transformation occurs from a (bcc) structure α to an (hcp) ε crystallographic

structure. We studied two phenomena: rate hardening and thermal softening, and

demonstrated their effects on the phase transformation and the stress-strain response

of the material.
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Chapter 6

Appendix A

6.1 An example of a MATLAB code for the stress

controlled full-dimensional analysis of anisotropic

shape-memory alloys

C =======================================

C This program calculates strain, temperature and internal variables.

C =======================================

function Stress3D

clear all;

global A Tzero dplus parameterA parameterB parameterC eVector timestep dura-

tion w alpha tol power Dplus Dminus Tcirt cp LambdaDotPlus LambdaDotMinus

LatentHeat

C —————————————————————

C Material parameters

C —————————————————————

E = 65*10 ** 9;

nu = .33;

Ms = -51.55 + 273;
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As = -6.36 + 273;

Tcrit = (Ms + As) / 2;

cp = 5.4*10 ** 6;

LatentHeat = 79*10 ** 6;

parameterA = 1.035;

parameterB = 0.000045;

parameterC = .6;

eVector = (( 1 1 0 ));

tol=parameterB / 10000;

C —————————————————————

C Parameters of the kinetic relations

C —————————————————————

LambdaDotPlus = 10 ** 4;

LambdaDotMinus = -LambdaDotPlus;

power = 2;

alpha = 0.001;

dplus = LatentHeat * ( As - Ms ) / ( Ms + As );

dminus = -dplus;

Dplus = 1;

Dminus = -Dplus;

C —————————————————————

C Loading parameters; sigma = A*sin(w*t)

C —————————————————————

A = 800*10 ** 6;

duration = 50 / LambdaDotPlus;

w = 2*pi / duration;

timestep = .0005 * duration;

Tzero = 295;
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C —————————————————————

C Initial values for the internal variables

C —————————————————————

index = 1;

time(index) = 0;

g(index) = -parameterB;

LambdaDot(index) = 0;

lambda(index) = 0;

s=stress(time(index));

sigma(: , : , index) = s(: , :);

epsilon(: , : , index) = zeros(3);

epsm(: , : , index) = zeros(3);

temperature(index) = Tzero;

D(index) = -WellEnergy(temperature(index)) / dplus;

C —————————————————————

C Time Procedure for the next time increments

C —————————————————————

while time(index) < duration

index=index + 1;

time(index) = time(index-1) + timestep;

C —————————————————————

C Reading of stress

C —————————————————————

s=stress(time(index));

sigma(: , : , index) = s(: , :);
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C —————————————————————

C Calculation of phase transformation strain

C —————————————————————

(( epsm(: , : , index) , g(index) )) = epsmfunc ( g(index-1) , epsm(: , : , index-1) ,

sigma(: , : , index) );

C —————————————————————

C Calculation of the driving force

C —————————————————————

D(index) = drivingforce(sigma(: , : , index) , temperature(index-1) , epsm(: , : ,

index));

C —————————————————————

C Calculation of martensite volume fraction

C —————————————————————

(( lambda(index) , LambdaDot(index) )) = lambdafunc(D(index) , lambda(index-

1));

C —————————————————————

C Calculation of total strain

C —————————————————————

epsilon(: , : , index) = lambda(index) * epsm(: , : , index) + ((1 + nu) * sigma(: , :

, index) - nu * trace(sigma(: , : , index)) * eye(3)) / E;

C —————————————————————

C Calculation of current temperature

C —————————————————————

temperature(index) = tempfunc(lambda(index));

end
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C —————————————————————

C Prepeation to print

C —————————————————————

for ii = 1:1:index;

sigm11(ii) = sigma(1 , 1 , ii);

sigm12(ii) = sigma(1 , 2 , ii);

sigm13(ii) = sigma(1 , 3 , ii);

sigm22(ii) = sigma(2 , 2 , ii);

sigm23(ii) = sigma(2 , 3 , ii);

sigm33(ii) = sigma(3 , 3 , ii);

epsm11(ii) = epsm(1 , 1 , ii);

epsm12(ii) = epsm(1 , 2 , ii);

epsm13(ii) = epsm(1 , 3 , ii);

epsm22(ii) = epsm(2 , 2 , ii);

epsm23(ii) = epsm(2 , 3 , ii);

epsm33(ii) = epsm(3 , 3 , ii);

epsi11(ii) = epsilon(1 , 1 , ii);

epsi12(ii) = epsilon(1 , 2 , ii);

epsi13(ii) = epsilon(1 , 3 , ii);

epsi22(ii) = epsilon(2 , 2 , ii);

epsi23(ii) = epsilon(2 , 3 , ii);

epsi33(ii) = epsilon(3 , 3 , ii);

end

set(0 , ’DefaultFigureColor’ , (( 1 1 1 )) , ’DefaultAxesFontName’ , ’Times New

Roman’ , ’DefaultAxesFontSize’ , 11 , ’DefaultAxesFontWeight’ , ’normal’ , ’Default-

AxesLineWidth’ , 1)

LineWidthSize = 1.5;

LineStyleFormat=’-’;
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C —————————————————————

C Printing a sample

C —————————————————————

figure(1)

plot(time / duration , sigm11 / 10 ** 6 , ’LineWidth’ , LineWidthSize , ’LineStyle’ ,

LineStyleFormat , ’Color’ , (( c1 , c2 , c3 )))

xlabel(’time’)

ylabel(’sigma11 (MPa)’)

xlim((( 0 , 1 )))

ylim((( -1000 , 1000 )))

grid on

hold on

ax1=gca;

set(ax1 , ’XTick’ , (( 0 , .5 , 1 )) , ’YTick’ , (( -1000 , 0 , 1000 )) , ’GridLineStyle’ , ’-’);

C =======================================

C current stress

C =======================================

function stressT=stress(t)

global w A duration

stressT(1 , 1) = 0; stressT(1 , 2) = 0; stressT(1 , 3) = 0;

stressT(2 , 2) = 0; stressT(2 , 3) = 0; stressT(3 , 3) = 0;

t1 = duration / 4; t2 = 2 * t1; t3= 3 * t1; t4 = 4 * t1;

if t<=t1

stressT(1 , 1) = A * (t / t1);

stressT(2 , 2) = 0;
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elseif and(t<=t2 , t>t1);

stressT(1 , 1) = A;

stressT(2 , 2) = -A * (t-t1) / (t2-t1);

elseif and(t<=t3 , t>t2);

stressT(1 , 1) = A;

stressT(2 , 2) = -A * (t3-t) / (t3-t2);

elseif and(t<=t4 , t>t3);

stressT(1 , 1) = A * (t4-t) / (t4-t3);

stressT(2 , 2) = 0;

else

stressT(1 , 1) = 0;

stressT(2 , 2) = 0;

end

for i = 1:1:3

for j = i:1:3

stressT(j , i) = stressT(i , j);

end

end

C =======================================

C the yield criterion

C =======================================

function gfunction=gfunc(M)

global parameterA parameterB parameterC eVector

gfunction = (1 / 2 * trace(M*M)) ** (3 / 2) - parameterA * det(M) - parame-

terC * (eVector * (eVector*M)’) ** 3 - parameterB;
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C =======================================

C current epsm

C =======================================

function (( NewEpsm , NewG )) = epsmfunc(gval , epsmval , sigmaval);

global timestep alpha tol

C —————————————————————

C Growth rate of epsm

C —————————————————————

epsmdot = alpha * ( sigmaval - trace(sigmaval) / 3 * eye(3) );

epsmdot = trfree(epsmdot);

C —————————————————————

C First guess on epsm

C —————————————————————

epsmstar = epsmval + epsmdot * timestep;

epsmstar = trfree(epsmstar);

C —————————————————————

C Evaluate yield criteria based on the 1st guess

C —————————————————————

NewG = gfunc(epsmstar);

C —————————————————————

C Check to see if yield boundry has been reached

C —————————————————————

if NewG<=0

NewEpsm=epsmstar;

if NewG>=-tol

NewG = 0;
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end

else

C —————————————————————

C Correct epsm if yield boundary is crossed

C —————————————————————

if gval = 0

zzettaa = 0;

epsmA = epsmval;

else

(( epsmA , zzettaa )) = epsmAfinder ( sigmaval , epsmval );

epsmA=trfree(epsmA);

end

epsmB = epsmA + epsmADot ( sigmaval , epsmA ) * ( 1 - zzettaa ) * timestep;

epsmB = trfree(epsmB);

NewEpsm = epsmFinal(epsmB);

NewEpsm = trfree(NewEpsm);

NewG = 0;

end

C =======================================

C find epsm moving on the yield boundary

C =======================================

function (( epsmA , zzettaa )) = epsmAfinder(sT , eT)

global timestep parameterA parameterC eVector alpha tol

m = 1;

zzettaaV(m) = .1;

Dzzettaa = 1;
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Tolzzettaa = .01;

while Dzzettaa>Tolzzettaa

epsmA=eT + (zzettaaV(m ) * timestep ) * alpha*trfree(sT);

Cofprime = (cof(epsmA))’;

eDOTepsmDOTe = 0;

for i = 1:1:3

for j=i:1:3

eDOTepsmDOTe = eDOTepsmDOTe + eVector(i ) * epsmA(i , j ) * eVector(j);

end

end

trfreeST = trfree(sT);

dgdz = 0;

for i = 1:1:3

for j = i:1:3

dgdz = dgdz + alpha*timestep * (3 / ( 8 ** (1 / 2) ) * normt(epsmA ) * epsmA(i ,

j) - 3 * parameterC * (eDOTepsmDOTe) ** 2 * eVector(i) * eVector(j)) * trfreeST(i

, j) - parameterA * Cofprime(i , j);

end

end

if abs(gfunc(epsmA))<=tol

zzettaaV(m + 1) = zzettaaV(m);

Dzzettaa = 0;

else

zzettaaV(m + 1) = zzettaaV(m)-gfunc(epsmA) / dgdz;

if zzettaaV(m + 1)>=1

zzettaaV(m + 1) = 1;

elseif zzettaaV(m + 1)<=0
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zzettaaV(m + 1) = 0;

end

Dzzettaa = abs ( zzettaaV ( m + 1 ) - zzettaaV(m) );

end

m = m + 1;

if m>10000

pause

end

end

zzettaa = zzettaaV(m);

C =======================================

C growth rate of epsmA

C =======================================

function epsmADotT = epsmADot( stressA , epsmA )

global parameterA parameterB parameterC eVector alpha

normM = normt(epsmA);

cofacM = cof(epsmA);

eDOTepsmDOTe = 0;

for i = 1:1:3

for j = i:1:3

eDOTepsmDOTe = eDOTepsmDOTe + eVector(i ) * epsmA(i , j ) * eVector(j);

end

end

AMatrix = 3 / (8 ** (1 / 2) ) * normM*epsmA-parameterA*cofacM’-3*parameterC

* (eDOTepsmDOTe) ** 2*eVector’*eVector;

AMatrixNorm = normt(AMatrix);

AMatrixstressA = product(AMatrix , stressA);



120

BMatrix = stressA - AMatrix / AMatrixNorm ** 2 * AMatrixstressA;

epsmADotT = alpha * trfree(BMatrix);

C =======================================

C finding new epsm via Newton Raphson

C =======================================

function epsmNR=epsmFinal(epsmB)

global parameterA parameterB parameterC eVector tol

Dbeta = 1;

Tolbeta = .00001;

m = 1;

betaV(m) = 1;

while Dbeta>Tolbeta

betaV(m + 1) = 2*betaV(m) / 3 + parameterB / (3 * (betaV(m)) ** 2 * (gfunc(epsmB)

+ parameterB));

Dbeta = abs(betaV(m + 1)-betaV(m));

m = m + 1;

if m>10000

pause

end

end

beta = betaV(m-1);

gepsmNR = beta ** 3 * ( gfunc(epsmB) + parameterB ) - parameterB;

if abs(gepsmNR)>tol

pause

end

epsmNR = beta * epsmB;
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C =======================================

C driving force

C =======================================

function Dval = drivingforce(stressval , tempval , epsmval)

global dplus

Dval = ( product ( epsmval , stressval ) - WellEnergy(tempval) ) / dplus;

C =======================================

C current lambda

C =======================================

function (( lambdaval , lambdadotval )) = lambdafunc(Dval , lambdaval)

global timestep power Dplus Dminus LambdaDotPlus LambdaDotMinus

if and(Dval>Dplus , lambdaval<1)

lambdadotval = LambdaDotPlus * (1 + (Dval-Dplus) ** (-1)) ** (-1 / power);

elseif and(Dval<Dminus , lambdaval>0)

lambdadotval = LambdaDotMinus * (1 + (Dminus-Dval) ** (-1)) ** (-1 / power);

else

lambdadotval = 0;

end

lambdaval = lambdadotval * timestep + lambdaval;

if lambdaval<0

lambdaval = 0;

elseif lambdaval>1

lambdaval = 1;

end
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C =======================================

C jump in the free energy between two phases

C =======================================

function wellval = WellEnergy(temp)

global Tcrit LatentHeat

wellval = LatentHeat / Tcrit * (temp-Tcrit);

C =======================================

C current temperature

C =======================================

function tempval=tempfunc(lambdaval)

global Tzero Tcrit LatentHeat cp

tempval = (exp( LatentHeat * lambdaval / cp / Tcrit) ) * Tzero;

C =======================================

C deviatoric tesnor

C =======================================

function tracefree=trfree(T)

tracefree = T - trace(T) / 3* eye(3);

C =======================================

C norm of a tesnor

C =======================================

function tensorialnorm=normt(M)
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sum = 0;

for i = 1:1:3;

for j = 1:1:3;

sum = sum + M(i , j) ** 2;

end

end

tensorialnorm = sum ** (1 / 2);

C =======================================

C product of two tensors

C =======================================

function tensorialproduct = product(M , N)

sum = 0;

for i = 1:1:3;

for j = 1:1:3;

sum = sum + M(i , j) * N(i , j);

end

end

tensorialproduct = sum;

C =======================================

C cofactor of a tesnor

C =======================================

function cofactor=cof(M)

for i = 1:1:3;

for j = 1:1:3;
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N = M;

N(i , :) = (( ));

N(: , j) = (( ));

cofactor(i , j) = (-1) ** (i + j) * det(N);

end

end
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