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Chapter 2

Methodology for the study of the
geometry of structures in
turbulence

The starting point of this methodology is a three-dimensional scalar field obtained from a turbulence

database. Three properties were sought in its development: multi-scale capability, non-local charac-

ter, and geometry-based analysis. It consists of three main steps: extraction, characterization, and

classification of structures. They are explained in each of the sections of this chapter.

2.1 Extraction of structures

The main requirement imposed on the extraction process is to enable eduction of structures associ-

ated with different ranges of scales. Although scale decomposition is commonly defined in Fourier

space, the nature of Fourier basis functions, that are localized in wavenumber but not in physical

space, makes top-hat window filtering in Fourier space inappropriate for the purpose of educing

structures that are extended but compact in physical space. Thus, a transformation with basis func-

tions that are localized both in Fourier space, where the ranges of scales are defined, and in physical

space, where the structures are to be educed, is required. For this purpose, the curvelet transform

(Candès & Donoho, 2003a,b) in its three-dimensional discretized version (Ying et al., 2005; Candès

et al., 2005) is used. Owing to the multi-dimensional character of their definition, curvelets, unlike

wavelets, are naturally suited for detecting, organizing, or providing a compact representation of
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intermediate multi-dimensional structures.

2.1.1 The curvelet transform

Curvelets, the basis functions of the curvelet transform, are localized in scale (frequency/Fourier

space), position (physical space) and orientation (unlike wavelets). The frequency space is smoothly

windowed in radial and angular spherical coordinates, providing the decomposition in different scales

and orientations, respectively. For a given scale1, j, the radial window smoothly extracts the fre-

quency contents near the dyadic corona [2j−1, 2j+1]. A low-pass radial window is introduced for the

coarsest scale, j0. The unit sphere representing all directions in R3 is partitioned, for each scale

j > j0, into O
(
2j/2 · 2j/2

)
= O

(
2j
)

smooth angular windows, each with a disk-like support of radius

O
(
2−j/2

)
. In a discrete three-dimensional data field, of uniform grid of size n3, the last scale, je,

which extracts the highest frequency content, is given by je = log2(n/2).

Denoting by f(n1, n2, n3) the scalar field, where 0 ≤ ni < n, being n the number of grid points

in each direction, the discrete version of the curvelet transform (see Ying et al., 2005) provides a set

of coefficients cD(j, l, k) defined as

cD(j, `, k) ≡
∑

n1,n2,n3

f(n1, n2, n3) ϕD
j,`,k(n1, n2, n3) (2.1)

where j, ` ∈ Z, k = (k1, k2, k3) (j represents the scale, ` the orientation, and k the spatial location);

ϕD
j,`,k(n1, n2, n3) are the curvelets, defined in Fourier space by

ϕ̂D
j,`,k(ω) ≡ Ũj,`(ω) exp


−2πi

3∑
i=1

kiωi

Li,j,`√√√√ 3∏
i=1

Li,j,`

 (2.2)

for {0 ≤ ki < Li,j,`, i = 1, 2, 3}—where ω is the wavenumber; Ũj,`(ω) is the frequency window

Ũj,`(ω) = W̃j(ω) Ṽj,`(ω), being W̃j(ω) and Ṽj,`(ω) the radial and angular windows; and {Li,j,`, i =

1The term scale, when referred to the index j in curvelet space, denotes in fact the range of scales in physical space
that results from the radial window filter in Fourier space.
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Figure 2.1: Frequency window Ũj,` (darkened region) defined in the three-dimensional discrete
curvelet transform, extracting the frequency content near the wedge with center slope (1, α`, β`)
(figure based on Ying et al. (2005))

1, 2, 3} are three positive integers such that: i)
{
6 ∃ω, ω′

∣∣∣ Ũj,`(ω) ≥ Ũj,`(ω′) andωi is multiple ofLi, i = 1, 2, 3
}

;

ii)Π3
i=1Li,j,` is minimal. A Cartesian coronae is used, so that:

W̃j0(ω) = Φj0(ω); W̃j(ω) =
√

Φ2
j+1(ω)− Φ2

j (ω), j > j0, (2.3)

where Φj(ω1, ω2, ω3) = φ(2−jω1) φ(2−jω2) φ(2−jω3), and φ is a smooth function such that 0 ≤ φ ≤ 1:

it equals unity on [−1, 1] and zero outside [−2, 2]. The angular window for the `th direction is defined

(for example, in the ω1 > 0 face of the unit cube) as

Ṽj,`(ω) = Ṽ

(
2j/2 ω2 − α`ω1

ω1

)
Ṽ

(
2j/2 ω3 − β`ω1

ω1

)
(2.4)

where (1, α`, β`) is the direction of the center line of the wedge (see Figure 2.1) defining the center

slope for the `th wedge. Wherever three smooth angular windows Ṽj,`, Ṽj,`′ , and Ṽj,`′′ overlap, they

are redefined as
(
Ṽj,`, Ṽj,`′ , Ṽj,`′′

)
/
√

Ṽ 2
j,` + Ṽ 2

j,`′ + Ṽ 2
j,`′′ .



13

W̃j(ω) and Ṽ (ω) satisfy:

∑
j≥j0

W̃ 2
j (ω) = 1,

∞∑
`=−∞

Ṽ 2(t− 2`) = 1. (2.5)

Curvelets form a tight-frame in L2
(
R3
)
. Any function f ∈ L2

(
R3
)

can be expanded as

f =
∑

j,`,k〈ϕj,`,k, f〉ϕj,`,k, where ϕj,`,k is the curvelet at scale j, orientation `, and position k =

(k1, k2, k3). Parseval’s identity holds:
∑

j,`,k | 〈f, ϕj,`,k〉 |2= ‖f‖2L2(R3). The effective longitudinal

and cross-sectional dimensions (length and width), of curvelet basis functions in physical space follow

the relation width≈length2 (parabolic scaling). As a consequence of this parabolic scaling, curvelets

are an optimal (sparse) basis for representing surface-like singularities of codimension one. These

are three of the most remarkable properties of the curvelet transform.

We apply the curvelet transform to a scalar field, obtained from a turbulence database at an

instant in time, but again emphasize its broader applicability to other fields. The curvelet transform

allows a multi-scale decomposition by filtering in curvelet space the different scales of interest j =

j0, ..., je, individually or in groups. In addition, for anisotropic fields with privileged direction(s)

(e.g., shear flows), a multi-orientation decomposition may be useful for studying structures according

to their directionality (by using the angular window filtering in frequency space of the curvelet

transform (index ` in curvelet space)). Throughout this thesis, only the multi-scale decomposition

is used, which could be also attained by other multi-resolution techniques sharing the same choice

of sub-band radial filtering decomposition in Fourier space. Nevertheless, those capabilities that

set curvelets apart from other multi-resolution techniques, e.g., multi-orientation decomposition and

compact representation of surface-like singularities, justify its early implementation within the frame

of this methodology, enhancing its potential applications and possibilities of expansion.

For each scale j = j0, ..., je, a new scalar field is obtained after filtering all other scales (j′ 6= j)

in curvelet space and inverse transforming to physical space. Thus, a set of je− j0 +1 filtered scalar

fields results from the original field. The volume-based probability density functions (pdfs) of the

filtered fields are, in general, different from each other and from the original field; their comparison
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can be useful in determining how the original scalar field is distributed among the different scales.

After this multi-scale analysis, a second step is applied in the extraction process, by which the

structures of interest associated with each relevant range of scales are educed. Currently those

structures of interest are defined as the individual disconnected surfaces obtained by iso-contouring

each filtered scalar field at particular contour values (for example, the mean value of that filtered

scalar field plus a multiple of its standard deviation). See Appendix B for a physical interpretation

of the educed structures following this multi-scale decomposition plus iso-contouring procedure.

2.1.2 Periodic reconnection

In the case of scalar fields with periodic boundaries, an additional step is included in the extraction

process, to reconnect those structures intersecting boundaries with their periodic continuation on the

opposite boundaries. Figure 2.2 shows an example of the application of such periodic reconnection

algorithm to a set of 3D structures obtained from a periodic scalar field.

(a) (b)

Figure 2.2: Example of application of the periodic reconnection algorithm to a set of boundary-
intersecting structures obtained from a periodic three-dimensional scalar field. (a) Before periodic
reconnection. (b) After periodic reconnection, where the color of each structure indicates the num-
ber of pieces involved in the reconnected structure for this particular scenario: blue = 1 (non-
intersecting), green = 2, orange = 4, cyan = 8

Structures spanning across multiple repetitions of the periodic domain are accounted for in the
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algorithm, as shown schematically in Figure 2.3 for a 2D example. The only case that cannot be

completely reconnected is the structure with infinite extent.

L

Figure 2.3: 2D example of reconnection of a periodic structure spanning across multiple extensions of
the periodic domain. The original fragments of the structure are represented in the original domain
(central square). The resulting structure, after reconnection, is represented by the thick line.

2.2 Characterization of structures

We seek a geometrical characterization able to distinguish structures based on their shape. A two-

step method is used: first, a suitable set of differential-geometry properties is obtained locally (at

all points of the surface), and then area-based probability density functions of those local properties

are calculated, making the transition from local to non-local (in the surface sense) possible.

2.2.1 Shape index and curvedness

Shape index, Υ, and curvedness, Λ, (see Koenderink & van Doorn, 1992) are the differential-geometry

properties chosen to represent locally the geometry of the surface. They are related to the principal

curvatures {κ1, κ2} of a surface at a given point by:

Υ ≡ − 2
π

arctan
(

κ1 + κ2

κ1 − κ2

)
, Λ ≡

√
κ2

1 + κ2
2

2
. (2.6)
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Υ is scale-independent, whereas Λ is scale-dependent, having the dimensions of a reciprocal length.

The scaling is such that, for example, Λ at every point on a sphere equals the absolute value of its

reciprocal radius, 1/R, whereas the cylinder of radius R presents Λ = 1/(
√

2R) for all points. The

principal curvatures, {κ1, κ2}, are obtained as the maximum and minimum values of the normal

curvature, κn, in all possible directions of the tangent plane defined at the point P of the surface

of study. The normal curvature, κn, at a point P in a given direction a of the tangent plane,

defined as the division of the second and first fundamental forms of differential geometry applied in

that direction, a, can also be interpreted as the inverse of the radius of curvature, R, of the curve

obtained as the intersection of the surface and the plane defined by the direction a and the normal

N to the surface at the point P . Thus higher values of the curvedness correspond to smaller radius

of curvature (and, therefore, more locally curved surface at P ). All regular patches of a regular

surface M map on the domain (Υ,Λ) ∈ [−1,+1] × R+, except for the planar patch, which has an

indeterminate shape index and nil curvedness (since κ1 = κ2 = 0).

The mapping (κ1, κ2) → (Υ,Λ) represents (see Figure 2.4) a transformation from Cartesian

coordinates (κ1, κ2) to non-standard polar coordinates (Υ,Λ). For any point in the (κ1, κ2) plane,

Υ contains the information on the direction (measured as the angle, φ, with respect to the axis

κ1−κ2, rescaled into the range [−1,+1] by Υ = −2φ/π), whereas Λ contains the information on the

distance, %, to the origin (rescaled as Λ = %/
√

2). The convention chosen when ordering the principal

curvatures (κ1 ≥ κ2) implies that only the region κ1 − κ2 ≥ 0 of the (κ1, κ2) plane is accessible

(see Figure 2.4). Therefore, the polar angle φ can only have values in the range [−π/2,+π/2],

and, consequently, Υ = − φ
π/2 ∈ [−1,+1] covers all the possible cases, thus making the mapping

(κ1, κ2) → (Υ,Λ) injective (excluding the point (κ1, κ2) = (0, 0) from its domain) by eliminating

the multi-valuedness of the arctan function used in the definition of the shape index. The absolute

value of the shape index S ≡ |Υ| represents the local shape of the surface at the point P , with

0 ≤ S ≤ 1. Its sign indicates the direction of the normal, distinguishing, for example, convex from

concave elliptical points. Figure 2.5 shows the range of values of Υ and sketches of the local shapes

associated with representative values, with the names of corresponding points. Figure 2.6 shows
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κ1 + κ2κ2

κ1

κ1 − κ2

ρ =
√

2Λ

φ = −π
2Υ

Figure 2.4: Transformation from (κ1, κ2) to (Υ,Λ)

the mapping of both Υ and Λ in the plane of principal curvatures, also with representative local

shapes. A deeper mathematical background of these differential-geometry concepts is presented in

Appendix C.

Figure 2.5: Range of shape index, Υ, with its most representative associated local shapes (figure
based on Koenderink & van Doorn (1992))

2.2.2 Joint probability density function (jpdf)

From the pointwise Υ and Λ, a two-dimensional area-based joint probability density function in the

space of (S, Λ) can be obtained (see Appendix D). Since Λ is scale dependent, in order to compare the

shape of surfaces of different sizes, a non-dimensionalization is required for each surface. Selection

of the appropriate length scale for this purpose is critical; several can be obtained from global
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Figure 2.6: Representative local shape in the combined (κ1,κ2) plane

geometrical invariants of the surface, such as the square root of its area (A), the cubic root of its

volume (V ), etc. Presently we define

C ≡ µΛ, µ ≡ 3
V

A
. (2.7)

For the sphere, C = 1. The definition of a volume implies that the structure under consideration is

a closed surface. Thus, only closed surfaces educed from the scalar field are studied. For periodic

domains only those structures with infinite extent will not be closed. All others, following periodic

reconnection, will be closed. For non-periodic domains of limited extent, those structures intersecting

boundaries will not be closed, but they could still be considered in the analysis by closing them either

with the boundaries that they intersect or with their mirrored extension across those boundaries,
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for example.

Another dimensionless global parameter useful in the characterization of the geometry of the

educed closed structures is

λ ≡ 3
√

36π
V 2/3

A
. (2.8)

It represents the stretching of the structure; the lower its value, the more stretched the structure is.

For the sphere λ = 1.

The area-based jpdf P(S, C),
∫ ∫
P(S, C) dSdC = 1, contains non-local information on the

geometry of the surface. P(S, C) can be geometrically interpreted as a representation of how the

local shape, S, is distributed across the different (relative) length scales present on the surface, given

by C, in terms of area coverage. For closed surfaces, their geometry and topology are related by

the Gauss–Bonnet theorem, which imposes an integral constraint on the area-based joint probability

density function of S and C (see Appendix E for details).

2.2.3 Signature of a structure

We consider P(S, C) plus its associated one-dimensional marginal pdfs,

PS(S) =
∫
P(S, C) dC, PC(C) =

∫
P(S, C) dS, (2.9)

to be the signature of the structure. This is complemented with its area A and λ, representing the

stretching of the structure. We find it useful to display P(S, C) mapped onto the (S, C)-plane with

greyscale rendering of P; white ≡ 0, black ≡ max(P). Additionally, we plot PS(S) and PC(C)

on the S (top) and C (right) axes respectively; see Figure 2.7 for an example. This geometrical

characterization is based on properties of the structure that are invariant with respect to translations

and rotations of the reference system, and therefore, are suited for comparing structures based on

their geometry, the basis of the next step of this methodology: the classification of structures.

Several methods have been proposed in the computer graphics literature for estimating curvatures

of a discretized surface (such as the ones that represent our structures in the computational domain).
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Figure 2.7: Example of a three-dimensional surface (a) with S and C mapped onto it (bottom and
upper halves, respectively) and its corresponding signature (b), for which a projection of the three-
dimensional physical structure is shown at the top-right corner, its area-based joint two-dimensional
probability density function (in terms of S and C) is presented in the bottom-left area, while the
marginal probability density functions of both S and C, are drawn at its top and right sides,
respectively. The value of the stretching parameter, λ, is represented below the jpdf by a black bar
(in a scale from 0 to 1). Mean and feature centers, as well as upper and lower distances for each
variable of the jpdf, are superimposed to the jpdf, as the filled and hollow squares, respectively (refer
to §2.3)

A subset of them, applied to the case in which the discretized surface is a triangular mesh, was here

implemented and tested (Chen & Schmitt, 1992; Dong & Wang, 2005; Taubin, 1995; Meyer et al.,

2003). Finally, a modification of the algorithm proposed by Dong & Wang (2005) (based on Chen &

Schmitt (1992)) is used. The only modification is the way in which the normal vector to each face

of the discretized surface is computed, following the method proposed by Chen & Wu (2004).

2.3 Classification of structures

A process of classification assigns different elements of a given set to groups based on the similarities

of their signatures. In our system, the elements to be classified are the educed structures, and the
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signatures are given by P(S, C),PS(S),PC(C), and λ, obtained in the characterization step for each

structure. Among the different approaches to the problem of classification, we seek those involving

as little a priori knowledge as possible of the relationships governing the different groups and of the

number of groups present in the set of elements under evaluation. This leads to the utilization of

learning-based clustering techniques. The idea behind this approach is to be able to detect other

types of geometries apart from the known tube-like and sheet-like structures in turbulence databases,

should they exist, by not imposing strong assumptions on the groups.

2.3.1 Clustering algorithm

The clustering algorithm used in this classification step combines several techniques found in the

data mining, pattern recognition, and artificial intelligence literature (see, for example, Berkhin,

2002, for a survey of such clustering techniques). It is a locally scaled spectral partitional clustering

algorithm that automatically determines the number of clusters. Its main steps are summarized

below using the notation proposed by Ng et al. (2001) in their NJW algorithm, that conforms the

core of our technique. Additions, particularizations, and modifications to the NJW algorithm are

also described below. In what follows we denote a set of N structures at a particular scale by

the N elements E = {e1, . . . , eN}. For each member of this set we construct a set of parameters

{p[k], k = 1, . . . , NP } which will serve as the contracted computational signature of the structure.

These will be a finite set of moments of P(S, C),PS(S),PC(C), to be defined subsequently, together

with λ. The p[k] will also define a feature space of parameters in which the elements ei are mapped.

Typically N = O(102 − 105), depending on the scale, and it will be seen that Np = 7.

1. Start from a set of N elements E = {e1, . . . , eN} and their corresponding contracted signatures

{pei
[k], k = 1, . . . , Np}.

2. Construct the distance matrix , dij = d(ei, ej), ei, ej ∈ E. The element dij of the distance ma-

trix measures dissimilarity between the two elements ei and ej of E, based on their signatures.
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Presently we define the distance

dij = F ({pei [k]− pej [k], k = 1, . . . , Np}) (2.10)

where pel
[k] is the kth parameter associated with element el. The weighting function F defines

a distance in that space of parameters. For example, a functional dependence of F of the form

F (x) =
(∑

i x2
i

)1/2 defines a Euclidean distance in the feature space of parameters.

3. Construct a locally scaled affinity matrix Â ∈ RN×N defined by

Âij = exp

(
−

d2
ij

σiσj

)
(2.11)

where σl is a local scaling parameter introduced by Zelnik-Manor & Perona (2005) and defined

as the distance of the element ei to its rth closest neighbor, denoted by er,i, σi = d(ei, er,i) (a

value of r = 7 is used, following Zelnik-Manor & Perona, 2005). The purpose of introducing a

local scaling parameter is to take into consideration the multiple scales that can occur in the

clustering process, which is important, for example, when tight clusters are embedded within

more sparse background clusters. Note that the elements of the diagonal of Â are null.

4. Normalize Â with a diagonal matrix D such that Dii =
∑N

j=1 Âij , obtaining the normalized

locally scaled affinity matrix L = D−1/2AD−1/2

5. For NC varying between the minimum and maximum number of clusters considered, do the

following loop:

(i) Find the NC largest eigenvectors {x1, . . . ,xNC
} of L and form the matrix X = [x1, . . . ,xNC

] ∈

RN×NC . This step constitutes the spectral part of the algorithm. It is intended to map

the elements ei onto a different eigenspace where clusters can be better identified. It can

be considered a pre-clustering step that, combined with the local scaling explained in one

of the previous steps, allows clustering of elements with more complicated relationships

among them (and to other clusters) than traditional clustering techniques that do not
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use these features. For example, concentric clusters can be easily educed by means of

spectral clustering.

(ii) Re-normalize the rows of X so that they have unitary length, obtaining the matrix

Y ∈ RN×NC as Yij = Xij/
(∑

j X2
ij

)1/2

.

(iii) Treat each row of Y as a point in RNC and cluster them into NC clusters via K-means

algorithm.

(iv) Assign the original element ei to cluster k if row i of Y was assigned to cluster k in the

previous step.

(v) Obtain optimality score for this number of clusters NC (see §2.3.3).

6. After the previous step has been done for all the possible numbers of clusters under evaluation,

determine the optimum number of clusters based on the minimization of the optimality score

for each one of the possible numbers of clusters (as will be described in §2.3.3).

The K-means clustering algorithm mentioned above is one of the simplest partitional clustering

techniques available. It first initializes the cluster centers (for a given number of them). Then it

assigns each element to the cluster with the closest centroid to that element. After all elements have

been assigned, it recalculates the position of the cluster centers. The last two steps are repeated until

the cluster centers no longer move. Different implementations of the K-means clustering algorithm

differ mainly in the initialization of the cluster centers: we choose the initial position of the first

cluster center randomly among all the elements; initial positions of subsequent cluster centers are

obtained as the farthest elements to the previously assigned cluster centers. Several initializations

following that procedure are performed to avoid local minima.

2.3.2 Feature and visualization spaces; definition of the p[k], k = 1, ..., Np

The selection of the p[k] used to define the feature space plays a decisive role in the classification

step. Each structure will be represented by a point in that feature space and its distance to the

other points will define the similarity to their corresponding structures. The number of parameters
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(dimensions of feature space) should be sufficiently large to distinguish satisfactorily relevant groups

of structures, but at the same time, it should be kept as small as possible to avoid the so-called

‘curse of dimensionality’ (see Bellman, 1961) that affects unsupervised learning algorithms, like the

clustering method used in this methodology, compromising its success by making the points too

disperse in such high-dimensional space. The set of (seven) parameters chosen here for each element

ei of E is

{p[k], k = 1, . . . , 7} ≡ {Ŝ, Ĉ, λ, dS
u , dS

l , dC
u , dC

l } (2.12)

where Ŝ, Ĉ denotes the feature center of P(S, C) and dS
u , dS

l , dC
u , dC

l are the upper and lower

distances of the jpdf in each variable. The feature center (Ŝ,Ĉ) takes into account the asymmetry

of the jpdf, correcting the mean center (S̄, C̄) so that the feature center lies closer to the region of

higher density of the jpdf. The upper and lower distances, du and dl, can be regarded as the r.m.s. of

the part of the jpdf above and below, respectively, its mean value. A graphical example can be seen

in Figure 2.7, where the mean and feature centers have been superimposed to their corresponding

jpdf. Definitions of feature center, upper and lower distances, together with a representative one-

dimensional example can be found in Appendix F.

Based on the idea of the feature space of parameters used for educing clusters of similar struc-

tures, we define a visualization space, intended to provide a graphical representation of the distri-

bution of individual structures in a three-dimensional space, providing qualitative and quantitative

information. In general, the higher-dimensional character of the feature space prevents its use as

visualization space, but the utilization of glyphs, scaling, and coloring allows more than just three

dimensions to be represented in the visualization space.

We define the three axes of the visualization space by Ŝ, Ĉ, and λ. Owing to the choice of

non-dimensionalization of the curvedness and the normalization factors (see §2.2), as well as the

intrinsic meaning of the shape index, curvedness, and stretching parameter, it is possible to identify

regions in the visualization space with a particular geometrical meaning for those structures whose

representation lies in them. For example, blob-like structures occupy the region near the point
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(1, 1, 1) (which corresponds to spheres); tube-like structures are localized near the (1/2, 1, λ)2 axis

(λ being an indication of how stretched the tube is) and the transition to sheet-like structures

occurs as the curvedness and λ decrease. The plane Ĉ = 0 is the limiting case of planar structure;

furthermore, any structure composed of (predominantly) planar regions, thus featureless in the

curvature sense, will have a (nearly) nil Ĉ, independently of its relative aspect ratios, that will

nevertheless affect its λ value. See Appendix G for an analysis of these limiting values. Throughout

this thesis, the visualization space is presented by a set of two-dimensional projections (see Figure

2.8 for an example).

Ĉ

λ

1001λ Ŝ0.5

1

1

0

1

1Ĉ

Ĉ

Ŝ
sheets

sheets sheets

tubes

blobs

tubes

blobstu
b
es

blobs

stretching

0.5

Figure 2.8: Projections of the visualization space with the predominantly blob-, tube- and sheet-
like regions sketched: three-dimensional perspective projection (left), two-dimensional orthogonal
projections (right) of the planes β (formed by the axes Ĉ and λ) and α (formed by Ŝ and Ĉ). For
example, a glyph consisting of a sphere and four bars along the ±Ŝ, ±Ĉ axes can represent nine
parameters of the characterization of the corresponding structure: Ŝ, Ĉ, λ given by the center of the
sphere, upper and lower distances of S and C given by each bar, the surface area A of the associated
structure, given by the size of the glyph, and the group to which the structure belongs, given by the
color of the glyph

2.3.3 Optimality score: silhouette coefficient

The determination of the optimum number of clusters is based on the minimization of an optimality

score. Different approaches have been considered. Among them, probabilistic criteria that consider

the relative increment of complexity of a model (set of clusters) when another parameter (cluster)

2Note that a value of the shape index equal to 1/2 corresponds to locally cylindrical shapes, that are predominant
in tube-like structures. The dimensionless curvedness of a straight elongated circular cylinder of radius R reduces to
C ' 3V/A

√
2R ≈ 3/2

√
2 ≈ 1.06.
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is added, such as the Bayesian Information Criterion (BIC) BIC (Schwarz, 1978), were found to

provide unsatisfactory results. This is mainly due to the use of spectral techniques, since they map

the elements to be clustered onto a different eigenspace whose dimensions change with the number

of clusters considered, complicating the task of comparing the goodness-of-fit for different number

of clusters by such probabilistic methods. Instead, the silhouette coefficient (Rousseeuw, 1987), SC,

is used. It is a confidence indicator of the membership of an element to the cluster it was assigned

to. It is defined, for each element ei, as SCi = (bi−ai)/ max(ai, bi), where ai is the average distance

between element ei and other elements in its cluster, and bi is the average distance to the items in

the closest cluster. It varies from −1 (lowest membership) to +1 (highest membership). Being a

dimensionless quantity, the mean and variance throughout all the clustered elements can be used as

indicators of the optimality of the clustering, and compared among results for different numbers of

clusters to determine the optimum number of them. High values of the mean silhouette indicate a

high degree of membership of the elements being clustered to the clusters they were assigned, and

low values of its variance indicate that the majority of elements have a similar value of the silhouette

coefficient. The combination of both indications reflects a successful clustering.

Once the cluster centers have been obtained, it is also possible to retrieve the closest elements

to those cluster centers among the elements being classified. These closest elements to the cluster

centers can be considered as representative elements of each cluster.


