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Chapter 1

Introduction

1.1 The role of geometry

Observation of natural fluid flows indicates the presence of structures with apparent repeating geome-

tries. Vortical structures in multiphase flows are commonly observed. The roll-up of an ocean wave

before it breaks (pressure- and gravity-driven flow), the swirling motion of a hurricane around its

center (pressure-driven flow affected by Coriolis and friction forces) or that of the stellar gas accretion

disk occurring during the formation of galaxies (gravitational-driven flow), and the Kelvin–Helmholtz

wave clouds formed between two layers of air of different density and speeds (shear-driven flow) are

just a few examples. Turbulent fluid flows are no exception, often adding levels of complexity to the

structure geometry owing to the multiple scales that comprise such flows.

Visualization experiments have provided means for the systematic study of geometrical structures

in fluid flows and have substantially increased the number of known flows where repeating geometrical

patterns are present. Experimental study of the flow past cylinders and spheres led to the discovery

of the Kármán vortex street while experiments in turbulent mixing layers resulted in an exhaustive

study of ‘coherent’ vortical structures (see Brown & Roshko, 1974). This work has stimulated

theoretical analysis of pattern formation, for example, the description of eddying motions and flow

patterns based on critical-point theory (see Perry & Chong, 1987).

Direct numerical simulations (DNS) have also proven to be a valuable tool in the search for

geometrical structures in fluid flows. The organized cylindrical elongated vortices (so-called ‘worms’)
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found in the intense vorticity of isotropic turbulence (Siggia, 1981; Kerr, 1985; Jiménez et al., 1993)

are one remarkable example. The ‘worms’, however, remain a puzzle; their contribution to the

kinetic energy dissipation is almost negligible and their role in turbulence dynamics remains an

open question.

Structures in turbulent flows can be considered a consequence of the forces and boundary con-

ditions driving the flow, but also can be seen as themselves producing some intrinsic properties of

the turbulence. In the multi-scale ansatz based on self-similarity and the idea of energy cascade

(Richardson, 1922; Kolmogorov, 1941a,b; Onsager, 1945), the external forces and the boundary

conditions affect mainly large energy-containing scales, with diminished influence on progressively

smaller eddies. The energy-containing scales then depend strongly on the external forces and bound-

ary conditions and are not expected to be universal, while small-scale structures may be related to

universal properties of turbulence, thereby exhibiting a generic geometric signature that may be

characteristic of efficient cascade dynamics.

A geometrical characterization of those structures could provide improved understanding of cas-

cade mechanics and dissipation-range dynamics, contributing potentially to the development of

structure-based models of turbulence fine scales (see Townsend, 1951; Tennekes, 1968; Lundgren,

1982; Pullin & Saffman, 1993), subgrid-scale models for large-eddy simulation LES (see Misra &

Pullin, 1997), and simulation methods based on multi-resolution decomposition by means of the

wavelet transform (see Farge, 1992; Meneveau, 1991; Farge et al., 1996, 1999). Further, a better un-

derstanding of eddy structure at large Reynolds number may provide important insight into possibly

singular or near-singular structures in the dynamics of the Euler equations (see Hou & Li, 2006)

by elucidating the geometrical characterization of sites within the turbulent field where extreme

dissipative or vortical events occur, and which are candidates for singularity formation in the limit

of vanishing viscosity.



3

1.2 Previous identification criteria

Prior work on the identification of structures in turbulence addresses mainly the identification of

vortex tube- and sheet-like structures with emphasis on vortex tubes. But the importance of sheet-

like structures, where significant turbulent kinetic dissipation may be concentrated owing to their

high amplitude of strain rate, and which may produce tubes by roll-up instabilities, has led to

renewed interest in sheets. Most identification methods either for tubes, sheets, or both, are based

on local measures of scalar fields obtained from the velocity-gradient tensor and/or the pressure

field. They rely on physical aspects associated with a particular kind of structure either of turbulent

flows or of simpler solutions of the Navier-Stokes equations (e.g., Burgers vortex tubes and sheets),

whose phenomenology is extrapolated to turbulence.

Chong et al. (1990) classified regions with complex eigenvalues of the velocity-gradient tensor

as vortex tubes (since the local streamlines are then closed or spiral in a reference frame moving

with the fluid). The second-order invariant, Q, of the velocity-gradient tensor was used by Hunt

et al. (1988), to define a vortex tube as the region with a positive value of Q, and the condition of a

pressure lower than the ambient, while Ashurst et al. (1987) based their identification criterion on

the sign of the intermediate eigenvalue of the strain-rate tensor, Sij . Tanaka & Kida (1993) extended

the identification criterion based on Q for the extraction of both tubes and sheets. Jeong & Hussain

(1995) proposed a method based on the second largest eigenvalue, λ2, of the tensor Lij formed by

summing the products of the symmetric, Sij , and antisymmetric, Ωij , parts of the velocity-gradient

tensor with themselves, Lij = SikSkj + ΩikΩkj . They define a vortex core as the region where λ2 is

negative. Horiuti (2001) combined this methodology with the physical explanations of the alignment

of vorticity and the eigenvector associated with the intermediate eigenvalue of Sij (Andreotti, 1997)

to develop a new method in which the eigenvalues and eigenvectors of Lij are reordered based on their

alignment with the vorticity; then, regions are classified into vortex tubes, and so-called flat vortex

sheets and curved vortex sheets depending on the relations of those reordered eigenvalues. Horiuti

& Takagi (2005) proposed an improved method for the eduction of vortex sheet structures, based

on local values of the largest eigenvalue of the tensor Aij = SikΩkj + SjkΩki, once the eigenvalue
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corresponding to the eigenvector maximally aligned with the vorticity is removed.

Based solely on the pressure field, Miura & Kida (1997) developed a methodology for extracting

axes of tubular vortices as the loci of sectionally local minima of the pressure field (obtained by

means of the sign of the second largest eigenvalue of the pressure Hessian evaluated at each point;

positive values indicate pressure minima).

The majority of existing methods of identification are local, based on pointwise quantities used

to discriminate whether each point belongs to one type of structure or another (or none). Regions

of points sharing a common identity based on the local criterion applied can then be formed, but

often that local analysis is the end of the identification process. Visualization of such regions has

proved a helpful tool in its analysis, but here we seek a more automated, systematic approach to

structure characterization.

Some non-local methods exist in the fluid mechanics literature. These classify structures con-

sidering their spatial extent and can handle a broader range of geometries. While local methods

are often based on a priori physical knowledge of the particular geometry to be educed, non-local

methods generally draw physical conclusions a posteriori, based on geometrical characteristics ob-

tained from the educed structures. For example, an extended structural and fractal description of

turbulence was proposed by Moisy & Jiménez (2004), who applied a box-counting method to sets of

points of intense vorticity and strain-rate magnitude (educed by thresholding). They also analyzed

geometrically individual structures, defined as a connected set of points satisfying the threshold

criterion (thus, considering the spatial extent of such structures), based on their volume and spatial

distribution, finding that intense vorticity and dissipation structures are concentrated in clusters of

inertial size. Wang & Peters (2006) defined extended dissipation elements as the ensemble of grid

cells from which the same pair of extremal points of the scalar field can be reached, and studied

their characteristic linear distances.
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1.3 Non-local, multi-scale, and clustering features

Our approach is based on a non-local, multi-scale methodology for the extraction, characterization,

and classification of structures in turbulence from a geometrical perspective. It is non-local, focus-

ing on the spatial extent of structures. The multi-scale analysis is performed through the curvelet

transform, a higher-dimensional generalization of the wavelet transform. Presently, the structures

are defined as iso-surfaces extracted, at different scales, from a three-dimensional scalar field ob-

tained from a turbulent flow. The characterization and classification steps are based on measures of

the geometry of iso-surfaces. The problem of shape analysis of free-form surfaces has been widely

studied in the fields of computer graphics, computer vision and image understanding, (see Campbell

& Flynn, 2001; Iyer et al., 2005; Dorai & Jain, 1997; Osada et al., 2001; Zaharia & Prêteux, 2001).

Our method characterizes each individual structure in terms of local differential-geometry proper-

ties. Structure identification in terms of non-local characterization is done via area-based probability

density functions of those geometrical properties. Classification is based on this geometrical charac-

terization of individual structures and is enhanced via clustering techniques. Clustering algorithms

allow the eduction of groups of structures without the need for strong a priori assumptions about

their properties.

1.4 Choice of applications: passive scalar, enstrophy, and

dissipation fields

Presently we apply this methodology, first, to a passive scalar advected and diffused in statistically

stationary homogeneous isotropic turbulence with a mean scalar gradient imposed. Second, we

study the structures of the enstrophy and dissipation fields obtained from homogeneous isotropic

turbulence decaying in time. In all cases the flow is incompressible. The databases under analysis

were obtained by DNS.
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The dynamics of the passive scalar, c, are governed by the linear advection-diffusion equation:

∂

∂t
c(x, t) + uj(x, t)

∂

∂xj
c(x, t) = D

∂2

∂xj∂xj
c(x, t), (1.1)

where {uj , j = 1, 2, 3} are the components of the velocity field, u, x is the position vector ({xj , j =

1, 2, 3} are the spatial coordinates), t is the time variable, and D is the diffusivity. In the presence

of a uniform mean scalar gradient of magnitude µc in the x1 direction—which will be preserved by

the flow (see Corrsin, 1952)—the passive scalar can be split into its mean component, µcx1, and the

passive scalar fluctuation, c′(x, t). Thus c(x, t) = µcx1 + c′(x, t) and the passive scalar fluctuation

is then governed by:

∂

∂t
c′ (x, t) + uj(x, t)

∂

∂xj
c′ (x, t) = D

∂2

∂xj∂xj
c′ (x, t)− µcu1(x, t). (1.2)

The mean scalar gradient acts as a source term for the scalar fluctuation, and a statistically stationary

state can be reached (see Overholt & Pope, 1996). Passive scalars are of paramount importance in

turbulent mixing and combustion and a vast effort has been dedicated to their study (see Warhaft,

2000, and the references therein). We choose it as a first case of application of our methodology for

being a scalar field itself, governed by a relatively simple equation, before moving to other scalar fields

derived from the velocity gradient tensor, with more complicated dynamics, such as the enstrophy

and dissipation.

The analysis of the enstrophy and kinetic energy dissipation fields has been recurrent in the

study turbulence through experiments (e.g., Zeff et al., 2003), numerical simulations (e.g., Ishihara

et al., 2003), and theoretical developments (e.g., Pullin & Saffman, 1997; He et al., 1998; Wu et al.,

1999). They are obtained, up to scaling factors, from the double contraction of the rotation- and

strain-rate tensor fields. Physically, enstrophy and dissipation correspond to the remaining Galilean-

invariant degrees of freedom of fluid particles, rotation and strain, once the dilatation is restricted for

incompressible flows. This separation is useful but it does not decouple the equations of fluid motion.

On the contrary, both fields appear highly coupled in the equations describing the dynamics of each
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other (see Appendix A). In fact, the interaction between strain and rotation is intrinsic to the very

nature of three-dimensional turbulence; in particular, vortex-stretching occurs when the strain-rate

field stretches and amplifies vorticity. A study and comparison of the geometry of structures of both

fields, at different scales, might be valuable in our understanding of turbulence. For that reason, we

choose them as the second case of application of our methodology.

1.5 Grid resolution effects

Because of its multi-scale nature, a complete study of turbulence requires, both in experiments and in

numerical simulations, spatial resolution that resolves the flow up to dissipation scales. A traditional

grid resolution criterion used in DNS of homogeneous turbulence in a periodic box, for example,

consists in resolving the flow up to scales of the order of the (average) Kolmogorov length scale.

But in addition to being multi-scale, turbulence also shows intermittency (Batchelor & Townsend,

1949; Landau & Lifshitz, 1959; Kolmogorov, 1962): fluctuations of flow quantities can reach extreme

amplitudes in short intervals of time and spatial distances. Furthermore, fluctuations of different

amplitudes tend to cluster. Intermittency increases for higher Reynolds numbers (Okamoto et al.,

2007) and also for smaller scales (Brasseur & Wang, 1992).

This suggests that the traditional grid resolution criterion, based on an average dissipation scale,

might be inappropriate, since much smaller scales are locally present due to those high fluctuations.

Therefore, the resolution required to resolve all scales of turbulent flows increases significantly (see

Sreenivasan, 2004). This condition may become even more restrictive when studying the geometry

of structures in turbulence, and is explored during the application of our methodology to the enstro-

phy and dissipation fields by means of databases corresponding to multiple numerical simulations

performed at different resolutions but otherwise identical.
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1.6 Structure interaction

The dynamics of sheets and tubes are greatly affected by their own interactions. Common examples

are the coalescence and reconnection of approaching vortex tubes and the roll-up of vortex sheets to

form vortex tubes resulting from the Kelvin-Helmholtz instability. These interactions among sheets

and tubes can be seen as the translation of the strain-rotation interaction itself to the structural

level of turbulence, and help explain the presence of intermittency and the process of multi-scale

energy cascade in turbulence (see Kraichnan, 1974).

An interesting example of the geometrical relations between rotation- and strain-rate fields is the

local alignment of the vorticity with the intermediate strain-rate eigendirection, for incompressible

homogeneous isotropic turbulence. It was observed first in numerical simulations (Ashurst et al.,

1987) and confirmed experimentally (see Tsinober et al., 1992; Tao et al., 2000). Theoretical explana-

tions combine local and non-local arguments (see Jiménez, 1992; Nomura & Post, 1998; Hamlington

et al., 2008). But this prevailing alignment between vorticity and the intermediate eigendirection of

the strain-rate tensor is observed to switch towards the direction associated with the most negative1

(compressional) eigenvalue of the strain-rate tensor at the ends of tube-like structures (Nomura &

Post, 1998), which is consistent with the compressive straining of the vorticity occurring in those

regions.

Other geometrical analyses regarding the proximity of different types of structures, in relation

to their shapes, could be useful in further explaining those interactions and also improve structure-

based models of the fine scales of turbulence. For that purpose, we have developed a methodology

for the study of such proximity issues, from a geometrical viewpoint, among structures of different

fields and scales. It takes advantage of many of the features of the methodology for the study of the

geometry of structures in turbulence also introduced here.
1For incompressible flow the trace of the strain-rate tensor is null, ensuring at least one positive and one negative

eigenvalue of that tensor.
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1.7 Outline

This thesis is organized as follows: Chapter 2 describes the three main steps of the methodology

for the non-local multi-scale study of the geometry of structures—extraction, characterization, and

classification—with emphasis on the conceptual basis and on some particular implementation de-

tails. In Chapter 3, we present a system test that validates the methodology applied to a virtual

world of modeled structures. Chapter 4 shows results of its first application to extended passive

scalar structures educed from a DNS database of incompressible homogeneous isotropic turbulence

stationary in time. We apply, in Chapter 5, the same methodology to structures of the enstrophy

and dissipation fields, comparing the results of both fields, from another DNS database of incom-

pressible homogeneous isotropic turbulence decaying in time. This database includes three different

grid resolutions, allowing us to study how this parameter affects the geometry of educed structures

and the validity of the traditional grid resolution criterion in DNS from a geometrical standpoint. In

Chapter 6, we combine our non-local methodology with two local criteria of identification of vortex

tubes and sheets in turbulence (Horiuti & Takagi, 2005) that are based on scalar fields obtained from

the velocity gradient tensor. An assessment of the geometries expected from those local criteria is

done. Chapter 7 introduces a new methodology for the study of the proximity of multiple sets of

structures, also in terms of geometry and based on non-local measures through area-coverage quan-

tification. We apply this methodology to the pairs of two scalar fields used by the local identification

criteria in Chapter 6 and also to the enstrophy and dissipation fields, considering the multi-scale

decomposition performed in Chapter 5. Chapter 8 summarizes the conclusions of this work and

comments on its possible future directions. The contents of Chapters 2, 3, and 4, along with the

corresponding conclusions included in Chapter 8, will appear in Bermejo-Moreno & Pullin (2008).

We emphasize that the tools developed here—the multiresolution analysis, geometric character-

ization, spectral projection, clustering algorithms, and proximity analysis—can be applied to many

scalar and tensor fields in turbulence, and in fields beyond fluid dynamics.


