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ABSTRACT

The analogue of the variational principle was applied on the
path integral to obtain the self-energy of the scalar nucleon interact-
ing with the neutral scalar meson (with vanishing mass) field
for variable coupling constant gz. To obtain the lowest energy of the
nucleon from the asymptotic form of its kernel it is essential to re-
place it (t:time) by another variable T, say. Therefore it was first
shown that the equation for a scalar nucleon in a given external field
has the form which can be obtained from the Klein-Gordon equation
by formally changing it by v . It is known that the Klein-Gordon equa~-
tion may be described, though indirectly, by Lagrangian form by in-
troducing a fifth parameter u and a differential equation for a new
function of the space~time variables and u, Thén the kernel of this
equation is represented by a path integral over trajectories in space-
time., To apply the variational technique on this kernel and find the
beét value of the lowest '"energy'' corresponding to the "Hamiltonian"
of this equation, here again {:ve need to replace iuby ¢ . The kernel
corresponding to the transition in which there are no nﬁesons present
initially and finally was obtained by integrating out the meson field
in the kernel for the case of a given potential, The "energy" con-
tains the logarithmic divergence which was cut off by the analogy to
electrodynamics, The kernel of a nucleon for the same transition
can be given in terms of the kernel just explained, Frorn the asymp-
totic form of this kernel the best value of the lowest (or self-) energy
M of the nucleon was obtained, M was given in terms of preliminarily
renormalized mass m', It was found that no solution exists for too
large value of gz. For practical purposes the procedure to find the

theoretical mass m in terms of M and gz' was also explained,
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I. INTRODUCTION

(1)

The meson theory of nuclear forces was first established
on the basis of the analogy to the Coulomb force between the charged
particles interacting through the electromagnetic field, However,
as the experimental findings are accumulated it was revealed that
these two forces are quite different in many respects and that the
nuclear forces are far more complicated than the Coulomb force.
Furthermore a number of experimental data pertaining especially
to a system of nucleons, such as the binding energy, the .'rna.gnetic
moment, and the quadrupole moment of the deuteron, the cross-
section for neutron-proton scattering, etc., supplied important in-
formation for the development of the meson theory. In an attempt
to exﬁlain these findings various types of meson theories and their
mixtures were introduced. In these theories the nucleon was treated
as a point source to make the theory relativistically invariant, and
the perturbation technique was invariably employed despite the ex-
perimental indication of not-weak coupling between the nucleon and
the meson, The predictions of these relativistic theories were not
very satisfactory in explaining the experimental data.

Now the methods of approximation used in these theories are
either the analogue of the classical electrodynamics which deter-
mines the fields produced by given sources neglecting the reaction
of the field on the source, or that of the perturbation method of the
guantum electrodynamics based on the weak coupling between the
field and the particle, However, in the meson theory, the nucleon

recoil may not legitimately be neglected on the one hand, while the
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coupling between the meson and the nucleon, inferred from the ex-
periments, can not be said to be small enough to justify the use of
the perturbation technique on the other. Therefore the application
of these methods, especially the latter, to the meson theory may be
objected to, because of this inconsistency, |

In addition to this, the point source model, with the excepfion
of the pseudoscalar meson theory, results in a singularity and in-
finity of higher order as the order of the approximation increases,
To avoid these difficulties inherent to the point source pe_pple tried
to assume that the source is extended over a finite size, This makes
the theory convergent only at the expense of the relativistic invari-
ance of the theory, It was shown for this theory that the perfurbation
approximation is not valid for the values of the size of the source
and the coupling constant that are required from the experiments,
but the other approximation of strong coupling must be employed,
It is clear that the stronger the meson-nucleon coupling the smaller
the energy difference between the successive excited states so that
for a very strong coupling case the excitation energy is much less
than the rest mass of the meson, These excited statés are isobars
of the ground state of the nucleon with anomalous charge and spin,
On the other hand, for a very weak coupling case the minimum ex-
citation energy will be so large that the excited states of the nucleon
can not be found unless the energy involved is very high,

Various consequences of the strong coupling approximation

(2), éspe cially the

were extensively investigated by many workers
isobar separations, the nuclear forces, the anomalous magnetic

moment of the nucleon, and the scattering cross-section of the meson
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by the nucleon. The cross-section for the meson scattering by the
nucleon favors the strong coupling theory inasmuch as it gives a
smaller value than the inacceptably too large value prédicted by the
weak coupling theory. However, the strong coupling theory predicts
that the magnetic moment of the deuteron is only a few percent of
the observed value, and it also predicts the instability of highly
charged nuclei contradicting the experimental findings. Because
of these fatal deficiencies and the lack of relativistic covariance,
it was once considered that the strong coupling theory based on the
extended sources should be abandoned, and the weak coupling theory
should be examined more carefully,

Recently a useful method has been developed which is aépli-
cable to-a class of problems in which the field-particle coupling is
neither weak nor strong and in which the recoil of the source par-
ti’éle‘may be neglected(3). This is widely known as "the intermediate
coupling approximation' and has been applied to such problems as
the self-energy of the nucleon, the nuclear forces, the photo-meson
production, the meson-nucleon scattering, and the slow electrons
in a polar crystal, etc. However, this neglect of recoil is difficult
to justify so that the validity of these calculations is not established,

What has been reviewed so far tells us the necessity of em-
ploying the appropriate approximation according to the 'strength of
the coupling between the field and the particle of the problem under
consideration, However, the most desirable is to invent a method,
if any, which is valid for the entire range of the coupling strength,
Although it may not be possible for such a method to be able to ex-

plain all the experimental findings consistently, it is not impossible
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to find a method which gives answers for any value of the coupling con-
stant when we select some particularly simple problem for investiga-

(4)

tion., In fact, Professor Richard P. Feynman treated very recently
the problem of the slow electrons in a polar crystal by a variational
technique extended to path integrals over trajectories for the ai'bitrary
strength of the phonon-electron coupling. Besides this feature of
giving answers for arbitrary magnitude of the coupling cohsta;nts this
method has another great advantage in that it avoids the objectionable
approximation of 'neglecting the recoil" of the source particle., He
obtained the lowest energy of the system which is at least as accurate
as previously known results, The effective mass of the polafon was
also calculated.

In the present work the self-energy of the scalar nucleon in-
teracting with the scalar neutral meson field was calculated as a func-
tion of the coupling constant using the same variational technique as
mentioned above, For the sake of simplicity the rest mass of the me-
son was assumed to be zero, Although it is necessary io treat nucleons
as Dirac particles and to consider, for example, the pseudoscalar sym-
metric meson theory, such a realistic problem accompanies a greater
complexity indicating the necessity of more detailed study of this tech-
nique to be applied to such a problem, For this reason the case of the
‘scalar nucleon interacting with the neutral scalar meson field was in-

vestigated here, in which no further complications pertaining to the

operators such as Dirac matrices YrL, spin operator &, and isotopic
. - . . ‘ .
spin operator T will occur, This work is meant as a preliminary

test of the method to see whether the work needed to extend it to the




real problem is justified,

In order to make use of the variational technique it is essen-
tial to replace it (t is the physical time) by another variable T , say,
The purpose of this is to arrange that the kernel K will have the asymp-
totic form e_ET (T is a very large interval of T ). In this caée it is
the easiest to determine the lowest energy E of the system considered,
Therefore, in Section II, the scalar nucleon field in an external neutral
meson potential was treated by the theory of second quantization
starting from the equation -842/9t = H L2 instead of the conventional
one -9£2/idt = HAL. Here L1 is the wave function describing the state
of the scalar nucleon field and H is the operator Hamiltonian of the
system. The argument here is similar to that of the Dirac eleétron
in an external electromagnetic potential(s). The differential equation
satisfied by the scalar nucleon was obtained, This has the form which
one would expect from the conventional (Klein-Gordon) equation of the
scalar particle by substitution it = © . The contribution to the tran-
sition matrix element from processes of various order in the pertur-
bation method was also calculated,

The Klein-Gordon equation satisfied by the scalér nucleon with
wave function Y (xm), where # runs from 1to 4 and x4 = T, is, un-
fortunately, not one of those which permit the direct application of the

~Lagrangian formulation, For this reason we introduced a fifth param-
eter O~ and described the trajectories in space-time (time here refers
to T) by giving xu as functions of this parameter. Then a differen-
tial equation for a new function ¢(x,4, 0°) was introduced in such a way

that it allows the application of the Lagrangian formulation and the
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variational technique. At the same time the function Y is expressed
in terms of ¢ in a simple manner. The kernel associated with ¢ cor-
responding to the transition from the vacuum to the vacuum of the me-
son field in the quantum mechanical case was obtained by first finding
the kernel for the case when there is an external potential pres‘ent
and then integrating out the meson field operator remaining in it,
This kernel contains all the effects of the self-action of the scalar
nucleon, except for the effects of closed loops, interacting with the
neutral scalar meson field, After having found the kernel K for the
transition mentioned above in the form SeSD xﬁ(cr), where S is the
action, we next need to find its asymptotic form to determine the low-
est "energy" E0 corresponding to '"the Hamiltonian" .of the equétion
satisfied by ¢, Such path integrals as those involved in the evaluation
of the asymptotic form of K are ordinarily very difficult to work out,
but we can do this by means of an approximation method whose validity
does not require that the coupling constant be particularly small or
particularly large. The method used is the analogue of the variational
technique mentioned before. We will sketch the variational procedure
briefly here. In this technique, instead of the trial waw}e function in
the conventional method, we choose a trial action Sl’ say, which is a
real quantity, quadratic in coordinates of the particle, and contains
Oone or mare parameters in it. It is essential that .Sl is a real quantity
in order to make use of an important inequality valid for averages
over any real quantities, Also it is very convenient to have S1 quad-
ratic in particle coordinates because for such a case the path integrals

involved can be worked out most easily, In the present calculation

we borrowed the trial action S1 from the three-dimensional case of
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the polaron problem(4) with the direct extension to the four dimensions
because our kernel K associated with ¢ is expressed as a path integral
over trajectories in four dimensions. There are two parameters con-
tained in S1 which are to be varied at the later stage to obtain the best
value of the lowest "energy" E_. The kernel for arrival at xu start-
ing from xp ' has the asymptotic form e EoZ (%, is a very large in-
terval of o°) because of our choice of the dependence of the differen-
tial equation for ¢ on one of the five independent variables ¢ , Let
us now assume that we know the lowest "'energy" E1 corresponding to
Sl so that we can write S esl.ﬁxr\(cr) ~ e-Elz s where the symbol ~~
' means "asymptotically equal for large Z.'', Then we see that
_%ZN&S$%ﬁﬁnwv~[&f£%ﬁmqwﬂf$ywﬂ€%%
The factor in square bracket may be looked upon as the average of

S-S S; S-S
e with a positive weight e = and we shall write this {e >. In

e

the following the symbol oo > will be used to denote the average
£y <O

in the sense just explained. By virtue of an inequality {e ) >

which holds for the averages over any real quantities f the relation ob-
-EOZ (S-Sl) -Elz
tained above can be written as e ) e e
S S '
(S-S1 ) is defined by S(S-Sl)e lf)'x,‘*(o’)/ Se 1,ﬁxrk(0“). When ), is very

« Here

large (S'Sl> is proportional to Y, so we write (S—Sl) =s2 . Call-
ing E = E,-s we finally have E_ { E. E contains free parameters
‘through S, and hence the best value of the lowest "energy" E, can be
obtained by minimizing E with respect to these parameters., This is

a brief account of how the variational technique works for the path in-

tegrals, The values of E; and s depend, in addition to their dependence

on the parameters, on the values of the coordinates Xpmo at the initial

and the final space-time points. The expression for E corresponding
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to the transition xu = xp' = 0 was obtained first, E contains an inte-
gral which is divergent logarithmically.

In the case of a problem in four dimensions, héwever, the ker-
nel arriving at xy = 0 from x ' = 0 is of no interest since this does
not correspond to the actual motion of the particle in space-time, We
are concerned with the case in which Xp 3¢ O holds at least for M= 4
at the final point when it started from xu' = 0, The value of E corres-
ponding to arrival at xpu = Xu from xu' = 0 can be obtained by partly
making use of the result for the case X = er = 0, This expression
also contains a logarithmically divergent integral, The divérgence
was removed by a relativistic cut-off analogous to the one applied to
quantum electrodynamics(é). By this, E now contains the cut-off, A\,
logarithmically, However, the actual computation of minimizing E
will not be performed at this stage and E will be left as it stands,

Finally, by combining the relation existing between ¢ and Y
with the fapt that K is the kernel associated with ¢ it is easy to obtain

the kernel K associated with \[J in terms of K., This relation enables

-¢£ T
o

us to evaluate the asymptotic form of K~e ( g, is the self-

energy of the scalar nucleon and T is a very large interval of T)
from the corresponding form of K ~ e-EOZ . Hence the best esti-
mate M of the self-energy 80 can be given in terms of the best value
E of E obtained by minimizing it with respect to the free parameters.

In the course of calculation it turned out to be convenient to renorma-

lize the rest mass m of the scalar nucleon to define the renormalized
mass m's An integral left unperformed in E was carried out for the

case in which two parameters available are close to each other, Fi-

nally the ratio (M/m‘)z was computed numerically as a function of
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H = gz/STrm'Z for the charged scalar nucleon (or a function of

M= gz/va'Z for the neutral scalar nucleon), where M is the
best value of the self-energy of the scalar nucleon. This ratio
decreases, starting from 1 at M = 0, with increasing M asis
expected, until it becomes about 0,88 near P = 0,30, And there
can be no solution found beyond that value of # . The possible
reason why no solution appears for too large value of gz' may
be the following., That is, for strong enough attraction possibly
the binding of a pair of nucleon and antinucleon (analogue of
positronium) exceeds their rest masses so that pairs would be
found ad infinitum releasing the energy by radiating mesons,
Thus no sensible theory may exist for too large gz in the scaiar
theory. For the practical purposes a procedure to find the the-
oretical mass m of the nucleon from M, which is to be identified
as the experimental mass, and the coupling constant gz was

also given.
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II. SCALAR NUCLEON IN AN EXTERNAL MESON POTENTIAL

In this section we will study the scalar nucleon in a given neu-
tral scalar meson field by the theory of second quantization. This
can be done in a manner similar to that of the Dirac electron.iﬁ an
external field(5). However, since we are eventually interested in the

.calculatiOn of the self-energy of such a particle by the variational
technique we will develop the argument in terms of new fourth vari-
able T instead of t (T = it). The equation satisfied by the scalar
nucleon and the transition matrix element will be obtained, The an-
swer is in most cases simply what would result from the conventional
expression (in which t is the variable instead of T) replacing it by T,
as one expects, Nevertheless it was thought worth while to make
sure, at least c;wnce, that such a prescription would give the correct
result by following necessary steps in detail, Though we are not
going to make use of the perturbation method in this work it is inter-
esting to see how the contributions to the transition elerﬁent_ coming
from various orders of the approximation look; and to compare them
with those of a Dirac electron in a given external potential,

The Hamiltonian for a charged scalar nucleon in a given neu-

tral scalar meson field is given by (h =c = 1)

() = {{re( 2 9m(2 0 TP TP @) 4P PEREX(E, 1) (L. 1)

X PRGN YR facR
with the commutation relations

[v@ 0, Y&, 0] =[m@Z 0, psE,0]=L §@-2) . (IL. 2)
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Here W is the nucleon field operator and w is its canonically conjugate
momentum, m is the rest mass of the nucleon, X _is the given meson
potential, and g is the coupling constant. If we consider the neutral

scalar nucleon instead of the charged one we will have

Ht) = (3{x® + (V92 + mPe2rmm ey ? } a3 %, (IL. 1Y)

so that the difference is a factor of 2 in appropriate places. The state

vector JL describing the motion of the system is given by
1 a8 _
T et HA

Anticipating the use of the variational technique to obtain the
self-energy of the scalar nucleon, as was briefly mentioned in the in-
troduction, (see also Eq. (IV.1) et. seq.) we replace it by T and con-

sider the following equation

oqL
- 37 = HL,

without asking about the physical meaning of this new variable T . For
the sake of the later reference it will prove convenient tb establish
some of the relations existing between corresponding quantities in both
formalisms in which t or T is the independent variable (t- or T -for-
malism, respectively).

If a function f of ¥ and t is of the form (%, t) = F(iX, it) then it
(is F(i ¥, T) in terms of ¥ and T and we will denote this by 'f(z, T ) with
the tilde on f indicating explicitly that it is now considered as a quan-
tity in T -formalism. However, in the following the tilde will often be
omitted whenever it is apparent that there will be no confusion by doing

so, For the complex conjugate of f we have £¥(, t)=F(-iX, -it)=F (-iX, -T)
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and we will call the last expression fT(Sf,’C):

Mt =L (2T ) (IL. 3)

This simply means that to take the complex conjugate (*) of a qp.antity
in t-formalism corresponds to taking the complex conjugate of the
spatial part and changing the sign of T variable in T -formalism

( -~ operation). To the time derivatives in t-formalism, correspond

the following:

8f(Z,t) _ dtr 8i(F,T) s 3f(, T)
—@at ~ dtf T8t ~ T 8Tt °?

(11, 4a,b)

prZ ) _dT ol (FT) 3 (2, T)
et dt 0T B 0T *

We note that the commutation relations in T -formalism are of the same
form as those in t-formalism with * replaced by 4- , since T and t have

a one-to-one correspondence, They are
~ L~ <t ~ Al . 1 ,
[FZT), @, )] =[FT@ ), ¥'(&,t)]= £ SE-2). (I1. 5)

The theory of scalar particles was developed by Pauli and Weiss-
kopf('7) who showed that the oppositely charged particles in this theory
can be interpreted as corresponding to the electron and the positron of
‘Dirac's hole theory. Let us arbitrarily call the positively charged
particle '"the electron' and the negatively charged one "the positron''.

We attempt to calculate the transition matrix element of a process in
which there is present only one "electron' with wave function g(¥) at

T = T if there was only one '"electron' with wave function £f(X ) at T =0.
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The case when several '"electrons' and '"positrons'' are involved in
the initial as well as in the final state, . the argument will be given
in a similar fashion as was done for the case of Dirac particles(S).

If the wave functionals represénting the initial and the final states

are called 'Qi and ..Qf, we are to evaluate the transition matrix ele-

T
ment ) _S Hdt

= )
Y - (ﬂf e .Ql)'
Writing £, = F L2 and L = G" "(2'0 in terms of the state vector

‘O'o of the vacuum we rewrite Y as follows:

Y = (.Q'c';' Gs F 0 (IL. 6)

. :
—ga HdT . In the case of Dirac particles the field opera-

where 5 = e
tor W*(x) is responsible for both the creation of an electron and the
annihilation of a positron at the position ¥ so that a state with an
elecfron with spinor function f(X ) can be obtained from ‘Q'o by oper-
ating with F* = gly*( X)I(X) d3 % on it. However, for_a scalar
particle, the expression for F*¥ in t-formalism (or FV7 in T-forma-
lism) is a little bit more complicated, due to the fact that it obeys a
differential equation which is second order in the time. Since it turns
out, for the scalar particle, that both Y¥*( R ) and w { X ) are responsi-
ble for the creation of an ""electron' F* must be expressed in terms
of ¥*, 1, and f. If the creation operator of an “electron' with momen-
tum K is a*k and the Fourier transform of f( ¥ ) is ¢ ( ¥), then F*
can as well be written as S a*k o k4 ) a3 i?. To find the expression
for FF* we need to study the work of Pauli and Weisskopf. In going to
the momentum space they consider a cube of side L (volume V = L3)

on whose surface the periodic boundary conditions are satisfied, Then

they expand the field operators Y, w, Y%, and n* in the following



manner:
> > > >
i k x -1k x
1 t . 1 .
YR)=— 3 q_e , YPHX)=——2lqt e ;
k v k
W k - = k g
o = 1 . 1k x N 1 5 -ikx
W(X)=—~—Zpk"‘ e :T"(x):'—"‘" pke P
'V k YV k

where the summation over k extends over all the components of a vec-

tor K . Solving for q, p, g* and p* gives

N e s
-iKF 3> 1 - 1kx3_*
q_k:———-—g'\.P(x) d X qk*::————gt’)*(x)e d X,
v N v o>
1 5, Tikx 5 1 5, PRX 4,
P * = — S ™ X) e d” x, pkz—-—-—g mx)e d” %,
v
Again they write
[ Wk « -1
pk— — (a-kh"l'bk) H qk= -ak+b*k)’
EoN
A . "i ae
Pk"‘ —'Y b (ak+b*k)" q*k:' (a—k""bk)s
2o,

where ay and a*k are the annihilation and creation operator of an 'elec-

tron' with momentum k and bk and b*k are the corresponding quantities

for a "positron', and W, =+ K “+ m”. From these last equations we
have
1 1 e . . 1 1
ay = ( P"'k - I)Q)k qk): a"'k = — + ifa q k)’
Ea -~ Al ool
1 1 . e 1 I .
Py = P - Y@y atdy BH = — R+ LTy g
)Z Yo, Z o,
Now we can write a*k in terms of Y * and m as
1 1 ik 3
a¥ = g (m(Z)+iw, YH(Z))e a’ 2.
v )’Z_CDI
Since the wave function £( 2 ) of a free "electron' with energy wk varies
-iw t
with time as e we can regard the coefficient of \{J«-( Xx), iw o @8
coming from - _B_fa(_t__)_ . Making use of the Fourier transform of a*k

given above we can now write F* as
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prg - - - -
S_—l_‘_— (m (xl)f(xl)-\y*(xl) af(xl))d3

Y2 wk Btl

However, it proves to be more convenient to use

¥ = Q(ﬂ( VE(Z) - w2 R 432
| 1 ‘LP(XI -&‘1—““) X1 (I1. 7)
leaving the factor -1 which can be taken care of as the normaliza-

yZe

tion constant (cf, footllfote on p. 20 ). It can be shown in general that
this F* creates ''electrons' and annihilates '‘positrons" when the wave
function f( ¥ } is the mixture of both kinds of particles with various
values of momentum#*,

% For in this case f( ¥ )and 8f( % )/at are given by f( ¥ ) = >
2, k!
e ikK'%

(¢L, + oD ) e and 8f( % )/0t = —— D (-i% )¢y, -4F,) -

P e W k!
e » where ¢, and ¢£, are the Fourier coefficiantsof the wave

£
—

function of 'electrons' and "positrons!, respectively. Since
P ’ P y
N .

-ik
YRR ) = Z 'ZI (-i)a* -by) e TEE
v

and

ikx
1 k. -
W ¥) = > > (a%_+ b, ) e

Eq. (II. 7) now gives

e =11V- g {) a*k+bk)(¢k' + 4)1(1) y ( 1)(a k)

k, k'
SR -K) R -

(-9, - o) | e =20 VI ety + bygh),

which proves the statement above.
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G can be obtained by taking the complex conjugate of G* and
is given by

G:S(v*( 2)gH R, -y R 3%_(3.&)_ 2, .

In T -formalism the use of Eqs. (II. 3) and (II. 4) gives

.af(xl))d

Fi M(x)f(x)-xy( (IL 8)
1 1 G X

. (¥,)
and G=§<w'(5€2>g'(?2)-L|f(x2)1_——5-—-3)d X, . (1. 9)

With this preparation we proceed to the evaluation of Y . Multiplying

- (CHedr #(Hey de
[+ s}

F by e and e from left and right, respective-

ly, we write it as

T T
- E(Tae SH('C‘ '
e ° - F e {w(xl)f(x,'t) 1Ly(x f(x,‘t)}d X.(I1. 10)
g H(‘\:)d’c
This defines £(X,,T) and f( T). Multiply this by e ° ceses
-~ (‘ d /
S HehdT to get back to F'" in the form

= g{n(i’l,t)f(i’l,r)-l W'(}‘c},f)j(i’lﬂ)}d 5?1 , (I1. 11)

where
T T
+ g H(T"dT! , g H(T")d T
S o ofa
ViR, Ty =e YiE@pe (1. 12)
T /T
+ g H(T')d -\ H(T)dt!
and (@, ct)=e WZ)e ° . (IL. 13)
Differentiations of these equations give
< T
- 1 1 - 1y, '
aw’(s;"l,"c) +§0H('C)d‘t gH(’C ydt

e = e [Heo, i@y ] e © ,
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+ go H(T')d’t' - So H(’C nNdc!
= e [mee), (a0, yi@p]] e :
on@T)  + ], HlTdc - {7 H(tY)az

0

e [H(<), n#)] e ,

82 y'(®,T)

H

8
2 .5 T T
8°m(X ,T) + H(T")d<! - H(t')d <t
—t " =e ! [5(<), [H(T),=®Z)]] e ) .
9T |

]

From Eq. (II.5) and the Hamiltonian in T -formalism
()= |{rT ()m@)+ VYR V@)l BT g X (o) Vi@ jaR
the commutators are evaluated as follows: |

[, YT @) T = -i n(R),

[H(<), [H0), v7@)] 1= AR, YT @),
where A (Z,T)==Y% + m® + V&7 g X2, T). (IL. 14)
Also [H(x), @) 7] =i N\ &,©) ¥TZ), |

[H(e), [H),mR)] ] = NR,TInE).
Using these we now have

RN 2 KW
3Y(x,T) "Y' (X, T) ; .
1 : 1 i
—g— = - in(X,T), >—— = /\(:?l,f)\}"_(%,f), (IL.15, a, b)

5T
on(Z,T) 8%m(R,7)
9T =1 /\(;‘E:TH’ l (}?1:'C )s 8T = /\(Szl't )Tr(}?l’t e (II. 16, 2, b)

We notice here that L}/'i_(z?,'c) and w(X,T) satisfy an. equation of the form

2 2
(8" -m” - fIw gX (£ Tt)REKT) =0, (1L 17)
where the differential operator 2 is defined by
2 _2, 8°
H = + . (I1. 18)
\Y Py .

4,
K

| Eq, (II. 17) can be obtained from the corresponding equation for \F’
and w in the t-formalism by replacing the D'Alembertian operator
DZ = VZ - 82'/81:2 by new operator defined by Eq. (II. 18) which can
formally be obtained from [_'[2' by substitution it = T,

Since F given by Eq. (Il. 8) is independent of T, this must



also be the case when it is written in the form of Eq. (II.11). Hence

the differentiation of F1 with respect to ¢ gives

sve S} o
=S{i¢"’(;?1,r)(/\(>?l,'c (R, T) = ?-‘ﬁ'-,—;l )
+ (X, T) (af(;z;) i@}’ R,

in which use has been made of Eqgs, (Il. 15,a)} and (I, 16, a) and an in~
tegration by parts was performed in order to operate /\(i’l,‘c) on
f(i’l,’c) instead of ‘{J""(i’l,‘c ) From the last expression we have the

following relations existing between f and {:
af(}?l,r) i a_f(zl,—c )
ot ? LES

£2,T) = = AR, THE,T). (L 19,a,b)

By combining these two- equations we see that f(Z, T) also satisfies

an equation of the form of Eq, -(II. 17), that is,
(8% -m® - fI7 g X (7)) £&T) =0 . (IL 20)

However, it can easily be seen that this is no longer true for_f_(?{,’t).

Substituting Eq. (II. 19, a}) in Eq. (II. 10) and letting T= T we have

sFt g™l pit | (IL 21)

where

-
- | Hxnac
S=e ’

and
+ . . (¥, T) | 4
F' = g{“‘fxl) f(xl, T) -1 L})‘(‘)—El) -——-S-T—— } d xl ° (II. 22)



-19-

The use of Eq. (Il. 21) now permits us to write r of Eq. (IL. 6) as
— il e
r = (,Qo GF S L2).

To calculate r we want to interchange G and F'' , For this reason
we need to evaluate the commutator of G and F'—}' .

From Egs. (II.9) (with T, = T) and (IL, 22) it is given by

-+ “f~ - . = ag.l- (;{’Z) 3> >
[G,F’ ]:‘» [ g{w (Qz)g' (XZ) - 1‘{’(x2) T}d X5, S{n(i’l)f(x . T)
N 8f(>‘<’1, T) 3. '
- VTR ““5’1"’} d”x 4

which becomes, by virtue of the commutation relations,Eq. (1L 5),

.Il- -
. T gy 8, T) _ %8 (%) 35
s - S{g (XZ)____a_T___ -—E-T--f(i’z,T)}d X5 .
Using this equation the transition matrix element r is now given by

. 3f(%,, T) og’ (X,)
TE - S{g (%) a?:r— - 5T2f(§2’T)}d3}?2 * Cy

ol v asn),

where CV = (‘Q‘Z S [2,0) is the amplitude for having a vacuum at T= T,

if we had one at €= 0., Inthe second term on the right-hand side

ﬂo.‘- F'" is the ""complex conjugate' (in T -formalism) of F'ILO and
it will vanish if f(%, T) contained only positive energy (''electron')

components, For such a case the transition element reduces
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to*
0f(%,, T)  ogV(Z,)
2? 2 3
r=- g{gl (Z,) T -~ —y7- f(;fz,"f)}d %, C, (L. 23)

which is a factor times CV. However, F' contains negative energy
components created in the potential )& so that we need to modify(s)
what was obtained above, We do this by adding another operator Frt
corresponding to a function f'(%, T) containing only negative energy

components in such a way that the resulting f (¥, T) contains only

positive components, i.e., instead of Eq. (II.21) we want

A M +
i 1 ) - T
SFpos * FNeg ! ™ Fpos 5

Here the subscripts "Pos' and '"Neg!' refer to the sign of the energy

components contained in the operators. From this we have

S s s mm e g e e m MY R S WA e T e T M M W WR G MR M e G S Em SR e G e MW MR Wm G Ma em MR Me M e e MR M W M me e e M mm YR e e W W e e e e e

*In this case the normalization integral becomes

af(,T)  of (Z,T)

- S{ff"(;?,'c) e - fRT) |} a3 .

-
For a free ''electron', for example, with momentum k we have

df/8T =- w, fand o /8T = +W _f. Therefore if the amplitude of
=
ikx -C-Ok‘C

the wave function is normalized to 1 sothatf =1+ e , then

the integral above is equal to 2 wk x Volume. It is convenient to nor-

malize the amplitude of the wave function to 1, but the normalization
integration (if it is normalized to the unit volume) becomes Z.C’Jk.
This is the reason why we have to divide the probability of transition
per second by the product of twice the energy of each free particle

(8),

involved in the initial and the final states
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t gt g gt
SFPOS - FPos S-8 FN'eg °

Substituting this in Eq. (IL. 6) gives

r= () GFLl S0 ) - (T as F&Z‘g 2).

The first term is identical with the expression given by Eq. (IL. 23)

while the second vanishes since the creation operator of the negative

energy components operating on the vacuum gives zero, And again
the result is a factor times Cv' We will not discuss this métter fur-
ther because the detail of the rest of the argument is essentially given
in Reference (5).
The expression of transition element r obtained here is not
so simple as the case of the Dirac electron and contains time derivatives

of wave functions at the initial and the final states. This is due to the

fact that the Klein-Gordon equation is second order in the time and
hence in order to specify the state completely we need nbt only the
value of the wave function itself but also that of the time derivative,

In Eq. (I1.23) the dependence of r on the kernel of the Klein-
Gordon equation is implicitly given through f( % 22 T) and 3f( Fd 2 T)/9T.
In the following we will find its explicit dependence on the kernel and
~also will calculate the contribution to the transition matrix element
from processes of various order in the perturbation method., To this
end let us first consider a free particle whose wave function f is de-
scribed by

(% - m?)f = 0,
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The wave function at point 2 inside a space-time region is given, in
terms of the kernel I® associated with the free particle which is
defined by
(EE‘;: “mA I, 1) = 5(2, 1),

as*

.~ _S {fl 8T%(2,1) 1w 5 1y OE(D) hd
-f( ! q»(l)zgpvrzrfl ()_ﬁ——n e )W}NM) V
Here Ny (1) is the inward drawn unit normal at point 1 and d3V1 is the
volume element of the closed three-dimensional surface of a space-
time region containing point 2, When the region of spacé-time con-
sists of the three-dimensional surfaces at T = T < T, ahdf =‘C1, >T >

and the cylinder connecting these two surfaces expression above re-

duces to

E(D) . %
f(2)= - S{f(l) 9 ‘é’i, 1) -f”(?_, 1) 8f(1 } d3

()] '
+ S{f(l‘ _..5__.._£ (2, 1) -f“’)(z,l')a_a____f(” b a3z

11, 24
= =2 (L. 24)

1t °

The first term represents the contribution from the '‘electron' com-
ponents of £(1), while the second represents that from the "positron"

components of £f(1'), Incidentally the function I(a)(xﬁ) has the follow=-

ing form:
i(ﬁ %+ k4'c)
0; ‘-l e 4
I%xu) = d*k

m (2")4 2 ﬁ P + mZ

.ﬁ
- <l
) 11?; . k“4+m 5
=—"2 \e >k, (1L 25)
(2“') E +m

*Cf Section 9 of Reference (6). The function 1 is a modified form
of function I+ defined by Eq. (32) of Reference (5).
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From now on we will deal with the scalar nucleon in a given

potential X_which obeys Eq. (II.20) :
2 2 .
(B°-m® - JAmgX (R,7))£ZT) =0 .

If we can define a function I interms of ¥ and X. such that

it satisfies the equation
| 4 -
@ - m® - 1w gx (2T X2, 1) = 812, 1), (L. 26)

then by the similar argument as for the case of free particle we will

have

(x) :
£(2)= - g{f(l) _ﬁ_a_r@'_ll - 1z, 1)%(11.__)_} a3z

1 1 1

" (II. 27)
W otz 1 W OE(1') | 3
N &{f(l ) 61(1, ) 1(’0(2,1 )—5——-—(?1? }d X .
Now suppose s expanded in the following form:
X2, 1) =172, 1) + gf“”(z, 3) (V& gX(3)) I3, 1) a*w,
(IL. 28)

+ 8& 192, ) 737 5 X (4) £ (4, 307 eX(3)) T3, Datw,atos L.,

where d40~3 refers to the four-dimensional volume element, When we
2

operate H -m2 - J&w gX{2) on the right-hand side of Eq. (IL. 28) we
2 2 '

have, in view of ( FH - mz)\I(")(Z, 1) = Slf(Z, 1),
2



-24-

8§(2,1) -¥aw gX(2) (2, 1)
+SS<2, 3)(0F X (3)) I3, Ddw - 1T g X (2) SF"’(z, 3)@wgX(3) 73, Ndtw,
+ {82, 0e X () 29 (4, 3)037 g X (30 2903, nateo, a0,

- Vaw g X(2) ng@’(z, A0 g X (4)) I (4, 3)0F gX(BNE3, Dt .,

4 .
which reduces to §(2,1) since the second and the third, the fourth and

the fifth, etc., terms cancel each other. It shows, therefore, that
the expansion given by Eq.. (IL 28) of IX) satisfies Eq. (1L, 27).
The transition matrix element from the initial state character-

ized by £(1) and ’df(l)/o?)'c1 of an "electron'' to the final state with g(2)

and f)g(Z)/E)'E2 of another '"'electron' is given by Eq. (II. 23). From
Eq. (I. 27), where the second term drops because it corresponds to
the "positron"” components, we have

(=) >
£(2) = - g {ﬁi;c.(:’;’_i 1) - 152, 1 3f(1; ba’z, (IL 29)

1

- 52 F(x) (=)
af(2) _ 9LV ™M(2,1) a£ (2 1) af(l) 3

Substitution of these equations in Eq, (II, 23) gives, aside from C,

8 E"‘ MCRIET)

2 01y

23(x)
r= gg{g'(Z)%—@%—i’— £(1)-g" (2)
(IL. 30)

9%, 97Ty <2 Ty



25~

Corresponding to Eq, (II, 28) let us expand T in powers of the potential

)(.as Y = T(O)+ Y(l)"' Y(Z)'!'ao.o-‘.-,
where Y(l) is the contribution from the process i-~th order in the po-

tential, Y(O) is self-evident, For Y(l) we have

), 5 ©)
. 1'(1) = ggg{g ! (2) iia_:l%ii) (m g>«3)) _a_i_g_%_l_)_ £(1)

()
¢ @ 2 Ay exen 270, n S

_i. ., i(o)
- =2 172,30 5 X(3) i—ar—‘f’—”fu)

8%_2(_2) EM(Z 3) (xa—gx(3)) I(oJ(3 1) af(l)} -«)1 d3§2d40.)3

_ 35 . 9 .:[r(o) 2, 3 " 4
= Sggd xz{‘g’ (2) _.S_,é_z__) - 192, 3) Eag_t_z(_z.)}(m eX(3)) atw,

(o) .
3 It(s,l) _ 13, 1) 20 } 332

9T 1 °

o252 1

The content of Eq, {II.24) gives, for our case where ’Cl < Ts < Ty

©
£(3) = - g{f(l) _—"‘“"airl(s’l) - 19, 1)T_8féll) J a®%

and

af“”(3 2. 1933, 2) 282) 1 4337

g(3) =+ g { (2) Tf—z— 2
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.J'-
Since 1% (3,2) = I (2,3) from Eq. (IL 25) the "*complex conjugate'!
of the latter equation is
I (2 o g’ (2) 43

(1)

Hence r now becomes
o 4
)= gg' (3) (&7 g X(3) ) £(3) d*w, . . (IL. 31)
r (2) 45 obtainable in the similar fashion by simply replacing the rdle

of g i (3) in T(l) by S g."_(‘l) d4w4 ( Y47 g X(4)) ¥ (4, 3) and is given by
L8 - Sg g'i'(4)(mg)q4))}‘°’(4, 3)(yZEg)Q3))£(3)d4w4d4w3 +»  (IL. 32)

The higher order terms can now be written down automatically,
Though the expression for Y given by Eq. (Il.23) is simple, it

becomes considerably more complicated when expressed in terms of

the kernel I‘X) as shown in Eq. (IL 30). Eq. (II. 30) correéponds to

3 }?2 for the case of Dirac electrOn(S).

Y= Sgg*(‘Z)K_(‘_A) (2, 1)pE(1)d> Z d
The cause of the complication is, as can easily be seen, the fact that
the Klein-Gordon equation is a differential equation which is of second
order in the time variable, Each term T(i) per.mits a si‘mplé inter-
pretation exactly in the same way as for Dirac electron , Thus, for
example, the transition amplitude to second order, Y(Z), can be inte-
. grated in the following way. The particle arrives at 3 with amplitude
£(3), gets scattered there by the potential (scattering amplitude
Y 4w g X(3) ), then proceeds to 4 (with amplitude 1%’ (4, 3)), gets

scattered again () 4w g X(4)), then we ask for the amplitude that it is

in state g(4). We finally sum over all possible values of space-time
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coordinates of points 3 and 4, The appearance of the function I’
in Y(i) corresponding to the free propagation of the particle between
the scattering potentials shows that the propagator in the momentum
space ié, in the t-formalism, given by (4’(2 - mz)-l.
To summarize: The consequences of the change it = T >for
.the case of the scalar nucleon in a given potential were studied in this
section using the theory of second quantization. This chaﬁge; it =T,
is desirable in connection with the later use of the variational princi-
ple to obtain the lowest energy of the scalar nucleon. The equation
satisfied by the scalar nucleon in T -formalism, i.e., Eq. (II. 20), has
the form which can be obtained from the corresponding equatiqn in t-
formalism by formal substitution t = -iT, This equation is, so to
speak, the key equation from which whole developments in the remain-
der of the present work originate, The expression for the transition
matrix element and the contribution to it coming from differ‘ent order
of the perturbation approximation was obtained also though we are

not going to utilize it in the following.
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III. ELIMINATION OF FIELD OPERATOR IN

THE QUANTUM MECHANICAL CASE

The Lagrangian form of the scalar particle in a given ex-
ternal electromagnetic field Ay was discussed by Professor R. P.
Feynman(g). In the first part of this section the same problem of
the scalar nucleon in an external neutral meson potential X will be
examined starting from Eq. (II, 20) obtained in the previous section
from the theory of second quantization, After finding the kernel
for this case as the path integral over trajectories of the pé,rticle

in space-time (time hereafter refers to Xy = T) the kernel corres-

ponding to the transition from the vacuum to the vacuum of the meson

/
7

field in the guantum mechanical case will be obtained by integrating
out the meson field operator in the same way as was done in quan-
tum electrodynamics (Cf. Sect. 6 of Reference (8)).

In the previous section it was shown that the scalar charged

nucleon in a given neutral scalar meson potential )Q obeys Eq,

(I1. 20)
(B - A7 g X(@T)) ¥ (£,T) = m2 Y (@,T), Sy
2
2 2,8
ith B =v + .
W1l gjchz

- For the neutral scalar nucleon the coupling term is to be multiplied

by a factor of 2 (as can be seen from Eq. (II.1%). Now Eq. (IIL 1),
as it stands, cannot directly be cast into the Lagrangian form, How-

ever, we can do this in an indirect manner, as is discussed in Refer-

ence (9), by introducing a fifth parameter and considering the space
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and time coordinates Xy = (x4 =T, 3’2) = x as functions of this
parameter, Then a new function of five variables, i.e., the space-
time coordinates and the parameter, and a differential equation
satisfied by this function will be introduced., This must be done in
such a way that it permits the application of the Lagrangian fof-
- mulation and the variational technique, and it must also allow us
to write down the wave function ¥ of the scalar nucleon iﬁ a
simple way in terms of this new function. This can be achieved
by choosing the parameter ¢, the new function ¢(x,5"), and t.he

;
/

differential equation as

- 20ba ) o 4@ - 1w Xl 0). - L2)

This equation differs from the equation one would obtain from the
argument in Reference (9) in that iu there corresponds to 0" here,
This choice of the left-hand side of Eq. (IIl. 2) enables us td apply
the variational method on the path integral and eventually to cal-

culate the lowest ""energy' corresponding to the "Hamiltonian' (the

coefficient of ¢ on the right-hand side of Eq. (IIL, 2)) of the “'parti-
cle', Eq. (III. 2) has the form of Schrédinger equation in which it
is replaced by o and the spatial variables extended to the four~
dimensional variables Xu o Since the potential X._is independent
of ¢ the solution of Eq., (IIl. 2} can be obtained by separating vari-
ables as ¢(x,0°) = e%mzr\ll(x), where Y satisfies Eq, (III. 1). The
eigenvalue %mz of the 0" -dependent part 37 (o) of the equation
1

2 .
%: 3m” 2% is related to the particle mass m, Hence Eq. (III. 2)

together with this equation is equivalent to Eq. (IIL. 1), Therefore
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we may first put Eq. (III, 2) in Lagrangian form without any restric-
tion, and the eigenvalue condition will be called for only in the final
solution. That is, if ¢{x,6") is any solution of Eq. (IIl.2), the solution
of Eq. (III. 1) can be obtained from it by selecting the part corres-

ponding to the eigenvalue %:mz as

%m ZO“

00
Y(x) = S e $(x,07) deo™., o (IIL. 3)

-0

The kernel I&x”, o!'ix', ¢') of Eq. (IIL 2) for arrival at x", o
from x', o' is defined by é(x', ¢") = S I&)x”, o'hxt, o' )e(x!, 0'.')d4wx,,
where d4wx, stands for the four-dimensional volume element at x'.
Eq. (III, 3), as it stands, is divergent since the lower limit of the
integration is ~-o©, However, this difficulty can easily be avoided,
For we can always let o' coincide with the origin of ¢ -coordinate

and also choose I&)c’, 0) = 0 for 0 <0 by definition so that

d(x,07) = S K’Q(x,c‘;x' 0)p(x', 0)d4wx, = 0 for <0,

For this choice we will have, instead of Eq. (IIIL 3),

1
-3m ¢

\lf(x)'= g e o(x,0°) d O,
[+]

which will no longer be divergent, However, as far as we confine
)
ourselves to the study of the kernel K of ¢-function and not concern

ourselves with the relation between Y and ¢ (like Eq. (IIL. 3)) we need

not worry about the finiteness of \P and hence we can take any value
for o' and o"', Therefore, in Sect, IV, where we are exclusively
concerned with the kernel K associated with ¢, we will choose

o'=-3/2 and ¢ =) /2 for convenience., Only in Sect. VI where
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the relation between\{ and ¢ comes into play we need be careful about

)
the finiteness of ¥, K's given by

x)
K(7(02,1) = S eé B xp(0), * (111, 4)
‘oo o dx 2 '
where S'= f {'%(Tﬁ';) - 3 Vam gX } a0 . (lIL 5)
2 . 2
and (%-I%A) = Z (Elagci.") .

Qu=Xy ¥y %, T
This is because if we assume Eq. (IIL, 4) together with Eq. (IIL 5) it
gives Eq, (III, 2) correctly, To see this let us suppose that the whole
range of ¢ from &' to ¢ " is divided into a large number of very small
interval € (0‘:) =0, o, = o' +€, 6‘2 =o'+ 2€, .....); and let us sup~

(K)
pose that the particle is at 0", = 6, Then the fact that K is the kernel

k

implies that

Py, u It E) = gge

- 2
e [_%(Xk‘l'l,}; Xk,?“ )

'%mgx(xk_,rlp)] (i}-(.)k d'Ck
Tl a) —_—
2 ¢Xk’t*’ :3— a
1 ", p ) € 4
ke Tk, - S yEm e x| ) %
=%e 26 -2. Xxk‘fl;r* q)(xk'rk,c‘)___l}lfir__ ’
a

where a is the normalization constant to be determined later, Here
we need not be very careful in writing the exponent because there is
not involved linear terms in velocity whose presence in the integrand

K

of S makes the situation complicated( 10). Let us call

GaprXw = 8p andx, o =xp o

W T T e e e de e e e e e e e e m e e e e e e an R e e e A e e T e TR o e M MR e e G MR e e P e e P e B e o e e e em o

* As to the meaning of the symbol & X,*(o-') see References (9) and (10).
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- § VE g X (xp) " 2e 4,

4
by, THE) zge H—Dl— e Pl €, 0) da4'*

Since only smail values of ﬁrt give important contribution to the inte-

2
gral because of the presence of the factor e Ep /¢ we can expand

¢(Xf"'gl‘* »0°) in powers of g!‘" and write

T+ €
Plxp,ot€) m e =

g
~%mgmxmgﬁe-z%% g gd€4 -z

2

4 4
9 1 9
To0e 0= (3 S o 00 1 (3 E) 805504 5K

(111. 6)
Now we need the following integrals:
- £
Jdg e 2 TE ,
e gz
gdﬁ ge “% =0,
0 g2
gdf; g8 e seyme .
Py ]
The third term on the right-hand side of Eq, (III 6) becomes
2
g 3
1 L]
Z!_(Z_u,(gs:_ﬁggr& 7% ﬂ _Z‘»e‘dg”
pel oxp 2 L5 ver | 2
LA S g S dE
+2La¢(x.c‘) £, e Té___a_{‘_* £, e 2€ VT A\, & Toey
<V erax O o%pv a
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4

e =
-

1
2

qu)(x,O“) € f2we ( Jime )5
a

— 2 a
p=l BXI\A

- 5 Vi gX_

Eq. (III. 5) becomes, when its left-hand side and the factor e

are expanded in powers of € up to the first,

3¢(x,o’)
a o‘ ‘ LR

=[1-§mg>&(x)+...ﬂ(g———) dlx, 0 43 € 'ﬁ——) Z& ¢(X’d)

axp

+.Q.'00.].

Comparison of the $k,)-terms on both sides gives the normalization

$(x, ) +€

constant as
as=s yZTT& .

Then the equation above now becomes

ol el -[1~ $Pam gX(x)+. . .1[¢(x, o)t 5 Z 8—“'19‘2’5-)+. cos ] .
3xr.«

The terms proportional to € give
4

<)y = a"’zw(x,wu F% g X (x) $(x, o)
M=l oxp

-3 (8% - VA7 g X (x) Wolxs ) -

) .
This establishes that the kernel K is given by Eq. (IIL 4) with S'de-

fined by Eq. (III. 5).
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We now proceed to find the kernel corresponding to the
transition of the scalar nucleon f?om the vacuum to the vacuum of
the neutral scalar meson field when it is in the quantum mechanical
interaction with this field, The corresponding problem in quantum
electrodynamics was discussed by making use of the operator cal-

(11) 12)

culus or the Lagrangian method( . Because of its clarity we

will use the operator calculus here. We first expand X in the mo-

mentum eigenfunctions
P B 3
ik%
1
K(f) | — Z )
'V k

We then write Qe in terms of the creation and annihilation operator

*
ak and ay as

1
9 = (ak + a'>ik )s
V2a,

-—’
where wk =+ Jk~ + m'” when the mass of the meson is m'., Sub-

stitution of this gives

) iR% ikx
XUZ) 31{21 a, e +Zl a¥, e X}

v k)!ka k)z""wk“ =

> o - =

ikx -ikx

“y—l_—-Z——- ake +a’f{e ) .
k 2w
k

since w , =w,. If we go over to the interaction representation
-k k
-w, T +w, T

a, is replaced by a;e” while af} is replaced by af e . ¥

*Cf, Eq. (30) of Reference (8).
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Therefore in the interaction representation X is decomposed into

two parts

. . i Kxmw T SiKX+wT
X%, T) = 2 (ay e taf e )
' 'V k XZw"k'
(111, 7)
+ .- had
HK (xaT)’*')& (fat)a
iKx - T

where DC(:?,'c):—LZ 1 a‘ke

v ke

annihilates mesons, while

-2 _12:1 * ‘
1T ) =
A AT

creates them.,

The commutator of K-and )C- is given by
>

[3&“(-’—51* T Xy T) ] - >
ikxl+ ik'x =W T

- w -
1 S U S klz[a*a.k]
“v Ja—— k? t ’
k k' YZwk YZwk, _

which, by virtue of [-ak,, ak*] = gk'k’ becomes

. P, =
i - - w -T
JLsT o1 el (T )
V% 29 )
By going to the continuum case from the discrete one we replace
\i 372
Z a0 9 bY ‘——? g d” k soeae
k (2w)

When we take the meson mass m' to be zero for the reason of simplicity

the commutator becomes

~iR(R, %, )=k(T,-T.) .32
.- +, 1 R ) 2° 1 a°
(X & T X, ) | 2"&;—3%3 K
1 gd3—1: -k(rz.».'rl) R 2)
2 - e CcOS X, =X .
2(2m)3 K 17%2
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Use of an identity (r = | ¥ |)

wk 1T 3p kT
Re' cosl?i_q_k____zifgdke sin kr
(27) %y TE

e

ikr -ikr -k (T
-T—TL -Zl— g dk{ e -e } e

0

1 1 - 1 . 1
2wri ItTi=tr JT|¥+ir uTr(’CZ+r2')

(IIL. 8)

reduces the commutator to

- + w1 1
(1), (2)|= . IIL. 9
X @) an® (T, T HER) | (. 9)

*This result can of course be obtained from Eq. (46) of Reference (8)

- + - . 2 2
A AL (2)-a%(2) A% (1) = -1 e S 5. (5,5).
For firstly & (S 2)= (tlz - Z) -= 1 reduces to
e ¢t 2., 2

— by it =T and secondly our caseé’is to have the oppo-
T 1 2 2
12 +r

site sign to that of the quantum electrodynamics for M= Vv = 4 because
the nuclear force is attractive in contrast to the repul'sive Coulomb
force., Furthermore the coupling constant ez is to be replaced by

( V4w g)2 in our case,
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Now the kernel in the quantum mechanical case where there

are no mesons present in the initial and the final statescan be obtained

by irl1te rating out the meson field operator X  in the coupling term.
- {mgX(xp(o)de
e

of Eq. (IIl.4). For this reason let us con-

sider an operator

o -3 7Ee i Xate, |
R'= e R (111, 10)

where j(1) can be any numerical function. The study of the operator
(x) - (8)
R'is exactly analogous to the case of quantum electrodynamics where

the electromagnetic potential A u in the operator
' (s 4
~i {Jr‘(l)Ap(l) d wl
e

is integrated out to give

~3ie?| gjﬁ(l)j w(2) §+(s,3) atwau,
e

by the use of the commutation relation ( Spy=+1lfor M=V =4, and

-lfor M=V =1, 2, and 3)

[ anm, ab@) ] =16 80 5,05,%)
for t, v ty. The element of the operator I‘{y‘)correSponding to the meson-
vacuum to meson-vacuum transition is then given, using Eq. (IIl. 9), as
2

v, = & )30

1 4 4
dw.d W, .,

The way Eq. (III, 11) is obtained from Eq. (IIl. 10) by integration of the

field operator X can be extended to any superposition of the operators
) B

of the form of Eq. (II.10). That is, if an operator Ris given by the

linear combination
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—
=

1 . . 4

-\ 3 1; 1)d "W

®) Zfi . gang (1;4) X (1)d ", (111, 12)
i

then we have for the vacuum-to-vacuum transition of this operator

LE Sg T esNi s 1 4 4
24 3(1’1)3(2‘:1) W d wl d (JJZ
ROO = Z fi e 12 , (ITL. 13)

-y

where T2 -Typand 1y, = | Xl'x?."

' To perform the integration of the meson field operator X in

Eq. (III. 4) we first notice that its coupling term can be written in the

form of Eq. (IIL, 10) in the following way:

-3 BT g Xxaloae - ~f[3AT g X Gepl1)) 8% p(l)ox p(e ot
=se

e

[ 413 g X mate,
= e (I11. 14)
with

. 4
j(1) = g_é (xu(1) = xpu(0)) do
) :
Next let us consider Ko(given by Eq. (III. 4). Using Eq. (III. 14) and
writing 5:,%(0‘) for{d x‘u/do’)z it becomes

2
, O SR c)d ik (1 40) ]
K‘}Z,l) y Se zgxr&( )do . J'z B g (1) X(1) d I fxn(e)

Since the integration over xu(o) is the limit of the summation this

has the general form given by Eq, (IIl. 12), where each term inside
the summation sign is determined by fixing the value of x u(¢’). Hence
by Eq. (IIL. 13} we have as the vacuum-to-vacuum element of the opera-

for KDU
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2
105 2 (o1a0 18- (T 552 ~§—-—2——1 d%w,a%w
KOO(Z,I)zge ‘ a éﬁﬁ T1 +ri2 1 2 aﬁ”x}u(c).

Since

cpan e 1 4 4
SS J(1)j(2) -;—ZT;—Z-— d (-L)ld wZ
12

12
8 (e () § 4y (2)-x, (01) 4 4
= g ~ dodo'd*w, d%w,
(x, (1) = x, (2))

- H dedo?
(3 (& )-xpu (1))

we finally have

S e-%sfc Xo) ao +;§;” dede?

Kool2s 1) = (xp(®)x p( o)) Frxu(e) . (1L 15)

This is the kernel associated with function ¢ satisfying Eq.

(IIL. 2) corresponding to the vacuum-to-vacuum transition of the me-
son field in the quantum mechanical case. Notice that this is not

the kernel associated with the scalar particle described by the wave
function ¥ . However, since V¥ can be given, as shown by Eg. (III. 3),

in terms of ¢ it becomes possible, as will be discussed in Section VI,

to obtain the lowest energy of the scalar nucleon after applying the

variational technique on the four-dimensional path integral given by
Eq. (III, 15). We also notice that for the case of the neutral scalar
nucleon, because of the presence of a factor of 2 in the coupling term
of Eq. (IIl. 1),which has its origin in Eq, (II.1'), the second term in

the exponent of Eq, (III, 15) must also be multiplied by 2.
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The evaluation of the kernel (or at least its asymptotic form)
given by Eq. (III, 15) represents the central part of our problem.
For Eq. (IIL. 15} contains all the self-action effects, with the excep-
tion c;f the closed loop effects, of the scalar nucleon interacting with
the neutral scalar meson field, Such path integrals are ordinafily
very difficult to evaluate., However, in the next section we will de-
velop a method of approximate evaluation whose validity does not

require that gz be particularly small or particularly large.
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IV. EVALUATION OF PATH INTEGRALS

In this section we will apply the variational technique on the
path int‘egral over the trajectories that has been obtained in the previous
section. This part of the work keeps a very close parallelism with the

(4)

three-dimensional case of polaron problem' ™', But before launching

the actual calculation it will perhaps be better to expose some of the
main features of this technique since this method has never been used
before except in the polaron problem which has just been mentioned,
In the conventional variational method a trial wave function, ¢,
involving one or more parameters is chosen and S¢*H¢d3§c>/ S¢*¢d33’:
is minimized with respect to the parameters and this value is consid-
ered as the "best! value of the energy of the system. But here in the
Lagrangian formulation of the quantum mechanics we do not deal with
the wave function but with the kernel which is the path integfal over
the trajectories of the particle, In the conventional form (that is be-
fore we apply a transformation of the form T = it) the kérnel is given
by is
K= g e JDrxt),

and in turn S, the action, is given in terms of the Lagrangian, L, of

the system by
S = g L dt,

Therefore K is the sum over all the possible trajectories of e—'ls. In

the T -formalism (explained in Sect, II) it has the form

S
K= ge—o@x(r),
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where S = S Ldt.
We have put underlines to the quantities in the T -formalism to dis-
criminate them from the corresponding quantities in the t-formalism,
Nevertheless, it is most convenient to use the same terminology in
both cases so that we will call S action, and L. Lagrangian, etc. More-
over, even the underlines will be dropped hereafter, because we are
concerned only with the T -formalism in the following so that there
will be no confusions introduced.

Consider the wave equation in T -formalism

)
-5%= Hé . (IV. 1)

If we know the eigenfunctions ¢n and the corresponding eigenvalues E,

of the Hamiltonian H, that is,
Hq)n = En¢n !
then any arbitrary solution ¢ of Eq. (IV. 1) can be expanded in terms

of these ¢  as

. B T
¢=§;an¢ne S . (IV. 2)

If Eq. (IV. 1) permits the Lagrangian formulation of the quantum me-

chanics the kernel corresponding to it can be given as path integral by

K = g es T x(t) . (IV. 3)

It will turn out later to be essential that the action S is a real quantity
in order to apply the variational technique. Since K is a solution of
Eg. (IV.1) it has, in view of Eq. (IV. 2), for a very large interval T

of T the following asymptotic form:
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K~e ° . (IV. 4)

where E, is the lowest energy of the system. We are interested in
| finding the best value for this energy. Let us suppose that we choose
an appropriate trial action Sl and also suppose that we know the low-

est energy E, corresponding to Sl' Then we can write

S -E,T |
S e "I x(t)~e . (IV. 5)

From Egs. (IV,3), (IV.4), and (IV.5) we have

S-S, S
-ET [ S-S, S S 1, 51 wE, T
e ° NS(e Y e lorx(c)~ (eS e Dx(t) | 1 (IV. 6)
e 1 I x(T)
The factor in the square bracket can be thought of as the average of
S-S Sl S—Sl
e with a positive weight e ~ and we shall call it {e >. By

virtue of an inequality
f f :
Cefyy 120, | (1V. 7)

which holds for averages over any real quantities f Eq. (IV.6) can now

be written as

~E_T {s-8;> =~ET
e D e e . (IV.8)
Sl
{5500 Loxtc)
where < S-Sl> = 5 . (IV.9)
S e L L x(t)

Since it can be seen from this expression that <S-Sl> is proportional

to T we write

< S-S, ) =s T. (IV. 10}
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When this is substituted in Eq. (IV.8), by calling

E=E -5 , (IV. 11)

it gives

E, { E.

Since E, and S contain the parameters through S1 the best value for

Eo can be obtained by minimizing E with respect to the parameters

contained in it,
For the case of a particle in a potential V, as will be shown

below, the new variational method is equivalent to the conventional

one, For more complicated situations, however, the relation between

these two methods is not known., Thus, it is not clear for a given trial

action Sl what trial function, if any, in the conventional method leads

fo the relation given by Eq. (IV. 11). The equivalence of both methods
for the case of a particle in a potential V can be shown as follows,

For this case the Lagrangian L. and the action S are given by

L=—T-—Vz-% kZ-V,

S ::SLd‘C 2 S_‘;‘. % 2(T)ac- SV(xt)d‘C .
Let us suppose that the trial action is given by

s, = ngd’Cs - gi’zn_ 1%(t)dT - gvl(xf) at .
Then from

ST =<s-sl> == ( S(V-Vl)d'c> = -T<V-V1 > .

S is given by

s=» - (V-Vl > .
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In estimating 8 let us take T >T> 0 and consider first the numerator of

(V=V))e 1@x(x)
V-V, > = S 5 .
Se 1oﬁ'x('t) s

: . ] 1
Corresponding to T > T>0 we split e ~ as
; P g to > 5P 2

1

- had °

t
5, go LdT ) Lydce So L.dt

T
( Lydtr g Lyde!

Hence
S e D" (Vixe )-Vi(xc)axce® D x()

i

Sl
| (v-vpe Loxtn)
s g K(XTs T;XT'_C )(V(X‘t)'vl(xt )) dx - K(xz, T ;XO' 0).

Since both T and T- T are very large we have(5)

-Enr -Eo'c.
K(xc, T3, 0) = %Z(})n(xt)q)i (x)e e b (xe)bXx, )e

and similarly

-EOCT-T)
K(XTa TixXesT ) ~ ¢O(XT M’g(xr) e . )

where ¢, is the eigenfunction of the lowest energy state with energy E

(this Eo corresponds to E1 in Eq. (IV.5) )¢ Therefore we have

Sl -EOT
S(v-v1>e B(T)me b (xp) bl Je g¢=§;(x1—)(V(xf)~v1<xrn¢o(xadxr

-EOT

= ¢0(XT)¢§ (Xo)e (V“Vl)OO .

Similarly we have for the denominator of {V- vy >

S ~-E T
Se l,ﬁx<f)~¢o<xT)¢=g(xo)e ° .

Hence < V—V1> - (V..Vl)oo R
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pZ
ro 15 (Zm )00 + 1)00

and Eq, (IV.11) we finally have
pz
Eo = Gmloo * Voo
which is expressing the content of the conventional variational method.
From now on we will deal with the evaluations of the path inte-

grals involved in E; and S. To save writing we omit the subscripts

1

00 attached to the kernel (Eq. (III. 15)) for 0-0 transition in the quan-

tum mechanical case, Thus

K(2,1) = Ses Dxulo), C(IV.12)
where
S ol g %2 (o) o + gzljﬂ doldo (IV. 13)
B -y . ) .
" Y ) o @) el )

As to the trial action we borrow it from the three-dimensional case

(4)

of polaron problem with direct extension to the four dimensions:

5 2 ~afot-orl
S, = -%Jx " (o)do -CSS‘(XP(G")-‘XFA(O‘")) e dotldo" , (IV. 14)

where a and C are the parameters. The apparent lack of resemblance
of the second terms of S and Sl may not be objected to seriously, In

-1
fact for the polaron problem the approximation of | x(o')-x(c") | x

e-lc’- o'l ~alot-orl

by (x(ﬁl)-x(c'”))2 e gave a very satisfactory result,
That S1 is quadratic in x m is a very convenient choice because for
such a functional S1 the path integrals can be most easily worked

(13)

out . The range of & will conveniently be taken to be from -.,/2

to +)./2 but since eventually we go to the limit when J_ tends to
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infinity all the limits of the o -integrals can be approximated by - oo
and +e0, In the following we will use Egs. from (IV. 4) to (IV.11)
replacing T by 3. Eg. (IV. 10) together with Eqs. (IV.13) and

(IV. 14) gives

2
1 g 1{ 1
8 —(5-5,)= de"

- l_. 1A}
+ng0‘”<(x};(v‘)~xN(o~"))2’> e ale’-anl
Since it turns out that the second term of this expression can be ob-

tained using the knowledge required for the first term we will deal
with the latter first.
To study the first term of Eq. (IV.15) we write (x’u\(cr")‘-x_r,u(c“))2
as a Fourier integral., This can be done by combining Eq. (Il 25)
with m = 0 and Eq. (III. 8), the result being
ikp (xp (0" )mxpn (o))

ak . (IV. 16)

1 w1 ge
(ple)=xpu (o) (2m)° &

Substitution of Eq. (IV, 16) into the first term of Eq. (IV. 15 gives

2 iky(xu{o")=xu (o)) |
%.zlg?.(;_:r).z&dvnS ikz e pe A >. (IV.17)

Hence the problem is now reduced to evaluate

ik (2ot =x w(c")) _geikﬁ G (7)xp o ))eslob'xf* (=)

<e = = o (IV. 18)
S e 1@:{”(0') '

Writing

fu(o) = ikp [ §(o=0") =5(c=0") | (IV. 19)



-48-
the numerator of Eq. (IV, 18) can be written as

S [-3{xn()%a0 - Cffeep(ot)-xp (o)) 2™ T - Magtacn
e

(IV. 20)
+ g fu(c) xu(o) do’]ﬂ‘xl“ (c) .
Since this is the product of components corresponding to four values
of M the integral separates and we only need to consider a one-dimen-
sional problem., The path integral of this scalar problerﬁ can be

performed by letting
x(9) = %(e) + y(c) . | (1v.21)

Here x(¢') is the function which makes the exponent E [x(o")] of this
problem extremum, and y(o) is the displacement from the path x(¢).
From Eq. (IV.21) we have

D x(c) = Dylo)

if we choose the boundary conditions such that

X(;.%:_)z'i(-%—)zO; ;4%):2(%).—:0, : (IV.22)

then we have
y(- 29 =y = 0.
For these boundary conditions the substitution of Eq. (IV.21) into the

exponent E [x(¢")] gives

~alotmol

2
E[x(s)]= E[X{c)] "%S y{(o)do -Cgﬂ(‘)’( ¢ )-y(s" ))‘Ze da'dg"

Here the terms linear in y dropped out by integrations by parts as-
suming the boundary conditions y(-2./2) = y(2./2) = 0, This is ex-

pected because the path x(0) = X(o") gives an extremum of E[x(0) ]
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which can only depend on y to second order, Also it is clear that we
will not have terms higher than yz because E[x(o)] is a quadratic
function to begin with. Hence we have

(AT y

E(X( )] ([-%Hrz(cr)d«— Cliyten-ytom? catotaoiaras LN
[ . : (g

gg-%sscztcr)d« - Cffx(e)x(c" ) gmalotm o arac” ] 5 L (IV.23)

J

e

Therefore for boundary conditions given by Eq. (IV. 22) this equation

reduces to

ik(x(o")=-x( 0’"))> E[E(G—)]
= e

e . C(IV. 24)

Hence we need only to find X(c) and substitute it to the right-hand side

of this equation, Since E [x(o)] is given by
~ajot-o'

E[x(e)] = -3 % {o)ao- ¢t orymnt an2e dU'do“'jgf(o')x(c‘)dO’ (IV. 25)

the condition for the extremum of this functional yields

X(o) - 4C S(%‘(o-) ~% (oY) e hgiigey = 0, (IV. 26)

Noticing that for a very large value of >,
pe

"Q‘G-G'\ — -l ‘U’- o‘” “Q(O'- G') —a(a'-ﬂ’)
e daot~\ e do! = e do'yle do!
N = oo o
Z
é , (IV. 27)

Eq. (IV.26) now can be written as
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- 8C — _ ~afg-o’t
x () = — x () + 4C | X(¢")e do'+f(s) = 0, (IV. 28)

The easiest way to solve this is to introduce another function defined by

o _ ~ajo-g’l )
z(¢) =5 g x(¢') e do! : (IV. 29)

and consider Eqs. (IV,28) and (IV.29) as a system of differential equa-

tions, The differentiations of Eq. (IV, 29) gives
2(e) + o2(Z(o)-2()) = 0, (IV. 30)
while Eq. (IV.28) now reads, in terms of z(o),

®(@) - £ @ (¢) - 2(e)) + £(0) = 0, av.3

Subtraction of Eq. (IV.30) from Eq, (IV.31) yields

F(e) - €2 + o®)F(o) + £(o) = 0, C av.32)

where
F(o) =% (o) - z(0) .
Eq. (IV. 32) has exactly the same form as Eq. (IV.30); so that by call-

ing
pr=—+a (IV.33)

its solution is given immediately as

1 'ﬁlc"’cjll

x(o) - z(o) = F(o) =2—§ Sf(c’l) e dO"l

wik | “Blo=cl ~plo-d’|
= -2-5— {e -e } .
(IV. 34)
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By adding 25 times Eq. (IV.30) to Eq. (IV.31) we have
a

2
d _ 8C
— (x(*) +— (N + f(o) = 0,
do a =)

Integrating nnce gives

5

—Sﬂﬁﬁﬁ+K

n

& &) +§§ 2(<)) )

n

[+ 3
-ik g {5(0)=6")=8(0y=a")} QO+K,

It

-ik { H(c- o!)-H(z-o") } + K, ,

(IV.35)
where K, is the integration constant and H(o) is defined by
0 for o«<o
H(o) =
1 for od>0.
One more integration results in
8C o -
— o o ;
x(o) +;—gz(<r) =-ik g { H(0,-0")-H(0, =¢"') } do, + K, + K,
= ik [ (6= 0)H(0= )=( 0= o JH(v= o) ] + KT 4K,
(IV. 36)

where K, is another integration constant. To determine K, and K, we
. notice that for a very large value of X /2 the defining 'equation, Eq.
(IV. 29), of z(c) gives

z(-%:)zz%:)z(}.

These values together with Eq, (IV.22) show that
o)+ 2 z(c) = 0

3
for o“=+Z

a
3 Substitution of these in Eq. (IV. 36) determines
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=K, = 0,
Hence the solution satisfying the boundary conditions Eq. (IV.23) is

given by

(o) + 55 a(e) = - ik [(= o)H(E- )= (TuaMH(e- ) | . 1y, 37)
a

. From Eqgs. (IV. 34) and (IV. 37) we obtain

(o) = I—“'—ﬂfm— [ =(0= 0")H(o = 0} +(o = 0" H{(o= o)

i
3

a ’ i

_glu"—cl -Blo-o|

1 8C
+-2-S — (e -e ) .
a ] (IV. 38)

Before substituting this directly into Eq, (IV.24) let us show that

E[ x(o)] z%gf(ff) x(o) do- . (IV.39)

To prove this multiply Eq. (IV. 26) by %(0) and integrate over ¢ to give

.. -alo’-¢|
%E(G)E(U)dO“- 4C X\(':Z(o‘)-'i(cr”))i(c')e dot'do" (1V. 40)
¥ &f(cr)ﬁ(cr)do* = 0,
The first term gives (when integrated by parts)

/2, ]
- g x 2(0‘) do
-2/

x(o)x(o)

~ and the first term of this expression drops because of Eq, (IV.22), If
we interchange ¢' and ¢ ' in the second term of Eq. (IV. 40) and take

the average of this and the original expression it reduces to

-~a W)—-O’”l
2 l

2C gg('{:(o“) - %)) e dotdo" .
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Hence Eq. (IV.40) now reads
., _ L, =aie _
| x 7(0)do -2C || (x(ct)-x(c"))" e do'do''=- | (0 )x(o)do L (IV, 41)
The substitution of Eq. (IV, 41) into Eq. (IV,25) results in Eq. (IV.39).
Therefore Eq. (IV, 24) now becomes
ik(x(o')ex(o")) %gf(v)-i(o )do
<e Y= e . (IV. 42)
For the integral in the exponent of Eq. (IV.42) we obtain from Egs.

(IV. 19 and (IV. 38)

~ . -'3]0'—6"1 -ﬁ]o—.g:'l
Sf(tr)z(o')dc'=-li'-'_l%%g[-(cr-cr')H(G-G')+(c‘uc”)H(0‘-cr")—l--21-6—8—(5:(3 —e ) }
= a
a3
x (#ik)[ §(0-0") - §(0=c")] do
o= "kz 1 SYH(o! 1" r Y ot t
"W[“’ =) H(o" = 0" JH{ 6" - ¢! )H(o' = o)
=3 .
a
-Blo=c"|
1 8C
+ (1 ~¢e )
£ 3 J
2 ~Blo’~¢|
-k t o 1 8C
= Sc[lg-*—(yl +‘B'—'3" (]-"e )Jl (IV.43)
1+
3 ° |
since
x(H(x)-H(-x)) =( x H(x) = x = | x| forx> 0
{ o (IV, 44)
-x H(~x)=-x= | x| forx < 0
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From Eq. (IV.33) 1+ 80/a3 = {32/0,2 and the substitution of this in

Eq. (IV.43) gives

2 2 2 -B1e-0
\f(¢)§<c>d<r=l;§-[a2)cr‘-c~r = ) ]

= ~2F(Jo'= o] )2,

~where

F(o) s — [ o + p-a” -M) ] .

(1= IV, 45
2{32 B e ( )
Then Eq. (IV.42) becomes
i k(x(c")=x(c")) ~F()o'- 0" )k°
(e “e :

(IV. 46)

When we take the four rectangular components of the form of Eq. (IV.46)
we have for Eq. (IV.17)

2 4 <Fllo'=o" | k2
1 A a ®
%'%’E ‘—-——zgdc g e

(2)

A
2
=

(IV. 47)

The integration over o' can be rewritten in the following manner:

=
2
z “F(lo'= o' )ky-
do' e ' (1IV. 48)
LE
2
1] 2 2; 2
o ~-F(o! "O'”)k,u % -F(o’”—G”)k’A
= do' e +\ do'" e
z\ s
-2 -

By letting o'- ¢'" =0 for the first term and ¢" =o' = o for the second

we have



However, because of our assumption of very large /2 we can prac-
tically extend both upper limits to + o© and hence it gives
= 2 do e . . (IV. 49)
[+
This result can of course be obtained without detailed argument by
simply observing that when 2] tends to infinity Eq. (IV.48) is sym-

metric about ¢! = ¢,

The substitution of Eq. (IV. 49) into Eq. (IV.47) gives

2
2 4k -F(or) k
1. g 1 ng«gd . T
1.8 . —. = . | {IV. 50)
2 4T o0 ) ke

The integration over k does not separate into four rectangular compon-

ents but we can do this by the use of four-dimensional polar coordinates(l4)

k, Ql, 02, and ¢.  We write

klzkcosgl (0401$1T),

k, =k sin 8, cos 0, (06026.17),

k3 = k sin 01 sin @, cos ¢ }

k4 = k sin 01 sin 0, sin ¢
The volume element is given by

a% = k;’dk d wlz
= k° dk sin? 0, sin 0, 40,d0,d¢ .

where d& _is the solid angle element. Also

k

2
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2 2 2 . .
kﬂ =k~ (cos 9, + s1n2'91<:osz(J)2 + s1n201 sinZOZ) = kz.

Hence we have

2 o 2, T ™ 2m
a4k e—F(O‘)k” _ k3dk ~F(o)k ' 20-»-d0 6. do -
i;r.;z_ = ——-2--k e $in®,de, sin 2d 2 d¢

[] o [0} o)

o= 1 .Tro 2 2 --Trz

Thus finally the first term of Eq. (IV. 15) is given by

2 2 >
1.8 (dg.. 1 =18 2 _, g2 S do” -
_— - hd hd . (IV. 52)
) " G oy , T
Now we proceed to the second term of Eq., (IV, 15)
-a o'~ o |
C g dom ((x(o")=x(0"))") e . (IV. 53)

‘A factor in the integrand, <(’((°'/)“ I(Oﬂ))> » can be obtained by

(G2 B (o

L We NCSES NCO)! :\
K,=0 ° (IV. 54)

2 2
where E s vz + '2"'2 .

9T
Again considering a typical component of Eq. (IV.54) we have from Eq.

- (IV. 46)

= 2F(le'=o"|) &

dk

2 KAF(lo'=g"] )
]k:O

lelo™)=x( ")) = ‘(“d“z e
Hence for Eq. (IV, 54) we have

(lrplo)xp (62 D = 4x 2F(16" = g'] ) = 8F(|s'm ot | ).
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and Eq. (IV.53) becomes now
=

z -q ]c’"—cr”l
8C do'" F(jg'=¢''| ) e o

‘z
2

By the same kind of argument which led Eq. (IV. 48) to Eq. (IV. 49)

it Y Vet o 2 2 -(30?
16C%d0’F(O’)ea =§%gd6‘ ea {a20'+pﬁ-o‘ (1 ~-e )].
g

0

After the integrations are performed it gives 8C/aB = (ﬁz-az)/ﬁ.

Hence for the second term of Eq. (IV. 15) we obtain

) A ALY
cg dot { (x (o) -xrA(O‘“))Z> e  oa %39
i} 6202 (IV. 55)
B .
Combining Eqs. (IV,52) and (IV.55) we have
2 ~a ot
S = E__lg doh 1 +C Sd o (xm(0T)~x (0”))2>e
dma <<X,£C“>-x MU"))2> : "
- gzﬁz_i_ do” + [32-0.2 .

T 2 2, p%ea, "B p (IV. 56)

o @ 0tEg—(l~e )

Next, we need to find E1 of Eq. (IV.5). To this end consider

E1 and S1 as functions of C, From Eq. (IV.5) we have (replacing T

by 1)

5,(C)
ln ge o@xﬂ(c-)fv -E(C) 2T .
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A differentiation gives
gasl(c) 5,(€)

_ZdEl(C) sc— ¢ Dxu)

dac ~” 5,(C)

83{,&(@')
2 wa |l S (C)
- Hd o'doh g(xw("")"xr(“"” e e L@'x,,\(cr)

—
-3

5,(©)
S e o@:x’u_ (o)

Hence we have

dE(C)

|0 e ! 5
—— ~ ggdcr‘do'” e ((xplat)=xpu () >

M-

L AT-ARY a1

gdo—u e < (XH(U')"XH(O'"))Z >

]

Hi

&

by Eq. (IV.55). By Eq. (IV.33), in which B is considered as functions
of a and C, this becomes

dE,(C)
B (o

=8
o
Integration gives

El(C /o. +——- + K,

-

where K is the integration constant, Since E, = 0 for C = 0% we find

*For a free particle the kernel going from xu(0) =0 to x'“(Z)- Xl"“

is given by K~ e ) N/ZZ' (Cf. p. 73 ). This can be written as
“E X 2
~ e by letting Xf“= U 2. , where E1 = v /2. For the present

case of Xr*= 0 we have v = 0 and hence E, = 0.
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K = ~2a and hence
C
E; =2 Ya© + - - 20 = 2(B~a). (IV.57)

We finally obtain from Eqs. (IV,56) and (IV.57) for E of Eq. (IV.11)

E= El - &
2 2.2 =~
=B-a)" 1 g"@ S d o y
[} 2 4v ) a20'+ @Zﬁ..az (l-e-Bo—) ° (IV.58)

This is the expression to be minimized to obtain the lowest value of E
considering now a and B as free parameters,

The integral in Eq. (IV. 58) which came from the second term
of s is logarithmically divergent at 0= 0 and o =, Although E is
not the energy £ of the scalar particle (W -field) but that of the ¢-field
(Cf. the end of Sect, III) it will be seen (Cf. the beginning of Sect. VI)
that 8 is closely related to E so that & is directly influenced by E.
The conventional perturbation-theoretic treatment of the self-energy
of a scalar particle with 4-momenta p will give in the -g‘.z—approxima-

tion (aside constant)

g 1 cahk 1 a%
(p-K)° - m° P K - 2pek K

which also shows the logarithmic divergence at large values of k,

To remove the divergence in § an analogous treatment for the
case of quantum electrodynamics will be applied later.

Notice that this value of E is the energy corresponding to the
boundary conditions described by Eq. (IV.22). However, these bound-
ary conditions are of no interest to us because the initial and the final

space-time points coincide so that no information as to the energy,
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say, can be obtained. For that reason we have to change the bound-

ary conditions Eq. (IV.22) such that the particle goes from
xﬁ(_%:)zo to xr(-;-z) =XI“ . (IV.59)
Let us introduce Vi defined by
Xus v 2. (IV. 60)

We are now faced with a problem of solving Eq. (IV.26) under the con-

ditions given by Eq. (IV.59). This can be done by taking
Ep(o) = xulo) + o+ ) - av.el)

where ;E!« (c) is the previous solution satisfying the conditions of Eq.

(IV. 22), because the substitution of Eq. (IV.61) into Eq. (IV. 26) satis-

fies the new condition given by Eq. (IV, 59). This change leads to the
addition of a term gc’ Un fpm do-  in Eq. (IV.25). Then by Eq. (IV.19)

we have
go‘%fﬁd()'zlkﬁvp (U' "‘0’”)) (IV. 62)

and Eq. (IV.46) must now be supplemented by a corresponding term

in the exponent as

“F(|oto" P Hikv (o= o)

ik(x(ot)=x(c""))
< e >= e ) (IV. 63)

and correspondingly for Eq. (IV.47)., Hence instead of Eq. (IV.50) we

obtain
o | 2,.
2 4, -F(0Oku +ikuUp
(xu (@) x 0")) (2m)" 4 Jkp

™~

Dl
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Anticipating the relativistic cut-off mentioned before we wil leave the
right-hand side of this equation as it stands for the moment.,

To get the modified form of Eq. (IV.55) due to conditions given

by Eq. (IV.59) we differentiate Eq. (IV. 63) and find

o2 (2 s (e )-x(s)
<(x"(o~)-xr$0' ) )= -{Bﬂk <e e : >]kﬁ=0

=8 F(lo'-o'| ) + vi(ot=o")?, (IV. 65)

where F(c) is defined byg(IV. 45), Using Eq. (IV.65) we now have

~a ot o'

C gdcr“ <(x,,,(0")uxM(o'"))2> e

2

Z el | =alctd o
= 8C do"F(|o'wo''] ) e +C | daFe vi(ot-am)®
-z
) 3¢ =
bt z

The first term is simply equal to the answer of the previous case and
gives the right-hand side of Eq. (IV. 55). The second term is also
simple. Because of the assumption of very large value of 2./2 it is

practically equal to

[~ =] .
~alo'- o’ -a5” 2 L2 2
Cldo! e vlqz(o*'-o")2=20vﬁ gdc‘e 0‘2 = 4Cvy =z B -a v, 2
3 2 Mo
0 a 2a
Hence , 5
> -Qi0-a| N 4y
1t AU 11 - o
c\cw ()=o) e _nc[aﬁ *— ]
2 2 2 2
B’ phd? 2
B 2.(12 ©»

(IV, 66)
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The determination of E1 follows the previous pattern, We have

dE (C) ;v
_;_E]é____ = gdcﬂ e"(llo’ o f.<(XM(O")"X,..L(0‘"))Z>
8 4VM2
T
Hence

E".:Z)‘az+_—gc + 2 wlc+x,
1 a o.?-(

where K is the integration constant., This time we have E1=VP?1 /2 for

C =0 (Cf. fooztnote on p. 58) so that
v,
K= —;— - 2a ,
and
2

v
rk
E1 = 2(B=a) > (1 +-:—§-:) . (IV,67)
From Eqgs. (IV. 64), (IV.66), and (IV. 67)

EzEl-s

2 o 2
2 v 2 4 FO)kS+ik, v.o
(B=a) I g d k i 0
= + ~ do\—y e . IV. 68
B 2 25 ] Ky ( )




-63-

V. REMOVAL OF DIVERGENCE BY CUT-OFF

The integral involved in Eq. (IV.68) is logarithmically di-
vergent, We will remove the divergence by the analogue of a pro-
cedure applied to quantum electrodynamics(IS). That is, we-
replace 1/k% in Eq. (IV. 68) by 1/kp - 1/ 5+ A% =C(k§)/kﬁ ,
where A , the cut-off, is taken to be very large compared to
unity and C(kgl ) = AZ/(kZF*+ /\2) may be called the converg-ehce

factor,

Using the representation

® Yk 2
1 g * ay
- (V. 1)
Y

the integral in Eq., (IV. 68) can be written as

=-(V+F(O))k i + i kuvao
%dd’%di \d4ke a S (V.2)
o] o .
The integration over k can be performed yielding
J ivr_ o ]2 v/uZ 0*2
-{(¥ +F(0)) [k + -
Sdz}k o P ZIIEY) o F(VHETON)
2 2 2 2
i o Vo o
T )4 CHYIEE) , CAAEN
= ————— e =T e .
JYFFT e |
Then the integration over Y of Eq. (V. 2) can also be carried out:
2 2 2 2
T Iy FE(e) T AR
n g 4o’ _....d_s"__z e = an” |\ 9% (e Yo (V.3)
A (J+F(0)) Vi o
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Incidentally when vu 2, 0 Eq. (V.3) agrees with the integral in Eq.
{IV. 58) as it should., When VrZA x 0 we can see that the divergence

comes from ¢ = 0, Since

cke®) 1 gdzf Ve (1 J/\Z)
= - = e e
kﬁz -12;2 kﬁz N,

the replacement of 1/k4 by C(kf )/K%  in the integral of Eq. (IV.68)

gives, in view of the first expression in Eq. (V.3),

Cll)a’k  ~Fo)kf + ikpvuo
0 M Vr«. o

o oo - X
an? gdo‘g ds e HYFF()) (t-e )

o 4 +F(0'))°

Thus corresponding to Eq. (IV. 68) we have (V2 = vﬁ s F =F(0))

2
2 2 2 oo (% A R .V
_ (B=a) v 2 g g ay T
E={B=0)  v__ . do 1m
B Z er " A a(?/-l-F)Z © ( ¢ )
(p-a)”
:ﬁ% _2_-1_6%; I . . (V. 4)

In order to evaluate E the integral J involved in Eq. (V. 4) must now
be performed, We will do this in the following for the limiting case
where /\2 > L Noticing that when ¢ tends to zero {(where the diver-

gence in J comes)

2 »ﬁo’
17 2 B4
F(o)=z—| a0+ (1'- ) | — (V.5)
2B [ B ]
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we write J in the following form:

2 2
252 “'Y—E'E‘— 2
-y 407+ %) A
. e 4ViE) e 2
J = Sgdc'dh’[ R Sy } (L-e )
_arro* 2z
+ \Sdo’d)f _tif‘_*i’fzf_ (l-e “'Y/\Z)
Y+3)
=J; + 7T, . ' (V.6)

Eq. (V.6) is still exact, T?fle first term J, is now convergent even
-y A
without the factor {1 - e )in view of Eq. (V.5) so that we can drop

this factor, whereas in JZ we have to still maintain it,

After integrating over ¢ Jq gives
=]

as [-YO g
=z z L° I
v a
[e]

By changing variable by

vz.d s T (V.7)

and calling

2 2
asav , P =bv ‘ (V.8)

J, results in, remembering the definition of F given by Eq, (IV, 45),

=
"z T2 2. Dbleal bt
4dT [e e [a"c+ 2% (1-e )] ] ]

J1=gjgz— (V.9)

[v}

The limiting value of J, for very large /\2 will be shown in

the next paragraphs to be just

2
= 2 Ln(_ﬁ\_zi)

v

I

so that we will have

2
T=n+d=q+2 mdg,) . (V. 10)
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Hence the use of Eqs. (V.8) and (V.10) will give for Eq. (V. 4)

2 2
E(a, b, v)..ﬁgi)_ T——g—(Jl(a,b) w2y ) . (V.11)

In the next section we will consider the self-energy of the scalar nu-
cleon resulting from this expression,

The limiting value of J, given above for large value of /\2' can
be worked out as follows, We first note that for a very rough esti-
mate of J, we may approximate the factor 1 - e v A2 in J, by 0 for

Y < Yo and by 1 for YD Yo where 3/0 is of order /\_2. A still better

estimate of J, can be obtained by choosing a number ¢ such that ¢ » 1

vet the condition
c .
Ym u 7\2 « 1 (v.12)

is still satisfied, Let us now split the integration over Y into two

pieces,
2 2
o av _._2;_2%7 -1 A2
= 4y + .
J, = Sdc'g —X_O_ze ( '2') (1 =e )
o o (T+7) 2 2
o /\Z
o o0 - -y
+ S do'g ‘“;Z 3 g L. )
o} Ym(a)+'2')
=A+B ., (V.13)
2
Because of our choice of Eq. (V. 12) the factor l-e” in B can be

approximated by 1. Let us first consider A, Here again we choose

b > 1 such that the following is still valid,

Sy =hY K 1, (V. 14)
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Accordingly we split the integration over o into two parts by

Azg d«S dy .ee. +{ ) dwg T G
0 (o] . bb/ Q (V-]-S)

= A' + A"

In A" we have o >7 so that we fan neglect v relative to O, Hence
o0 Y v o 2
"say T - A
All = dO—S

—e (1=-e )
b¥m o O VZO" ..Xm /\2
o 4 72 lewe
L"j d(y;-z e ( B/m - /\2‘ ).
by
Notici Cha B " . ) .
icing that e =e = 0 an integration by parts gives
uv b Y (= - v 20/
[ 4 2 'm 2 do 2 1
r:( e - 2v — e ) (¥ - - )
Y m A
m
by
m
~ 4 2
~ (W_r;+2v ln(l,781 « s bY )) 2/
=~ 0 (V.16)
in which use has been made of an approximation
w .
dx  "hX e
—~ e = = ln(l, 781\a) (V.17)
" :

BN on TR e e S em e e e W T mp T MR e T i e S S e e ke v e e e e em v e e e mm e e fm B e S e m TN e MM e o e O

*To prove this do, for example, the following. From
oQ

—»)\x 1 dx
e 3:-C where A > 0 and C = 0,57721,.. is Euler!s
So[ I+Ax :l o whx q o . 4
b4 b'd .
go e — =-C4+ g Tios = ¢ OSplitting the left-hand

-Ax dx =-Ax dx
side into tzvo fazts we wrlteg(J +Sa' < = -C+ 1n —I:F— » Now
x dx

dx a
we have go -~ = go == ln x la for a < 1, while

constant, we have

x | 1
anlo = LnX- - 1nx'x=0 .

R = = lnha, Since €= ln 1,781 the proof is complete,



-68- VZ 0_2

In A! 0«&1and Y& 1, so that e 4(7"'%) ~ 1, Hence

A= do ———-—-——7——(1«- }
- % (F+ %) )
o] (o]
Y 2
Ty A W
) / 3/4_7@

Neglecting ¥ in (¥ + b an/Z)"1 this becomes

’ b/m y/\2‘ ..Y/\Z Ym
s 2 x —d-z(l-ea ) - 2 (¥ + -e'—r) . (V.18)
¥ W;n A o

o
In the first term the integral tends to zero when Y tends to Zero, so

we replace the lower limit by a very small number € , Thén

Ym 2 b/m Ym 2
% ay “w\)gg Y g ay =¥\

(l~e a3 . — e °
7 .7 y
o
) ) L /\2 »a 2 Ll
Noticing that in the second integral e / = e Yo A = e" %~ 0 when

Y = {m we can extend the upper limit to + o© and by doing so we can

make use of Eq. (V. 17), Hence

Ym ) A2
%e 972‘( (- e— )= Lnér_n_+ In(1, 781 oG/\Z)z' In(1.781 « Blm/\z)-
The second term of (V, 18pbecomes
“¥.. N
B (g ttml 222 2 2 o
by m 2 -5 2D "bc T "¢
m A bbjm/\
Therefore
A'= 2 1n(1, 781 Ym/\z). (V.19)

Now let us proceed to the study of B, As was mentioned before
2
the factor 1 - e~ may be replaced by 1, So we have
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2 2
&0 o0 Vv o

AL O
dv o I+

0 Xm( +2') > 2
0o v o
= g do'—-4rz (1 -e 4(a’m+‘§)) .
v o

¢

Let 0 = b ¥m with Om<& land b > 1 as before, and split the in-

tegration over O  into two parts,
by =)
m
Bag dO‘....-i-g d0 ... =B'4+ B! , (V.20)

o bz(m

Consider B' first. Since 0K 1 in B! let us expand the exponential,

Then me
2 2
4 v o
B!g d(r - (1"1""——'—-—'—"‘09.-)
vEo? Ay +3)
5 m
bym +b—-2—?/m B
=2 (¥ +3) =2ln(—mT————)z2 ln~ . (V.21)
m

O

In the denominator of the exponent of B'" we neglect &n as compared

to 0/2. Then we have >
o3 lm'VG"
4 2
Buzg dO’T;_Z (lne N ) N
bim ¥V Yoo o 2 vy
= iz[ml(l..e 2 ), +§ c::’.‘.’.z_e 2 ]
v a by b¥ -
m
VZ
”'Zbrm >
=2, l“ebr »2 (1,781 e bY ) .
v m

Expanding the exponential we obtain
2
B'"=2x«2 In(1,781. X_ . b ¥ ).
2 m

(V.22)
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Collecting Egs. (V.16), (V.19), (V.21), and (V.22) gives

(3
i

, = A'+ A" + B' + B!

H |

2+2L(/\2)-2 L __2._/\26
D'T = n( )- (V°23)
A% v

This is the limiting value of J, for large /\2 which was used in Eq.

(V.11),
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V. SELF-ENERGY OF THE SCALAR NUCLEON

The self-energy of the scalar nucleon described by ¥ can
be obtained from the asymptotic form of its kernel K correspond-
ing to the transition in which there are no mesons present in the
initial and the final states, The expression for E given by Eq. (V.1l)

is to give the best value of Eo which appears in the asymptotic form

~E_ 37
e ° of the kernel K associated with ¢ for the same transition.

This does not give self-energy of the scalar nucleon directly, be-
cause for that we need the asymptotic form of &K , not K.. In the
following, however, we will show that the kernel associated with
is so closely related to K that the best value of the self-energy of
the scalar nucleon can be given in terms of Eo. |

To see how X is related to K let us first consider the case
of a scalar nucleon in a given external potential )& (Sect. ~.III)°
Throughout this section we shall conveniently take the range of o
to be from 0 to + o© (Cf. above Eq. (IIl.4) ). Then th’é kernel

K(X) of Eq. (III, 2) satisfies the following equation:

dlx,0) = SK‘X’(X,«;X',om(x',O)d‘* W, . (VL 1)

Now consider a function VY (x) defined by
oo L 2
_Em 0’
‘-{f(x) = & e d(x,0)do . (VI. 2)

]

By operating 532 - Y4nw gXx_ on Y we find



~-72-

o 1

->m ¢ 2
% e (B~ - Jdn gX) ¢z, ) do

( B%- fEm g X )Y (x)

- T2 b (x, o)
-g e 2——————-—-80, do
0
°Q 2
-sm o ea 2 -em O
=2e c[)(x,cr)' +m S e ¢{x,0)do
Y c

-2 §(x,0) + m® ¥ (),

1]

in which use has been made of Eq. (III.2), Hence { obeys the fol-

lowing differential equation:
2 2
(H"-m —Wg)&)*(x):—sz(x,o). (VI. 3)
On the other hand, the kernel 1()0 of Eq. (II. 20) satisfies
2 2 X 4 :
(@%-m’ Em g X)) F NV x = §%x-x) (1L 26)

From Eqs. (VI 3) and (II. 26) it can be seen that I(X)(x,x') is given

by
= -m20‘
-2
Im(x,x') = \ e $(x, o )d o (VI, 4)
O .
in which
-2¢(x, 0) = 54(x-x') . (V1. 5)

Substituting Eq. (VI.5) into Eq. (VI. 1) we have

-2¢(x, o) = K(X)(x,o’;x‘, o) . (V1. 6)
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Hence Eq. (VI.4) becomes*

o]

12 )
-2 ,ILOO(X, x') = 8 "2 T K(X(x, o;x',0)do , (VI.7)
0
Calling
X " = :
,7( (x;x") 2}_ (X, (VI. 8)
for convenience we now have
o0 2 2
-z )
K()Qx;x') = S g7z ™ @ K(x‘(x,c’;x',O) do , (V1. 9)
o

B e e PR A R e R G M G e e Ge M e We MW S e TR M e e R e et Ge e M e e e T S G e = e mm e A wm e M hm dm v MR A e E o R e S

*The corresponding relation for the case of a free particle

o=

2
-2 }_(0)(};, xt) ﬂg e"%m v K(O)(x,o’;x', 0)do
o

can also be verified in the following way., The kernel K(O) is defined
2
3 0 5
by (Cf. Eq. (III, 2)) (--5?2 + 3 EBZ ) K( )(2, )=« §7(2,1),

5
where §(@1)= 5(6‘2 - 0‘1) 84(X|‘“2 - Xm)" Expressing 85(2, 1) as the

five-dimensional Fourier integral we have

ik, x, =ik, &
5189, S ST -1er/2)

K 20/ 24ikpxp

KO x) = (2m)" d

4

Integration over k5 glves K( )(x) = (2m) d"k, and
this can be integrated out to give e K ¢l20 /(Zwo’) Hence we have
o0 z (==
-3m’o - (0) -;_ng -kHO’/ZHk =
0e (x, 0 3xt, O)do‘.-.(Z-rr) do e d 'k

2.1 ik (x-x ),A4:k

. * 2, 2
ik (xx') ~(k“+m) o/ 2
:-:(211-)'4 %e mEE r*d4kx e rrm )

do =(2m) ™42 %(krﬁm

=21 (x;x') by Eq. (II, 25),
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Eq. (VI.9) gives the kernel KX associated with V¥ in terms of
K X of ¢ for the case when there is an external field X .

When we calculate the kernel K 00 S2Ys corresponding to
the transition in which there are no mesons present initially-and
finally we encounter again the problem of eliminating the meson
field operator as was done in obtaining Eq. (III. 15) from Eq. (III. 4).
In view of Eqgs. (IIl. 4) and (IIL, 5), where o' =0 and ¢" =0, Eq.
(VI. 9) can be written as

w—,%m’“cr —J%iff’w)ao* - [ L gx (i) 4
K (xnc)-— doe Ve aﬁ'xr&(tr) . (VL 10)

0

Then the use of Eqs. from (III, 12) to (III. 15) gives

e 1 30 _do’do”
X (x)‘xz)= g e-%—m‘o’dc- Se szMEU)B(U +2.4-1t J)'I/m(a’) IPAW'/
oo

5 ﬁx/“(cr) .

(VI, 11)

* Ll
- z "
g e KOO(I,O‘) x,0)do,

s}

Omitting the subscripts 00 following the convention in the foregoing
sections, and considering the case where x'(0) = 0 and x(2) = X we

have
K( X;o) = S e“ K(X,Z;0,0) d Z ° (VI- 12)

The self-energy of the scalar nucleon can be calculated from the
asymptotic form of this kernel K (X;0). Since v2 = vr,,2 is antici-

pated to be of reasonable magnitude our equation X poE VR N
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(Eq. (IV.60)) tells us that very large values of X« correspond to
very large values of X . This implies that in evaluating the asymp-
totic form of K (X;0), where Xy = T is to be made to approach to
inﬁnit&, only the asymptotic, and not the exact, form of K(X,7,;0, 0)
is required. |

In this paragraph we will show in general how the best value
of the self-energy' can be obtained from Eq. (VL 12), Fir st we re-
call that what has been done in the previous sections is to calculate

¢ 2 Which is to be minimized to give the best estimate of

-E ¥
K~ e ° . Consequently the best estimate M of the self-energy

£o of K ~ e- ®  can be found by minimizing E with respect to
the parameters available and then having Sw e—mZZ /2 By N
in the form e_MT. In general E is a functicc))n of the parameters
and vz. Therefore it has a dependence on X through Xu=vu X .

For the simplicity of the argument let us assume that only one param-

eter a is contained in E and consider

v 2 oo
-5 +E( 2 2 Z - 2+F( 3 2) Z
ge[T a,v)] dZ:%e [m 4V ]sz’

(¢ 0

(VI. 13)

where F = 2E. We are interested in the exponent of Eq. (VI. 13):
2 2
[m +F(a,v)] %:— . (V1. 14)

By varying a first to bring the minimum of E we have (X2 = XFAZ)

2
F (ags —Zq) =0 , , (VI. 15)



-76-
This determines the optimum value a_ in terms of XZ/Z 2.,
XZ
ao = ao (Zj-) . (VI. 16)
Substituting this value in Eq. (VI, 14) we have
2 2 2
2 X“, X X 2 X =
[ m*4Fag g =9 | 5 = [m® + Gl 7 v
where G is defined by

G(v%) = Fla_(v?), v¥) . (VL. 18)

We then evaluate Eq, (VI. 13), with its exponent now considered given
by Eq. (VI. 17), by the method of stationary phase. That is, we seek
for the value J7 o which contributes most to the integral by rﬁinimiz-
ing the (negative of) exponent of the integrand. Thus by varying J.

of Eq. (VI. 17) we have

2
o ’

2

m® +Glv %) =2 Gy 2 v (VL. 19)

where X  and Vo is related by 3 = X/v_ . When this value 37 o

is substituted into Eq. (VI.17) we have
2 2 X .
[m®+Gv %) ] i (V1. 20)
If we choose X u such that i = 0 and X4 = T then this becomes
2 2 T
Lm® +Glv") ] 75
o
Then, since we evaluated Eq, (VI. 13) in the form

-[m®G(v 2) ] -

o0 2 2 5
- +F( 2] )
goe [m a, v ]TdZ’\-’e o

we can identify M as
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1 2 2
Mz-z-i[m +Glv,2) ] . (VL 21)
This procedure of finding M may be stated a little more compactly,
To this end let us notice that Eq. (VI. 18) gives
2 2 2, 2 2 2
GY(v) = ag(v )Fa(ao(v )y vT) + sz(ao(v Jo V)

in which the first term on the right-hand side vanishes By Eq. (VL 15),

Then Eq. (VI.19) reduces to

-3%—[ % [mz + F(a,vz)] ]

= 0 ,
a

while Eq. (VI. 15) may be written as

%[%[mZ+F(a.VZ)” l = 0 .
v

Therefore Eq. (VI.21) can be stated as
. 2
M = Minimum of E {a,v")
with respect to v and the parameter a, where
2 1 2 2
€(a,v)=2; [m + F(a,v )] . (VI 22)

The procedure for the case of several parameters is obvious,
Applying this general argument to the present problem we see
that the best value of the self-energy of the scalar nucleon, M, is

given as the minimum of (Cf. Egs., (V, 10) and (V .11))

E (a,b,vz) 221; [m2+v2{—2—£-1§—:'i)2+ 1 } -%—i J ] 2 (VI, 23)

where J = Jl + JZ = 'Il +2 ln( /\ze/vz).

Now it can be shown that for b » a J1 behaves as 2J2mb
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and hence the absolute minimum of & can be made, regardless of
the values of m and gz, as large a negative number as one wishes

provided that b is taken to be sufficiently large, Then the integral
L[ +E (b, vh)] —,vZ—
e 4%

) . :
00 2 2 2 b’

~ S - [m'x +(xb+l)——£v —%{L r2in(Ne 35) 7 (VI, 24)
e d :

0

evidently diverges. However this divergence does not make real
difficulty. For when we go back to the variables tand ubyt=-i<T

and u = -i o (Cf. below Eq. {IIL. 2)), Eq. (VL 24) becomes

o £2 z
id U —(2bt) - = 24T +2dn (e 25 | ‘
S e 2'[ u XTC{ ! TI }] d, u) (VIO 25)

[~}

where the large intervals 2] and T of ¢ and T are replaced by the
corresponding intervals U and T' of u and t, respectively, Written
in this form the very large value of Jl simply makes the integrand
oscillate very rapidly and does not introduce any difficulty, All that
is signiﬁcantris the stationary value, if any, of the phase in Eq.
{VI1, 25), or what amounts to the same thing is the '"local!" minimum
of the (negative of) exponent of Eq. (VI. 24).

Since /\2 is assumed to be very large and v2 is anticipatéd
to be of reasonable size 2 ln( /\Ze/vz) will not be very sensitive to v,
whereas Jl is independent of v. Consequently J may be regarded as
a constant in the first approximation.,

By varying & given by Eq, (VI 23) with respect to v the

optimum is found to be
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z 1 1
v, = (m? ~8——J) . (Z(b“a) + 1)'2 . (VI. 26)

Substituting v _ into Eq. (VI.23) we have

-
*

+ I)E . (VI. 27)

2
€ (ayb, v )=(m® &= 1) (5@;9—

It turns out to be convenient to use a partly renormalized mass m!

and a quantity M defined by

2 2
A _
mt? = m® - &2 ln(2) (VL. 28)
A2
2
and Me—E | (V1. 29)
8mm!* :

For the neutral scalar nucleon the coefficient g2/87r in these equations
is to be replaced by gZ/Zn. This is because the comparison of Eqgs,

- (II. 1) and (II. 1') shows that the coupling constant for the case of the
neutral nucleon corresponds to twice that of the charged one. Since
it is easier to deal with 62 rather than & itself we will give here

the expression for 62 in terms of rn’Z and M :

E* . (1~ Nl)(z(b“a) +1) . (VL. 30)
mt

In minimizing 62 with respect to the parameters a and b,
because of the fact that J, diverges as 2)27b for b > a, we will only

consider the case

*If we take b = a we have2 from Eqgs.(IV.33) and (V.8), C =0, If
we assume further that g“ = 0, then the problem reduces to the
case of a free particle. For this case Eq. (VI.27) gives the low-
est energy, m,correctly, as one expects,
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b=a(l+e€) (V1, 31)

to make 62 positive, where € is assumed to be very small as

compared to 1, Then Jl will be expanded in powers of €
J1=€ g(a)- EZK(a)+.ocl 3 (VI‘32)

where the constant term vanishes as can be seen from Eq._ (V.9) by
taking b = a. This approximation will be valid as far as we remain
in the range of very small € , We will postpone the actual calcula-
tion of é?—(a), XK (a), and their derivatives &'(a) and X'(a) until

the end of this section. The substitution of Eqs, (VI.31) and (VI. 32)

into Eq. (VI. 30) gives the approximate value of 82/m‘2' as
2
_§.2 =(1- pieg- €2XK)) (2a€® + 1). (VI. 33)
ml
Introducing
Y2a € =q, Az—&—,andB=-2-j-{— ‘ (VI. 34)
a
2a
we write
&z 2., .2 |
— = (1 - MnA - n"B) (n~ + 1). (V1. 35)
ml
By varying a we have
AI
n= Er . (VI. 36)
And the variation of n gives
-1_3 2+l 2
M =—-%n—_A-(2n + 1)B . (VL. 37)
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From Eqgs. (VI. 34) and (VI. 36) we have

€ = 72(_2_%:_#% . (V1. 38)

Correspondingly Eq, (VL. 37) can be expressed as

2 2
- 6ba € 1 4ae” + 1
H1=_%EL} -2 K. (VI. 39)

Using the optimum values of € and M given by Hys. (VI. 38) and (VI. 39)

the best value of the self-energy, M, is given by

MZ

= = (1 - ,u«(e} -ezJ()) (2a€® + 1) . (VI. 40)

m
Therefore what we need to do is the following, We first choose a
arbitrarily and compute g(a), Ka), &'(a), and X '(a) numerically.
Using these data € and M are computed from Eqgs. (VI.38) and (VI. 39).
- Since M is necessarily positive it is found that there is a smallest al-
lowable value of a. It turns out that M will become negative for.

a < 3.79, Substituting the values of € and M thus found into Eq.

(VI. 40) MZ/m’Z will be given as a function of a. The result is given

in Table 1 an& Figure 1. In addition to these (vO/rn’)2 and 627(/633

are also given. It can be seen that M has a maximum value of about
0.3 near a = 5.6. Correspondingly (M/m')z' has a minimum of about
048 at the same value of a, In Figure 2 (M/m')2 is given as a func-
tion of M . The curve turns back near M = 0,3 and does not go down
toward zero. This turning back is due to the fact that there is no

local mini mum of ( CC//m')2 given by Eq. (VI. 38) beyond that value

of M, The existence of two values for a given value of M less

than 0. 30 can be explained in the following way. When we study the
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behavior of ( E,/m')Z given by Eq. (VL. 30) for fixed value of M it
is described by Eq. (VI.33) when € is very small, On the other
hand, when € is very large comparedto l, i.e., b > a, Eq. (VL 33)
is no longer valid but ‘Il diverges as 2f2wb as was mentioned before.
Therefore, when € bec;omes very large ( (S/rn')z tends to - ©@, as
can be seen from Eq. (VI.30), Consequently whenever there is a
local minimum (in fact there is one for each value of M iess than
0.30) (&€ /m')2 must also pass through a maximum, which is neces-
sarily larger in value than the local minimum, before going down to
- o, Since perhaps it is easier to illustrate this behavior of (5/m‘)2
by a picture we gave Figure 3, We do not claim that it is exa‘ctly to
the scale, nevertheless we believe it worth while inserting, The two
values of (6/111')2 for given M , therefore, represent the smaller
value of the local minimum and the larger value of the maximum,
Of these two the smaller is the one we are interested in, It is also
to be noted that in the entire range where a local minimum is found
the size of € remains small, At least 62']{/@3: is 1eés than 5%0 so
that we can say that the expansion we have made of J,(Eq. (VI. 32))
is a very good approximation,

Although what has been given above is all one needs it is more
convenient for the practical purposes to have a direct relation between

M, the theoretical mass m, and the coupling constant gz. In order to

do this we define /U\ by

p=Et (V1. 41)
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Considering the right-hand side of Eq. (VI.40) as a function G(M) of

M we write

2
Mo o=am . (V1. 42)

m'2

Then from Egs, (VL. 42) and (VI.29) X can also be written as

_ gZ gZ Mo
Ho= = = € (VI. 43)
8w M2 81Tm’ZG(f*) K)o
On the other hand, Eq, (VI. 28) gives
2 2 2
8rm 1 MTe A
— =F+2 ln—-—z- + 2 lm---7
g Vs M
/\2 (VI 44)
=D(K) + 2 ln —
where
2
D(p) = +2 ln 22 .
v
o

Eq. (VL. 43) may be considered giving M as a function of % and cor-

respondingly we can write D(p ) as a function of Mo

D(p) = F(f) .
Then Eq. (VI.44) becomes

2 .
&g%_.:p-(p),uz Ln-ﬁz : (V1. 45)

Table 2 gives M and D(M) as functions of M . The graph giving F(f)
as a function of Fk is given in Figure 4. Using this graph we can
easily find the interrelations between mz, MZ, and gz., That is, sup-
pose the experimental mass, which is to be identified as M, and the

coupling constant gz are given. We first compute M from Eq. (VI.41).

Then by reading Figure 4 we find F(F\). Finally the theoretical mass
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m can be obtained from Eq. (VI. 45) provided that the cut-off A is
assumed to have a definite value, As an example let us take

/\2 = 4m2. Then Eq. (VI.45) gives

2 2
81:;1 :F(F)+21n4+21n§7 . (VI. 46)

Using Eq. (VI.41l) we have

2 2
M(F(R) + 2 ln4+21ln=5)
M

m

—

MZ

If we call

2
m

=X
M°

this becomes

x - 2P lox = A(F(R) + 2 ln 4) , (;\71.47)

We solve this equation for given F . The solutions for the special
values of X listed in Table 2 are given in Table 3,
Finally we return to the computation of the analytical expres-

sions for }(a) and K(a). Substituting b = a (1 + €) in

w0 -1
T T2h2 2 2 2., ~bt
N\ oF - B0 [ar+(b%-a%)(1-e P T)/b] :{ v
= —‘Ez e e (V.
o
consider

B s o=l G I

When expanded in powers of € up to the second it gives

-atT -aT ~aT
_(l'e ) ] °

= 2a€(l - e )+aez[2a’(?e

The exponent of the second term of Eq. (V. 9) becomes then
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2al(s2e+€?) 2 2 -at. o . -art 1-e_a’c
> /a'c[1+ ﬁ(l-—e )+e{2e -—-5—1_———}]
T(2-A,) [(A —l)Z-A ]
_T, o, 2T 2
Sy te€——p— € 2 ?
(VI. 48)
where
2 -aT
Al = -a_—c (1 - e ) (VI. 49)
and
-atT -atT ‘
A, = 2e -é'—r(l—e ) . : (VI. 50)

When Eq. (VI, 48) is substituted and the exponential is again expanded,

the second term of Eq. (V.9) gives

-3 T(2-A,) T(2-A,)
e 1L+ A a5 B2 T anEay) +on. | (Vi)

The substitution of Eq. (VI. 51) together with Eqs. (VI. 49) and (VL 50)

into Eq. (V.9) gives



o0
T
-Z -aT
J1=egf"%d§ [f-é(l-e ) ]
[e}
o0 T at <
- - -a
CEAE R (LR I PO
A a
-aT -atT -aT
_{34%(1_3 )2-§(l—e )+ T(1-2e )}J+...
= eg—(a) - €7 Kla) 4 euns . (VI. 52)

To evaluate }We integrate once by parts to get
o - o0

T 1
- - -{(z + a)t
g—=-zgoezdr+4(1+2%)59tf[ez-e * 1.
0

Using

md‘c -aT -bT b

go—%—[e -e ]= ln-g (VL. 53)
we have

1
}:4[-1+(1+2—£)[n(1+2a)] . (V1. 54)

The evaluation of X is not hard but very tedious. In calculating the

first cﬁrly—bracketed term of K we need
[2,e]

_ T
% dT e 2-= 2,
=]
A T
- -a7T
&%—Se Zl-e )= ln@+2a,

(o}
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and
dt "2 -at 1+4
go :C—Z- e (]. - € ) = - % l_n(l+2a) + (%"'Za) L ('I——ra) .
The result is
o <
%S%ez{ﬁrsttermof K} =
()
=2[2-22 1+ 2a) + 92 tageaa) | (VL. 55)
a 2a

For the evaluation of the second curly-bracketed term we need

= T atT -
i "% - 1 Sdr G+ ayT
1- =a-= 2 — 2
%ojc-z-e ( e )=a-3 ln(l+ a)+ao,te ,
[~ =] o
T T SN PR S P
— e (1-2e )=\ — e -2 ] = '
T T o T
4]
and
o _T car
S % e 2 (1-e ¥ =3a’+g ln(l+2a)
[+
. - 2a)T
1 2 1+4a,, 2\ac ~(2*

Substituting these in the second term of K and rearranging the in-

tegrals to apply Eq. (VI. 53) we have

o0

_T
%%’Ee 2 { second term of K }

Nll-

, |
0422) 1o (144a) ] . (VL 56)
Za

[3+ (9 +21-1— —z) Ln(l + 2a) -
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The sum of Egs. (VI.55) and (VI. 56) gives

Kla) = 2 [“*Za)?f“‘*a) Ln(1+4a)-1-(9% 52 +—5) In 1+2a)} . (VI.57)
a

a

g,' and K are calculated from Egs. {VI.54) and {VI.57).

As the discussion of the results we note first that the depen-
dence of the self-energy on the cut-off N is completely determined
for our case of the scalar nucleon interacting with the scalar meson,
Therefore this theory should be easy to renormalize. For other
types of meson theories the /\-dependence may not be so simple as
the present case,

Next we observe that there appears no solution of the‘problem
for too large values of gz. The possible reason for this is that with
strong enough attraction the binding of nucleon and antinucleon will
' pdssibly, analogously to the case of the positronium, exceed their
rest masses, Thus pairs would be found ad infinitum with release
of energy radiated as mesons, Hence no sensible theory may exist
for too large values of gz in this scalar case.

As was mentioned at the end of Sect, III, the effects of the
closed loops are omitted from the self-action effects of the nucleon,
This can be seen in the following manner, For the case of a given
external field the loops are completely separated from the nucleon
line, The coptribution of diagrams with no loop, one loop , two
loops, and so on, to the amplitude of the nucleon's transition from
the initial meson-vacuum state to the final meson-vacuum state can

be completely separated from the amplitude of the nucleon line itself to
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giver':: 1+L+ L2/2+.... = et

» where L stands for the ampli-
tude for a single closed loop. That CV can be factored out for the
case of an external field is manifested in Eq. (II,23), However,
for the case of the quantum mechanical meson field the closed loops
may be connected with the nucleon line and cannot be factoreci out
as above, Since the kernel given by Eq, (IIl. 15) corresponds to the
one excluding the effects of the closed loops the self-energy we ob-
tained represent the self-action of the nucleon omitting the closed
loop effects.

In the present calculation the meson mass was assumed to be
zero for the sake of simplicity. The effect of non-vanishing meson
mass x will first show up in Eq, (IV. 16) replacing kr,,?‘ by k,.% .+ XZ.
This replacement applies to all the subsequent equations, Thus,
for example, Eq, (V.1) will be replaced by (k& +x*) ™} =

=¥ (K +x?)

S e d¥Y and correspondingly the integrand of J (Eq.
(\(f). 6)) will be multiplied by e~ vt . In this case the evaluation of
J becomes much more complicated and even the limiting value of
J, for large '/\2 may not be obtained in a closed form, Therefore
we will probably be forced to resort to the numerical.calculation of J.

As to the accuracy it cannot easily be judged because there is

no way of comparing our result with the experiment,

An attempt to apply the present technique to the realistic
problems encounters a great difficulty. For if the nucleon is as-~-
sumed to be a Dirac particle and if we consider various types of

the meson theory the Lagrangian of the system contain operators

such as the Dirac matrices ‘er s the spin operator T , and the
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isotopic spin operator Z . Then the amplitude corresponding to
Eq. (IIL, 15) will now contain these as ordered operators in certain
manner, In addition to this the action may not have the assurance
of being a real quantity which was essential in applying the varia-
tional technique., Therefore, the simple path integral treatment
will fail for such a problem. However, when the method for this
kind of problem is found it will be of some importance to note that
the Fock's method of parametrizing the Dirac equation(lé) permits
the Lagrangian formulation which is, at least in its form, very
similar to the present treatment of the Klein-Gordon equation.,

Finally we notice that although we have calculated only the
self-energy of the nucleon the theory may possibly be extended to
another problem such as the scattering of the meson by the.nucleon
using the best estimate of the real action. However, the accuracy

of the result may not be very high,
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M

0.0098
0.0660
0.1995
0.2750

0,2992

g =

f‘/(r—f*I)(zo«E‘ﬂ)

0.0000
0.,0663
0.2089
0.3043

0,3411
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TABLE 2

| M%a =

M (ag*r 1)*
101.9177 1.0000
15,1529 1.0096
5.0120 1,1109
3.6361 1,3363

3.3421 1,7313

Ldze

Duw=%+2[n—7r=F@).

v
O

TABLE 3

MIFR) +21n4)

0.0000
0.0096
0, 1052
0.2899

0,5489

*

2in

wor

2,0000

2,0192

2,2104

3.0978

DY =F ()

103,9177
17. 1721
7. 2224
6. 2159

6. 4399
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