List of Figures

Fig. 2.1 Conflicting Newtonian viscosity data for \(\text{Pd}_{43}\text{Ni}_{10}\text{Cu}_{27}\text{P}_{20} \) obtained from references (◊) [19], (□) [20], and (O) [21]

Fig. 2.2 A Differential Scanning Calorimetry trace with a scan rate of 20 K/min for a \(\text{Pd}_{43}\text{Ni}_{10}\text{Cu}_{27}\text{P}_{20} \) alloy. The calorimetric glass transition temperature is denoted in the figure.

Fig. 2.3 Newtonian viscosity data obtained from (Δ) experiments and (O) Ref. [21]

Fig. 2.4 An example of the potential energy landscape generated from the function \(\phi/\phi_0 = \sin^2(\pi\gamma/4\gamma_c) \)

Fig. 2.5 Fit of the equilibrium viscosity law, Eq. (2.1) and (2.2), to Newtonian data of metallic glass-forming liquids: \(\text{Zr}_{41.2}\text{Ti}_{13.8}\text{Ni}_{10}\text{Cu}_{12.5}\text{Be}_{22.5} \) (□); \(\text{Pd}_{40}\text{Ni}_{40}\text{P}_{20} \) (O); \(\text{Pd}_{40}\text{Ni}_{10}\text{Cu}_{30}\text{P}_{20} \) (Δ); \(\text{Pd}_{77.5}\text{Cu}_{16.5} \) (†); \(\text{La}_{55}\text{Al}_{25}\text{Ni}_{20} \) (□); \(\text{Mg}_{65}\text{Cu}_{25}\text{Y}_{10} \) (∇). Low-temperature viscosity data was produced by three-point beam bending, continuous-strain-rate tension and compression, and parallel-plate rheometry; high-temperature data was produced by concentric-cylinder rheometry, oscillating crucible, and electrostatic levitation.

Fig. 2.6 The two-parameter Vogel-Fulcher-Tammann law, three-parameter Cohen Grest law, and one-parameter Cooperative shear model are used to fit the Vitreloy 1 viscosity data from Ref. [17]. The fits have \(R^2 \) values of 0.9994, 0.9995, and 0.9995 respectively. From this comparison it is clear that the Cooperative shear model is capable of predicting the Newtonian viscosity of metallic glasses over a wide range of temperatures with the use of only one fitting parameter. Additionally, the one-parameter Cooperative shear model is found to have the same accuracy as the two- and three-parameter fitting laws.
Fig. 2.7 Fit of the non-equilibrium viscosity law, Eq. (2.4), to the non-Newtonian data of (a) Zr$_{41.2}$Ti$_{13.8}$Ni$_{10}$Cu$_{12.5}$Be$_{22.5}$ [28], and (b) Pd$_{40}$Ni$_{10}$Cu$_{30}$P$_{20}$ [14]. The data was obtained by continuous-strain-rate compression experiments using the Instron setup described in [28]. The small discrepancy in the Newtonian data of Zr$_{41.2}$Ti$_{13.8}$Ni$_{10}$Cu$_{12.5}$Be$_{22.5}$ between [28] and [8] was adjusted by introducing a temperature correction of 8 K.

Fig. 2.8 Acoustically measured shear moduli (corrected for Debye-Grüneisen effect) of quenched unloaded specimens following steady deformation at the indicated rates: Zr$_{41.2}$Ti$_{13.8}$Ni$_{10}$Cu$_{12.5}$Be$_{22.5}$ at 593 K (□) and Pd$_{40}$Ni$_{10}$P$_{20}$ at 548 K (○). Shear modulus predicted from viscosity data using Eq. (3): Zr$_{41.2}$Ti$_{13.8}$Ni$_{10}$Cu$_{12.5}$Be$_{22.5}$ at 593 K (□) and Pd$_{43}$Ni$_{10}$Cu$_{27}$P$_{20}$ at 548 K (○). Solid lines are predictions from Eq. (2.4).

Fig. 3.1 Viscosity of Pt$_{57.5}$Ni$_{5.3}$Cu$_{14.7}$P$_{22.5}$ at the indicated temperatures and strain rates assessed from continuous-strain-rate compression experiments. Lines are fits to the data using the kinetic balance formulation in Eq. (3.4).

Fig. 3.2 Acoustically measured shear modulus corrected for the Debye-Grüneisen effect of the relaxed equilibrium liquid annealed at the indicated temperatures (□). Predicted equilibrium shear modulus from measured equilibrium viscosity data using Eq. (3.2) (○). The line is a fit to the data using the temperature dependence relationship given in Eq. (3.2).

Fig. 3.3 Acoustically measured shear modulus corrected for the Debye-Grüneisen effect of the non-equilibrium liquid deformed at 473 K at the indicated strain rates (□). Predicted non-equilibrium shear modulus from measured non-equilibrium viscosity data using Eq. (3.2) (○). The line is a fit to the data using the kinetic balance formulation given in Eq. (3.4).

Fig. 3.4 The DSC trace used to measure $d\Delta h/dT$ for Pt$_{57.2}$Ni$_{5.3}$Cu$_{14.7}$P$_{22.5}$
Fig. 4.1
(○) O-Terphenyl Newtonian viscosity data. (■) O-Terphenyl viscosity predicted from shear modulus data (corrected for Debye-Grüneisen effect) using Eq. (4.5). The solid line is a prediction from Eq. (4.1) using \((p_n + p)\), and the dashed line is a prediction from Eq. (4.4) using \(n_G\).

Fig. 4.2
(○) Pt\(_{57.2}\)Ni\(_{5.3}\)Cu\(_{14.7}\)P\(_{22.5}\) Newtonian viscosity data. (■) Pt\(_{57.2}\)Ni\(_{5.3}\)Cu\(_{14.7}\)P\(_{22.5}\) viscosity predicted from shear modulus data (corrected for Debye-Grüneisen effect) using Eq. (4.5). The solid line is a prediction from Eq. (4.1) using \((p_n + p)\), and the dashed line is a prediction from Eq. (4.4) using \(n_G\).

Fig. 4.3
Pd\(_{43}\)Ni\(_{10}\)Cu\(_{27}\)P\(_{20}\) Newtonian viscosity data from (○) Ref. [17] and (◊) experiments. (■) Pd\(_{43}\)Ni\(_{10}\)Cu\(_{27}\)P\(_{20}\) viscosity predicted from shear modulus data (corrected for Debye-Grüneisen effect) using Eq. (4.5). The solid line is a prediction from Eq. (4.1) using \((p_n + p)\), and the dashed line is a prediction from Eq. (4.4) using \(n_G\).

Fig. 4.4
(○) Glycerol Newtonian viscosity data. (■) Glycerol viscosity predicted from shear modulus data (corrected for Debye-Grüneisen effect) using Eq. (4.5). The solid line is a prediction from Eq. (4.1) using \((p_n + p)\), and the dashed line is a prediction from Eq. (4.4) using \(n_G\).

Fig. 4.5
(○) La\(_{55}\)Al\(_{25}\)Ni\(_{5}\)Cu\(_{10}\)Co\(_{5}\) Newtonian viscosity data. (■) La\(_{55}\)Al\(_{25}\)Ni\(_{5}\)Cu\(_{10}\)Co\(_{5}\) viscosity predicted from shear modulus data (corrected for Debye-Grüneisen effect) using Eq. (4.5). The solid line is a prediction from Eq. (4.1) using \((p_n + p)\), and the dashed line is a prediction from Eq. (4.4) using \(n_G\).

Fig. 4.6
(○) Zr\(_{46.75}\)Ti\(_{8.25}\)Cu\(_{7.5}\)Ni\(_{10}\)Be\(_{27.5}\) Newtonian viscosity data. (■) Zr\(_{46.75}\)Ti\(_{8.25}\)Cu\(_{7.5}\)Ni\(_{10}\)Be\(_{27.5}\) viscosity predicted from shear modulus data (corrected for Debye-Grüneisen effect) using Eq. (4.5). The solid line is a prediction from Eq. (4.1) using \((p_n + p)\), and the dashed line is a prediction from Eq. (4.4) using \(n_G\).

Fig. 4.7
(○) SiO\(_2\) Newtonian viscosity data. (■) SiO\(_2\) viscosity predicted from shear modulus data (corrected for Debye-Grüneisen effect) using Eq. (4.5). The solid line is a prediction from Eq. (4.1) using \((p_n + p)\), and the dashed line is a prediction from Eq. (4.4) using \(n_G\).
Fig. 4.8 Isoconfigurational shear modulus versus annealing temperature for La_{55}Al_{25}Ni_{5}Cu_{10}Co_{5}

Fig. 5.1 True stress-strain curves for two Pd_{43}Ni_{10}Cu_{27}P_{20} specimens deformed at 548 K and a strain rate of 1.0 \times 10^{-4} \text{ s}^{-1}: (a) specimen was relaxed at 548 K prior to deformation, and (b) specimen was in the as-cast state.

Fig. 5.2 (a) shear modulus of the relaxed specimen before (■) and after deformation (□), (b) shear modulus of the as-cast specimen before (●) and after deformation (○).

Fig. 5.3 True stress-strain diagrams for (a) Pt_{57.2}Ni_{5.3}Cu_{14.7}P_{22.5} at 473 K and (b) Pd_{43}Ni_{10}Cu_{27}P_{20} at 548 K at the indicated strain rates.

Fig. 5.4 (a) Frenkel Potential Energy Landscape with a strain of 4\gamma_c between minima, (b) A Frenkel Potential Energy Landscape that has been biased by a stress. The strain between minima is still 4\gamma_c.

Fig. 5.5 DSC traces obtained from the quenched unloaded specimens for (a) Pt_{57.2}Ni_{5.3}Cu_{14.7}P_{22.5} and (b) Pd_{43}Ni_{10}Cu_{27}P_{20}. The loading strain rates are indicated.

Fig. 5.6 Isoconfigurational shear modulus vs. configuration enthalpy change for each steady flow state for (a) Pt_{57.2}Ni_{5.3}Cu_{14.7}P_{22.5} and (b) Pd_{43}Ni_{10}Cu_{27}P_{20}. Dotted lines are linear regressions to the data.

Fig. 5.7 Isoconfigurational shear modulus versus annealing temperature for (a) Pt_{57.2}Ni_{5.3}Cu_{14.7}P_{22.5} and (b) Pd_{43}Ni_{10}Cu_{27}P_{20}.

Fig. 5.8 Isoconfigurational shear modulus versus configurational enthalpy is plotted for (a) Pt_{57.2}Ni_{5.3}Cu_{14.7}P_{22.5} and (b) Pd_{43}Ni_{10}Cu_{27}P_{20} with (■) data obtained from the mechanical deformation experiments presented in Fig. 5.6 and (○) data converted from the thermal annealing experiments presented in Fig. 5.7. The linear regressions to the mechanical and thermal data sets are indistinguishable on this plot.
Fig. 6.1 True stress versus true strain for Pd$_{43}$Ni$_{10}$Cu$_{27}$P$_{20}$ samples deformed at 548 K and 10$^{-3}$ s$^{-1}$. The specimens were deformed to different total strains up through steady state.

Fig. 6.2 Configurational enthalpy for the quenched unloaded Pd$_{43}$Ni$_{10}$Cu$_{27}$P$_{20}$ specimens as measured with Differential Scanning Calorimetry at a scan rate of 10 K/min versus true strain.

Fig. 6.3 Acoustically measured shear moduli (corrected for Debye-Grüneisen effect) of the quenched unloaded Pd$_{43}$Ni$_{10}$Cu$_{27}$P$_{20}$ specimens versus true strain.

Fig. 6.4 Configurational enthalpy for the quenched unloaded Pd$_{43}$Ni$_{10}$Cu$_{27}$P$_{20}$ specimens as measured with Differential Scanning Calorimetry at a scan rate of 10 K/min versus inelastic mechanical work, W. W was calculated as the area under the curve for the stress strain diagrams, and was corrected for the elastic energy.

Fig. 6.5 The time dependent anelastic recovery is plotted as a percentage of the total inelastic deformation of the specimen versus true strain. The anelastic recovery was accomplished by annealing at 558K for four hours.

Fig. 6.6 The change in steady state configurational enthalpy for samples deformed at 548 K. The enthalpies are referenced to a sample relaxed at 548 K.

Fig. 6.7 The steady state flow stress of the system as a function of the strain rate for samples deformed at 548 K.

Fig. 8.1 Modified Isopescu test specimen for measuring the isoconfigurational shear modulus under shear.

Fig. 8.2 Torsional specimen for measuring the isoconfigurational shear modulus under shear.