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ABSTRACT 

Medical devices play a critical role in improving the quality of life for patients and assisting 

physicians by monitoring, detecting, and helping manage chronic conditions such as epilepsy 

and spinal cord injuries. To perform these functions effectively, these devices must extract 

the most relevant information from complex medical data. However, the functionality of 

these medical devices has been limited by the existing challenges in medical applications. 

Some of these challenges include the complexity in the analysis of raw medical data, 

adaptability, non-stationarity, noise, large data volumes, real-time processing, limited 

resources, and high accuracy demands. Moreover, considering factors such as individual 

differences, environmental influences, and genetic variations, medical data will cause 

numerous variations and uncertainties in analyzing and interpreting the medical conditions 

in different biomedical applications.  Medical data analysis is already complex and is further 

complicated by issues like non-stationarity and noise, especially when using traditional and 

manual methods. When it comes to the designing, implementation, and utilization of 

wearable and implantable medical devices, efficiency, accuracy, and adaptability become 

crucial. Particularly, applications that require fast control of equipment, such as brain-

machine interfaces (BMIs), make the need for fast decision-making evident. Medical data 

have been conventionally managed by reliance on extensive manual labor. However, such 

manual data management techniques are not scalable, have inefficient procedures, and are 

more likely to produce errors. Therefore, more advanced, automated methods are required 

immediately considering the existing challenges of the current medical data analysis 

techniques. 

Such a shift in data processing and management will lead to more trustable procedures that 

can significantly improve the accuracy and efficiency of medical data analysis. Other than 

being just an improvement, such transformation signifies a noteworthy point in the 

development of medical devices. In this view, it is essential to introduce advanced 

technology and novel methods for medical data processing as well as automation. Therefore, 

it becomes critical that these high-performance and advanced techniques can efficiently be 

implemented with minimum effects on hardware for clinical applications. Currently, 



 viii 
artificial intelligence (AI) and its subfield machine learning (ML) has led to major 

transformations in designing and utilization of various medical devices. Among all these 

biomedical applications, three major area are addressed in this thesis: Brain Machine 

Interfaces (BMIs), seizure detection, and classification of arrhythmias in cardiac rhythms. 

We selected these three applications due to their significance and ability to improve patient 

treatment further. Additionally, we showed how we used machine learning algorithms for 

each of these applications to address their current challenges. 

In our work related to Brain-Machine Interfaces (BMIs), we have been focused on improving 

the quality of life for individuals with spinal cord injury (SCI) through two studies. In our 

initial study, we have designed and implemented a deep multi-state Dynamic Recurrent 

Neural Network (DRNN) decoder for BMI applications. This algorithm decodes neural data 

recorded from the posterior parietal cortex (PPC) and the motor cortex (M1) of human 

participants to appropriate control signals to predict computer cursor kinematics on the 

computer screen. By reducing the amount of history used in predicting the movement 

kinematics from the recorded neural data, we have demonstrated that improved performance 

and robustness are preserved while memory and power consumption are reduced. We then 

compared the performance of DRNN with other decoding techniques to demonstrate that 

when operating on wavelet-based neural features, our proposed DRNN-based decoder 

outperforms other decoding techniques. Therefore, DRNN have the potential to be used for 

more efficient and effective BMIs. After developing DRNN as a decoding technique for BMI 

applications, we have implemented an efficient feature extraction technique, referred to as 

Feature Extraction Network (FENet), which has been designed by using convolutional neural 

networks for optimizing feature extraction and decoding to ensure consistency across 

electrodes when decoding the recorded neural data to the movement kinematics in BMI 

systems. After being tested with data recorded from the posterior parietal and motor cortices 

of three human participants, FENet outperformed existing feature extraction techniques such 

as threshold crossings and wavelet transforms, and it significantly enhanced both closed- and 

open-loop cursor controls. We have also evaluated the generalizability of FENet when 

applied to different datasets, brain regions, and participants. Therefore, the results of our 
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research in BMI technology have the potential to promise the improvement of the quality 

of life for spinal cord injury (SCI) patients. 

Second, we co-designed EKGNet, a convolutional network that combines analog computing 

and deep learning for detecting heartbeat arrhythmia. EKGNet demonstrated high accuracy 

while minimizing power consumption, effectively overcoming challenges related to analog 

circuitry and real-time processing. The experimental findings, using PhysionNet’s MIT-BIH 

and PTB Diagnostics datasets, showed an average balanced accuracy of 95% for intra-patient 

arrhythmia classification and 94.25% for myocardial infarction (MI) classification. 

Finally, we designed a real-time seizure detector by using XGboost as a technique relies on 

gradient boosted trees, which can help with the fast and accurate diagnosis of seizure for 

epileptic patients. With an averaged detection latency of 1.1 seconds, this design attained 

average F1 scores of 99.23% and 87.86% under various data splitting methods. The energy-

area-latency product was 27× lower than the current state-of-the-art solutions, which allowed 

for adjustments that were specific to each patient and significantly reduced energy 

consumption. 

The results presented in this dissertation demonstrate the potential of AI in addressing the 

existing challenges in three biomedical applications: brain-machine interfaces (BMI), seizure 

detection, and heartbeat arrhythmia detection. By addressing these existing challenges 

including complex biological data management, real-time processing constraints, and limited 

resources in biomedical applications, AI has the potential to improve the quality of life for 

patients suffering from neurological disorders and medical conditions. Moreover, the 

improved precision, operational efficiency, and flexibility caused by the integration of AI 

into the design of the future biomedical systems will potentially assist healthcare providers 

to offer enhanced support and treatment to patients. While we have focused on the three 

above-mentioned biomedical applications, the principles learned from our analysis may be 

relevant and can be extended to other biomedical applications. 
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C h a p t e r  1  

INTRODUCTION 

Medical devices, including implantable and wearable technologies, are designed to improve 

the quality of treatments provided to patients and assisting physicians in monitoring, 

detection, and management of chronic illnesses such as epilepsy and spinal cord injuries. To 

fulfill these functionalities, these medical devices need to extract the most pertinent 

information from the complex medical data recorded from patients. However, the extraction 

of this information necessitates that these devices overcome challenges that are inherent in 

the treatment of medical conditions and disorders, such as real-time data processing, high 

accuracy demands, adaptability to dynamic patient conditions, and enhanced automation. 

Furthermore, to become clinically applicable, these medical devices need to successfully 

address challenges such as the limited availability of resources, the management of raw and 

noisy data, and the inherent non-stationarity of medical data [1], [2]. The problem of non-

stationarity, which denotes the continuous variability inherent in the data, makes it more 

difficult to use static models in the setting of dynamic biomedical systems. Beyond the 

challenge of non-stationarity, the presence of noise introduces additional complexities in the 

acquisition of accurate and interpretable medical data. This noise stems from two main 

sources: shortcomings in the data recording devices and disruptions caused by external 

environmental factors [3], [4], [5]. The intersection of these elements greatly escalates the 

challenge of extracting pertinent and interpretable information from medical data, thus 

impeding the capacity to guarantee both clarity and accuracy in the datasets collected. 

Moreover, these challenges in addition to the complexity of the inherent patterns in the 

recorded medical data makes it difficult for the existing medical devices using conventional 

data analysis techniques to extract the most pertinent information from the data useful for 

different medical applications. Therefore, building upon the identified challenges within the 

domain of medical data analysis, there emerges an urgent need for the utilization of advanced 

signal processing and statistical techniques to address these complex issues. 
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Considering these challenges in extracting pertinent information from complex and 

dynamic medical data sets, it becomes crucial to advance our techniques to address these 

challenges. To effectively address these unexpected challenges, the proposed solutions need 

to be able to dynamically adapt to the changes in the data. Moreover, considering the 

significant consequences for patient care due to delays in processing and interpreting data, 

the ability of the proposed solutions to make decisions in a timely and accurate way becomes 

critical for a wide range of medical applications. When it comes to improving patients’ 

quality of life, brain-machine interfaces [2], [6] perfectly illustrate the important of medical 

devices quickly interpreting the recorded neural data and responding effectively. Processing 

systems that are both high-performance and real-time are necessary in order to accomplish 

this requirement. In addition to providing users or medical professionals with fast feedback, 

these biomedical systems need to be able to quickly evaluate data, come to conclusions in a 

short amount of time, and make accurate decisions. Furthermore, the flexibility of these 

biomedical systems is crucial due to the wide range of different patient characteristics that 

may appear in the corresponding recorded data, which could make addressing the current 

challenges even more difficult. To overcome the adaptability challenge, medical devices 

should be designed to not be overly reliant on detailed patient-specific calibration. To 

effectively address the diverse requirements and situations of various individuals, possessing 

the capability for adaptation is critical. Consequently, this will ensure the widespread and 

effective utilization of the designed medical devices. 

While medical devices running on traditional and manual data analysis techniques are still 

widely used in different medical applications, the traditional and manual techniques 

implemented on these devices may not always provide an optimal solution for medical 

conditions due to their technological incompatibilities, slow processing speeds, and 

efficiency limitations in general. Even established biomedical systems would fare 

considerably less favorably in the absence of automation. Moreover, analyzing and 

processing data manually is time-consuming, error-prone, and results in uncontrollable 

outcomes. These errors are more prone to arise in systems that rely heavily on human 

intervention, as they require significant time and resources. Manual analysis of the data 
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demonstrates its shortcomings especially when organizing the massive data storage 

systems as regular practice in medical applications, which becomes a critical problem for 

both researchers and healthcare professionals. Furthermore, manually processing the data, 

especially in situations where quick decision-making is crucial, presents a significant 

obstacle. As a result, the existing manual approaches restrict the potential growth of 

biomedical systems as well as the prompt retrieval of pertinent information from the recorded 

medical data. Consequently, this shortcoming makes data administration and analysis less 

effective, which can potentially impede the medical field’s progress. Therefore, the potential 

severity of these errors in the healthcare sector underscores the urgent need for biomedical 

systems to transition to automated, simplified, and reliable systems. 

It is essential to emphasize the urgent need for novel approaches to bridge the gap between 

current techniques and their corresponding challenges in order to satisfy the constantly 

changing requirements of the medical industry. The use of automation, robust data 

processing methods, and cutting-edge technology should be the basis of these approaches. 

This allows us to reduce the difficult task of managing medical data, create faster solutions, 

and make more efficient use of computing capacity. Integration of these advanced data 

analysis techniques with biomedical systems minimizes the likelihood of human mistakes, 

thereby improves the reliability of medical devices and more importantly, the level of 

treatment for patients. Consequently, this shift in the medical industry necessitates a 

reconsideration of current concepts to develop new approaches for designing medical devices 

that can operate beyond current limitations. Instead of being objectives in themselves, the 

future development of the industry now requires automation and the replacement of human 

processes with more advanced data processing technologies. These techniques must be 

meticulously created to guarantee hardware compatibility in order to be successfully and 

effectively integrated into implantable or wearable devices that can operate in an actual 

clinical settings [7]. The data processing techniques that drive these medical devices are 

crucial to their efficacy such that contemporary healthcare would be inconceivable without 

them [7], [8], [9]. Moreover, for these methods to be useful in an actual clinical practice, they 

need to be generalizable to handle the noise and non-stationarity present in the recorded 
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medical data. In order for researchers and medical professionals to have the resources they 

require to accurately, quickly, and appropriately handle the growing amount and complexity 

of medical data, incorporating these developments into the design and implementation of 

medical devices become very important. By improving patient treatments and changing the 

field of biomedical systems design, this significant advancement has the potential to notably 

transform healthcare. 

Machine learning (ML) is one area of artificial intelligence (AI) that has recently advanced 

various applications [10], [11], including the design and implementation of biomedical 

systems and the development of their corresponding medical devices [3], [12], [13]. 

Previously incomprehensible healthcare difficulties are now much more understandable due 

to the greater insight provided by these recent, significant advances in machine learning. The 

adaptability and efficacy of machine learning techniques have been utilized across a wide 

range of healthcare sectors. More specifically, machine learning techniques have been 

utilized for the creation of more efficient brain-machine interface systems, the more accurate 

investigation of heartbeat arrhythmias, and the study of seizure occurrences for epileptic 

patients. With more demand to machine learning techniques in designing biomedical 

systems, there has been a shift in the requirements for applications used in the biomedical 

industry. At first, machine learning techniques have the potential to spot patterns in brief 

segments of intricate medical data [10], [11], [14], such as electrocardiograms (ECGs) or 

brain neuronal signals, which can be considered as a significant development in designing 

biomedical systems and medical devices for healthcare. Machine learning’s ability to 

recognize patterns makes it a valuable tool for applications that require the identification of 

complex patterns in medical data. Furthermore, the fast data assessment times provided by 

machine learning techniques are advantageous for healthcare data management applications 

requiring a fast-decision-making process. To effectively synchronize human and machine 

thoughts, rapid decision-making is an important requirement. If designed properly, machine 

learning algorithms can potentially be trained as fast as is practically possible in order to 

handle data in real-time while using less power. In addition, the application of machine 

learning algorithms has benefited the implementation of medical devices by enabling the 
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production of more accurate diagnoses [15]. The development of highly accurate machine 

learning models has promptly led to the emergence of new avenues for enhancing medical 

treatments. Furthermore, medical devices utilizing machine learning algorithms need to 

provide sufficient generalizability to adapt over time to various patient types and clinical 

environments. Recent machine learning algorithms have shown promising results in the 

development of effective biomedical systems when operating in adaptive clinical 

environments. For example, the recent machine learning techniques can now automatically 

adjust to user preferences and identify anomalies in medical data, which is only one example 

of how much progress has been made by using machine learning algorithms in healthcare. 

In due course, medical experts will possess the capability to objectively analyze the data to 

extract pertinent information and identify patterns for medical applications. Advancements 

in designing biomedical systems that enhance productivity, accuracy, or speed are highly 

valued, reflecting the healthcare industry’s swift expansion and the escalating complexity of 

workforce requirements.  

Contributing to the development of three applications with critical biomedical implications 

has been our goal since the beginning. Consequently, our research prioritizes three 

applications: Brain-Machine Interfaces (BMIs), heartbeat arrhythmia detection, and seizure 

detection, all have been selected according to the significance and complexity of the issues 

they aim to resolve. This focused approach is intentional, recognizing the indispensable role 

of BMIs in enhancing the spinal-cord injury (SCI) [5], [16] patient interaction with 

therapeutic devices, the importance of designing and implementing reliable arrhythmia 

identification and classification systems in the prevention and management of cardiovascular 

diseases, and the critical necessity of precise seizure detection for accurate epilepsy 

diagnoses. The growing importance of each application highlights the urgent need for 

focused research, driven by the significant challenges and impacts within these areas. 

Specifically, our goal is to see enhancements in medical device development and patient 

treatments stemming from our research. It is our hope that the findings of our research may 

be employed by the healthcare providers to address the existing challenges in the design, 

implementation, and utilization of medical devices in actual clinical settings. Each of these 
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applications confronts significant obstacles that are inherently tied to the medical sector, 

underscoring the need for novel solutions. 

Brain-machine interfaces (BMIs) as a relatively new area of study has the potential to 

significantly improve the lives of spinal-cord injury (SCI) patients and the patients with 

neurological disorders [2], [3], [6], [17], [18]. Since BMI systems provide direct brain-to-

machine interaction, these systems represent a significant advance in neuroscience. This 

discovery is particularly important for brain circuit-related issues, for which traditional 

treatment approaches might not be adequate. Since BMIs are inherently novel, they offer 

new opportunities and inspire optimism by introducing approaches that have the potential to 

improve treatment for SCI patients significantly. In our research, we have been creating 

motor BMIs, which have been designed specifically to accommodate the needs of tetraplegic 

individuals. This is achieved in the framework of ongoing clinical trials by implanting 

microelectrode arrays into motor regions of SCI patients. With the aid of these specialized 

BMIs, SCI patients can mentally control robotic limbs or computer cursors through a better 

understanding of the complex neurological impulses related to movement intentions. [18], 

[19], [20], [21]. We introduce data science techniques that mainly rely on machine learning 

for feature extraction and decoding in BMI systems in this work. While prioritizing features 

like real-time functionality, generalizability, and limited end-to-end training architecture, this 

strategy aims to address the shortcomings of existing BMI systems while having negligible 

effect on the complexity of training data. Our proposed methods, DRNN [5] and FENet [22], 

have the potential to increase the overall efficacy and utility of implantable electrode systems 

in the actual clinical settings. By setting this plan into action, we show our commitment to 

improving the quality of life for SCI patients with brain circuit diseases and to furthering the 

field of neurotechnology. 

Our second area of research has been the classification of arrhythmias in cardiac rhythms. In 

clinical practice, electrocardiograms (ECGs) are essential for monitoring heart health [23], 

[24]. Therefore, the precise identification and categorization of arrhythmic heartbeats are 

critical for the prevention and management of cardiovascular disease [23], [24], [25], [26]. 
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The utmost importance is placed on automation and precision, given that manual ECG 

analysis is laborious and prone to human error [12]. In response to these obstacles, we present 

EKGNet, an integrated technique that merges deep learning and analog computation in order 

to construct a classification architecture for arrhythmias designed as a fully analog system 

[27]. EKGNet not only maintains low power consumption while attaining high balanced 

accuracies, but also takes advantage of the energy efficiency of transistors functioning in the 

subthreshold region. A novel analog sequential Multiply-Accumulate (MAC) circuit is 

integrated into the system design to reduce the impact of variations in process, supply 

voltage, and temperature. In this work, we introduce an additional performance enhancement 

to EKGNet through the incorporation of analog noise and discrepancies into its Bayesian 

neural network architecture [28]. By transferring knowledge from a teacher network to 

EKGNet via knowledge distillation [29], the efficacy of the network is enhanced. 

Furthermore, to optimize hardware performance, we present an algorithm that executes 

weight fine-tuning subsequent to quantization. Our proposed techniques in arrhythmia 

detection and classification are co-designed in hardware and software to potentially improve 

cardiovascular healthcare by addressing the difficulties linked to analog circuitry and the 

requirement for precise and reliable detection. 

Turning to our third research emphasis, seizure detection is critical to our ongoing 

investigations. Epilepsy is a common neurological disorder with far-reaching consequences, 

thus accurate seizure detection is crucial for prompt diagnosis and treatment of epileptic 

patients [30]. Seizures can be identified through the utilization of low-power, implantable, 

or portable medical devices [7], [31]. The demand for real-time applications, stringent 

resource limitations, and a diverse array of potential applications beyond merely epilepsy 

serve as motivating factors for this work. Our primary focus has been on co-designing the 

algorithms with resource conservation in mind, upgrading hardware for power efficiency, 

devising patient-specific solutions, and seamlessly integrating them with existing medical 

devices. We have been working on these areas to enhance epilepsy diagnosis and treatment, 

hence improving the quality of life for epileptic individuals suffering from this neurological 

illness. Our study presents XGBoost [32], a gradient-boosted method for accurate seizure 
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classification. According to its compatibility, our co-designed XGBoost meets the 

requirements of low-power design for portable or implantable medical devices. We provide 

a hardware solution for gradient-boosted tree creation in applications with power, area, and 

delay constraints. This design is energy and space efficient according to its asynchronous 

tree operation and consecutive feature extraction. Compared to the existing methods used in 

the design of the existing medical devices, our solution decreases energy-area-delay factor 

by 27 times. Moreover, gradient-boosting allows for adaptive patient-specific tree counts 

according to its flexibility. Using this technique, we could achieve a balance between 

detection accuracy and processing time. This classifier offers significant potential for low-

power biomedical data processing beyond seizure detection. Our proposed method and the 

implemented device have the potential to be configured to run with varied energy 

requirements while still providing enhanced results for epileptic patients. Therefore, this 

work demonstrates our commitment to resource-efficient seizure detection. 

Organization: 

In the following chapters of this dissertation, the emphasis is on a detailed examination of 

the current challenges within three specific biomedical applications and the AI-driven 

solutions designed to improve their effectiveness. We will first introduce and discuss Brain-

Machine Interfaces (BMIs) in Chapter 2, which is named “Brain-Machine Interfaces for 

Enhanced Control.” In this chapter, we delve into the use of artificial intelligence, specifically 

the employment of Deep Multi-State Dynamic Recurrent Neural Networks (DRNNs) [5] and 

the Feature Engineering Network (FENet) [22], as we strive to decode complex brain signals 

with the goal of gaining improved control. Throughout this chapter, we will see how artificial 

intelligence shows its potential flexibility by effectively handling diverse brain patterns. 

Therefore, our proposed designs can potentially allow for real-time, high-precision control 

over medical devices.  

In Chapter 3, named as “Heartbeat Arrythmia Classification”, we go into the realm of cardiac 

arrhythmia classification to improve the accuracy and efficiency of analyzing recorded 

electrocardiogram (ECG) signals. In this chapter, we propose EKGNet, a fully analog 
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convolutional architecture for on-chip heartbeat arrhythmia classification [27]. We have 

co-designed EKGNet with the purpose of mastering the complexities of ECG patterns and 

highlighting the crucial relevance of real-time processing while simultaneously retaining low 

energy usage.  

As we go on to chapter 4, which we have titled as “Energy-Efficient Classification for 

Resource-Constrained Biomedical Applications,” we shift our attention to the crucial field 

of early seizure identification for epileptic patients. The detection of seizure patterns within 

brain impulses is co-designed by using a machine learning technique based on gradient-

boosted trees, named XGBoost, which is implemented in a 32-channel on-chip classifier and 

plays an important role in the application of this technology [7], [9], [33], [34]. The purpose 

of this study is to demonstrate how artificial intelligence can potentially meet the rigorous 

real-time processing requirements of seizure detection. This is accomplished by following to 

severe energy limits and adapting variances that are distinct to each individual patient.  

Through its potential ability to solve common challenges such as data complexity, real-time 

processing, resource constraints, high accuracy requirements, and flexibility, machine 

learning algorithms can empower healthcare providers and improve the quality of patient 

treatment. Consequently, these studies aimed to provide an illustration of the potential 

influence that artificial intelligence may have in addressing existing healthcare challenges, 

which will eventually be of value to patients who are dealing with a variety of medical 

diseases and neurological defects. Chapter 1 has established the introduction for our work, 

and Chapter 5, which is the concluding chapter, will summarize our work and discuss about 

future directions by explaining the role that artificial intelligence can potentially play in 

determining the future of healthcare. 
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C h a p t e r  2  

BRAIN-MACHINE INTERFACES FOR ENHANCED CONTROL 

This chapter includes three sections that explains different steps of our study to design and 

implement a BMI system. In section 2.1, we evaluate the performance of the existing neural-

network-based decoders and compare their performance with the conventional Kalman filter 

for decoding computer cursor movement kinematics from the posterior parietal cortex (PPC) 

of a tetraplegic human subject. After evaluating the performance of the current neural 

network-based decoders, in section 2.2, we introduce a new decoder named deep multi-state 

dynamic recurrent neural network (DRNN), which is tuned for robust BMI applications and 

shows enhanced performance in predicting cursor movements from neural data. This follows 

the performance comparison of DRNN with the existing neural network-based and other 

learning-based decoders. In Section 2.3, we discuss about the importance of extracting 

pertinent and informative features for improving the decoding performance in BMI systems 

and we introduce FENet, a convolutional neural network-based feature extraction technique 

that improves cursor control for tetraplegic human participants by extracting appropriate 

features for BMI applications.  

Overview 

There are about 17,700 new cases per year of Spinal Cord Injury (SCI) in the United States 

[17]. SCI results in a partial or total loss of motor function. Brain machine-interfaces (BMIs), 

technologies that communicate directly with the brain, can improve the quality of life of 

millions of patients with brain circuit disorders [18]. Motor BMIs are among the most 

powerful examples of BMI technology: Ongoing clinical trials implant microelectrode arrays 

into motor regions of tetraplegic participants. Movement intentions are decoded from 

recorded neural signals into command signals to control a computer cursor or a robotic limb 

[19], [35], [36], [37], [38], [39]. There have also been efforts to use BMI to directly control 

paralyzed muscles [19], [35] and to decode speech signals from neural data [20], [21]. Figure 

2.1.1 shows a general setup for a BMI system. BMI, in its most basic form, maps neural 
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signals into useful movement control signals and then closes the loop to enable direct 

neural control of movements. Such systems have shown promise in helping SCI patients. 

However, these systems fail to deliver the precision, speed, degrees-of-freedom, and 

robustness of control enjoyed by motor-intact individuals. Even for simple movements, such 

as moving a computer cursor to a target on a computer screen, decoding performance can be 

highly variable over time. For example, electric potentials in the cortex have small 

amplitudes and are susceptible to noise, and electrical and mechanical properties of 

implanted microelectrodes change over time. Neuronal populations may also change over 

time. As a result, BMI decoders should be able to generalize across sources of variability to 

accurately infer movement commands from changing neural signals. Furthermore, most BMI 

systems currently run on high-power computer systems. Clinical translation of these systems 

will require decoders that can adapt to changing neural conditions and which operate 

efficiently enough to run on mobile, even implantable, platforms. 

Conventionally, linear decoders have been used to find the relationship between kinematics 

and neural signals of the motor cortex. These linear algorithms used for such BMI systems 

have assumed a linear relation between inputs and outputs (e.g., Kalman filters or Wiener 

filters) [40]. For instance, Wu et al. [1] use a linear model to decode the neural activity of 

two macaque monkeys. Orsborn et al. [41] apply a Kalman filter, updating the model on 

batches of neural data of an adult monkey, to predict kinematics in a center-out task. Gilja et 

al. [36] propose a Kalman Filter to predict hand movement velocities of a monkey in a center-

out task. However, all of these algorithms can only predict piecewise linear relationships 

between the neural data and kinematics. Moreover, because of non-stationarity and low 

signal-to-noise ratio (SNR) in the recorded neural data, linear decoders need to be regularly 

re-calibrated [1]. 

Recently, nonlinear machine learning algorithms have shown promise in attaining high 

performance and robustness in BMIs. For instance, Wessberg et al. [35] apply a fully 

connected neural network to neural data recorded from a monkey. Shpigelman et al. [44] 

show that a Gaussian kernel outperforms a linear kernel in a Kernel Auto-Regressive Moving 
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Average (KARMA) algorithm when decoding 3D kinematics from macaque neural 

activity. Sussillo et al. [5] apply a large FORCE Dynamic Recurrent Neural Network (F-

DRNN) on neural data recorded from the primary motor cortex in two monkeys, and then 

they test the stability of the model over multiple days [4]. Zhang et al. [45] and Schwemmer 

et al. [14] extract wavelet-based features of motor cortex neural data of a human subject to 

classify intended hand movements by using a nonlinear support vector machine (SVM) and 

a large deep neural network, respectively. Hosman et al. [46] pass motor cortex neural firing 

rates to an LSTM and a Kalman filter to compare their performances for decoding intended 

cursor velocity of a human subject. These nonlinear learning-based decoders have shown 

more stability over multiple days and have improved performance compared to prior linear 

methods. However, they all have been applied to motor cortex data by mostly using neural 

firing rates as input features, which show more variability over long periods [1]. Recent work 

has demonstrated that neural activity in the posterior parietal cortex (PPC) can be used to 

support BMIs [2], [6], [7], [17], [47], [48], although the encoding of movement kinematics 

appears to be complex. PPC processes a rich set of high-level aspects of movement including 

sensory integration, planning, and execution [2] and may encode this information differently 

[48]. These characteristics of PPC differentiate it from other brain areas and, while providing 

a large amount of information to the decoder, also require new paradigms, such as those 

discussed here, to extract useful information. Therefore, extracting appropriate neural 

features and designing a robust decoder that can model this relationship in an actual BMI 

setting is required. 

2.1    Decoding Kinematics from Human Parietal Cortex using Neural Networks 

In this first section, we introduce our initial study focused on decoding kinematics from the 

posterior parietal cortex (PPC) of a tetraplegic human participant using brain-machine 

interfaces (BMIs) [16]. Our study employs advanced neural network models, including Deep 

Neural Network (DNN) [42], SimpleRNN (RNN) [43], and Long-Short Term Memory 

Recurrent Neural Network (LSTM) [44], and compare them with Kalman filter [41] as a  
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Figure 2.1.1. General setup of a Brain-Machine Interface (BMI) system. BMIs enable direct control of 

computers, prosthetics, and other peripheral devices by reading out and decoding brain activity. Advanced 

machine learning paradigms such as neural networks may be capable of learning the potentially complex 

relationship between recorded neural activity and control signals for these peripheral devices. 

conventional decoder used for BMIs, to evaluate the performance of these neural-network-

based decoders for translating neural signals into cursor movement kinematics during a 2D 

center-out task [16]. The subsequent discussion highlights the motivations, experimental 

setup, decoding algorithms, and key findings, offering a comprehensive overview of the 

study’s objectives and outcomes. 

The data used for training was recorded from the parietal lobe of a tetraplegic subject while 

the subject performed a 2D center-out task using motor imagery. We use Pearson Correlation 

Coefficient (ρ) as an accuracy metric. We report the accuracy of these decoders in open loop 

configuration, i.e., where the subject uses motor imagery while observing the task but is not 

in the control loop. 

2.1.1. Architecture for the BMI System and Methods 

In this sub-section, we will describe the architecture of the BMI system used in this study 

and the methods used to collect and process the neural data. The BMI system in this study 

consists of three main components: implanted electrodes, neural signal processing, and a 

decoder. The implanted electrodes record the electrical activity of neurons in the brain. The 
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Figure 2.1.2. System architecture for decoding neural signals into relevant kinematics. Broadband recorded data 

were band pass filtered (250 Hz - 5 KHz) and thresholded at −4 times the noise RMS. Threshold crossing 

timestamps were binned in no overlapping 50ms intervals and smoothed to estimate the instantaneous threshold 

crossing rate. Decoding algorithms map these input features to corresponding X and Y coordinates of the cursor 

on screen. 

neural signal processing component preprocesses the neural signals to identify neuronal 

action potentials and create spike train features for the decoder. The decoder uses the spike 

train features to predict the person’s intended movement direction. In the following 

subsections, we will discuss each of these components in more detail. 

2.1.1.1. Subject, Implanted Electrodes, and Recording 

As part of our FDA- and IRB-approved study, two 96-channel Utah microelectrode arrays 

(Blackrock Microsystems, Inc., Salt Lake City, UT, USA) were implanted in the posterior 

parietal cortex (PPC) of a 32-year-old tetraplegic subject (EGS) with spinal cord lesions at 

C5-C6: one on the medial bank of the anterior intraparietal sulcus (AIP), and a second in 

Brodmann’s area 5 (BA5) [2] (Figure 2.1.2). Data were recorded at 30,000 samples/sec. 

2.1.1.2. Preprocessing the Neural Data 

Figure 2.1.2 shows a top-level block diagram of a BMI system. Broadband data were filtered 

(Butterworth filter, 250 Hz - 5 KHz) and thresholded at −4 times the noise RMS of each 

channel to identify neuronal action potentials. These spiking events were binned at 50 ms 
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intervals and smoothed to create spike train features for the decoding algorithms. To match 

the online case as closely as possible, action potential waveforms were not sorted, and spike 

trains were computed from the raw threshold crossings. The spikes recorded from both the 

electrodes were processed as described above and used as features for the decoder. 

2.1.1.3. Center-Out Reaching Task 

In this work, we use neural and behavioral data collected during the open-loop phase of a 2D 

center-out brain-control task. In this phase of the task, a cursor moves under computer 

control, with a minimum-jerk velocity profile, from the center of a computer screen to one 

of eight different target locations arranged uniformly around a unit circle, while the subject 

uses motor imagery to imagine controlling the cursor. Data is collected in three-minute 

blocks, each block consisting of 53 trials, with a pseudorandom uniform distribution of 

targets across trials. The dataset underlying this work consists of five such blocks recorded 

on the same day. 

2.1.2. Decoding Algorithms  

We used this recorded neural data to compare decoding performance between a Kalman filter 

asa conventional decoding technique used in BMI systems, with the performance of DNN, 

SimpleRNN, and LSTM. LSTM and SimpleRNN algorithms are used for this work since the 

prediction task and the input neural data are sequential. 

2.1.2.1 Kalman Filter 

The Kalman Filter [41] combines the idea that kinematics are function of neural firings as 

well as the idea that neural activity is a function of movements, or the kinematics. This can 

be represented by two equations: 

                                                     �𝑦𝑦�𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑦𝑦�𝑘𝑘 + 𝑤𝑤𝑘𝑘
𝑢𝑢𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑦𝑦�𝑘𝑘 + 𝑞𝑞𝑘𝑘

                                      Equation 2.1.1 
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These represent how the system evolves over time as well as how neural activity is 

generated by the system’s behavior. The matrices 𝐴𝐴,𝐻𝐻,𝑄𝑄, and 𝑊𝑊 can be found through a 

training process (where 𝑞𝑞  ~𝒩𝒩(0,𝑄𝑄) and 𝑤𝑤 ~ 𝒩𝒩(0,𝑊𝑊). Using properties of the conditional 

probabilities of kinematics and neural data, we get a closed form solution for maximizing the 

joint probability 𝑝𝑝(𝑌𝑌𝑀𝑀,𝑈𝑈𝑀𝑀). Using the physical properties of the problem, we get matrix 𝐴𝐴 

to be of the form: 

                                                 𝐴𝐴 = �

1 0 𝑑𝑑𝑑𝑑 0
0 1 0 𝑑𝑑𝑑𝑑
0 0 𝑎𝑎 𝑏𝑏
0 0 𝑐𝑐 𝑑𝑑

�                                   Equation 2.1.2 

where 𝐴𝐴𝑣𝑣 is defined as: 

                                              𝐴𝐴𝑥𝑥 =  �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� = 𝑋𝑋2𝑋𝑋1𝑇𝑇(𝑋𝑋1𝑋𝑋1𝑇𝑇)−1                            Equation 2.1.3 

𝑋𝑋1 consists of the position kinematics points except for the last time step, 𝑋𝑋2 consists of the 

position kinematics points except for the first time step, and 𝑑𝑑𝑑𝑑 is the time step size used (in 

our case, 50ms for our subject, EGS). 

Furthermore, 𝑊𝑊 is a zero matrix with the matrix 𝑊𝑊𝑢𝑢 = 1
𝑁𝑁−1

(𝑋𝑋2 − 𝐴𝐴𝑋𝑋1)(𝑋𝑋2 − 𝐴𝐴𝑋𝑋1)𝑇𝑇 in the 

bottom right corner. 𝐻𝐻 and 𝑄𝑄 are given by: 

                                            �
𝐻𝐻 =  𝑈𝑈𝑇𝑇𝑌𝑌(𝑌𝑌𝑌𝑌𝑇𝑇)−1

𝑄𝑄 =  1
𝑁𝑁

(𝑈𝑈 − 𝐻𝐻𝐻𝐻)(𝑈𝑈 − 𝐻𝐻𝐻𝐻)−1                                Equation 2.1.4 

Then, we can use the update equations: 

                                           

⎩
⎨

⎧
𝑦𝑦�𝑘𝑘− = 𝐴𝐴𝑦𝑦�𝑘𝑘−1
𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑃𝑃𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝑊𝑊
𝑦𝑦�𝑘𝑘 =  𝑦𝑦�𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑢𝑢𝑘𝑘 − 𝐻𝐻𝑦𝑦�𝑘𝑘−)
𝑃𝑃𝑘𝑘 = (1 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘−

                                 Equation 2.1.5 

Here, 𝑃𝑃 is the covariance matrix of the kinematics. 𝐾𝐾𝑘𝑘, the Kalman filter gain is given by: 
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                                             𝐾𝐾𝑘𝑘 =  𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇 + 𝑄𝑄)−1                             Equation 2.1.6 

2.1.2.2 Deep Neural Network (DNN) 

In a fully connected neural network [42], there are multiple layers: an input layer, output 

layer, and any number of hidden layers with multiple nodes in each hidden layer. The output 

of each node in each layer is connected to the input of each node in the consecutive layer. 

Each node performs of ∑ 𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 , where 𝑥𝑥𝑖𝑖 is each input from the nodes in the previous 

layer and 𝑊𝑊𝑖𝑖 is the weight of the connection between the node in the previous layer and this 

current node. The output is then converted to a normalized range using a function such as 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ to get values between -1 and 1. 𝑊𝑊𝑖𝑖 is trained through a process called back-propagation 

that trains the network on the inputs and finds the error, iteratively minimizing the loss 

function until the error stays relatively constant. 

2.1.2.3 Long-Short Term Recurrent Neural Network (LSTM) 

It is well-known that Simple RNN units cannot remember long term dependencies in 

sequential data because of the vanishing gradients problem [10]. Another version of RNNs 

that is widely used in the literature are RNNs with Long-Short Term Memory (LSTM) units 

[44]. By denoting ∘ as Hadamard product, the LSTM is defined as: 

                                       

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑓𝑓𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑓𝑓𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑓𝑓𝑓𝑓𝑟𝑟𝑘𝑘−1 + 𝑏𝑏𝑓𝑓)
𝑖𝑖𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑖𝑖𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘−1 + 𝑏𝑏𝑖𝑖)
𝑜𝑜𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑜𝑜𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑜𝑜𝑜𝑜𝑟𝑟𝑘𝑘−1 + 𝑏𝑏𝑖𝑖)
𝑐𝑐𝑢𝑢 = tanh(𝑊𝑊𝑐𝑐𝑐𝑐𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑟𝑟𝑘𝑘−1 + 𝑏𝑏𝑐𝑐)
𝑐𝑐𝑘𝑘 =  𝑓𝑓𝑘𝑘 ∘ 𝑐𝑐𝑘𝑘−1 + 𝑖𝑖𝑘𝑘 ∘ 𝑐𝑐𝑘𝑘−1
𝑟𝑟𝑘𝑘 =  𝑜𝑜𝑘𝑘 ∘ tanh (𝑐𝑐𝑘𝑘)
𝑦𝑦�𝑘𝑘 = 𝑊𝑊𝑦𝑦𝑦𝑦𝑟𝑟𝑘𝑘 + 𝑏𝑏𝑦𝑦

                   Equation 2.1.7 

𝑟𝑟𝑘𝑘 is the hidden state as in Simple RNN, 𝑐𝑐𝑢𝑢 is the output from the cell update activation 

function, 𝑐𝑐𝑘𝑘 is the LSTM cell’s internal state, 𝑓𝑓𝑘𝑘, 𝑖𝑖𝑘𝑘, and 𝑜𝑜𝑘𝑘 are the output matrices from the 

respective forget, input, and output activation functions, which act as the LSTM’s gates, 𝑊𝑊 

and 𝑏𝑏 represent the weights and biases, and 𝜎𝜎 is the sigmoid function.  
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2.1.2.4 Recurrent Neural Network (SimpleRNN) 

A vanilla recurrent neural network [43] with 𝑁𝑁 hidden nodes for regression is defined as: 

                                           �
𝑟𝑟𝑘𝑘 = tanh (𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘−1 + 𝑊𝑊𝑟𝑟𝑟𝑟𝑢𝑢𝑘𝑘 + 𝑏𝑏𝑟𝑟)
𝑦𝑦�𝑘𝑘 = 𝑊𝑊𝑦𝑦𝑦𝑦𝑟𝑟𝑘𝑘 + 𝑏𝑏𝑦𝑦

                        Equation 2.1.8 

where 𝑟𝑟 ∈ ℝ𝑁𝑁, 𝑦𝑦�  ∈  ℝ𝑀𝑀, and 𝑢𝑢 ∈  ℝ𝐼𝐼 are the state, prediction, and input vectors, 

respectively, 𝑊𝑊𝑟𝑟𝑟𝑟 ∈ ℝ𝑁𝑁×𝑁𝑁, 𝑊𝑊𝑟𝑟𝑟𝑟 ∈ ℝ𝑁𝑁×𝐼𝐼, and 𝑊𝑊𝑦𝑦𝑦𝑦 ∈ ℝ𝑀𝑀×𝑁𝑁 are the weight matrices, 𝑏𝑏𝑟𝑟 ∈ ℝ𝑁𝑁 

and 𝑏𝑏𝑦𝑦 ∈ ℝ𝑀𝑀 are the biases. 

Because of the internal state 𝑟𝑟, which acts as a history unit, the RNN is capable of 

remembering and extracting short term temporal dependencies in sequential data. 

Therefore, to find the spatio-temporal relationship between the recorded neural data 

and kinematics as sequential data, we train an RNN with optimal parameters and 

compare its performance with the DRNN. 

2.1.3. Training and Result Accuracy of the Decoders 

The data were divided into training (80%), validation (10%) and test sets (10%). Training 

data was normalized to have zero mean and standard deviation of one to improve training 

algorithm convergence, but test and validation data were normalized using scales learned 

from the training data. Time bins in which the cursor did not move (zero velocity) were 

excluded from analysis. In the case of the neural networks, separate decoders were trained 

for predicting X and Y coordinates (Figure 2.1.3(a)). 

The standard Kalman filter uses a model of the kinematic system, and a linear model of the 

relationship between the kinematics and the neural data, to form new estimates of the 

kinematics from noisy measurements of neural data [40]. Variants of the Kalman filter 

support nonlinear dynamics, but in general, Kalman filters require the researcher to establish 

a model of the dynamical system. In contrast, neural networks learn the model from training 

data.  



 

 

38 
 

 

 

 

                                        (a)                                                                                      (b) 

Figure 2.1.3. Output of the decoding algorithm. (a) For the neural network algorithms, two separate decoders 

are used to predict X and Y position of the cursor. (b) A block diagram of RNN [45] with a single dense layer 

for regression. Also, an unrolled block diagram of RNN with multiple time-steps. The RNN unit can be either 

a fully connected SimpleRNN cell or an LSTM unit cell. 

We used two different neural network architectures: DNN and RNN. A DNN is a 

feedforward network with multiple layers and several nodes at each layer. The output of each 

node has a nonlinear activation function. DNNs with two layers have been shown to be a 

universal approximator [10]. A RNN is composed of feedforward network as well as a 

feedback network, meaning that all previous outputs are integrated to predict the next time-

step (Figure 2.1.3(b)). RNNs also use previous time steps’ input data when computing a new 

prediction. We tested two variants of RNN: one with LSTM unit cell [44] and one with the 

SimpleRNN unit cell [45]. 

The neural networks were trained using Keras with tensorflow backend and incorporate L1 

regularization and 35% dropout for both the kernel and biases to reduce overfitting. 

RMSProp optimizer was used for training the network [13]. All three neural networks use 

the hyperbolic tangent as an activation function and incorporate a dense layer with one node 

and a linear activation function at the output to perform regression. Network parameters were 

heuristically tuned; future studies will explore optimization techniques to tune these 

parameters for higher accuracy. In general, optimization techniques such as Bayesian 

optimization, grid search, random search etc. are used to choose optimal network parameters. 

The number of layers and nodes used for decoding were nominal to avoid overfitting, but  



 

 

39 
 

Table 2.1.1. Parameters for the Neural Networks 

Decoder Nodes Layers Previous Neural Bins Activation Function 

LSTM 10 (X), 50 (Y) LSTM + NN 40 tanh 

RNN 25 (X), 25 (Y) SimpleRNN + NN 20 tanh 

DNN 25 (X), 25 (Y) NN + NN 1 tanh 

 

 

Table 2.1.2. Pearson Correlation Coefficient ρ For Each Decoder 

 Kalman Filter DNN SimpleRNN LSTM 

X 0.24 0.20 0.46 0.47 

Y 0.48 0.39 0.77 0.75 

 

with a larger dataset one could increase the size of the network to predict with consistent 

accuracy. 

Table 2.1.1 summarizes the parameters used for training these neural networks. The DNN 

had two layers with the first layer of the DNN composed of 25 nodes. The LSTM network 

for X position was set to 10 nodes with 40 time-steps of prior neural data, and the Y position 

was set to 50 nodes with 40 time-steps. The SimpleRNN network used 25 nodes and 20 time-

steps of previous neural data for both X and Y coordinates. 

Table 2.1.2 shows the accuracy of the four different decoders. The RNN algorithms, with the 

ability to incorporate historical data to compute new predictions, achieved the highest 

performance. The DNN exhibited the lowest performance, likely because it uses only a single 

time step of neural data to predict the current kinematics. The Kalman filter performed better 

than the DNN, perhaps also because its iterative nature 2.1.4(b) show the predicted X and Y 
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                                          (a)                                                                                     (b) 

 

                               

 

  

                                           (c)                                                                                      (d) 

Figure 2.1.4. The predictions of the Decoders, (a) Output of a RNN with LSTM unit cell predicting the X 

coordinates of the cursor (ρ = 0.47). (b) Output of a RNN with LSTM unit cell predicting the Y coordinates of 

the cursor (ρ = 0.75). (c) Output of the decoder with SimpleRNN unit cell predicting X-coordinates of the cursor 

(ρ = 0.46). (d) Output of a RNN with SimpleRNN unit cell predicting the Y coordinates of the cursor (ρ = 0.77). 

coordinates of the cursor for the LSTM unit cell with a ρ of 0.47 and 0.75, respectively, and 

figure 4(c) and figure 4(d) show the predicted X and Y coordinates of the cursor with a ρ of 

0.46 and 0.77. 

2.1.4. Summary 

In this work we evaluated the performance of several different neural networks as the 

decoding techniques and compare their performance to a standard Kalman filter. Algorithms 

with the ability to incorporate historical data and network state demonstrated the highest 

performance (LSTM and SimpleRNN with the highest accuracies, and the Kalman filter with 

the next highest performance). LSTM also has the ability to recognize long-term 
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dependencies in the data. Network paradigms with interconnected nodes and integration 

of historical data and states, such as the RNN variants tested in this work, may prove critical 

to first capturing the complexities of the relationship between neural activity and kinematic 

output, and second providing stable performance for BMI users. Our results showed a large 

difference in performance between X- and Y-dimension kinematics for this research 

participant. These differences are most likely attributable to the specific neuronal population 

recorded for the data used in this work, which may comprise different proportions of neurons 

modulated by movement in either axis. It is also possible that the research participant’s 

cognitive strategy led to these differences. Further data must be collected to understand the 

source of these differences. Future work will test RNN decoders in closed loop to evaluate 

how well a human subject can use them for cursor control. Stability of the decoder over 

multiple days will also be evaluated. Also, this will determine whether the capability of the 

LSTM to capture long-term dependency leads to better performance over time. 

While these algorithms are powerful in their capacity to capture complex relationships, they 

currently require power-hungry computational resources to operate. Part of making BMI 

systems clinically relevant is to design and develop size- and power-efficient hardware for 

decoding kinematics such that these systems can be implanted or worn on the body. Future 

directions would involve exploring such novel algorithms and energy-efficient hardware. 
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2.2. Deep Multi-State Dynamic Recurrent Neural Networks Operating on Wavelet 

Based Neural Features for Robust Brain-Machine Interfaces 

After evaluating the performance of advanced machine learning algorithms on threshold 

crossings (TCs) as the extracted neural features, in this section, we present a new decoder, 

named deep multi-state Dynamic Recurrent Neural Network (DRNN) [5] architecture, which 

is designed for Brain Machine Interface (BMI) applications to address the challenges of 

performance, robustness, and potential hardware implementation. Our DRNN is used to 

predict Cartesian representation of a computer cursor movement kinematics from open-loop 

neural data recorded from the posterior parietal cortex (PPC) of a human subject in a BMI 

system. First, we refer to two theorems to show the stability, convergence, and potential of 

DRNNs for approximation of state-space trajectories. We then design an algorithm to 

achieve a reasonable trade-off between performance and robustness, and we constrain 

memory usage in favor of future hardware implementation. We feed the predictions of the 

network back to the input to improve the prediction performance and robustness. During the 

training of the model, we apply a scheduled sampling approach to the model in order to solve 

a statistical distribution mismatch between the ground truth and predictions during inference. 

Additionally, we configure a small DRNN to operate with a short history of input, reducing 

the required buffering of input data and number of memory accesses. This configuration 

lowers the expected power consumption in a neural network accelerator. By extracting 

different neural features, we compare the performance and robustness of the DRNN with the 

existing methods in the literature to predict hand movement kinematics from open-loop 

neural data. Our BMI data are recorded from the PPC of a human subject over 43 days. 

Operating on wavelet-based neural features, we show that the average performance of DRNN 

surpasses other state-of-the-art methods in the literature on both single- and multi-day data 

recorded over 43 days. Results show that multi-state DRNN has the potential to model the 

nonlinear relationships between the neural data and kinematics for robust BMIs. 

2.2.1. Dynamic Recurrent Neural Networks 

A general structure of a discrete-time DRNN is given by the following expressions: 



 

 

43 

                           �
𝑠𝑠𝑘𝑘 = −𝑎𝑎𝑠𝑠𝑘𝑘−1 + 𝑓𝑓(𝑊𝑊𝑠𝑠𝑠𝑠, 𝑠𝑠𝑘𝑘−1,𝑊𝑊𝑠𝑠𝑠𝑠,𝑢𝑢𝑘𝑘, 𝑏𝑏𝑠𝑠)
𝑦𝑦�𝑘𝑘 = 𝑊𝑊𝑦𝑦ℎ(𝑙𝑙)ℎ𝑘𝑘

(𝑙𝑙) + 𝑏𝑏𝑦𝑦
                        Equation 2.2.1 

where 𝑠𝑠 ∈  ℝ𝑁𝑁, 𝑦𝑦�𝑘𝑘  ∈  ℝ𝑀𝑀 , and 𝑢𝑢 ∈  ℝ𝐼𝐼 are the state, prediction, and the input vectors, 

respectively, 𝑊𝑊𝑠𝑠𝑠𝑠  ∈  ℝ𝑁𝑁×𝑁𝑁, 𝑊𝑊𝑠𝑠𝑠𝑠  ∈  ℝ𝑁𝑁×𝐼𝐼, and 𝑊𝑊𝑦𝑦𝑦𝑦  ∈  ℝ𝑀𝑀×𝑁𝑁 are the weight matrices, 𝑎𝑎 ∈

[−1,1] is a constant controlling state decaying, 𝑏𝑏𝑠𝑠  ∈  ℝ𝑁𝑁, and 𝑏𝑏𝑦𝑦  ∈  ℝ𝑀𝑀 are the biases, and 

𝑓𝑓:ℝ𝑁𝑁 × ℝ𝐼𝐼 → ℝ𝑁𝑁 is a vector-valued function. 

2.2.1.1. Approximation of State-Space Trajectories  

Theorem 2.2.1 verifies the approximation capability of DRNNs for the discrete-time and 

non-linear systems. 

Theorem 2.2.1. Let 𝑆𝑆 ⊂ ℝ𝑀𝑀 and 𝑈𝑈 ⊂ ℝ𝐼𝐼 be open sets, 𝐷𝐷𝑆𝑆  ⊂ 𝑆𝑆 and 𝐷𝐷𝑈𝑈  ⊂ 𝑈𝑈 be compact sets, 

and 𝑓𝑓: 𝑆𝑆 × 𝑈𝑈 → ℝ𝑀𝑀 be a continuous vector-valued function which defines the following 

non-linear system 

                                                  𝑧𝑧𝑘𝑘 = 𝑓𝑓(𝑧𝑧𝑘𝑘−1,𝑢𝑢𝑘𝑘), 𝑧𝑧 ∈ ℝ𝑀𝑀,𝑢𝑢 ∈ ℝ𝐼𝐼                  Equation 2.2.2 

with an initial value , 𝑧𝑧0 ∈ 𝐷𝐷𝑆𝑆. Then for an arbitrary number 𝜖𝜖 > 0, and an integer 0 < 𝐿𝐿 <

∞, there exist an integer 𝑁𝑁 and a DRNN of the form Equation 2.2.1 with an appropriate 

initial state 𝑠𝑠0 such that for any bounded input 𝑢𝑢:ℝ+ = [0, +∞) → 𝐷𝐷𝑈𝑈 

                                                            max
0≤𝑘𝑘≤𝐿𝐿

||𝑧𝑧𝑘𝑘 − 𝑠𝑠𝑘𝑘|| < 𝜖𝜖                              Equation 2.2.3 

Proof: See [46]. 

2.2.1.2. Local Stability and Convergence of DRNNs 

Learning rate (𝛾𝛾) plays the main role in stability and convergence of neural networks. By 

using Lyapunov theorem, we define the range of the learning rate to guarantee the real-time 

convergence of DRNNs and the stability of the system during the whole control process. 
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Theorem 2.2.2. If an input series of internal dynamic neural network can be activated in 

the whole control process subject to  𝑢𝑢𝑘𝑘 ∈  ℝ𝐼𝐼, then learning rate satisfies  

                                                               0 < 𝛾𝛾 < 2
𝑟𝑟2

                                       Equation 2.2.4 

where 𝑟𝑟 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝑒𝑒 =  𝑦𝑦� − 𝑦𝑦 is the difference of prediction and ground-truth, and 𝑊𝑊 is the 

concatenation of connection weights of each network unit. Then Equation 2.2.3 ensures the 

system is exponentially convergent. 

Proof: see [47]. 

2.2.1.3 Deep multi-state dynamic recurrent neural network 

A DRNN is a nonlinear dynamic system described by a set of differential or difference 

equations. It contains both feed-forward and feedback synaptic connections. In addition to 

the recurrent architecture, a nonlinear and dynamic structure enables it to capture time-

varying spatiotemporal relationships in the sequential data. Moreover, because of state 

feedback, a small recurrent network can be equivalent to a large feed-forward network. 

Therefore, a recurrent network will be computationally efficient, especially for the 

applications that require hardware implementation [46]. We define our deep multi-state 

DRNN at each time step k as below: 

             

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑠𝑠𝑘𝑘 = 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘−1 + 𝑊𝑊𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘−1 + 𝑊𝑊𝑠𝑠𝑠𝑠𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑠𝑠𝑠𝑠𝑧𝑧𝑘𝑘−1 + 𝑏𝑏𝑠𝑠)
𝑟𝑟𝑘𝑘 = tanh(𝑠𝑠𝑘𝑘)
ℎ𝑘𝑘

(1) = tanh (𝑊𝑊ℎ(1)ℎ(1)ℎ𝑘𝑘−1
(1) + 𝑊𝑊ℎ(1)𝑟𝑟𝑟𝑟𝑘𝑘 + 𝑏𝑏ℎ(1))

ℎ𝑘𝑘
(𝑖𝑖) = tanh (𝑊𝑊ℎ(𝑖𝑖)ℎ(𝑖𝑖)ℎ𝑘𝑘−1

(𝑖𝑖) + 𝑊𝑊ℎ(𝑖𝑖)ℎ(𝑖𝑖−1)ℎ𝑘𝑘−1
(𝑖𝑖−1) + 𝑏𝑏ℎ(𝑖𝑖))

𝑦𝑦�𝑘𝑘 = 𝑊𝑊𝑦𝑦ℎ(𝑙𝑙)ℎ𝑘𝑘
(𝑙𝑙) + 𝑏𝑏𝑦𝑦

𝑦𝑦�𝑘𝑘 = tanh(𝑦𝑦�𝑘𝑘) , |𝑦𝑦�𝑘𝑘| > 1
𝑧𝑧𝑘𝑘 ← 𝑦𝑦�𝑘𝑘 𝑜𝑜𝑜𝑜 𝑦𝑦𝑘𝑘(𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

          Equation 2.2.5 

𝑠𝑠 ∈  ℝ𝑁𝑁 is the activation variable, and 𝑟𝑟 ∈  ℝ𝑁𝑁 is the vector of corresponding firing rates. 

These two internal states track the first- and zero-order differential features of the system,  
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Figure 2.2.1. Training DRNN on a sample sequence of input data with length ∆𝑘𝑘. 

respectively. Unlike conventional DRNNs, 𝑊𝑊𝑠𝑠𝑠𝑠  ∈  ℝ𝑁𝑁×𝑁𝑁 generalizes the dynamic structure 

of our DRNN by letting the network learn the matrix relationship between present and past 

values of 𝑠𝑠. 𝑊𝑊𝑠𝑠𝑠𝑠  ∈  ℝ𝑁𝑁×𝑁𝑁 describes the relationship between 𝑠𝑠 and 𝑟𝑟. 𝑊𝑊𝑠𝑠𝑠𝑠  ∈  ℝ𝑁𝑁×𝑁𝑁 relates 

𝑠𝑠 to the input vector 𝑢𝑢. 𝑧𝑧 ∈  ℝ𝑀𝑀 models the added prediction feedback in our DRNN. 𝑊𝑊𝑠𝑠𝑠𝑠  ∈

 ℝ𝑁𝑁×𝑀𝑀 tracks the effect of 𝑧𝑧 on 𝑠𝑠. 𝑖𝑖 ∈ { 2,3, … , 𝑙𝑙} and 𝑙𝑙 is the number of layers, 𝑁𝑁𝑖𝑖 is the 

number of hidden units in 𝑖𝑖th layer, ℎ(𝑖𝑖)  ∈  ℝ𝑁𝑁𝑖𝑖 is the hidden state of the 𝑖𝑖th hidden layer, 

𝑊𝑊ℎ(1)𝑟𝑟  ∈  ℝ𝑁𝑁1×𝑁𝑁 , 𝑊𝑊ℎ(𝑖𝑖)ℎ(𝑖𝑖) ∈  ℝ𝑁𝑁𝑖𝑖×𝑁𝑁𝑖𝑖, 𝑊𝑊ℎ(𝑖𝑖)ℎ(𝑖𝑖−1)  ∈  ℝ𝑁𝑁𝑖𝑖×𝑁𝑁𝑖𝑖−1, 𝑊𝑊𝑦𝑦ℎ(𝑙𝑙) ∈  ℝ𝑀𝑀×𝑁𝑁𝑙𝑙, 𝑏𝑏𝑠𝑠  ∈

 ℝ𝑁𝑁 , 𝑏𝑏ℎ(𝑖𝑖)  ∈  ℝ𝑁𝑁𝑖𝑖 are the weights and biases of the network. All the parameters are learnable 

in our DRNN. Although feed-forward neural networks usually require a deep structure, 

DRNNs generally need fewer than three layers. Algorithm 2.2.1 shows the training 

procedure. Inference is performed by using equation 2.2.1. Figure 2.2.1 shows the schematic 

of a two-layer DRNN operating on a sample sequence of input data with length Δ𝑘𝑘. 

During inference, since the ground truth values are unavailable, the feedback, 𝑧𝑧𝑘𝑘, has to be 

replaced by the previous network predictions. However, the same approach cannot be applied 

during training since the DRNN has not been trained yet and it may cause poor performance 

of the DRNN. On the other hand, statistical discrepancies between ground truth and 
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predictions mean that prior ground truth cannot be passed to the input. Because of this 

disparity between training and testing, the DRNN may enter unseen regions of the state-

space, leading to mistakes at the beginning of the sequence prediction process. Therefore, we 

should find a strategy to start from the ground truth distribution and move toward the 

predictions’ distribution slowly as the DRNN learns. 

There exist several approaches to address this issue. Beam search generates several target 

sequences from the ground truth distribution [48]. However, for continuous state-space 

models like recurrent networks, the effective number of generated sequences remains small. 

SEARN is a batch approach that trains a new model according to the current policy at each 

iteration. Then, it applies the new model on the test set to generate a new policy which is a 

combination of the previous policy and the actual system behavior [49]. In our 

implementation, we apply scheduled sampling which can be implemented easily in the online 

case and has shown better performance than others [50]. 

In scheduled sampling, at the 𝑖𝑖th epoch of training, the model pseudorandomly decides 

whether to feed ground truth (probability 𝑝𝑝𝑖𝑖) or a sample from the predictions’ distribution 

(probability (1 − 𝑝𝑝𝑖𝑖)) back to the network, with probability distribution modeled by 

𝑃𝑃(𝑦𝑦𝑘𝑘−1|𝑟𝑟𝑘𝑘−1). When 𝑝𝑝𝑖𝑖 = 1, the algorithm selects the ground truth, and when 𝑝𝑝𝑖𝑖 = 0, it 

works in Always-Sampling mode. Since the model is not well trained at the beginning of the 

training process, we adjust these probabilities during training to allow the model to learn the 

predictions’ distribution. Among the various scheduling options for 𝑝𝑝𝑖𝑖 [50], we select linear 

decay, in which 𝑝𝑝𝑖𝑖 is ramped down linearly from 𝑝𝑝𝑠𝑠 to pf at each epoch e for the total number 

of epochs, 𝐸𝐸: 

                                                                𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑓𝑓−𝑝𝑝𝑠𝑠
𝐸𝐸

𝑒𝑒 + 𝑝𝑝𝑠𝑠                                   Equation 2.2.6 

2.2.2 Other Methods 

Since all of these methods are well-known in the literature, we only provide a brief 

explanation of each here. We explain the F-DRNN with details since our network is a  
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Algorithm 2.2.1: Training – DRNN with Feedback 
1: Require: 𝐸𝐸, 𝑝𝑝𝑓𝑓, 𝑝𝑝𝑠𝑠 
2: for 𝑒𝑒 = 1 to 𝐸𝐸 do  
3:       𝑝𝑝𝑖𝑖 =  𝑝𝑝𝑓𝑓− 𝑝𝑝𝑒𝑒

𝐸𝐸
𝑒𝑒 + 𝑝𝑝𝑠𝑠 

4:        for 𝑖𝑖 = 1 to 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑒𝑒𝑒𝑒 do 
5:             Require: 𝑢𝑢, 𝑦𝑦: Input and ground truth 
6:             if 𝑖𝑖 = 1 then 
7:                 𝑧𝑧 = 𝑦𝑦 
8:             end if 
9:             𝑠𝑠 ← 𝑁𝑁(0,𝜎𝜎𝑠𝑠), 𝑟𝑟 ← tanh (𝑠𝑠)        
10:           if 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2 then 
11:                ℎ ← 0 
12:           end if 
13:           for 𝑘𝑘 = 2 to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ do  
14:                 𝑠𝑠𝑘𝑘 =  𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘−1 + 𝑊𝑊𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘−1 + 𝑊𝑊𝑠𝑠𝑠𝑠𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑠𝑠𝑠𝑠𝑧𝑧𝑘𝑘−1 + 𝑏𝑏𝑠𝑠 
15:                 𝑟𝑟𝑘𝑘 = tanh (𝑠𝑠𝑘𝑘) 
16:                 if 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 then 
17:                      𝑦𝑦�𝑘𝑘 = 𝑊𝑊𝑦𝑦𝑦𝑦𝑟𝑟𝑘𝑘 + 𝑏𝑏𝑦𝑦 
18:                 else if 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2 then 
19:                      ℎ𝑘𝑘 = tanh (𝑊𝑊ℎℎℎ𝑘𝑘−1 + 𝑊𝑊ℎ𝑟𝑟𝑟𝑟𝑘𝑘 + 𝑏𝑏ℎ) 
20:                      𝑦𝑦�𝑘𝑘 = 𝑊𝑊𝑦𝑦ℎℎ𝑘𝑘 + 𝑏𝑏𝑦𝑦 
21:                 end if 
22:                 if |𝑦𝑦�𝑘𝑘| > 1 then      
23:                     𝑦𝑦�𝑘𝑘 = tanh (𝑦𝑦�𝑘𝑘)  
24:                 end if  
25:                 Update weights and biases: BPTT 
26:           end for 
27: end for 

 

generalization of the F-DRNN, with all the parameters to be learnable. For more information, 

please take a look at the main references. We used Pytorch, Keras, Scikit-learn and Python 

2.7 for simulations [51], [52], [53]. 

2.2.2.1. Latent Factor Analysis via Dynamical Systems (LFADS)  

Latent Factor Analysis via Dynamical Systems (LFADS) [54] works by modeling a 

dynamical system that can generate neural data. The algorithm models the nonlinear vector 

valued function F that can infer firing rates using neural data input. The LFADS system is a 

generalization of variational auto-encoders that can be used with sequences of data, to model 
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the time-varying aspect of neural signals. We use observed spikes as the input to the 

encoder RNN. We bin our spikes in 50 ms bins and then separate each center-out task into a 

separate trial. We use the inferred firing rates that are the result of applying a nonlinearity 

and affine transformation on the factors output from the generator RNN. A dimensionality 

of 64 was chosen for the latent variables that are the controller outputs and the factors. 

2.2.2.2. FORCE Dynamic Recurrent Neural Network (F-DRNN)  

F-DRNN [4] is defined as below: 

                         �
𝜏𝜏 𝑑𝑑𝑠𝑠𝑡𝑡
𝑑𝑑𝑑𝑑

=  −𝑠𝑠𝑡𝑡−1 + 𝑔𝑔𝑊𝑊𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡−1 + 𝛽𝛽𝑊𝑊𝑠𝑠𝑠𝑠𝑢𝑢𝑡𝑡 + 𝑊𝑊𝑠𝑠𝑠𝑠𝑦𝑦�𝑡𝑡−1 + 𝑏𝑏𝑠𝑠
𝑟𝑟𝑡𝑡 = tanh(𝑠𝑠𝑡𝑡)
𝑦𝑦�𝑡𝑡 = 𝑊𝑊𝑦𝑦𝑦𝑦𝑟𝑟𝑡𝑡 + 𝑏𝑏𝑦𝑦

          Equation 2.2.7 

𝑠𝑠 ∈ ℝ𝑁𝑁 is the activation variable, and 𝑟𝑟 ∈ ℝ𝑁𝑁 is the vector of corresponding firing rates. 

These states track the first and zero order differential features of the system, respectively. 

𝑊𝑊𝑠𝑠𝑠𝑠 ∈  ℝ𝑁𝑁×𝑁𝑁 describes the relationship between 𝑠𝑠 and 𝑟𝑟. 𝑊𝑊𝑠𝑠𝑠𝑠 ∈  ℝ𝑁𝑁×𝐼𝐼 relates 𝑠𝑠 to the input 

vector 𝑢𝑢. 𝑦𝑦� models the feedback in the network. 𝑊𝑊𝑠𝑠𝑠𝑠 ∈  ℝ𝑁𝑁×𝑀𝑀 tracks the effect of  𝑦𝑦� on 𝑠𝑠.  

2.2.2.3. Deep Neural Network (NN)  

Neural Network and its architecture have been explained in section 2.1.3.2. In this work, 

since over-fitting is possible, which can cause issues where the trained model cannot later 

generalize to the separate test data, we perform early stopping during validation such that a 

limited number of epochs (round of training with all inputs) are used for training before the 

weights are finalized. The following number of epochs are considered in our work: 5, 10, 20, 

30, 50, 75, 100, 125, 150, 200, 300, 400, 500, 600. In addition, we consider different network 

structures with up to 3 layers, where each set consists of 1, 2, or 3 hidden layers with the 

given number of nodes in each layer: (100), (100, 100), (100, 10), (20, 20), (20, 20, 20), (40, 

40), (40, 10), (40, 40, 40), (10, 10, 10). 
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2.2.2.4. Support Vector Regression (SVR) 

Support vector regression (SVR) [55] is the continuous form of support vector machines 

where the generalized error is minimized, given by the function: 

                                            𝑦𝑦� = ∑ (𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖)𝑘𝑘(𝑢𝑢𝑖𝑖,𝑢𝑢)𝑁𝑁
𝑖𝑖=1 + 𝑏𝑏                            Equation 2.2.8 

where 𝛼𝛼𝑖𝑖 are Lagrange multipliers and 𝑘𝑘 is a kernel function, where we use the radial basis 

function kernel in this work. The Lagrange multipliers are found by minimizing a regularized 

risk function: 

                                                     1
2

||𝑤𝑤||2 + 𝐶𝐶 ∑ 𝐿𝐿∈(𝑦𝑦)𝑙𝑙
𝑖𝑖=1                                 Equation 2.2.9 

We vary the penalty portion of the error term, 𝐶𝐶, as part of the validation process to find the 

optimum parameter. 

2.2.2.5. Linear Model (LM) 

The linear model [1] uses a standard linear regression model where we can predict kinematics 

(𝑦𝑦�) from the neural data (𝑢𝑢) by using: 

                                                           𝑦𝑦� = 𝑎𝑎 + ∑ 𝑊𝑊𝑖𝑖𝑢𝑢𝑖𝑖𝑁𝑁
𝑖𝑖=1                             Equation 2.2.10 

We find the weights 𝑊𝑊𝑖𝑖 and the bias term 𝑎𝑎 through a least squares error optimization to 

minimize mean squared error between the model’s predictions and true values during 

training. The parameters are then used to predict new kinematics data given neural data. 

2.2.2.6. Kernel Auto-Regressive Moving Average (KARMA) 

The Kernel Auto-Regressive Moving Average (KARMA) model [56] can also be used for 

prediction. ARMA (non-kernelized) uses the following model, where 𝑦𝑦�𝑘𝑘𝑖𝑖  is the 𝑖𝑖𝑡𝑡ℎ 

component of the kinematics data at time step 𝑘𝑘 and 𝑢𝑢𝑗𝑗𝑠𝑠 is the 𝑗𝑗𝑡𝑡ℎ component of the neural 

data at time step 𝑠𝑠: 
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                                     𝑦𝑦�𝑘𝑘𝑖𝑖 =  ∑ 𝐴𝐴𝑙𝑙𝑦𝑦�𝑘𝑘−1𝑖𝑖 + ∑ 𝐵𝐵𝑙𝑙𝑢𝑢𝑘𝑘−𝑙𝑙+1𝑖𝑖𝑠𝑠

𝑙𝑙=1
𝑟𝑟
𝑙𝑙=1 + 𝑒𝑒𝑘𝑘𝑖𝑖                  Equation 2.2.11 

Thus, we are performing a weighted average of the past 𝑟𝑟 time steps of kinematics data and 

the past 𝑠𝑠 time steps of neural data (as well as the current one) with a residual error term, 𝑒𝑒. 

Then, the difference in KARMA is that we use the kernel method to translate data to the 

radial basis function dimension. We use a standard SVR solver for inference, by just 

concatenating the different histories for the kinematics and neural data. When training, we 

use the known kinematics values for the history. However, when predicting new kinematics 

data, we use old predictions for the history portion of the new predictions. 

2.2.2.7. Gated Recurrent Units (GRU) 

A simpler version of the RNN cells than LSTM that can extract long term dependencies in 

sequential data are Gated Recurrent Units (GRU) [57]. The GRU formulation is as below: 

                                       

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑧𝑧𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑧𝑧𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑧𝑧𝑧𝑧𝑟𝑟𝑘𝑘−1 + 𝑏𝑏𝑧𝑧)
ℎ𝑘𝑘 = 𝜎𝜎(𝑊𝑊ℎ𝑢𝑢𝑢𝑢𝑘𝑘 + 𝑊𝑊ℎ𝑟𝑟𝑟𝑟𝑘𝑘−1 + 𝑏𝑏ℎ)
𝑟𝑟𝑢𝑢 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑟𝑟𝑟𝑟𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑟𝑟𝑟𝑟(ℎ𝑘𝑘 ∘ 𝑟𝑟𝑘𝑘−1) + 𝑏𝑏𝑟𝑟)
𝑐𝑐𝑢𝑢 = tanh(𝑊𝑊𝑐𝑐𝑐𝑐𝑢𝑢𝑘𝑘 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑟𝑟𝑘𝑘−1 + 𝑏𝑏𝑐𝑐)
𝑟𝑟𝑘𝑘 =  (1 − 𝑧𝑧𝑘𝑘) ∘ 𝑟𝑟𝑘𝑘−1 + 𝑧𝑧𝑘𝑘 ∘ 𝑟𝑟𝑢𝑢
𝑦𝑦�𝑘𝑘 = 𝑊𝑊𝑦𝑦𝑦𝑦𝑟𝑟𝑘𝑘 + 𝑏𝑏𝑦𝑦

    Equation 2.2.12 

Here, ℎ is a reset gate, and 𝑧𝑧 is an update gate. The reset gate determines how to combine the 

previous memory and the new input. The network decides how much of the previous memory 

should be kept by using the update gate. Vanilla RNN is the case that we set the update gate 

to all 0’s and the reset to all 1’s. 

2.2.2.8. XGBoost (XGB) 

XGBoost [7], [32] is one kind of boosting methods which uses ensemble of decision trees. 

Among 29 competitions winning solutions published at Kaggle during 2015, 17 solutions 

used XGBoost [32]. For a given data set with 𝑛𝑛examples and 𝑚𝑚 features 𝐷𝐷 = {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)}, 
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|𝐷𝐷| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ ℝ, a tree ensemble model uses 𝐾𝐾 additive functions to predict the 

output: 

                                                𝑦𝑦�𝑖𝑖 = 𝜌𝜌(𝑥𝑥𝑖𝑖) = ∑ 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)𝐾𝐾
𝑘𝑘=1 ,𝑓𝑓 ∈ 𝐹𝐹                   Equation 2.2.13 

where 𝐹𝐹 = {𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑞𝑞(𝑥𝑥)}, (𝑞𝑞:ℝ𝑚𝑚 → 𝑇𝑇,𝑤𝑤 ∈ ℝ𝑇𝑇) is the space of regression trees, 𝑞𝑞 

represents the structure of each tree, 𝑇𝑇 is the number of leaves, and each 𝑓𝑓𝑘𝑘corresponds to a 

tree structure 𝑞𝑞 and leaf weights 𝑤𝑤. 

2.2.2.9. Random Forests (RF) and Decision Trees (DT)  

Random Forests [58] are one kind of bagging tree based algorithms that make the prediction 

by routing a feature sample through the tree to the leaf randomly. The training process will 

be done independently for each tree. The forest final prediction is the average of the 

predictions of all the trees. Decision trees [59] are a special case of random forests with one 

tree. 

2.2.3. Pre-processing and Feature Engineering 

We evaluate the performance of our DRNN on 12 neural features: High-frequency, Mid-

frequency, and Low-frequency Wavelet features (HWT, MWT, LWT); High-frequency, 

Mid-frequency, and Low-frequency Fourier powers (HFT, MFT, LFT); Latent Factor 

Analysis via Dynamical Systems (LFADS) features [54]; High-Pass and Low-Pass Filtered 

(HPF, LPF) data; Threshold Crossings (TCs); Multi-Unit Activity (MUA); and combined 

MWT and TCs (MWT + TCs) (Table 2.2.1). 

To extract wavelet features, we use ‘db4’ mother wavelet on 50ms moving windows of the 

voltage time series recorded from each channel. Then, the mean of absolute-valued 

coefficients for each scale is calculated to generate 11 time series for each channel. HWT is 

formed from the wavelet scales 1 and 2 (effective frequency range ≥ 3.75KHz). MWT is 

made from the wavelet scales 3 to 6 (234Hz - 3.75KHz). Finally, LWT shows the activity of 

scales 7 to 11 as the low frequency scales (≤ 234Hz). Fourier-based features are extracted by 
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computing the Fourier transform with the sampling frequency of 30KHz on one-second 

moving windows for each channel. Then, the band-powers at the same 11 scales of the 

wavelet features are divided by the total power at the frequency band of 0Hz - 15KHz. To 

generate TCs, we threshold bandpass-filtered (250Hz - 5KHz) neural data at -4 times the  

Table 2.2.1. Frequency Range of Features 

 

 

 

 

 

 

root-mean-square (RMS) of the noise in each channel. We do not sort the action potential 

waveforms [60]. Threshold crossing events were then binned at 50ms intervals. 

LFADS is a generalization of variational auto-encoders that can be used to model time-

varying aspect of neural signals. Pandarinath et al. [54] shows that decoding performance 

improves when using LFADS to infer smoothed and denoised firing rates. We use LFADS 

to generate LFADS features based on the trial-by-trial threshold crossings from each center-

out task. 

To extract HPF, MUA, and LPF features, we apply high-pass, band-pass, and low-pass filters 

to the broadband data, respectively, by using second-order Chebyshev filters with cut-off 

frequencies of 234Hz and 3.75KHz. To infer MUA features, we calculate RMS of band-pass 

filter output. Then, we average the output signals to generate one feature per 50ms for each 

channel. Table 2.2.1 shows the frequency range of features. 

Features Frequency Range 

HWT, HFT, HPF 
 

> 3.75KHz 

TCs, LFADS 
 

250Hz – 5KHz 

MWT, MFT, BPF 
 

234 Hz – 3.75KHz 

LWT, LFT, LPF <234Hz 
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We smooth all features with a 1s minjerk smoothing kernel. Afterwards, the kinematics 

and the features are centered and normalized by the mean and standard deviation of the 

training data. Then, to select the most informative features for regression, we use XGBoost, 

which provides a score that indicates how useful each feature is in the construction of its 

boosted decision trees [7], [32]. In our single-day analysis, we perform Principal Component 

Analysis (PCA) [61]. Figure 2.2.2 shows the block diagram of our BMI system. 

2.2.4. Experimental Results 

We conduct our FDA- and IRB-approved study of a BMI with a 32-year-old tetraplegic (C5-

C6) human research participant. This participant has Utah electrode arrays (NeuroPort, 

Blackrock Microsystems, Salt Lake City, UT, USA) implanted in the medial bank of 

Anterior Intraparietal Sulcus (AIP), and Broadman’s Area 5 (BA5). In a center-out task, a 

cursor moves, in two dimensions on a computer screen, from the center of a computer screen 

outward to one of eight target points located around a unit circle. A trial is one trajectory of 

the cursor from the center of the screen to one of the eight targets on a unit circle (Figure 

2.2.2). During open-loop training, the participant observes the cursor move under computer 

control for 3 minutes. We collected open-loop training data from 66 blocks over 43 days for 

offline analysis of the DRNN. Broadband data were sampled at 30,000 samples/sec from the 

two implanted electrode arrays (96 channels each). Of the 43 total days, 42 contain 1 to 2 

blocks of training data and 1 day contains 6 blocks, with about 50 trials per block. Moreover, 

these 43 days include 32, 5, 1, and 5 days of 2015, 2016, 2017, and 2018, respectively. 

As a pre-processing step before passing the neural data to the decoders, we use XGBoost 

feature importance score to select stable channels across the training days. The more a feature 

is used to make key decisions with XGBoost decision trees, the higher its relative importance. 

This importance is calculated explicitly for each feature in the dataset, allowing features to 

be ranked and compared to each other. Importance is calculated for a single decision tree by 

the amount that each feature split point improves the performance measure, weighted by the 

number of observations the node is responsible for. The importances are then averaged across 

all the XGBoost decision trees. 
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Since the predictions and the ground truth should be close in both micro and macro scales, 

we report root mean square error (RMSE) and R2 as measures of average point-wise error 

and the strength of the linear association between the predicted and the ground truth signals, 

respectively. RMSE is calculated as below: 

                                                𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝐾𝐾
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝐾𝐾
𝑖𝑖=1                       Equation 2.2.14 

where 𝐾𝐾 is the total number of data points, 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖are the 𝑖𝑖𝑡𝑡ℎ ground-truth and prediction, 

respectively. The smaller the RMSE is, the better the performance. R2 is also calculated as 

below: 

                                                𝑅𝑅2 = ( ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)(𝑦𝑦�𝑖𝑖−𝑦𝑦��)𝑖𝑖

�∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑖𝑖 �∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦��)2𝑖𝑖

)2                     Equation 2.2.15 

The larger the R2 is, the better the performance. 

Results reported in this section are R2 values for Y-axis position. For more analysis, we refer 

the reader to [5]. R2 values for X-axis position and velocities in X and Y directions and 

RMSE values for all the kinematics are all presented in supplementary material. All the 

curves and bar plots are shown by using 95% confidence intervals and standard deviations, 

respectively. 

The available data is split into train and validation sets for parameter tuning. Parameters are 

computed on the training data and applied to the validation data. We perform 10-fold cross-

validation by splitting the training data to 10 sets. Every time, the decoder is trained on 9 sets 

for different set of parameters and validated on the last set. We find the set of optimum 

parameters by using random search, as it has shown better performance than grid search [62]. 

Finally, we test the decoder with optimized parameters on the test set. The performance on 

all the test sets is averaged to report the overall performance of the models in both single- 

and multi-day analysis. 
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Figure 2.2.2. Architecture of our BMI system. Recorded neural activities of Anterior Intraparietal Sulcus (AIP), 

and Broadman’s Area 5 (BA5) are passed to a feature extractor. After pre-processing and feature selection, the 

data is passed to the decoder to predict the kinematics in a center-out task. 

We compare our DRNN with other decoders, ranging from linear and historical decoders to 

nonlinear and modern techniques. The linear and historical decoders with which we compare 

ours are the Linear Model (LM) [1] and Kalman Filter (KF) [41]. The nonlinear and modern 

techniques with which we also compare ours include Support Vector Regression (SVR) [55], 

Gaussian KARMA [56], tree based algorithms (e.g., XGBoost (XGB) [7], [32], [33], 

Random Forest (RF) [58], and Decision Tree (DT) [59]), and neural network based 

algorithms (e.g., Deep Neural Networks (NN) [42], Recurrent Neural networks with simple 

recurrent units (RNN) [43], Long-Short Term Memory units (LSTM) [44], Gated Recurrent 

Units (GRU) [57], and F-DRNN [4]).  

We first present single-day performance of DRNN, which is a common practice in the field 

[4], [41], [63] and is applicable when the training data is limited to a single day. Moreover, 

there are aspects that differ between single- and multi-day decoding, which have not yet been 

well characterized (e.g., varying sources of signal instability) and remain challenging in 

neuroscience. Furthermore, single-day decoding is important before considering multi-day 

decoding since our implantable hardware will be developed such that the decoder parameters 

can be updated at any time. Table 2.2.2 summarizes the parameters of different algorithms 

for single- and multi-day analysis. 

2.2.4.1. Single-Day Performance 

We select the MWT as the input neural feature. The models are trained on the first 90% of a 

day and tested on the remaining 10%. Figure 2.2.3 shows the average performance of the  
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Table 2.2.2. Optimum Parameters for Different Algorithms (Only differences are reported for multi-day) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.3. Average performance of decoders operating on MWT over single-day data. 
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57 
decoders. History-Less DRNN (HL-DRNN) uses the neural data at time k and kinematics 

at time 𝑘𝑘 − 1 to make predictions at time 𝑘𝑘. As we see, DRNN and HL-DRNN are more 

stable and have higher average performance compared to other decoding techniques. 

Figure 2.2.4 shows the regression of all the decoders on a sample day. We use only 10% of 

the single-day training data in Figure 2.2.4 (b) to show the stability of the DRNN to the 

limited amount of single-day training data. For cross-day analysis, we train the DRNN on a 

single day and test it on all the other days and repeat this scenario for all the days. Figure 

2.2.5 shows the performance of the DRNN over all the days. This figure shows that MWT is 

a more robust feature across single days. 

2.2.4.2. Multi-Day Performance 

To evaluate the effect of the selected feature on the stability and performance of the DRNN, 

we train the DRNN on the data from the first 20 days of 2015 and test it on the consecutive 

days by using different features. Figure 2.2.6 shows that the DRNN operating on the MWT 

results in superior performance compared to the other features. Black vertical lines show the 

year change. We show that the MWT are also the best for a range of decoders in 

supplementary material. 

Then, we evaluate the stability and performance of all the decoders over time. Figure 2.2.7 

shows that the overall and the average performance of the DRNN exceeds other decoders. 

Moreover, the DRNN shows almost stable performance across 3 years. The drop in the 

performance of almost all the decoders is because of the future neural signal variations [2]. 

To assess the sensitivity of the decoders to the number of training days, we change the 

number of training days from 1 to 20 by starting from day 20. Figure 2.2.8 shows that the 

Deep-DRNN with two layers and the DRNN have higher performance compared to the other 

decoders, even by using a small number of training days. Moreover, figure 2.2.8 shows that 

the performance of the DRNN with one layer, 10 nodes, and history of 10 is comparable to 

the Deep-DRNN with 2 layers, 50 and 25 nodes in the first and second layers, and history of  
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                        (a) DRNN                                     (b) DRNN – 10% Data                              (c) FDRNN 
 

 

 

                       (d) LSTM                                               (e) GRU                                                  (f) RNN                            

 

 

 

 

 

 

                        (g) NN                                                 (h) SVR                                             (i) XGB                   

 

 

 

 

 

 

                          (j) RF                                                     (k) KF                                             (l) KARMA              

 

 

 

 

                                                  

 

                                              (m) DT                                               (m) Linear Model                                           

Figure 2.2.4. Regression of different algorithms on test data from the same day 2018-04-23: true target motion 

(black) and reconstruction (red). 
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20. Therefore, a small DRNN with a short history has superior performance compared to 

the other decoders. 

To evaluate the effect of re-training the DRNN, we consider four scenarios. First, we train 

DRNN on the first 20 days of 2015 and test it on the subsequent days. Second, we re-train a 

DRNN, which has been trained on 20 days, with the first 5%, 10%, 50%, and 90% of the 

subsequent test days. Third, we re-train the trained DRNN annually with 5%, 10%, 50%, and 

90% of the first days of 2016, 2017, and 2018. Finally, we train DRNN only on the first 5% 

and 90% of the single test day. Figure 2.2.9 shows a general increase in the performance of 

the DRNN after the network is re-trained. The differences between the performances of the 

first three scenarios are small, which means that the DRNN does not necessarily need to be 

re-trained to perform well over multiple days. However, because of inherent non-stationarity 

of the recorded neural data over multiple days [2], training the DRNN on the first 90% of the 

same test day in the last scenario results in the highest average test performance. The DRNN 

relies on neural data inputs–not just the kinematic feedback or target information–based on 

the following evidence. First, target information is not explicitly provided to the DRNN. Any 

target information available to the DRNN is learned from the neural data and/or feedback 

components. Second, DRNN outputs change substantially based on different feature 

engineering approaches (Figures 5, 6) and over different trials (with the same features) 

(Figures 2.2.4, 2.2.10a). Finally, predictions fail when the DRNN uses only feedback 

(Feedback-Only), feedback with noise substituted for neural data (Feedback-Noise), or 

feedback with the neural data provided only at the beginning of the trials (Short-Neural) 

(Figure 2.2.10(b)). 

2.2.5. Summary and Future Work 

We propose a Deep Multi-State DRNN with feedback and scheduled sampling to better 

model the nonlinearity between the neural data and kinematics in BMI applications. We 

show that feeding back the DRNN output recurrently result in better performance/more 

robust decodes. Feeding the output back to the input recurrently in addition to the input neural 

data provides more information to the DRNN to make predictions, which results in a smaller 
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Figure 2.2.5. Cross-day analysis of the DRNN. 

 

 

 

 

 

 

 

 

Figure 2.2.6. The DRNN operating on different features. 
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Figure 2.2.7. Multi-dayperformanceofthedecoders. 

 

 

 

 

 

 

 

 

Figure 2.2.8. Effect of number of training days on the performance of the decoders. 
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Figure 2.2.9. The DRNN operating in different training scenarios. 

 

  

 

 

 

 

 

                                              (a)                                                                                       (b) 

Figure 2.2.10. The DRNN predictions in different scenarios. (a) DRNN predictions for sample targets in all four 

quadrants, (b) DRNN predictions no/short neural data. True target motion (black) and reconstructions (colored) 
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network with less history. Analogous to the gain term of the Kalman filter, the DRNN 

learns the relative importance of the neural data and feedback. Integrating both state and 

neural information in this way leads to smoother predictions (Figure 2.2.4(a)). In addition, 

we show that the added internal derivative state enables our DRNN to track first order and 

more complicated patterns in the data. Our DRNN learns a matrix that establishes a 

relationship between the past and present derivative states unlike the conventional DRNN. 

Also, our DRNN, which learns all the model parameters by using back propagation through 

time (BPTT), is distinct from F-DRNN as the most similar previous model in BMI, which 

only learns the output weight by using RLS algorithm. Moreover, its application differs from 

most of the existing decoders that have been applied to motor cortex data of a non-human 

primate. To the best of our knowledge, we present the first demonstration of applying 

feedback and scheduled sampling to a DRNN and comparing different learning-based 

decoders operating on different features to predict kinematics by using open-loop neural data 

recorded from the PPC area of a human subject in a real BMI setting. Our DRNN has the 

potential to be applied to the recorded data from other brain areas as a recurrent network. 

To evaluate our DRNN, we analyzed single-day, cross-day, and multi-day behavior of the 

DRNN by extracting 12 different features. Moreover, we compared the performance and 

robustness of the DRNN with other linear and nonlinear decoders over 43 days. Results 

indicated that our proposed DRNN, as a nonlinear dynamical model operating on the MWT, 

is a powerful candidate for a robust BMI.  

The focus of this work has been to first evaluate different decoders by using open-loop data 

since the data presented was recorded from a subject who has completed participation in the 

clinical trial and has had the electrodes explanted. However, the principles learned from this 

analysis will be relevant to the future subjects with electrodes in the same cortical area.  

BMIs are intended to operate as wireless, implantable systems that require low-power 

circuits, small physical size, wireless power delivery, and low temperature deltas (≤ 1◦C) [7], 

[8], [9]. By choosing efficient algorithms that map well to CMOS technologies, Application 

Specific Integrated Circuit (ASIC) implementations could offer substantial power and 
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mobility benefits. We are proposing our DRNN as a method that will not only have 

superior performance on single- and multi-day data compared to the other decoding 

techniques in this work, but can also be optimized for hardware implementation. Since it is 

impractical to require powerful CPUs and GPUs for everyday usage of a BMI device, we 

need a device that is easily portable and does not require communication of the complete 

signals recorded by electrodes to an external computer for computation. Doing the 

computation in an ASIC would reduce the latency of kinematics inference and eliminate a 

large power draw for the gigabytes of neural data that must be transferred otherwise. Thus, 

we plan to create an ASIC that can be implanted in the brain to perform inference of 

kinematics from neural signals. The main bottleneck in most neural network accelerators is 

the resources spent on fetching input history and weights from memory to the Multiplication 

and Accumulation (MAC) unit [64]. The DRNN can potentially help mitigate this issue since 

it requires fewer nodes and input history compared to the standard recurrent neural networks. 

This eliminates the need for large input history storage and retrieval, reducing latency and 

control logic. Furthermore, by using 16-bit fixed point values for the weights and inputs 

rather than floating point values, we can reduce the power used by the off-chip memory [64], 

[65]. 

Future studies will evaluate the DRNN performance in a closed-loop BMI, in which all the 

decoders use the brain’s feedback. Next, since we believe that our small DRNN achieves 

higher efficiency and uses less memory by reducing the history of the input, number of 

weights, and therefore memory accesses, we are planning to implement the DRNN in a field-

programmable gate array (FPGA) system where we can optimize for speed, area, and power 

usage. Then, we will build an ASIC of the DRNN for BMI applications. The system 

implemented must be optimized for real-time processing. The hardware will involve 

designing multiply-accumulates with localized memory to reduce the power consumption 

associated with memory fetch and memory store. 
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C h a p t e r  3  

HEARTBEAT ARRYTHMIA CLASSIFICATION 

Our second area of concentration is heartbeat arrhythmia detection. Electrocardiogram 

(ECG) plays an important role in clinical practice for monitoring heart health, making 

accurate detection and classification of arrhythmic heartbeats essential for cardiovascular 

disease management and prevention. Automation and accuracy are crucial, as manual ECG 

analysis is time-consuming and susceptible to human errors. To address these challenges, we 

propose EKGNet, an integrated approach combining analog computing and deep learning to 

develop a fully analog arrhythmia classification architecture. EKGNet is designed to not only 

maintains high balanced accuracies with low power consumption but also utilizes the energy 

efficiency of transistors operating in the subthreshold region. The system design incorporates 

a novel analog sequential Multiply-Accumulate (MAC) circuit to mitigate process, supply 

voltage, and temperature variations. EKGNet is modeled as a Bayesian neural network, 

incorporating analog noise and mismatches into the model, further enhancing the network’s 

performance and generalizability. We employ knowledge distillation technique to transfer 

knowledge from a teacher network to EKGNet, improving the network’s performance. 

Additionally, we introduce an algorithm for weight fine-tuning after quantization to enhance 

hardware performance. Our work in arrhythmia detection aims to enhance the accuracy and 

efficiency of cardiovascular healthcare while addressing the challenges associated with 

analog circuitry and the need for robust and accurate detection. 

3.1. EKGNet: A 10.96μW Fully Analog Neural Network for Intra-Patient Arrhythmia 

Classification 

We present an integrated approach by combining analog computing and deep learning for 

electrocardiogram (ECG) arrhythmia classification. We propose EKGNet, a hardware-

efficient and fully analog arrhythmia classification architecture that achieves high accuracy 

with low power consumption. The proposed architecture leverages the energy efficiency of 
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transistors operating in the subthreshold region, eliminating the need for analog-to-digital 

converters (ADC) and static random-access memory (SRAM). The system design includes 

a novel analog sequential Multiply-Accumulate (MAC) circuit that mitigates process, supply 

voltage, and temperature variations. Experimental evaluations on PhysionNet’s MIT-BIH 

and PTB Diagnostics datasets demonstrate the effectiveness of the proposed method, 

achieving an average balanced accuracies of 95% and 94.25% for intra-patient arrhythmia 

classification and myocardial infarction (MI) classification, respectively. This approach 

presents a promising avenue for developing low power arrhythmia classification systems 

with enhanced accuracy and transferability in biomedical applications. 

3.2 Overview 

The electrocardiogram (ECG) is crucial for monitoring heart health in medical practice [23], 

[24]. However, accurately detecting and categorizing different waveforms and morphologies 

in ECG signals is challenging, similar to other time-series data. Moreover, manual analysis 

is time-consuming and prone to errors. Given the prevalence and potential lethality of 

irregular heartbeats, achieving accurate and cost-effective diagnosis of arrhythmic heartbeats 

is crucial for effectively managing and preventing cardiovascular conditions [25], [26]. 

Deep neural network-based algorithms [10] are commonly used for ECG arrhythmia 

classification (AC) due to their high accuracy [129]. However, many of the current highly 

accurate arrhythmia classifiers that rely on neural networks (NN) require a large number of 

trainable parameters, often ranging from thousands to millions, to achieve their exceptional 

performance [12], [129], [130], [131], [132], [133]. This poses a significant challenge when 

implementing these classifiers on hardware, as accommodating such a vast number of 

parameters becomes impractical. Consequently, existing algorithms are computationally 

intensive, particularly when compared to biological neural networks that operate with 

significantly lower energy requirements. As a result, designing low-power NN-AC systems 

poses significant computational challenges due to the computational demands involved. 



 

 

68 
Current approaches aim to tackle this either by (1) designing better AC algorithms, (2) 

better parallelism and scheduling on existing hardware such as graphics processing units 

(GPUs) or, (3) designing custom hardware. Previous studies [134], [135], [136], [137], [138] 

that concentrate on patient-specific arrhythmia classification on chip necessitate training 

neural networks individually for each patient, which significantly limits their potential 

applications. Moreover, most of the existing hardware development is with respect to digital 

circuits.  

Analog computing in the subthreshold region offers potential energy efficiency 

improvements, eliminating the need for ADC and SRAM, in contrast to prior research that 

mainly focused on digital circuit implementations [138], [139]. This is particularly beneficial 

for ECG classification applications, which often face energy constraints in health monitoring 

devices [5], [7], [8], [9], [33], [34]. Despite the challenges associated with analog circuits, 

such as susceptibility to noise and device variation, they can be effectively utilized for 

inferring neural network algorithms. The presence of inherent system noise in analog circuits 

can be leveraged to enhance robustness and improve classification accuracy, aligning with 

the desirable properties of AI algorithms [104], [140], [141]. 

 In this work, we propose EKGNet, a fully analog neural network with low power 

consumption (10.96μW) that achieves high balanced accuracies of 95% on the MIT-BIH 

dataset and 94.25% on the PTB dataset for intra-patient arrhythmia classification (Figure 

3.1). To address the challenges of analog circuits, we design an integrated approach that 

combines AI algorithms and hardware design. By modeling the EKGNet as a Bayesian 

neural network using Bayes by Backprop [28], we incorporate analog noise and mismatches 

into the EKGNet model [142]. Knowledge distillation [29] is employed to further enhance 

the network’s performance by transferring knowledge from ResNet18 [143] used as a teacher 

network to the EKGNet. We also propose an algorithm to conduct weight fine-tuning after 

quantization to improve hardware performance. 
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Figure 3.1. EKGNet as a low-power, fully analog neural network for intra-patient arrhythmia classification. The 

process involves recording the ECG waveform, extracting and preprocessing the beats, and then classifying 

arrhythmias using EKGNet, achieving high accuracies on the MIT-BIH and PTB datasets. 

3.3. Dataset 

In this work we utilize two databases; the PhysioNet MIT-BIH Arrhythmia dataset and PTB 

Diagnostic ECG dataset [144], [145], [146], for labeled ECG records. Specifically, we 

focused on ECG lead II. The MIT-BIH dataset included ECG recordings from 47 subjects, 

sampled at 360Hz, with beat annotations by cardiologists. Following the AAMI EC57 

standard [147], beats were categorized into four categories based on annotations (Table 3.1). 

The PTB Diagnostics dataset contained ECG records from 290 subjects, including 148 with 

myocardial infarction (MI), 52 healthy controls, and other subjects with different diseases. 

Each record in this dataset consisted of ECG signals from 12 leads, sampled at 1000Hz. Our 

analysis concentrated on ECG lead II and the MI and healthy control categories. 

3.4 Data Preparation 

We extract beats from ECG recordings for classification by employing a straightforward and 

effective method [12]. Our approach avoids signal filtering or processing techniques that rely 

on specific signal characteristics. The extracted beats are of uniform length, ensuring 

compatibility with subsequent processing stages (Figure 3.2). The process involves 

resampling the ECG data to 125Hz, dividing it into 10-second windows, and normalizing the 

amplitude values between zero and one. We identify local maxima through zero-crossings 

of the first derivative and determine ECG R-peak candidates using a threshold of 0.9 applied 
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Table 3.1. AAMI EC57 CATEGORIES. 

 

 

 

 

 

 

 

Figure 3.2. The proposed ECG beat extraction method extracts beats without relying on complex signal 

processing. Beats are standardized through resampling, segmentation, and normalization, with R-peaks 

identified for uniform analysis. To counter dataset imbalance, specific beats are set aside for testing, and the 

remaining data is augmented to balance class representation in both training and testing phases for MIT-BIH 

and PTB datasets. 

to the normalized local maxima. The median of the R-R time intervals within the window 

provides the nominal heartbeat period (T). Each R-peak is associated with a signal segment 

of 1.2T length, padded with zeros to achieve a fixed length. The inputs are adjusted to fit our 

hardware input range of 0.6 V to 0.7 V (600 mV to 700 mV). 

To address dataset imbalance, we divided the data into training and testing sets. For balanced 

representation, we excluded a specific number of beats for test: 3200 beats (800 beats per 

class) for the MIT-BIH and 2911 beats (809 healthy beats and 2102 MI beats) for the PTB 

dataset. The remaining beats underwent random oversampling [148], resulting in an 

augmented training dataset with an equal number of beats in each class. We ensured complete 

separation of training and testing data before augmentation to prevent overfitting. After 

augmentation, the training dataset consisted of 352,276 beats for the MIT-BIH (88,069 beats 

per class) and 16,800 beats for the PTB dataset (8,400 beats per class). 

Class Annotations 

N 
Normal, Left/Right bundle branch block, Atrial 

escape, Nodal escape 

S 
Atrial premature, Aberrant atrial premature, Nodal 

premature, Supra-ventricular premature 

V Premature ventricular contraction, Ventricular escape 

Q Paced, Fusion of paced and normal, Unclassifiable 
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3.5. EKGNet Training 

To implement the fully analog NN-AC, we optimized the software using a co-design 

approach. The hardware behavior was emulated in software by extracting a mathematical 

model of the Multiply-Accumulate (MAC) unit from circuit simulations. EKGNet, a 

convolutional neural network (CNN), was trained for ECG classification using the 

constructed ECG training set. During training, Bayes by Backprop [28] was utilized to model 

the standard deviation of weights (w) as derived hardware input-referred thermal noise (σ = 

0.0021090w2 + 0.0002000w + 0.002355). The weights and coefficients are expressed in 

Volts. Hardware leakage noise (~N(0.0005 V, 0.0001 V)) was integrated into the network’s 

output. The training pipeline is depicted in Figure 3.4, and the high-level architecture of 

EKGNet is shown in Figure 3.3 and Table 3.2. EKGNet consists of two 1-D convolutional 

layers, two ReLU activations, a max pooling layer, two fully connected layers, and a softmax 

layer [10]. For optimization, we employed Adam with L2 regularization weight decay to 

optimize the cross-entropy loss [105]. Learning rate of α = 0.003 was used, which was halved 

every fifty epochs using a linear scheduler. This approach ensured that the trained weights 

remained within a small range suitable for implementation and improved linearity due to 

hardware noise characteristics.  

By applying knowledge distillation [29] to further train EKGNet, we observed a performance 

improvement of 1.5% on MIT-BIH dataset (resulting in 95% test accuracy) and 1.25% on 

PTB dataset (resulting in 94.25% test accuracy). Knowledge distillation involves transferring 

knowledge from a larger teacher network (ResNet18) with high test accuracies (99.88% for 

MIT-BIH and 100% for PTB datasets) to the smaller student network (EKGNet). Through 

experimentation, we determined that a temperature parameter value of 1.5 yielded optimal 

results, considering EKGNet’s significantly fewer trainable parameters (336) compared to 

ResNet18 (~11 million).  

To balance power consumption and accuracy, we used a 6-bit uniform quantization for the 

weights. Employing a fine-tuning technique, we iteratively adjusted a single weight by 

shifting it up or down one quantization level and evaluating its impact on performance  
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Figure 3.3. EKGNet Architecture. The network comprises two 1D convolutional layers with kernel sizes of 6 

and strides of 2, transitioning from 1 to 6 output channels in the first layer and then compressing to 1 output 

channel in the second. A max pooling layer with a kernel size of 6 and stride of 2 follows, leading into two fully 

connected (FC) layers that progressively reduce the input size from 18 to 12, and finally to 4, outlining the path 

from ECG input to arrhythmia classification output. 

Table 3.2. EKGNet Architecture 

 

 

 

 

 

 

 

 

Figure 3.4. EKGNet training and optimization process. Initially, EKGNet is trained using a convolutional neural 

network (CNN) framework, incorporating Bayes by Backprop to model hardware noise. Following the initial 

training, knowledge distillation is applied with ResNet18 serving as the teacher network to enhance EKGNet’s 

performance. Subsequently, a 6-bit uniform quantization is applied to the weights for power efficiency. Finally, 

fine-tuning of the quantized weights is performed (Algorithm 3.1) to further refine accuracy and performance. 

Layer Parameters 

Conv 1D 
Kernel Size: 6, Input Channels: 1,  

Output Channels: 6, Stride: 2 

Conv 1D 
Kernel Size: 6, Input Channels: 6,  

Output Channels: 1, Stride: 2 

Max 
Pooling Kernel Size: 6, Stride: 2 

FC Input Size: 18, Output Size: 12 

FC Input Size: 12, Output Size: 4 
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Algorithm 3.1 Fine-Tuning of Weights 
W: Weights, Q: Quantization Indices,  
B: Q Levels, E: Number of Iterations 
1: Requires 𝑊𝑊, 𝑄𝑄, 𝐵𝐵,𝐸𝐸 
2: for 𝑒𝑒 = 1 to 𝐸𝐸 do 
3:        randomly choose 𝑤𝑤 ∈ 𝑊𝑊 
4:        randomly set 𝑢𝑢 to Up/Down 
5:        if 𝑢𝑢 = Up then 
6:             𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐵𝐵(𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 , Q(𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜) + 1) 
7:        else if u = down then 
8:             𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐵𝐵(𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 , Q(𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜)− 1) 
9:        if 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 < 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜  then 
10:           𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 

 

(Algorithm 3.1). With this approach, we achieved the hardware performance of 94.88% and 

94.10% on the MIT-BIH and PTB datasets, respectively.  

3.6. Model Interpretability 

Interpreting machine learning algorithms, especially deep learning, in medical applications 

is a significant challenge [119]. We utilized t-SNE to visualize the learned representation by 

mapping high-dimensional vectors of the classified beats to a 2D space [149]. In Figure 

3.5(a), we demonstrate clear separability between different classes using MIT-BIH and PTB 

datasets. Notably, only predicted class labels were used for colorization in the visualizations. 

To identify regions of input data that receive more attention from EKGNet during prediction, 

we selected a representative input beat from each category of the MIT-BIH dataset (Figure 

3.5(b)). Color-coded visual representations were employed to highlight segments of higher 

importance in EKGNet’s predictions. By calculating the average Shapley value [109] across 

the entire beat, we selectively colored samples surpassing the threshold. Figure 2(f) illustrates 

the most typical attribution pattern for ECG classification, aligning with established ECG 

abnormalities such as ST-segment elevation (STE) and pathological Q waves. However, 

some model attributions are less conclusive, and the highlighted areas may not perfectly align 

with clinical significance. 
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                  (N)                                          (S)                                       (V)                                       (Q)                                                                      

                                                                                        (b)  

Figure 3.5. Interpretability Analysis, (a) t-SNE visualization of learned representation for MIT-BIH (left) and 

PTB (right) classifications. (b) Colored sections highlight important segments in EKGNet predictions. 

3.7 Hardware Architecture1 

The proposed hardware architecture includes a fully analog NN-AC and System-on-Chip 

(SoC) implementation (Figure 3.6). The analog NN-AC, optimized for analog computing, 

has 336 parameters. Digitally assisted analog circuits are used for ReLU, max pooling, and 

max functions in the NN-AC (Figure 3.7). The SoC integrates power-on-reset, bandgap 

voltage reference, biasing hub, oscillator, scan chain, and low dropout regulators (LDO) 

(Figure 3.7). An LDO with minimal output variations enhances the analog NN-AC’s 

robustness against supply fluctuations. All circuits operate in the subthreshold region with 

strict duty cycle control for reduced power consumption. 

 
1 Lin Ma designed and tested the hardware, while the software/hardware co-design was conducted by Benyamin Haghi and Lin Ma. 
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                                                                                    (c) 

Figure 3.6. Analog NN-AC SoC Implementation and Power Efficiency Analysis, (a) Die Micrograph of Analog 

NN-AC SoC Implementation, showcasing a fully analog NN-AC integrated within a SoC architecture with 336 

parameters optimized for analog computing. Includes digitally assisted circuits for ReLU and pooling functions. 

(b) Power breakdown for SoC modules, highlighting energy-efficient design across MAC units, ReLU and max 

pooling circuits, and the low dropout regulators ensuring system stability. (c) NN-AC and SoC Architectures 

detail essential components like power-on-reset, bandgap reference, enhancing operational stability and 

robustness. The design emphasizes subthreshold operation and utilizes three parallel MAC units for efficient 

CNN processing, culminating in a 2-bit digital output for arrhythmia classification. 

To achieve overlapping CNN operations in hardware, three parallel MAC units are used with 

a 2-input-sample delay. CNN1 has six channels with ReLU activation (Figure 3.7(c)). CNN2 

employs charge redistribution for average pooling across all six channels, followed by ReLU 

activation. The first half of the fully connected layer (FC1) in Figure 3.6d consists of 18 input  
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                 (a)                              (b)                                     (c)                                                   (d) 

  

 

 

                                                     (e)                                                              (f) 

Figure 3.7. Comprehensive SoC Architecture for Analog NN-AC. Demonstrates the analog NN-AC and SoC 

implementation featuring (a) sample and hold circuit for accurate ECG signal sampling, (b) buffer and biasing 

hub ensuring signal integrity, (c) one CNN1 channel with ReLU activation for feature extraction, (d) half of 

FC1 layer performing MAC operations for data integration, (e) ReLU, Max pooling, and weight decoder 

modules for nonlinear activation and data summarization, and (f) the max function module for final arrhythmia 

class determination. This structure facilitates efficient analog computation for arrhythmia classification, 

balancing precision with low power requirements. 

signals undergoing MAC operations in three MAC units (Figure 3.8a). The outputs are 

combined and sequentially output as six signals. FC2 follows the same design. The max 

function (Figure 3.7(f)) selects the node with the highest voltage from FC2, producing a 2-

bit digital code representing the input ECG’s arrhythmia class. The weight decoder 

synchronizes with NN-AC’s control signals to convert digital codes to analog voltage levels. 

The fully analog NN-AC incorporates inputs from the sample and hold (S/H) (Figure 3.7(a)), 

enable signals from the R-peak detector (Figure 3.8(b)), and weight levels from the weight 

decoder (Figure 3.7(e)), generating the 2-bit digital output indicating the ECG’s arrhythmia 

class. 
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                        (a)                                                                    (b)                                                    (c) 

Figure 3.8. MAC and ECG Enhancements, (a) MAC unit schematic and waveform tracking to minimize process 

and temperature variation sensitivity. (b) Instrumental Amplifier with automatic gain control and analog R-peak 

detection, enhancing ECG beat extraction accuracy. (c) Simulation results of MAC unit characterization, 

demonstrating optimized linearity and efficiency for neural network operations in analog computing. 

Figure 3.8 depicts the analog MAC unit. It consists of a multiplier and a current (𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜) 

proportional to their product. To reduce noise and cancel offsets, the multiplier incorporates 

autozero functionality. Linearity enhancement is achieved through the integration of an 

inverse hyperbolic tangent circuit. Resistor R3 is included to optimize the multiplier’s output 

impedance, ensuring shift-invariance of the MAC. The accumulator converts 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 into a 

voltage and stores it in the ping-pong capacitors. During each conversion, one capacitor acts 

as 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟, while the other capacitor stores the updated voltage 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 +  𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑅𝑅𝑅𝑅𝑅𝑅. This 

sequential MAC operation scheme reduces hardware and power requirements compared to 

parallel operations. The accumulator utilizes chopper stabilization to mitigate offsets and 

noise, employing switches controlled by narrow window pulses to minimize the leakage 

effect. The equation in Figure 3.8 shows that the MAC output depends solely on the weight, 

𝑉𝑉𝑖𝑖𝑖𝑖, and device matching.  

We propose an analog R-peak detector (Figure 3.8(b)) in the analog domain for beat 

extraction, specifically identifying the maximum peak of the ECG R wave. Using ECG 

gradients, the signal is sampled at a rate of 125 samples per second (S/s) with a sample and 

hold (S/H) circuit employing two ping-pong capacitors to preserve consecutive samples 

(Figure 3.7(a)). In contrast to previous studies relying on digital R-peak detection, we 
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introduce a digitally assisted analog R-peak detector (Figure 3.8(b)). By exploiting the 

higher gradient of the R wave in the ECG waveform, we accurately locate R-peaks by 

comparing the gradient obtained from the S/H with a predefined threshold. To address noise 

issues, a Schmitt trigger is integrated into the comparator, utilizing two consecutive active 

high outputs to confirm the presence of an R-peak. Maintaining a constant input amplitude 

to the NN-AC is essential for achieving an optimal balance between the linearity of the 

signal. We propose an automatic gain control mechanism (Figure 3.8(b)) to address 

challenges in the MAC unit and signal-to-noise ratio (SNR). The mechanism includes peak 

and valley detectors that measure the output amplitude of the instrumental amplifier (IA). A 

comparator compares the IA output with a target value using a predefined threshold. The IA 

gain is adjusted systematically from low to high until the comparator changes state, 

indicating the desired amplitude is achieved. To optimize performance, bias terms are 

eliminated, and the IA with automatic gain control ensures a consistent output amplitude. 

3.8 Experimental Results 

The proposed design underwent simulation and fabrication using a 65nm process. Extensive 

optimization and characterization of MAC linearity were performed through simulations 

(Figure 3.8(c)). The achieved normalized root mean square errors (NRMSE) for the weights 

and 𝑉𝑉𝑖𝑖𝑖𝑖 were 0.0036 and 0.0062, respectively. Simulations also confirmed linearity within 

the kernel, resulting in an NRMSE of 0.0002. This ensures the MAC unit’s linearity and 

shift-invariance, enabling linear operations in the CNN and FC layers. The mathematical 

model of the MAC, presented in Figure 3.8, along with simulated intermediate signals within 

the NN-AC, demonstrate waveform similarity to the software implementation with minor 

errors. 

Our NN-AC achieved a measured accuracy of 94.88% and 94.10% on the MIT-BIH and 

PTB intra-patient classifications, respectively. The power consumption of the proposed NN-

AC is 10.96μW at a supply voltage of 1.2V. The overall SoC consumes 67.07μW at a supply 

voltage of 1.55V. Power consumption breakdown for the SoC is provided in Figure 3.6(b). 

Additionally, Tables 3.3 and 3.4 summarize the performance of our system, demonstrating  
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MIT-BIH Dataset Method Conv. Layers FC Layers Parameters Accuracy (%) 
This Work (EKGNet) Shallow CNN 2 2 336 95.00 
Acharya et al. [130] Deep CNN 3 3 19,805 94.03 
Kachuee et al. [12] Deep Residual CNN 11 2 98,757 93.40 
Yan et al. [133] Deep CNN 5 3 196,526 92.00 
Almahfuz et al. [131] Deep CNN 13 4 4,391,685 99.90 
This Work (Teacher Net) ResNet18 17 1 11M 99.88 
PTB Dataset      
This Work (EKGNet) Shallow CNN 2 2 312 94.25 
Acharya et al. [130] Deep CNN 3 3 19,805 93.50 
Kachuee et al. [12] Deep Residual CNN 11 2 98,757 95.90 

Kojuri et al. [132] Deep CNN, Resnet 18, 40 0, 1 145,209; 
5,001,842 95.60 

This Work (Teacher Net) ResNet18 17 1 11M 100.00 
 

 

 This Work JSSC2014 [134] TBCAS2020 [135] TCASII2021 [136] ISSCC2021 [137] 
Process 65 nm 90 nm 0.18 µm 0.18 µm 65 nm 
Area 4.28 4.99 0.93 0.75 1.74 
Complete SoC Yes Yes No No No 
Computing Scheme Analog Digital Digital Digital Digital 
Require ADC No Yes Yes Yes Yes 
System VDD (V) 1.55 0.5-1 (0.7-1 for SRAM) N/A N/A N/A 
Classifier VDD (V) 1.2 0.5-1 1.8 1.8 0.75 
Test Dataset MIT-BIT & PTB In-house & MIT-BIH MIT-BIH MIT-BIH MIT-BIH 
Class Number 4 2 4 5 2/5 
Intra-Patient Yes Yes No, patient specific No, patient specific No, patient specific 
Method CNN+FC MLC/SVM NN (FC) NN (FC) CNN+FC 

Accuracy 94.88%(Arrythmia) 
94.10%(MI) 

95.8%(Arrythmia) 
99%(MI) 

99.32% 98% 99.30% (2 class) 
99.16% (5 class) 

Accuracy On Test Data Train* & Test Train* & Test Train* & Test Train* & Test 
System Power (µW) 67.07 102.2 N/A N/A N/A 

Classifier Power (µW) 10.96 32.8 13.34 1.3 46.8@1MHz 
86.7@2.5MHz 

Leakage Power (µW) N/A N/A N/A Not Reported 14.3 

* The reported accuracy was higher than anticipated due to the incomplete exclusion of the training data. 
 

lower parameters and power consumption compared to previous software and hardware 

designs while maintaining comparable accuracy utilizing the intra-patient paradigm. 

 

Table 3.3. Comparison of Software-Only Algorithms 

Table 3.4. Comparison of Hardware Designs 

mailto:46.8@1
mailto:86.7@2
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3.9 Summary and Future Work 

We have developed a fully analog CNN-based architecture for accurate arrhythmia 

classification, using the MIT-BIH and PTB datasets. Our system achieves high accuracy and 

reduces power consumption by utilizing analog computing, eliminating the requirement for 

ADC and SRAM. The integration of a novel analog sequential MAC circuit effectively 

handles PVT variations. Experimental outcomes validate the efficacy of our architecture, 

offering a low-power solution for accurate arrhythmia classification in wearable ECG 

sensors. 
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C h a p t e r  4  

ENERGY-EFFICIENT CLASSIFICATION FOR RESOURCE-CONTRAINED 
BIOMEDICAL APPLICATIONS 

After discussing our works in brain-machine interfaces and arrhythmia detection in the 

previous chapters, we address the critical need for efficient seizure detection in epilepsy 

management in this chapter. We introduce an approach by employing gradient boosted trees, 

achieving improved detection performance with significantly reduced energy consumption. 

This method has the potential to improve seizure detection and allows for customization to 

meet individual patient needs, enhancing the energy-area-latency product. Highlighting the 

importance of real-time, resource-efficient solutions for portable or implantable medical 

devices, our research aims to enhance epilepsy diagnosis and treatment. By incorporating 

XGBoost, a gradient-boosted framework, our work seeks to contribute to advancements in 

low-power biomedical applications, underscoring our commitment to developing tailored, 

energy-efficient seizure detection technologies. 

4.1    Energy-Efficient Classification for Resource-Constrained Biomedical 

Applications 

Biomedical applications often require classifiers that are both accurate and cheap to 

implement. Today, deep neural networks achieve the state-of-the-art accuracy in most 

learning tasks that involve large data sets of unstructured data. However, the application of 

deep learning techniques may not be beneficial in problems with limited training sets and 

computational resources, or under domain-specific test time constraints. Among other 

algorithms, ensembles of decision trees, particularly the gradient boosted models have 

recently been very successful in machine learning competitions. Here, we propose an 

efficient software and hardware architecture to co-design and implement gradient boosted 

trees in applications under stringent power, area, and delay constraints, such as medical 

devices. Specifically, we introduce the concepts of asynchronous tree operation and 
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sequential feature extraction to achieve the energy and area efficiency. The proposed 

architecture is evaluated in automated seizure detection for epilepsy, using 3074 h of 

intracranial EEG data (iEEG) from 26 patients with 393 seizures. Average F1 scores of 

99.23% and 87.86% are achieved for random and block-wise splitting of data into train/test 

sets, respectively, with an average detection latency of 1.1 s. The proposed classifier is 

fabricated in a 65-nm TSMC process, consuming 41.2 nJ/class in a total area of 540 × 1850 

μm2. This design improves the state-of-the-art by 27× reduction in energy-area-latency 

product. Moreover, the proposed gradient-boosting architecture offers the flexibility to 

accommodate variable tree counts specific to each patient, to trade the predictive accuracy 

with energy. This patient-specific and energy-quality scalable classifier holds promise for 

low-power sensor data classification in biomedical applications. 

4.2. Overview 

The application of machine learning (ML) techniques has been exponentially growing over 

the past decade [11], with an increasing shift toward mobile, wearable, and implantable 

devices. ASIC implementation of machine learning models is required to ensure a 

sufficiently fast response in real-time applications such as deep brain stimulation and vital 

sign monitoring [150]. Embedded learning at the edge and near the sensors is also critical in 

applications with limited communication bandwidth or privacy concerns [151]. Furthermore, 

to meet the tight power budget in portable or implantable devices, it is necessary to embed 

ML into integrated circuits rather than power-hungry FPGA-based microprocessors [152]. 

Deep neural networks (DNNs) currently achieve state-of-the-art accuracy in most learning 

tasks that involve very large datasets of unstructured data (e.g., vision, audio, natural 

language processing). As a result, there have been significant research and development 

efforts to design DNN accelerators [151] and specialized ASICs, like Google’s TPUs. In the 

context of hardware-friendly machine learning, a number of methods have been recently 

explored, such as reducing the bit-width precision [150], [151], sparsity-induced 

compression, pruning and quantization [151], and mixed-signal MAC implementation [152]. 
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The focus of these methods is on reducing computation, data movement, and storage in 

neural networks. 

However, application of deep learning techniques may not be practical in problems with 

limited computational resources, or under application-specific prediction time constraints. 

For instance, a common requirement of diagnostic devices is to minimize power 

consumption (down to microwatt-range) and battery usage, while maintaining the desired 

prediction accuracy and low latency. Moreover, without specialized optimization, straight-

forward implementation of conventional classification techniques can be computationally 

intensive, requiring high processing power and large sizes of memory. Indeed, even the 

simple arithmetic operations performed in conventional classification methods, such as 

support vector machine (SVM) and k-nearest neighbor (k-NN) algorithms can become very 

costly with increasing number of sensors, e.g., in multichannel neural implants. Therefore, 

there is a need to explore alternative methods for severely resource-constrained applications. 

Among other algorithms, Gradient Boosted machines, particularly the XGBoost (XGB) 

implementation has recently been a winning solution in multiple ML competitions (e.g., the 

intracranial EEG-based seizure detection contest on Kaggle [153]). Here, we propose and 

optimize ensembles of decision tree classifiers and related circuit level architectures for 

learning applications under stringent power, area, and delay constraints, such as implantable 

devices. In particular, we discuss a major application of embedded classifiers in the context 

of closed-loop neuromodulation devices: automatic seizure detection, and control in 

medication-resistant epilepsy. However, our techniques are broad enough to impact several 

other diseases and similar application domains. 

With the end of Moore’s Law, it is foreseeable that energy-quality (EQ) scalable systems 

will enable power savings that were previously provided by technology and voltage scaling 

[154]. EQ scaling may, in some cases, break the traditional VLSI design tradeoffs by 

simultaneously improving the performance, energy and area [154]. In this work, we leverage 

hardware-inspired techniques to implement decision tree-based classification algorithms, 

allowing us to employ various tree parameters as tuning knobs for accuracy, latency, and 
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energy optimization. The resulting classifier significantly improves the power and area 

efficiency of conventional methods, while achieving a higher classification accuracy and 

sufficient latency, therefore breaking the strict energy-accuracy tradeoff. The tuning 

parameters include the number and depth of the trees, number of extracted features, window 

size, and decision update rate. By appropriate feature engineering and introducing an 

asynchronous learning scheme, a new class of scalable and low-complexity machine learning 

hardware for portable sensor-based applications is proposed. Specifically, we analyze the 

energy and quality scalability of our classifier in terms of hardware-related parameters and 

diagnostic performance. 

This chapter is organized as follows. Section 4.3 presents a review of previous methods that 

have been used for classification in biomedical domain and describes their hardware cost and 

scalability challenges. Decision tree-based classifiers and existing hardware architectures are 

briefly discussed in Section 4.4. The hardware-friendly design of XGB classifier and 

performance evaluation are presented in Section 4.5 and Section 4.6, respectively. The details 

of SoC implementation and measurement results are presented in Section 4.7, followed by a 

discussion on scalability and hardware optimization in Section 4.8. Section 4.9concludes this 

chapter. 

4.3. Embedded Classification in Biomedical Devices 

Despite major advances in medicine and drug therapy over the past decade, many disorders 

remain largely undertreated. Where medications are poorly effective, stimulation may offer 

an alternative treatment. For example, neurostimulation is today a well-established therapy 

for essential tremor, Parkinson’s diseases, and epilepsy, and has shown promise in migraine 

and psychiatric disorders. In particular, closed-loop neuromodulation has recently gained 

attention, e.g., in the form of responsive neurostimulator (RNS) for epilepsy [30], and 

adaptive deep brain stimulation for Parkinson’s disease.  

General block diagram of a closed-loop neural interface system is shown in Figure 4.1. 

Following signal conditioning and feature extraction, an embedded classifier detects the 
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disease-associated abnormalities in real time and triggers a programmable stimulator to 

suppress symptoms of the disease, e.g., a seizure or tremor, through periodic charge delivery 

to neurons. A high sensitivity, sufficient specificity, and low detection latency are the key 

requirements for the on-chip classifier, while maintaining a small footprint and low power. 

Epilepsy has been one of the primary targets of neuroengineering research, along with 

movement disorders, stroke, and paralysis [155]. Abrupt changes in EEG biomarkers usually 

precede the clinical onset of seizures. Many researchers have therefore focused on extracting 

epileptic biomarkers for automated seizure detection [31], [156], [157], [158], [159], [160], 

[161], [162], [163], [164], [165], [166], [167], and closed-loop control through 

neuromodulation [159], [160], [163]. 

4.3.1 Prior Work on Machine Learning SoCs 

A number of classification algorithms have recently been explored for SoC implementation 

in diagnostic applications such as seizure detection. An 8-channel linear support vector  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1. General block diagram of a closed-loop system for detection and suppression of abnormal symptoms 

in a neurological disease. An on-chip classifier is embedded into the implantable device. 
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machine EEG classifier for seizure detection is presented in [161], using the spectral 

energy of each EEG channel in seven frequency bins. The Gaussian basis function non-linear 

SVM combined with time-division multiplexing (TDM) bandpass filters in [162] achieves 

one of the best energy efficiencies so far (1.83 μJ/class.), a latency of 2s, and a seizure 

detection rate of 95.1%. Combined with front-end amplifiers and SRAM for data storage, 

this chip occupies an area of 25mm2 and supports up to 8 EEG channels. 

To avoid the linear growth in memory and utilized hardware with number of channels and 

frequency bins, a frequency-time division multiplexing approach is employed in [31] and 

[160], along with a dual-detector classification processor utilizing two linear SVM 

classifiers. This closed-loop 16-channel SoC integrates a transcranial electrical stimulator, 

chopping amplifiers and SRAM, occupying a die area of 25mm2. An 8-channel wireless 

neural prosthetic SoC is presented in [163] for intracranial EEG-based seizure control, using 

time-domain entropy and frequency spectrum of individual channels and linear least-square 

classifier. The entire system dissipates 2.8mW in a total silicon area of 13.47mm2. A custom 

processor integrating a CPU with configurable accelerators for SVM classification with 

various kernel functions is implemented in [164]. Two medical applications including EEG-

based seizure and ECG-based arrhythmia detection are demonstrated, while consuming 

273μJ and 124μJ per detection, respectively. An error-adaptive boosting classifier is 

proposed in [165], using decision trees as weak learners. To enable controllable injection of 

faults, an EEG-based seizure detection system is implemented on FPGA. Dedicated 

accelerators combined with RISC processors are used in the 16-channel EEG-based SoCs 

presented in [166] and [168], implementing the fast k-NN algorithm for seizure detection, 

and SVM for mental status monitoring, respectively. Performance of different classifiers 

such as k-NN, SVM, naïve Bayes, and Logistic Regression (LR) for EEG-based seizure 

detection is compared in [167], where LR provides the best F1 score, area, power, and 

latency. A machine learning-assisted cardiac sensor SoC integrating the maximum likelihood 

classification (MLC) and SVM is reported in [134] for ECG-based arrhythmia detection. 

It should be noted that comparison of accuracy for classifiers that are validated on different 

datasets or tasks, e.g., those based on EEG vs. intracranial EEG (iEEG), is not pertinent. 
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While the main focus of our work is on hardware-software co-design and optimization, to 

evaluate the overall accuracy, we compare the proposed model to other classifiers on a large 

iEEG dataset [169]. 

In such biomedical applications, the complexity of classification algorithm, and 

consequently, the associated power and area, depend on the target (i.e., physician-defined) 

accuracy and latency for the given diagnostic task. In particular, achieving a latency of <2s 

and high accuracy with low energy consumption and small area is challenging [162]. To 

improve the strict energy-area-delay tradeoff and increase the number of channels, we 

employ a patient-specific prediction model in the form of an ensemble of decision trees, 

trained by the gradient-boosting algorithm. The main contribution of our work is a hardware-

efficient approach that enables energy reduction by minimizing the number of 

simultaneously extracted features, therefore breaking the energy-area vs. accuracy tradeoff. 

We implement a low-complexity, yet accurate classification algorithm, that is inherently 

scalable to multichannel operation, through sharing the computational and memory resources 

among channels. In contrast to most other classifiers commonly used in literature (e.g., SVM 

and k-NN) that linearly scale in computational and memory requirements with number of 

channels and features, our proposed classifier extracts a limited number of features in a 

sequential fashion, regardless of total channel count. This approach enables significant 

savings in computational resources and storage on chip. Moreover, we trade accuracy for 

lower energy, by using the most energy-efficient tree structure for a given patient and a target 

diagnostic accuracy.  

Given the relative complexity of classification algorithms, the commercial devices in 

existence today, such as the Responsive Neurostimulator (RNS, NeuroPace) [30] for 

epilepsy, sacrifice the detection accuracy to meet the design constraints such as low power. 

The battery-powered RNS device in particular, includes three types of detectors: line length 

(measures the total length of the signal in a given time period), area (detects changes in signal 

power), and bandpass detectors. Once implanted in the skull, the selected detector by the 

physician is applied to a maximum of four channels and simple thresholding method is used 
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for seizure detection. However, the detector type should be selected during the 

programming of device (with line-length being the default detector), which highly limits the 

sensitivity, specificity, and latency of seizure detection task and may result in suboptimal 

closed-loop control. Our proposed hardware-friendly classification algorithm would 

potentially improve the efficacy of current closed-loop stimulation devices such as RNS, by 

selective computation of features from a higher number of channels. This is achieved through 

a nonlinear gradient-boosting ML model that can be efficiently integrated on chip with low 

power. 

4.3.2 Hardware Cost 

When integrating a classifier on-chip, excessive memory and hardware requirements for 

feature extraction and machine learning, and the resulting power and area may preclude the 

ability to process more channels. Power consumption and chip area are mainly determined 

by the type and number of features, the number of channels monitored, and the type of 

classifier. The hardware costs associated with feature computation and classification tasks 

are discussed below. 

4.3.2.1 Feature Computation Complexity  

Various characteristic features can be extracted from neural data to detect the onset of a 

particular disease state. A major drawback of common classification methods, with the 

exception of decision trees, is that they must extract all required features from every input 

channel to classify the data. Therefore, they require extensive computational resources. Filter 

banks that are commonly used for spectral power extraction in non-overlapping bands are a 

key to diagnose neurological disorders and many other signal classification problems, e.g., 

voice detection, sleep-state classification, irregular heartbeat detection. For instance, to 

implement the SVM classifier in [164], the band-limited components in eight different bins 

are extracted from EEG, using FIR filters. The energy of each component is accumulated in 

a 2s window, and the features from three consecutive windows are combined, resulting in a 

feature vector with a dimension of 8×3×N, where N corresponds to number of EEG channels. 
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However, filters are computationally intensive due to MAC operations. Various methods 

have therefore been explored to reduce the number of multiplications needed or the 

associated overhead, such as matrix-multiplying ADCs [170], TDM [162], and frequency-

time division multiplexing [160]. 

In contrast to low-frequency EEG-based systems [156], [157], [162], [164], at higher 

frequencies associated with iEEG where high-frequency oscillations (HFOs) are among 

relevant biomarkers [171], a larger number of bandpass filters is necessary. Moreover, 

depending on the application, the use of complex and non-linear features may be inevitable. 

Selecting a small subset of hardware-friendly features [30], [158], [167] can help to meet the 

power and area constraints but may sacrifice the classification accuracy. These classifiers 

also require combinations of serializers, MUX/DEMUX circuits, and buffers to store and 

process input data and features. 

 

 

 

 

 

 

 

Figure 4.2. Schematic of common learning models as potential candidates for hardware implementation: (a) 

support vector machines, (b) artificial neural networks, (c) k-nearest neighbors [167], and (d) decision tree-

based classifiers. 
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Simplified schematic of some of the common classifiers for sensor data classification are 

shown in Figure 4.2. Neural Networks (NNs) are hardware intensive and typically require 

high processing power to perform complex computations, as well as large amounts of 

memory to store many parameters on chip. Furthermore, due to limited access to training 

sets and patient-specific biomarkers in biomedical applications such as seizure detection (that 

require extensive monitoring in an invasive setup at the hospital), NN and Deep Learning 

classifiers would generally result in a poor classification accuracy. 

SVM with its intrinsic characteristics such as easy modeling, reproducible results, and 

robustness through convergence to global minima, has been the most commonly used 

classifier for epileptic seizure detection from EEG [160]. Three SVM kernels have been 

applied to on-chip seizure classification: linear, second-order polynomial, and Gaussian 

SVM (RBF) [160]. The latter achieves better tradeoffs between classification accuracy and 

latency, with more complex implementation. However, both polynomial and Gaussian SVM 

require sufficient seizure patterns for training to achieve high accuracy, which is not the case 

for patients with limited seizure data available [160]. The general classification function of 

SVM is given by: 

                                                        𝑓𝑓(𝑥𝑥) =  ∑ 𝑎𝑎𝑖𝑖𝐾𝐾(𝑠𝑠𝑣𝑣𝚤𝚤���⃗ , 𝑥𝑥𝚤𝚤���⃗ )𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1 + 𝑏𝑏                       Equation 4.1 

where 𝑥⃗𝑥 is the feature vector, 𝑠𝑠𝑣𝑣𝚤𝚤���⃗  is one of the 𝑁𝑁𝑠𝑠𝑠𝑠 support vectors, 𝐾𝐾 is a kernel function, 𝑎𝑎 

and 𝑏𝑏 are the modeling parameters. Even though SVM has demonstrated impressive 

performance in seizure detection from EEG [156], [161], [162], [164], the computational 

complexity of the decision function in (1) depends on the type of kernel [172]. Generally, a 

large number of support vectors is required to yield high accuracy in seizure detection, and 

using a strong classification kernel such as RBF, the energy scales proportionally, 

dominating by orders of magnitude over feature extraction, front-end, and digitization [164]. 

While the primary computations for polynomial and linear kernels are dot-product and 

weighted summation over support vectors, the RBF kernel requires subtract-square 

accumulation, exponentiation (commonly implemented via CORDIC), and weighted 

summation over the support vectors [164]. Excluding the nonlinear kernel, the hardware 
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complexity (i.e., number of multiplications and additions) is proportional to 𝑁𝑁𝑠𝑠𝑠𝑠 × 𝑑𝑑, 

where 𝑁𝑁𝑠𝑠𝑠𝑠 is the number of support vectors and 𝑑𝑑 is the dimensionality of the feature vector 

[172]. The number of required support vectors depends on separability of the features. A 

greater number of support vectors is needed for highly nonlinear separation boundary 

between classes. While more computational resources are available in EEG monitoring 

systems, the high computational complexity of the RBF kernel makes it unsuitable for 

implementing in an implantable device that acquires iEEG signals from within the brain 

(similar to RNS device [30]). The linear SVM would reduce the complexity of the seizure 

detection algorithm. However, the performance may be degraded if the features are not 

linearly separable [172]. 

𝑘𝑘-NN classification requires computing the distances between the test and training features, 

while tracking the 𝑘𝑘 smallest distances. While showing a good performance for epileptic 

seizure detection [166], the large size of the training set memory and the exhaustive search 

for nearest neighbors make the classifier power demanding [166]. Moreover, 𝑘𝑘-NN is more 

suitable for classification tasks with large sample sizes. In [167], the 𝑘𝑘-NN classifier achieves 

a higher F1 measure in seizure detection than the linear SVM, but it consumes dramatically 

more FPGA resources and power [167]. 

A simple NN has inputs being multiplied by a weight vector, added together and followed 

by a linear or nonlinear function to generate the output to the next stage. Logistic regression 

(similar to a one-layer neural network) uses a linear weighted combination of features and 

generates the probability of different classes. In general, such methods may not be well suited 

for efficient hardware implementation due to the complexity involved in feature extraction 

and classification. 

Individual decision trees (DTs) and their ensembles, such as Random Forests and Gradient 

Boosting, are among the most useful and highly competitive methods in ML, particularly in 

the regime of limited training data, little training time and little expertise for parameter 

tuning. Ayinala and Parhi [1] propose a non-linear classifier using AdaBoost technique with 

decision stumps (trees of depth one) as base classifier, to enable a low-complexity seizure 
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detection system. The relative hardware efficiency of DTs is evident from the fact that 

simple digital comparators form the main processing unit of a DT, with no need for 

multiplications, as illustrated in Fig. 4.2 (d). In [173], AdaBoost performs slightly better than 

SVM with less hardware complexity, achieving a sensitivity of 77.1% (tested on 873 hours 

of iEEG data) and a false alarm rate of 0.18/hour. The hardware complexity of AdaBoost 

depends on the required numbers of comparison operations, which is equal to the number of 

decision stumps (60 in [173], with average feature set size of 14.6). Given their reduced 

training complexity, DTs are chosen among the various classifiers that have been considered 

for boosting (e.g., SVMs, NNs) to implement the error-adaptive classifier proposed in [165]. 

A detailed discussion on hardware implementation of DTs is presented in Section 4.4. Given 

the variety of hardware schemes used for different arithmetic units in classification and 

feature extraction, we opted to use a unified metric for evaluating the overall computational 

complexity of our design and comparing it to prior works, by reporting the number of 

equivalent 2-input NAND gates. This measure is provided in the SoC comparison table in 

Section 4.7. 

4.3.3 Scalability Challenge in Multi-Sensor Systems 

Several studies show that a large number of acquisition channels are required to obtain an 

accurate representation of brain activity for disease diagnosis or movement decoding, and 

the therapeutic potential of neural devices is limited at low spatiotemporal resolution [174]. 

Similar concerns apply to cardiac implants and ECG electrode arrays. Therefore, it is 

expected that future interfaces integrate hundreds of channels, posing extreme constraints on 

power dissipation of the circuits. Besides, efficient realization of wearables and IoT devices 

requires integration of multi-sensor platforms with embedded machine learning techniques 

and real-time analytics. 

Despite substantial research on machine learning, hardware-friendly and scalable 

implementation is not sufficiently addressed. Even the simple arithmetic operations 

performed in conventional classification methods can become very costly with increasing 
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number of channels and feature dimensions. For instance, the size of feature vector 𝑥⃗𝑥 in 

equation 4.1 linearly increases with number of channels, and so does the number of 

multiplications and additions required in a linear SVM. Furthermore, the current method of 

extracting features separately from each channel requires either a dedicated ADC and feature 

extraction unit per channel, or power-hungry multiplexing circuits and buffers. Extensive 

system-level optimizations, specialized hardware techniques, and new design paradigms are 

needed to meet the energy and accuracy requirements, while preserving the high-channel 

count recording capability, that has been addressed in this chapter. 

4.4 Decision Tree-Based Classifiers 

Decision tree (DT) [175] is a popular non-linear ML model where the target class is 

determined by a sequence of queries, i.e., comparison to a threshold, on input features that 

start at the root node and terminate in a leaf node, as shown in Fig. 4.2 (d). Compared to 

NNs, tree-based classifiers are extremely fast in training and classification and require far 

fewer parameters for tuning. They can be easily parallelized and are robust to label noise. 

With simple comparators as their building blocks, DTs are naturally a viable solution to 

reduce complexity [176]. However, the conventional hardware for DTs may not provide 

optimal results. 

In [177], a wearable gait monitor using DTs achieved roughly identical detection accuracy 

to SVMs, drawing 3× less power. While DTs are commonly implemented in software, there 

are a few works that implement DTs in hardware. A decision tree spike sorting classifier was 

reported in [178]. The feature at the active node is multiplexed from a total of four features 

extracted from the spikes in a neural channel. Badami et al. [179] present an acoustic front-

end for speech classification using decision trees. A set of potential features (e.g., band-

powers using 8 analog bandpass filters in parallel) are extracted from the input signal, and 

the feature at each node is multiplexed from this set. The decisions are made by logically 

combining the outputs of all nodes in a tree, e.g., 7 nodes in Figure 4.2 (d). 

4.4.1 Conventional Hardware Architectures 
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Although the hardware solutions presented in [178] and [179] are suitable for applications 

with limited number of features and scarce activity (e.g., spike sorting/voice detection where 

the classifier and feature extractor are only active when a spike/voice is detected), or limited 

input sources (e.g., voice detection), extending this approach to multi-sensor systems with 

more features is challenging and can be power-hungry. 

As illustrated in Figure 4.3, the direct implementation of DTs requires initial extraction of all 

features from the input data [178], [179], (Figure 4.3 (a), (b)), or allocation of a separate 

feature extraction unit to each node, Figure 4.3(c). In problems dealing with multichannel 

and multi-feature signals, particularly where a combination of trees is required to obtain a 

higher accuracy, the utilized hardware by each tree must be minimized. For example, 

assuming a 100-channel neural recording array and a set of 10 features per channel (typical 

for seizure detection), the first two architectures would require initial processing of a 

thousand features, the associated memory, and multiplexing circuits. Yet only a small portion 

of these features are employed in the classification task, that is the sum of visited nodes in all 

trees (≤ maximum depth × number of trees). Similarly, the third method would require 7 

feature extraction and multiplexing units per tree, as depicted in Figure 4.3(c). Since a 

maximum of one node at each level of the tree is visited, we previously proposed to utilize 

one feature extraction unit per level [176], to reduce the required hardware resources 

compared to Figure 4.3(c). 

To support multichannel operation, the alternative approach of placing a tree per channel 

would require the allocation of a separate DT hardware to each channel. However, in case of 

disease detection, it is likely that only a small subset of channels capture the abnormal 

activity, e.g., the electrodes placed in seizure foci. Therefore, training a classifier on the entire 

array rather than separately classifying every single channel would avoid the unnecessary 

extraction of features from silent channels. In summary, while DTs offer significant 

advantages to other classifiers by avoiding multiplication and using fewer memory units, the 

existing hardware is not well-suited for high-channel-count and resource-limited 

applications. 
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Figure 4.3. Block diagram of conventional DT architectures for a single input channel. 

4.5 Hardware-Friendly XGB Classifier Design 

Here, we propose a hardware-efficient online classification algorithm using an ensemble of 

gradient-boosted decision trees, as illustrated in Figure 4.4. Essentially during a classification 

task by a decision tree, only one path from the root to the leaf is visited. Therefore, unlike 

other classifiers, only a limited number of features are necessary in practice to make a  
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decision. These features, however, are carefully selected by employing powerful training 

algorithms that produce the optimal tree structure to maximize the overall predictive 

accuracy. The trained prediction model, which is the output from the gradient-boosting 

algorithm, includes full information on tree structures in the ensemble such as thresholds, 

leaf values, and selected features (shown as Serial Control IN in Figure 4.4, where CHi and 

FCi represent the channel number in the array and feature number, respectively). 

The intuition behind our hardware architecture is the following. Since the decision of each 

tree is made upon completing a series of successive comparisons, a single feature extraction 

module (and the preceding ADC) can be sequentially used to exclusively calculate the 

requested feature at the current node. The split direction and next active node are determined 

by comparing this feature with the corresponding threshold. Therefore, at each step, only the 

selected channel is used for online feature extraction, without buffering the data from other 

channels or extracting unnecessary features. As shown in Figure 4.4, the final answer is the 

sum of answers of all trees (details are discussed below). 

In our proposed architecture (Figure 4.4), an ensemble of up to eight gradient-boosted 

decision trees, each with a fully programmable Feature Extraction Engine (FEE) including 

FIR filters continuously process the input channels. In a closed-loop architecture, the FEE 

reuses a single filter structure to execute the top-down flow of the decision tree, where FIR 

filter coefficients are multiplexed from a shared memory. This approach results in 

significant hardware saving, compared to the methods shown in Figure 4.3. A potential 

drawback of this serial processing approach would be the degraded latency, that is carefully 

studied in this Section. 

A comparison of hardware complexity for various DT architectures (assuming a single 

tree) is summarized in Table 4.1, where 𝑁𝑁, 𝑀𝑀, and l represent the channel count, maximum 

number of nodes, and depth of a tree, respectively. The proposed architecture enables the 

lowest number of FEEs and classification hardware, and therefore, the lowest complexity. 

The number of FEE modules (or number of computed features) linearly increase with 

number of channels in the first two methods. Although our proposed architecture reduces  
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Figure 4.4. Proposed hardware architecture for an ensemble of gradient boosted decision trees. 

Table 4.1. Hardware Complexity of DT Architectures 
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the number of feature extraction and classification (i.e., comparator and multiplexer) 

units, the memory needed to store the tree structure and coefficient values remains the same 

in all architectures in Table 4.1. The detailed memory breakdown of our proposed scheme 

is further discussed in this chapter. 

4.5.1 Gradient Boosted Trees 

Gradient-boosting [180] is one of the most successful machine learning techniques that 

exploits gradient-based optimization and boosting, by adaptively combining many simple 

models to get an improved predictive performance. Binary split DTs are commonly used as 

the “weak” learners. Boosted trees are at the core of state-of-the-art solutions in a variety of 

learning domains, given their excellent accuracy and fast operation. For example, among the 

29 challenge winning solutions published on Kaggle in 2015, 17 used XGB, where DNN 

was the second most popular method, used in 11 solutions [181]. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5. Schematic diagram of a boosted ensemble of decision trees. 

Boosting involves creating a number of hypotheses ℎ𝑡𝑡(𝑥𝑥) and combining them to form a 

more accurate composite hypothesis. The output of a boosted classifier (or regressor) with 

an input feature vector of 𝑥𝑥 has the additive form of: 
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                                                          𝐻𝐻(𝑥𝑥) =  ∑ 𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥)𝑡𝑡                              Equation 4.2 

where 𝛼𝛼𝑡𝑡 indicates the extent of weight that should be given to ℎ𝑡𝑡(𝑥𝑥). A general schematic 

diagram illustrating an ensemble of depth-3 trees is shown in Figure 4.5. Using gradient-

boosting, the trees are built in a greedy fashion to minimize a regularized objective on the 

training loss [181]. 

In this chapter, we have employed the XGBoost package [181], a parallelized 

implementation of the gradient boosting algorithm. To assess the performance of proposed 

classifier on a relatively large dataset, epilepsy is chosen as our case study, given the 

availability of continuous recordings from many patients. This architecture, however, can 

potentially benefit many other on-chip sensor signal classification problems. Applying 

XGB to our iEEG dataset, we observed over 100 times improvement in training speed 

compared to common SVM implementations. 

In the proposed hardware (Figure 4.4), given that only one channel is used at each feature 

computation step in a tree, the rest of input channels can be switched off to save power. 

For example, to classify a 100-channel neural data with 8 trees, only 8 channels are 

simultaneously active. In contrast to SVM and other methods that require all features from 

the entire array, this approach significantly reduces the memory and hardware overhead. 

To reduce energy, a minimum number of trees that obtain a sufficient accuracy are used, 

that is chosen upon training. Moreover, as a significant advantage, only one tunable 

bandpass filter can be used to extract as many band-power features as needed, since these 

features are not computed in parallel. By employing a programmable FIR (or tunable 

analog) filter, the corresponding coefficients (or band selection parameters) can be easily 

multiplexed from memory, according to the feature being processed, as shown in Figure 

4.4. Besides, as shown later in this chapter, very little improvement in performance is 

achieved by using trees with a depth of 4 and above. Therefore, these ensembles can be 

made by a relatively small number of low-depth trees, resulting in significantly lower 

computational complexity than conventional models, as later confirmed in our comparison 

table in Section 4.7. 
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4.5.2 Delay Constraint 

The proposed architecture faces a practical challenge of designing decision trees under 

application-specific delay constraints. Given any ensemble 𝑇𝑇 = {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑘𝑘} of decision 

trees obtained from our original method, we need to ensure that each tree 𝑇𝑇𝑖𝑖 satisfies the 

delay constraint: 

                                                               ∑ 𝑑𝑑𝑖𝑖 ≤ ∆𝑇𝑇𝑖𝑖∈𝜋𝜋(ℎ)                                     Equation 4.3 

 

Algorithm 4.1 A greedy training algorithm to meet the delay constraint 
Input: Original trained tree ensemble 𝑇𝑇 = {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑘𝑘} 
Output: Delay-constrained ensemble 𝑇𝑇′ = �𝑇𝑇1

′ ,𝑇𝑇2
′ , … ,𝑇𝑇𝑘𝑘′ � 

Data: Training set: 𝑆𝑆 = {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)} 
          Feature set: 𝐹𝐹 = {𝑓𝑓𝑖𝑖}, each with delay 𝑑𝑑𝑖𝑖 
          Delay tolerance: ∆𝑇𝑇 
          Set of predecessors of node ℎ: 𝜋𝜋(ℎ) 
1: for 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑇𝑇𝑖𝑖 𝑖𝑖𝑖𝑖 𝑇𝑇 do 
2:       for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ℎ ∈ {1, 2, … , |𝑇𝑇𝑖𝑖|} do 
3:               if ∑ 𝑑𝑑𝑖𝑖 > ∆𝑇𝑇𝑖𝑖∈𝜋𝜋(ℎ)  then 
4:                    ∀𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹 find feasible 𝑓𝑓 that obtains the best 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑓𝑓𝑖𝑖,𝑆𝑆) 
5:                     Label node ℎ with 𝑓𝑓 
6:                     Grow 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(ℎ) 
7:               end 
7:       end 
8: end 

 

where 𝑑𝑑𝑖𝑖 is the time required to compute feature 𝑓𝑓𝑖𝑖, ∆𝑇𝑇 is the maximum tolerable detection 

delay, and 𝜋𝜋(ℎ) is the set of all predecessors of node ℎ. One possibility is using a “greedy” 

algorithm to solve this practical constraint by building trees that satisfy the delay 

requirement, as depicted in Algorithm 4.1. However, this algorithm may result in a 

suboptimal solution since the split criterion and subsequent feature selection is subject to 

the hard constraint on delay. 

 



 

 

101 
4.5.3 Asynchronous Tree Operation 

To solve this issue, we introduce an asynchronous approach where trees freely run in parallel, 

each with features that maximize the accuracy, regardless of their computational delay. Using 

the averaged results of completed trees and previous results of incomplete trees, decisions 

are frequently updated to avoid long latencies. 

4.5.3.1 Decision-Making Procedure 

First, we need to select an optimum time to update the decision of the system. Suppose that 

we have 𝑘𝑘 trees represented by 𝑇𝑇𝑖𝑖, 𝑖𝑖 ∈ {1, 2, … ,𝑘𝑘}. Assuming that 𝑡𝑡𝑖𝑖 is the total time 

associated with the longest path in 𝑇𝑇𝑖𝑖, we select the optimum update time as: 

                                                         𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 = min {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑘𝑘}                              Equation 4.4 

This guarantees that at least one tree will be completed in this interval, and a new decision is 

made every 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜. Then, we calculate the average value of decisions for each tree: 

                                                                 𝐷𝐷𝑇𝑇𝑖𝑖 =  1
𝑁𝑁𝑖𝑖
∑ 𝑟𝑟𝑗𝑗
𝑁𝑁𝑖𝑖
𝑗𝑗=1                                    Equation 4.5 

where 𝑁𝑁𝑖𝑖 is the number of completed cycles over 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑟𝑟1, 𝑟𝑟2, …, 𝑟𝑟𝑁𝑁𝑖𝑖 are the 

corresponding results (i.e., leaf values) of 𝑇𝑇𝑖𝑖. In a boosting classifier, the answers of all trees 

must be summed up to make the final decision. Positive answers are classified as seizure and 

negative ones as non-seizure. The final result of the system is therefore updated as below: 

                                                                  𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  ∑ 𝐷𝐷𝑇𝑇𝑖𝑖
𝑘𝑘
𝑖𝑖=1                                Equation 4.6 

In case there is no new answer for tree 𝑇𝑇𝑖𝑖 after 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜, we simply use its previous decision. By 

employing this approach and assuming an initial setup time, there always happens to be at 

least one result produced during 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 to make a decision. In the proposed asynchronous 

architecture, each tree continues to test the input data, without waiting for other trees to 

complete. Suppose that 𝑥𝑥 is a test input that moves through the tree. As 𝑥𝑥 enters node 𝑖𝑖, it 
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takes time 𝑑𝑑𝑖𝑖 to calculate the feature 𝑓𝑓𝑖𝑖. Based on the value of 𝑓𝑓𝑖𝑖, a split to either right or 

left branch is made, and the process continues until a leaf is reached. By effectively averaging 

the decisions of fast trees over multiple cycles, while allowing the longer trees to complete, 

we show that the overall performance of this online asynchronous approach is even superior 

to the conventional offline method [176], where features at different nodes are 

simultaneously extracted over the same window and decisions are made at the end of this 

window (a hardware-intensive solution). Since it is likely that more than one answer would 

be provided by 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜, averaging can reduce the impact of noisy decisions. Moreover, features 

are extracted from successive parts of the decision window, rather than one feature for the 

entire window. Therefore, the decisions are more accurate, while the optimum selection of 

update time in (4.3) reduces the detection latency. 

4.6 Performance Evaluation 

As a benchmark, we consider a boosted ensemble of 8 trees with a maximum depth of 4 

using proposed model (XGB-HW), and compare it to the linear, cubic, and RBF SVM, k-

NN with 3 and 5 neighbors, Logistic Regression, offline XGB (abbreviated as XGB) [176], 

Random Forest and Extra Tree classifiers, both with 8 trees and a maximum depth of 4. A 

hyperparameter tuning of classifier parameters was performed to find optimum settings. 

4.6.1 Data Description 

In this work, we use the publicly available data from the intracranial EEG portal [169]. 

Continuous recordings from 26 patients sampled at either 500Hz or 5kHz are included in our 

study. The seizure events are marked by physicians, and patients have been recorded at 

varying channel counts (ranging from 16 to 128). The access IDs of analyzed patients and 

further details are provided in Table 4.2. Overall, we studied a total of 3074 hours of iEEG 

including 393 seizures. 
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4.6.2 Train/Test Split 

A common problem in performance evaluation of real-time classifiers such as seizure 

detectors is to randomly partition the entire data into train and test samples. Shuffling 

provides prior information from parts of test data (that should remain unseen) during training, 

resulting in data leakage. We use a block-wise splitting approach to avoid this problem and 

fairly assess the performance of our classifier for practical test conditions such as seizure 

detection. In the block-wise method shown in Figure 4.6, we divide the continuous iEEG 

data into seizure and non-seizure segments, where each seizure is concatenated with the 

following non-seizure segment into a larger “block” (the first non-seizure segment is added 

to the beginning of first block). Thus, each block is comprised of a complete seizure attached 

to the following non-seizure segment. Most patients in our dataset have sufficient and long 

enough seizure data to allow this approach. However, cases with small number of short 

seizures are not good candidates for block-wise selection. Therefore, we removed two 

patients from our initial dataset. 

For the purpose of feature extraction during training and offline testing, we divide the time 

series into 1s windows and extract all features from channels for each window. We compare 

our block-wise method with the commonly used random split, in which a 5-fold cross-

validation is applied to the shuffled data, followed by a hyperparameter tuning to maximize 

the F1 score for all classifiers. To tune the parameters for the block-wise approach, we apply 

a block-wise 5-fold cross validation. In this case, 20% of blocks (rounded up to the nearest 

integer) are retained for testing the model, and the remaining are used as training set. The 

cross-validation process is then repeated for 5 times and the results are averaged to produce 

a single estimation. For patients with less than 5 seizures, we opted for a block-wise leave-

one-out approach, where we use one block as test and the remaining blocks as train and repeat 

this for all blocks. To evaluate the corresponding F1 score, sensitivity, and specificity, we 

use the tuned parameters for each patient and average the results of cross validation tests as 

described above. For XGB-HW, the trained prediction model generated by the gradient-

boosting algorithm includes all the information on tree structures such as leaf values, 
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Table 4.2. Patient Data and Signal Acquisition Info 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. The proposed block-wise data partitioning, where SZ and NSZ represent the seizure and non-seizure 

segments, respectively. 

thresholds and selected features. Using this trained model, the online XGB classifier is tested 

according to the procedure described in Section 4.6.3. To minimize the update interval and 

latency, features are extracted over smaller time windows than 1s. 
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4.6.3 Feature Extraction 

Prior works [182], [183], [184], [185], [186] have extensively analyzed the optimal features 

for seizure onset detection. For instance, line-length achieves the best seizure detection 

performance among more than 65 different time and frequency-domain features in [182]. 

This time-domain feature is a measure of line-length between successive samples and 

provides an appropriate characteristic of epileptiform iEEG, since it increases at both low-

amplitude fast and high-amplitude slow activities, that normally occur prior to a seizure 

[184]. Another frequently used feature is the energy of the signal, as a measure of signal 

power over time. It was firstly shown in [183] and later by several investigators [184], [185], 

[186] that the power and variance of EEG/iEEG signals are increased minutes prior to seizure 

onset. In addition, many studies on EEG signals have been focused on spectral power features 

in the range of below 30Hz (i.e., the Berger bands) [156], [161], [182]. However, the iEEG 

signals span a wider frequency range and go beyond 200Hz for seizure biomarker extraction 

[171]. These high-frequency oscillations (HFOs) have been previously studied by many 

researchers [171], [187]. The authors of [187] have concluded a significant potential of HFOs 

for seizure detection from iEEG. 

 

Table 4.3. Evaluated Features 
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Based on our initial study on discriminative performance of several frequency and time 

domain features [176], and the existing literature [182], [183], [184], [185], [186], we chose 

the following set of features: line-length, total power, time-domain variance, and power in 

multiple frequency bands, as listed in Table 4.3. We previously analyzed the discriminative 

performance of this feature set on an extensive iEEG database [176], in which line-length 

was the best discriminative feature. While the optimal frequency range was patient-

dependent, in majority of patients sampled at a sufficiently high rate (5k), it had a clear shift 

from low-frequency bands toward gamma, ripple, and fast ripples. 

Rather than using the absolute value of spectral power [176], normalized features were 

calculated by dividing the spectral power within each frequency band by the total power. The 

power values (and corresponding thresholds) typically change with the daily life status of a 

patient, such as sleep state, physical or mental activities, and consciousness level [188]. In 

contrast, normalized values are more robust with respect to fluctuations in a patient’s daily 

life and have been utilized in our study. Features are obtained from each iEEG channel using 

1s windows for training and offline testing. During online testing, we assign a minimum 

extraction time to each feature, based on their computational delay. Using normalized band 

powers, we observed an improved seizure detection accuracy compared to absolute spectral 

power features used in [176]. 

It should be noted that various other features may be included to enable more accurate seizure 

detection. However, the focus of this work is on the classification algorithm. The literature 

pertaining to analysis of various features for epilepsy diagnosis is immense, and can be found 

in [182], [183], [184], [185], [186]. 

4.6.4 Depth and Number of Trees 

Decision trees are very efficient, but also susceptible to overfitting in problems with high 

feature-space dimensionality. To address this, we limit the number of nodes in each tree, i.e., 

design shallow trees using small number of features [176]. Shorter trees are also more 

efficient in hardware and incur less detection delay. Figure 4.7 shows the area under the curve 
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(AUC) performance of an ensemble of gradient-boosted trees versus the number of trees 

for different values of depth parameter. An important observation is that the detection 

accuracy is not significantly improved (< 0.5%) with depth values of 4 and higher. Besides, 

an AUC higher than 90% is achieved using fewer than 10 trees of depth 3 or 4. Therefore, 

the total energy can be minimized by limiting the number of trees and depth, which are 

chosen as 8 and 4 in our study. 

4.6.5 Performance and Comparison 

The average performance of classifiers across patients are shown in Figure 4.8(a) and (b), 

using block-wise and random splitting methods, respectively. As mentioned before, due to 

correlation of iEEG waveforms, random splitting can allow the model to learn from parts of 

test data and statistics of unseen seizures during training. Therefore, it creates overly  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7. The overall classification performance at various depths versus number of trees. 
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(a)                                                                                (b) 
 
Figure 4.8. Comparison of average predictive ability (F1 score), sensitivity, and specificity of different 

classification methods among patients, using (a) blockwise, and (b) random splitting methods, respectively. 

optimistic predictive models and invalidates the estimated performance. In this work, we 

consider block-wise approach to alleviate the leakage problem. The F1 score is calculated 

by counting the number of correctly classified windows, given by: 

                                                          𝐹𝐹1 =  2
1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+
1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
                           Equation 4.7 

where sensitivity and specificity represent the true positive and true negative rates, 

respectively. The asynchronous XGB (XGB-HW) performs best among all classifiers, 

reaching an average F1 score of 99.23% and 87.86%, for the random and block-wise splitting 

methods, respectively, with an average block-wise sensitivity of 80.33% and specificity of 

98.12%. 

This is achieved by efficient design of the learning algorithm in an asynchronous online 

fashion, while minimizing the hardware resources and energy. As expected, random split 

leads to higher, but unrealistic predictive accuracy. Interestingly, only tree-based methods, 

in particular, the XGB could classify patient 21’s seizures (87% F1 score), while all other 

classifiers failed for this patient. Random forests generally require a large number of trees to 
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obtain a high performance, which is not suitable for on-chip implementation. Our results 

indicate that the proposed asynchronous gradient-boosting method with as low as eight trees, 

has a higher generalization ability on this iEEG dataset, compared to methods such as k-NN, 

LR, and SVM. The performance could be further boosted by artifact removal, as some 

datasets (e.g., patient 13) are contaminated by high-frequency artifacts that particularly 

overlap with FR band. To evaluate the detection latency, we count the number of correctly 

classified ictal windows at the beginning of a seizure, and wait for at least three consecutive 

seizure decisions to remove the effect of transient noises. Figure 4.9 shows the latency among 

patients, with an average of 1.1s. 

4.6.6 Feature Importance 

Figure 4.10 summarizes the overall performance of examined features across patients. Line-

length stands out as the best feature, in accordance with many other studies [182]. Variance, 

ripple, and fast ripple are next. Interestingly, we observe a clear shift in discriminative 

performance of spectral power features from Berger bands toward gamma, ripple, and fast 

ripples (all normalized). However, as explained in [156] and [161], to distinguish between 

seizure and non-seizure data, both dominant and less dominant frequency components are 

required, as well as the spatial variation among channels, that is achieved through a 

multichannel analysis. In this work, we implement a programmable filter with flexible 

bandwidth settings to cover all seizure-related frequency components. By using a single filter 

architecture with programmable bandwidth, the hardware complexity of FEE is significantly 

reduced compared to prior works that integrate multiple parallel bandpass filters. 

4.7 SoC Implementation2 

Figure 4.11(a) shows the block diagram of the implemented SoC based on the asynchronous 

XGB classifier presented in Section 5 [9], [33]. This classifier supports up to 32 neural 

channels. One fully programmable feature extraction unit is used per tree and controlled by 

 
2 Milad Taghavi and Mahsa Shoaran designed and tested the hardware, while the software/hardware co-design was conducted by Benyamin 

Haghi, Milad Taghavi, and Mahsa Shoaran. 
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the Tree Control Unit (TCU) to extract epileptic biomarkers. A Mealy FSM 

implementation of the closed-loop system is chosen, that substantially reduces the power and 

area overhead. To extract spectral density features, a single FIR filter structure is used, and 

its coefficients are multiplexed according to the feature being processed, thus reducing the 

total area. As a result, the classifier achieves an energy efficiency of 41.2nJ/class in a small 

area of 1mm2. 

Features of line-length, variance, and total power are implemented with standard digital logic 

according to their mathematical definitions in Table 4.3 and contribute to a small portion of 

feature extraction area (<15%), as shown in Figure 4.11(b). The main blocks of the 

implemented Mealy FSM include the ensemble of 8 DTs with programmable FIR filters, a 

Memory Control Unit (MCU), and an Asynchronous Tree Reset Control (ATRC). The 

detailed functional description of these blocks is discussed as follows. 

4.7.1 DT Ensemble 

The ensemble includes 8 decision tree structures with a maximum depth of 4 (15 nodes). For 

each tree, TCU sets the next state’s memory pointer according to the current state, 

comparator status, and internal flags. A multiplexer selects one channel from the 32-channel 

input data, according to the current state. This channel is then fed to FEE. At the last 

processing node of each tree, TCU sends out the ‘tree-end’ flag as well as final node info to 

ATRC. Epileptic features are computed in the FEE module. A decoder activates/deactivates 

its sub-modules according to the feature under study at the current node. 

4.7.2 Programmable FIR Filters 

To calculate spectral power features, a cascade of two FIR stages is implemented. The first 

stage decimates input samples, while the second stage provides bandpass filtering. Each stage 

may be bypassed according to selected feature. Since at each node of a tree only one feature 

is being processed, a single filter structure with programmable coefficients can be used. This  
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Figure 4.9. The detection latency of XGB-HW across patients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10. Overall feature importance for the proposed classifier. 
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           (a) 
 
 
 
 
 
 
 
            (b) 
Figure 4.11. Implemented Hardware, (a) Block diagram of the implemented SoC; (b) Power breakdown, die 

micrograph, and area breakdown of a single tree and FEE.  

would significantly relax the area-power constraints in feature extraction module. The FIR 

filters have Type-I direct symmetric structures with 7 and 35 taps for the first and second 

stages, respectively. A direct symmetric structure enables using half the multipliers needed 

for a standard FIR filter, as well as 50% saving in coefficient memory. A high number of 

taps would lead to extra power and area in FEE and memory. To select optimal number of 

taps, extensive analysis was made. Given the importance of higher frequency features in 

seizure detection as shown in Figure 4.10, we particularly focused on the required accuracy 

for capturing low-amplitude ripple and fast ripple features (i.e., HFOs) with short duration 

and rare occurrence [174], [176]. Thus, the filter architecture and length were chosen to 

ensure lower than 5% error in HFO extraction over the entire training set. 

4.7.3 Memory Control Unit 

MCU monitors the read/write access to the memory. In the write mode, a decoder activates 

different memory sub-modules for programming through the serial input, that is generated 
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during patient-specific training. The filter coefficients and prediction model are stored in 

memory. The fully programmable memory allocation enables a patient-specific seizure 

detection. The total size of the register type memory is less than 1kB, with shared filter 

coefficients using 228B. The memory associated with filter coefficients is shared among 

trees. Thus, it is not scaled by increasing the number of trees. Each DT has a dedicated 690b 

of memory for its node information (690B for 8 trees). Four sub-memory blocks with a depth 

of 15 store the tree structure, including each node’s feature/channel selection, decimation 

filter selection, threshold, and leaf values, tree structure (whether there is a child node or not), 

and window size for feature extraction. 

In the read mode, MCU receives pointer address and commands from each DT, and sends 

back the requested information. It also activates/deactivates the associated filter coefficients 

from memory to DTs, according to the corresponding node info. Trees work independently 

in a parallel fashion, using an Asynchronous Tree Reset Control. 

4.7.4 Asynchronous Tree Reset Control 

To effectively capture all abnormalities in the data, each tree works independently and 

computes its trained features to maximize the accuracy, regardless of computational delay. 

When the ‘tree-end’ flag of a tree is raised, ATRC stores the tree status and resets it to the 

initial state. After reset is cleared, the tree starts processing of new input data. ATRC holds 

the tree status until the next available ‘tree-end’ flag. Finally, ATRC assigns each tree’s 

respective leaf values to calculate 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 according to equation 4.6. 

4.7.4.1 Input precision 

The input bit precision should be sufficiently high to ensure the detectability of weak high-

frequency features. According to [189], at least 12-bit resolution is required to extract correct 

FR patterns for seizure onset detection. On the other hand, lower bit resolution is preferred 

to reduce the chip area and power. To find the required number of bits, HFOs from various 

patients were calculated at 9-12 bit precisions of input data, and compared to those extracted 



 

 

114 
from ideal floating point input. With some extra margin that accounts for lower effective 

resolution of ADC, we chose 12 bits that ensures less than 0.1% error in the amplitude of 

HFOs. 

4.7.4.2 Experimental setup and measurement results 

The chip micrograph of the proposed classification architecture fabricated in a 65nm TSMC 

process and its area breakdown are depicted in Figure 4.11(b), as well as the area breakdown 

of a single tree and the FEE. Each tree, including its dedicated and shared memory units, 

takes 11.25% of the die area. Figure 4.11(b) also shows the power breakdown of the proposed 

SoC operating at a 0.8V supply, with an energy efficiency of 41.2nJ/class. Power 

measurements were made at worst-case scenarios where all the internal registers are 

switching and FEE is saturated (i.e., electrical onset of seizure is approaching). 

In order to test the seizure detection performance of the fabricated chip, iEEG recordings 

from epileptic patients were digitized on a local PC with 12-bit resolution. The digitized data  

 

 

 

 

 

 

 

 

Figure 4.12. Experimental setup to measure the on-chip classifier. 
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of all channels were then serialized and stored on the DDR2 SDRAM of an Altera DE4 

board, as shown in Figure 4.12. The information of prediction model was serially sent to the 

Serial Programming input of the implemented SoC (shown on the right). Once the prediction 

model is stored on memory, FPGA provides input clock and start command to SoC. For each 

patient, the chip is programmed according to the ensemble structure of his/her trained 

prediction model. Then, the test iEEG data of that patient is loaded to the chip for feature 

extraction and classification. Using the measured decisions, sensitivity and specificity are 

calculated. We tested the chip with 2253 hours of iEEG data from 20 patients. As the chip 

handles up to 32 input channels, those patients with up to 32 channels in their trained 

prediction model were used for the test. Given the limited data storage on FPGA, up to 10 

hours of iEEG data was used for each test. The exact duration was determined based on the 

state of iEEG data. In the case of significant seizure-like activity in the vicinity of 10 hour, 

the duration of test data was reduced to 9 hours, with the last 1-hr added to the following 

experiment. Table IV summarizes the performance of this system compared to the state-of-

the-art on-chip classifiers for seizure detection. In measurements, the classifier achieves an 

average sensitivity and specificity of 83.7% and 88.1%, respectively. For a fair comparison 

with state-of-the-art, energy and area of [162] are normalized to the 65nm technology node. 

The proposed architecture achieves over 27× improvement in energy-area-latency product. 

4.8 Scalability and Hardware Optimization 

The small number of channels in existing neural interface technology remains a barrier to the 

therapeutic potential. For instance, the spatial coverage and resolution of electrodes has a 

high impact on the detection accuracy of epilepsy implants [174]. The proposed XGB 

classifier in this work is inherently scalable to multi-sensor and multichannel operation, 

through sharing the computational and memory resources for feature extraction and 

classification among channels. In contrast to a majority of other classifiers that linearly scale 

in computational and memory requirements with number of channels and features, the 

proposed classifier computes a handful of features per tree, regardless of total channel count.  
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Table 4.4. SoC Performance and Comparison 

This approach enables significant savings in computational resources and required storage 

on chip. 

Although we have chosen a relatively simple feature set in this study, one may use additional 

complex and non-linear features to boost the accuracy at a negligible cost. The total number 

of feature extraction units to be physically placed on chip is proportional to number of trees, 

while only one feature is computed in each tree at a time, saving both power and area. In 

other words, we can include as many features as the application requires, since they only 

scale up with number of trees and do not pose excessive memory and hardware requirements. 

Without any channel selection or feature reduction techniques (that is required in most 

traditional methods due to large dimension of features), the proposed classifier inherently 

selects an optimal set of channels and related features that form the tree structure. Thus, the 

main contribution of this work is a software-hardware co-design approach to enable energy 

reduction by minimizing the number of simultaneously extracted features, thus breaking the 

energy-area vs. accuracy tradeoff. Buffer-less processing of data in a closed-loop scheme is 

employed, and programmable bandpass filters further decrease the overall area overhead. 

The total power can be further reduced by dynamically controlling the channel activation and 

powering down the low-noise amplifiers in unused channels. 

 

Parameter This Work ISSCC’13 [162] JSSC’13 [161] JSSC’14 [163] JSSC’13 [164] 
Process 65 nm 180 nm 180 nm 180 nm 180 nm 
Classifier XGB Non-Lin SVM Lin-SVM LLS SVM‡ 

Signal Modality iEEG EEG EEG iEEG EEG 
Channel Count 32 8 8 Digital 18 
Energy Eff. 41.2nJ/class 1.23*µJ/class 1.52*µJ/class 77.91µJ/class 273µJ/class 
Logic Size 330k 2.27M 3.3M N.A. 371k 
Memory [kB] 1 N.A. N.A. N.A. 32** 
Area 1 mm2 7 mm2* 8.18 mm2* 6.5 mm2 5.13 mm2 
Sensitivity [%] 83.7 95.1 N.A. 92 N.A. 
Specificity [%] 88.1 94 N.A. N.A. N.A. 
Latency [s] 1.79†† 2 2 0.8 N.A. 
* Area and Energy Efficiency conservatively estimated from A/P breakdown. 
** 32kB SV MEM, 16kB Programming MEM, 16kB Data MEM 
† Number of equivalent NAND2 gates with driving strength of one. 
†† Worst case latency (patient 11) 
‡Linear, Polynomial, RBF. 
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4.8.1 Energy-Quality Tradeoffs and Scaling 

In our proposed gradient-boosting classifier, each tree contributes to roughly 10% of total 

power (static and dynamic). Based on the performance curves shown in Figure 4.7, we chose 

to implement an ensemble of eight trees with a maximum depth of four, to achieve an average 

AUC of more than 90% across a large population of patients with varying number of 

electrodes, seizures, and sampling rates. However, not all patients in our database need as 

many trees for an accurate discrimination of their seizures, as depicted in Figure 4.13 (top 

curves). Therefore, we enabled a programmable on/off control for each tree in the ensemble, 

so that upon a patient-specific training phase, one or more trees could be switched off to save 

power, with a minimum impact on quality. In other words, depending on the difficulty of 

detection task, the required number of trees can be switched on to achieve an expected 

classification accuracy (e.g., eight trees for patients with hardly detectable seizures, such as 

patient 24 in Figure 4.13). We use the AUC as our quality metric, that is widely used to 

evaluate the predictive accuracy of a classifier. 

 

 

 

 

 

 

Figure 4.13. Measured AUC versus number of trees for various patients. 

Boosting methods generally attain high discrimination by sequential training of weak 

classifiers. Here, the XGB attempts to increase the predictive accuracy by making a more 

accurate prediction at each iteration [181]. However, increasing the number of DTs increases 
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the memory and power requirements of the system. The proposed XGB hardware is 

inherently quality-scalable through programming the number and depth of the active trees, 

with a maximum depth set at four. Moreover, our design offers a unique flexibility to 

accommodate various tree structures specific to each patient, to trade the predictive accuracy 

with energy (i.e., avoid unnecessary energy dissipation when accuracy is just enough for a 

patient). We explored the hardware parameters of tree count and depth across all patients, as 

potential knobs for energy-quality scaling. 

As shown in Figure 4.12, we observe that in most patients, a small number of trees are 

sufficient for a reliable seizure detection. Indeed, the structure of successive trees are very 

similar in most patients, and by switching off the last few trees, we only observe a slight 

decrease in predictive accuracy. While chip area is limited by the required number of trees 

for worst case patients, the energy usage can be scaled for cases with easily detectable 

seizures. The other alternatives (knobs) for energy-quality scaling include pruning of trees 

or forcing the algorithm to use energy-aware features by modifying the cost function (i.e., 

adding an energy constraint similar to the delay constraint in Algorithm 4.1). However, we 

specifically observed that for most patients, the very last 3–4 trees in the iterative training 

process of XGB have a slight impact on performance and could even cause overfitting. In 

addition, our proposed asynchronous approach requires a single FEE in each tree that freely 

runs to compute one feature at a time. Thus, its energy is less sensitive to the depth parameter 

and is rather controlled by sampling frequency. Thus, we have focused on the hardware knob 

of tree count, that is easily integrated into our power-aware classification prototype. 

4.8.2 Discussion on Hardware Optimization 

Various opportunities to improve the energy and area efficiency of proposed classifier could 

be explored that remain as a future work. For instance, the input bit precision in our chip 

implementation has been chosen sufficiently high to allow the detectability of high-

frequency features. Given the inherent error tolerance in machine learning algorithms, the 

energy per classification can be reduced by relaxing the quality or precision of features. For 

low-power and compact implementation in particular, reducing the resolution of coefficients 
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in filter banks, feature thresholds, and leaf values is critical. New approaches to train 

decision trees with fixed-point and low-cost parameters can be investigated, similar to the 

works that reduce precision in DNNs [151], SVMs and LRs [150]. Since the training is 

usually performed offline, the associated cost is not critical. Such parameters could further 

be used as potential knobs in the proposed energy-quality scaling framework. 

Furthermore, DTs can be trained to incorporate the costs of misclassification (FP or FN) and 

feature computation (power, area, delay) in the tree induction process. For example, it is 

critical to achieve a high sensitivity in seizure detection, while keeping the false alarm rate 

and latency below a tolerable level. This can lead to development of cost-sensitive decision 

trees, where the top-down tree induction algorithm may be adapted to maintain a pre-

specified cost, therefore trading off the unnecessary accuracy (e.g., very high specificity or 

low latency) and energy. Besides, using various design parameters of DTs, the XGB 

classifier can be programmed to trade energy and quality in a structured and dynamic fashion. 

4.9 Summary 

In this work, we addressed the challenge of designing a low-power machine learning 

algorithm for on-chip neural data classification. By using software-hardware co-design 

approach, we proposed a novel hardware architecture for a gradient-boosted decision tree 

model, with a single feature extraction engine and programmable FIR filter per tree. The 

proposed asynchronous tree operation enables efficient classification of multichannel neural 

data, with significantly lower memory, power and area requirements compared to state-of-

the-art. As a result, this on-chip classifier achieves an energy-area-latency product that is 27× 

lower than prior works, while processing the highest number of channels. The hardware 

architecture, design optimization and tradeoffs are discussed, and algorithm performance 

based on proposed model and SoC measurements is presented. Such classifiers could 

potentially allow full integration of processing circuitry with the sensor array in various 

resource-constrained biomedical applications. 
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C h a p t e r  5  

CONCLUSION 

Integrating AI in the design of wearable and implantable medical devices is intended to 

simplify the complexities of medical data analysis, making it more useful in clinical settings 

to enhance patient care and assist healthcare providers in extracting relevant information. In 

this thesis, we explored how AI can potentially be used in the design, implementation, and 

utilization of biomedical systems while emphasizing its importance in advancing healthcare 

technology. The initial chapter establish a basis for understanding the complexity involved 

in processing biomedical data. This shows the potential AI’s ability to manage complex 

medical data and variations in human physiology, leading to improvements in the accuracy 

of diagnostic models and personalized treatment approaches. Enhanced data analysis by AI 

coupled with more advanced algorithms can potentially extract valuable insights and more 

comprehensive interpretability from complex medical datasets, transforming patient care, 

and aiding healthcare providers in advancing treatment techniques. 

In Chapter 2, we explored the utilization of machine learning in Brain-Machine Interfaces 

(BMIs) to show that the application of ML in BMIs has the potential to enhance human 

nervous system links with medical devices, especially those used by patients with 

neurological disorders. First, we demonstrated that among four different algorithms—

Kalman Filter, Deep Neural Network (DNN), SimpleRNN cells, and Long-Short-Term 

Memory (LSTM) cells—LSTM-based decoder provides improved performance in BMI 

technology when measured using Pearson Correlation Coefficient (ρ). Following this, the 

development of deep multi-state Dynamic Recurrent Neural Network (DRNN) decoder 

operating on wavelet-based neural features is presented as an approach to find the complex 

and nonlinear relationships between neural input and movement kinematics for computer 

cursor control. This part emphasizes on how DRNN can potentially create improved BMI 

solutions, elaborating on its efficiency in terms of memory usage and power consumption 

for future developments of BMI systems in hardware. However, this study extends beyond 
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the field of BMI to offer potential assistive technologies that enhance device control and 

interaction leading to an improved life quality for affected individuals like spinal-cord injury 

(SCI) patients. 

In Chapter 3, we introduced EKGNet, which combines analog computation with deep 

learning to achieve a higher level of accuracy in the identification of heartbeat arrhythmias. 

The highler balanced accuracies obtained from EKGNet’s design relate to intra-patient 

classification of arrhythmia and myocardial infarction (MI), which significantly improves 

the heartbeat arrythmia detection by using an efficient and accurate classifier that consume 

little power. By utilizing the energy efficiency of transistors operating in the sub-threshold 

region, EKGNet overcomes the constraints of traditional analog-to-digital conversion 

(ADC), enhancing its suitability for biomedical applications. This work demonstrates the 

potential of adaptable machine learning techniques and AI-driven technologies in the 

progress of early detection of heart diseases. 

In chapter 4, we presented an energy efficient hardware design for seizure detection by 

utilizing XGBoost, a machine learning technique based on gradient-boosted trees, to achieve 

high performance in detecting epileptic activities and to perform accurate real-time seizure 

monitoring. The enhancement in performance offered by this proposed architecture, 

evidenced by the averaged F1 scores and the improvement in the energy-area-latency 

product, indicates this design's potential for integration into current medical devices. The 

adaptability of this architecture to different numbers of trees for personalized patient care can 

potentially be considered as an important advance in designing customized, power-efficient 

implantable and wearable medical devices. This thesis argues that this approach has the 

potential to be used to reduce the risks associated with undetected seizures so as to facilitate 

early interventions while steering clear of seizure detection technologies’ conventional 

standards. 

In summary, this thesis demonstrates that machine learning has the potential to be used in 

the design, the implementation, and the utilization of biomedical systems for the treatment 

of different medical conditions. AI and ML can potentially improve healthcare treatments 
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through new architectures like DRNN and FENet for BMI technology, EKGNet for 

arrhythmia classification, and XGBoost for seizure detection, contributing to an era of 

personalized, efficient, and effective healthcare. An in-depth exploration of these 

applications indicates the capability of these techniques at present in the medical services 

sector, serving as a catalyst for future developments of medical devices by underlining the 

importance of ongoing research and development activities. 
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