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Abstract 

 The stability, activity, and solubility of a protein sequence are determined by a 

delicate balance of molecular interactions in a wide variety of conformational states, 

including competing states and native conformational states.  Even so, most 

computational protein design methods model sequences in the context of a single 

conformation representing the native state.  Despite the potential for improved simulation 

accuracy when the native state is represented by an ensemble of related structures, such 

calculations have not been attempted due to the lack of sufficiently powerful optimization 

algorithms for multi-state design.  Here, we have applied our multi-state design algorithm 

to study the potential utility of various forms of input structural data for design.   

To facilitate this analysis, we developed new methods for the design and high-

throughput stability determination of combinatorial mutation libraries based on protein 

design calculations.  The application of these methods to the core design of a small model 

system produced many variants with improved thermodynamic stability, and showed that 

multi-state design methods can be applied to large structural ensembles without requiring 

the use of different rotamer libraries, energy functions, or design strategies.  Stabilized 

variants were found in libraries based on each type of structural data we tested.  Our 

library design method produced degenerate codon libraries that represented the 

underlying design calculations, and exhaustive screening of these libraries helped to 

clarify several sources of error in our designs that would have otherwise been difficult to 

ascertain.   

The complete lack of correlation between our experimental and simulated stability 

values shows clearly that a design procedure need not reproduce experimental data 
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directly to generate many successful variants.  This surprising result suggests a potential 

new direction for the improvement of protein design technology.   
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Introduction 

 During the past two decades, protein-engineering efforts based on directed 

evolution have met with considerable success.1–3  In tandem, structure-based 

computational protein design (CPD) methods have been developed to allow screening for 

desirable sequences to be performed in silico.4–6 Despite a number of high-profile results 

that demonstrate the potential of CPD,7–14 the routine computational design of functional 

proteins remains elusive.  Thus, many current efforts focus on the improvement of CPD 

methodology or on the synergistic application of CPD with experimental high-throughput 

screening or selection.15  These lines of inquiry need not be orthogonal; the 

computational design and experimental screening of mutant libraries can facilitate a more 

thorough evaluation of CPD than studies that focus on the comparison of individual 

designed sequences.   

Here, we have applied this type of hybrid approach to investigate the degree to 

which X-ray crystallographic structures, NMR solution structures, and ensembles derived 

from molecular dynamics simulations can serve as useful sources of structural 

information for CPD.  This study was made possible by the development of new methods 

for the computational design and high-throughput experimental stability determination of 

combinatorial protein libraries.  The results we report here provide simultaneous 

experimental validation for (1) the application of multi-state protein design methods to 

large conformational ensembles, (2) the transformation of arbitrary CPD results into 

combinatorial mutation libraries, and (3) the experimental stability determination of these 
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libraries by high-throughput gene assembly, protein expression, purification, and 

screening.      

Our work here was motivated by a desire to address one of the major 

approximations of CPD: the reliance on a single, rigid main-chain conformation.  

Although the stability, solubility, and activity of a protein depend on the relative 

energetic contributions of many conformational states, including ensembles of native, 

unfolded, and aggregated structures,16 most CPD methods evaluate sequences based on 

their energies in the context of one fixed backbone structure.  This simplification has 

made design results undesirably sensitive to slight changes in main-chain and side-chain 

conformation, and has made difficult the selection of sequences with amino acid 

composition similar to naturally occurring protein.  These issues have been approached 

via the use of high-resolution structural templates, expanded rotamer libraries,17, 18 energy 

functions with softened repulsive terms,11, 19, 20 iteration between structural refinement 

and sequence design,11, 21 and composition-based reference energies.11, 22  Although these 

strategies can help to mitigate the impact of the fixed-backbone approximation, they do 

not address the fundamental reality that protein fitness depends on a diverse range of 

conformational states.   

In a handful of cases, multi-state design (MSD) procedures have been used to find 

sequences that simultaneously stabilize or destabilize a combination of a few different 

conformational states.23–25  However, MSD techniques have not yet been applied to 

ensembles with many conformational states that might better reflect the flexibility of real 

proteins.  The degree to which various energy functions, rotamer libraries, and structural 

templates of single-state design (SSD) might be appropriate for this type of MSD 
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calculation is heretofore unknown.  We recently developed a framework for MSD that 

allows for efficient sequence optimization given hundreds of conformational states.  

Here, we have applied this framework to test the applicability of current CPD methods to 

large structural ensembles, and to investigate whether the use of such ensembles might 

result in the selection of more desirable sequences by CPD.   

With limited exceptions,26 a unique native state with at least marginal stability is 

required for protein function as we understand it today.  Accordingly, the most basic goal 

of CPD has been to optimize interactions between amino acids side chains to promote 

thermodynamic stability of the native state. Unfortunately, the experimental validation of 

a new design procedure on this basis is often beset with uncertainty. Standard methods 

for the measurement of protein stability are too laborious to allow the testing of more 

than a few designed variants, and the top-scoring sequence produced by a new design 

procedure does not (yet) sufficiently reflect its general utility.   To facilitate the 

experimental evaluation of larger numbers of designed sequences, higher throughput is 

required in the assembly of genes, the expression and purification of proteins, and the 

measurement of stabilities.   Fortunately, recent progress in these areas has allowed us to 

construct an efficient pipeline for the basic evaluation of new procedures in CPD.  Gene 

libraries assembled from degenerate oligonucleotides, a frameshift selection scheme that 

reduces contamination by erroneous genes,27 and economical sequence verification make 

tenable the production of numerous specific designed genes.  Commercial microtiter 

plates for the growth of expression cultures and the purification of hexahistidine-tagged 

proteins allow sufficiently pure protein to be produced easily from these genes.  Finally, 

liquid-handling robotics28 expedites the preparation of a chemical denaturation series for 
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each protein in 96-well format, and the fraction of protein unfolded in each well is 

assayed in a plate reader measuring tryptophan fluorescence.29  The integration of these 

technologies has allowed us to assess the stability of hundreds of designed protein 

variants with minimal experimenter intervention and limited incremental expense.  

Given several design procedures to evaluate and a high-throughput experimental 

assay, we needed a general and rigorous method to choose a limited number of 

representative sequences to test from each design. Fortunately, structure-based 

computational protein design methods have been enlisted previously to focus high-

throughput screening and selection on desirable subsets of sequence space.  For example, 

CPD can be used to help identify positions amenable to site-saturation mutagenesis30 and 

site-directed recombination.31, 32  When a protein engineering effort is intended to help 

evaluate CPD procedures, as in this case, designed combinatorial mutation libraries are 

more appropriate because they reflect more strongly the sequence preferences of CPD.  

Although several useful computational protein library design methods have been 

developed, none reported so far takes directly into account CPD energies, allows control 

over library size and possible sets of amino acids, and eschews heuristics that can 

introduce bias into the libraries it produces.33–36  So that our experimental results might 

better reflect the results of the underlying CPD calculations, we developed a new library 

design procedure, called Combinatorial Libraries Emphasizing And Reflecting Scored 

Sequences (CLEARSS), which satisfies all of these criteria.  

 We used standard single-state design (SSD) and MSD to redesign the core of the 

small, stable domain Gβ1 based on several sources of structural information, including a 

crystal structure, an NMR structure, and MD simulations.  Our efforts were motivated by 
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a curiosity about the relative merits of different sources of structural data for design, and 

the hypothesis that use of a structural ensemble might help to correct for design failures 

observed in SSD.  Because the imperfect nature of CPD limits the conclusions that can be 

drawn from a comparison of single sequences, we developed the CLEARSS algorithm to 

make combinatorial libraries based on the lists of scored sequences produced by CPD.  

We applied this algorithm to the results of our design calculations, and assayed the 

designed libraries using a new protocol for the expression, purification, and stability 

assessment of protein libraries with high throughput.  

 We found that all three sources of structural data resulted in designed libraries 

with multiple stabilized variants.  The designed libraries based on an NMR ensemble 

were extremely similar, whether a single representative structure or all 60 ensemble 

members were used for modeling.  The most promising results by far were achieved 

using a constrained 128-member MD-ensemble, which produced a designed library with 

no significantly destabilized and many stabilized variants.  Despite the apparent success 

of this design, there was no correlation observed between the simulation energies and the 

experimental stabilities of any of these variants.  

Our results suggest that the basic principles of CPD extend beyond the design of 

single sequences to the design of combinatorial libraries, and that the rigorous screening 

of such libraries can help to pinpoint sources of error in a design procedure.  They show 

that MSD methods are applicable to large structural ensembles when used with standard 

rotamer libraries and energy functions, inspiring optimism about more ambitious future 

applications for MSD.  They also hint that the use of structural ensembles could help to 

alleviate problems that occur when targeting a single, fixed input structure. Furthermore, 
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they illustrate clearly that the success of CPD does not hinge on its ability to directly 

correlate simulation energies with experimental measures of fitness.  This surprising 

property of CPD may suggest a new possible direction of inquiry for the improvement of 

CPD.     
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Results and discussion 

Designed libraries  

To simplify the validation of our multi-state design and combinatorial library 

design methods, we applied them to a previously studied set of core positions (Figure 1) 

in the small model system Gβ1, and relied on a set of energy functions that previously 

found stabilized variants based on this design.19 Given the requirements for purified 

protein of our stability assay, we chose to design and screen a 24-member library based 

on each of the following sources of structural information: a crystal structure (xtal-1), an 

NMR-constrained minimized average (NMR-1), an NMR ensemble (NMR-60), a 

constrained MD ensemble (cMD-128), and an unconstrained MD ensemble (uMD-128).   

The sequence of steps used to design the combinatorial libraries we tested 

experimentally is depicted in Figure 2.  First, the standard design procedure was applied 

to each structural input, and optimization was performed with SSD-FASTER or MSD-

FASTER to give a list of amino acid sequences and their CPD energies for each design.  

The CLEARSS library design algorithm was then applied to each list of sequences to 

give a rank-ordered list of combinatorial mutation libraries.  All amino acid sequences in 

each of the top 20 CLEARSS libraries were instantiated and evaluated by rotamer 

optimization. The CLEARSS library to test experimentally for each structural input was 

chosen by objective criteria based on the energies of the rescored sequences, as described 

in the methods section.  
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All five designed libraries comprise relatively conservative sets of mutations 

away from the wild-type sequence (Table 1).  All libraries other than uMD-128 share 

many characteristics in common.  Each of these libraries chose only the wild-type amino 

acid at positions A20, A26, F30, and A34. Every member of each of these four libraries 

contained the single-mutant Y3F, which previous experiments have shown to be well 

tolerated by the structure.  These four libraries all allowed the wild-type amino acid at 

every other position, and all contain the most stable Gβ1 core variant previously 

characterized (Y3F+L7I+V39I). 

 The two NMR libraries were extremely similar to each other: both chose the 

amino acids FILV at position 52, and directed the remaining diversity to positions 7 and  

39.  In contrast, xtal-1 and cMD-128 allowed only the wild-type Phe at position 52, and 

instead allocated diversity towards positions 7, 39, and 54.  xtal-1 differs from cMD-128 

in that it gave up L7F and V39L to allow L5I. The unconstrained MD ensemble library 

uMD-128 was the least conservative, specifying a size reversal of two nearby residues via 

mutations L5A and A34F, and diversity at residue 30, a position untouched in the other 

libraries.   
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Figure 1:  The core residues of Gβ1 designed in this study.   Each of these positions 
was allowed to assume various rotamers of the hydrophobic amino acids Ala, Val, Ile, 
Leu, Phe, Tyr, and Trp.  Position Trp43 (not shown) was additionally allowed to change 
rotamer but not amino acid type.  All other side chains and the main chain were fixed in 
the input conformation for the state being modeled in each case.   
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Figure 2: The general scheme used to design combinatorial mutation libraries based 
on computational protein design calculations.  A line of boxes indicates a protein 
sequence; each box represents a position in the protein chain.  Different colored boxes 
represent different amino acids.  The set of sequences on the far right represent the 
expansion of a particular combinatorial library into the set of sequences it represents.  
The energies of the sequences in the expansions are used to decide which combinatorial 
library to test experimentally, as described in the Methods section. 



 93 

 

Table 1: Combinatorial libraries designed from different sources of structural 
information.   xtal-1: the designed library based on single-state design of the crystal 
structure.  NMR-1: the library based on single-state design of the constrained minimized 
average NMR solution structure.  NMR-60:  the library based on multi-state design of the 
60-member NMR structural ensemble.  cMD-128: the library based on multi-state design 
of the constrained molecular dynamics ensemble.  uMD-128: the library based on multi-
state design of the unconstrained molecular dynamics simulation.   

Residue WT xtal-1 NMR-1 NMR-60  cMD-128 uMD-128 

3 Y F F F F F 
5 L IL L L L A 
7 L ILV ILV IL FILV FL 
20 A A A A A A 
26 A A A A A A 
30 F F F F F FIL 
34 A A A A A F 
39 V IV IV ILV ILV IL 
52 F F FILV FILV F F 
54 V IV V V IV AV 
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Experimental characterization of designed libraries 

Each library was constructed using a modification of the traditional gene 

assembly protocol37 that minimizes oligonucleotide overlap.  These changes were 

intended to limit oligonucleotide costs and allow degenerate nucleotides to be placed in 

non-overlapping regions, limiting library composition biases produced by differential 

annealing effects.  Expensive and time-consuming oligonucleotide purification was 

omitted; instead, a frameshift selection plasmid pInSALect was applied to correct for 

errors introduced during oligonucleotide synthesis and PCR assembly.27  Over-

sequencing (4x) of a 24-member library typically gave 85% correctly inserted, non-

mutated sequences (see supplemental materials), out of which ~ 80% of each desired 

library could be recovered. Missing library members were generated by standard quick-

change mutagensis.   

The libraries were then expressed, purified, and denatured as described in the 

methods.  Control experiments verifying the accuracy and precision of the microtiter 

plate-based stability assay showed excellent agreement with denaturation experiments 

monitored by circular dichroism (see supplemental materials).  Future improvements in 

the throughput of stability determination can come from the usage of robotics platforms 

for variant construction, colony picking, and protein purification.  Shifting the focus from 

sequencing towards stability screening could quickly produce information about the best 

mutants, as is common in directed evolution protocols.  However, since a comprehensive 

screening of each designed library was desired, a lower level of throughput was tolerated. 
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Experimental screening of the xtal-1 library (Figure 3) showed two distinct sets of 

variants.  The 12 library members with wild-type Leu at position 5 all exhibited stabilities 

similar to or better than the wild-type sequence, while the 12 with Ile at position 5 were 

all significantly destabilized.  Screening of the NMR-based libraries (Figures 4 and 5) 

showed a similar dichotomy.  In each case, the 6 library members with the wild-type Phe 

at position 52 exhibited wild-type-like stability or better. The remaining 18 variants from 

each NMR-based library were highly destabilized, and many lacked enough of a 

pretransition to be fit to the two-state unfolding model.   

Evaluation of the MD libraries indicated that all 24 variants from the constrained 

library, cMD-128, had stability similar to the wild type or better (Figure 6).  In contrast, 

all 24 variants from the uMD-128 library failed to produce any significant change in 

fluorescence signal across the denaturation series, and thus may be unfolded or 

structurally perturbed, as discussed below. A comparison of all five experimentally 

characterized libraries (Figure 7) indicates clearly that the cMD-128 design successfully 

produced a variety of stabilized mutants, whereas every other designed library specified 

at least one problematic substitution that rendered many of its sequences destabilized or 

otherwise unlike the wild type.    
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Figure 3: Fraction-unfolded curves derived from the stability determination of 
library xtal-1.    The dashed black curve denotes variant Y3F, which is the closest library 
member to the wild type in terms of sequence, and which is known to have a stability 
very similar to the wild type.  Red curves denote variants with Cm > 2.0 M, and 
correspond to all variants with Leu at position 5.  Blue curves denote variants with Cm < 
2.0 M, and correspond to variants with Ile at position 5.  Not pictured:  variant 
Y3F+L5I+L7I, which did not give a signal that could be fit to a two-state unfolding 
model.   
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Figure 4: Fraction-unfolded curves derived from the stability determination of 
library NMR-1.    The dashed black curve denotes variant Y3F, which is the closest 
library member to the wild type in terms of sequence, and which is known to have a 
stability very similar to the wild type.  Red curves denote variants with Cm > 2.0 M, and 
correspond to all variants with Phe at position 52.  Blue curves all represent variants with 
Cm < 2.0 M, which lack Phe at position 52, and have Val at position 39.  Not pictured:  13 
variants that lack Phe at position 52.   
 
 
 



 98 

 
Figure 5: Fraction-unfolded curves derived from the stability determination of 
library NMR-60.    The dashed black curve denotes variant Y3F, which is the closest 
library member to the wild type in terms of sequence, and which is known to have a 
stability very similar to the wild type.  Red curves denote variants with Cm > 2.0 M, and 
correspond to all variants with Phe at position 52.  Blue curves all represent variants with 
Cm < 2.0 M, which lack Phe at position 52, and have Val at position 39.  Not pictured:  14 
variants that lack Phe at position 52. 
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Figure 6:  Fraction-unfolded curves derived from the stability determination of 
library cMD-128.    The dashed black curve denotes variant Y3F, which is the closest 
library member to the wild type in terms of sequence, and which is known to have a 
stability very similar to the wild type.  Red curves denote variants with Cm > 2.0 M, and 
correspond to all 24 variants in the library.   
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Figure 7:  Each library partitioned into three stability groups.   The colors match 
those in Figures 3–6: red (stable, Cm > 2.0), blue (destabilized, Cm < 2.0 M), grey (did not 
give a signal that could be fit to a 2-state model; not pictured in Figures 3–6).  
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Origin of destabilizing mutations 

 With experimental screening results in hand, we can return to the calculations that 

inspired them and ask why mutations such as L5I, F52ILV, and A34F were chosen by the 

design procedure. These mutations were all present in high-scoring sequences from the 

original design calculations, and thus are not artifacts introduced by the library design 

process.   

 The selection of the amino acids FILV at position Phe52 in the two NMR-based 

libraries resulted in three quarters of each library being significantly destabilized.  In the 

context of the NMR structures, no Phe rotamer in the library was able to fit perfectly at 

position 52, encouraging the selection of smaller amino acids.  If the set of rotamers at 

this position is supplemented with the observed rotamer in each structure, the design 

chooses to allocate diversity to positions 7 and 39, resulting in libraries similar to xtal-1.  

This result highlights how dramatically the rotameric approximation can influence the 

results of a design.  It suggests that, at the very least, rotamers optimized for the wild-

type sequence should be included when the goal is to find particular desirable sequences.  

In this case, we omitted the structurally observed rotamer at each position in order to 

limit the significant bias towards the wild-type sequence that these rotamers tend to 

cause.  In the context of a real protein engineering project, this choice would have 

considerably reduced our chances of success.   

The L5I mutation, which caused half of the xtal-1 library members to be 

destabilized relative to the wild-type sequence, may have been selected due to a failure of 

the softened repulsive contact potential that is used to counteract unrealistic rigidity 

introduced by the CPD model.    The γ methyl group of Ile5 bumps into a Thr residue on 
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an adjacent β strand and is scored as a serious clash using unscaled van der Waals radii, 

but appears innocuous with the atomic radius scaling factor of α = 0.9 that we used for 

the designs evaluated here. Repeating the design calculations with radii scaled by 

intermediate values such as 0.925 and 0.95 prevents Ile from being chosen at position 5, 

but also increases the frequency with which smaller residues are chosen at position 

Phe52.   Interestingly, the recommendation of α = 0.9 is derived from previous 

experiments based on the same set of Gβ1 core positions that were designed here.  The 

earlier work drew conclusions based only on the best-scoring sequences produced by the 

design calculations, and found no difference between scaling atomic radii by 0.9 or 

0.95.19   Our results here indicate that the quality of sequences produced by the design 

procedure varies significantly with values of α between 0.9 and 0.95 when more 

sequences are taken into account.  Given this, a more rigorous investigation of the most 

appropriate α value for design seems both tenable and warranted.  

To analyze the uMD-128 data, it is important to note that our stability assay 

reports on the environment of the single Trp residue of Gβ1. Changes in packing caused 

by substitutions at other positions could alter the native-state environment of Trp43 

enough to flip its side chain out into solution or change its fluorescence properties, 

crippling our ability to monitor unfolding by fluorescence.  This interpretation seems 

unlikely for the destabilized members of the crystal structure and NMR libraries, for 

which a partial unfolding transition is clearly indicated by the raw data.  However, the 

members of the uMD-128 library fail to show even a hint of such a transition, rendering 

the validity of our assay more suspect in this case.   
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Interestingly, others have investigated a 5-fold core variant of Gβ1 that bears 

substitutions similar to those in our uMD-128 library, including the A34F mutation.  

Structural characterization of this variant by NMR and X-ray crystallography indicated a 

domain-swapped tetrameric structure; the fluorescence emission maximum of this 

sequence was blue-shifted by almost 20 nm.38  Related variants with the A34F 

substitution, including the A34F single mutant of the wild-type sequence, have also been 

shown to assume domain-swapped or side-by-side dimeric conformations in solution.39, 40  

Given these reports, the variants in our uMD-128 library, which all bear the A34F 

mutation, might also plausibly assume one of these oligomeric conformations.  In this 

case, the library sequences could easily exhibit fluorescence emission spectra 

incompatible with our assay parameters, which were developed based on the 

characteristics of the wild-type sequence.    Ultimately, the structural features of the 

uMD-128 library are unknown without additional experimental characterization.  

However, the published investigations of Gβ1 variants with the A34F substitution 

suggest that our uMD-128 library sequences are likely to assume conformations other 

than those modeled in our design calculations.   

 

Influence of the designed library selection method 

 At this point, it is important to address the degree to which serendipity in 

designed library selection might affect the conclusions we may draw from our 

experiments.  The CLEARSS library design procedure was developed with an 

understanding that many different combinatorial libraries may similarly represent a given 

list of scored sequences.  Thus, its default mode of operation is to produce a list of the 
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top-scoring designed combinatorial libraries that satisfy all constraints, and to let the user 

choose between them.  In general, this choice might be influenced by chemical intuition 

or prior mutational data, and thus partially account for properties of the system that are 

not modeled during the design procedure.  To make our evaluation of input structural 

data sources as fair as possible, we chose to ignore such influences and apply an objective 

strategy based on the energies of the sequences in the libraries.  Nevertheless, we must 

ask how other reasonable libraries generated by CLEARSS would have fared in our 

experimental assay.   

Each of the top 20 designed libraries based on the NMR ensemble, as well as each 

based on the single average NMR structure, assigned smaller residues than the wild-type 

Phe to position 52.  The remaining diversity of each library was occupied by various 

combinations of the other mutations present in the xtal-1, NMR-1, and NMR-60 libraries 

we screened in this work.  It seems very likely, then, that the screening of any of the top 

NMR-based libraries from our designs would have resulted in stability data quite similar 

to that shown in Figures 4 and 5.  Similarly, all of the top 20 designed libraries based on 

the unconstrained MD ensemble contained mutations L5A and A34F, and would be 

expected to exhibit similar fluorescence characteristics to the library uMD-128 we tested 

here.   

A more interesting case is provided by the designs based on the crystal structure 

and constrained MD ensemble.  Our analysis of the libraries xtal-1 and cMD-128 

produced by these designs seems to indicate that cMD-128 was more successful, since a 

much greater fraction of its members were shown to be highly stable.   However, when 

the top 20 libraries from each design were inspected in aggregate, it became clear that 
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both designs had produced a variety of libraries with various expected properties.  The 

xtal-1 library and the cMD-128 library were each found in the top 20 libraries produced 

by both designs.  Furthermore, each design produced several libraries with diversity at 

position 52, like NMR-1 and NMR-60.  It seems clear that small changes to the 

constrained MD ensemble or to our energy functions might have reversed any potential 

conclusions about the usefulness of structural ensembles compared to single structures 

for the purposes of CPD.   

 

The nature of approximation in computational protein design 

 In addition to helping validate the use of multi-state and combinatorial library 

design methods for computational protein design, our experimental results also allowed 

some unexpected insight into protein design itself.  Plots of experimental stability versus 

simulation energy for the cMD-128 library (Figure 8) failed to yield any correlation, 

despite the apparent success of this design calculation.  Likewise, the design calculations 

for xtal-1 and the NMR libraries failed to predict the pronounced destabilizing effects of 

mutations L5I or F52L, even though these designs also found a variety of stabilized 

variants.  The design problem we chose is not simply too trivial for our purposes: the 

uMD-128 library and many previous reports attest to the myriad ways in which this 

system can be broken.19, 38–42  

With a multiplicity of approximate methods available for computing the relative 

stabilities of protein sequences, the difficulty of solving this problem generally and 

accurately is sometimes overlooked.  The stability of a sequence depends on the 

equilibrium between a relatively well-defined ensemble of native state conformations and 
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a vaguely defined ensemble of competing states.  Our ability to find the relevant low-

energy states is constrained by the vastness of protein conformational space and the 

extremely rugged energy landscape produced by our energy functions.   Amino acid 

substitutions alter this energy landscape unpredictably, limiting the utility for design of 

structural information gathered for individual sequences.  Current approaches tend to 

model native states at high resolution using whatever structures happen to be available, 

and account for competing states implicitly using statistical and heuristic terms.   

Such methods have been surprisingly effective, given the approximations they 

rely upon.   One perspective is that a CPD method is successful only to the extent that it 

can accurately predict or rank the stabilities of the variants it simulates, and that 

improvements in designed sequences will follow from improvements in ranking ability.43  

Accordingly, several groups have taken on large-scale forcefield parameterization efforts 

based on thermodynamic databases.44, 45 In our research group, a forcefield tuned to offer 

significantly improved correlation between simulated and experimental stability 

differences did not exhibit improved performance for combinatorial design methods that 

allow large jumps in sequence space.45  We can infer the same about the tuned forcefield 

of another group, given several reports of successful designs based on iterative one-by-

one design and none based on combinatorial design methods.46–50 The ability to 

reproduce experimental stability rankings is apparently not sufficient for accurate 

combinatorial protein design, at least in the range of ranking accuracy that has been 

achieved so far.  The results of our work here furthermore suggest that this property is not 

even necessary for effective design. 
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This perspective prompts a modified view of the factors that make structure-based 

protein design possible in the first place.    As discussed above, protein structures relax to 

accommodate mutations, and the computational difficulty of simulating these relaxations 

accurately has so far rendered intractable the stability ranking of sequence variants with 

many mutations.  Fortunately, this malleability also means that sequences chosen to fit 

into a rigid protein model, even using approximate energy functions, will likely be 

tolerated by whatever relaxed structure results from the mutations they contain.  In this 

way, the soft material properties of proteins impede the development of the quantitative 

protein design method we seek, but also make possible the more qualitative methods we 

can apply today.   
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Figure 8:  Correlation between simulation energy and experimental stability for the 
cMD-128 library.   No correlation was observed between the experimentally measured 
fitness of the sequences and simulation energies that were used to select them for 
experimental screening.   
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Conclusions 

  Here, we have reported the development of new methods for the design and 

stability screening of combinatorial libraries based on lists of scored sequences.  These 

methods were enlisted to test the application of multi-state design procedures to several 

structural ensembles, and to compare the resulting designs to those based on single 

structures.  Designed libraries gave multiple stabilized variants when based on a crystal 

structure, an MD trajectory from that crystal structure, an NMR ensemble, and a single 

structure derived from the NMR ensemble.  Our single-state and multi-state designs 

based on NMR data produced similar sets of libraries; likewise did those based on 

crystallographic data.  Although an MD-based library gave superlative results, we cannot 

definitively conclude that the use of a structural ensemble provides any particular 

advantage over a single high-resolution structure for the purposes of design.  

Nevertheless, this initial success seems intriguing and warrants additional study.  It seems 

clear that the energy functions and rotamer libraries developed for single-state modeling 

are equally applicable to the multi-state design of large structural ensembles.  This result 

has important ramifications for future methods in CPD: even if structural ensembles fail 

to prove useful in the modeling of native states, they are expected to be crucial in the 

accurate modeling of competing states, which are undoubtedly more diverse.  

 In addition to validating the idea of design based on large structural ensembles, 

our work has provided further support in favor of rigorously screening an area of 

sequence space discovered by simulation, and has helped in vetting our new, general 

method for library design.  For some designs that specified undesired destabilizing 

mutations, library screening suggested underlying causes for design failure that would not 
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have been apparent via the ad-hoc testing of individual sequences.  Because our library 

design procedure is specifically intended to faithfully represent its input scored sequence 

list, and is indifferent to the origin of the list, it should be more useful for the evaluation 

of new design procedures than its predecessors.    

 Finally, the observed lack of correlation between experimental and simulated 

stabilities in our relatively successful sets of designed sequences may suggest a modified 

approach to protein design.  Current design procedures seem to find stable sequences by 

selecting mutations that are likely to be accommodated by a relaxed version of the 

template structure, and not by accurately ranking the mutations relative to each other.  In 

this view of design, finding sequences that satisfy the native state is relatively easy, while 

deciding which sequences satisfy it best is considerably more difficult.   Given that 

stability is a function of nonnative states as much as native ones, the implication is that 

additional effort should be directed more toward eliminating sequences that can favorably 

assume competing states and less toward attempting to accurately predict which will best 

satisfy the native state.   Since the relevant competing states under nondenaturing 

conditions likely exhibit significant residual structure, their treatment will probably 

require more sophisticated techniques than the composition-based heuristic terms used 

today.  An interesting initial approach might be to perform multi-state design with an 

ensemble of native states as the positive design target and an ensemble of perturbed or 

expanded native states as the negative design target.  The hypothesis is that selecting 

sequences to satisfy the compact native state and to not satisfy an expanded native state 

would tend to promote the desired specificity of a well-folded protein.  Whether or not 

this type of strategy proves successful depends on the degree to which nonnative states 
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influence free energies of folding in a sequence-dependent (rather than composition-

dependent) manner, and on the accuracy with which negative design can be performed 

against a computationally tractable set of competing states.  Ultimately, techniques for 

native-state structural refinement will be crucial in the improvement of variant ranking; 

such methods may profitably be applied to produce appropriate nonnative ensembles as 

well.  The next steps along the road to more accurate protein design thus include the 

development of methods for the construction and validation of useful nonnative 

ensembles, and the integration of structure refinement techniques with multi-state design 

methods.  The validation provided here for our multi-state design, library design, and 

high-throughput stability screening methods represents a significant step towards the 

development of future methods that live up to the initial promise of computational protein 

design.   
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Materials and methods 

Input structural data 

Input atomic coordinates for the β1 domain of Streptococcal protein G (Gβ1) 

were taken from the 2.2 Å crystal structure 1pga,51 the 60-member NMR structural 

ensemble 1gb1, and a constrained, minimized average structure generated from the 

ensemble 2gb1.52  Hydrogens (if any) were stripped from each structure, and new 

hydrogen positions were optimized along with side-chain amide and imidazolium group 

flips using REDUCE.53 Each structure was then standardized with 50 steps of conjugate 

gradient minimization using the DREIDING force field.54  An unconstrained 128-

member molecular dynamics (MD) ensemble was generated from the minimized crystal 

structure by running a 12.8 ps MD trajectory at 300 K using the DREIDING force field 

and saving the coordinates every 0.1 ps.  The constrained MD trajectory was generated 

by the same procedure, using an additional harmonic point restraint with a force constant 

of 100 kcal/mol/Å2 applied to keep Cα atoms near their initial positions.  Each MD 

snapshot was standardized as described above.  After standardization, the NMR, 

constrained MD, and unconstrained MD ensembles exhibited average pairwise main-

chain RMSDs of 0.25, 0.12, and 0.84 Å, respectively.   

 

Sequence Design Specifications and Energy Calculations 

In the sequence designs, ten core positions of Gβ1 (3, 5, 7, 20, 26, 30, 34, 39, 52, 

and 54), were allowed to assume any of the hydrophobic amino acids A, V, L, I, F, Y, 
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and W.  Tryptophan 43 was allowed to change conformation but not amino acid type, so 

that our fluorescence-based stability assay would not be compromised.   Allowed side-

chain conformations at the variable positions were taken from the Dunbrack backbone-

dependent rotamer library with expansions of ±1 standard deviation around χ1 and χ2.17 

To avoid bias toward the wild-type sequence, this set was not supplemented with the 

side-chain coordinates from the input structure, except at position 43.  All other side 

chains and the main chain were fixed in the input conformation.  Pairwise energies were 

computed for each structure or ensemble member using energy functions described 

previously,55, 56 with the polar hydrogen burial term omitted.  

 

Sequence optimization 

FASTER was used to find optimized sequences in the single-state design of the 

crystal structure and the NMR constrained minimized average.57  Multi-state sequence 

optimization of the NMR, unconstrained MD, and constrained MD ensembles was 

performed using a method similar to several that have been described.23, 25 These methods 

implement a combinatorial search through amino acid sequence space in which 

sequences are scored by performing rotamer optimization in the context of each state and 

these energies are combined to yield a single ensemble score.  Our implementation uses 

FASTER for both the search through amino acid sequence space and for the rotamer 

optimization on each state (Chapter 3). Here, the energies of a sequence in the context of 

several states were combined into a single score by computing the free energy of the 

ensemble system at 300 K: 
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A = −kT log( e−E j / kT

j
∑ )  

where each Ej is the energy of the sequence when threaded on member j of the ensemble.  

 

Combinatorial library design 

To choose combinatorial sequence libraries for experimental screening, we used a 

new algorithm reported here (see supplementary material).  Given a list of scored 

sequences, a list of allowed sets of amino acids, and a range of desired library sizes, the 

method evaluates all possible combinations of sets of amino acids at different positions 

that lead to a library with a size in the desired range. Each position in each library is 

scored by summing the Boltzmann weights of the sequences in the list that contain a 

library-specified amino acid at that position.  The position scores are then summed to 

give an overall library score. Our algorithm is able to consider all possible libraries 

because it treats positions independently, and because it ignores amino acid sets that are 

unnecessarily large in the context of a given position. In this work, a temperature of 300 

K was used in the Boltzmann weighting, and the target library size was 24. We allowed 

only those sets of amino acids that can be specified by degenerate codons that do not 

include codons observed with low frequency in E. coli. 

 After applying this algorithm to the lists of sequences produced by the 

computational designs, we instantiated the 20 best-scoring libraries from each design and 

rescored all of the amino acid sequences in each library by rotamer optimization.   Each 

library we inspected contained the best-scoring sequence from the design it was based on, 

although this is not required by our method.  From each design, we chose for 
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experimental testing the library in the top 20 with the smallest energy spread between its 

best-scoring and worst-scoring sequence. 

 

Library construction, expression, and purification 

Oligonucleotides (desalted, Integrated DNA Technologies) ranging from 45 to 60 

bp containing ~ 18 bp overlapping segments were assembled via a modified Stemmer 

method37 using KOD Hot Start Polymerase (Novagen) to generate full-length 

streptococcal Gβ1 with an N terminal His6 tag.  Secondary structure content and 

annealing temperatures were verified by NUPACK.58, 59  The following procedure was 

repeated for each library constructed.  Oligonucleotides containing the desired single 

mutation or degenerate codon were swapped into the assembly mixture to generate the 

diversity of each library.  If a degenerate codon could not account for the desired residue 

diversity, equimolar ratios of applicable single mutation oligonucleotides were added to 

the assembly mixture.  Standard subcloning techniques were performed to insert the 

library into a frameshift selection plasmid (pInSALect),27 and after miniprepping the 

selected harvested colonies, the library was inserted into an expression plasmid 

(pET11a).  The library was transformed into BL21 Gold DE3 cells (Stratagene) by heat 

shock and colonies were picked into 96-well plates for plasmid miniprepping and 

sequencing (Agencourt Biosciences). Missing library members were generated by 

standard quick-change protocols.  Sequence-verified library members were pulled from 

replicated glycerol stocks and inoculated into 5 mL of Instant TB media (Novagen) in 24-

well plates. After overnight incubation at 37oC, cells were pelleted by centrifugation at 

5,000 x g for 20 min.  Pellets were freeze/thawed once and resuspended in lysis buffer 
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(50 mM NaPO4, 300 mM NaCl, 1x CelLytic B (Sigma-Aldrich), 2.5 mM imidazole, pH 

8) before another identical centrifugation step.  Cell lysates were loaded onto an 

equilibrated HIS-Select filter plate (Sigma-Aldrich), washed twice and eluted with buffer 

containing 250 mM imidazole, pH 8. 

 

Microtiter plate-based stability determination 

Appropriate amounts of 8 M GdmCl (Sigma-Aldrich), Milli-Q water, eluted 

protein, and 50 mM NaPO4 buffer, pH 6.5, were added to maintain a fixed volume in 

each well of 96-well Costar UV transparent flat bottom plates by a Freedom EVO liquid 

handling robot (Tecan).  Mutant proteins were subjected to a 12-point GdmCl gradient 

across the columns of the plate where each row contained a separate denaturation 

experiment.  Only twenty-seven 96-well plates were needed for all libraries, including 

duplicates.  The plates were equilibrated for at least one hour and shaken at 900 rpm on a 

microtiter plate shaker (Heidolph). 

Tryptophan fluorescence measurements were taken on a fluorescence plate reader 

(Tecan) with a plate stacker attachment.  Ideal parameters were empirically determined 

for wild-type Gβ1 and later used for every library assayed.  Excitation was performed at 

295 nm and emission measured at 341 nm with 10 nm bandwidths.  Data were fit as a 

two-state unfolding transition using the linear extrapolation method60 in Pylab.  The 

GdmCl concentration at the midpoint of denaturation, Cm, was estimated numerically 

based on the fraction-unfolded curve fit.  
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Supplementary information 

Combinatorial library design 

 Structure-based computational protein design (CPD) methods can be harnessed to 

expedite the engineering of proteins by directed evolution.  Several methods have been 

developed to allow the design of combinatorial mutation libraries to be informed by the 

results of CPD calculations (Figure 2). These approaches allow many specific variants 

chosen by CPD to be tested experimentally, and can facilitate assessment and 

improvement of the design procedure.  Hayes et al. described a method in which a list of 

low-energy sequences found by CPD is used to generate a table of frequencies for each 

amino acid type at each position, and then a frequency cutoff is applied to limit the 

library to only those amino acids found more frequently than the cutoff value at each 

position.33  Mena and Daugherty developed a similar procedure that produces libraries 

that include as many of the sequences in the CPD list as possible, while using only those 

sets of amino acids that can be encoded using degenerate codons.35 This feature helps to 

ensure that the resulting combinatorial gene libraries can be synthesized quickly and 

inexpensively.  Treynor et al. developed a computational library design method 

analogous to CPD in which interactions between sets of amino acids at various positions 

are scored, and this system of interactions is sampled using standard CPD optimization 

algorithms to find the most favorable degenerate codon sequence.36 

 

 In our view, a procedure that couples CPD to the design of combinatorial protein 

libraries should provide at least the following: 
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1. Explicit consideration of CPD energies.  Methods that ignore CPD energies lead 

to a weaker correspondence between the final libraries and the original design 

calculations, limiting the predictive capability of the library design procedure and 

making improvement of CPD through library screening and analysis more 

difficult. 

2. Direct specification of the range of library sizes that should be produced. In 

general, the desired library size will be a direct function of experimental screening 

capacity.  A method that does not allow the user to specify the library size will 

either require repeated manual rerunning in an attempt to generate the desired 

library size, or will waste potentially prohibitive amounts of compute time 

analyzing libraries with irrelevant sizes. 

3. Control over which sets of amino acids are allowed. Users with limited 

resources will usually prefer sets of amino acids that can be encoded using 

degenerate codons, because the resulting gene libraries can be synthesized in a 

single reaction with a relatively small number of inexpensive oligonucleotides.  

Those who can afford larger numbers of oligonucleotides and liquid-handling 

robots will be able to test libraries made with arbitrary sets of amino acids, which 

in general should more accurately reflect the sequence preferences of CPD 

calculations.   A robust library design method must therefore handle whatever sets 

of amino acids the user deems appropriate.   

4. Consideration of all user-allowed sets of amino acids at each position.   Some 

methods use heuristics to remove from consideration particular sets of amino 

acids at each position.  Although this process can reduce the computational cost of 
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the library design procedure, it can also result in the elimination of desirable 

libraries.   

 

 Because no previously reported algorithm that we know of satisfies all these 

criteria, we developed one that does.  The new algorithm takes several inputs: (1) a list of 

scored sequences; (2) a list of allowed sets of amino acids (e.g., those that can be encoded 

using degenerate codons); (3) a range of preferred library sizes; (4) a simulation 

temperature that controls the degree of preference for sequences with better scores; and, 

optionally, (5) sets of amino acids that are to be required or prohibited at particular 

positions.  Based on these inputs, the algorithm produces a list of combinatorial libraries 

that are ranked according to the degree to which they satisfy the input list of scored 

sequences. 

 The process used by the algorithm to produce a list of combinatorial libraries 

from a list of scored sequences can be conceptually separated into three steps (Figure 9).   

 Step A. Scan through the input list of scored sequences, and generate a “total 

diversity” library that includes, at each position, every amino acid seen in the list at that 

position.  This library represents the list optimally but ignores the user’s preferred library 

size and allowed sets of amino acids.  If later steps indicate that the size of the problem 

with this total diversity is insurmountably large, the user can request that the total 

diversity library be constructed from a subset of the input sequence list.  For example, 

given a list of length 10,000, the user might decide to consider only the best 1,000 

sequences in the list during this step.   



 120 

 Step B. Enumerate all possible amino acid size configurations that lead to 

combinatorial libraries within the range of sizes specified by the user.  A size 

configuration is simply a specific number of amino acids at each position in the protein 

(e.g., 3 amino acids at position 1, 4 amino acids at position 2, etc.).  An amino acid set 

size need not be considered at a particular position if it is larger than the smallest set that 

includes all amino acids found at that position in the total diversity library.  This greatly 

reduces the total number of size configurations that need to be generated in this step and 

scored in the next step.    

 Step C.  For each size configuration, determine the best set of amino acids of the 

required size at each position.  This is done for each position independently by computing 

a partition function for each amino acid set with the given size.  Amino acid sets that lack 

user-required amino acids or contain user-prohibited amino acids can be skipped here.  

Given a position and an allowed set of amino acids, iterate through the list of scored 

sequences, and for each sequence add to a cumulative partition function the Boltzmann-

weight, exp(-E/kT), where E is the score of the sequence, k is the Boltzmann constant, 

and T is the simulation temperature.  If the amino acid at that position in the current 

sequence is not found in the amino acid set of interest, nothing is added to the partition 

function.  If the simulation temperature is low, the best-scored sequences will contribute 

most strongly to the partition function; if the temperature is high, all sequences in the list 

will contribute similarly.  At each position, the set of amino acids with the most favorable 

partition function (position library score) is chosen.  This procedure produces an optimal 

combinatorial library for each size configuration. The optimal libraries of each possible 
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size configuration can then be ranked based on the sums of their position library scores 

across all positions.  
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Figure 9: Detail of the library design method.  (A) The list of scored sequences defines 
an initial “total diversity” library that is typically much larger (103 – 1015, or even more) 
than the desired library size (102–106).  (B) This total diversity library and the allowed 
sets of amino acids are used to construct a set of size configurations that lead to libraries 
in the desired range of sizes.  The boxes in the list of size configurations are unfilled, 
indicating that the particular amino acids at each position have not yet been determined at 
this step.   (C) For each size configuration generated in the previous step, the original list 
of scored sequences is used to find the optimal set of amino acids of the required size at 
each position.   
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Microtiter plate-based stability assay controls 

The fluorescence profiles of the GdmCl gradient and the elution buffer show no 

effect on the shape of the unfolding transition of wild-type Gβ1 (Figure 10).  Sample 

signal below the elution buffer was interpreted as expression failure; any data that could 

not be fit yet whose signal was above the elution buffer was deemed expressed but 

unstable/unfolded (but see discussion above).  In order to test the accuracy of the 

microtiter plate-based denaturation assay, Gβ1 unfolding was monitored by circular 

dichroism (Aviv Biomedical) and tryptophan fluorescence in a fluorimeter (Photon 

Technology International).  The denaturation profiles from these low-throughput 

experiments were compared to results from the fluorescence plate reader (Figure 11).  

The overlapping data points support the use of a two-state unfolding fit during our 

stability calculations and verify the accuracy of the assay.  Next, the unfolding curves 

from several protein preparations from different concentrations confirmed the assay’s 

precision (Figure 12).  These results support some assumptions that the stability 

determination method described here makes in order to maintain a high level of 

throughput.  First, we never assay for protein concentration before setting up the GdmCl 

gradient, relying on the fraction-unfolded plot to remove any concentration bias/effects.  

Second, the high concentration (250 mM) of imidazole in elution buffer is never dialyzed 

out of the eluted protein solution.  Figures 11 and 12 show that these discrepancies in 

protein preparation have no significant effect on fraction unfolded plots for the wild-type 

protein.   
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Figure 10:  Denaturation gradient and elution buffer fluorescence profiles.  Gβ1 
(black) was expressed in a 5 mL culture, purified, and eluted with 500 µL of elution 
buffer (50 µM NaPO4, 300 mM NaCl, 250 mM imidazole, pH 8).  Since each point of the 
Gβ1 denaturation profile contains 35 µL of eluted protein, the elution buffer profile (red) 
substitutes protein with 35 µL of elution buffer.  Similarly, the water profile (blue) adds 
35 µL of water to make up the final volume.  Each denaturation profile contains an 
increasing gradient of GdmCl, 50 µM NaPO4 buffer at pH 6.5, and water. 
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Figure 11:  Fraction-unfolded profiles between different modes of detection.  CD 
data (red) measured 5 µM Gβ1 titrated with a 5 µM Gβ1/8 M GdmCl solution in 0.2 M 
steps at 218 nm.  Fluorimeter data (blue) measured 5µM Gβ1 titrated as in the CD 
experiment with excitation performed at 295 nm and emission recorded at 341 nm with 4 
nm bandwidths.  Plate-based data (black) measured 12 separate solutions of 10 µM Gβ1 
in response to increasing amounts of 8 M GdmCl with fluorescence parameters identical 
to the fluorimeter data except for 10 nm bandwidths.  All samples were measured at 25°C 
in 50 µM NaPO4 buffer at pH 6.5.   
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Figure 12:  Fraction-unfolded profiles between different protein preparations.  Gβ1 
was expressed in 100 mL cultures, purified and diluted to 1, 5, 10, and 500 µM in 50 µM 
NaPO4 buffer at pH 6.5.  Another expression culture was dialyzed overnight (Pierce 
Biotechnology) after purification and diluted to 10 µM in the same buffer.  All 
measurements were taken on a fluorescence plate reader as described in the text. 
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