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Abstract 

Most of the methods that have been developed for computational protein design involve 

the selection of side-chain conformations in the context of a single, fixed main-chain 

structure.  In contrast, multi-state design (MSD) methods allow sequence selection to be 

driven by the energetic contributions of multiple structural or chemical states 

simultaneously.  This methodology is expected to be useful when the design target is an 

ensemble of related states rather than a single structure, or when a protein sequence must 

assume several distinct conformations to function.  MSD can also be used with explicit 

negative design to suggest sequences with altered structural, binding, or catalytic 

specificity.  We report implementation details of an efficient multi-state design 

optimization algorithm based on FASTER (MSD-FASTER).  We subjected the algorithm 

to a battery of computational tests and found it to be generally applicable to various 

multi-state design problems; designs with a large number of states and many designed 

positions are completely feasible.  A direct comparison of MSD-FASTER and multi-

state-design Monte Carlo indicated that MSD-FASTER discovers low-energy sequences 

much more consistently.  MSD-FASTER likely performs better because amino acid 

substitutions are chosen on an energetic basis rather than randomly, and because multiple 

substitutions are applied together.  Through its greater efficiency, MSD-FASTER should 

allow protein designers to test experimentally better-scoring sequences, and thus 

accelerate progress in the development of improved scoring functions and models for 

computational protein design.   
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Introduction 

 The field of computational protein design provides software tools that facilitate 

the identification of amino acid sequences with specific desired properties.  Most protein 

design protocols choose amino acid types and side-chain conformations in the context of 

a single, fixed, main-chain conformation.  Given this simplifying approximation, one can 

precompute all pairwise interaction energies between possible side-chain conformations 

at different positions and then optimize this system of interactions to find sequences 

expected to stabilize the fold.1, 2 The most common optimization algorithms employed for 

this purpose are based on Monte Carlo with simulated annealing (MC),3–5 the dead-end 

elimination theorem (DEE),5–7 genetic algorithms,5, 8 and Fast and Accurate Side-Chain 

Topology and Energy Refinement (FASTER).9, 10 These single-state design methods have 

produced several notable successes, when used on their own or in conjunction with main-

chain optimization techniques.1, 3, 11–14 However, single-state design is not necessarily 

sufficient when design objectives require the explicit consideration of multiple states at 

once.15 

For example, we might desire a sequence that is able to assume two distinct folds 

under different conditions; the single-state design methodology described above does not 

provide a mechanism for selecting sequences that are simultaneously compatible with 

both folds.  Similarly, single- state design methods do not provide a way to explicitly 

alter binding specificity, since only one binding partner may be modeled during sequence 

selection.  Likewise, enzyme design methods might be enhanced through the explicit 

modeling of the substrate, transition state, and product, rather than only one of these at a 

time.  Finally, we note that NMR-derived solution structures have been neglected as 
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targets for protein design because typical structure determination methods give an 

ensemble rather than a single set of coordinates.16 To the extent that the structural 

diversity of an NMR ensemble reflects realistic conformational flexibility, it will be 

interesting to investigate the effects of using such an ensemble as the basis for design.   

Each of the design goals given above requires sequence selection to be informed 

by multiple structural or chemical states simultaneously, in what we call multi-state 

design (MSD).  The optimization strategy we apply to MSD problems comprises an outer 

routine that suggests possible amino acid sequences, and an inner routine that assesses the 

fitness of a sequence by performing rotamer optimization on each state and combining 

the individual state energies to yield an overall score.  This basic approach has been used 

by others to design specificity into a self-associating coiled-coil system, to generate a 

molecular switch, and to recover sequences that bind their cognate ligands with high 

affinity.15, 17, 18 Here, we describe a generalization of these strategies that is applicable to 

any number of states and compatible with any type of scoring function that might be used 

to combine the energies of sequences threaded on the target states.   

For a design problem with n states to consider, we use n processors of a computer 

cluster to calculate one optimization trajectory.  Each processor holds in memory the 

pairwise energy matrix for one state, and is responsible for evaluating the energies of 

candidate sequences in the context of that state only.  In general, a candidate sequence is 

evaluated by performing rotamer optimization using a side-chain placement algorithm 

based on MC, DEE, or FASTER.  One of the processors (the boss) is additionally 

responsible for identifying amino acid sequences to be scored, communicating this 

information to the others, collecting the results, and combining the energies to yield an 
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overall fitness score.  Here, we provide implementation details for MSD optimization 

algorithms with amino acid selection schemes based on MC and FASTER, and give 

quantitative comparisons of their performance for a variety of multi-state design 

problems. 

 

Results and discussion 

Scoring functions 

To solve the multi-state design problem, we employ an extension of the 

methodology that has been developed for single-state design.  In single-state design, the 

cost function to be optimized is the energy E of the rotamer configuration R.  The energy 

is computed by summing the rotamer/template energies Ei
 for each of the N residue 

positions and the interaction energies Eij between all pairs of rotamers at residue positions 

i and j.  Typically, the rotamer configuration is optimized without regard to the amino 

acid types of the rotamers available at each position.  

 

€ 

E(R) = Ei

i=1

N

∑ + Eij

j= i+1

N

∑
i=1

N

∑  (1) 

In multi-state design, the score σ to be optimized is a function of the amino acid sequence 

A.  In general, an amino acid sequence will not assume the same side-chain 

conformations in the various states being modeled.  If there are n states, then the score is 

computed using a function of the following form: 

 

€ 

σ(A) =σ (E1(A),E 2(A),...,En(A)) (2) 

Each Es(A) corresponds to the energy of the sequence A threaded on state s, and is 

computed by single-state rotamer optimization using equation 1.  Different energy 

combination functions σ may be appropriate for different types of design problems.   For 
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example, in a case where the designed sequence is meant to satisfy n distinct states 

equally well, the simplest scoring function simply computes the average energy across all 

states:  

 

€ 

σ(A) =
1
n

Es(A)
s=1

n

∑  (3) 

When the design target is an ensemble of similar states, such as an NMR solution 

structure, the requirement that a sequence satisfy all states may be too stringent; it cannot 

be assumed that every member of the ensemble would be significantly populated or 

relevant for the designed sequence.  In this case, a scoring function that applies 

Boltzmann-weighted averaging may be more useful: 

 

€ 

σ(A) = −kT log e−Es(A ) / kT
s=1

n

∑
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Use of equation 4 prevents sequences that fail to satisfy a few states from being severely 

penalized.  If the design goal is to alter conformational, binding, or catalytic specificity, a 

scoring function for explicit negative design is warranted.  Given one positive design 

state ρ and one negative design state η, one might apply the following scoring function: 

 

€ 

σ(A) = ΔEρ (A) −WΔEη (A)  (5) 

Here, W is a weighting factor used to control the balance of ρ-state stabilization and η-

state destabilization.  Each ΔEs(A) in equation 5 is the excess energy of sequence A when 

threaded on state s compared to the optimal sequence A0 for that state as determined by 

single-state design:  

 

€ 

ΔEs(A) = Es(A) − Es(A0) (6) 

Because Es(A0) is the minimum energy of any sequence threaded on state s, ΔEs(A) ≥ 0.  

The ΔEs(A) terms are intended to normalize the energies of the sequences being selected 
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and to allow a single value of W to be used with various energy functions and design 

targets.  

 Over the course of a negative design calculation, sequences may be found that 

cannot be threaded on the negative design target structure without causing severe van der 

Waals clashes; use of equation 5 in a multi-state design calculation will cause such 

sequences to be preferred.  Any predicted clash must surely be alleviated by a shift in the 

distribution of conformational states assumed by a real protein.  However, we 

hypothesize that variants with native states perturbed in this manner will tend to be 

destabilized, especially when multiple clashes are predicted together.  Because the 

energies assigned to these clashes by a standard Leonard-Jones potential depend strongly 

on several approximations (such as discrete side-chain rotamers and a fixed main chain), 

we threshold all rotamer-template and rotamer-rotamer energies on the negative design 

target state to a positive constant.  This effectively causes sequences with a greater 

number of clashes to be preferred over sequences with a smaller number of larger-

magnitude clashes, as desired.19  

A more rigorous approach to explicit negative design would be to maximize the 

probability with which the target state is assumed over all explicitly modeled competing 

states, as computed according to basic statistical mechanics.  This approach has been 

applied to the design of specificity in self-associating and ligand-binding systems.15, 18 

The success of this method relies on the availability of atomic models that accurately 

represent all target and competing states; unfortunately, general methods for the 

construction of these models have not yet been developed and validated. For the 

computational tests reported here, we have sidestepped issues of model construction by 
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applying equation 5 to a system with one crystal structure as the positive design target, 

and another as the competing state for negative design.   

 

Multi-state Monte Carlo 

 Monte Carlo with simulated annealing (MC) is an efficient stochastic 

optimization technique that is heavily used in computational protein design.3–5 When 

used for rotamer optimization, MC can produce high-quality approximate solutions 

quickly and find low-energy variants in the vicinity of an existing solution.5  MC is easily 

applied as the outer routine in multi-state design by making perturbations at the level of 

amino acid sequence only.  In each step of multi-state design MC (MSD-MC, Figure 1), a 

residue position is picked at random, and a random amino acid substitution is made at 

that position.  The new sequence is scored on each state by rotamer optimization.  The 

decision to accept or reject the perturbation is made based on the change in the score σ 

and the simulated annealing temperature, which is cycled up and down over the course of 

the optimization to allow traversal of local maxima and exploration around local minima.  

 We have applied two enhancements to MSD-MC in an attempt to improve its 

performance.   In the first, random perturbations are chosen uniformly from a list of all 

allowed amino acid substitutions, without respect the positions at which they occur.  This 

prevents positions that have fewer allowed amino acids than others from being the focus 

of a disproportionate number of substitution attempts.  In the second enhancement, 

rotamer optimization after a substitution is limited to those positions within a specified 

Cα- Cα distance cutoff from the perturbed position, reducing the amount of time required 
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for rotamer optimization and allowing more steps of MSD-MC to be completed per unit 

time.  
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Figure 1: Graphical depictions of the three MSD sequence selection routines 
described in the text. Legend (upper right panel): explains the symbols used to depict a 
parallel algorithm.   Each box represents a single processor that performs energy 
calculations on a single state.  Fields within the box identify the processor by number, 
show the current action, and explain the relevant data that the processor holds in memory.  
The boss processor is shaded in grey.  The subroutines S and P are depicted in Figure 2 
and described in the text.   Depicted here are: one step of MSD-MC (upper-left panel), 
one round of MSD-iBR (lower-left panel), and one perturbation in MSD-sPR (lower-right 
panel). 
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Multi-state FASTER 

 Like Monte Carlo, FASTER is a stochastic optimization algorithm that makes 

perturbations to existing solutions and accepts or rejects them based on their energetic 

consequences.10 The two algorithms differ chiefly in the methods by which perturbations 

are chosen.  FASTER has two main components that we have modified for MSD: 

iterative batch relaxation (iBR), and single perturbation and relaxation (sPR).   In each 

component, amino acid substitutions at several positions are chosen independently and 

applied together to yield a new solution.  Each component is applied iteratively until 

convergence is detected.  In MSD-iBR, convergence is signaled when the user-defined 

limit for the number of nonproductive rounds (i.e., rounds that fail to improve the energy) 

is reached.  In MSD-sPR, convergence can occur either when the user-defined limit for 

total rounds is reached or when an entire round has elapsed without an improved solution 

being found. One trajectory of MSD-FASTER is performed by generating a random 

initial sequence, applying MSD-iBR until convergence, and then applying MSD-sPR 

until convergence.   

  

Multi-state iBR 

 During a round of single-state iBR, the best rotamer at each position of the protein 

is determined independently in the context of the current rotameric configuration at all 

other positions.  Then, the new rotamers at each position are all updated simultaneously, 

and the resulting updated configuration of the system is retained regardless of the change 

in energy. iBR is applied iteratively until a user-defined limit for nonproductive rounds 
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has been reached.  After the detection of convergence, the lowest-energy configuration 

ever found during the rounds of iBR is selected to move on to sPR.   

 During a round of MSD-iBR, the best amino acid at each position must be chosen 

considering all states simultaneously (Figure 1).  For each possible amino acid 

substitution at each position, each processor determines for its own state the best possible 

total energy of the system when that substitution is made with the current rotamer 

configuration fixed at all other positions, and sends this information to the boss. If there 

are p positions and a amino acid types allowed at each position, then each processor 

needs to communicate pa floating-point values.  For each position, the boss computes the 

overall score of each possible substitution across all states using these values and a 

scoring function σ.   The amino acid identity at each position is then updated with the 

best-scoring substitution found by the boss in the previous step.  Each processor rescores 

the resulting sequence for its state by rotamer optimization and these energies are again 

combined to produce an overall score.  This process is repeated until convergence, as in 

single-state iBR.   

 

Multi-state sPR 

 In a step of single-state sPR, one position is forced to assume a particular rotamer 

(is “perturbed”), the other positions are allowed to relax independently in the context of 

the current rotamer configuration, and the rotamers at all relaxing positions are updated at 

once.  The resulting relaxed rotamer configuration is accepted only if its energy is better 

than any previously observed.  In a step of single-state sPR, amino acid substitutions can 

occur at the perturbed position and also at the relaxing positions, since rotamers are 
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sampled without regard to their amino acid types.  In one round of single-state sPR, each 

rotamer at each position will be fixed exactly once; positions to fix are picked in random 

order.  Rounds of sPR are performed until an entire round fails to produce a better 

solution, or until a user-defined limit is reached. 

 Several significant complications arise when adapting sPR for multi-state design.  

We would like to fix a particular amino acid at some position and choose the resulting 

best amino acid substitution at each independently relaxing position (Figure 1).   

Typically, there will be multiple available rotamers of the fixed amino acid type at the 

perturbed position in each state.  Each of these rotamers will lead to a distinct set of 

energies for the possible amino acid substitutions at the relaxing positions.  Thus, an 

explicit choice of fixed rotamer at the perturbed position must be made for each state in 

order to determine the best-scoring amino acid types at the relaxing positions when all 

states are considered simultaneously.  Unfortunately, each processor cannot simply 

determine the best fixed rotamer in its own state and send the corresponding substitution 

energies to the boss to be scored.  To improve the overall score across all states, a given 

state may be forced to accept a substitution that is suboptimal when that state is 

considered by itself.  To score that suboptimal substitution correctly, the state may be 

forced to employ a rotamer at the perturbed position that is different from the one that 

leads to the best substitutions for that state in isolation.  Thus, each processor must 

communicate substitution energies corresponding to all of the available rotamers of the 

fixed amino acid type at the perturbed position, and not just of the ones that seem optimal 

in the context of its own state.      
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 For each rotamer of the fixed amino acid type at the perturbed position, each 

processor must send the total energy of each possible amino acid substitution at each of 

the relaxing positions.  If there are r rotamers of the fixed amino acid type at the 

perturbed position, p relaxing positions, and a amino acid types available at each of the 

relaxing positions, then each processor must send rpa floating-point values to the boss.   

A given assignment of fixed rotamers to states allows a preferred amino acid 

substitution at each relaxing position and its MSD score to be computed using a σ 

function, as described in the MSD-iBR section above.  Thus, if there are n relaxing 

positions allowed, there will be n separate MSD score values σr.  In order to determine 

the best relaxed sequence given an amino acid perturbation, we optimize the sum of these 

σr (subroutine P in Figure 2). The optimization comprises a quick Monte Carlo run of 

10,000 steps along a linear temperature gradient from 4000 K to 1 K with a 

nonproductive steps limit of 100.  In each step of MC, a random state is chosen, a random 

fixed rotamer for that state is selected, and the corresponding sum of MSD substitution 

scores at the relaxing positions is determined; the new fixed rotamer configuration is 

accepted or rejected based on the Boltzmann criterion.  This protocol generates a 

favorable choice of fixed rotamer for each state and incurs negligible computational 

expense.  After the amino acids at the relaxing positions are chosen, each processor 

evaluates the energy of the new sequence threaded on its state by rotamer optimization.  

The energies are then combined into an overall score using a σ function as described 

above.    

Although the technique just described is expected to perform well for most MSD 

problems, there is some reason to believe that it may be inadequate when used in the 
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context of explicit negative design.  Because subroutine P attempts to choose rotamers of 

the fixed amino acid type that result in designed sequences that minimize σ,  it 

preferentially selects sequences that clash with the chosen fixed rotamers in competing 

states, even though these clashes might be relaxed away during the subsequent rotamer 

optimization step.  This single-minded focus on sequences that clash most strongly prior 

to rotamer optimization could inhibit the ability of the algorithm to find those sequences 

with the most favorable scores after rotamer optimization.  To address these concerns, we 

have implemented and tested two modifications that allow the fixed rotamer 

configuration (and resulting relaxed amino acid sequence) to be chosen completely 

randomly, or randomly from one of the top r configurations found during subroutine P.   

Comparison with these simple modifications should allow the overall utility of the 

original procedure to be assessed.   

We recently reported that the efficiency of single-state FASTER can be improved 

by allowing only the positions that interact most strongly with the perturbed position to 

be relaxed.9 When applied to MSD-sPR, this improvement also limits the amount of data 

that must be communicated between processors and improves the efficiency with which 

the optimal fixed rotamers for each state can be determined.  In MSD-sPR, the potential 

relaxing positions are ranked according to the absolute values of the σr scores calculated 

from their interactions with the perturbed position.  The initial rotamer configurations in 

each state prior to the perturbation are used to assess these interactions.   
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Figure 2: Subroutines used by the MSD sequence selection algorithms.  S: the 
subroutine used to assign an overall score to a given amino acid sequence based on input 
from all of the states.  P: the subroutine used to determine an optimized choice of fixed 
rotamer at the perturbed position in each state during MSD-sPR.  The boss processor runs 
this routine using data accumulated from all processors. 
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Rotamer optimization (RO) algorithms  

 The MSD sequence selection algorithms described above require that the energy 

of specific sequences be evaluated in the context of each target state (subroutine S in 

Figure 2).  Any of the rotamer optimization (RO) algorithms that have been developed 

for single-state protein design and side-chain placement, such as MC, DEE, and 

FASTER, can be used to evaluate these energies.  When used for rotamer optimization in 

this work, one cycle of MC comprised a simulated annealing schedule that varied linearly 

from high temperature to low.  When FASTER was used, rounds of iBR and then of sPR 

were applied in series; each pass was terminated when convergence was detected or the 

user-defined rounds limit was reached.  In a step of sPR, the set of positions allowed to 

relax in response to the perturbation was limited to the ten that interact most strongly 

with the perturbed position.9 DEE-based rotamer optimizations were performed as 

previously described,7 except that the split-DEE and bounding steps were omitted.  For 

some amino acids sequences, DEE failed to converge to a single solution; in these cases, 

FASTER was automatically invoked to find an approximate solution instead. 

When performing rotamer optimization using MC or FASTER, an initial rotamer 

configuration is required.   During multi-state design, RO is applied in subsequent rounds 

to amino acid sequences that differ at only a few positions; our implementation of MSD 

exploits this situation to provide better initial rotamer configurations for optimization.  In 

MSD-MC, the amino acid identity at exactly one position will have changed since the 

most recent rotamer optimization.  The rotamer at this position is initialized randomly, 

while the initial rotamer configuration at each of the unchanged positions is taken directly 
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from the previous solution.  In MSD-sPR, rotamer optimization occurs after each 

processor has determined the best energies for each amino acid type at several relaxing 

positions, given a fixed amino acid at a perturbed position.  The rotamers at positions that 

are neither fixed nor relaxed are taken from the previous solution.  The rotamer at the 

fixed position in each state is chosen as described in the section on MSD-sPR above.  

Reasonable rotamers for each amino acid type at the relaxing positions are also already 

known; the energies of these rotamers were used to select the sequence being scored.  

The rotamer solution taken from these three sources can be used to determine directly the 

energy of the sequence, or additional RO may be performed using it as an initial solution.  

We refer to the routine that directly determines the energies on each state without further 

optimization as the Null rotamer optimizer.  However, our results below indicate that the 

Null routine is insufficient for effective MSD sequence optimization.     

In each MSD calculation, we employ two different RO modules that we refer to 

as “weak” and “strong”.  During rounds of MSD-MC and MSD-sPR, an initial rotamer 

configuration for each state is available for input to the rotamer optimization routines as 

described above.  Thus, we start from these initial solutions and perform a limited 

number of rounds of rotamer optimization to save time (weak RO).  On the other hand, 

good initial solutions are not available at the beginning of a round of any MSD algorithm, 

or at any time during MSD-iBR due to the large number of substitutions that can be made 

during each round.  In these cases, we start from random rotamer configurations and 

apply more rounds of rotamer optimization to increase our confidence in the resulting 

energies (strong RO).  When DEE is used, it is employed with the same parameters for 
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both the strong and weak rotamer optimization, because initial solutions cannot be 

exploited in our implementation of DEE. 

 

Test cases for multi-state design 

 We tested the performance of the algorithms described here with several different 

multi-state design problems.  The MSD-MC and MSD-FASTER amino acid selection 

schemes are stochastic and provide no guarantee that the global minimum energy solution 

will ever be found. We therefore perform many optimization trajectories with different 

random number seeds, and assess the algorithms based on the distribution of solutions 

given by these trajectories.  When a significant fraction of the trajectories report the same 

best solution ever found, we take that solution to be optimal.  Given the fraction of 

trajectories f that find the optimal solution, and the average processor-time in minutes t 

required to compute a trajectory, we compare algorithms using according to the value S = 

t / f.  This score represents the total number of processor-minutes required on average to 

find the optimal solution; smaller values are better.  We previously used this metric to 

analyze the performance of single-state design optimization algorithms.9 

 

Single-state design problems 

 When a MSD algorithm is applied to a design problem with only one target state, 

its accuracy and efficiency may be compared to well-characterized single-state design 

algorithms, such as single-state design FASTER (SSD-FASTER).   We optimized four 

full sequence designs that were previously used as test cases for the single-state versions 

of Monte Carlo and FASTER: 1AAY, 1PIN, 1PGA, and 1C9O.  These designs have from 
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28 to 66 designed positions, and the average number of rotamers per position is 212; a 

more complete description of these designs is available elsewhere.9  Because each of 

these designs had only one target state, the MSD scoring function was simply σ(A) = 

E(A), which is consistent with equations 3 and 4 when n = 1.   

For each design, we computed 1000 trajectories of MSD-FASTER and MSD-MC 

with a variety of different weak RO algorithms: Null, MC, iBR, FASTER, and DEE.  We 

refer to a particular pairing of MSD and RO algorithms in a/b format: MSD-FASTER 

used with FASTER for weak rotamer optimization is called MSD-FASTER/FASTER.  

For the parameters used in each optimization algorithm formulation, see the materials and 

methods.  

 

SSD test cases: MSD-FASTER 

The results of the MSD-FASTER calculations (Table 1) indicate that the MSD 

algorithm easily finds the optimal solution (as determined by SSD-FASTER) for each 

design when paired with weak RO routines based on FASTER, iBR, or MC.  For the two 

smaller designs, 1AAY and 1PIN, MSD-FASTER was actually able to find the lowest-

energy solution 20–80% more efficiently than SSD-FASTER, because a greater fraction 

of its trajectories were able to find the optimal solution without requiring significantly 

more compute time.  When applied to the larger and more difficult designs, 1PGA and 

1C9O, the performance of MSD-FASTER deteriorated to between 8–18% of the 

efficiency of SSD-FASTER.  This deterioration stemmed both from an increase in the 

time required to perform simulation trajectories, and a decrease in the fraction of 

trajectories that were able to find the optimal solution.  Ultimately, we were pleased to 
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discover that, despite the limitations imposed on the algorithm by the requirements of 

multi-state design, MSD-FASTER can effectively find optimal amino acid sequences 

among sets of at least 1056 alternatives (1C9O).   Although MSD-FASTER does not seem 

to scale to larger problem sizes as well as SSD-FASTER, its performance should allow 

for the rigorous investigation of new ideas in multi-state computational protein design.   

When the results for all four designs are considered simultaneously, the most 

favorable comparison with SSD-FASTER is offered by MSD-FASTER/FASTER, which 

allows significant relaxation after each round of MSD-iBR and each step of MSD-sPR. 

MSD-FASTER also yielded satisfactory performance when MC was used as the weak 

RO routine, although the number of correct trajectories found per unit time was always 

fewer than when FASTER was used.  As a quicker but less accurate alternative, iBR 

allowed fewer correct trajectories to be found, but reduced significantly the time required 

to compute each trajectory, leading to similar overall performance when compared to 

FASTER and MC.  For the 1AAY and 1PIN designs, the most correct trajectories were 

found when using DEE for rotamer optimization.  However, this greater accuracy came at 

the cost of significantly more processor time required.  Furthermore, MSD-FASTER was 

unable to complete trajectories for the 1PGA design in a reasonable time when RO was 

performed by DEE (> 100 minutes each), and so the run was aborted. Although DEE-

based rotamer optimization may be too slow for sequence selection in nontrivial design 

problems, it can still be useful to rescore a list of sequences produced using a quicker but 

more approximate RO method. When no weak RO was performed at all (MSD-

FASTER/Null), the optimal solution was found for the 1AAY and 1PIN designs, but not 

the two larger ones.  We note that the average time per trajectory for these designs was 
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only slightly lower than when iBR was used, indicating that most of the time in MSD-

FASTER/iBR is spent choosing sequences to score rather than scoring them by rotamer 

optimization.  Rotamer optimization of some kind seems to be required for the efficient 

convergence of nontrivial multi-state design problems using MSD-FASTER.  
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Table 1: Performance of MSD-FASTER when applied to four difficult single-state 
design problems 
 
 

a. The number of variable positions in the design 
b. The optimization strategy that was used, as described in the text.  The term after the slash indicates 

the weak rotamer optimization routine that was used.   
c. The percentage of trajectories that found the best known solution (f × 100), as determined by SSD-

FASTER.  1000 total trajectories were computed in each MSD or SSD calculation.  
d. The average time, in minutes, required to perform each trajectory on one processor 
e. The score S = t / f, as described in the text.  Smaller values are better, indicating that the optimal 

solution can be found more quickly. “—” indicates that S is undefined because f = 0.   
f. The multiplicative factor p measures the deterioration in performance compared to SSD-FASTER.  

For example, p = 0.17 indicates that the MSD algorithm was 17% as efficient as the SSD 
algorithm.   

g. When optimizing the 1PGA design using MSD-FASTER/DEE, the runs were aborted when it was 
determined that trajectories would take longer than 100 minutes each to complete.   

Design Sizea Optb 
% correctc 

(f × 100) td Se pf 
28 SSD-FASTER 1.0 0.5 46 1.00 
 MSD-FASTER/Null 0.2 0.3 153 0.30 
 MSD-FASTER/MC 1.8 0.6 35 1.31 
 MSD-FASTER/iBR 1.3 0.4 32 1.44 
 MSD-FASTER/FASTER 2.5 0.6 25 1.84 

1AAY 

 MSD-FASTER/DEE 3.8 3.6 94 0.49 
34 SSD-FASTER 2.1 0.6 28 1.00 
 MSD-FASTER/Null 1.5 0.4 26 1.08 
 MSD-FASTER/MC 3.0 0.7 23 1.22 
 MSD-FASTER/iBR 2.5 0.5 20 1.40 
 MSD-FASTER/FASTER 3.2 0.7 23 1.22 

1PIN 

 MSD-FASTER/DEE 3.6 4.3 118 0.24 
56 SSD-FASTER 4.2 1.9 46 1.00 
 MSD-FASTER/Null 0 3.1 — — 
 MSD-FASTER/MC 1.1 6.2 562 0.08 
 MSD-FASTER/iBR 1.5 4.9 327 0.14 
 MSD-FASTER/FASTER 3.3 8.5 258 0.18 

1PGA 

 MSD-FASTER/DEE —g —g — — 
66 SSD-FASTER 2.0 1.4 71 1.00 
 MSD-FASTER/Null 0.0 2.5 — — 
 MSD-FASTER/MC 0.9 5.7 629 0.11 
 MSD-FASTER/iBR 0.7 4.3 610 0.12 
 MSD-FASTER/FASTER 1.5 7.6 507 0.14 

1C9O 

 MSD-FASTER/DEE 1.1 16.4 1486 0.05 



 61 

 
SSD test cases: MSD-MC 

 To compare the performance of MSD-MC to MSD-FASTER, we repeated the 

single-state test designs using Null, iBR, MC, and FASTER for rotamer optimization.  In 

the course of these test calculations, it was determined that MSD-MC performed the best 

when applied with uniform sampling of amino acid substitutions and with the positions to 

be optimized after a substitution limited to those within 15 Å Cα-Cα of the substituted 

position, as described above.  For brevity, we report only the results of this best MSD-

MC formulation here.  To make the comparison between MSD-MC and MSD-FASTER 

as fair as possible, we adjusted the number of Monte Carlo steps in MSD-MC so that the 

average time per trajectory would be similar to when MSD-FASTER was used (see 

materials and methods); many more amino acid substitutions can be attempted per unit 

time if the total time for rotamer optimization per substitution is reduced.   

 Even using this best formulation, the ability of MSD-MC to find correct solutions 

to these SSD problems was dramatically worse than that of MSD-FASTER (Table 2).  

When paired with the Null rotamer optimizer or with iBR, MSD-MC was able to find the 

optimal solutions to the two smaller design problems, albeit with much lower frequency 

than MSD-FASTER despite longer sampling times.  The relative success of MSD-MC 

with less rigorous rotamer optimization routines reflects the fact that MSD-MC is 

strongly limited by the number of amino acid substitutions it is able to test; 

implementations with less expensive rotamer optimization can afford to test more 

sequences per unit time, and therefore perform better.   

The optimal solutions to the two larger design problems were never found using 

any implementation of MSD-MC.  Because the S and p scores that were used to compare 
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the efficiencies of the MSD-FASTER algorithms are undefined when the fraction of 

correct trajectories is zero, we report two different metrics for MSD-MC.  ΔE is the 

difference in simulation energy between the best sequence found by the MSD-MC 

algorithm and the optimal sequence found by SSD-FASTER; Nm is the number of 

positions that differ between the two sequences.  Although the 1PGA and 1C9O 

calculations were not able to find the optimal solution, they can be evaluated based on 

how close they came (i.e., how close ΔE and Nm are to zero).  In terms of ΔE and Nm, 

these two larger designs showed significant deviations, with differences in simulation 

energy of 2–4 kcal/mol and 4–7 mutations away from the best-scoring sequence found 

using SSD-FASTER and MSD-FASTER.  Even these suboptimal sequences were found 

only a few times in the aggregate simulation run, rather than the numerous times the 

optimal sequence was found by the MSD-FASTER protocols.  In addition to various 

combinations of uniform sampling and restricted sets of positions for rotamer 

optimization, we attempted various simulated annealing schedules and temperature 

ranges in MSD-MC, as well as applying fewer trajectories of longer length, all to no avail  

(data not shown).  Compared to MSD-FASTER, the optimization ability of MSD-MC is 

clearly unacceptable for designs of this difficulty.   
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Table 2:  The performance of MSD-MC when applied to four difficult single-state 
design problems 
 

Design Sizea Optb 
% correctc 

(f × 100) ΔEd Nm
e tf 

28 SSD-FASTER 1.0 0.0 0 0.5 
 MSD-MC/Null 0.2 0.0 0 2.5 
 MSD-MC/MC 0.2 0.0 0 8.4 
 MSD-MC/iBR 0.8 0.0 0 3.2 

1AAY 

 MSD-MC/FASTER 0.0 0.7 2 2.6 
34 SSD-FASTER 2.1 0.0 0 0.6 
 MSD-MC/Null 0.3 0.0 0 3.0 
 MSD-MC/MC 0.0 0.5 5 9.7 
 MSD-MC/iBR 0.1 0.0 0 3.8 

1PIN 

 MSD-MC/FASTER 0.0 1.2 9 3.3 
56 SSD-FASTER 4.2 0.0 0 1.9 
 MSD-MC/Null 0.0 3.9 7 5.5 
 MSD-MC/MC 0.0 7.8 16 18.1 
 MSD-MC/iBR 0.0 1.5 5 16.7 

1PGA 

 MSD-MC/FASTER 0.0 11.2 12 9.9 
66 SSD-FASTER 2.0 0.0 0 1.4 
 MSD-MC/Null 0.0 1.6 4 6.7 
 MSD-MC/MC 0.0 5.6 14 24.3 
 MSD-MC/iBR 0.0 2.0 5 22.7 

1C9O 

 MSD-MC/FASTER 0.0 12.4 20 11.0 
  

a. The number of variable positions in the design 
b. The optimization strategy that was used, as described in the text. The term after the slash indicates 

the weak rotamer optimization routine that was used.  The number of steps of MSD-MC was 
adjusted for each algorithm combination so that the average times per trajectory would be similar 
to those for MSD-FASTER (Table 1).  

c. The percentage of trajectories that found the optimal solution (f × 100), as determined by SSD-
FASTER.  1000 total trajectories were computed in each MSD or SSD calculation.   

d. The difference in simulation energy (kcal/mol) between the best sequence found by MSD-MC and 
the optimal sequence found by SSD-FASTER 

e. The number of residue positions that differ between the best sequence found by MSD-MC and the 
optimal sequence found by SSD-FASTER 

f. The average time, in minutes, required to perform each trajectory on one processor 
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Multi-state design of protein G 

 To compare MSD-FASTER and MSD-MC in the context of positive design, we 

designed two separate areas of 1GB1, a 60-member NMR ensemble of the β1 domain of 

streptococcal protein G.20 Single-state designs based on the crystal structure of this 

protein have found several stabilized variants,13, 21 but to our knowledge no designs based 

on an NMR ensemble of this molecule have yet been characterized experimentally.  In 

the first design, we varied all 25 non-Gly positions classified as core or boundary, and in 

the second we varied all 27 non-Gly positions classified as surface.   

For the MSD-FASTER calculations, we dispensed with the evaluation of the 

several possible rotamer optimization routines, and relied on FASTER only for this 

purpose.  However, given our concerns about potential problems with fixed rotamer 

selection schemes during MSD-sPR, we tested three implementations in MSD-FASTER.  

In two cases, (r = 1 and r = 5 in Table 3), the choice of fixed rotamer in each state was 

determined as described above; the relaxed amino acid sequence to be scored by rotamer 

optimization was either produced from the best fixed rotamer configuration found, or was 

produced from a randomly chosen member of the top five configurations found, 

respectively.  In the final case (r = rand), the fixed rotamer optimization was skipped 

entirely, and the relaxed amino acid sequence to be rescored was determined with fixed 

rotamers of the perturbed amino acid type chosen randomly for each state.  Calculation 

parameters for MSD-FASTER and the strong and weak rotamer optimization routines 

were identical to those described for the single-state design test cases above. 

We tested a variety of formulations of MSD-MC in an attempt to find one that 

would compare favorably to MSD-FASTER when applied to many target states 
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simultaneously.  Implementation details that were varied included the type of rotamer 

optimization performed, the application of uniform sampling of amino acid substitutions, 

and the use of the distance-based cutoff to limit the expense of rotamer optimization; 

several of these combinations are shown in Table 3.  

 In contrast to the SSD test cases described above, the optimal solutions to these 

two MSD problems are not known except through the calculations we report here.  In the 

absence of additional information, we sampled as rigorously as possible with each MSD 

algorithm and assumed the best-scoring sequence ever found to be optimal.  We typically 

use this strategy when optimizing single-state designs with stochastic algorithms as well.9 

 For the core+boundary design, all the formulations of MSD-FASTER and MSD-

MC we tested found the same lowest-energy solution (Table 3).  All three 

implementations of MSD-FASTER achieved essentially identical performance, indicating 

that method used to choose fixed rotamers in MSD-sPR was not a significant determinant 

of optimization power in this design problem.  Among the MSD-MC formulations we 

tested, MSD-MC/iBR performed slightly better than any of the MSD-FASTER 

implementations, whereas all other performed significantly worse.   The preference for a 

rotamer optimization routine of intermediate expense is consistent with the results of our 

SSD test calculations (Table 2).  It illustrates that, for efficient sampling in MSD-MC to 

be achieved, a delicate balance must be struck between the accuracy of sequence-

rescoring and the number of individual sequences that are evaluated.   

 Analysis of the surface design calculations shows a stark contrast between the 

performance of MSD-FASTER and MSD-MC.  Whereas all three MSD-FASTER 

implementations each found the same top sequence in a significant fraction of the 
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attempted trajectories, this sequence was never found by any of the MSD-MC 

formulations we tried, despite their greater computational expense.  This more difficult 

design problem also allowed differentiation between the three MSD-FASTER 

implementations; randomly chosen fixed rotamers (r = rand) resulted in a 5-fold drop in 

optimization efficiency compared to the use of fixed-rotamer optimization in MSD-sPR 

(r = 1).    

When the states in a MSD calculation are very similar, one might ask whether the 

MSD-optimal solution could have been found by performing single-state design on each 

state and rescoring the resulting SSD-derived sequences using MSD.  In the case of the 

core+boundary design described here, the MSD-optimal sequence was never found 

during single-state design of the individual states; the MSD-optimal sequence for the 

surface design was also the SSD-optimal sequence for only one of the 60 states.  Use of 

the MSD strategy thus seems warranted for design problems with multi-state 

requirements; the SSD-based strategy cannot be generally relied upon to produce the 

same sequences as a true MSD procedure.   

 The results of the 1GB1 designs show that both MSD-MC and MSD-FASTER 

can efficiently find low-energy sequences based on a large NMR structural ensemble.  

Although one formulation of MSD-MC performed slightly better than MSD-FASTER in 

the core+boundary design, the failure of all MSD-MC formulations when applied to the 

surface design prompts greater confidence in the consistency and general utility of MSD-

FASTER.    When applying MSD-FASTER to a large conformational ensemble, the 

optimization of fixed rotamer choice in MSD-sPR may help to improve the efficiency of 

sampling in some design problems, and can be recommended on this basis.   
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Table 3:  Multi-state design of 1GB1, a 60-member NMR ensemble of protein G   
 

Design Sizea Optb 
 

rc 
% correcte 

(f × 100) tf Sg 
25 MSD-FASTER 1 5.4 3.0 55 
 MSD-FASTER 5 4.8 2.9 60 
 MSD-FASTER rand 4.1 2.3 56 
      
  US/CPLd    
 MSD-MC/FASTER no 0.7 4.2 593 

Core 
+ 

Boundary 

 MSD-MC/FASTER yes 2.9 4.3 147 
  MSD-MC/Null yes 0.2 3.4 1712 
  MSD-MC/iBR yes 9.1 4.2 46 
       
   rc    

27 MSD-FASTER 1 5.6 2.8 50 
 MSD-FASTER 5 3.8 2.8 75 
 MSD-FASTER rand 1.0 2.6 261 
      
  US/CPLd    
 MSD-MC/FASTER no 0.0 4.2 — 

Surface 

 MSD-MC/FASTER yes 0.0 4.4 — 
  MSD-MC/Null yes 0.0 3.4 — 
  MSD-MC/iBR yes 0.0 4.3 — 

 

a. The number of variable positions in the design 
b. The optimization strategy that was used, as described in the text 
c. After optimizing the choice of fixed rotamer in all states during a step of sPR, the amino acid 

sequence to score by rotamer optimization is chosen randomly from the top r fixed rotamer 
configurations.  “rand” indicates that the fixed rotamer optimization step is skipped, and the amino 
acid sequence to score results from randomly chosen fixed rotamers in each state.   

d. Indicates whether or not uniform substitution sampling is applied in MSD-MC and a close 
position limit of 15 Å is applied during each rotamer optimization. 

e. The percentage of trajectories that found the optimal MSD solution, as defined in the text.  1000 
trajectories were computed for each design.  

f. The average time, in minutes, required to perform each trajectory using 60 processors 
g. The score S = t / f, as described in the text.  Smaller values are better, indicating that the optimal 

solution can be found more quickly. “—” indicates that S is undefined because f = 0.   
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Negative design of calmodulin 

 Calmodulin (CaM) is a second messenger protein that, in the presence of Ca2+, 

binds to different recognition sequences on various proteins with high affinity and low 

specificity.22 CaM variants with increased specificity have been engineered by 

performing single-state design on a crystal structure of CaM bound to a target peptide 

from smooth muscle myosin light chain kinase (smMLCK).23, 24 Experimentally, the 

variants bound the smMLCK peptide with similar affinity to wild type, and bound most 

other target peptides with weaker affinity than wild type.  Although those experiments 

showed that single-state design was sufficient to alter binding specificity in this system, 

we anticipate that more delicate control over such properties may be allowed through the 

use of explicit negative design.  To assess the utility of MSD-FASTER and MSD-MC for 

negative design, we attempted to design CaM sequences that would bind smMLCK and 

fail to bind another natural CaM target, CaM kinase I (CaMKI).  This sequence selection 

was performed via a two-state design with a smMLCK-CaM crystal structure as the 

positive design target state (1CDL),25 and a CaMKI-CaM crystal structure as the negative 

design target state (1MXE).26   

 Table 4 compares the application of SSD-FASTER, MSD-FASTER, and MSD-

MC to this simple negative formulation of negative design.  First, we evaluated the 

previously published technique for implicit computational negative design.  In this case, 

we applied SSD-FASTER to the positive design target state only, rescored the resulting 

best sequence against the negative design target state by rotamer optimization, and 

combined these two energies into an overall score using equation 5.  These calculations 
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indicate a partial clash when the SSD-optimal sequence is threaded on the negative 

design target state, and a predicted increase in binding specificity.  

 As with the protein G NMR ensemble calculations, we dispensed with the 

evaluation of each rotamer optimization routine in the context of MSD-FASTER, and 

relied on FASTER only.  Furthermore, we again tested the fixed rotamer selection 

schemes during MSD-sPR corresponding to r = 1, r = 5, and r = rand.   

Interestingly, all three techniques found the same best-scoring sequence in 15–

20% of their trajectories, and all three incurred roughly the same amount of 

computational expense.   According to the simulations, this sequence is destabilized by 

only 0.4 kcal/mol in the context of the positive design target state compared to the 

optimal sequence for that state, and is predicted to clash more significantly when 

threaded on the negative design target than the sequence found using SSD-FASTER 

alone.  The similarity between the results and performance of the three implementations 

of MSD-FASTER/FASTER tested here inspires confidence that the utility of MSD-

FASTER does not hinge on the particulars of the scheme used to choose rotamers of the 

fixed amino acid type during MSD-sPR.   

 We also tested the same set of formulations for MSD-MC as we did for the 1GB1 

designs described above, in an attempt to find one that would compare favorably to 

MSD-FASTER for explicit negative design (Table 4). Despite our best efforts, and even 

with substantially more computational time devoted to the problem, no version of MSD-

MC was able to find the solution produced by MSD-FASTER even once.  Furthermore, 

no MSD-MC calculation converged on any particular consensus solution, indicating that 

either much longer simulation times or a much better algorithm formulation would be 
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required for a user to have confidence in the results produced by MSD-MC for this 

design problem.  The best solutions that were found using MSD-MC all exhibited 

destabilization in the context of the positive design target state in addition to several 

clashes in the negative design target state; however, only extensive experimental 

validation will conclusively show whether these differences in simulation energy are 

meaningful in the context of the potential functions and rigid structural models we have 

used here.  To the extent that predicted clashes correlate with destabilization of the 

negative design target state, both MSD algorithms are expected to be more useful than 

single-state design for the explicit manipulation of specificity.  Based on our results, 

MSD-FASTER should be preferred over MSD-MC due to the higher efficiency with 

which it is able to discover favorable sequences and the greater confidence inspired by its 

ability to repeatedly discover the optimal solution. 
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Table 4: Explicit negative design to increase the binding specificity of calmodulin 

 

Opta 
 
 

% correctd 

(f × 100) te ΔEP
f ΔEN

g σh 
 

Ni 
SSD-FASTER  0.0 0.9 0.0 37.6 -1.5 2 

        
 rb       

MSD-FASTER/FASTER 1 18.5 13.9 0.4 54.4 -1.8 0 
MSD-FASTER/FASTER 5 19.5 13.4 0.4 54.4 -1.8 0 
MSD-FASTER/FASTER rand 15.1 13.7 0.4 54.4 -1.8 0 

        
 US/CPLc       

MSD-MC/FASTER no 0.0 24.1 4.2 92.0 0.5 6 
MSD-MC/FASTER yes 0.0 27.3 4.0 110.6 -0.4 2 

MSD-MC/Null yes 0.0 14.1 6.0 100.2 2.0 6 
MSD-MC/iBR yes 0.0 15.2 5.7 139.8 0.1 6 

 

a. The optimization strategy that was used, as described in the text.  In SSD-FASTER, sequences 
were optimized in the context of the positive design target only, and then rescored against both 
targets.  

b. After optimizing the choice of fixed rotamer in all states during a step of sPR, the amino acid 
sequence to score by rotamer optimization is chosen randomly from the top r fixed rotamer 
configurations.  “rand” indicates that the fixed rotamer optimization step is skipped, and the amino 
acid sequence to score results from randomly chosen rotamers of the fixed amino acid type in each 
state.   

c. Indicates whether or not uniform substitution sampling is applied for MSD-MC and a close 
position limit of 15 Å is applied during each rotamer optimization.   

d. The percentage of trajectories that found the optimal MSD solution, as defined in the text. 1000 
trajectories were performed for each MSD calculation, and 6400 were performed for the SSD-
FASTER calculation. 

e. The average time, in minutes, required to perform each trajectory using 2 processors (MSD), or 1 
processor (SSD) 

f. The excess energy of the best sequence threaded on the positive design target (equation 6) 
g. The excess energy of the best sequence threaded on the negative design target (equation 6).  The 

pairwise energies that are summed to yield this value are each capped at 50 kcal/mol.   
h. The overall score of the best sequence found (equation 5) 
i. The number of amino acid differences between this sequence and the best designed sequence 

determined using MSD-FASTER 
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Conclusions 

 We have presented implementation details of a new optimization algorithm for 

multi-state protein design based on FASTER, determined acceptable parameters for its 

use, and compared its performance to a multi-state implementation of Monte Carlo.  

Accurate scoring of sequences suggested by the MSD algorithms is required for efficient 

multi-state optimization; rotamer optimization routines for side-chain placement based on 

MC, FASTER, and iBR can all provide acceptable performance.  Our results indicate that 

both MSD algorithms can find favorable sequences in realistic test cases for positive and 

negative design.  Both algorithms can accommodate design problems with many states; 

even a 60-member NMR ensemble was designed without difficulty.  In our hands, MSD-

MC scales poorly compared to MSD-FASTER as the complexity of the design problem 

increases; the observed difference is much more pronounced than what has been reported 

for the single-state versions of these algorithms.9  Due to this effect, the efficiency and 

consistency of MSD-FASTER was better than MSD-MC in every class of design 

problem we tested.  In most cases, MSD-MC could not ever find the low-energy 

consensus solutions produced by MSD-FASTER.  Given that the evaluation of each 

sequence is relatively time-consuming in MSD, MSD-FASTER likely performs better 

because it tends to make multiple substitutions simultaneously, and because substitutions 

are selected for scoring based on energetic considerations rather than randomly.   

Although the general approach to multi-state design used by these MSD 

algorithms has met with several experimental successes already,15, 17, 18 rigorous 

evaluation of energy functions and multi-state scoring functions will be required to prove 
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and improve the usefulness of this methodology.  Realistic design procedures based on 

the explicit modeling of many native and non-native conformational states cannot be 

implemented without efficient optimization techniques to drive them.  We hope that the 

greater optimization power of MSD-FASTER will help to accelerate progress in this area 

via its improved speed and accuracy compared to alternative methods.   

 

Materials and methods 

Design parameters: single-state design test cases 

The energy functions and designed positions used for the single-state design 

problems were as previously described.9  

For rotamer optmization, four of the weak RO algorithms (Null, MC, iBR, and 

FASTER) were paired with a strong rotamer optimizer utilizing two trajectories of 

FASTER with a maximum of 5 rounds of iBR and 3 rounds of sPR.  When DEE was 

used as the weak rotamer optimizer, it was also used as the strong rotamer optimizer, as 

explained above.  For the weak RO algorithms iBR and FASTER, the maximum number 

of nonproductive iBR rounds was 5.  For FASTER, the iBR pass was followed by exactly 

one round of sPR. For those sequences for which DEE failed to converge, the strong 

FASTER rotamer optimization routine described above was automatically employed to 

find a reasonable approximate solution.  The simulated annealing regimen for MC when 

used for weak RO comprised 1 cycle of 2.0×104 steps with a high temperature of 400 K 

and a low temperature of 1 K.    

In MSD-FASTER, the FASTER parameters for sequence selection were: 

maximum nonproductive rounds in iBR, 5, maximum rounds in sPR, 5, and number of 
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relaxing positions in each step of sPR, 10.9  In every MSD-MC calculation, the high and 

low temperatures for sequence selection were also set to 400 K and 1 K, respectively.  

The number of cycles and steps of MSD-MC was set in each calculation so that total time 

used by MSD-FASTER and MSD-MC would be comparable. The following simulated 

annealing schedules were used for sequence selection in each algorithm combination: 

MSD-MC/Null, 10 cycles of 1.0 × 106 steps; MSD-MC/MC, 1 cycle of 2.5 × 104 steps; 

MSD-MC/iBR, 1 cycle of 1.0 × 105 steps; MSD-MC/FASTER, 1 cycle of 1.5 × 104 steps. 

 

Design parameters: 1GB1 

 The 1GB1 ensemble of protein G20 was prepared and designed as follows.  

Hydrogens were removed from each ensemble member and added back in optimized 

positions using REDUCE.27 Each structure was then standardized via 50 steps of 

conjugate-gradient minimization with the DREIDING force field.28 All positions were 

classified as core, boundary, or surface as described previously1 based on the coordinates 

of the crystal structure (1PGA).29  The core+boundary design comprised positions 1, 3, 5, 

7, 11, 12, 16, 18, 20, 23, 25, 26, 27, 29, 30, 33, 34, 37, 39, 43, 45, 50, 52, 54, and 56; the 

surface design comprised positions 2, 4, 6, 8, 10, 13, 15, 17, 19, 21, 22, 24, 28, 31, 32, 

35, 36, 40, 42, 44, 46, 47, 48, 49, 51, 53, and 55.  In the core+boundary design, the amino 

acid types Ala, Val, Leu, Ile, Phe, Tyr, and Trp were allowed at each designed core 

position; Ala, Val, Leu, Ile, Phe, Tyr, Trp, Ser, Thr, Asn, Gln, Asp, Glu, His, Lys, and 

Arg were allowed.  In the surface design, Ala, Ser, Thr, Asn, Gln, Asp, Glu, His, Lys, and 

Arg were allowed.  For each design, we used rotamers from the Dunbrack backbone-

dependent rotamer library.30  There were an average of 3634 total rotamers per state with 
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rotamer/template energies better than 20 kcal/mol for the core+boundary design, and 

5617 for the surface design.  Pairwise energies were computed using energy functions as 

previously described,7 except the polar hydrogen burial term was omitted. 

For the core+boundary design, the following parameters were used for each 

MSD-MC algorithm combination: MSD-MC/FASTER (no US/CPL), 1 cycle of 2.0 × 104 

steps; MSD-MC/FASTER, 1 cycle of 3.5 × 104 steps; MSD-MC/Null, 1 cycle of 5.0 × 

105 steps; MSD-MC/iBR, 1 cycle of 1.0 × 105 steps. 

 For the surface design, the following parameters were used: MSD-MC/FASTER 

(no US/CPL), 1 cycle of 6.0 × 103 steps; MSD-MC/FASTER, 1 cycle of 1.3 × 104 steps; 

MSD-MC/Null, 1 cycle of 5.0 × 105 steps; MSD-MC/iBR, 1 cycle of 6.5 × 104 steps.  

The number of MSD-MC steps in each case was chosen to make the average time 

per trajectory similar to MSD-FASTER.  Equation 4 was used with kT = 300 kcal/mol to 

combine the energies from all 60 ensemble members into overall scores. 

 

Design parameters: CaM 

 The two CaM structures were prepared and minimized as described above for the 

1GB1 structures.  Chains B and F were used from the 1CDL structure and chains A and E 

were used from the 1MXE structure.  The amino acid types Ala, Val, Leu, Ile, Phe, Tyr, 

Trp, Met, and Glu were allowed at each of the following designed positions on the CaM 

chain: 7, 8, 11, 14, 15, 28, 32, 35, 47, 51, 64, 67, 68, 80, 84, 87, 88, 101, 104, 105, 108, 

120, 124, 140, and 141.  The 19 positions of the smMLCK peptide in the positive design 

state and the 25 positions of the CaMKI peptide in the negative design state were allowed 

to vary side-chain conformation but not amino acid identity.  Side-chain conformations at 
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the variable positions were from the Dunbrack backbone-dependent rotamer library with 

expansions of ±1 standard deviation about χ1 and χ2.  The same energy functions were 

used to compute pairwise energies as for the 1GB1 designs described above.   For the 

multi-state design calculations, all rotamer-backbone and rotamer-rotamer energies on the 

negative design target state were capped at 50 kcal/mol.  To compute σ during the 

optimizations, equation 5 was used with W = 0.04.   The single-state design optimizations 

were performed as described,9 without the initial elimination of rotamers using DEE.  

 The following parameters were used for each MSD-MC algorithm combination: 

MSD-MC/FASTER (no US/CPL), 1 cycle of 2.0 × 103 steps; MSD-MC/FASTER, 1 

cycle of 6.0 × 103 steps; MSD-MC/Null, 25 cycles of 1.0 × 106 steps; MSD-MC/iBR, 1 

cycle of 3.0 × 104 steps. 
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