
38

Chapter 3

An Efficient Algorithm for Multi-State Protein Design Based on

FASTER

The text of this chapter was adapted from a manuscript coauthored with
Stephen L. Mayo.

 39

Abstract

Most of the methods that have been developed for computational protein design involve

the selection of side-chain conformations in the context of a single, fixed main-chain

structure. In contrast, multi-state design (MSD) methods allow sequence selection to be

driven by the energetic contributions of multiple structural or chemical states

simultaneously. This methodology is expected to be useful when the design target is an

ensemble of related states rather than a single structure, or when a protein sequence must

assume several distinct conformations to function. MSD can also be used with explicit

negative design to suggest sequences with altered structural, binding, or catalytic

specificity. We report implementation details of an efficient multi-state design

optimization algorithm based on FASTER (MSD-FASTER). We subjected the algorithm

to a battery of computational tests and found it to be generally applicable to various

multi-state design problems; designs with a large number of states and many designed

positions are completely feasible. A direct comparison of MSD-FASTER and multi-

state-design Monte Carlo indicated that MSD-FASTER discovers low-energy sequences

much more consistently. MSD-FASTER likely performs better because amino acid

substitutions are chosen on an energetic basis rather than randomly, and because multiple

substitutions are applied together. Through its greater efficiency, MSD-FASTER should

allow protein designers to test experimentally better-scoring sequences, and thus

accelerate progress in the development of improved scoring functions and models for

computational protein design.

 40

Introduction

 The field of computational protein design provides software tools that facilitate

the identification of amino acid sequences with specific desired properties. Most protein

design protocols choose amino acid types and side-chain conformations in the context of

a single, fixed, main-chain conformation. Given this simplifying approximation, one can

precompute all pairwise interaction energies between possible side-chain conformations

at different positions and then optimize this system of interactions to find sequences

expected to stabilize the fold.1, 2 The most common optimization algorithms employed for

this purpose are based on Monte Carlo with simulated annealing (MC),3–5 the dead-end

elimination theorem (DEE),5–7 genetic algorithms,5, 8 and Fast and Accurate Side-Chain

Topology and Energy Refinement (FASTER).9, 10 These single-state design methods have

produced several notable successes, when used on their own or in conjunction with main-

chain optimization techniques.1, 3, 11–14 However, single-state design is not necessarily

sufficient when design objectives require the explicit consideration of multiple states at

once.15

For example, we might desire a sequence that is able to assume two distinct folds

under different conditions; the single-state design methodology described above does not

provide a mechanism for selecting sequences that are simultaneously compatible with

both folds. Similarly, single- state design methods do not provide a way to explicitly

alter binding specificity, since only one binding partner may be modeled during sequence

selection. Likewise, enzyme design methods might be enhanced through the explicit

modeling of the substrate, transition state, and product, rather than only one of these at a

time. Finally, we note that NMR-derived solution structures have been neglected as

 41

targets for protein design because typical structure determination methods give an

ensemble rather than a single set of coordinates.16 To the extent that the structural

diversity of an NMR ensemble reflects realistic conformational flexibility, it will be

interesting to investigate the effects of using such an ensemble as the basis for design.

Each of the design goals given above requires sequence selection to be informed

by multiple structural or chemical states simultaneously, in what we call multi-state

design (MSD). The optimization strategy we apply to MSD problems comprises an outer

routine that suggests possible amino acid sequences, and an inner routine that assesses the

fitness of a sequence by performing rotamer optimization on each state and combining

the individual state energies to yield an overall score. This basic approach has been used

by others to design specificity into a self-associating coiled-coil system, to generate a

molecular switch, and to recover sequences that bind their cognate ligands with high

affinity.15, 17, 18 Here, we describe a generalization of these strategies that is applicable to

any number of states and compatible with any type of scoring function that might be used

to combine the energies of sequences threaded on the target states.

For a design problem with n states to consider, we use n processors of a computer

cluster to calculate one optimization trajectory. Each processor holds in memory the

pairwise energy matrix for one state, and is responsible for evaluating the energies of

candidate sequences in the context of that state only. In general, a candidate sequence is

evaluated by performing rotamer optimization using a side-chain placement algorithm

based on MC, DEE, or FASTER. One of the processors (the boss) is additionally

responsible for identifying amino acid sequences to be scored, communicating this

information to the others, collecting the results, and combining the energies to yield an

 42

overall fitness score. Here, we provide implementation details for MSD optimization

algorithms with amino acid selection schemes based on MC and FASTER, and give

quantitative comparisons of their performance for a variety of multi-state design

problems.

Results and discussion

Scoring functions

To solve the multi-state design problem, we employ an extension of the

methodology that has been developed for single-state design. In single-state design, the

cost function to be optimized is the energy E of the rotamer configuration R. The energy

is computed by summing the rotamer/template energies Ei
 for each of the N residue

positions and the interaction energies Eij between all pairs of rotamers at residue positions

i and j. Typically, the rotamer configuration is optimized without regard to the amino

acid types of the rotamers available at each position.

€

E(R) = Ei

i=1

N

∑ + Eij

j= i+1

N

∑
i=1

N

∑ (1)

In multi-state design, the score σ to be optimized is a function of the amino acid sequence

A. In general, an amino acid sequence will not assume the same side-chain

conformations in the various states being modeled. If there are n states, then the score is

computed using a function of the following form:

€

σ(A) =σ (E1(A),E 2(A),...,En(A)) (2)

Each Es(A) corresponds to the energy of the sequence A threaded on state s, and is

computed by single-state rotamer optimization using equation 1. Different energy

combination functions σ may be appropriate for different types of design problems. For

 43

example, in a case where the designed sequence is meant to satisfy n distinct states

equally well, the simplest scoring function simply computes the average energy across all

states:

€

σ(A) =
1
n

Es(A)
s=1

n

∑ (3)

When the design target is an ensemble of similar states, such as an NMR solution

structure, the requirement that a sequence satisfy all states may be too stringent; it cannot

be assumed that every member of the ensemble would be significantly populated or

relevant for the designed sequence. In this case, a scoring function that applies

Boltzmann-weighted averaging may be more useful:

€

σ(A) = −kT log e−Es(A) / kT
s=1

n

∑

 (4)

Use of equation 4 prevents sequences that fail to satisfy a few states from being severely

penalized. If the design goal is to alter conformational, binding, or catalytic specificity, a

scoring function for explicit negative design is warranted. Given one positive design

state ρ and one negative design state η, one might apply the following scoring function:

€

σ(A) = ΔEρ (A) −WΔEη (A) (5)

Here, W is a weighting factor used to control the balance of ρ-state stabilization and η-

state destabilization. Each ΔEs(A) in equation 5 is the excess energy of sequence A when

threaded on state s compared to the optimal sequence A0 for that state as determined by

single-state design:

€

ΔEs(A) = Es(A) − Es(A0) (6)

Because Es(A0) is the minimum energy of any sequence threaded on state s, ΔEs(A) ≥ 0.

The ΔEs(A) terms are intended to normalize the energies of the sequences being selected

 44

and to allow a single value of W to be used with various energy functions and design

targets.

 Over the course of a negative design calculation, sequences may be found that

cannot be threaded on the negative design target structure without causing severe van der

Waals clashes; use of equation 5 in a multi-state design calculation will cause such

sequences to be preferred. Any predicted clash must surely be alleviated by a shift in the

distribution of conformational states assumed by a real protein. However, we

hypothesize that variants with native states perturbed in this manner will tend to be

destabilized, especially when multiple clashes are predicted together. Because the

energies assigned to these clashes by a standard Leonard-Jones potential depend strongly

on several approximations (such as discrete side-chain rotamers and a fixed main chain),

we threshold all rotamer-template and rotamer-rotamer energies on the negative design

target state to a positive constant. This effectively causes sequences with a greater

number of clashes to be preferred over sequences with a smaller number of larger-

magnitude clashes, as desired.19

A more rigorous approach to explicit negative design would be to maximize the

probability with which the target state is assumed over all explicitly modeled competing

states, as computed according to basic statistical mechanics. This approach has been

applied to the design of specificity in self-associating and ligand-binding systems.15, 18

The success of this method relies on the availability of atomic models that accurately

represent all target and competing states; unfortunately, general methods for the

construction of these models have not yet been developed and validated. For the

computational tests reported here, we have sidestepped issues of model construction by

 45

applying equation 5 to a system with one crystal structure as the positive design target,

and another as the competing state for negative design.

Multi-state Monte Carlo

 Monte Carlo with simulated annealing (MC) is an efficient stochastic

optimization technique that is heavily used in computational protein design.3–5 When

used for rotamer optimization, MC can produce high-quality approximate solutions

quickly and find low-energy variants in the vicinity of an existing solution.5 MC is easily

applied as the outer routine in multi-state design by making perturbations at the level of

amino acid sequence only. In each step of multi-state design MC (MSD-MC, Figure 1), a

residue position is picked at random, and a random amino acid substitution is made at

that position. The new sequence is scored on each state by rotamer optimization. The

decision to accept or reject the perturbation is made based on the change in the score σ

and the simulated annealing temperature, which is cycled up and down over the course of

the optimization to allow traversal of local maxima and exploration around local minima.

 We have applied two enhancements to MSD-MC in an attempt to improve its

performance. In the first, random perturbations are chosen uniformly from a list of all

allowed amino acid substitutions, without respect the positions at which they occur. This

prevents positions that have fewer allowed amino acids than others from being the focus

of a disproportionate number of substitution attempts. In the second enhancement,

rotamer optimization after a substitution is limited to those positions within a specified

Cα- Cα distance cutoff from the perturbed position, reducing the amount of time required

 46

for rotamer optimization and allowing more steps of MSD-MC to be completed per unit

time.

 47

Figure 1: Graphical depictions of the three MSD sequence selection routines
described in the text. Legend (upper right panel): explains the symbols used to depict a
parallel algorithm. Each box represents a single processor that performs energy
calculations on a single state. Fields within the box identify the processor by number,
show the current action, and explain the relevant data that the processor holds in memory.
The boss processor is shaded in grey. The subroutines S and P are depicted in Figure 2
and described in the text. Depicted here are: one step of MSD-MC (upper-left panel),
one round of MSD-iBR (lower-left panel), and one perturbation in MSD-sPR (lower-right
panel).

 48

Multi-state FASTER

 Like Monte Carlo, FASTER is a stochastic optimization algorithm that makes

perturbations to existing solutions and accepts or rejects them based on their energetic

consequences.10 The two algorithms differ chiefly in the methods by which perturbations

are chosen. FASTER has two main components that we have modified for MSD:

iterative batch relaxation (iBR), and single perturbation and relaxation (sPR). In each

component, amino acid substitutions at several positions are chosen independently and

applied together to yield a new solution. Each component is applied iteratively until

convergence is detected. In MSD-iBR, convergence is signaled when the user-defined

limit for the number of nonproductive rounds (i.e., rounds that fail to improve the energy)

is reached. In MSD-sPR, convergence can occur either when the user-defined limit for

total rounds is reached or when an entire round has elapsed without an improved solution

being found. One trajectory of MSD-FASTER is performed by generating a random

initial sequence, applying MSD-iBR until convergence, and then applying MSD-sPR

until convergence.

Multi-state iBR

 During a round of single-state iBR, the best rotamer at each position of the protein

is determined independently in the context of the current rotameric configuration at all

other positions. Then, the new rotamers at each position are all updated simultaneously,

and the resulting updated configuration of the system is retained regardless of the change

in energy. iBR is applied iteratively until a user-defined limit for nonproductive rounds

 49

has been reached. After the detection of convergence, the lowest-energy configuration

ever found during the rounds of iBR is selected to move on to sPR.

 During a round of MSD-iBR, the best amino acid at each position must be chosen

considering all states simultaneously (Figure 1). For each possible amino acid

substitution at each position, each processor determines for its own state the best possible

total energy of the system when that substitution is made with the current rotamer

configuration fixed at all other positions, and sends this information to the boss. If there

are p positions and a amino acid types allowed at each position, then each processor

needs to communicate pa floating-point values. For each position, the boss computes the

overall score of each possible substitution across all states using these values and a

scoring function σ. The amino acid identity at each position is then updated with the

best-scoring substitution found by the boss in the previous step. Each processor rescores

the resulting sequence for its state by rotamer optimization and these energies are again

combined to produce an overall score. This process is repeated until convergence, as in

single-state iBR.

Multi-state sPR

 In a step of single-state sPR, one position is forced to assume a particular rotamer

(is “perturbed”), the other positions are allowed to relax independently in the context of

the current rotamer configuration, and the rotamers at all relaxing positions are updated at

once. The resulting relaxed rotamer configuration is accepted only if its energy is better

than any previously observed. In a step of single-state sPR, amino acid substitutions can

occur at the perturbed position and also at the relaxing positions, since rotamers are

 50

sampled without regard to their amino acid types. In one round of single-state sPR, each

rotamer at each position will be fixed exactly once; positions to fix are picked in random

order. Rounds of sPR are performed until an entire round fails to produce a better

solution, or until a user-defined limit is reached.

 Several significant complications arise when adapting sPR for multi-state design.

We would like to fix a particular amino acid at some position and choose the resulting

best amino acid substitution at each independently relaxing position (Figure 1).

Typically, there will be multiple available rotamers of the fixed amino acid type at the

perturbed position in each state. Each of these rotamers will lead to a distinct set of

energies for the possible amino acid substitutions at the relaxing positions. Thus, an

explicit choice of fixed rotamer at the perturbed position must be made for each state in

order to determine the best-scoring amino acid types at the relaxing positions when all

states are considered simultaneously. Unfortunately, each processor cannot simply

determine the best fixed rotamer in its own state and send the corresponding substitution

energies to the boss to be scored. To improve the overall score across all states, a given

state may be forced to accept a substitution that is suboptimal when that state is

considered by itself. To score that suboptimal substitution correctly, the state may be

forced to employ a rotamer at the perturbed position that is different from the one that

leads to the best substitutions for that state in isolation. Thus, each processor must

communicate substitution energies corresponding to all of the available rotamers of the

fixed amino acid type at the perturbed position, and not just of the ones that seem optimal

in the context of its own state.

 51

 For each rotamer of the fixed amino acid type at the perturbed position, each

processor must send the total energy of each possible amino acid substitution at each of

the relaxing positions. If there are r rotamers of the fixed amino acid type at the

perturbed position, p relaxing positions, and a amino acid types available at each of the

relaxing positions, then each processor must send rpa floating-point values to the boss.

A given assignment of fixed rotamers to states allows a preferred amino acid

substitution at each relaxing position and its MSD score to be computed using a σ

function, as described in the MSD-iBR section above. Thus, if there are n relaxing

positions allowed, there will be n separate MSD score values σr. In order to determine

the best relaxed sequence given an amino acid perturbation, we optimize the sum of these

σr (subroutine P in Figure 2). The optimization comprises a quick Monte Carlo run of

10,000 steps along a linear temperature gradient from 4000 K to 1 K with a

nonproductive steps limit of 100. In each step of MC, a random state is chosen, a random

fixed rotamer for that state is selected, and the corresponding sum of MSD substitution

scores at the relaxing positions is determined; the new fixed rotamer configuration is

accepted or rejected based on the Boltzmann criterion. This protocol generates a

favorable choice of fixed rotamer for each state and incurs negligible computational

expense. After the amino acids at the relaxing positions are chosen, each processor

evaluates the energy of the new sequence threaded on its state by rotamer optimization.

The energies are then combined into an overall score using a σ function as described

above.

Although the technique just described is expected to perform well for most MSD

problems, there is some reason to believe that it may be inadequate when used in the

 52

context of explicit negative design. Because subroutine P attempts to choose rotamers of

the fixed amino acid type that result in designed sequences that minimize σ, it

preferentially selects sequences that clash with the chosen fixed rotamers in competing

states, even though these clashes might be relaxed away during the subsequent rotamer

optimization step. This single-minded focus on sequences that clash most strongly prior

to rotamer optimization could inhibit the ability of the algorithm to find those sequences

with the most favorable scores after rotamer optimization. To address these concerns, we

have implemented and tested two modifications that allow the fixed rotamer

configuration (and resulting relaxed amino acid sequence) to be chosen completely

randomly, or randomly from one of the top r configurations found during subroutine P.

Comparison with these simple modifications should allow the overall utility of the

original procedure to be assessed.

We recently reported that the efficiency of single-state FASTER can be improved

by allowing only the positions that interact most strongly with the perturbed position to

be relaxed.9 When applied to MSD-sPR, this improvement also limits the amount of data

that must be communicated between processors and improves the efficiency with which

the optimal fixed rotamers for each state can be determined. In MSD-sPR, the potential

relaxing positions are ranked according to the absolute values of the σr scores calculated

from their interactions with the perturbed position. The initial rotamer configurations in

each state prior to the perturbation are used to assess these interactions.

 53

Figure 2: Subroutines used by the MSD sequence selection algorithms. S: the
subroutine used to assign an overall score to a given amino acid sequence based on input
from all of the states. P: the subroutine used to determine an optimized choice of fixed
rotamer at the perturbed position in each state during MSD-sPR. The boss processor runs
this routine using data accumulated from all processors.

 54

Rotamer optimization (RO) algorithms

 The MSD sequence selection algorithms described above require that the energy

of specific sequences be evaluated in the context of each target state (subroutine S in

Figure 2). Any of the rotamer optimization (RO) algorithms that have been developed

for single-state protein design and side-chain placement, such as MC, DEE, and

FASTER, can be used to evaluate these energies. When used for rotamer optimization in

this work, one cycle of MC comprised a simulated annealing schedule that varied linearly

from high temperature to low. When FASTER was used, rounds of iBR and then of sPR

were applied in series; each pass was terminated when convergence was detected or the

user-defined rounds limit was reached. In a step of sPR, the set of positions allowed to

relax in response to the perturbation was limited to the ten that interact most strongly

with the perturbed position.9 DEE-based rotamer optimizations were performed as

previously described,7 except that the split-DEE and bounding steps were omitted. For

some amino acids sequences, DEE failed to converge to a single solution; in these cases,

FASTER was automatically invoked to find an approximate solution instead.

When performing rotamer optimization using MC or FASTER, an initial rotamer

configuration is required. During multi-state design, RO is applied in subsequent rounds

to amino acid sequences that differ at only a few positions; our implementation of MSD

exploits this situation to provide better initial rotamer configurations for optimization. In

MSD-MC, the amino acid identity at exactly one position will have changed since the

most recent rotamer optimization. The rotamer at this position is initialized randomly,

while the initial rotamer configuration at each of the unchanged positions is taken directly

 55

from the previous solution. In MSD-sPR, rotamer optimization occurs after each

processor has determined the best energies for each amino acid type at several relaxing

positions, given a fixed amino acid at a perturbed position. The rotamers at positions that

are neither fixed nor relaxed are taken from the previous solution. The rotamer at the

fixed position in each state is chosen as described in the section on MSD-sPR above.

Reasonable rotamers for each amino acid type at the relaxing positions are also already

known; the energies of these rotamers were used to select the sequence being scored.

The rotamer solution taken from these three sources can be used to determine directly the

energy of the sequence, or additional RO may be performed using it as an initial solution.

We refer to the routine that directly determines the energies on each state without further

optimization as the Null rotamer optimizer. However, our results below indicate that the

Null routine is insufficient for effective MSD sequence optimization.

In each MSD calculation, we employ two different RO modules that we refer to

as “weak” and “strong”. During rounds of MSD-MC and MSD-sPR, an initial rotamer

configuration for each state is available for input to the rotamer optimization routines as

described above. Thus, we start from these initial solutions and perform a limited

number of rounds of rotamer optimization to save time (weak RO). On the other hand,

good initial solutions are not available at the beginning of a round of any MSD algorithm,

or at any time during MSD-iBR due to the large number of substitutions that can be made

during each round. In these cases, we start from random rotamer configurations and

apply more rounds of rotamer optimization to increase our confidence in the resulting

energies (strong RO). When DEE is used, it is employed with the same parameters for

 56

both the strong and weak rotamer optimization, because initial solutions cannot be

exploited in our implementation of DEE.

Test cases for multi-state design

 We tested the performance of the algorithms described here with several different

multi-state design problems. The MSD-MC and MSD-FASTER amino acid selection

schemes are stochastic and provide no guarantee that the global minimum energy solution

will ever be found. We therefore perform many optimization trajectories with different

random number seeds, and assess the algorithms based on the distribution of solutions

given by these trajectories. When a significant fraction of the trajectories report the same

best solution ever found, we take that solution to be optimal. Given the fraction of

trajectories f that find the optimal solution, and the average processor-time in minutes t

required to compute a trajectory, we compare algorithms using according to the value S =

t / f. This score represents the total number of processor-minutes required on average to

find the optimal solution; smaller values are better. We previously used this metric to

analyze the performance of single-state design optimization algorithms.9

Single-state design problems

 When a MSD algorithm is applied to a design problem with only one target state,

its accuracy and efficiency may be compared to well-characterized single-state design

algorithms, such as single-state design FASTER (SSD-FASTER). We optimized four

full sequence designs that were previously used as test cases for the single-state versions

of Monte Carlo and FASTER: 1AAY, 1PIN, 1PGA, and 1C9O. These designs have from

 57

28 to 66 designed positions, and the average number of rotamers per position is 212; a

more complete description of these designs is available elsewhere.9 Because each of

these designs had only one target state, the MSD scoring function was simply σ(A) =

E(A), which is consistent with equations 3 and 4 when n = 1.

For each design, we computed 1000 trajectories of MSD-FASTER and MSD-MC

with a variety of different weak RO algorithms: Null, MC, iBR, FASTER, and DEE. We

refer to a particular pairing of MSD and RO algorithms in a/b format: MSD-FASTER

used with FASTER for weak rotamer optimization is called MSD-FASTER/FASTER.

For the parameters used in each optimization algorithm formulation, see the materials and

methods.

SSD test cases: MSD-FASTER

The results of the MSD-FASTER calculations (Table 1) indicate that the MSD

algorithm easily finds the optimal solution (as determined by SSD-FASTER) for each

design when paired with weak RO routines based on FASTER, iBR, or MC. For the two

smaller designs, 1AAY and 1PIN, MSD-FASTER was actually able to find the lowest-

energy solution 20–80% more efficiently than SSD-FASTER, because a greater fraction

of its trajectories were able to find the optimal solution without requiring significantly

more compute time. When applied to the larger and more difficult designs, 1PGA and

1C9O, the performance of MSD-FASTER deteriorated to between 8–18% of the

efficiency of SSD-FASTER. This deterioration stemmed both from an increase in the

time required to perform simulation trajectories, and a decrease in the fraction of

trajectories that were able to find the optimal solution. Ultimately, we were pleased to

 58

discover that, despite the limitations imposed on the algorithm by the requirements of

multi-state design, MSD-FASTER can effectively find optimal amino acid sequences

among sets of at least 1056 alternatives (1C9O). Although MSD-FASTER does not seem

to scale to larger problem sizes as well as SSD-FASTER, its performance should allow

for the rigorous investigation of new ideas in multi-state computational protein design.

When the results for all four designs are considered simultaneously, the most

favorable comparison with SSD-FASTER is offered by MSD-FASTER/FASTER, which

allows significant relaxation after each round of MSD-iBR and each step of MSD-sPR.

MSD-FASTER also yielded satisfactory performance when MC was used as the weak

RO routine, although the number of correct trajectories found per unit time was always

fewer than when FASTER was used. As a quicker but less accurate alternative, iBR

allowed fewer correct trajectories to be found, but reduced significantly the time required

to compute each trajectory, leading to similar overall performance when compared to

FASTER and MC. For the 1AAY and 1PIN designs, the most correct trajectories were

found when using DEE for rotamer optimization. However, this greater accuracy came at

the cost of significantly more processor time required. Furthermore, MSD-FASTER was

unable to complete trajectories for the 1PGA design in a reasonable time when RO was

performed by DEE (> 100 minutes each), and so the run was aborted. Although DEE-

based rotamer optimization may be too slow for sequence selection in nontrivial design

problems, it can still be useful to rescore a list of sequences produced using a quicker but

more approximate RO method. When no weak RO was performed at all (MSD-

FASTER/Null), the optimal solution was found for the 1AAY and 1PIN designs, but not

the two larger ones. We note that the average time per trajectory for these designs was

 59

only slightly lower than when iBR was used, indicating that most of the time in MSD-

FASTER/iBR is spent choosing sequences to score rather than scoring them by rotamer

optimization. Rotamer optimization of some kind seems to be required for the efficient

convergence of nontrivial multi-state design problems using MSD-FASTER.

 60

Table 1: Performance of MSD-FASTER when applied to four difficult single-state
design problems

a. The number of variable positions in the design
b. The optimization strategy that was used, as described in the text. The term after the slash indicates

the weak rotamer optimization routine that was used.
c. The percentage of trajectories that found the best known solution (f × 100), as determined by SSD-

FASTER. 1000 total trajectories were computed in each MSD or SSD calculation.
d. The average time, in minutes, required to perform each trajectory on one processor
e. The score S = t / f, as described in the text. Smaller values are better, indicating that the optimal

solution can be found more quickly. “—” indicates that S is undefined because f = 0.
f. The multiplicative factor p measures the deterioration in performance compared to SSD-FASTER.

For example, p = 0.17 indicates that the MSD algorithm was 17% as efficient as the SSD
algorithm.

g. When optimizing the 1PGA design using MSD-FASTER/DEE, the runs were aborted when it was
determined that trajectories would take longer than 100 minutes each to complete.

Design Sizea Optb
% correctc

(f × 100) td Se pf
28 SSD-FASTER 1.0 0.5 46 1.00
 MSD-FASTER/Null 0.2 0.3 153 0.30
 MSD-FASTER/MC 1.8 0.6 35 1.31
 MSD-FASTER/iBR 1.3 0.4 32 1.44
 MSD-FASTER/FASTER 2.5 0.6 25 1.84

1AAY

 MSD-FASTER/DEE 3.8 3.6 94 0.49
34 SSD-FASTER 2.1 0.6 28 1.00
 MSD-FASTER/Null 1.5 0.4 26 1.08
 MSD-FASTER/MC 3.0 0.7 23 1.22
 MSD-FASTER/iBR 2.5 0.5 20 1.40
 MSD-FASTER/FASTER 3.2 0.7 23 1.22

1PIN

 MSD-FASTER/DEE 3.6 4.3 118 0.24
56 SSD-FASTER 4.2 1.9 46 1.00
 MSD-FASTER/Null 0 3.1 — —
 MSD-FASTER/MC 1.1 6.2 562 0.08
 MSD-FASTER/iBR 1.5 4.9 327 0.14
 MSD-FASTER/FASTER 3.3 8.5 258 0.18

1PGA

 MSD-FASTER/DEE —g —g — —
66 SSD-FASTER 2.0 1.4 71 1.00
 MSD-FASTER/Null 0.0 2.5 — —
 MSD-FASTER/MC 0.9 5.7 629 0.11
 MSD-FASTER/iBR 0.7 4.3 610 0.12
 MSD-FASTER/FASTER 1.5 7.6 507 0.14

1C9O

 MSD-FASTER/DEE 1.1 16.4 1486 0.05

 61

SSD test cases: MSD-MC

 To compare the performance of MSD-MC to MSD-FASTER, we repeated the

single-state test designs using Null, iBR, MC, and FASTER for rotamer optimization. In

the course of these test calculations, it was determined that MSD-MC performed the best

when applied with uniform sampling of amino acid substitutions and with the positions to

be optimized after a substitution limited to those within 15 Å Cα-Cα of the substituted

position, as described above. For brevity, we report only the results of this best MSD-

MC formulation here. To make the comparison between MSD-MC and MSD-FASTER

as fair as possible, we adjusted the number of Monte Carlo steps in MSD-MC so that the

average time per trajectory would be similar to when MSD-FASTER was used (see

materials and methods); many more amino acid substitutions can be attempted per unit

time if the total time for rotamer optimization per substitution is reduced.

 Even using this best formulation, the ability of MSD-MC to find correct solutions

to these SSD problems was dramatically worse than that of MSD-FASTER (Table 2).

When paired with the Null rotamer optimizer or with iBR, MSD-MC was able to find the

optimal solutions to the two smaller design problems, albeit with much lower frequency

than MSD-FASTER despite longer sampling times. The relative success of MSD-MC

with less rigorous rotamer optimization routines reflects the fact that MSD-MC is

strongly limited by the number of amino acid substitutions it is able to test;

implementations with less expensive rotamer optimization can afford to test more

sequences per unit time, and therefore perform better.

The optimal solutions to the two larger design problems were never found using

any implementation of MSD-MC. Because the S and p scores that were used to compare

 62

the efficiencies of the MSD-FASTER algorithms are undefined when the fraction of

correct trajectories is zero, we report two different metrics for MSD-MC. ΔE is the

difference in simulation energy between the best sequence found by the MSD-MC

algorithm and the optimal sequence found by SSD-FASTER; Nm is the number of

positions that differ between the two sequences. Although the 1PGA and 1C9O

calculations were not able to find the optimal solution, they can be evaluated based on

how close they came (i.e., how close ΔE and Nm are to zero). In terms of ΔE and Nm,

these two larger designs showed significant deviations, with differences in simulation

energy of 2–4 kcal/mol and 4–7 mutations away from the best-scoring sequence found

using SSD-FASTER and MSD-FASTER. Even these suboptimal sequences were found

only a few times in the aggregate simulation run, rather than the numerous times the

optimal sequence was found by the MSD-FASTER protocols. In addition to various

combinations of uniform sampling and restricted sets of positions for rotamer

optimization, we attempted various simulated annealing schedules and temperature

ranges in MSD-MC, as well as applying fewer trajectories of longer length, all to no avail

(data not shown). Compared to MSD-FASTER, the optimization ability of MSD-MC is

clearly unacceptable for designs of this difficulty.

 63

Table 2: The performance of MSD-MC when applied to four difficult single-state
design problems

Design Sizea Optb
% correctc

(f × 100) ΔEd Nm
e tf

28 SSD-FASTER 1.0 0.0 0 0.5
 MSD-MC/Null 0.2 0.0 0 2.5
 MSD-MC/MC 0.2 0.0 0 8.4
 MSD-MC/iBR 0.8 0.0 0 3.2

1AAY

 MSD-MC/FASTER 0.0 0.7 2 2.6
34 SSD-FASTER 2.1 0.0 0 0.6
 MSD-MC/Null 0.3 0.0 0 3.0
 MSD-MC/MC 0.0 0.5 5 9.7
 MSD-MC/iBR 0.1 0.0 0 3.8

1PIN

 MSD-MC/FASTER 0.0 1.2 9 3.3
56 SSD-FASTER 4.2 0.0 0 1.9
 MSD-MC/Null 0.0 3.9 7 5.5
 MSD-MC/MC 0.0 7.8 16 18.1
 MSD-MC/iBR 0.0 1.5 5 16.7

1PGA

 MSD-MC/FASTER 0.0 11.2 12 9.9
66 SSD-FASTER 2.0 0.0 0 1.4
 MSD-MC/Null 0.0 1.6 4 6.7
 MSD-MC/MC 0.0 5.6 14 24.3
 MSD-MC/iBR 0.0 2.0 5 22.7

1C9O

 MSD-MC/FASTER 0.0 12.4 20 11.0

a. The number of variable positions in the design
b. The optimization strategy that was used, as described in the text. The term after the slash indicates

the weak rotamer optimization routine that was used. The number of steps of MSD-MC was
adjusted for each algorithm combination so that the average times per trajectory would be similar
to those for MSD-FASTER (Table 1).

c. The percentage of trajectories that found the optimal solution (f × 100), as determined by SSD-
FASTER. 1000 total trajectories were computed in each MSD or SSD calculation.

d. The difference in simulation energy (kcal/mol) between the best sequence found by MSD-MC and
the optimal sequence found by SSD-FASTER

e. The number of residue positions that differ between the best sequence found by MSD-MC and the
optimal sequence found by SSD-FASTER

f. The average time, in minutes, required to perform each trajectory on one processor

 64

Multi-state design of protein G

 To compare MSD-FASTER and MSD-MC in the context of positive design, we

designed two separate areas of 1GB1, a 60-member NMR ensemble of the β1 domain of

streptococcal protein G.20 Single-state designs based on the crystal structure of this

protein have found several stabilized variants,13, 21 but to our knowledge no designs based

on an NMR ensemble of this molecule have yet been characterized experimentally. In

the first design, we varied all 25 non-Gly positions classified as core or boundary, and in

the second we varied all 27 non-Gly positions classified as surface.

For the MSD-FASTER calculations, we dispensed with the evaluation of the

several possible rotamer optimization routines, and relied on FASTER only for this

purpose. However, given our concerns about potential problems with fixed rotamer

selection schemes during MSD-sPR, we tested three implementations in MSD-FASTER.

In two cases, (r = 1 and r = 5 in Table 3), the choice of fixed rotamer in each state was

determined as described above; the relaxed amino acid sequence to be scored by rotamer

optimization was either produced from the best fixed rotamer configuration found, or was

produced from a randomly chosen member of the top five configurations found,

respectively. In the final case (r = rand), the fixed rotamer optimization was skipped

entirely, and the relaxed amino acid sequence to be rescored was determined with fixed

rotamers of the perturbed amino acid type chosen randomly for each state. Calculation

parameters for MSD-FASTER and the strong and weak rotamer optimization routines

were identical to those described for the single-state design test cases above.

We tested a variety of formulations of MSD-MC in an attempt to find one that

would compare favorably to MSD-FASTER when applied to many target states

 65

simultaneously. Implementation details that were varied included the type of rotamer

optimization performed, the application of uniform sampling of amino acid substitutions,

and the use of the distance-based cutoff to limit the expense of rotamer optimization;

several of these combinations are shown in Table 3.

 In contrast to the SSD test cases described above, the optimal solutions to these

two MSD problems are not known except through the calculations we report here. In the

absence of additional information, we sampled as rigorously as possible with each MSD

algorithm and assumed the best-scoring sequence ever found to be optimal. We typically

use this strategy when optimizing single-state designs with stochastic algorithms as well.9

 For the core+boundary design, all the formulations of MSD-FASTER and MSD-

MC we tested found the same lowest-energy solution (Table 3). All three

implementations of MSD-FASTER achieved essentially identical performance, indicating

that method used to choose fixed rotamers in MSD-sPR was not a significant determinant

of optimization power in this design problem. Among the MSD-MC formulations we

tested, MSD-MC/iBR performed slightly better than any of the MSD-FASTER

implementations, whereas all other performed significantly worse. The preference for a

rotamer optimization routine of intermediate expense is consistent with the results of our

SSD test calculations (Table 2). It illustrates that, for efficient sampling in MSD-MC to

be achieved, a delicate balance must be struck between the accuracy of sequence-

rescoring and the number of individual sequences that are evaluated.

 Analysis of the surface design calculations shows a stark contrast between the

performance of MSD-FASTER and MSD-MC. Whereas all three MSD-FASTER

implementations each found the same top sequence in a significant fraction of the

 66

attempted trajectories, this sequence was never found by any of the MSD-MC

formulations we tried, despite their greater computational expense. This more difficult

design problem also allowed differentiation between the three MSD-FASTER

implementations; randomly chosen fixed rotamers (r = rand) resulted in a 5-fold drop in

optimization efficiency compared to the use of fixed-rotamer optimization in MSD-sPR

(r = 1).

When the states in a MSD calculation are very similar, one might ask whether the

MSD-optimal solution could have been found by performing single-state design on each

state and rescoring the resulting SSD-derived sequences using MSD. In the case of the

core+boundary design described here, the MSD-optimal sequence was never found

during single-state design of the individual states; the MSD-optimal sequence for the

surface design was also the SSD-optimal sequence for only one of the 60 states. Use of

the MSD strategy thus seems warranted for design problems with multi-state

requirements; the SSD-based strategy cannot be generally relied upon to produce the

same sequences as a true MSD procedure.

 The results of the 1GB1 designs show that both MSD-MC and MSD-FASTER

can efficiently find low-energy sequences based on a large NMR structural ensemble.

Although one formulation of MSD-MC performed slightly better than MSD-FASTER in

the core+boundary design, the failure of all MSD-MC formulations when applied to the

surface design prompts greater confidence in the consistency and general utility of MSD-

FASTER. When applying MSD-FASTER to a large conformational ensemble, the

optimization of fixed rotamer choice in MSD-sPR may help to improve the efficiency of

sampling in some design problems, and can be recommended on this basis.

 67

Table 3: Multi-state design of 1GB1, a 60-member NMR ensemble of protein G

Design Sizea Optb

rc
% correcte

(f × 100) tf Sg
25 MSD-FASTER 1 5.4 3.0 55
 MSD-FASTER 5 4.8 2.9 60
 MSD-FASTER rand 4.1 2.3 56

 US/CPLd
 MSD-MC/FASTER no 0.7 4.2 593

Core
+

Boundary

 MSD-MC/FASTER yes 2.9 4.3 147
 MSD-MC/Null yes 0.2 3.4 1712
 MSD-MC/iBR yes 9.1 4.2 46

 rc

27 MSD-FASTER 1 5.6 2.8 50
 MSD-FASTER 5 3.8 2.8 75
 MSD-FASTER rand 1.0 2.6 261

 US/CPLd
 MSD-MC/FASTER no 0.0 4.2 —

Surface

 MSD-MC/FASTER yes 0.0 4.4 —
 MSD-MC/Null yes 0.0 3.4 —
 MSD-MC/iBR yes 0.0 4.3 —

a. The number of variable positions in the design
b. The optimization strategy that was used, as described in the text
c. After optimizing the choice of fixed rotamer in all states during a step of sPR, the amino acid

sequence to score by rotamer optimization is chosen randomly from the top r fixed rotamer
configurations. “rand” indicates that the fixed rotamer optimization step is skipped, and the amino
acid sequence to score results from randomly chosen fixed rotamers in each state.

d. Indicates whether or not uniform substitution sampling is applied in MSD-MC and a close
position limit of 15 Å is applied during each rotamer optimization.

e. The percentage of trajectories that found the optimal MSD solution, as defined in the text. 1000
trajectories were computed for each design.

f. The average time, in minutes, required to perform each trajectory using 60 processors
g. The score S = t / f, as described in the text. Smaller values are better, indicating that the optimal

solution can be found more quickly. “—” indicates that S is undefined because f = 0.

 68

Negative design of calmodulin

 Calmodulin (CaM) is a second messenger protein that, in the presence of Ca2+,

binds to different recognition sequences on various proteins with high affinity and low

specificity.22 CaM variants with increased specificity have been engineered by

performing single-state design on a crystal structure of CaM bound to a target peptide

from smooth muscle myosin light chain kinase (smMLCK).23, 24 Experimentally, the

variants bound the smMLCK peptide with similar affinity to wild type, and bound most

other target peptides with weaker affinity than wild type. Although those experiments

showed that single-state design was sufficient to alter binding specificity in this system,

we anticipate that more delicate control over such properties may be allowed through the

use of explicit negative design. To assess the utility of MSD-FASTER and MSD-MC for

negative design, we attempted to design CaM sequences that would bind smMLCK and

fail to bind another natural CaM target, CaM kinase I (CaMKI). This sequence selection

was performed via a two-state design with a smMLCK-CaM crystal structure as the

positive design target state (1CDL),25 and a CaMKI-CaM crystal structure as the negative

design target state (1MXE).26

 Table 4 compares the application of SSD-FASTER, MSD-FASTER, and MSD-

MC to this simple negative formulation of negative design. First, we evaluated the

previously published technique for implicit computational negative design. In this case,

we applied SSD-FASTER to the positive design target state only, rescored the resulting

best sequence against the negative design target state by rotamer optimization, and

combined these two energies into an overall score using equation 5. These calculations

 69

indicate a partial clash when the SSD-optimal sequence is threaded on the negative

design target state, and a predicted increase in binding specificity.

 As with the protein G NMR ensemble calculations, we dispensed with the

evaluation of each rotamer optimization routine in the context of MSD-FASTER, and

relied on FASTER only. Furthermore, we again tested the fixed rotamer selection

schemes during MSD-sPR corresponding to r = 1, r = 5, and r = rand.

Interestingly, all three techniques found the same best-scoring sequence in 15–

20% of their trajectories, and all three incurred roughly the same amount of

computational expense. According to the simulations, this sequence is destabilized by

only 0.4 kcal/mol in the context of the positive design target state compared to the

optimal sequence for that state, and is predicted to clash more significantly when

threaded on the negative design target than the sequence found using SSD-FASTER

alone. The similarity between the results and performance of the three implementations

of MSD-FASTER/FASTER tested here inspires confidence that the utility of MSD-

FASTER does not hinge on the particulars of the scheme used to choose rotamers of the

fixed amino acid type during MSD-sPR.

 We also tested the same set of formulations for MSD-MC as we did for the 1GB1

designs described above, in an attempt to find one that would compare favorably to

MSD-FASTER for explicit negative design (Table 4). Despite our best efforts, and even

with substantially more computational time devoted to the problem, no version of MSD-

MC was able to find the solution produced by MSD-FASTER even once. Furthermore,

no MSD-MC calculation converged on any particular consensus solution, indicating that

either much longer simulation times or a much better algorithm formulation would be

 70

required for a user to have confidence in the results produced by MSD-MC for this

design problem. The best solutions that were found using MSD-MC all exhibited

destabilization in the context of the positive design target state in addition to several

clashes in the negative design target state; however, only extensive experimental

validation will conclusively show whether these differences in simulation energy are

meaningful in the context of the potential functions and rigid structural models we have

used here. To the extent that predicted clashes correlate with destabilization of the

negative design target state, both MSD algorithms are expected to be more useful than

single-state design for the explicit manipulation of specificity. Based on our results,

MSD-FASTER should be preferred over MSD-MC due to the higher efficiency with

which it is able to discover favorable sequences and the greater confidence inspired by its

ability to repeatedly discover the optimal solution.

 71

Table 4: Explicit negative design to increase the binding specificity of calmodulin

Opta

% correctd

(f × 100) te ΔEP
f ΔEN

g σh

Ni
SSD-FASTER 0.0 0.9 0.0 37.6 -1.5 2

 rb

MSD-FASTER/FASTER 1 18.5 13.9 0.4 54.4 -1.8 0
MSD-FASTER/FASTER 5 19.5 13.4 0.4 54.4 -1.8 0
MSD-FASTER/FASTER rand 15.1 13.7 0.4 54.4 -1.8 0

 US/CPLc

MSD-MC/FASTER no 0.0 24.1 4.2 92.0 0.5 6
MSD-MC/FASTER yes 0.0 27.3 4.0 110.6 -0.4 2

MSD-MC/Null yes 0.0 14.1 6.0 100.2 2.0 6
MSD-MC/iBR yes 0.0 15.2 5.7 139.8 0.1 6

a. The optimization strategy that was used, as described in the text. In SSD-FASTER, sequences
were optimized in the context of the positive design target only, and then rescored against both
targets.

b. After optimizing the choice of fixed rotamer in all states during a step of sPR, the amino acid
sequence to score by rotamer optimization is chosen randomly from the top r fixed rotamer
configurations. “rand” indicates that the fixed rotamer optimization step is skipped, and the amino
acid sequence to score results from randomly chosen rotamers of the fixed amino acid type in each
state.

c. Indicates whether or not uniform substitution sampling is applied for MSD-MC and a close
position limit of 15 Å is applied during each rotamer optimization.

d. The percentage of trajectories that found the optimal MSD solution, as defined in the text. 1000
trajectories were performed for each MSD calculation, and 6400 were performed for the SSD-
FASTER calculation.

e. The average time, in minutes, required to perform each trajectory using 2 processors (MSD), or 1
processor (SSD)

f. The excess energy of the best sequence threaded on the positive design target (equation 6)
g. The excess energy of the best sequence threaded on the negative design target (equation 6). The

pairwise energies that are summed to yield this value are each capped at 50 kcal/mol.
h. The overall score of the best sequence found (equation 5)
i. The number of amino acid differences between this sequence and the best designed sequence

determined using MSD-FASTER

 72

Conclusions

 We have presented implementation details of a new optimization algorithm for

multi-state protein design based on FASTER, determined acceptable parameters for its

use, and compared its performance to a multi-state implementation of Monte Carlo.

Accurate scoring of sequences suggested by the MSD algorithms is required for efficient

multi-state optimization; rotamer optimization routines for side-chain placement based on

MC, FASTER, and iBR can all provide acceptable performance. Our results indicate that

both MSD algorithms can find favorable sequences in realistic test cases for positive and

negative design. Both algorithms can accommodate design problems with many states;

even a 60-member NMR ensemble was designed without difficulty. In our hands, MSD-

MC scales poorly compared to MSD-FASTER as the complexity of the design problem

increases; the observed difference is much more pronounced than what has been reported

for the single-state versions of these algorithms.9 Due to this effect, the efficiency and

consistency of MSD-FASTER was better than MSD-MC in every class of design

problem we tested. In most cases, MSD-MC could not ever find the low-energy

consensus solutions produced by MSD-FASTER. Given that the evaluation of each

sequence is relatively time-consuming in MSD, MSD-FASTER likely performs better

because it tends to make multiple substitutions simultaneously, and because substitutions

are selected for scoring based on energetic considerations rather than randomly.

Although the general approach to multi-state design used by these MSD

algorithms has met with several experimental successes already,15, 17, 18 rigorous

evaluation of energy functions and multi-state scoring functions will be required to prove

 73

and improve the usefulness of this methodology. Realistic design procedures based on

the explicit modeling of many native and non-native conformational states cannot be

implemented without efficient optimization techniques to drive them. We hope that the

greater optimization power of MSD-FASTER will help to accelerate progress in this area

via its improved speed and accuracy compared to alternative methods.

Materials and methods

Design parameters: single-state design test cases

The energy functions and designed positions used for the single-state design

problems were as previously described.9

For rotamer optmization, four of the weak RO algorithms (Null, MC, iBR, and

FASTER) were paired with a strong rotamer optimizer utilizing two trajectories of

FASTER with a maximum of 5 rounds of iBR and 3 rounds of sPR. When DEE was

used as the weak rotamer optimizer, it was also used as the strong rotamer optimizer, as

explained above. For the weak RO algorithms iBR and FASTER, the maximum number

of nonproductive iBR rounds was 5. For FASTER, the iBR pass was followed by exactly

one round of sPR. For those sequences for which DEE failed to converge, the strong

FASTER rotamer optimization routine described above was automatically employed to

find a reasonable approximate solution. The simulated annealing regimen for MC when

used for weak RO comprised 1 cycle of 2.0×104 steps with a high temperature of 400 K

and a low temperature of 1 K.

In MSD-FASTER, the FASTER parameters for sequence selection were:

maximum nonproductive rounds in iBR, 5, maximum rounds in sPR, 5, and number of

 74

relaxing positions in each step of sPR, 10.9 In every MSD-MC calculation, the high and

low temperatures for sequence selection were also set to 400 K and 1 K, respectively.

The number of cycles and steps of MSD-MC was set in each calculation so that total time

used by MSD-FASTER and MSD-MC would be comparable. The following simulated

annealing schedules were used for sequence selection in each algorithm combination:

MSD-MC/Null, 10 cycles of 1.0 × 106 steps; MSD-MC/MC, 1 cycle of 2.5 × 104 steps;

MSD-MC/iBR, 1 cycle of 1.0 × 105 steps; MSD-MC/FASTER, 1 cycle of 1.5 × 104 steps.

Design parameters: 1GB1

 The 1GB1 ensemble of protein G20 was prepared and designed as follows.

Hydrogens were removed from each ensemble member and added back in optimized

positions using REDUCE.27 Each structure was then standardized via 50 steps of

conjugate-gradient minimization with the DREIDING force field.28 All positions were

classified as core, boundary, or surface as described previously1 based on the coordinates

of the crystal structure (1PGA).29 The core+boundary design comprised positions 1, 3, 5,

7, 11, 12, 16, 18, 20, 23, 25, 26, 27, 29, 30, 33, 34, 37, 39, 43, 45, 50, 52, 54, and 56; the

surface design comprised positions 2, 4, 6, 8, 10, 13, 15, 17, 19, 21, 22, 24, 28, 31, 32,

35, 36, 40, 42, 44, 46, 47, 48, 49, 51, 53, and 55. In the core+boundary design, the amino

acid types Ala, Val, Leu, Ile, Phe, Tyr, and Trp were allowed at each designed core

position; Ala, Val, Leu, Ile, Phe, Tyr, Trp, Ser, Thr, Asn, Gln, Asp, Glu, His, Lys, and

Arg were allowed. In the surface design, Ala, Ser, Thr, Asn, Gln, Asp, Glu, His, Lys, and

Arg were allowed. For each design, we used rotamers from the Dunbrack backbone-

dependent rotamer library.30 There were an average of 3634 total rotamers per state with

 75

rotamer/template energies better than 20 kcal/mol for the core+boundary design, and

5617 for the surface design. Pairwise energies were computed using energy functions as

previously described,7 except the polar hydrogen burial term was omitted.

For the core+boundary design, the following parameters were used for each

MSD-MC algorithm combination: MSD-MC/FASTER (no US/CPL), 1 cycle of 2.0 × 104

steps; MSD-MC/FASTER, 1 cycle of 3.5 × 104 steps; MSD-MC/Null, 1 cycle of 5.0 ×

105 steps; MSD-MC/iBR, 1 cycle of 1.0 × 105 steps.

 For the surface design, the following parameters were used: MSD-MC/FASTER

(no US/CPL), 1 cycle of 6.0 × 103 steps; MSD-MC/FASTER, 1 cycle of 1.3 × 104 steps;

MSD-MC/Null, 1 cycle of 5.0 × 105 steps; MSD-MC/iBR, 1 cycle of 6.5 × 104 steps.

The number of MSD-MC steps in each case was chosen to make the average time

per trajectory similar to MSD-FASTER. Equation 4 was used with kT = 300 kcal/mol to

combine the energies from all 60 ensemble members into overall scores.

Design parameters: CaM

 The two CaM structures were prepared and minimized as described above for the

1GB1 structures. Chains B and F were used from the 1CDL structure and chains A and E

were used from the 1MXE structure. The amino acid types Ala, Val, Leu, Ile, Phe, Tyr,

Trp, Met, and Glu were allowed at each of the following designed positions on the CaM

chain: 7, 8, 11, 14, 15, 28, 32, 35, 47, 51, 64, 67, 68, 80, 84, 87, 88, 101, 104, 105, 108,

120, 124, 140, and 141. The 19 positions of the smMLCK peptide in the positive design

state and the 25 positions of the CaMKI peptide in the negative design state were allowed

to vary side-chain conformation but not amino acid identity. Side-chain conformations at

 76

the variable positions were from the Dunbrack backbone-dependent rotamer library with

expansions of ±1 standard deviation about χ1 and χ2. The same energy functions were

used to compute pairwise energies as for the 1GB1 designs described above. For the

multi-state design calculations, all rotamer-backbone and rotamer-rotamer energies on the

negative design target state were capped at 50 kcal/mol. To compute σ during the

optimizations, equation 5 was used with W = 0.04. The single-state design optimizations

were performed as described,9 without the initial elimination of rotamers using DEE.

 The following parameters were used for each MSD-MC algorithm combination:

MSD-MC/FASTER (no US/CPL), 1 cycle of 2.0 × 103 steps; MSD-MC/FASTER, 1

cycle of 6.0 × 103 steps; MSD-MC/Null, 25 cycles of 1.0 × 106 steps; MSD-MC/iBR, 1

cycle of 3.0 × 104 steps.

Acknowledgements

The authors thank Kyle Lassila, Christina Vizcarra, Jennifer Keeffe, and an

anonymous reviewer for their insightful comments. This work was supported by the

Howard Hughes Medical Institute, the Ralph M. Parsons Foundation, an IBM Shared

University Research Grant, and the Defense Advanced Research Projects Agency.

 77

References

1. Dahiyat, B. I.; Mayo, S. L., De novo protein design: Fully automated sequence
selection. Science 1997, 278 (5335), 82–87.

2. Gordon, D. B.; Marshall, S. A.; Mayo, S. L., Energy functions for protein design.
Current Opinion in Structural Biology 1999, 9 (4), 509–513.

3. Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B. L.; Baker, D.,
Design of a novel globular protein fold with atomic-level accuracy. Science 2003, 302
(5649), 1364–1368.

4. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E.,
Equation of State Calculations by Fast Computing Machines. Journal of Chemical
Physics 1953, 21 (6), 1087–1092.

5. Voigt, C. A.; Gordon, D. B.; Mayo, S. L., Trading accuracy for speed: A
quantitative comparison of search algorithms in protein sequence design. Journal of
Molecular Biology 2000, 299 (3), 789–803.

6. Desmet, J.; Demaeyer, M.; Hazes, B.; Lasters, I., The Dead-End Elimination
Theorem and Its Use in Protein Side-Chain Positioning. Nature 1992, 356 (6369), 539–
542.

7. Gordon, D. B.; Hom, G. K.; Mayo, S. L.; Pierce, N. A., Exact rotamer
optimization for protein design. Journal of Computational Chemistry 2003, 24 (2), 232–
243.

8. Desjarlais, J. R.; Handel, T. M., De-Novo Design of the Hydrophobic Cores of
Proteins. Protein Science 1995, 4 (10), 2006–2018.

9. Allen, B. D.; Mayo, S. L., Dramatic performance enhancements for the FASTER
optimization algorithm. Journal of Computational Chemistry 2006, 27 (10), 1071–1075.

10. Desmet, J.; Spriet, J.; Lasters, I., Fast and Accurate Side-Chain Topology and
Energy Refinement (FASTER) as a new method for protein structure optimization.
Proteins-Structure Function and Genetics 2002, 48 (1), 31–43.

11. Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.; Rothlisberger, D.;
Zanghellini, A.; Gallaher, J. L.; Betker, J. L.; Tanaka, F.; Barbas, C. F.; Hilvert, D.;
Houk, K. N.; Stoddard, B. L.; Baker, D., De novo computational design of retro-aldol
enzymes. Science 2008, 319 (5868), 1387–1391.

12. Looger, L. L.; Dwyer, M. A.; Smith, J. J.; Hellinga, H. W., Computational design
of receptor and sensor proteins with novel functions. Nature 2003, 423 (6936), 185–190.

 78

13. Malakauskas, S. M.; Mayo, S. L., Design, structure and stability of a
hyperthermophilic protein variant. Nature Structural Biology 1998, 5 (6), 470–5.

14. Rothlisberger, D.; Khersonsky, O.; Wollacott, A. M.; Jiang, L.; DeChancie, J.;
Betker, J.; Gallaher, J. L.; Althoff, E. A.; Zanghellini, A.; Dym, O.; Albeck, S.; Houk, K.
N.; Tawfik, D. S.; Baker, D., Kemp elimination catalysts by computational enzyme
design. Nature 2008, 453 (7192), 190–U4.

15. Havranek, J. J.; Harbury, P. B., Automated design of specificity in molecular
recognition. Nature Structural Biology 2003, 10 (1), 45–52.

16. Wuthrich, K., Protein structure determination in solution by NMR spectroscopy.
Journal of Biological Chemistry 1990, 265 (36), 22059–22062.

17. Ambroggio, X. I.; Kuhlman, B., Computational design of a single amino acid
sequence that can switch between two distinct protein folds. Journal of the American
Chemical Society 2006, 128 (4), 1154–61.

18. Boas, F. E.; Harbury, P. B., Design of protein-ligand binding based on the
molecular-mechanics energy model. Journal of Molecular Biology 2008, 380 (2), 415–
424.

19. Bolon, D. N.; Grant, R. A.; Baker, T. A.; Sauer, R. T., Specificity versus stability
in computational protein design. Proceedings of the National Academy of Sciences of the
United States of America 2005, 102 (36), 12724–12729.

20. Gronenborn, A. M.; Filpula, D. R.; Essig, N. Z.; Achari, A.; Whitlow, M.;
Wingfield, P. T.; Clore, G. M., A novel, highly stable fold of the immunoglobulin
binding domain of streptococcal protein G. Science 1991, 253 (5020), 657–61.

21. Dahiyat, B. I.; Mayo, S. L., Probing the role of packing specificity in protein
design. Proceedings of the National Academy of Sciences of the United States of America
1997, 94 (19), 10172–10177.

22. O'Neil, K. T.; DeGrado, W. F., How calmodulin binds its targets: sequence
independent recognition of amphiphilic alpha-helices. Trends in Biochemical Sciences
1990, 15 (2), 59–64.

23. Shifman, J. M.; Mayo, S. L., Modulating calmodulin binding specificity through
computational protein design. Journal of Molecular Biology 2002, 323 (3), 417–423.

24. Shifman, J. M.; Mayo, S. L., Exploring the origins of binding specificity through
the computational redesign of calmodulin. Proceedings of the National Academy of
Sciences of the United States of America 2003, 100 (23), 13274–13279.

25. Meador, W. E.; Means, A. R.; Quiocho, F. A., Target enzyme recognition by
calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 1992, 257 (5074),
1251–1255.

 79

26. Clapperton, J. A.; Martin, S. R.; Smerdon, S. J.; Gamblin, S. J.; Bayley, P. M.,
Structure of the complex of calmodulin with the target sequence of calmodulin-dependent
protein kinase I: studies of the kinase activation mechanism. Biochemistry 2002, 41 (50),
14669–14679.

27. Word, J. M.; Lovell, S. C.; Richardson, J. S.; Richardson, D. C., Asparagine and
glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation.
Journal of Molecular Biology 1999, 285 (4), 1735–1747.

28. Mayo, S. L.; Olafson, B. D.; Goddard, W. A., Dreiding — a Generic Force-Field
for Molecular Simulations. Journal of Physical Chemistry 1990, 94 (26), 8897–8909.

29. Gallagher, T.; Alexander, P.; Bryan, P.; Gilliland, G. L., 2 Crystal-Structures of
the B1 Immunoglobulin-Binding Domain of Streptococcal Protein-G and Comparison
with NMR. Biochemistry 1994, 33 (15), 4721–4729.

30. Dunbrack, R. L.; Cohen, F. E., Bayesian statistical analysis of protein side-chain
rotamer preferences. Protein Science 1997, 6 (8), 1661–1681.

