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Abstract

The approximate dynamics of many physical phenomena, including turbulence, can be represented

by dissipative systems of ordinary differential equations. One often turns to numerical integration to

solve them. There is an incompatibility, however, between the answers it can produce (i.e., specific

solution trajectories) and the questions one might wish to ask (e.g., what behavior would be typical

in the laboratory?) To determine its outcome, numerical integration requires more detailed initial

conditions than a laboratory could normally provide. In place of initial conditions, experiments

stipulate how tests should be carried out: only under statistically stationary conditions, for example,

or only during asymptotic approach to a final state. Stipulations such as these, rather than initial

conditions, are what determine outcomes in the laboratory.

This theoretical study examines whether the points of view can be reconciled: What is the

relationship between one’s statistical stipulations for how an experiment should be carried out—

stationarity or asymptotic approach—and the expected results? How might those results be deter-

mined without invoking initial conditions explicitly?

To answer these questions, stationarity and asymptotic approach conditions are analyzed in

detail. Each condition is treated as a statistical constraint on the system—a restriction on the prob-

ability density of states that might be occupied when measurements take place. For stationarity, this

reasoning leads to a singular, invariant probability density which is already familiar from dynamical

systems theory. For asymptotic approach, it leads to a new, more regular probability density field. A

conjecture regarding what appears to be a limit relationship between the two densities is presented.

By making use of the new probability densities, one can derive output statistics directly, avoiding

the need to create or manipulate initial data, and thereby avoiding the conceptual incompatibility



vi

mentioned above. This approach also provides a clean way to derive reduced-order models, complete

with local and global error estimates, as well as a way to compare existing reduced-order models

objectively.

The new approach is explored in the context of five separate test problems: a trivial one-

dimensional linear system, a damped unforced linear oscillator in two dimensions, the isothermal

Rayleigh-Plesset equation, Lorenz’s equations, and the Stokes limit of Burgers’ equation in one space

dimension. In each case, various output statistics are deduced without recourse to initial conditions.

Further, reduced-order models are constructed for asymptotic approach of the damped unforced lin-

ear oscillator, the isothermal Rayleigh-Plesset system, and Lorenz’s equations, and for stationarity

of Lorenz’s equations.
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Chapter 1

Introduction

1.1 Context of the present work

This study concerns finite systems of ordinary differential equations of the following form:

dY
dt

= f (Y) (1.1)

Equations such as (1.1) arise often in dynamics, where they describe how a system changes over

time. Both sides of the equations are N -component vectors. The vector f(Y), for example, has

components f1(Y), f2(Y), and so on, up to fN (Y). Notationally, Y is shorthand for Y(Y0, t).

Components of the phase vector1 Y(Y0, t) collectively represent the state of the system at time

t. In a simple mass-spring system, for example, Y(Y0, t) might have two components: position and

velocity of the mass. The space of (instantaneous) phase vectors of (1.1) is called its phase space.

Over time, Y(Y0, t) traces out a trajectory through phase space.

Equation (1.1) is accompanied by an initial condition vector Y0 specifying the state of the system

at time zero. That is, Yi (Y0, 0) = Y0i, for all i = 1 . . . N . The initial condition marks the starting

point of the trajectory through phase space.

The right-hand side of (1.1) is a function f(Y) that expresses how dY/dt can be determined from

Y. We assume that f(Y) is a smooth function, which is often a reasonable assumption for physical

systems. In the mass-spring example, f(Y) would relate the rate of change of position to velocity,

1Some authors use the term “state vector” rather than “phase vector,” but they have the same meaning here.
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and of velocity to the spring force.

We also assume that equation (1.1) admits at least one compact trapping region Ω, i.e., a region of

phase space that trajectories enter but do not leave. This is a strong assumption, but it is sometimes

justified when f(Y) represents a physical system whose total energy remains bounded. For example,

in a damped mass-spring system, any circle of constant energy encloses a trapping region.

Finally, we assume that the phase-space divergence of f(Y),

∇ · f =
∂fi

∂Yi
(1.2)

(summation implied on repeated indices), is negative2 and bounded throughout Ω. This is also a

strong assumption—dissipative systems tend to lose energy over time. Unforced physical systems

are typically dissipative, but if f(Y) includes external forcing, it can make (1.2) positive over parts

of phase space.

Given the initial condition vector Y0, equation (1.1) can be solved for Y(Y0, t) by integrating

forward in time. If f(Y) is sufficiently simple, then the integration can be performed analytically;

if not, one must resort to numerics. Numeric integration produces an approximation to Y(Y0, t)

given a specific starting point Y0. Thus, given a set of ordinary differential equations like (1.1)

and a specific starting point Y0, it is straightforward conceptually—if not always practically—to

integrate out the solution trajectory Y(Y0, t).

However, questions about (1.1) do not often seek a specific trajectory. Instead, they ask for

generalizations applicable to broad classes of initial conditions: “How does the average speed of the

mass in a mass-spring system relate to its peak oscillation amplitude?” “How does the flow rate of

water through a pipe vary with pressure?” Or, “What is the average aerodynamic drag on a truck

body?”

Such questions are accompanied not by a specific Y0, but by stipulations about how the test

should be conducted. Perhaps initial transients should be allowed to decay before recording measure-
2Such systems are usually called dissipative in dynamical systems literature. The case ∇ · f = 0 is of particular

importance to Hamiltonian problems.
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ments, for example; perhaps measurements should only be recorded under statistically stationary

conditions. Stipulations of this kind, which must hold from t = 0 onward, will be called experimental

conditions here. They are not always stated explicitly.

There is evidently a mismatch between the questions asked of (1.1) and the answers numerical

integration can provide. Numerical integration needs initial conditions, not experimental conditions.

The upshot is that there are whole classes of problems for which representative initial conditions

must be manufactured artificially. A typical solution procedure might be:

1. make up a pre-initial condition (call it Y00) at random, where experimental conditions might
not yet be satisfied,

2. integrate numerically until experimental conditions are satisfied,

3. label the phase vector at that point Y0 and set t = 0,

4. continue to integrate numerically, constructing Y(Y0, t), and

5. repeat again and again, accumulating averages and confidence.

(Repetition can sometimes be avoided by taking long time averages instead,3 but the distinction

is immaterial here.) A well-known problem that requires this kind of treatment, and that will serve

to motivate our approach, is the numerical simulation of turbulent flow.

1.2 Motivation in turbulence

When applied to a detailed turbulent flow, numerical integration is known as direct numerical simu-

lation, or DNS. DNS begins with a discretization of the Navier-Stokes equations, including boundary

conditions, into form (1.1). This means the velocity field u(x, t) is written as an inner product of

Y(Y0, t) with a vector of basis functions φ(x):

u(x, t) =
N∑

i=1

Yi(Y0, t)φi(x) (1.3)

3The assumption that time and ensemble averages are equivalent is called the ergodic hypothesis, and it can be
rigorously justified in some cases, most famously by Birkhoff (1931) for certain systems satisfying ∇ · f = 0.
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For a typical discretization, the right-hand side f(Y) has quadratic and linear parts; the quadratic

part comes from the convection and pressure gradient terms of Navier-Stokes, the linear part from

the viscous decay term. The discretization must be fine enough to capture all relevant scales, which

tends to inflate N . Kaneda et al. (2003) recently studied turbulence in a 40963 periodic box on the

Earth Simulator computing system, a feat requiring N of order 1011. For a review of turbulent DNS,

see Moin and Mahesh (1998).

The initial condition Y0 of a turbulent DNS must describe the complete flowfield at t = 0. The

fine details of Y0, however, are rarely of interest. Apart from the constraints imposed by experimen-

tal conditions, Y0 may be assigned any reasonable values. Choosing Y0 values typically involves

starting from an even earlier point (Y00, mentioned above), whose components are completely ar-

bitrary, and integrating until transients die out (i.e., until experimental conditions hold). The state

that remains at the end of this start-up process becomes Y0.

It may be the most trusted technique in turbulence prediction, but DNS seems highly inefficient

when regarded as a black box (Figure 1.1, top). DNS begins by combining experimental conditions

(stationarity or asymptotic approach behavior during the observation period) with a great deal of

arbitrary seed data (the components of Y00, sometimes terabytes in size) to create one very large

vector (Y0). This vector is processed in a computationally expensive way (DNS integration), only to

be distilled back down onto a small number of degrees of freedom for the outputs (average spectra,

correlations, force coefficients, and so on) that—if the initialization was done properly—should be

statistically independent of Y00.

One cannot help but wonder whether the arbitrary Y00 data could be eliminated entirely. Might

it be possible to obtain the same outputs without actually constructing and manipulating Y0?

Rather than using certain experimental conditions as a basis for choosing Y0, could the conditions

themselves be taken as inputs, as illustrated in Figure 1.1, bottom? If such a procedure were possible,

it would answer scientific questions more directly than numerical integration can. Moreover, the size

of inputs would be far smaller (no Y00 data), suggesting the possibility of reduced computational

effort.
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data
Y00

arbitrary start-
up

process

out-
puts

Typical DNS procedure

alternative
procedure ?

Y0 DNS

conditions

experimental

average

Figure 1.1: Top: Black-box view of DNS. Typically, a great deal of random, arbitrary Y00 data is
combined with an experimental condition (such as stationarity), leading to outputs that should be
independent of the Y00 data. Bottom: Might some alternative procedure allow the same outputs
to be calculated without making use of ultimately irrelevant data?

The question implied in the previous paragraph is this: What is the relationship between ex-

perimental conditions and output statistics? Put another way, if the measurement statistics of a

system show stationarity or asymptotic approach, what other properties must they show as well?

Answering that question will be the primary goal of this study.

1.3 Two experimental conditions

Two types of experimental conditions, mentioned in passing above, stand out in the turbulence DNS

literature. The first is stationarity. In this context, stationarity means that Y(Y0, t) is a statistically

stationary process during the observation period, which begins at t = 0. Common examples include

forced turbulence in a periodic box (e.g., Kaneda et al. (2003)) and forced channel flow (e.g., Moser

et al. (1999)).

The second type of experimental condition is asymptotic approach. Less well defined than

stationarity, asymptotic approach is correspondingly less well represented in the turbulence DNS

literature. It is a state of steady decay to some final limit: after initial transients have died away,

but while elapsed time still remains finite. The classic problem of unforced turbulence in a periodic

box is perhaps the best-known example. Its asymptotic approach begins some time after stirring

ends, and it continues indefinitely.
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On the other hand, the limit point of asymptotic approach need not be motionless; for forced

problems, it might be a state of dynamic equilibrium. For example, consider the acceleration of

fluid in a pipe after impulsively pressurizing one end. There is an initial transient, followed by a

long, gradual approach to statistically stationary flow. Asymptotic approach might thus describe

the process by which a stationary state is achieved.

This study’s analysis is based on the following observation: Both stationarity and asymptotic ap-

proach conditions ultimately amount to constraints on which parts of phase space may be occupied

during measurement. Regions of phase space that correspond to the presence of strong initial tran-

sients, for example, should neither be occupied during stationarity nor during asymptotic approach.

Stationary conditions exclude regions of gradual, directed change as well.

In the laboratory, such constraints are imposed by selection. An apparatus (e.g., a wind tunnel)

is specifically designed to produce, for example, stationary conditions. It makes use of flow straight-

eners, screens, smooth expansions and contractions, and so on; the net effect of these choices is to

enforce stationarity, thereby limiting attention to a certain subset of the phase space. Timing also

plays a part; data taken before stationarity is achieved, or after it ends (surely there is an “off”

switch!) are summarily discarded.

For analysis, probabilities will be assigned to each point in phase space according to which

experimental condition is assumed. To understand the connection to output statistics, however, it

is first necessary to review the concept of ensembles and ensemble averaging.

1.4 A word about ensembles

It is customary to describe turbulent behavior in terms of averages over time, space, or most gen-

erally,4 ensemble. In the laboratory, such averages are sometimes repeatable even when other flow

features (e.g., individual eddies) are not. Stationarity and asymptotic approach are both examples

of average properties.
4Both temporal and spatial averaging are special cases of ensemble averaging. The mean over an ensemble of

temporally shifted flows (that is, each ensemble member has the form u(x, t− τ) for some value of τ) is equivalent to
a time average; that over an ensemble of spatially shifted flows is similarly a space average.
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To construct an ensemble average, repeat an experiment governed by (1.1) many times, each

time starting from a different Y0. The distribution of Y0 points reflects uncertainties about the

initial condition. If there is no uncertainty, then the density is Dirac’s δ, a distribution whose

central moments (i.e., moments taken about the mean) are all zero. More uncertainty means larger-

magnitude central moments. The arithmetic mean of all measurements, taken over all realizations

and weighted by their frequencies of occurrence, is the ensemble average.

If the initial distribution of Y0 points is assumed to be continuous and differentiable, then it is

possible to describe its motion with a partial differential equation. The relevant theory is due to

Liouville. One might reasonably hope to apply this technique to finding averages directly (that is,

taking averages over variations in Y00 seed data), but when f(Y) describes such chaotic behavior

as turbulence, this approach tends to fare poorly. Arbitrarily small details of the initial distribution

grow rapidly in importance, overwhelming whatever averages were originally of interest.

Another line of attack is needed—one that is not based on taking averages of the governing

equations.

1.5 The sample point density

1.5.1 Definition

Let the sample point density ρ(y) be a probability density function on y ∈ Ω. As a probability

density function, it has the normalization property

∫
Ω

ρ(y) dV = 1. (1.4)

and is strictly nonnegative (ρ(y) ≥ 0).

The expected value of any observable function ϕ(y) with respect to ρ(y) is

〈ϕ(y)〉 =
∫

Ω

ϕ(y)ρ(y) dV (1.5)
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The intent of this definition is as follows.

1.5.2 Intent

Consider an experiment on a system obeying (1.1). During each run of the experiment, Y(Y0, t)

begins at some initial condition and proceeds forward in time, integrating f(y) along the way.

Meanwhile, measurements are recorded for one or more observables ϕ(y). That is, during each run,

every ϕ(y) is evaluated at one or more Y. Finally, the recorded values are analyzed statistically,

yielding the desired outputs: means, variances, correlations, and so forth.

Generally speaking—particularly for the kinds of problems that motivate this study—the scientist

conducting the experiment does not have a full view of the phase space. That is, the number of

independent measured observables is usually smaller than N , the number of degrees of freedom in Y.

(Numerical experiments are an obvious exception, but the reasoning below still applies.) Suppose,

then, that the experiment is also monitored by an omnicient observer having a complete and accurate

view of phase space. Further suppose that, each time the scientist records a measurement, the

omnicient observer places a mark, a sample point, in phase space at the instantaneous location of

Y(Y0, t). Apart from measurement error, the omnicient observer can deduce the scientist’s recorded

values by evaluating each ϕ(y) there.

Over the course of the experiment, the omnicient observer accumulates a cloud of sample points

in phase space. The cloud includes points recorded at different times and even during different runs.

Averages of the measurement data—that is, output statistics—are, simply, moments of the sample

point cloud.

The sample point density ρ(y) is intended to represent the (continuum) density by which the

omniscient observer’s sample point cloud is distributed. A conjecture has been implied: that the

sample points are, in fact, distributed according to an underlying density function. The rationale

is that it would otherwise be impossible to reproduce certain experimental results, and results that

cannot be replicated fall outside our domain of interest.

Working with a sample point density will be easier than trying to reason about clouds of sample
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points. They are related in an obvious way: The mean of the scientist’s measurements for any

observable should approach the corresponding moment of ρ(y) as the number of samples increases.

1.5.3 Historical note

The preceeding definition and motivation are inspired by a number of ideas in statistical thermody-

namics, particularly Boltzmann’s ensembles and the Bayesian perspective of Jaynes (1989).

1.6 Problem statement

Cast in terms of ρ(y), the principal question of this thesis (first introduced at the end of Section

1.2) is: What do experimental conditions such as stationarity and asymptotic approach imply about

the sample point density?

The answer, as we shall see in Chapters 2 and 3, is that they are assertions regarding broad

classes of output statistics. In each case, equations for ρ(y) can be derived by stipulating that those

assertions should hold. The approach is similar to a maximum entropy formulation, except that

rather than constructing a probability density function by maximizing entropy, we will construct it

by enforcing stationarity or asymptotic approach.

A significant second question is: What does the sample point density, thus determined, imply

about statistics and reduced-order behavior?

Equation (1.5) gives the beginning of an answer to this question, which will be addressed in

Chapter 4 and throughout the examples.

1.7 The expected values of time derivatives

Because ρ(y) has no built-in time dependence, it is not immediately obvious how to apply it to such

time-dependent statistical quantities as stationarity or asymptotic approach. In this section we use

ρ(y) to compute the expected value of time derivatives, a key prerequisite.
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Recall that Y(Y0, t) represents the state of a system evolving from a starting point Y0 at time

zero. The value that would be measured for observable ϕ(y) at time t is ϕ(Y(Y0, t)).

Now suppose that, during the course of experiments, in addition to measuring ϕ(Y(Y0, t)) at

each test point, one also measured ∂ϕ/∂t|Y(Y0,t), the rate at which ϕ(Y(Y0, t)) changes along its

trajectory (fixed Y0). How can the average value of ∂ϕ/∂t|Y(Y0,t) be determined from ρ(y)?

By the chain rule,

∂ϕ(Y(Y0, t))
∂t

=
∂ϕ

∂yi

∣∣∣∣
Y(Y0,t)

fi(Y(Y0, t)) (1.6)

Thus the phase function associated with the time derivative of ϕ(Y(Y0, t)), with Y0 held constant,

is ∂ϕ
∂yi

∣∣∣
y

fi(y). Substituting it into (1.5),

〈
∂ϕ(Y(Y0, t))

∂t

〉
=
〈

fi(y)
∂ϕ(y)
∂yi

〉
=
∫

Ω

ρ(y)fi(y)
∂ϕ

∂yi

∣∣∣∣
y

dV (1.7)

Using the product rule, the integrand on the right-hand side of (1.7) is ∂(fiρϕ)/∂yi−ϕ∂(ρfi)/∂yi

evaluated at y. Substituting this difference into (1.7) and applying the divergence theorem to the

first term on the right-hand side leaves

〈
∂ϕ(Y(Y0, t))

∂t

〉
=
∫

∂Ω

ϕ(y) (ρf · n̂) dS −
∫

Ω

ϕ(y) (∇ · (ρf)) dV (1.8)

where

• ∂Ω is the boundary of Ω

• dS is a differential unit of area on ∂Ω

• n̂ is the unit outward normal vector to ∂Ω at y

• ρf · n̂ is ρ(y)fi(y)n̂i(y)

• ∇ · ρf is ∂
∂yi

(ρ(y)fi(y))

In order to invoke the divergence theorem for (1.8), it was necessary to assume that the product

ρϕf is at least C1 over Ω; there are situations below for which that assumption does not hold.
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While it is not essential for the discussion that follows, it should be noted that there is a con-

nection between (1.8) and Liouville’s equation for the conservation of probability mass.5

Let R(y, τ − t) be an auxiliary time-dependent probability density function on Ω satisfying

R(y, 0) = ρ(y). That is, R(y, τ − t) is a time-evolving (in τ) PDF that, at the instant τ = t,

takes the value ρ(y). Further suppose R obeys Liouville’s equation, which governs the convection

of probability mass through phase space:

∂R

∂τ
+

∂

∂yi
(fiR) = 0 (1.9)

Then ∂R/∂τ |y,τ=t is − ∂(ρfi)/∂yi|y, which matches the −∇ · (ρf) expression in the volume

integral of (1.8). Thus if ρ(y) vanishes on ∂Ω, or if Ω is unbounded and ρ(y) decays rapidly, then

Liouville’s equation provides an alternative way to compute and interpret time-dependent statistics.

1.8 Overview of the thesis

In Chapters 2 and 3, it is shown that the two experimental conditions, stationarity and asymp-

totic approach, each lead to a different constraint for ρ(y) in phase space. Stationarity leads to a

singular ρstationary(y), while asymptotic approach leads to a linear partial differential equation for

ρasymptoticapproach(y), and the former appears to be a long-time limit of the latter. General solutions

are found and their qualitative properties are discussed. Numerical solution and approximation

techniques are also introduced.

Chapter 4 describes a useful application for the theory: constructing reduced-order models. It

also shows how existing reduced-order models can be understood as sets of assumptions about ρ(y).

Over the next several chapters, multiple worked examples of the technique are presented. The

examples illustrate the process of defining the problem, finding situationally appropriate ρ(y) func-

tions, and computing useful outputs. Chapter 5 introduces the technique using the trivial system

Y ′ = −Y . Chapter 6 examines a simple damped mass-spring system in two dimensions. In Chapter
5Some authors reserve the term “Liouville’s equation” for when f(y) is Hamiltonian; we are using it more liberally

here.
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7, the technique is applied to gas bubbles obeying the isothermal Rayleigh-Plesset equation. Then,

in Chapter 8, we consider Lorenz’s dynamical system in three dimensions, compute appropriate

density functions, and use them to construct reduced-order models. Chapter 9 presents Burgers’

equation, where we predict the energy spectrum in the Stokes limit analytically.
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Chapter 2

Theory of stationarity

Two experimental conditions, stationarity and asymptotic approach, were introduced in Chapter 1.

In this chapter, the first of these conditions is translated into specific, quantitative constraints on

ρ(y). Analogous constraints for asymptotic approach are derived in Chapter 3. For clarity, when

ρ(y) refers to a stationary process, it will sometimes be labeled ρstationarity(y).

For motivation, we begin with a näıve translation of statistical stationarity into partial differential

equations on ρ(y). Initial attempts to solve those equations will fail, but they will serve as a natural

introduction to established results from dynamical systems theory.

2.1 Stationarity

A stationary process is one whose probability density is time-invariant. For continuous ρ(y), this is

equivalent (see Eq. 2.4, recall Liouville’s theorem) to requiring that

〈
∂ϕ (Y(Y0, t))

∂t

〉
= 0 (2.1)

for all continuously differentiable phase functions ϕ(y). Substituting from (1.8), equation (2.1)

requires that ∫
∂Ω

ϕ(y) (ρf · n̂) dS −
∫

Ω

ϕ(y) (∇ · (ρf)) dV = 0 (2.2)

If equation (2.2) holds for all continuously differentiable ϕ(y), then it holds in particular for
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those that are zero everywhere on ∂Ω. Thus one necessary requirement for stationarity is that:

∫
Ω

ϕ(y) (∇ · (ρf)) dV = 0 (2.3)

for all continuously differentiable ϕ(y) taking the value zero on ∂Ω. It follows from a basic lemma

of variational calculus (see e.g., Weinstock (1974)) that this implies that

∂

∂yi
(fi(y)ρ(y)) = 0 ∀y ∈ Ω (2.4)

Substituting result (2.4) back into equation (2.2) leaves only the boundary term:

∫
∂Ω

ϕ(y) (ρf · n̂) dS = 0 (2.5)

Functions that are continuously differentiable over Ω are continuously differentiable over the smooth

surface ∂Ω as well. Applying the same lemma there,

ρ(y)fi(y)n̂i(y) = 0 ∀y ∈ ∂Ω (2.6)

Taken together, necessary conditions for stationarity (in the sense of 2.1) are (2.4) and (2.6).

Moreover, substituting them into (1.8) gives exactly zero for any ϕ(y), so the conditions are sufficient

as well.

2.2 Näıve stationarity solution

A näıve attempt will now be made to solve the equations derived in the previous section. The

attempt will fail, but it will do so in an instructive way.

Equation (2.4) is a first-order linear partial differential equation for ρ(y); (2.6) is its boundary

condition. We treat the latter first, as its implications are immediate. Equation (2.6) stipulates that

one or more of the following conditions must hold for all y ∈ ∂Ω:
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1. ρ(y) = 0

2. f(y) = 0

3. f(y) is orthogonal to n̂(y)

We shall return to these shortly.

A general solution to (2.4) may be constructed by the method of characteristics. Characteristic

curves of (2.4), denoted here as Z(Z0, s), coincide exactly with solution trajectories of (1.1), the

original system of ordinary differential equations. That is, they satisfy

∂Zi

∂s
= fi (Z (Z0, s)) (2.7)

with Zi(Z0, 0) = Z0i, an initial condition given at any point along the trajectory. The time-like

characteristic parameter has been denoted s rather than t to distinguish it from physical time, but

insofar as mathematics is concerned, the two are identical.

Along characteristic curves (2.7), equation (2.4) for ρ(y) becomes

dρ

ds
+ (∇ · f) ρ = 0 (2.8)

for ρ(Z(Z0, s)) with Z0 held constant.

Equation (2.8) has the analytical solution

ρ(Z(Z0, s)) = ρ(Z0) exp
(
−
∫ s

0

∇ · f |Z(Z0,s′) ds′
)

(2.9)

When ∇ · f is a constant, (2.9) simplifies to

ρ(Z(Z0, s)) = ρ(Z0) exp (− (∇ · f) s) (2.10)

To understand solutions (2.9) and (2.10) in the context of boundary conditions and the ρ(y)

normalization requirement (1.4), it is helpful to express Ω as the direct sum of two subsets. The
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first, R ⊂ Ω, consists only of points y that are not accessible in finite time from any trajectory

crossing ∂Ω. The second, Rc, is the complement to R. That is, for any y ∈ Rc, there is one

trajectory that crosses ∂Ω and reaches y in a finite period of time.

Conceptually, R is where the mathematically interesting behavior of f(y) occurs. It is the set on

which stationary points, periodic orbits, and strange attractors are located. In dynamical systems

terminology, R is the union of all chain-recurrent sets of f(y). For dissipative problems, the Lebesgue

measure of R is zero—it is not empty, but it accounts for a vanishingly small fraction of the total

volume of Ω (proof in Appendix C).

For all y ∈ Rc, there is a trajectory that reaches y from ∂Ω after finite time (definition of Rc.

Because Ω was assumed to be a trapping region, the trajectory crosses ∂Ω only once. Thus for all

y ∈ Rc, one can place Z0 on ∂Ω. The inner product f · n̂ cannot be zero where the trajectory crosses

∂Ω (for it to cross the boundary requires a nonzero normal velocity relative to the boundary), so by

(2.6), ρ(Z0) = 0 there. It follows from (2.9) that stationarity requires ρ(y) = 0 over the entirety of

Rc, and thus over Ω by continuity.

2.3 Stationarity solution is not smooth

Recall, however, that ρ(y) must still satisfy the normalization requirement (1.4). Obviously, the

trivial solution ρ(y) = 0 does not suffice. It follows that there is no solution for ρstationarity(y) on

the space of C1 functions on Ω. Thus if a stationarity solution exists, it violates the assumption of

continuous differentiability.

In fact, invariant probability measures do exist for our situation, but they are neither continuous

nor differentiable; they are singular on R and zero everywhere else. Such measures are of significant

interest in ergodic theory and are discussed at length below.



17

2.4 Background from statistical thermodynamics

By the middle of the nineteenth century, understanding of heat transfer, though largely phenomeno-

logical, had reached a level of engineering maturity. Using only caloric theory and intuition, Carnot

had deduced fundamental limits on the efficiency of heat engines. Gases behaved predictably under

changes in temperature, pressure, and volume.

What remained a mystery was the nature of heat itself. Early theories, which treated it as a

kind of fluid, did not adequately describe such phenomena as friction heating. It was the subsequent

discovery of statistical thermodynamics, with work by Boltzmann, Gibbs, Clausius, Maxwell, and

many others, that finally identified heat as a statistical property of small-scale motion.

In statistical thermodynamics, a macroscopic system is described by the dynamics of its molecules,

leading to a system of ordinary differential equations—in the form of (1.1)—having a very very large

N . The components of Y specify the locations and momenta of all particles, and f describes their

dynamics. The initial condition is unknown, and just as for turbulence, its details are generally

neither knowable nor of practical importance.

The key to making the description manageable is restricting attention to certain cases by taking

clues from the macroscopic world. If the system is assumed to be closed—that is, configured so

that no energy or matter can flow in our out—then whatever the enormously complicated N dimen-

sional behavior, one can rest assured that total energy will be conserved. Such a system is called

Hamiltonian, and it can always be expressed with canonical variables for which ∇ · f = 0.

Boltzmann postulated that over a sufficiently long period of time, such a thermodynamic system

in equilibrium would visit every point in phase space having its same initial energy1 (his H theo-

rem). The idea was initially quite controversial; it took decades for a satisfactory proof (Birkhoff,

1931) to emerge. The approach suggests constructing a probability density that is uniform on a

surface of constant energy—a Liouville measure—that can be used to derive such important re-

sults as the equipartition theorem. The distribution may also be found by maximizing entropy,

or −ρ log(ρ), subject to energy constraints. This approach eventually led to the study of informa-

1This property is now understood to hold almost everywhere rather than everywhere.
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tion and information-theoretic entropy (Shannon, 1948), then to the maximum entropy principle of

Jaynes (1957), whose Bayesian point of view strongly influenced this study.

As the subsequent success of statistical thermodynamics became better established—one might

now say, given the weight of experimental evidence, incontrovertibly so—interest has turned to

dissipative (∇ · f < 0) and nonequilibrium situations. Such situations admit more complicated

dynamical behavior, but some of the same ideas can be applied.

We are certainly not the first to contemplate applying ergodic theory to turbulent flow, but it

is an exceptionally hard problem. As a starting point, the reader is referred to e.g., Gallavotti and

Cohen (1995), van Veen and Kida (2006), and Temam (1991).

2.5 SRB: invariant measures for dissipative systems

The first step for making progress on dissipative systems is to find a replacement for the Liouville

measure. Sinai (1972) found an invariant Gibbs measure for a special class of dissipative systems

having strange attractors. His ideas were further refined and extended by Bowen and Ruelle (1975)

and Ruelle (1976), leading to what has become known as the SRB measure, an invariant probability

measure µSRB that is singular on the attractor (inR). The most important property of SRB measures

is that they are physical. A physical measure µ is one under which time averages approaches phase

averages:

lim
T→∞

1
T

∫ T

0

ϕ (Y(Y0, t)) dt =
∫

ϕ dµ (2.11)

and for which Y0 can be anywhere on a set of positive Lebesgue measure. Some authors refer to

(2.11) as the “SRB property.”

Thus SRB measures allow ergodic theory to be extended to certain dissipative systems with

strange attractors. Previously, even though such systems were sometimes described in an ergodic

way—comparing, for example, long-time averages of a simulation with those of an experiment—

they were technically outside the realm of ergodic theory, whose foundations rested with certain

Hamiltonian systems in dynamic equilibrium.
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The question of precisely which systems have SRB measures remains open. They were originally

derived for a specific class of systems having a special mathematical structure, but over time, they

have been proven to exist for more general problems as well (Young, 2002), (Gallavotti and Cohen,

1995). Ruelle (2004) gives a whimsical discussion.

If a system is known to have an SRB measure, then one may find it by constructing the appro-

priate invariant measure of the system—a measure relative to which the motion induced by f(y) is

an identity. Details of this process are the domain of Perron-Frobenius theory, which is outside our

intended scope; it involves finding the eigensystem of the transfer operator associated with f . The

Ruelle-Perron-Frobenius theorem makes certain guarantees regarding the eigenvectors that allow it

to function as a probability measure.

Approximate numerical techniques for finding such measures must do so in a discrete way. Dell-

nitz and Junge (1999) divide phase space into small boxes and express the transfer operator as a

discrete matrix. Eigenvectors corresponding to eigenvalues of magnitude one are invariant measures;

those corresponding to lesser eigenvalues still close to unity are called almost-invariant and represent

states that tend to be occupied continuously for a long period of time (but not indefinitely).

2.6 Connection to stationarity density

As we are also considering probability measures in phase space and invariance (in the form of

statistical stationarity), it seems natural to expect a connection. In fact, there seem to be several.

First, in Section 2.3, it was shown that are no C1 probability density functions that satisfy the

requirement for stationarity, given by (2.1). However, a singular, invariant measure like µSRB(y),

when it exists, does satisfy that requirement.

Perron-Frobenius theory may be used to find µSRB when it exists, but the general stationarity

solution (2.9) suggests an alternative way to construct it: as a limit function. Let us suppose that

the conditions of Chapter 1 hold, and that furthermore,

ϕ̂(Y0) = lim
T→∞

1
T

∫ T

0

ϕ(Y(Y0, t)) dt (2.12)



20

exists and is independent of Y0 ∈ Ω. (This is a strong assumption, of course.)

Let the density function ρT (y), be defined along characteristics as

ρT (Z(Z0, s)) =


σT (Z0)

T exp
(
−
∫ T

0
∇ · f |Z(Z0,s′) ds′

)
s < T

0 s > T

(2.13)

where σT (Z0) : Z0 ∈ ∂Ω is an arbitrary real-valued nonnegative integrable function on ∂Ω.

For all finite T , one may compute
∫
Ω

ϕ(y) ρT (y) dV by integrating overRc rather than Ω, because

the set on which they differ has zero measure, and (2.13) is zero there. Thus the integration may be

carried out over streamtubes as described in Appendix A. That is,

∫
Ω

ϕ(y) ρT (y) dV

=
∫
Rc

ϕ(y) ρT (y) dV

=
∫

∂Ω

∫ T

0

ϕ(Z(Z0, s))ρT (Z(Z0, s))J (Z0, s) ds dS

=
∫

∂Ω

− f · n̂|Z0
σT (Z0)

(
1
T

∫ T

0

ϕ(Z(Z0, s)) ds

)
dS

(2.14)

Taking the limit as T →∞ and making use of assumption (2.12), the term in parentheses approaches

ϕ̂(Z0), which exists and is independent of Z0 by assumption. Thus

∫
Ω

ϕ(y) ρT (y) dV = ϕ̂

∫
∂Ω

− f · n̂|Z0
σT (Z0) dS (2.15)

Now suppose boundary values of σT (Z0) are normalized so that

∫
∂Ω

− f · n̂|Z0
σT (Z0) dS = 1 (2.16)

Then the SRB property (2.11) is satisfied.

Under the aforementioned assumptions regarding f and normalization requirement (2.16), one
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may therefore take

ρstationary(Z(Z0, s)) = lim
T→∞


σT (Z0)

T exp
(
−
∫ T

0
∇ · f |Z(Z0,s′) ds′

)
s < T

0 s > T

(2.17)

This expression is singular arbitrarily close to R and zero everywhere else. So long as (2.16) holds,

σT (Z0) may take any nonnegative values on the boundary. Notice too that expression (2.17) is

defined even when (2.12) does not hold, although in that case its moments might not be independent

of σT (z0) (and might not correspond to any particular time average).

At a point attractor, (2.17) approaches a Dirac delta function. At periodic attractors, it is

infinite on the attractor and zero everywhere else. On strange attractors, it is an SRB measure.

Henceforth, expression (2.17) will be taken as the stationarity density, though one should bear in

mind that there may be easier ways to construct it and that, owing to the arbitrary nature of σT (Z0),

moments derived from it will not necessarily be unique.

Because (2.17) is zero away from R, and R does not intersect ∂Ω (by definition, it contains no

points accessible from the boundary in finite time, thus in particular it contains no points accessible

from the boundary in zero time), moments computed from the limit function (2.17) do not change

under continuous deformation of ∂Ω. So long as Ω remains a trapping region, it may be translated

anywhere in the basin of attraction. In this sense, for the stationary density, the answer does not

depend on the choice of trapping region.

2.7 Remark: stationarity in the laboratory

Ultimately, one may conclude from the previous discussion that if an experiment is conducted under

perfectly stationary conditions, then its sample point density ρstationary(y) must be singular on R,

a set of negligible volume inside Ω. Indeed, such a density might describe the sample points of a

system that has achieved perfect stationarity after running an infinitely long period of time.

Practical considerations impose another constraint, however, that did not enter into the analysis
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above and that leads to a logical problem with the previous line of reasoning: no experiment runs

indefinitely. Thus region R is never entered from outside during a real experiment. Furthermore,

no experiment begins inside R either: Assuming that the process that creates the initial condition

is continuous, its probability of being inside any particular set of measure zero is nil.

It follows that the probability of finding a laboratory system inside R, or Pr(y ∈ R), should

be zero, not one as would be concluded from ρstationary(y). Conversely, the probability of finding a

laboratory system in Rc should be one, not zero. The apparent inconsistency can be resolved by

noting that ρ(y) specifically represents the density of sample points—states occupied by the system

while data are being recorded. Thus laboratory systems may approach stationarity, but they never

actually achieve it.2 Their expected rates of change never reach zero, and they remain in a state

of asymptotic approach forever. (For sufficiently long-running experiments, ρstationary(y) still might

give an excellent approximation, of course.)

This topic will be revisited in section 3.7, where long-time limits of asymptotic approach are

compared to stationarity.

2Dissipative systems never achieve stationarity in the laboratory. No such claim is being made for nondissipative
systems, of course.
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Chapter 3

Theory of asymptotic approach

Two experimental conditions, stationarity and asymptotic approach, were introduced in Chapter 1.

In this chapter, the second of these conditions is translated into specific, quantitative constraints on

ρ(y). Analogous constraints for stationarity were derived in Chapter 2. For clarity, when ρ(y) refers

to an experiment involving asymptotic approach, it will sometimes be labeled ρasymptoticapproach(y).

Some of the chapter’s more lengthy derivations appear in the appendices.

3.1 Asymptotic approach

While stationarity is the most common criterion for selecting Y0, there are important nonstationary

problems as well. The first real turbulent DNS, due to Orszag and Patterson (1972), simulates the

canonical problem of unforced turbulent flow decaying in a periodic box. Its only truly stationary

state, u(x, t) = 0, is trivial. Moreover, even nominally stationary conditions—when produced in a

laboratory, numerical or otherwise—might be more accurately characterized as late-time asymptotic

approach.

Unfortunately, where stationarity is a well-defined mathematical concept, “asymptotic approach”

is vague. There is no definitive test for it. After beginning from a suitably random Y00, Orszag and

Patterson (1972) wait until small scales decorrelate. Hughes et al. (2001) also start from a physically

realizable random state, but report data from nondimensional time 4.16 onward, including spectra

at nondimensional time 6.47, by which point several statistics appear to be decaying smoothly. The

choices are qualitatively reasonable, but the justification does not appear to be quantitative.
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Because there is no single, universally-agreed-upon criterion to identify the onset of asymp-

totic approach, there is more than one logical choice for the conditions on 〈∂ϕ(Y(Y0, t))/∂t〉, and

hence more than one reasonable choice for the equation governing ρasymptoticapproach(y). It would be

tempting—but misleading—to regard any choice made under such arbitrary conditions as a mod-

eling assumption. The difference is that asymptotic approach criteria do not represent unknowns,

but rather choices that are consciously made in the laboratory (specifically, details of the start-up

procedure and data-collection schedule). The choice here cannot be ambiguous, but it is no more

arbitrary than it would be in the laboratory.

3.2 Details of the domain

There are two mathematical details to cover before approaching asymptotic approach in earnest.

First, the following constraint, which was introduced in Section 2.7, will need to be imposed:

Pr(y ∈ R) = 0 (3.1)

Physically, equation (3.1) stipulates that a negligible fraction of experiments begins on R, and that

no experiment runs indefinitely. Mathematically, it prevents the solution from degenerating into

an unphysical idealized limit. Constraint (3.1) will be imposed by requiring that the fraction of

probability mass within an ε-neighborhood of R approaches zero as ε approaches zero.

Next, recall that the derivation of equation (1.8) assumed continuous differentiability of ρϕf on

Ω when applying the divergence theorem. That assumption would not hold if ρ(y) were singular on

R, which from the stationary case seems to be a possibility. Our workaround is to construct a weak

solution by adjusting the domain to create an ε-neighborhood around R, as follows.

At every y ∈ Rc, there is exactly one boundary-crossing trajectory that reaches y in finite time.

Let the finite time at which the trajectory reaches y be denoted sb(y).

Let T (Z0) ∈ (0,∞) be a continuously differentiable function on ∂Ω, and let Qc ⊂ Rc consist of

those y ∈ Rc for which sb(y) < T (Z0) (Figure 3.1). As minT (Z0) →∞, the difference between Qc
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QcRc

∂Ω ∂Ω

Q

R ∂Q

Figure 3.1: Illustration of the difference between sets Q and R, Qc and Rc. Rc includes all points
accessible from the boundary in finite time; Qc includes only those accessible from the boundary in
time less than T (Z0). In both cases, the direct sum of the set and its complement is Ω.

and Rc (more precisely, the Lebesgue measure of the complement of their intersection) approaches

zero. Let Q consist of all points in Ω that are not in Qc. It follows that R ⊂ Q.

If there is no singular behavior away from R, then the divergence theorem can be applied over

Qc (or any connected subset of Qc having a smooth boundary), although there is an inner boundary

that must be taken into account. In the analysis below, ρ(y) is computed over Qc rather than over

Ω. If condition (3.1) holds, however, then as minT (Z0) → ∞, moments of ρ(y) over Ω become

independent of its behavior on Q, so what remains is a weak solution over Ω.

Applied over Qc rather than Ω, equation (1.8) appears almost unchanged:

〈
∂ϕ(Y(Y0, t))

∂t

〉
=
∫

∂Qc

ϕ(y) (ρf · n̂) dS −
∫
Qc

ϕ(y) (∇ · (ρf)) dV (3.2)

Remember, however, that the boundary ∂Qc now has two parts: an outer part coinciding with ∂Ω,

as before, and a new inner part coinciding with ∂Q (but of opposite orientation).

3.3 Asymptotic approach as a minimization problem

Stationarity required that equation (2.1)

〈
∂ϕ(Y0, t)

∂t

〉
= 0
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hold for all continuously differentiable phase functions ϕ(y) on Ω, now on Qc instead. This meant

that any measurement was likely to be growing and decaying in equal measure; its expected rate of

change was precisely zero.

For asymptotic approach, however, the expected rate of change is not zero. It is a small value

that might be different for each ϕ(y). An observable whose expected value decays exponentially, for

example, has an expected rate of change of −θ 〈ϕ〉, where θ is a rate constant. Another observable

might decay according to a power law. The common characteristic of asymptotic approach is not

form, but speed. Under asymptotic approach, no initial transients remain, and so no observable

changes faster (on average) than absolutely necessary.

Because 〈∂ϕ/∂t〉 has dimensions of ϕ over time, dividing it by any norm of ϕ leaves a rate, a

quantity having units of inverse time. A small-magnitude rate corresponds to gradual change, and

a zero rate corresponds to no change—which is to say statistical stationarity, a regime that was

covered in Chapter 2.

An upper bound on the expected rate of change, valid for all ϕ(y), is derived below. For systems

undergoing asymptotic approach (as opposed to those already at statistical equilibrium) this bound

cannot be made exactly zero, but it can be minimized. Minimization is subject to the two constraints

already cited: the normalization requirement of (1.4) and the requirement that asymptotic approach

still be in progress, expressed in (3.1). Together, these lead to a quantitative criterion for the sample

point density ρasymptoticapproach(y) during asymptotic approach. This criterion will not be the only

possible choice—asymptotic approach is not a precisely defined concept—but the minimized solution

captures any qualitative definition reasonably well.

Equation (3.2) gives the expected rate of change of a phase function over Qc. Its value remains

unchanged if ϕ(y) is displaced by some constant ϕ0. That is, identically,

〈
∂ϕ(Y(Y0, t))

∂t

〉
=
∫

∂Qc

(ϕ(y)− ϕ0) (ρf · n̂) dS −
∫
Qc

(ϕ(y)− ϕ0) (∇ · (ρf)) dV (3.3)

It is always possible to choose ϕ0 in a way that eliminates the first (boundary) term in (3.3).
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That is because there are three mutually exclusive possibilities:

1.
∫

∂Qc ρf · n̂ dS 6= 0

2.
∫

∂Qc ρf · n̂ dS = 0 because ρf · n̂ = 0 almost everywhere on ∂Qc

3.
∫

∂Qc ρf · n̂ dS = 0, but ρf · n̂ 6= 0 over a non-negligible part of ∂Qc

In the first and second cases, the surface integral in (3.3) can be eliminated by taking

ϕ0 =


0

∫
∂Qc ρf · n̂ dS = 0R

∂Qc ϕ(y)ρf ·n̂ dSR
∂Qc ρf ·n̂ dS

otherwise
(3.4)

The third possibility, as shown in Appendix C (Section C.3), would violate (3.1) and so can be safely

disregarded. With (3.4), equation (3.3) reduces to a volume integral:

〈
∂ϕ(Y(Y0, t))

∂t

〉
=
∫
Qc

(ϕ(y)− ϕ0) (∇ · (ρf)) dV (3.5)

The next step is to bound (3.5) in a way that isolates its ϕ-dependence. There are many ways

to split and bound an integral, of course; the approach below is simply one among many reasonable

choices. The lack of uniqueness here is an unfortunate consequence of ambiguity inherent in the

definition of asymptotic approach; ambiguity follows from first principles. It will be shown in Section

3.5, however, that other choices at this point would ultimately lead to the same predictions, provided

that certain conventions are observed.

By the Cauchy-Schwartz inequality,

〈
∂ϕ(Y(Y0, t))

∂t

〉2

≤
(∫

Qc

(ϕ(y)− ϕ0)
2

dV

)(∫
Qc

(∇ · (ρf))2 dV

)
(3.6)

Unless ϕ(y) is constant on Qc (in which case its expected time derivative is trivially zero, ob-

viating the need to bound it), the first integral on the right-hand side of equation (3.6) is positive.
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Thus for any nontrivial ϕ(y), it is true that

〈
∂ϕ(Y(Y0,t))

∂t

〉2

∫
Qc (ϕ(y)− ϕ0)

2
dV

≤
∫
Qc

(∇ · (ρf))2 dV (3.7)

or equivalently

〈
∂

∂t

 ϕ(Y(Y0, t))(∫
Qc (ϕ(y)− ϕ0)

2
dV
)1/2

〉
2

≤
∫
Qc

(∇ · (ρf))2 dV (3.8)

The left-hand side of (3.7) is a (squared) nondimensional rate of decay associated with ϕ(y). The

right-hand side is an upper bound independent of ϕ(y). Thus to minimize the expected rate of

decay for all observables, one ought to minimize κ, defined as

κ =
∫
Qc

(
∂

∂yi
ρ(y)fi(y)

)2

dV (3.9)

with respect to the function ρ(y).

In the next section, we obtain ρasymptoticapproach(y) by minimizing (3.9) subject to constraints

(1.4) and (3.1).

3.4 The minimized asymptotic approach solution

Constrained minimization of κ, as defined in (3.9), is a straightforward problem of variational cal-

culus; it leads to a differential equation (and boundary condition) from which a ρ(y) corresponding

to asymptotic approach may be found.

Details of the derivation are omitted here, but are included for completeness in Appendix D. The

end result, from (D.12) and (D.13), is that ρ(y) satisfies the second-order parabolic linear partial

differential equation:

fi(y)
∂

∂yi

(
∂

∂yj
(ρ(y)fj(y))

)
= −λ

2
∀y ∈ Qc (3.10)
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along with the boundary condition

(
∂

∂yj
(ρ(y)fj(y))

)
(fi(y)n̂i(y)) = 0 ∀y ∈ ∂Qc (3.11)

where λ is a Lagrange multiplier associated with normalization requirement (1.4).

Because equation (3.10) is parabolic, it has only one family of characteristics, which, unsurpris-

ingly, coincides with trajectories of the original system. As in the stationary case, the characteristics

satisfy

∂Zi

∂s
= fi (Z (Z0, s)) (3.12)

with Zi(Z0, 0) = Z0i, an initial condition given at any point along the trajectory. We choose to

place Z0 on ∂Ω. Again, the time-like characteristic parameter has been denoted s rather than t to

distinguish it from physical time.

A detailed analysis along characteristics, taking into account requirement (3.1), is included for

reference in Appendix E. Its final conclusion is that

ρasymptoticapproach(Z(Z0, s)) =
λ

2M(Z0, s)

∫ ∞

s

M(Z0, s′) s′ ds′ (3.13)

where M(Z0, s) is given by (E.3).

The dynamical significance of (3.13) is that, relative to other nonstationary probability densities

on the same domain, it minimizes a norm of the expected rate of change of all possible measurement

statistics. In other words, among all non-invariant probability measures over Ω, it is the one that is

most nearly invariant (as measured by a reasonable, but not necessarily unique, norm).

3.5 Alternative bounds for the asymptotic approach integral

In Section 3.3, integral (3.5) gave the mean rate of asymptotic approach for any observable. We

chose to bound it using the Cauchy-Schwartz inequality, but many other reasonable choices exist.

For example, we could have chosen to bound it using some other Hölder inequality, or to multiply



30

and divide by a positive function of ρ(y) before splitting the integral. How might a different choice

have affected the outcome?

It is shown in Section E.3 that a wide class of alternatives would have left the characteristic

solution intact, changing only the growth rate of ρ with s.

3.6 Numerical techniques for the asymptotic approach den-

sity

The most straightforward, albeit inefficient, way to compute ρasymptoticapproach(y) is by numerical

integration of (3.13) along trajectories; it is this technique that is applied in Chapters 5, 6, 7, and 8.

The numerical integration technique takes place on a rectangular grid that is uniform in each

phase-space direction. The grid is oriented and scaled so that it completely covers Ω, and so that no

grid point falls exactly on R. Each grid point outside Ω is assigned the value zero; each grid point

inside Ω is assigned a value for ρasymptoticapproach(y) by the following algorithm. First, the value of

s at the grid point is computed by integrating outward along its trajectory (in the −f(Y) direction)

with an implicit fourth-order Runge-Kutta algorithm. Integration terminates when Y reaches ∂Ω.

Then, integration proceeds inward (in the +f(Y) direction) from the grid point, meanwhile accu-

mulating the integrand of (3.13). Because the integrand first grows and then decays exponentially,

integration can be terminated after a finite period of time, for example after the integrand decreases

beyond a small fraction of its peak value. Because ∇· f is bounded and negative on Ω, the remainder

can be rigorously estimated. Finally, the solution must be scaled (by adjusting λ) to satisfy (1.4).

Once ρasymptoticapproach(y) is known at gridpoints, its moments and conditional moments may be

computed directly. One can immediately derive expected values, reduced-order models as discussed

in Chapter 4, or even approximate ρstationary(y) by taking conditional expectations on large s or ρ,

as discussed in Section 3.7. This last technique is applied in Chapter 8.

When ∇ · f is constant, the asymptotic approach density field can also be computed by con-

ventional finite-difference methods, provided that λ is first computed analytically via (E.15). To
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construct a finite-difference solution, one approximates the partial differential operator of (3.10) on

the solution grid using any conventional stencil, yielding a sparse system of linear algebraic equa-

tions. The system’s solution vector is ρasymptoticapproach(y). The solutions in Chapters 5 and 6 were

validated by comparing to second-order centered finite-difference solutions computed in this way.

Because (3.10) is linear and parabolic, there are many other well-known techniques, such as the

Galerkin method, that could potentially be applied to solving it. None, however, would be suitable

for high-dimensional problems such as DNS of a turbulent flow, because it remains impractical to

grid a high-dimensional space.

Nevertheless, progress can be made, even for high-dimensional problems, because ultimately only

a few moments of ρasymptoticapproach(y) are generally of interest. It is unnecessary to work out the

density in its entirety. Moments computed by Monte Carlo techniques—randomly selecting and

integrating along a relatively small number of trajectories—should eventually converge. (This, it

might be argued, is precisely what DNS does.) Certain asymptotic approximations appear to work

as well, although their development remains in progress at time of writing.

Finally, sometimes one is simply lucky: Chapter 9 presents an exact solution for the energy

spectrum of the truncated one-dimensional Burgers’ equation in the Stokes’ limit.

3.7 Conjectured relationship to stationarity

Over the course of asymptotic approach, a system gradually approaches its limit state. Based on the

examples in Chapters 5, 6, 7, 8, and 9, that limit state would appear to be stationarity. Whether a

system approaches a single stationary point, a periodic orbit, or a strange attractor, the approach

ends at R, which is precisely the support set of ρstationary(y).

It is only natural to ask, then, whether the two are equivalent. In other words: is the limit density

of ρasymptoticapproach(y), conditioned upon large time, physical (as defined in Equation 2.11)? Is it,

under the right conditions, an SRB measure?

To answer this question, it is evidently necessary to pin down what is meant by “conditioned on

large time.” Recall that within Rc, sb(y) measures time elapsed since crossing the boundary. Thus
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an expectation conditioned on sb(y) > T rejects any point within T time units of the boundary.

Points that remain represent systems that have undergone asymptotic approach for at least T time

units. As T →∞, the rejected set approaches all of Rc.

Thus the question is whether

ρasymptoticapproach|longtime(Z(Z0, s)) =

lim
T→∞


ρasymptoticapproach(Z(Z0,s))R

∂Ω

R∞
T

ρasymptoticapproach(Z(Z0,s′))J (Z0,s′) ds′ dS
s > T

0 s < T

(3.14)

satisfies (2.11)—that is, that its moments coincide with those of ρstationary(y) from (2.17).

Unfortunately, we do not yet have a satisfactory proof that (3.14) satisfies (2.11), and must treat

it as a conjecture. However, on the basis of the following observations, we believe that the conjecture

is plausible:

1. Both ρasymptoticapproach|longtime(y) and ρstationary(y) are zero on all y ∈ Rc, and singular on R.

2. For a suitable choice of σT (z0), isosurfaces of functions in the limit sequences of ρstationary(y)

and ρasymptoticapproach|longtime(y) coincide.

The first observation shows that if moments differ, the difference can only be due to differences in

the distribution of probability mass on R, a set of measure zero. The second observation makes us

suspect that it is always possible to choose a σT (Z0) for which there is no such difference.

A proof that the two are equivalent would be significant, both theoretically and practically. It

would provide a convenient way to construct an SRB measure, avoiding Perron-Frobenius theory, and

it is based on a relatively well-behaved function. The asymptotic approach density ρasymptoticapproach(y)

is singular on R, but integrably so. Furthermore, it is finite over Rc and solves a linear, parabolic

equation. Its boundary condition, in the case of constant phase-space divergence, is simply a con-

stant. Thus there is reason to believe ρasymptoticapproach(y) can be analytically approximated in a

straightforward way, even when strange attractors are present. At present, SRB measures are highly

singular and therefore somewhat more difficult to construct, especially for high-dimensional systems.
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We make use of the above conjecture in Chapter 8 to produce long-time limit statistics of Lorenz’s

equations. Lorenz’s attractor is known to possess an SRB measure, so if the conjecture is true, then

it is approximated by the long-time limit. For practical reasons, we compute the density conditioned

on large ρ rather than on large T ; the two are equivalent. Convergence is investigated numerically

in Section 8.5.
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Chapter 4

Application to reduced-order
modeling

4.1 Overview

The motivation for this chapter is twofold. On one hand, it presents a particularly nice application for

the sample point density ρ(y): constructing reduced-order models. At the same time, it demonstrates

the basic equivalence of model assumptions and sample-point-density constraints.

The objective of reduced-order modeling is to represent a relatively large, N -dimensional system

of ordinary differential equations like (1.1) with a smaller M -dimensional one (M << N). We

will refer to the M components of the simpler system as model variables, and to the right-hand

side of the corresponding evolution equations as a model.1 One set of model variables might admit

many different models; for example, a wide variety of large-eddy simulation (LES) models have been

proposed, most of which operate over the same set of model variables (the filtered velocity field).2

Usually the term “modeling” connotes approximation; the simpler system’s solution is not ex-

pected to predict the full system perfectly for all values of Y0. There also exist problems (such as

linear ones) for which simpler systems do hold exactly; while these would not normally fall under

the rubric of modeling, the reasoning below should also apply to them.

Given a system of ODEs like (1.1), constructing a model by this method is a five-step process.

1The term “model,” as used throughout this chapter, refers exclusively to the reduced-order kind; we assume that
f(y) is already known in its entirety, but is too complicated to apply directly. In other contexts, “model” sometimes
means that f(y) itself is unknown.

2One might object that LES is not a pure form of reduced-order modeling because it is inextricably tied to specifics
of the discretization.
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It leads to a system of M ordinary differential equations:

dW
dt

= g(W) (4.1)

for W(W0, t), which is a vector of model variables. The model is g(W). Steps are listed briefly

below, followed by more in-depth discussions of each.

1. Obtain ρ(y) by one of the methods discussed in Chapters 2 or 3.

2. Decide how the model variables will relate to y by choosing M functions ϕwi
(y), i = 1 . . .M .

Construct a vector function ϕw(y) having these as components.

3. Using ρ(y), compute the conditional expected value 〈∂ϕw/∂t | ϕw(y) = W〉.

4. Solve the model system, which is simply (4.1) with the conditional expression in the previous

step substituted for g(W). The initial condition is W0 = ϕw(Y0).

5. Compute the nondimensional standard deviation of ∂ϕw/∂t, also conditioned on ϕw(y) = W,

which serves as a local uncertainty estimate. Good models can be defined as those whose

expected uncertainty is much less than 1 everywhere, or at least whose average uncertainty is

much less than 1.

There is no hand-waving; once model variables have been chosen and ρ(y) has been computed,

the model follows directly, along with specific uncertainty estimates. Each of the above steps is

discussed in a different section below.

4.2 Obtain the sample point density

The appropriate sample point density ρ(y) depends on the conditions being modeled. These were

discussed at length in Chapters 2 and 3. If one is modeling an experiment conducted under sta-

tionary conditions—for example, under constant forcing, with initial transients allowed to decay
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before taking data—then ρstationary(y) is the appropriate density. To model an experiment involv-

ing asymptotic approach, use ρasymptoticapproach(y). Some situations call for using a more restricted

density based on conditional probabilities.

4.3 Choose the model variables

In choosing the M model variables, the modeler has almost complete freedom. A complicated

mechanical system having flexibility and many degrees of freedom (large N) might be modeled as

a rigid body of M = 9 (position and momentum of the center of mass, and angular momentum).

A fluid flow requiring N modes for DNS might neglect small spatial scales, truncating away N -M

high-wavenumber modes (LES), or fluctuating perturbations (RANS). A fixed volume of gas having

a large number of molecules, all moving and interacting chaotically, might be reduced to M = 2:

the average enthalpy and entropy.

Mathematically, choosing model variables means expressing the M -dimensional model phase

vector w in terms of the N -dimensional full phase vector y. This is accomplished by means of a

vector function ϕw(y) mapping RN to RM . The mapping must be differentiable.

In the rigid-body approximation example, ϕw(y) is simply an average taken over mass. Its first

three components are the mass-average position,
∫

x dm/
∫

dm. For large-eddy simulation, ϕw(y)

applies a spatial filter at each large-scale grid location. For the body of gas, the first component

(enthalpy) is the total energy, and the second (entropy) is related to the volume of phase space the

system would eventually explore.

Once ρ(y) has been computed and a suitable vector function ϕw(y) has been selected, the

remainder of the process is strictly mechanical.

4.4 Compute the conditional expected velocity

The next step is to compute the conditional expected velocity 〈∂ϕw/∂t | ϕw(y) = W〉. This is

usually straightforward. The phase function corresponding to ∂ϕw/∂t in the direction of trajectories
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is

∂ϕw(Y(Y0, t))
∂t

= f · ∇ϕw|Y(Y0,t) (4.2)

For details on working out the conditional probability, see Appendix B. Essentially,

〈∂ϕw/∂t | ϕw(y) = W〉 = lim
∆w→0

∫
S f · ∇ϕw|y ρ(y) dV∫

S ρ(y) dV
(4.3)

when S is the region of Ω satisfying |w −ϕw(y)| < ∆w.

4.5 Solve the model system

Expression (4.3) is precisely the average dW/dt of systems matching ϕw(y) = W at the time of

measurement. If ρ(y) is the true sample point density, then (4.3) gives the best possible choice for

g(W) in (4.1), in the sense that the expected deviation from any other choice would be larger. (A

basic property of the arithmetic mean is that it minimizes expected deviation). To do better would

require a larger M , or at least a better choice of model variables.

Thus the model system is

dW
dt

= 〈∂ϕw/∂t | ϕw(y) = W〉 (4.4)

with initial condition W0 = ϕw(Y0).

Constructing a model in this way avoids the need to engage in the kinds of phenomenological or

empirical arguments common to model-building. The model has a clear statistical meaning.

4.6 Predict the expected deviation

The last part of this exercise—one that is otherwise rarely possible in the world of reduced-order

modeling—is to predict statistically how the actual system will deviate from the model. Recall that

the model makes use of the mean value of ∂ϕw/∂t over all realizations, but the actual ∂ϕw/∂t for
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a particular realization depends on the full Y, which is not generally known. For each W, there is

an entire distribution of possible ∂ϕw/∂t. With ρ(y), however, one can obtain any moment of the

∂ϕw/∂t distribution, and the mean is not the only useful moment. Many might be of interest—

for example, if the distribution is unimodal for some time and then suddenly becomes bimodal, a

bifurcation is suggested. Similarly, if the distribution is heavily skewed, or otherwise peaks far away

from the mean, then most realizations will not obey the model (because the model only predicts

average behavior).

The usual measure of deviation is variance. The variance of interest here is

var(W) =

〈(
∂ϕw

∂t
−
〈

∂ϕw

∂t

〉)2

ϕw(y) = W

〉
(4.5)

with time derivatives from (4.2). Because ϕw(y) is a vector, the square implies a dot product.

A distribution of small variance is concentrated near its mean; one of large variance has a wide

variety of likely realizations. At one extreme, the variance might be zero, in which case the model’s

dW/dt prediction is always correct at W; at the other, the variance might be large, in which case a

given realization’s dW/dt would likely differ. Thus the variance var(W) from (4.5) gives a measure

of uncertainty that a system at W will do what the model predicts.

To make sense of the variance’s magnitude, it is customary to take its square root, leaving

the standard deviation, a quantity having the same dimensions as ∂ϕw/∂t. The standard de-

viation should then be normalized. A reasonable choice is to normalize it by the magnitude of

〈∂ϕw/∂t | ϕw(y) = W〉, assuming the latter is not zero (it is only zero at stationary points of the

model). Thus at a given W, the nondimensional standard deviation is:

dev(W) =

〈(
∂ϕw

∂t −
〈

∂ϕw

∂t

〉)2

ϕw(y) = W
〉 1

2

∣∣∣〈∂ϕw

∂t ϕw(y) = W
〉∣∣∣ (4.6)

Where dev(W) is small compared to 1, the model performs reliably; where it is large compared to

1, the model performs poorly.
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Other measures of deviation can also be applied, such as the expected magnitude of velocity or-

thogonal to the direction of travel. That measure discounts differences in speed along the trajectory,

which might be less important than differences that tend to fork the trajectory.

4.7 Global deviation and the choice of model variables

Deviation measures from the previous section are local; they represent uncertainty in the model

at a particular W. To compare different choices of model variables, a global measure is required.

A reasonable choice would be the average nondimensional standard deviation (given by 4.6) taken

over all W. A set of model variables having a deviation (4.6) that is smaller on average would be

objectively better than a competing set.

Naturally, one wonders whether it would be possible to choose an optimal set of model variables

for a problem—that is, whether one could analytically minimize the average of (4.6) over Ω with

respect to the choice of model variables (at fixed M). Intuitively, such a technique ought to be

possible—whether it would be practical is a separate question—but at time of writing no generally

satisfactory technique has been found.

4.8 Equivalence of model assumptions and sample-point-density

moments

The preceding sections show that a model can be deduced from moments of the sample point density

ρ(y) in a straightforward way. The converse, however, is also interesting, as it gives basic insight

into the nature of modeling.

The most unsettling feature of existing reduced-order models is that there are so many to choose

from. Even more unsettling, different models can make qualitatively different predictions, particu-

larly for chaotic situations such as turbulence. Models are typically compared by examining their

behavior under certain well-known—but ultimately arbitrary—test problems. A model that per-

forms well on one test problem might perform poorly on another. It is sometimes unclear how
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a model-based solution ought to be interpreted. Is the unphysically large “wake” behind a blunt

object predicted by RANS an (incorrect) prediction of time-averaged streamlines, or is it a mathe-

matical artifact? An LES solution presumes that large scales evolve similarly when the filtered fields

coincide at one point in time. Turbulence, however, is chaotic. Large scales depart rapidly under

the slightest of subgrid perturbations. What, then, does an LES solution actually signify? Also,

how should models should be constructed in the first place? Do they represent an approximation

to the equations of motion? If so, then why are terms invariably left over (the closure problem of

turbulence)?

The answers to many of these questions become clearer when they are posed in terms of the

sample point density. Most reduced-order models can be interpreted as a g(W) for (4.1), because

given W, each predicts a corresponding dW/dt. Turbulence models based on LES and URANS

are of this form3. In light of (4.4), then, the predicted dW/dt may be interpreted as a conditional

moment of ρ(y), a 〈∂ϕw/∂t | ϕw(y) = W〉. From the sample point density point of view, therefore,

every reduced-order model is equivalent to a set of assumptions regarding moments of the sample

point density.

Because the sample point density is not determined solely by the governing equations, but also

by the experimental conditions (stationary or asymptotic approach), an immediate consequence is

that models are not simply approximations to the governing ODEs, but rather approximations to the

conditions under which experiments take place. To put it in concrete terms, a turbulence closure

for LES like that of Smagorinsky (1963) is not merely a statement about Navier-Stokes, but an

assertion that data will only be taken when conditions allow the closure assumption to hold, i.e.,

under approximate stationarity. Intuitively, that makes sense: The model obviously would not hold

for highly nonstationary conditions, such as while a wind tunnel is being abruptly powered off.

This point of view also sheds light on the closure problem. Because ρ(y) depends on the apparatus

design, start-up process, and sampling schedule—not merely on the governing equation—(1.1) does

not provide enough information to determine any moment of the distribution of ∂ϕw/∂t. There

3Models based on steady RANS are different because for these, dW/dt is zero by construction. Instead, expected
Reynolds stresses are assumed. The conclusion in italics still holds.
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simply isn’t enough information to close the reduced-order equations; they are underdetermined.

On the other hand, once ρ(y) is known, the equations can be closed by the methods of this chapter

without further difficulty.

Finally, the methods of this chapter allow models to be compared in absolute terms. If ρ(y) is

physically correct, then for a given choice of model variables, the model given by (4.4) is optimal. The

expected mean square difference between g(W) and the actual rates of change of any realization’s

model variables is a global minimum, and the expected mean square difference would be larger for

any other model. Thus existing models may be compared by examining the norm of the difference

between their predictions and those from the conditional expected velocity of (4.3).

Reduced-order models will play a part in several of the example problems, including a damped

linear oscillator in Chapter 6, the Rayleigh-Plesset equation in Chapter 7, and Lorenz’s equations

in Chapter 8.
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Chapter 5

Example: one-dimensional linear
decay

5.1 Introduction

Consider the trivial one-dimensional linear system

dY

dt
= −Y (5.1)

when Ω is the set Y : Y ∈ [1, 1].

System (5.1) represents the simplest kind of first-order decay. For example, Y (Y0, t) would

describe the voltage across a capacitor being discharged through a resistor; Y0 is the initial voltage,

and t is time in units of RC. This particular application is neither intended to be representative

nor typical; it is too simple to justify the conceptual overhead of our technique. Rather, our goal in

this chapter is to render the abstractions introduced in Chapters 2 and 3 in concrete terms.

Solution trajectories of (5.1) have the form

Y (Y0, t) = Y0 exp(−t) (5.2)

In this case, the set R has only one element, the origin Y = 0. All other points in the interval

[−1, 1] belong to Rc. The outer boundary ∂Ω consists of two points, Y = −1 and Y = 1, and the

phase-space divergence is −1 everywhere.
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5.2 Solutions

We begin with the solution for stationary conditions, followed by that for experiments undergoing

asymptotic approach.

Because the solution for stationary conditions is singular on R and zero elsewhere, generalized

functions are required to represent it. In Section 2.3, we saw that a solution may be found by taking

certain limits. Here, the answer is obvious:

ρstationary(y) = δ(y) (5.3)

where δ(y) is Dirac’s delta function. Thus to obtain the expected value of any observable ϕ(y) under

stationary conditions, simply take ϕ(0). The expected voltage of the system (5.1) under stationary

conditions, for example, is zero.

Because ∇ · f = −1, the appropriate asymptotic approach solution is given by (E.14). In order

to satisfy (1.4), λ must be 1/2. Thus

ρasymptoticapproach(Z(Z0, s)) =
1
4

(s + 1) (5.4)

whether Z0 is +1 or −1. Using (5.2) and |Z0| = 1, (5.4) is equivalent to

ρasymptoticapproach(y) =
1
4

(
log
(

1
|y|

)
+ 1
)

(5.5)

A plot of this function appears in Figure 5.1.

With ρasymptoticapproach(y), one may derive the expectation value of any observable during ap-

proach to the origin. In this case, the system is so simple that such an application might seem

contrived, but it helps to illustrate the thought process. We now use ρasymptoticapproach(y) to com-

pute the expected value
〈
y2
〉

during asymptotic approach.

The mean square value of Y during experiments is an observable having the phase function
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Figure 5.1: The asymptotic approach solution ρasymptoticapproach(y) given by Equation (5.5) for
system (5.1) on the domain y ∈ [−1 : 1].

ϕ(y) = y2. Its expected value is

〈
y2
〉

=
∫

Ω

ϕρ dV =
∫ 1

−1

y2 1
4

(
log(

1
|y|

) + 1
)

dy =
2
9

(5.6)

The root mean square value of Y during asymptotic approach experiments on this interval is therefore

about 0.47. One should not read too far into this result, as other legitimate ways to bound integral

(3.5) would give somewhat different numbers. Nevertheless—and this is remarkable, considering

nothing has been said about initial conditions; only the equation, interval of interest, and assumption

of asymptotic approach—the answer does match experience. A series of experiments designed to

study system (5.1) asymptotically decaying on the interval [−1 : 1] might, reasonably, have such an

RMS value for y.

The preceding result could also have been found by integration along characteristics. By the
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transformation of variables given in Appendix A:

〈
y2
〉

=
∫

Ω

ϕρ dV

=
∫

∂Ω

∫ ∞

0

ϕρJ ds dS

= 2
∫ ∞

0

(exp(−s))2
(

1
4

(s + 1)
)

(exp(−s)) ds

=
1
2

∫ ∞

0

(exp(−s))3 (s + 1) ds = 2/9

(5.7)

The transformation will be of greater utility in more than one dimension.

5.3 Arriving at the asymptotic approach density

One might reasonably ask what course of experiments could give rise to a ρasymptoticapproach(y) such

as the one derived above. As always, there are infinitely many ways to produce a given sample point

density; what follows is one specific possibility.

Suppose that the following experiment were repeated many times. Starting from exactly Y0 =

±1 (with equal likelihood) at t = 0, the system of (5.1) is allowed to run until some finite but

variable tend, with measurements taken at regular intervals during the asymptotic approach. What

distribution of tend would produce the ρasymptoticapproach(y) above? That is, what density function

µ(tend) of experiment durations would correspond to ρasymptoticapproach(y)?

The density of measurements for a particular tend grows exponentially in time. Normalized and

expressed in terms of y, it is 1/(2tend|y|) for exp(−tend) < |y| ≤ 1, otherwise zero. Therefore µ(tend)

would need to satisfy

∫ ∞

− log(|y|)

1
2tend|y|

µ(tend) dtend = ρasymptoticapproach(y) (5.8)

The right-hand side may be taken from (5.5).
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Figure 5.2: µ(tend), a distribution of experiment durations that would give rise to the asymptotic
approach density ρasymptoticapproach(y) of (5.5) if each experiment starts from Y0 = ±1 and measure-
ments are taken at uniform intervals. The distribution, from (5.9), has a mode of 2 and a mean of
3.

Solving (5.8) for µ(tend), the duration of experiments would be distributed as

µ(tend) =
1
2
t2end exp(−tend) (5.9)

A plot of the tend distribution appears in Figure 5.2.
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Chapter 6

Example: damped linear oscillator

6.1 Introduction

In this chapter, we consider the two-dimensional linear system

d

dt

 Y1

Y2

 =

 − 1
2 1

−1 − 1
4


 Y1

Y2

 (6.1)

when Ω is the unit disk. A phase portrait of (6.1) appears as Figure 6.1.

System (6.1) describes a damped linear oscillator (damping coefficient of −1/4) such as a mass-

spring system, but it includes an additional damping due to position (the −1/2 in the upper left-hand

corner) to make the phase portrait more interesting. It is harder to rationalize the −1/2 in terms

of physical effects; it could come from a change of variables or some sort of elastic-plastic behavior.

That Ω should be a unit disk is based on the following reasoning, which applies even in more

complicated situations: if there were no damping, flow would be everywhere tangent to circles

centered on the origin, which represent surfaces of constant energy. Their shape is determined

entirely by the off-diagonal terms. Thus a circle is the only shape that remains a trapping region

under different damping characteristics (even in the limit of small damping). The choice of radius,

however, remains arbitrary.

System (6.1) is dissipative. Its phase-space divergence ∇ · f is everywhere constant at −3/4.

There is a spiral point at the origin, which is the only point not accessible from the boundary in
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Figure 6.1: Phase portrait of system (6.1). Trajectories approach the origin after infinite time. The
boundary circle indicates ∂Ω.

finite time. Thus R is the point (0, 0), and all other points in Ω belong to Rc, a punctured disk in

y1, y2 space.

6.2 Solutions

As in the previous example, the only stationary density is a delta function at the origin, now in two

dimensions:

ρstationary(y) =
δ
(√

y2
1 + y2

2

)
π
√

y2
1 + y2

2

(6.2)

Thus the expected value of any observable ϕ(y) under stationary conditions is exactly ϕ(0). This

is a typical situation for unforced problems.

Because ∇ · f is constant, the decaying solution is given by (E.14). From (E.15),

λ =
(∇ · f)3∫

∂Ω
f · n̂ dS

=
(−3/4)3

−3π/4
=

9
16π

(6.3)
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Figure 6.2: Contours of ρasymptoticapproach(y) for system (6.1), with trajectories. The density
increases along trajectories, from a boundary value of 1

2π to infinity at the origin. The singularity
at the origin is integrable, however, and the probability of observing the system in its infinitesimal
neighborhood approaches zero.

and so

ρasymptoticapproach (Z (Z0, s)) =
3
8π

(
s +

4
3

)
(6.4)

On the boundary (where s = 0), ρasymptoticapproach(y) has the constant value 1
2π . Contours

of ρasymptoticapproach(y), computed by integration along trajectories, are plotted in Figure 6.2. To

obtain ρasymptoticapproach(y) explicitly (that is, without invoking the intermediate variable s), one

would have to solve characteristics Z(Z0, s) of (6.1), which are

 Z1(Z0, s)

Z2(Z0, s)

 = exp
(
−3

8
s

) Z01 cos
(√

63
64s
)
−
√

1
63 (Z01 − 8Z02) sin

(√
63
64s
)

Z02 cos
(√

63
64s
)
−
√

1
63 (Z02 − 8Z01) sin

(√
63
64s
)
 (6.5)

analytically for s. Because ∂Ω is a unit circle, Z0
2
1 + Z0

2
2 = 1. The inversion would not be trivial.

At this point, application of the theory is essentially complete. One can compute any desired

observable by taking the moment of its phase function against whatever ρ(y) is appropriate (6.2
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or 6.4), possibly making use of the streamtube change of variables described in Appendix A. For

example, the covariance matrix based on ρasymptoticapproach(y) is

 < y1y1 > < y1y2 >

< y2y1 > < y2y2 >

 =

 0.184 0.005

0.005 0.192

 (6.6)

Again, other ways of bounding (3.5) would have yielded somewhat different values.

6.3 Reduced-order model

A more interesting application is based on the methods introduced in Chapter 4: using ρ(y) to

construct a reduced-order model. The system is only two-dimensional to begin with, but we can

reduce the order from two to one.

A reasonable choice for the model variable in this case is H(y), the Hamiltonian of the undamped

system (that is, if both of the diagonals in (6.1) were zero), given by

H(y) =
1
2
(
y2
1 + y2

2

)
(6.7)

One might guess a priori that H(y) would be a good choice because it is monotone in time along

trajectories, and because at fixed H, ∂H(Y(Y0, t))/∂t does not vary too much, particularly at low

damping.

Following the steps of Chapter 4:

1. Because we are modeling the decay process, the density ρ(y) will be ρasymptoticapproach(y) from

(6.4).

2. The vector ϕw(y) has only one component. ϕw1(y) = H(y), given by (6.7). For notational

simplicity, it will be denoted ϕw(y).

3. In this case, ∂ϕw/∂t is f · ∇H, or − 1
2y2

1 − 1
4y2

2 . Because the original system is linear, it would

be possible to compute the conditional probability 〈∂ϕw/∂t | ϕw(y) = W 〉 analytically. In the
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interest of demonstrating a more general technique, however, a numerical approximation is

applied below.

4. The model system is then

dW

dt
=
〈
−1

2
y2
1 −

1
4
y2
2

1
2
(
y2
1 + y2

2

)
= W

〉
(6.8)

with initial condition W (W0, 0) = W0 = H(Y0). W (W0, t) is a modeled approximation to the

full undamped system’s Hamiltonian.

5. The expected deviation of − 1
2y2

1 − 1
4y2

2 , either conditioned on W or globally, measures uncer-

tainty in the model’s prediction.

Analysis begins by computing ρ(y) at every point on a grid in y1, y2 space that is also inside Ω.

The grid is chosen to avoid R; in the example below, its spacing is 0.014 in both y1 and y2. The

lattice extends over a rectangle from (−1.1,−1.1) to approximately (1.1, 1.1), but the computational

grid consists only of lattice points inside the unit circle.

Next, H(y) is computed at every gridpoint, and the grid maxima and minima are established (in

this case, 0 and 0.5). The minimum and maximum H(y) define a range, which is then partitioned

uniformly into bins. Within each bin, H(y) is approximately constant, and the bins have small

∆H, so conditional expectation over a bin approaches the desired limit as the bin size approaches

zero (provided the lattice remains fine enough to keep a large number of gridpoints in each bin). In

this case, the partition consists of 40 uniformly H-spaced bins, which are concentric annuli. (The

innermost bin is a disk.)

To work out the required conditional probability involves taking a limit, as indicated in (4.3).

Numerically approximating a limit involves computing a sequence of solutions having smaller and

smaller bin size. In the interest of clarity, however, one solution of a single, uniformly-small bin size

is investigated here.
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Figure 6.3: Binned conditional expectations
〈

∂ϕw

∂t ϕw(y) = W
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, the modeled rate of decay of

the (undamped system’s) Hamiltonian for (6.1). Top and bottom curves indicate analytical decay
rates for systems that are like (6.1) but whose diagonals are both −1/2 or −1/4, respectively. The
predicted decay rate falls between the two. Error bars indicate the uncertainty, in dimensions of the
ordinate.

The expected value of ∂ϕw/∂t over each bin is then approximated as:

〈∂ϕw/∂t | ϕw(y) in bin i〉 ≈
∑(

− 1
2y1

2
j − 1

4y2
2
j

)
ρj∑

ρj
(6.9)

where sums are taken over all gridpoints j in the ith bin. These conditional expectations are plotted

in Figure 6.3. The predicted rate of decay falls somewhere between that of a system whose diagonals

are both −1/2, and one whose diagonals are both −1/4, which is reasonable. Predicted deviations

from g(W ) are small, showing that the choice of model variables was a good one; the average of

nondimensional standard deviation (4.6) over w is 0.253, which is small compared to 1.

Once the approximate (6.9) has been computed, the next step is to use it as a model, numerically

integrating (4.4) to obtain the modeled Hamiltonian decay profile. Integration of the numerical

function implied in Figure 6.3 is straightforward. It yields approximately a decaying exponential for

the modeled Hamiltonian.
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Figure 6.4: Envelope curves. The top and bottom curves predict an envelope based on the reduced-
order model. The initial condition for the model is W0 = 0.5. Plotted between the envelope curves
are several trajectories. Each starts at a different Y0, but satisfies H(Y0) = 0.5.

One way to compare the modeled solution to real trajectories is to derive from it a pair of

envelope curves. The solution’s envelope in y1 can be found by solving for y1 as a function of H

while forcing y2 = 0. There are two solutions at each H, hence the pair of curves. In Figure 6.4,

envelope curves based on the model prediction are plotted against several solution trajectories.
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Chapter 7

Example: Rayleigh-Plesset
equation

7.1 Introduction

The Rayleigh-Plesset equation is a nonlinear ordinary differential equation describing how a gas

bubble immersed in liquid oscillates under fluctuations in ambient pressure. It serves as a model for

many physical applications, including cavitation phenomena, shock-wave lithotripsy, sonolumines-

cence, and inertial confinement. The isothermal form examined here makes an additional simplifying

assumption—temperature variations are negligible—that, although it is quite restrictive, retains es-

sential features of the physics. A nondimensional form of the equation, from the review of Feng and

Leal (1997), is

xx′′ +
3
2
(x′)2 =

1
x3

+ 2P − 3
x
− ν0

x′

x
(7.1)

Here x is a nondimensional bubble radius, P is a physical parameter of the system (involving vapor

pressure, surface tension, and a few other factors), and ν0 is a nondimensional viscosity. The ′

signifies differentiation with respect to nondimensionalized time. We arbitrarily take the typical

values P = −0.1 and ν0 = 0.05 for this example.

Because equation (7.1) is second-order, it can be converted into a two-dimensional system (N = 2)

of first-order equations. The following choice of variables is known to be canonical—that is, it leaves
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a Hamiltonian structure when ν0 is zero:

Y1 = x

Y2 = x3x′
(7.2)

With this change of variables, Y1 is q, a generalized coordinate, and Y2 is p, a generalized

momentum. In terms of Y, system (7.1) is

d

dt

 Y1

Y2

 =

 Y2
Y 3
1

3
2

Y 2
2

Y 4
1

+ 1
Y1

+ 2PY 2
1 − 3Y1 − ν0

Y2
Y 2
1

 (7.3)

The Hamiltonian of the inviscid (ν0 = 0) system is given by

H(y) =
Y 2

2

2Y 3
1

− log(Y1) +
3
2
Y 2

1 −
2
3
PY 3

1 (7.4)

For Ω, we take a surface at which the Hamiltonian of the inviscid system (ν0 = 0) is constant,

because it is a trapping region irrespective of ν0. The constant, 2.317, has been chosen to give an

approximately order-of-magnitude range of bubble radius. A phase portrait appears in Figure 7.1.

The phase-space divergence ∇ · f of (7.3) is everywhere negative, but it is not constant: it is

−ν0/y2
1 . The only contribution to ∇ · f comes from the viscous term, because the phase-space

divergence of a Hamiltonian system in canonical coordinates is zero (Liouville). This expression is

singular along the y2 axis; because Ω lies entirely in the right-half plane, however, ∇ · f still remains

bounded inside it.

There is only one point in Ω that is inaccessible from the boundary—the stationary point at

(a, 0), where a is the positive real root of 2Py3
1 − 3y2

1 + 1. Here, P = −0.1, so a is approximately

0.5667. This is also the point at which H(y) is a minimum. Thus, as in the previous example, R

consists of only a single stationary point; all other points of Ω belong to its complement, Rc.
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Figure 7.1: Phase portrait of the Rayleigh Plesset system (7.3). The outer boundary coincides with
an isosurface of the (corresponding inviscid system’s) Hamiltonian. With finite viscosity, trajectories
spiral inward toward a stationary point at fixed bubble radius.

7.2 Solutions

In this example, as in previous examples for which Rc consisted of a single stationary point,

ρstationary(y) is a Dirac delta function. That is, the expected value of an observable ϕ(y) under

stationary conditions is ϕ(y) evaluated at the stationary point (a, 0).

Because ∇· f is not constant, the asymptotic approach solution must be expressed in the integral

form given by (E.13); it does not simplify analytically. That is, along characteristics Z(Z0, s),

ρasymptoticapproach(Z(Z0, s)) =
λ

2M(Z0, s)

∫ ∞

s

M(Z0, s′)s′ ds′ (7.5)

where

M(Z0, s) = exp
(∫ s

0

∇ · f |Z(Z0,s′) ds′
)

= exp
(
−ν0

∫ s

0

1
Z1(Z0, s′)

ds′
)

(7.6)

The constant λ must cause the integral over Ω of ρasymptoticapproach(y) to be 1, as mandated by (1.4).

Finding ρasymptoticapproach(y) explicitly from (7.5) would require solving the characteristic equations
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Figure 7.2: Contours of ρasymptoticapproach(y) for the Rayleigh-Plesset test case, shown at levels 0.5,
1.0, and 1.5 (outermost to innermost, respectively), and of the inviscid system’s Hamiltonian, shown
at levels 1.0, 1.5, and 2.0.

for sb(Z), which would be impractical.

Nevertheless, ρasymptoticapproach(y) may be approximated numerically by integrating along tra-

jectories, just as in the previous examples. Contours are plotted in Figure 7.2. Because ∇ · f is not

constant, neither is the boundary condition.

7.3 Reduced-order model

The Rayleigh-Plesset equation presents our first opportunity to address a question of real outside

interest. Its sharp cusps present a problem for some applications because they mean that direct

numerical integration of (7.3) would be time-consuming. Integrating across the near-singularity

at each radius minimum requires significant computational effort, and such effort is wasted when

detailed resolution of the cusp is unnecessary, as when it factors only tangentially into a larger

process that is only sensitive to (for example) the average energy or frequency.

In his Ph.D. thesis, which principally concerns other aspects of computational bubble dynamics,
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Tanguay (2004) briefly explores the possibility of creating such a model for a more complicated

analogue of (7.3). Tanguay characterizes the flow of probability mass in action-angle coordinates,

but follows a Lagrangian description of an ensemble cloud rather than an (unmoving) sample point

density, leading to difficulty as time progresses.

Following Chapter 4, construction of a reduced-order model is a five-step process:

1. Choose the appropriate ρ(y). Because the goal is to model asymptotic decay behavior,

ρasymptoticapproach(y), given by (7.5), is an appropriate choice.

2. Choose the model variables. As in the simpler example studied in Chapter 6, we make use

of the undamped (ν0 = 0) system’s Hamiltonian. Thus ϕw(y) has only a single component,

ϕw(y), which is H(y), given by (7.4).

3. Compute the conditional expected value 〈∂ϕw/∂t | ϕw(y) = W 〉. The phase function corre-

sponding to ∂ϕw/∂t is f · ∇ϕw, which in this case is −ν0y
2
2/y5

1 .

4. Solve the model system. Model means are plotted in Figure 7.3.

5. Compute the uncertainty. Predicted standard deviations appear as error bars in Figure 7.3.

A striking feature of Figure 7.3, relative to Figure 6.3 in the previous chapter, is that the error

bars are much larger. The expected nondimensional deviation using H(y) as the model variable is

approximately 1 to 2, meaning the expected error in phase velocity is typically once to twice as large

as the model mean. Hence, H(y) is not nearly as good a choice for the model variable ϕw(y) as it

was in Chapter 6. Of course, no other reduced-order model having H(y) as its model variable could

give a smaller average deviation. It would benefit the modeler to choose a different model variable,

particularly if he or she is interested in behavior near the stationary point, where the predicted

deviation is particularly large.

Nevertheless, the model solution may be applied, as it was in the previous chapter, to predicting

envelope curves. It works reasonably well for short times, where the expected deviation remains

comfortably less than 1. Predicted top and bottom envelopes are plotted in Figure 7.4.
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2.317.



60

Chapter 8

Example: Lorenz equation

8.1 Introduction

Prior to the early 1960s, conventional wisdom—based mostly on experience with linear and nearly

linear systems—divided differential equations into two major categories: stochastic or deterministic.

Parameters of the former, such as forcing and damping, were random, whereas those of the latter were

predictable. Stochastic systems, it was believed, gave rise to stochastic solutions, and deterministic

systems gave rise to deterministic solutions. Barring singularities, a differential equation that was

not stochastic could be assumed to have a regular, predictable solution for all time.

The apparent dichotomy became important to early efforts at weather prediction, which had

finally begun a transition from empiricism to first-principles analysis. While it might not have been

practical to measure the temperature, wind speed, humidity, and so forth everywhere on Earth’s

surface at once, such quantities were at least knowable in principle. As measuring technology

and computers improved, it followed that the remaining unknowns would become progressively less

important, allowing for ever-longer range forecasts. Limits on the march of progress—if indeed there

were any—would be imposed externally by such fundamentally unpredictable forcings as the solar

radiation level.

A major intellectual challenge to this mode of thinking arrived in the form of a paper by Ed-

ward Lorenz, then and still a meteorologist at the Massachusetts Institute of Technology. The

paper, Deterministic Nonperiodic Flow (Lorenz, 1963), rose to landmark status by demonstrating,
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by way of a uniquely simple example, that nonlinear problems can be fundamentally different. Even

a deterministic three-dimensional system with a simple quadratic nonlinearity—a crude model of

thermal convection in the atmosphere—gives rise to fundamentally unpredictable, stochastic behav-

ior through strong dependence on infinitesimal details of the initial condition. Any quasi-periodic1

solution, Lorenz demonstrated, cannot be stable. If indeed weather systems resemble Lorenz’s model,

then there are fundamental limits on how far into the future weather can be predicted, regardless of

advances in measuring or computation technology.

The phenomenon of strong dependence on initial conditions in a bounded system has come to

be called chaos, and it is now believed to be a critical feature of many physical processes, including

turbulence. Lorenz’s original system remains popular among researchers due to its simplicity, and

much has been discovered about it in the intervening decades.

Lorenz’s original three-dimensional model equation is given by

d

dt


Y1

Y2

Y3

 =


α (Y2 − Y1)

βY1 − Y2 − Y1Y3

Y1Y2 − γY3

 (8.1)

where α is the Prandtl number, β is related to the Rayleigh number, and γ is a third parameter

involving geometry. The so-called classical case, which was originally cited by Lorenz, takes α = 10,

β = 28, and γ = 8/3. The phase vector Y(Y0, t) represents the state of a small two-dimensional

fluid-filled cell, periodic in one direction, which is simultaneously heated at bottom and cooled on

top. Heat causes the fluid density to decrease, leading to an unstable arrangement of heavier fluid

atop lighter. If the system is perfectly balanced—analogous to a long stick being perfectly balanced

on its tip—then it can remain in that state indefinitely: Zero is a stationary point of (8.1).

At the slightest perturbation, however, two counter-rotating rolls develop. The direction of their

rotation is arbitrarily sensitive to details of the initial perturbation. Rotation and the subsequent

heat transfer tend to correct the imbalance after a few cycles, but continued heating prevents stability
1In Lorenz’s terminology, a trajectory that returns arbitrarily close to its starting point is called quasi-periodic;

strictly periodic solutions are a subset of quasi-periodic ones.
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Figure 8.1: Finite segment of a typical trajectory of Lorenz’s equations (8.1), computed by numeric
integration and rendered as a metal wire. Conical beads indicate the direction of travel. The black
hemisphere marks the origin, and directions of the positive y1 and y2 axes are as indicated (triangles
marked 1 and 2, respectively; the base of each triangle is 20 units from the origin). The positive y3

axis points upward; the highest point on the wire is approximately 45 units above the y1− y2 plane.
Shadows on the y1 − y2 plane are cast by a spotlight high on the +y3 axis.

from ever being achieved. After some time, the system comes to another unstable equilibrium and

reverses, only to repeat the same pattern again later.

A typical trajectory of Lorenz’s system is shown as a wire model (to illustrate its three-dimensional

structure) in Figure 8.1; a more traditional view appears in Figure 8.2, which includes projections

onto the three coordinate planes. The phase-space behavior of Lorenz’s system has the rare feature

of being recognizable to many laypeople: Its trajectories approach the famous Lorenz butterfly, a

strange attractor (Tucker, 2002) that has become something of a icon for chaos theory. Long-time

solutions are dominated by two large counter-rotating whorls. Typically, the system orbits around

one whorl or the other for an unpredictable number of cycles, after which, having landed on the

wrong side of an inscrutable divider, it reverses, veering to the opposite side. The divider is so

complicated and so fine that it is practically impossible to predict the state of the system more than

a few cycles into the future.
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Figure 8.2: Two additional trajectories of the Lorenz dynamical system (8.1), rendered in a more
traditional way, with projections on the three coordinate planes. The trajectories eventually ap-
proach a fractal strange attractor resembling a butterfly.

Equation (8.1) has three stationary points: one at the center of each whorl and one at the origin.

None is stable. However, the motion is bounded; it is possible (though nontrivial) to construct

trapping regions for the system. See Pogromsky et al. (2003) for a discussion.

The phase-space divergence ∇ · f is constant and negative at −(α + 1 + γ), which in the classical

case works out to −41/3. Thus the system is a candidate for analysis by our methods. However, it

is unlike previous examples in several important ways. First, it does not approach a stationary point

after infinite time, but rather it approaches a strange attractor of fractal dimension. This marks the

first example for which stationary and steady solutions differ. A system on the attractor (that is, on

R) is statistically stationary, but it is not steady; a system on any of the three stationary points is

both stationary and steady. The invariant density ρstationary(y) will be singular everywhere on the

attractor, and zero everywhere else (that is, all points of Rc).

Asymptotic approach also has a different meaning in this chapter: it signifies asymptotic approach

to the attractor set, with its attendant motion, rather than to any particular fixed point. A model

for Lorenz’s system in asymptotic approach would describe its approach to the attractor. One might

be interested in a reduced-order system, or the answers to such obvious questions as, “What is the
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root mean square rotation rate under stationary conditions?” The latter is given by a moment of

ρstationary(y), specifically:

RMS rotation rate =
(∫

Ω

y2
1 ρstationary(y) dV

) 1
2

(8.2)

One difficulty we encounter with Lorenz’s system is that although trapping regions exist, none

is a canonical (in the sense of being an isosurface of some Hamiltonian) choice. We have too much

flexibility in choosing Ω, and that means ρasymptoticapproach(y) is not uniquely determined. The

stationary density, however, remains invariant under such changes (discussion in Section 2.6), and

more realistic model systems do not suffer from this limitation. We will take a somewhat arbitrary

implicitly defined Ω and avoid overstating significance of the asymptotic approach density here.

8.2 Solutions

The definition for Ω is implicit: among points in a rectangular prism extending from −20 to 20 in

the y1 direction, −30 to 30 in the y2 direction, and −2 to 50 in the y3 direction, those belonging to

any trajectory that departs the prism in finite time are not members of Ω; all others are members

of Ω. Thus Ω is, implicitly, a trapping region. Dimensions of the prism were chosen to contain all

points in a typical long-time trajectory of the system; however, it should emphasized that this choice

for Ω is arbitrary.

The stationary density ρstationary(y) is the SRB measure of (8.1), a probability density that

is singular on R, now a fractal set of measure zero, and zero everywhere else. We approximate

ρstationary(y) below using the conjecture of Section 3.7, under which it is regarded as a long-time

conditional limit of the asymptotic approach density. The reader is referred to Froyland and Dellnitz

(2003) for a more rigorous alternative.

Because phase-space divergence is constant, the asymptotic approach density is given simply by

(E.14), as it was in Chapters 5 and 6. Again, λ can be computed from (E.15). The solution is again

on a grid, now 90 units in y1 by 135 in y2 by 117 in y3. Isosurfaces of ρasymptoticapproach(y) are
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Figure 8.3: Successive isosurfaces of ρasymptoticapproach(y) for the Lorenz equations (8.1). Details
of the setting are identical to those in Figure 8.1. Isosurface levels, clockwise from the top left, are
0.92×10−5, 1.23×10−5, 1.61×10−5, and 2.00×10−5. The jagged texture is an artifact of numerical
isosurface generation.

plotted in Figure 8.3. The density is singular on the attractor set.

8.3 Reduced-order model

In this section, we attempt to apply the reduced-order modeling theory developed in Chapter 4 to

Lorenz’s equations. Our motivation is not to find a globally acceptable reduced order model for

Lorenz’s system, but to show how the method fares in an imperfect situation. And the situation is

surely imperfect: under the Poincaré-Bendixson theorem, a 2D model system cannot exhibit chaos,

so its dynamics will be fundamentally different.

Model construction proceeds via the five-step process outlined in Chapter 4. Step 1 is to choose

the appropriate sample point density. In previous examples, the asymptotic approach density was

the only logical choice, because stationarity was a trivial situation. Now, however, stationarity is

quite interesting: it corresponds to the system’s behavior in the long-time limit.

Hence, for Lorenz’s equations, under a given set of model variables, two different reduced-order
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models can be constructed: one for systems that are undergoing asymptotic approach, and another

for systems that have attained stationarity. The appropriate model to use is the one which matches

actual experimental conditions.

Next (Step 2), model variables must be selected. The original system is three-dimensional (N =

3), so we may construct a reduced-order model of one or two dimensions (M = 1 or M = 2,

respectively). We arbitrarily choose to examine two-dimensional models. The first set of model

variables, explained in the following paragraph, is arbitrary and relatively simple; the latter, visited

in Section 8.4, is based on principal-component analysis.

For the first set of model variables, consider the trajectory in Figure 8.1. The shadow in the

y1 − y2 plane is nearly 1 : 1 with the wire above, except where the wire is close to vertical (i.e., a

region that follows a line segment joining the two whorls’ center points.) Thus ϕw1(y) = y1 and

ϕw2(y) = y2 are a reasonable, though perhaps not optimal, choices of model variables.

The remaining three steps are:

3. Compute the conditional expectation 〈∂ϕw/∂t | ϕw(y) = W〉, which has the components

〈f1(y) | y1 = W1 ∩ y2 = W2〉 and 〈f2(y) | y1 = W1 ∩ y2 = W2〉. These are computed by a bin-

ning process in two dimensions.

4. Normally, the fourth step would be to solve the model system

d

dt

 W1

W2

 =

 〈f1(y) | y1 = W1 ∩ y2 = W2〉

〈f1(y) | y1 = W1 ∩ y2 = W2〉

 (8.3)

for W(W0, t). Here, however, for illustration, we instead plot the right-hand side as a vector

field. The stationary model velocity field in appears in Figure 8.4, and the asymptotic approach

model velocity field appears in Figure 8.5. Both plots include projected streamlines of the full

three-dimensional system for reference.

5. Compute the expected deviation. Contours of the nondimensional standard deviation are

plotted in Figure 8.4 for stationarity and in Figure 8.5 for asymptotic approach.
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To see how the reduced-order models work, let us walk through their predictions for the behavior

of two systems, one undergoing asymptotic approach and another that has reached stationarity.

First, let an experiment be conducted under asymptotic approach conditions. Let its model

initial condition (which here is its position in the y1 − y2 plane) be W0 = (0, 20). From standard

deviation contours in Figure 8.5, one can see that expected deviation is less than 0.5 there, so the

model prediction is initially reliable. The model velocity field in Figure 8.5 indicates that the system

will travel roughly in the +w1 direction until it approaches the attractor’s projection in the w1−w2

plane. Along the way, however, it crosses contours of increasing expected deviation. By the time

the system approaches the attractor’s projection, expected deviation from the model is greater than

1.5; hence, the model is no longer reliable there.

Thus the asymptotic approach model does a reasonable job of describing how a system away

from the attractor in the w1 − w2 plane will approach the attractor. It does not, of course, predict

behavior on the attractor reliably.

Now, assume stationarity rather than asymptotic approach. Figure 8.4 is analogous to Figure

8.5. Notice that no information is provided outside the attractor’s w1 − w2 projection, because

ρstationary(y) is zero there. Logically, this is sensible; the presence of a system outside that region

would contradict the assumption of stationarity. Hence we are restricted to initial conditions W0 =

ϕw(Y0) that lie inside the projected domain of the attractor. Consider a system whose W0 =

(15, 15), which is inside the attractor’s projection and near the upper-right corner of the model

domain. From nondimensional standard deviation contours in Figure 8.4, the predicted deviation

there is low—less than 0.5, so the model should initially be a reliable predictor of behavior. From

the model velocity field at W = (15, 15), motion is predicted to be in roughly the −w2 direction,

then to continue clockwise around the rightmost whorl. This motion appears likely to continue

(dev(W) < 0.5) until it approaches a line segment joining the two whorl centers, where from

standard deviation contours, the expected deviation spikes. Thus, the stationary model’s prediction

is expected to work reliably when the system is away from the bifurcation region, and to break down

when the system is close to it. This is, again, a qualitatively reasonable prediction.



68

-30

-20

-10

0

10

20

30

-20 -15 -10 -5 0 5 10 15 20

w
2

w1

3D Lorenz trajectory
arrows: g(w)
deviation 0.5
deviation 1.0
deviation 1.5

Figure 8.4: Tabulated function representing a reduced order model for Lorenz’s equation, under
stationarity, with the arbitrary model variables w1 = ϕw1(y) = y1 and w2 = ϕw2(y) = y2. Arrows
indicate the direction of g(W); their lengths are proportional to its magnitude. Also shown for
references are two trajectories of the full three-dimensional system, as well as contours and shading to
indicate the local expected nondimensional standard deviation. The model is only defined where the
density is nonzero—that is, where the probability of finding the system under stationary conditions
is nonzero.

8.4 Reduced-order model on principal component modes

The choice ϕw1(y) = y1, ϕw2(y) = y2 in the previous section was simple but arbitrary; one might

expect model variables based on physical attributes of the system to perform better (in the sense

of having a lower average nondimensional standard deviation). In this section, we construct a two-

dimensional reduced order model for Lorenz’s equations based on the two largest-eigenvalue principal



69

-30

-20

-10

0

10

20

30

-20 -15 -10 -5 0 5 10 15 20

w
2

w1

3D Lorenz trajectory
arrows: g(w)
deviation 0.5
deviation 1.0
deviation 1.5

Figure 8.5: Tabulated function representing a reduced order model for Lorenz’s equation, under
asymptotic approach, with the arbitrary model variables w1 = ϕw1(y) = y1 and w2 = ϕw2(y) = y2.
Arrows indicate the direction of g(W); their lengths are proportional to its magnitude. Also shown
for reference are two trajectories of the full three-dimensional system, as well as contours and shading
to indicate the local nondimensional standard deviation.

component modes. These are the modes which, for experimental data, might have been derived with

Karhunen-Loevé theory.

As before, it would be possible to compute a model for stationarity or asymptotic approach, but

we restrict attention to stationarity here.

Principal component analysis, which sometimes goes by the name proper orthogonal decompo-

sition, is a tool for finding reduced-order subspaces for a problem—or in our terminology, model
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variables. It identifies orthogonal directions in which the sample points (or in this case, the sample

point density) have maximum variance. These are simply the principal eigenvectors of the mean-

centered covariance matrix—those whose corresponding eigenvalues are largest.

One may compute the covariance matrix by taking appropriate moments of the sample point

density. Let υi = yi− < yi >. The mean-centered covariance matrix under stationarity is approxi-

mately: 
< υ1υ1 > < υ1υ2 > < υ1υ3 >

< υ2υ1 > < υ2υ2 > < υ2υ3 >

< υ3υ1 > < υ3υ2 > < υ3υ3 >

 =


79.38 61.32 0.00

61.32 84.36 0.05

0.00 0.05 83.48

 (8.4)

The eigenvalues and corresponding eigenvectors are, in order from largest magnitude to smallest:

143.24 −0.693 −0.721 0.000

83.48 0.000 0.000 1.000

20.50 0.721 −0.693 0.000

(8.5)

The first two eigenvectors together account for more than 90% of the stationary density’s variance,

and thus should be a better choice for model variables than the näıve choice (y1, y2). We therefore

take M = 2, ϕw1(y) = 0.693y1 + 0.721y2 (sign does not matter) and ϕw2(y) = y3.

The resulting reduced order model appears in Figure 8.6. There are dark areas of high nondi-

mensional standard deviation in the bifurcation region and near the origin, but over most of the

plane the standard deviation is small.

It was expected that the average deviation would be smaller for principal-component model

variables than for the näıve choice (y1, y2), but both are small and in fact the näıve model performs

slightly better, with an average deviation over w of 0.103, versus 0.119 for the principal component

model variables.
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Figure 8.6: Tabulated function represeting a reduced order model for Lorenz’s equation under
stationarity. Model variables w1 = ϕw1(y) = 0.693y1 + 0.721y2 and w2 = ϕw2(y) = y3 are unit
eigenvectors associated with the two largest-magnitude eigenvalues of the covariance matrix—the
modes which would have been chosen by Karhunen-Loevé theory. Arrows indicate the direction of
g(W); their lengths are proportional to its magnitude. Also shown are contours and shading of the
local nondimensional standard deviation.

8.5 On the conjectured relationship between densities

In Section 3.7, it was conjectured that the stationarity density is equivalent to a particular limit of

the asymptotic approach density. Mathematically, several plausibility arguments were given for that

conjecture; physically, it meant that the statistics of asymptotic approach, after a sufficiently long

period of time, should approach those of stationarity.

The conjecture was applied in this section to obtain an approximate ρstationary(y). In Table 8.1,

the conjecture’s predictions for covariance statistics are compared to those obtained by long-term

time averaging. Convergence appears plausible, but not certain.
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source < υ1υ1 > < υ1υ2 > < υ1υ3 > < υ2υ2 > < υ2υ3 > < υ3υ3 >
ρcutoff = 1.23e− 05 95.3 107 0.07 166 0.08 128
ρcutoff = 1.42e− 05 99.8 103 0.09 147 0.09 121
ρcutoff = 1.61e− 05 99.3 93.3 0.12 126 0.12 113
ρcutoff = 1.80e− 05 94.2 80.7 -0.01 107 0.02 99.8
ρcutoff = 2.00e− 05 84.9 67.2 0.06 90.8 0.18 87.8
ρcutoff = 2.10e− 05 79.4 61.3 0.00 84.4 0.05 83.5
time avg 2e+05 68 67 0.17 84 0.19 59
time avg 4e+05 68 67 0.51 84 0.53 59

Table 8.1: Convergence of mean-centered covariance statistics for ρasymptoticapproach|ρ > ρcutoff ,
compared to those obtained by long-time averaging. The first six rows give results for six different
values of ρcutoff ; the largest value of ρasymptoticapproach(y) on the grid was 7.70e − 05. Values were
chosen to coincide with those depicted in Figure 8.3 and points in between, as well as the larger
value 2.10e − 05 (which is at the 90th percentile of grid values) used to approximate ρstationary(y)
in this chapter. The bottom two rows provide the same statistics computed via time averaging
two trajectories over 1e+05 and 2e+05 time units, respectively, and thus approximate the true
stationary statistics. Convergence does appear to be plausible, although there are relatively large
numerical errors in the y3 direction, which seems reasonable given the relatively larger mean in the
y3 direction. Further refinement might increase error as the number of grid points inside the cutoff
isosurface decreases.

8.6 Implications for turbulence modeling

The reduced-order modeling analysis above, although far simpler than what would be required for

forced turbulence, highlights several features a turbulence model based on Chapter 4 should possess.

Foremost, no guesswork was involved, except perhaps in the choice of model variables. Con-

struction of a turbulence model typically involves both art and science, but the method applied here

is straightforward and boring. All concepts have clear and unambiguous meanings and transparent

limitations.

For a given set of conditions and choice of model variables, the model equation derived in Chapter

4 is ideal. No other model on the same variables deviates less, on average, from the true N -

dimensional behavior. Still, there may be regions of the model’s phase space where a high standard

deviation means the model (and indeed any model having the same model variables) will perform

poorly.

Cast into our terminology, large eddy simulation is a rule for creating model variables and an

assumption of stationarity. Therefore, a given grid and set of boundary conditions admits exactly

one ideal LES model. There may be regions of the model phase space where it predicts poorly;
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in those regions, all models predict poorly. The ability to establish local confidence estimates is a

feature missing from contemporary LES, and should be a helpful development.
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Chapter 9

Example: Burgers’ equation in one
spatial dimension

9.1 Introduction

This chapter presents our first application to a partial differential equation. Burgers’ equation is a

simplified model equation for turbulence. It is identical to the Navier-Stokes equations in every way

except for the pressure term, which is omitted to make analysis easier. It fact, Burgers’ equation

can be solved exactly: a clever change of variables (the Cole-Hopf transformation) recasts it into

a heat equation. Decaying Burgers’ turbulence has been examined by, e.g., Gotoh and Kraichnan

(1993), but we will examine a simple nonturbulent case known as the Stokes limit.

In one dimension, Burgers’ equation is given by

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(9.1)

where u(x, t) is velocity and ν ≥ 0 is viscosity. We take periodic boundary conditions in physical

space; the domain is x ∈ [−π, π) and u(−π, t) = u(π, t). When ν = 0, the equation is said to be

inviscid and develops singularities (shock waves) in finite time. The inviscid equation also conserves

energy, as may be verified by multiplying (9.1) by u, integrating over x, and setting ν = 0.

Similarly, an average of (9.1) over x (even with finite viscosity) eliminates the convective and

viscous terms, showing that the average remains constant over time. The average is therefore
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arbitrary—choosing it amounts to selecting an inertial frame of reference. Hence, we may take

∫ π

−π

u(x, t) dx = 0 (9.2)

without loss of generality.

One way to characterize decaying systems such as this one is by the energy spectrum. That is,

at an arbitrary time (or energy) of decay, how are the energies at each wavenumber related? We

will attempt to answer this question for the Stokes limit, a regime in which viscous forces dominate.

In order to obtain a system of ordinary differential equations, the partial differential equation

(9.1) must be discretized. Let u(x, t) be represented by the Fourier series

u(x, t) =
N/2∑
j=1

(Y2j−1 (Y0, t) cos (jx) + Y2j (Y0, t) sin (jx)) (9.3)

which is sufficiently general, provided the average of u(x, t) over x is assumed to be 0 (9.2), and

N →∞. To fill each wavenumber completely, finite N should be even. Components can be extracted

from the resulting sum by integrating against the basis functions, which are orthogonal over the x

domain.

The N → ∞ limit has not yet been considered, so we restrict attention to truncations at finite

wavenumber. This is consistent with DNS practice, and in any case is a prerequisite for exploring

the N →∞ limit.

Substituting (9.3) into (9.1) leaves, for the convective term, a double sum involving products

of the Y(Y0, t) components and basis functions. The latter can be combined via trigonometric

identities. Thus the convective term in (9.1) makes a quadratic contribution to f(Y). For the

viscous term, a single sum remains, with every term identical to its corresponding term in the

original series, except multiplied by −ν times the square of the wavenumber j. Thus the viscous

term in (9.1) makes a linear contribution to f(Y).

Before taking the Stokes limit, then, the right-hand side is the sum of quadratic and linear terms:
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fi(y) = yjQjikyk + Lijyj (9.4)

where the Q and L components are constants determined by integrating the convective and vis-

cous terms of (9.1), respectively, with u(x, t) given by Fourier series (9.3), against basis functions.

Conveniently, Lij is diagonal. When ν = 0, the L term vanishes.

To find a suitable Ω, consider isosurfaces of energy for the inviscid system. By Parseval’s identity,

these are spherical shells centered on the origin. Indeed, when ν is zero, the rate of change of YjYj

(sum implied) is zero, as may be verified by direct substitution; its trajectories remain on spheres

of constant radius. That is, QjikYjYiYk = 0. Thus a sphere of any radius, centered on the origin, is

an appropriate choice for Ω. We denote the square of the radius by E.

In the Stokes limit, convection is negligible compared to viscous dissipation; although the con-

vective term determines Ω, it plays no part in f(y). Because Lij is diagonal, what remains is a

completely decoupled linear system:

dYi

dt
= −νk2

i Yi (no summation implied) (9.5)

where k2
i is the square of the wavenumber affiliated with the ith mode Yi:

k2
i = b i + 1

2
c2 (9.6)

The phase-space divergence of (9.5) is a constant:

∇ · f = −ν
N∑

i=1

k2
i (9.7)

Crucially, (9.5) has a simple analytical solution. Trajectories are given by

Yi(Y0, t) = Y0i exp(−νk2
i t) (9.8)
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The motion is bounded, and R consists of a single stationary point at the origin. All other points

in Ω belong to Rc.

9.2 Solutions

The stationary density is trivial: it is a Dirac delta function at the origin. Physically, that means

the only stationary solution to (9.5) is the trivial u(x, t) = 0.

For the state of asymptotic decay, however, ρasymptoticapproach(y) is appropriate, and it is non-

trivial. From (E.14) the asymptotic approach density along characteristics is

ρasymptoticapproach(Z(Z0, s)) =
λ

2(−∇ · f)

(
s +

1
(−∇ · f)

)
(9.9)

where λ is given by (E.15):

λ =
(∇ · f)3∫

∂Ω
f · n̂ dS

(9.10)

Characteristics Z(Z0, s) coincide with trajectories (9.8) whose initial points Z0 lie on the surface

of the boundary sphere:

Z0
2
1 + Z0

2
2 + Z0

2
3 + · · · = E (9.11)

Thus,

Z2
1 exp(2νk2

1s) + Z2
2 exp(2νk2

2s) + Z2
3 exp(2νk2

3s) + · · · = E (9.12)

Although it cannot be explicitly solved for s, (9.12) allows ρasymptoticapproach(y) to be constructed

implicitly from (9.9).

9.3 The energy spectrum

We now attempt to calculate the energy spectrum at an arbitrary characteristic time s? of decay.

That is, we are interested in moments of a probability density which is conditional on s = s?. By

(9.9), this condition corresponds to examining an isosurface of ρasymptoticapproach(y); by (9.12), such
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an isosurface is an ellipsoidal shell in y. The ellipsoid is centered on the origin and aligned with

coordinate axes.

That is, the density ρ(y) is

δ
(
y2
1 exp(2νk2

1s
?) + y2

2 exp(2νk2
2s

?) + y2
3 exp(2νk2

3s
?) + · · · − E

)
(9.13)

The energy in mode Yi is
〈
y2

i

〉
. When reporting spectra, one conventionally adds the energies at

each wavenumber; in this case, that means adding contributions from the sine and cosine components.

(In more than one spatial dimension, shell summation might also be required.) Thus by “expected

energy spectrum,” we mean the set of expected values
〈
y2
1 + y2

2

〉
for wavenumber 1,

〈
y2
3 + y2

4

〉
for

wavenumber 2,
〈
y2
5 + y2

6

〉
for wavenumber 3, and so on up to wavenumber N/2. Each of these must

be normalized in some way; we choose to normalize by
〈
y2
1 + y2

2

〉
, which is the energy in the first

wavenumber. That is,

Ek =

〈
y2
2k−1 + y2

2k

〉
〈y2

1 + y2
2〉

(9.14)

By symmetry of (9.13), the integral of ρ(y) against any term of the form y2
i exp(2νk2

i s?), over all

space, is the same. The integral over all space is equal to the integral over Ω, because the ellipsoid

is a strict subset of Ω. Hence the ratio of expected values of any two components is

〈
y2

i

〉〈
y2

j

〉 =
exp(2νk2

j s?)
exp(2νk2

i s?)
=

exp(−2νk2
i s?)

exp(−2νk2
j s?)

(9.15)

The expected energies in sine and cosine components of the same wavenumber are therefore

equal. Finally, then,

Ek ∝ exp(−ck2) (9.16)

where c is a positive constant. The form holds irrespective of s? and is our predicted energy spectrum

for Burgers’ equation in the Stokes limit during asymptotic approach.
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9.4 Remark: from the Stokes limit to Navier-Stokes

The preceeding discussion concerned Burgers’ equation, but as interest is ultimately in turbulence,

the full three-dimensional constant-density Navier-Stokes equations will eventually need to be ana-

lyzed. Although Navier-Stokes trajectories cannot be solved analytically, there are several similarities

to the preceeding situation which should help. This section’s aim is to briefly draw attention to those

similarities that might be exploited.

First, Navier-Stokes, when discretized on the same kind of truncated Fourier series as above,

leads to a similarly quadratic system of ordinary differential equations that has negative constant

divergence. The pressure term makes no change in this respect, and viscous dissipation is not altered.

Further, the interiors of spheres of constant energy remain appropriate choices for the trapping region

Ω.

However, the equation of continuity makes for an important change: under three-dimensional

Navier-Stokes, Y has only two degrees of freedom for each wavenumber triplet.

Applying the numerical method used in previous chapters would amount to doing DNS repeatedly

(albeit with non-arbitrary initial conditions), which is not computationally feasible. Fortunately,

there is reason to hope certain approximations will be possible. These will be the subject of future

work.
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Chapter 10

Conclusions

The present work sought to address two questions regarding the influence of experimental conditions

on the statistics and reduced-order behavior of dissipative ordinary differential equations. First,

what do experimental conditions such as stationarity and asymptotic approach imply about the

distribution of sample points in phase space? Second, how do they ultimately influence results,

particularly with regard to reduced-order behavior?

The experimental condition of stationarity, it was shown, requires that the distribution of sam-

ple points be singular on R, a subset of phase space that is not accessible from any boundary-

crossing trajectory in finite time. When R consists of a single stationary point, as it did in the

one-dimensional linear example (Chapter 5), the damped linear oscillator example (Chapter 6), the

unforced Rayleigh-Plesset equation example (Chapter 7), and the Burgers’ equation example (Chap-

ter 9), the appropriate density is a Dirac delta function at that point. When R contains a single

periodic attractor, the density is singular along it; when it contains a single strange attractor, as

for Lorenz’s equations (Chapter 8), the density approaches an SRB measure. When R contains two

or more of the above, the stationarity density is a linear combination. Proportions are arbitrary so

long as the sum is unity.

Asymptotic approach, on the other hand, led to a sample point density that grows algebraically

along trajectories. Like the stationarity density, it is singular on R; unlike the stationarity density,

however, the total probability mass there is negligible. The asymptotic approach density is greater

than zero throughout the domain. The variational condition used to derive the asymptotic approach
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density also provides a boundary condition, leaving a unique solution even when multiple attractors

are present. In Chapter 5, it was shown that for the trivial one-dimensional linear example, the

asymptotic approach density might correspond to a set of experiments of exponentially decaying

duration.

Construction of explicit stationarity and steady decay densities served to answer the first question

posed above: experimental conditions impose a specific structure on the distribution of sample points

in phase space. The second question concerned how to apply it.

For most kinds of observables, the answer is simply to take an appropriate moment of the sample

point density, as expressed in equation (1.5). The phase function ϕ(y) should match the observable of

interest. It was shown in Chapter 4 that by judicious choice of observables, one can systematically

construct reduced-order models, along with deviation estimates. Such models create predictions

based on conditional expectation of reduced-order behavior, which can be obtained directly from

the sample point density. The deviation estimates are corresponding second-order moments.

For a given set of model variables, therefore, each experimental condition yields a different

model, and a model only makes sense in the context of its experimental condition. It was discussed

in Chapter 4 how this observation might explain, and suggest a way to resolve, the closure problem.

Reduced-order models of M = 1 were computed for the two-dimensional systems of Chapters 6

and Chapter 7, and of M = 2 for the three-dimensional system of Chapter 8. The latter featured

separate models for stationarity and asymptotic approach, as well as a stationarity model based on

principal component analysis.

Future topics of interest include moving to nonautonomous systems—those for which t appears

explicitly on the right-hand side—and approximate solution techniques (particularly for large N).

The latter are necessary to make progress on three-dimensional DNS of the Navier-Stokes equations;

a ρ(y) appropriate for these could lead to theoretically clean turbulence models. Also of interest are

alternative formulations for asymptotic approach (based on alternative bounding strategies), and

deeper connection to ergodic theory. A clear proof or disproof of the conjecture in Section 3.7 would

be helpful.
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Finally, earlier versions of this study attempted to unify the conditions of stationarity and asymp-

totic approach under the common rubric of reproducibility. It was argued that such experimental

conditions are of interest because they lead to reproducible behavior, which suggested creating a

measure of reproducibility and maximizing it with respect to ρ(y). In that theoretical framework,

stationarity and asymptotic approach are simply maxima under different constraints. Such a unified

treatment, although based on less familiar concepts, might ultimately prove simpler.
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Appendix A

Integration over streamtubes

We have frequently encountered the need to integrate a function of y over a volume Rc, which is

that portion of the trapping region Ω accessible along trajectories Z(Z0, s) (which cross ∂Ω at Z0,

where s = 0) in finite s. Recall that Ω and Rc differ only on R, a set of measure zero (proof in

Appendix C). Such integrals may benefit from a change of variables in which differential elements

dV are aligned with streamtubes; that change of variables is the subject of this appendix.

By definition, each point in Rc belongs to exactly one trajectory that entered Ω at a finite time

in the past, and each trajectory crosses ∂Ω exactly once (since Ω is a trapping region). Thus a

partition of ∂Ω into differential surface elements dS defines a set of streamtubes that fills the entire

volume of Rc without overlap, and every point in Rc belongs to exactly one of the streamtubes.

The goal is therefore to replace an integral dV with one over ds dS, where ds is a differential

unit of time along a trajectory contained by the streamtube whose intersection with ∂Ω is the

differential area dS at the point Z0 (Figure A.1). This transformation naturally requires a Jacobian

determinant, which will be denoted J (Z0, s). Thus a more precise statement of the goal is to find

J (Z0, s) such that ∫
Rc

h(y) dV =
∫

∂Ω

∫ ∞

0

h(Z(Z0, s))J (Z0, s) ds dS (A.1)

for any Lebesgue-integrable function h(y) on Rc.

Consider the small volume dV0 subtended by a typical differential area element dS, extruded in-

ward along the vector f(Z0) ds (Figure A.1, right). From geometry, the volume of dV0 is− f · n̂|Z0
ds dS.

Now consider a partition of the streamtube into sections of length ds (in time, along trajectories),
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Rc
dS

(s = 0 at boundary) n̂

f

dV0

dV

s →∞

dV0

Figure A.1: Integrating over the volume of Rc by integrating over its streamtubes. On the left:
a typical streamtube. It intersects the surface ∂Ω over a small area dS at Z0 (label omitted for
clarity), then proceeds inward toward s → ∞. It can be partitioned into volumes whose length in
time is ds; two such volumes are shown. On the right: a closeup of dV0, the differential volume
nearest the wall.

starting from s = 0 at the boundary. The endcaps of partitions deep inside Ω may become highly

distorted, but because their edges remain on the surface of the streamtube, all volume remains

accounted for. The section nearest the wall is dV0; the next section is exactly the volume that would

have been occupied by dV0 if it were allowed to convect down the streamtube under the influence

of f during ds, and similarly for subsequent sections. The volume of each section is therefore

J(Z(Z0, s)) dV0, where

dJ

ds
= (∇ · f) J (A.2)

along streamlines. (This is a basic property of Lagrangian flow descriptions; see for example Majda

and Bertozzi (2002) for a proof.) If the units of dS square those of f · n̂ ds, then J(Z0) = 1. Thus

dV = −f · n̂ J ds dS, and so

J (Z0, s) = −f · n̂|Z0
exp

(∫ s

0

∇ · f |Z(Z0,s′) ds′
)

(A.3)

The change of variables of Equation (A.1) works with Jacobian determinant J from (A.3).

Remember that the surface parameterization must be scaled so that units of dS match those of

f · n̂ ds squared.
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Appendix B

Conditional probabilities

This appendix reviews relevant topics from the theory of conditional probability.

Let A and B be two events. The conditional probability Pr(A|B) is the probability of event A

given that event B has already occurred. It is given by

Pr(A|B) =
Pr(A ∩B)

Pr(B)
(B.1)

when Pr(B) > 0, and is otherwise undefined. The expression A ∩ B refers to the intersection of A

and B; Pr(A ∩B) is the probability that both A and B occur.

Conditional probability can be extended to continuum situations. If ρ(y) is a probability density

on y ∈ Ω, then the expected value, or expectation, of some observable function ϕ(y) is

〈ϕ〉 =
∫

Ω

ϕ(y)ρ(y) dV (B.2)

This is the standard, unconditional expected value. One might also inquire about the expected value

given that y is in some subset S of Ω. This is called the conditional expectation of ϕ(y) given that

y ∈ S, and is written 〈ϕ|y ∈ S〉. There are a number of ways to express it, but for our purposes the

following definition suffices.
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The conditional density ρ(y) given that y ∈ S ⊂ Ω is

ρ(y|y ∈ S) =


ρ(y)R

S ρ(y′) dVy′
y ∈ S

0 y 6∈ S
(B.3)

Using B.3, the conditional expectation of ϕ(y) given that y ∈ S is

〈ϕ(y) |y ∈ S〉 =
∫

Ω

ϕ(y)ρ(y |y ∈ S) dV =

∫
S ϕ(y)ρ(y) dV∫
S ρ(y) dV

(B.4)

A special case of (B.4) occurs when S has no volume (Lebesgue measure zero). For example,

consider the conditional expectation

〈ϕ(y) |w < h(y) < w + ∆w〉 (B.5)

for some continuous scalar function h(y) and ∆w > 0. In this example, S is the set w < h(y) <

w+∆w. If ∆w is allowed to approach zero, then the Lebesgue measure of S approaches zero, causing

the numerator and denominator in (B.4) to approach zero.

We can define

〈ϕ(y) |h(y) = w〉 = lim
∆w→0

〈ϕ(y) |w < h(y) < w + ∆w〉 (B.6)

whenever the limit exists. The expression is almost identical when h(y) is a vector function, except

that w is then also a vector, and the limit must hold as the norm of ∆w approaches zero.
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Appendix C

Properties of the inaccessible set

In Section 2.2, the trapping region Ω is expressed as the direct sum of two subsets: R, the set of

points not accessible in finite time from any trajectory crossing ∂Ω, and Rc, its complement. For

any y ∈ Rc, there is one trajectory that crosses ∂Ω and reaches y in a finite period of time. Some

properties of R are derived in this appendix.

C.1 Volume (Lebesgue measure)

First, for strictly dissipative problems (∇·f < 0 everywhere), the volume of R is negligible compared

to the volume of Ω. That is, the Lebesgue measure of R, λ(R), is zero.

Proof: Let V(t) be a set of points in phase space satisfying V(0) = Ω but that evolves over time

under the influence of f . At all finite t, R ⊂ V(t); if there were a point at which the boundaries

crossed, that point would be accessible from ∂Ω in finite time along a trajectory, contradicting the

definition of R. Thus λ(V(t)) ≥ λ(R).

We now show that there is an upper bound on λ(V(t)) that approaches zero as t approaches

infinity. The volume of V(t) is the sum of its differential elements, each of which is proportional to

a Jacobian satisfying

dJ

dt
= (∇ · f) J (C.1)

along trajectories. (See Appendix A for more about J .) J begins with the value 1 at t = 0. Thus
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the volume of the shrinking region at any time t is bounded exponentially:

λ(V(t)) ≤ λ(Ω) exp
(

max
y∈Ω

(∇ · f) t

)
(C.2)

The divergence of f was assumed to be everywhere negative, so for large t the volume of V(t)—and

therefore λ(R)—has an upper bound that approaches zero, completing the proof.

C.2 Normal component of the velocity

Also of interest is the behavior of f · n̂ on ∂Q, the inner boundary of Qc, as minT (Z0) →∞, which

is to say as Q approaches R. Recall that the sets Q and Qc were introduced in Section 3.2. We now

show that the product of f ·n̂ with a small unit of surface area on ∂Q decreases at least exponentially.

Consider a streamtube ω traversing Qc from the outer surface ∂Ω to the inner surface ∂Q. By

the divergence theorem, ∫
∂ω

f · n̂ dS =
∫

ω

∇ · f dV (C.3)

Denote the intersection of ω and the outer surface ∂Ω as dS∂Ω, and that of ω and the inner surface

∂Q as dS∂Q. Sides of the streamtube make no contribution to the surface integral of (C.3), and

since the ends are differentially small,

dS∂Ω f · n̂|Z0
− dS∂Q f · n̂|Z(Z0,T (Z0)) =

∫
ω

∇ · f dV (C.4)

The second term on the left-hand side is negative because n̂ is oriented outward relative to Q, which

is inward relative to Qc.

The right-hand side of (C.4) may be expressed using the streamtube change of variables (Ap-

pendix A), leaving

dS∂Ω f · n̂|Z0
− dS∂Q f · n̂|Z(Z0,T (Z0)) =

− dS∂Ω f · n̂|Z0

∫ T (Z0)

0

∇ · f |Z(Z0,s) exp
(∫ s

0

∇ · f |Z(Z0,s′) ds′
)

ds

(C.5)
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The integrand on the right-hand side of (C.5) is of the form exp(−u) du. After integrating and

simplifying,

dS∂Q f · n̂|Z(Z0,T (Z0)) = dS∂Ω f · n̂|Z0
exp

(∫ T (Z0)

0

∇ · f |Z(Z0,s) ds

)
(C.6)

Because the divergence of f is everywhere negative (the system was assumed to be dissipative),

the right-hand side of (C.6) decreases exponentially as minT (Z0) →∞, completing the proof.

Expression (C.6) only guarantees that the product of dS∂Q with f ·n̂ vanishes in the limit; it does

not guarantee that the factor f ·n̂ vanishes specifically. The latter property follows from the assumed

continuity of f(y). If the Lebesgue measure of Q approaches zero, then its thickness—the distance

between boundary surfaces—must approach zero almost everywhere. If f · n̂ did not approach zero

almost everywhere on ∂Q, then f(y) would thus be required to make a discontinuous jump across

it, violating the assumption of continuity.

C.3 Limitation on the density growth rate

One application for (C.6) is to eliminate the third possibility for equation (3.3), which was that∫
∂Qc ρf · n̂ dS = 0, but ρf · n̂ 6= 0 over a nonnegligible part of ∂Qc. The integral over ∂Qc is the sum

of that over ∂Ω and that (negated) over ∂Q. Thus if
∫

∂Qc ρf · n̂ dS = 0, then

∫
∂Ω

ρ(Z0) f · n̂|Z0
dS∂Ω −

∫
∂Qc

f · n̂|Z(Z0,T (Z0)) ρ(Z(Z0, T (Z0))) dS∂Q = 0 (C.7)

Again, the negative sign is due to the reversed orientation of normals to ∂Q relative to those of Qc.

Multiplying both sides of (C.6) by ρ(Z(Z0, T (Z0))) and summing over streamtubes,

∫
∂Q

ρ(Z(Z0, T (Z0))) f · n̂|Z(Z0,T (Z0)) dS∂Q =∫
∂Ω

ρ(Z(Z0, T (Z0))) f · n̂|Z0
exp

(∫ T (Z0)

0

∇ · f |Z(Z0,s) ds

)
dS∂Ω

(C.8)
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Substituting from (C.8) into (C.7),

∫
∂Ω

ρ(Z0) f · n̂|Z0

(
1− ρ(Z(Z0, T (Z0)))

ρ(Z0)
exp

(∫ T (Z0)

0

∇ · f |Z(Z0,s) ds

))
dS∂Ω = 0 (C.9)

Region Ω was assumed to be trapping, so on its boundary ∂Ω, ρ(Z0) f · n̂|Z0
cannot be posi-

tive. If it differed from zero on a set of finite measure, as was assumed, then for (C.9) to hold,

the expression in parentheses would have to be zero almost everywhere on that set. That would

require ρ(Z(Z0, T (Z0))) to grow at least exponentially—which happens to match the rate that the

streamtube Jacobian (A.3) decays. Thus the fraction of probability mass beyond any isosurface of

fixed s would have to approach unity as minT (Z0) →∞, violating condition (3.1).
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Appendix D

Derivation of the asymptotic
approach conditions by variational
calculus

D.1 Derivation of the governing equations

This appendix details the constrained minimization of κ, as defined in equation (3.9), with respect

to ρ(y). Repeating the definition here for reference,

κ =
∫
Qc

(
∂

∂yi
(fi (y) ρ (y))

)2

dV

Our reasoning follows Weinstock (1974).

There is only one constraint that leads to a Lagrange multiplier: that ρ(y) be properly normal-

ized, as mandated by equation (1.4). In a form suitable for minimization, it is

(∫
Qc

ρ(y) dV − 1
)

= 0 (D.1)

At the constrained minimum point, then, the following expression is stationary with respect to

both ρ(y) and the Lagrange multiplier λ:

∫
Qc

(
∂

∂yi
(fi (y) ρ (y))

)2

dV − λ

(∫
Qc

ρ(y) dV − 1
)

(D.2)
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Suppose ρ(y) minimizes expression (D.2). Let η(y) be any bounded twice-differentiable function

over Qc. For a given choice of η(y), there is a one-parameter family of test functions:

P (y; ε) = ρ(y) + εη(y) (D.3)

Clearly, P (y; 0) = ρ(y) irrespective of which test function η(y) is chosen.

For notational convenience, let

g(y, P,
∂P

∂y1
, · · · ,

∂P

∂yN
, λ) =

(
∂

∂yi
(fi (y) P (y; ε))

)2

− λ

(
P (y; ε)− 1∫

Qc dV

)
(D.4)

Further, let I(ε) be defined as

I(ε) =
∫
Qc

g(y, P,
∂P

∂y1
, · · · ,

∂P

∂yN
, λ) dV (D.5)

Then for any choice of η(y), I ′(ε) is zero at the minimum point, which is at ε = 0 (where P (y; ε) =

ρ(y)).

I ′(0) = 0 (D.6)

To find I ′(0), we differentiate (D.5), make use of (D.3), and integrate by parts:

I ′(ε) =
∫
Qc

∂g

∂P

dP

dε
+

∂g

∂(∂P/∂yi)
d(∂P/∂yi)

dε
dV

=
∫
Qc

∂g

∂P
η(y) +

∂g

∂(∂P/∂yi)
∂η

∂yi
dV

=
∫
Qc

(
∂g

∂P
− ∂

∂yi

(
∂g

∂(∂P/∂yi)

))
η(y) dV +

∫
∂Qc

(
∂g

∂(∂P/∂yi)
n̂i

)
η(y) dS

(D.7)

From (D.4),

∂g

∂P

∣∣∣∣
ε=0

= 2
(

∂

∂yj
(fj(y)ρ(y))

)
∂fi

∂yi
− λ (D.8)

and

∂g

∂(∂P/∂yi)

∣∣∣∣
ε=0

= 2
(

∂

∂yj
(fj(y)ρ(y))

)
fi (D.9)
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Thus

I ′(0)

=
∫
Qc

(
2
(

∂

∂yj
(fj(y)ρ(y))

)
∂fi

∂yi
− λ− ∂

∂yi

(
2
(

∂

∂yj
(fj(y)ρ(y))

)
fi

))
η(y) dV

+
∫

∂Qc

(
2
(

∂

∂yj
(fj(y)ρ(y))

)
fin̂i

)
η(y) dS

(D.10)

which simplifies to

I ′(0) = −
∫
Qc

(
λ + 2fi

∂

∂yi

(
∂

∂yj
(fj(y)ρ(y))

))
η(y) dV

+ 2
∫

∂Qc

((
∂

∂yj
(fj(y)ρ(y))

)
fin̂i

)
η(y) dS

(D.11)

Equation (D.11) must equal zero for all bounded, twice-differentiable test functions η(y) on Qc,

so in particular it must be zero for those η(y) that vanish on the boundary ∂Qc. For these, the

volume integral must itself be equal to zero, and so—by a basic lemma of variational calculus—what

remains of the integrand vanishes pointwise over Qc:

fi
∂

∂yi

(
∂

∂yj
(fj(y)ρ(y))

)
= −λ

2
∀y ∈ Qc (D.12)

We recognize (D.12) as an Euler-Lagrange equation for ρ(y).

If (D.12) holds, then the volume integral in (D.11) vanishes for all η(y), including those that

are nonzero on ∂Qc, so the surface integral of (D.11) must separately vanish. Applying the same

lemma, but now over ∂Qc, leaves

(
∂

∂yj
(fj(y)ρ(y))

)
(fin̂i) = 0 ∀y ∈ ∂Qc (D.13)

Equation (D.12) is a second-order linear partial differential equation for ρ(y), and equation (D.13)

is its boundary condition. The Lagrange multiplier λ is determined by enforcing constraint (D.1).
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D.2 Parabolicity

Equation (D.12) is second-order and linear; we now show that moreover it is parabolic. Expanding

out the left-hand side,

fifj
∂2ρ

∂yi∂yj
+ · · · = −λ

2
(D.14)

where the · · · represent terms of first-order and below. The components of any two columns (fixed j)

of the dyadic product matrix fifj have a fixed ratio (the ratio of the corresponding fi components)

and thus are linearly dependent. The determinant of a matrix is nonzero if and only if its columns are

linearly independent, so the determinant of the fifj matrix is zero. Second-order partial differential

equations whose coefficient matrix is zero are called parabolic. Thus equation (D.12) is parabolic.
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Appendix E

Solution of the asymptotic
approach equations

This appendix provides a detailed solution to the asymptotic approach equations from Section 3.4

along characteristics.

E.1 General solution by the method of characteristics

Along characteristic curves (3.12), equation (3.10) may be written

d

ds

(
dρ

ds
+ (∇ · f)ρ

)
= −λ

2
(E.1)

for ρ(Z(Z0, s)) with Z0 held constant. Integrating (E.1) once yields

dρ

ds
+ (∇ · f)ρ = −λs/2 + C1(Z0) (E.2)

Because the solution takes place over Qc, each characteristic’s Z0 can be placed on the entrance

boundary ∂Ω (where s = 0) without loss of generality. Applying condition (3.11) there reveals the

constant C1(Z0) to be zero at all Z0. What remains is an inhomogeneous linear first-order ODE for

ρ(Z(Z0, s)).
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Upon setting C1(Z0) = 0, equation (E.2) may be solved via the integrating factor M(Z0, s):

M(Z0, s) = exp
(∫ s

0

∇ · f |Z(Z0,s′) ds′
)

(E.3)

Using M(Z0, s), equation (E.2) may then be written

d

ds
(ρM) = −λ

2
Ms (E.4)

which has the solution

ρ(Z(Z0, s)) = − λ

2M(Z0, s)

∫ s

0

M(Z0, s′) s′ ds′ +
C2(Z0)

M(Z0, s)
(E.5)

where the integration constant C2(Z0) is not yet determined. On the inner boundary ∂Q, f · n̂

approaches zero (see Appendix C, Section C.2), so (3.11) provides no new information about it.

C2(Z0) can be determined, however, by requiring that the solution satisfy (3.1).

In Section 3.2, the sets Q and Qc were created to avoid the mathematically problematic limit set

R of points inaccessible from the boundary in finite time. The location of the border separatingQ and

Qc was a smooth function T (Z0) of time elapsed along trajectories entering Ω. As min T (Z0) →∞,

ρ(y) becomes more and more concentrated near R, but cannot be allowed to approach a Dirac delta.

Let 0 < s1 < minT (Z0) be a finite intermediate time and let α be the event that a measurement

is taken when sb(y) > s1. Then constraint (3.1) requires that

lim
s1→∞

(
lim

min T (Z0)→∞
Pr(α)

)
= 0 (E.6)

But

Pr(α) =
∫

y∈Qc:sb(y)>s1

ρ(y) dV (E.7)

To evaluate (E.7), it is helpful to change variables as described in Appendix A. By a serendipitous
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coincidence of equations (E.3) and (A.3),

J (Z0, s) = −f(Z0) · n̂(Z0)M(Z0, s) (E.8)

Substituting the new Jacobian into E.7,

Pr(α) =
∫

∂Ω

−f(Z0) · n̂(Z0)

(∫ T (Z0)

s1

(
−λ

2

∫ s

0

M(Z0, s′)s′ ds′ + C2(Y0)
)

ds

)
dS (E.9)

On ∂Ω, f · n̂ ≤ 0 (since Ω is a trapping region), so for (E.6) to be zero, equation (E.9) requires

lim
min T (Z0)→∞

(
lim

s1→∞

(∫ T (Z0)

s1

(
−λ

2

∫ s

0

M(Z0, s′)s′ ds′ + C2(Y0)
)

ds

))
= 0 (E.10)

In the joint limit, the length of the interval from s1 to T (Z0) can be anywhere from zero to

infinity depending on the direction of approach, so for the limit to exist and be zero, the integrand

must vanish. The upper limit of integration is bounded above and below by ∞. Hence,

−λ

2

∫ ∞

0

M(Z0, s′)s′ ds′ + C2(Z0) = 0 (E.11)

and so finally,

C2(Z0) =
λ

2

∫ ∞

0

M(Z0, s′)s′ ds′ (E.12)

With constraint (3.1) taken into account, (E.5) is therefore

ρ(Z(Z0, s)) =
λ

2M(Z0, s)

∫ ∞

s

M(Z0, s′)s′ ds′ (E.13)

The constant Lagrange multiplier λ is determined by enforcing the normalization constraint (1.4).
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E.2 Simplifying when divergence is constant

When ∇ · f is a negative constant, equation (E.13) simplifies to

ρ(Z(Z0, s)) =
λ

2(−∇ · f)

(
s +

1
(−∇ · f)

)
(E.14)

An immediate consequence of (E.14) is that ρ(y) is constant when s is constant. In particular, ρ(y)

has the constant value λ/(2(∇· f)2) on boundary ∂Ω. It is also possible to express λ more compactly

when ∇ · f is a constant:

λ =
(∇ · f)3∫

∂Ω
f · n̂ dS

(E.15)

The numerator and denominator in this expression are both negative. Again, results (E.14) and

(E.15) only hold when ∇ · f is a negative constant; if ∇ · f varies, then the boundary value may vary

as well.

E.3 Bounding alternatives for the asymptotic approach inte-

gral

Recall that in Section 3.3, some uncertainty surrounded the choice of bounds for the asymptotic

approach integral (3.5). We chose to bound it using the Cauchy-Schwartz inequality, but noted that

equally reasonable alternatives exist. For example, a different Hölder inequality could have been

applied, or we could have multiplied and divided by a function of ρ(y) first, before splitting the

integral. Because the choice was ultimately arbitrary, there remains a lingering uncertainty about

the result: What if our choice had been different? Ultimately, how unique an experimental condition

is asymptotic approach?

We now demonstrate that a variety of other paths taken at that point would have ultimately led

to similar, or even identical, moments.

The partial differential equations and boundary condition for ρasymptoticapproach(y), (D.12) and
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(D.13), were derived by minimizing κ (3.9) subject to the normalization constraint (1.4).

If some other bounding choice were made, then κ would have taken a different form. The first

step in analysis, then, is to identify the other forms it might have taken.

For notational purposes, in this section only:

• Let α(a) be any bounded, continuous, twice-differentiable function of a ∈ R satisfying α(a) > 0

and α′(a) > 0.

• Let β(ρ) be any bounded, continuous, differentiable function of ρ(y) satisfying β(ρ(y)) > 0 for

y ∈ Ω.

• Let ∇ · ρf denote the quantity

∂

∂yi
(ρ(y)fi(y))

In terms of these, the original κ of (3.9) had the form

∫
Qc

α
(
(∇ · ρf)2

)
β(ρ(y)) dV (E.16)

with α(a) = a and β(ρ) = 1.

Critically, many—perhaps all—reasonable bounding choices would have led to this same form,

differing only in the functions α(a) and β(ρ). How dependent, then, is the solution upon the choices

of α(a) and β(ρ)?

Following the derivation in Appendix D, the first important difference would have been in the

definition of g, given in equation (D.4). It would become

g(y, P,
∂P

∂y1
, · · · ,

∂P

∂yN
, λ) = α

((
∂

∂yi
(fi (y)P (y; ε))

)2
)

β(P (y; ε))− λ (· · · ) (E.17)

where the term in parentheses (· · · ) does not differ from its value in (D.4). The next changes occur
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in (D.8) and (D.9), which become, respectively,

∂g

∂P

∣∣∣∣
ε=0

= 2α′
(
(∇ · ρf)2

)
(∇ · ρf) (∇ · f) β(ρ) + α

(
(∇ · ρf)2

)
β′(ρ)− λ (E.18)

and

∂g

∂(∂P/∂yi)

∣∣∣∣
ε=0

= 2 α′
(
(∇ · ρf)2

)
(∇ · ρf) (fi)β(ρ) (E.19)

The manipulations that follow parallel those of Appendix D; the resulting Euler-Lagrange equa-

tion, analogous to (D.12), becomes

fj
∂

∂yj

(
α′
(
(∇ · ρf)2

)
(∇ · ρf) β(ρ)

)
− 1

2
α
(
(∇ · ρf)2

)
β′(ρ) = −λ

2
(E.20)

The effective boundary condition (equation D.13) remains unchanged, having merely been multiplied

by a nonzero factor.

The derivative expressions in (E.20) are all of the form fi
∂

∂yi
. It follows that characteristics of

(E.20) coincide with trajectories as well. Because equations (D.12) and (E.20) have identical families

of characteristics, their solutions exhibit certain similarities.

In particular, when ∇ · f is a constant, both solutions can only be functions of s. Hence, their

isosurfaces coincide. If, when studying the asymptotic approach of a system having constant negative

divergence, one considers only moments that are conditioned on s, then alternative choices for the

bounds on integral (3.5) will not affect the outcome.
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