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Summary

This thesis is a presentation of the methods and concepts of
the theory of linearized supersonic flow. The fundemental theory which
serves as a basis for this investigation is discussed in the first two
chapters. Special emphasis is placed upon the study of planar systems.

A system of conical coordinates is introduced in which the
method of separation of variables is applied. The resultant solutions
have the Mach cone as a natural boundary and involve a family of hyper-
geometric functions related to the Legendre functions.

Basgic integral relations for planar systems are obtained between
the normal velocity component and the component giving the pressure. The
behavior of planar systems relative to the planform configuration is dis-
cussed and the concept of problems of the first and second kind is intro-
duced. The 1ift problem is treatea with particular reference to the he-
havior of thé leading edge singularity and to the concept of the Kutts
condition as applied to a planform in supsrsonic flow.

The nature of drag in lineariged supersonic systems is inves-
tigated and the separation of the drag into types is discussed. TFor
planar systems thé drag may be divided into basic and induced parts. For
general systems the basic division may be made into wave drag and vortex
drag. Two fundamental reversed flow theorems are obtained which state that
the drag of a system is the same as that of the system with the flow re-

versed in direction.
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The theory of conical flow as applied to planar systems is
developed and the results for a basic thickness distribution and various
. 1ifting triangles are presented.

The method of the separation of the lateral variable is inves-
tigaied using Schldmilch series.

The flow about bodies of revolution is discussed and the appli-

cation of the Riemann method to the problem is given.
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LINEARIZED SUPERSONIC FLOW

Introduction

Many of the important problems that arise in the study of the
steady~state flow of a perfect gas at supersornic velocities are concerned
with the disturbanceg caused by a body placed in a uniform stream of gas
flowing at a constant supersonic velocity and with the forces on such a body.
Under the assumption that the disturbance velocities are small compared to
the basic fiow velocity and that the viscosity is small, shock wave phenom-
ena do not enter the problem and the velocity potential equation for the
then necessarily irrotational flow can be linearized. As = result of thig
linearization and the resulting properties of superposition the solutions
to a great variety of problems are greatly simplified and may be obtained
readily. Tﬁese linearized solutions are good approximate solutions to many
practical problems and are the more accurate the smaller are the disturbances
from the uniform flow and the less important are real fluid effects. General
references to the flow of compressible fluids and the linearized equations
are 1 to 8. This thesis deals with the study of linearized supersonic flow,
the development of the theory, the formulation of new concepts in this field,
and the application of the theory to various examples.

The first application of the concept of linearized supersonic flow
was made by Ackeret (9,10) in 1925 in the solution of the two~dimensional
problem. 1In this he obtained expressions for the 1ift, drag, and moment
coefficients of a two-dimensional supersonic airfoil in closed form in terms
of the airfoil shape. This two—dimensiqnal solution can be considered as a

linearization of the precise characteristic method (11) or as a superposition



of the linearized form of the fundamental Meyef flow (;g). In 1932 von
Karman and Moore (14) presented the application Qf the theory to bodies of
revolution at zero incidence. More recently von Karman (15), Ferrari (16),
and Tsien (17) have continued this development. Busemann, at the 1935 Volta
Congress (18), introduced the important concept of normal Mach number in his
treatment of cylindrical flow, and in the same contribution he described the
second and third approximations beyond Ackeret's theory showing that the
effect of shock waves dées not enter the firsgt and second approximations.
In this paper he also introduced the important concept of conical flow. 1In
a recent paper (20) Busemann showed that linearized supersonic conic¢al prob-
lems can be reduced tc a two-dimensional potential problem and solved several
examples. Prandtl (21) introduced the concept of the acceleration potential
and showed how it could be applied to Ackeret's problem. Schlichting (22),
using the concepts developed by Prandtl, developed a supersonic wing theory
and applied it to a few examples. |
Very recently a large number of contemporary investigators have
worked in the field of linearized supersonic flow. Among these investigators
are: Puckett (35) who solved the planar conical thickness problem with lat-
eral symmetry by a method similar to Schlichting's and applied his results to
the pressure distribution, 1ift, and drag of various delta—shaped wings;
Stewart (Z6)who completed the boundary problem for a lifting delta~wing with
leading edges inside the Mach cone; Jones (27) who introduced a system of
oblique coordinates and applied them to certain wing problems; von Kamman (37)
and Chang (47) who developed a theory for planer systeﬁs using Fourier inte-

grals and applied it to several exampleé; Lighthill (34) who continued the



development for bodies of revolution. The work of Taunt, Snow, Beskin,
and lagerstrom may also 5@ cited. Due to security resirictions references
to some of this recent work in linearigzed superscnic flow may not be in-
cluded here. In a recent leéture von Karman (23) summarized the results
of these investigations.

This thesis ig divided into several chapters, each one developing
a different topic. The first presents the fundamental theory on which is
based the remainder of the work and gives certain of the results of other
investigators which are needed. Other chapters discuss various methods of
obtaining solutions of the potential equation and the application of these
methods. Spec@al emphasis is placed on the study of planar systems and
most of the examples worked outl are examples of such systems. One chapter
deals with the flow about bodies of revolution. The last consists of a
general discussion of resulis obtained and of the outlook for future
investigations in this field. Some of the results of this thesis héve
already been published (40,41,42).

It ig the general purpose of this thesis to present a reasonably
complete development of the theory of linearized supersonic flow. However,
the works of other investigators are presented with only sufficient detail
for continuity and the purposes of the analysis, so that the thesis is for
the greatest part the writer's own development. This groundwork is found
in the first two chapters of the thesis. As a general principle the devel-

opment and explanation of the concepis essential to the theory are stressed.
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I. Pundamental Theory

1. BRasic Flow Fgouations. The fundomental assumptions that are made for the

steady~state

e

g.
It should be

of the first

compressible potential flow of a perfect gas are the following:
The flow is steady state; the partial derivatives of

all the flow variables with respect to time are iden-

tically zero.

The flow is frictionlesgs; the viscosity is zero.

There is no transfer of heat between fluid elements.

There are no body forces acting on the fluid.

There are no discontinuous shock wave phenomens.,

The flow is igentropic; there exists a unique rela-

tion between the pressure and the density.

The flow is irreotational.

pointed out that the last two assumptions are really consequences

five assumptions (24,p.36;25).

From the above assumptions may be derived the Bulerian equation of

motion, the definition of the velocity potential, the equation of continuity,

and the definition for the speed of seund:

q .

~ i — —
Vq - "f‘,‘VP = (qu)Xq + %V(qz) (1.1)

ai = Vcb (1.2)

.-

QV'C, + q-vg =0 | 7(1.3)



z 5‘—5 (1.4)
de

Consequences of the above are the familiar potential equation
\ 2 2 2
v -v(z v = a v d ~ (1.5)

and Bernoulli's equation

|
qdq + o dp =0 (1.6)
For the case of the perfect gas are obtained
Y 2 yp
p=Cg , = (1.7
2 -1 _z yd

The acceleration of a particle in a compressible fluid flow is

given by

b = - ?' vp (1.9)

Hence the quantity

ﬂk:_féf:%qz (1.10)



is a potential whose gradient is the acceleration vector and may be termed

the acceleration potentié,l. This concept was introduced by Prandtl (21).

2. The Scale Transformation. Since only the derivatives with respect to
the cartesian coordinates appear in the equations of section 1, these equa-
tions are invariant under translation. It is also clear from the vector
form of these equations that these equations are also invariant under a
pure rotatiqn. Another fundamental but slightly less obvious transformation

which is of use is the secale transformation.

If the transformation

P

2 K X, (2.1b)

K 4)' (2.1a)

oS
I

<
i

K Y, , (2.1c)

K Z, (2.14)

I

Zy

1s made in the potential equation (1.5), this equation is found to be invar-
iant. This means that if 4:)()(,)',2) is a solution of the potential eguation,
80 also is K (P(K_ K K This is a change of one solution to another
similar solution of dlfferent scale, the factor X describing the change in

scale. This transformation is termed a scale transformation.



Pig. 2.1, The Scale Transformation

This scale transformstion, here derived for the general potential
flow, will also hold for rotational flow with shock waves providing the shock

waves are considered to be infinitesimally thin.

3. Cylindrical and Conical Flow. If a solution to the potential equation is

unchanged by an arbitrary translation in a given direction the flow is two-
dimensional and may be reduced tc a solution in two variables by an appropriate
rotation. If a solution changes by an additive constant proportional to the
translation under a translation of arbitrary magnitude, an appropriate rctation

will change it to the form

CP _ \/;x N {(y,z)- | (3.1)

The concept of such cylindrical flow wasvintroduced by Busemann (18). A cylin-

drical flow consists of a two-dimensional flow on which is superposed a wniform



velocity in the direction normal td the plane §f the two~dimensional flow.
The general flow about ag infinite cylindrical body under appropriate boun-
dary conditions will be a flow of this type.

An infinite conical body with its vertex at the origin will remain
invariant in shape under a scale transformation. If in 2 problem invelving
the flow about a conical body the pertinent boundary conditions at infinity

are unchanged by the transformation the solution will be unchanged by the

transformation.

Pig. 3.1. Conical Flow

Thus, in Fig. 3.1, the scale transfommation chaﬁges point 1 to point 2, and
the velocity components and pressure will be the same at these two points.
Extending this result to other points with the general scale transformation
it is seen that the velocity components and the pressuré will be constant

along any ray extending from the vertex. These conditions at infinity cannot



be met in general for subsonic flow but may be met within certain limita-
tions by finite conical bodies in supersonic flow. Such flow is termed

conical flow. The concept of conical flow was introduced by Busemann (18).

4, Linearized Equations. The assumption is made that the velocity compo-

nents vary but slightly from those for a uniform flow of velocity V, which
is taken in the positive z direction. Neglecting terms of higher order is
equivalent to uging the velocity of uniform flow in the first derivative
terms of the potential equation (1.5), including the a® term. The equation
tﬁus becomes an eguation in the second derivatives of 4? with constant

coefficients. This equation is

b b - (M) ¢, =o° (2.1)

+
XX Yy

where M denotes the ratio of the free-stream velocity to the speed of sound
in the undisturbed stream and is the Mach number of the flow. The fundamental
uniform flow is given by the potential 4;::\/2. This part of the solution
will be generally excluded from <b and equation (4.1) will always be consid-
ered as yielding velocity deviations which are to be added to the fundamental
solution to describe the net flow. The pressure difference from the pressure
of the uniform flow is given by equation (1.8) to be

p=-p(Vw + &) (42

where w is the disturbance velocity component in the z direction and uw and v
are mutually perpendicular velocity components in the plane normal to the
direction of flow. Henceforth the term p will refer to the variation in

pressure from the free stream pressure, while f’ will refer to the density
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of the fluid in the free stream, unlegss otherwise particularly specified
as in section 5. For moSt applications the last two terms in the above

equation may be dropped giving the more customary eguation

p= -¢Vw ) (4.5)

The acceleration potential under this lineariged theory is given

by the expression

= Vw + —

2

¥ = -

The assumptlons necessary for the validity of the linearized theory

_Ii’ ut+v? (4.4)
¢

should be expressly stated:

a.‘The lateral velocity components must be small compared with V.
This assumption is not necessary for the linearization of the equations them-
selves, but is necessary in order that the usual geometrical assumptions as
to small angles may be satisfied so that the boundary conditions may Be
linearized. Except for low subsonic speeds this is ensured automatically by
assumptiong b and c.

b. The lateral velocity components must be small compared with the
velocity of sound in the free stream. This is necessary in order that the
terms which are dropped in eguation (4.1) are small., This assumption prevents
flows in the hypersonic region from being linearized. That the axial velocity
component satisfies the same condition is ensured either by assumption b or c.

c. The axial velocity component w must be small compared with l\ﬁ-a]
Tﬁis is necesgsary in order that the factor1ﬁq;:7 may be considered to be a
constant. This assumpiion prevents flows in the transonic region from being

linearigzed.



The remainder of this in&estigation ﬁill deal with solutions to
the linearized potentialjequation (4.1) when the flow is supersonic, when
M is greater than 1.

A small disturbance in such a supersonic flow can only affect the
flow at points within a cone lying downstream from the source of the dis-
turbance. This cone has its vertex at the source of the disturbance, its
axis in the flo% direction, and semi-vertex angle (:Séd P4 . This cone
defines the zone of actibn and is termed the downstream Mach cone. In a
similar fashion the flow at a given point can only be affected by disturb-
ances lying within a similar cone upstrean from the point in question. Thig
defines the zone of influence and is termed the upstream Mach cone. This
concept of zones of action and influence marks the principal distinction
between subsonic and supersonic flow, and is due to the hyperbolic form of
the supersonic flow equations. In subsonic flow a disturbance at a given
point can affect the flow at all other points and conversely the flow at a
given point may be affected by disturbances at all other points.

It is convenient to have the equations of irrotationality and con-
tinuity for the linearigzed case in explicit form. The equations of irrota-

tionality are

Q

(4.5a)

p e

M
W

vl
F4\<:
1t
0

Q
2

(4.5b)

¥ VO w
3]
X

82‘( Nl
{

Qo
e

o)

(4.5¢)

|

5
<
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The egquation of continuity is

w \ w
2=+ 2Y (M 2w (4.6)
X 3y 9Z .

5. Momentum and Acoustical FEnergy. The force on a body in a steady-state

fluid flow equals minus the force necessary teo maintain a system including
the body and the fluid within a given volume at equilibrium. This may be
expressed in terms of the absolute pressure, density, and velocities used

in section 1 by
oo [q(eq—.a)+pﬁJ ds (5.1)

in which the force on the gystem is equated to the momentum transfer through
the boundaries of the system. This may be re-expressed in terms of a dyadic

quantity
F = @-ﬁdS-—mVﬁ (5.2)

where the dyadic is given by

@ = -(P“HJI'-?(§~V£)§ (5.3)

the quantity I is the idemfactor, and m is the net mass flow of fluid out of

the closed surface, given by

m

¢ q-ﬁ dS | | (5.4)
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This net mass flow will be zero for the applications considered here. The

dyadic may be expressed |

?:ZA+IB+‘:C— (5.5)

where the three terms give separately the three components of the force.
The third of these components is the drag and may be obtained by

applying the law of conéervation of energy from the point of view of an ob-

server fixed with respect te the undisturbed fluid. Considering the same

system as before, the total energy per unit time leaving the system will be

£ =m(%?(c7—vf<)"+ Lp)7 + p(a-Vk)}RdS G

where the first term is the transport of kinetic energy out of the system,
the second the trangport of internal energy, and the third the work done on

the surroundings. This may be expressed as

E :Vf CﬁAS + m(Eo-—% Vz) (5.7)

where m is the net mass flow leaving the region, E, is the total energy per

unit mass of this net flow given by

2 Y

= . ] '
4\:0 = 7 q + ;:" —?E (5.8)

and E is the vector

—

C = —(p-p) k - swq (5.9)
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where C is the same vector as in eQuation (5.5). This energy equals the
work done against the drég plus the rest energy of the ejected mass plus

the kinetic energy of this mass with respect to the stationary observer

E =DV + m(E.+3VY) (5.20)

Combining equations (5.7) and (5.10) yields
D “ C-ndS -mV (5.11)

in complete agreement with equation (5.2).

"

In the presentation above the dyadic é is of first order in the
disturbance velocities. Hence the substitution of a linearized solution will
give the force on the body correct to this first order. However, the terms
g€iving the drag cancel out in the linearized theory. The drag on a body in
supersonic flow is a force of the sgecond order.

In order to obtain the drag it is necessary to obtain an expansion
of C to tems of the second order. This will be valid for the linearized
theory because the first order terms cancel identically. The density is
given to first order terms by

P-Fo

P = § + azx = fo("M1~;/r) (5.12)

The pressure is given to second order terms by considering Bernoulli's

(4
S

integral

i

(Ve + Sz
- w + —Z

P~ Po - (P"" Po)z
§o 2e5at

!
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whence the pressure is given by

P-Po = —§ (Vw PC A “z(Mz_')W ) (5.18)

Substituting these second order expressions into the ¢ part of @ yields

-

the correct linearized expression for ? o In matrix form this is

[ Vw o “Vu

o Vw -VV (5.14)

W+ vismanw®
- UWwW -VwW

B “ |

where ?o has been replaced by ? in consistency with the linearized nota-

ol
I
-

tion. It may be checked by means of the divergence theorem with the aid of
equations (4.5) and (4.6) that the integral of 4é in (5.2) over a contour
not enclosing a singularity or body is zero.

Linearized flow satisfies the customary acoustical assumptions for
an observer stationary with respect to the undisturbed fluid. Thus it is per-
missible to use the concepts of acoustical theory in the linearized theory and
it is convenient in particular to utilize those concepts describing the energy
in the fluid. PFrom the acoustical point of view the reference state of the
fluid is its undisturbed state and the pressure and potential energy are de-
fined as zero at this state. The pressure is then the linearized pressure

given by equation (4.8). The kinetic energy per unit volume is

KE = —Z— (u*+ v+ w?) | (5.15)

!
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and the potential energy is (26, vol. II, p. 15)

y

_ P I Y, G
PE = {é_a_—"' = -2' M w (5.16)

From this point of view the vector C in the energy consideration is given by
C = (ke +PE)k - ew(uT+vj+wk) (5.17)

where the first terms denote the transport of energy and the latter terms
represent the work done on the surroundings. In matrix form consistent with
equation (5.14) this is

— ulrvie(Miyw?
C = ? —uw -VW 2 (5.18)

These concepts will be applied to the calculation of drag in a later section.

The remarks of Theodorson (50) with respect to the impulse and
momentum in an infinite fluid apply with éimilar validity in linearized super-
sonic flow for the lateral force components. The relative contribution of the
various parts of the integral giving the side force or 1ift generally depend
on the shape of the closed contour even if this contour is considered te be

infinitely large.

6. The Tundementsl Similitude in VM*~I . e potential equation (4.1)

includes the parameter (Pﬂﬂ—f) . It is advantageous for analytical work to

remove this factor. The transformstion
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$ = ¢ (6.1a)

X = X (6.1b)

y = VY (6.1c)

i

z st ozt (6.14)

changes equation (4.1) into the equation

43”. * ¢y'j' - ¢ =0 (6.2)
with

u = YMIo uw (6.32)

v = /M V (6.3b)

w'o= (M=1)w (6.3c)

This correlates a linearized supersonic flow at a given Mach number with a
similar flow at a Mach number of ﬁ . A Dbody in the original flow will be
transformed intec a single body with the same transverse dimensions but of

different length, with an aspect ratio, thickness ratio, and angle of attack

that are given by
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R = MR | (6.4)

TR YMmia TR (6.5)
S &K = M & (6.6)

The 1ift coefficients of such bodies will be connected by the relation

CL - (Mi—l) CL | (6.7)

and the drag coefficients will be comnected by

3
- . IR
CD = (M- CD. (6.8)

In these equations the primed expressions are for the equivalent system at
M =7 . If these coefficients are based on a cross—sectional ares in-
stead of a plan form area equations (6.7) and (6.8) will be changed by the
factor VE .

In planar systems, for which the boundary conditions may be satis-
fied on a plane, the factor between ¢ and 4)' may be set equal to one,

yielding instead of equations (6.5 to 6.8) the following relations
v "
TR = TR (6.9)

x" = (6.10)
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C(_ = _‘/Mt—l CL (6‘]:1)
Co = VM= Cp. (6.12)

In this similitude the aspect ratio is still given by equation (6.4). Due
to its greater simplicity this form of the similitude is more useful than
the strict one given above, but its limitation to planar systeme must be
kept in mind. |

It is thus unnecessary to consider variations in Mach number in a
general analysis, and it is most convenient to fix the value of the Mach
number at ¥Z . In an actual problem the method will be to considér the
equivalent problem according to the sbove similitude at M=-¥2 and then
transform the results of this problem back to the given Mach number. 1In
future analysis the equation considered will be equation (6.2) with the

primes dropped:

Pux * Py - ¢, = © (6:18)

This equatien is cylindrical coordinates is
i L - = O
b T (br * ¥z Tee 4)11 (6.14)

7. The Oblique Transformation. A very convenient transformation pointed

out by R. T. Jones (27) is the oblique transformation. In the form presented



by Jones these transformations do not form a group unless the general scale
transformation is includéd. For this reason the form of the transformation
is changed in this presentation so that these transformations alone will

form a group. This trangfomation is

X & —— X' = = 7' 7.
VI—H’I‘L l-m* (7.1a)
7 = _.__.‘_.____ Z‘ i ! 7.1b
" Yi-mz Vi-mt X (7:10)

_\/ - y | (7.1c)
‘ N
7/\

Fig. 7.1 The Oblique Transformation

It may be seen that the potential equation (6.7) is invariant under this
transformation, that the transformations form a group, that the hyperbolic

distance defined by

R = v z%-x*_y= (7.2)
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is left unchanged, and that cylindrical and coﬁical flows retain their
character. The entire class of transformations for which the potential
equation (6.13) remains invariant consists of translation, the scale
transformation, rotation about the z axie, and the oblique transformation.
The derivatives of the velocity potential are relsted by the

following equations:

. '
u = u' o+ m_ W' (7.3a)
Vi-m? Yi-m? :
| ' m .
W = —— w _ (7.2b
Vi-m? + Vi-m? )
v = v' (7.3c)

The Jacobian of the variables (x, z) with respect to (x', z!') is unity,
whence the area element dx dz may be replaced by dx' dz'. Another property

of this transformation is given by the relation

() = {7

- m(%)

that the ratio x/z transforms with a homographic transformation which leaves

(7.4)

the points + 1 invariant.

8. Two~Dimensional Flow.‘ The equation for two~dimensionzl flow may be taken
from equation (6.13) by considering the velocity potential to be independent

of the varizble x

¢y:{ - 9,, = 0 (8.1)



The general solution of this equation is

¢ = fy+zy + gly-2) (8-2)
so that

Vv = ‘f| + 9' (8.3a)

W = )(' - 9' (8.3b)

For a wing only the g solution is taken on the upper surface and only the

f solution is taken on the lower surface. Thisg is done in order that there
may be no disturbance zhead of the zone of action of the wing, which will be
the envelope of Mach cones from the leading edge of the wing. If the contour
of the upper surface of the wing is given by yp (z) the boundary condition

may be satisfied on the plane y = 0, and will be

Vy'y = g'c¢-a (8.42)

Similarly if yo (z) is the contour of the lower surface the boundary condi-

tion in the lower surface will be

Vy@ = f@ (8.4)

From expression (4.3) the pressures on the two surfaces will be
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o= ¢V y@ (8.58)
P = “TVZ V. (2) (8.5b)

The 1ift coefficient can be derived from thess expressions in terms of the
angle of attack of the chord line drawn from the leading edge of the airfoil
to the trailing edge.

CL = 4 (8.6)

The drag coefficient of the airfoil may be expressed

Cp = 2 ( y,"’“ "") (8.7)

—— ee—

2 2 2
where yiz and yé are the average values of the quantities yi and yé along
the chord. These are the original results of Ackeret (8).

If the new quantities are introduced

Yrm

3 (Yo ¥) .80

Ye = "i(yL‘yi\ (8.8b)

the drag coefficient may be expressed

Ll(ym + %) (8.9)

In the above expression the first term is the drag due to camber distribution

and the gecornd term is the drag due to thickness distribution. Thus it is
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seen that for a single airfoil thebdrag due té camber and 1ift and the
drag due to thickness aré separate. In general thig is not true for a
system of airfoils, suck as a biplane combination. An example of this is
the Busemann biplane (18) where both elements of the biplane have 1lift and
thickness (although no angle of attack) but the net drag is zero. The lifts
on the two elements are equal in magnitude dbut opposite in sense, so that
the system has zero net 1ift.

The drag of a'single airfoil may be separated further conveniently
by expanding the thickness slope distribution and the camber slope distribu-

tion in series of Legendre polynomials. A new variable is defined
2Z
= — - 8.10
L= & - (8.10)

such that & equals ~1 at the leading edge (z = 0), and equals +1 at the

trailing edge (z = c). Then y! and y} are expressed

yr:‘ = i’_a‘- Vzj+i P(x) (8.11)

J=o
[ = o P
Yo = 3 bj¥zini B @22
i=t )
The drag coefficient is given by
@
2 2 2
Cp = Ha, + ) (aj+b]) (8.13)
) . : i:l -

The angle of attack is equal to the coefficient-a, so that the 1ift coeffi-

cient isg

C. = - Ha, (8.14)
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Similarly the moment coefficient about the half-chord point is

Z
Mo vz

4 volume coefficient mayrbe defined as being the ratio of the cross—sectional

area of the airfoil to the square of the chord. This is

(8.16)

i
Cy = 75 b
It should be noted that the P, term is omitted from the thickness distribution.
This is equivalent to the gondition that the airfoil must be a closed body.
It is clear that for an airfoil of given volume coefficient and
moment coefficient the minimum drag will be obtained by using only the P; con-

tours, giving an airfoil with circular arcs. For such an airfoil the drag will

be

Z 2 2
CD,“-M = L';'C._ + 3 Cw, +12Cy (8.17)

It may be pointed out that for a supersonic two-dimensional airfoil the only
possible practical reason for camber is to obtain a moment coefficient and that
this is always most efficiently carried out by a circular arc shape. The proce-
dure of minimizing the drag with given volume and moment coefficients is easily
done by the calculus of variations but the analysis with Legendre polynomials

gives a more complete picture of the composition of the drag.
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IT. Methods for Solving the Potential EQuation

9. The Principle of Superposition. Since equation (6.13) is considered to

yield potentials whose gradient is the perturbation velocity and since this
equation is linear, two valid solutions may be added together to obtain an-
other valid solution. This principle is called the principle of superposi-
tion and may be applied in a number of different ways. For example, if a
given solution is displaced an infinitesimal distance in a given direction,
changed in sign, aﬁd theh superposed upon the original solution, the result
is eguivalent to a cartesian differentiation of the solution in the given
direction and produces a new valid solution. 8Similarly a solution multi-
plied by a variable factor and applied at points along a line in the flow
field may be superposed by integration to give a valid solution. This may

be further generalized to a multiple integral; thus if 4{ is a solution

= m £ (%0, Yo, 2) . (XXo, ¥-¥6, 7-2) d¥ody, dzs (9.1)

ig also 2 solution, where f ig an arbitrary function.

Since the cartesian velocity components are obtained from the po-
tential by cartesian differentiation they will satisfy individuslly the
potentiasl equation (6.13) and will have the same properties of superposition.
It should be noted that the pressure and the velocity potential cannot be
superposed in all cases although the velocity component w can be superposed.
This is particularly true for such solutions as the peint source and the
infinitesimal horseshoe vortex that have no individual physical significance.

10. General Methods. For a complete presentation of the general methods

available for the wave equation (6.13) the reader is referred to references

(51, 52, 53, 54). The principal methods which will be used here are that of

—— oy X
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Riemann for two-dimensional hyperbolic equatioﬁs and that of Hadamard, similar
to that of Volterra, for fhe three-dimensional wave equation.

First it will be necessary to introduce the concept of the co-normal.
The normal, or normal vector, is a unit vector perpendicular to the line or
surface element under consideration. The co~normal for the cases congidered
here is a unit Vector related to the normal having the same component as the
normal in the z direction but having the components perpendicular to the z
direction changed in sigﬁ. Thus if a, b, and ¢ are the direction cosines

of the normal, the vectors representing the normal and co-normal sre

h = at + by +ck (10.1a)

y =-at - bj + ck (10.1b)

The symbol n refers to the normal and the symbol 1) refers to the co-nomal.
For the two-dimensional case the relaiive orientations of the line element,

the normal, and the co-normal are illustrated in the following figure:

¥ v _dl d

+V -
N T ’ N // N s \ n
N s T \ / | - N ﬂ

N dl N NZ - ’ .

T4 SR N
//:L \\ Y X\ Y N / \‘V

h —

Fig. 10.1 The Co-normal
The form of the method of Riemann that will be used here will be
that for the self~adjoint homogenecus equation
- . 2
2o*U U

—_— - = o+ ‘ = 0 (10.2)
93'7. 921. C(YIZ)U



- 28 -

If U and V are two valid solutions to equation (10.2) the following relation

will hold

| 56((]3'},)]“\7%)“:0 | (10.3)

the integral being taken about a closed contour. The essence of the Riemann
integration method is the use of equation (10.3) with V a particularly chosen

solution to equation (10.2). This solution must have the property

1

V=1 on  Z-Y = Zo- Y,

a.nd. Z+y = Zo+yo

(10.4)

Since the directions of the line element and the co~nomrmal coincide along a
characteristic the quantity E%D will be zero along such a contour and the
guantity V:-ll'_%} will be simply the derivative of U in the direction of the
contour., The contribution of the integral along a portion of a characteris-
tic to (10.3) will be given by the values of U at the end points of this
portion. The classical application of Riemann's method is to an initial

value problem and the contour chosen consists of portions of two intersecting
characteristics and a line joining a point on one of the characteristics to a
point on the other. However, initial value problems will not be of particular
interest here and various other contours will be used. The function V, called
the Riemann function, has the property of being unchanged on exchanging (yo,zo)
for (y,z). It is convenient for the derivation of the éiemann function to make
a linear transformation of the variablesvto a coordinate system in the charac-

teristics as in the classical statement of the Riemann method.
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The result of Hadamard for eguation (6.13) as will be used in this

~analysis is

=
PIeS

I
—
2|—-
<le

d
"¢J:,E)d,5’ , (10.5)

where

‘ — ‘ 1 3

R = N/(Z—Zo) — (X~ Xo) —(y—y°)1 (10.6)
is the hyperbolic distance, and the symbol \ means "the finite part of"

in the sense introduced by Hedamard. The reader is referred to Hadamard's
text (51) for a complete discussion of this concept and especially to section
128, page 205, for the particular closed surface considered. The surface
integral in equation (10.5) is taken over a plane passing through the point
(xo,yo,zo) parallel to the flow direction and over a surface closing the cone

formed by the plane and half of the upstream Mach cone.

(%Yo, 20)

e

- -

Fig., 10.2. Surface for Hadamard Integral

The customary closed surface used for initial value problems includes the



entire Mach cone and has a factor 2T in equation (10.5) instead of 1T .
The plane parallel to the flow direction is a non-duly inclined surface
while the other surface is generally a duly inclined surface, these terms
being in the sense defineﬁ by Hadamard. In both the Riemann theory and

the theory of Hadamard a distinction must be made between duly inclined and
non-duly inclined boundaries as to the question of sufficiency and necessity
of btoundary conditions.

The concept inﬁroduced by Hadamard as to the finite part of an
integral with an infinity of fractional order has been found to be useful.
It is advantageous to explain this concept from another point of view. 1In
order to have o finite integral a function with a —3/2 power singularity
must be congidered to arise from the differentiation of a function with a
-1/2 power singularity. The differentiation from the null side of the
singularity to the infinity corresponds in the function with the -3/2 power
singularity to a pulse similar tp the familiar delta function but with an
infinite integral. Thus if a —3/2 power singularity is always associated
with such a pulse the integral across such a singularity will be finite
and will represent the finite part in the sense of Hadamard. In a similar
way a ~5/2 power singularity is considered to have associated with it a
double pulse so that integration across the singularity will give the -3/2
power singularity with its single pulse. The concept may be extended to
integration across singularities of even integral order, odd integral orders
being taken care of by a Cauchy principal value. Thus if a singularity of
order -2 is considered to have associated with it a pulée and if the -1
power singularity associated with it is integrated with a Cauchy principal

value the integral across this singularity may be considered to remain finite.



As a further explanation for integrals of this type and as a
justification for them they may be considered as integrals of a complex
variable. An integral of a real vsriable may be considered under reason-
able restrictions as an integral of a complex variable along the real axis.
Realbintegrals across singularities of half fractional order may be con-
sidered from this point of view as the real part of the complex integral
where the contour is taken arcund the singularity to the real axis on the
other side. In a similér way the integral acress a singularity of in-
tegral order may be taken as the real part of the corresponding complex
integral with the contour deformed around the corresponding pole. These
integrals will be found to be the same as those using the pulse concept or
the finite part concept of Hadamard. Such an integral abocut a simple pole
gives the Cauchy principal value for the ~1 power singularity.

11. Solutiens by Anslogy from Subsonic Theory. A great many solutions are

known for the corresgponding linearized subsonic or incompressible fluid
theory, these being solutions to Laplaece's equation. It is possible by
multiplying the variables x and y by the factor i to change Laplace's
equation to the wave equation (6.13). Correspondingly the solutions to
Laplace's equation are changed to solutions of the wave equation, the
radial distsnce changing to the hyperbolic distance (7.2). An example

of this is the solutionrfor s unit source in incompressibdle flow

(b = - l | (11.1)

AT A/ 22+ xt+ y?

The corresponding solution to the wave eduation is real inside the Mach cones

and is imaginary in the region between the Mach cones. The corresponding



solution for supersonic flow is obtéined by discarding both the imaginary
part of the solution and the real part in the upstream Mach cone. Due to
the fact that half of the real part of the solution is discarded the numer-
ical factor must be multiplied by two for the solution to represent a unit

source.

(‘) - - ‘ (11.2)

2TV 2 x>y*

Considering the real solution before the part in the upstream Mach

cone is discarded there is a question of sign arising from the square root.
The complete real solution with the same sign in both Mach cones and the
factor ﬁ%?' represents a unit source. The same solution with the sign in

the upstream Mach cone changed represents a possible solution of zero source
strength. The solution (11.2) may be considered as the superposition of these
two solutions.

The solution for an infinitesimal trailing vortex of unit 1ift in

incompressible flow is given by

[ sinO y4
= (11.3)
¢ 4meV Vetayr (1/2‘+x'+y‘ T )

In this solution the first term in the parentheses represents a solution
symmetric with respect to the axial variable. The second term in the paren-
theses is the term which must be added to remove the upstream vortex system.
In the supersonic system this second term is not necessary as the upstream
Vortex gystem is removed by the same stratagem as for the‘source, by dis-

carding the solution in the upstream Mach cone. This solution is

208V X eyl Vzixiy?
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Other solutions to supersénic flow méy be obtained by the same
method, as for example thét for a ring source. The discarding of the
imaginary part of the solution is easily seen to be justified when it is
observed that each of the real and imaginary parts of a complex solution

to equation (6.13) will satisfy the equation individually.

variables may be applied to the wave equation in many ways. One method ap-
plied by von Karman and Chang (15,23,37) consists in separating the axial
variable and superposing solutions of the resultant equation. If the sub-

stitution is made

S
(b - e zé(x,}l) (12.1)

the variable z is separated and the resulting function satisfies the equation

@ﬂ + a_.-)w + 514-) = O (12.2)

This equation in polar coordinates
—_ { - ‘ _,'.. 1z
b+ 74t T cfee + 574 (12.3)

may be further separated by the substitution

@ = sin(me +p) R (r) (12.4)

where (3 is an arbitrary constant. The function R satisfies the equation

R + "FR"" (Sz—-!—:;)R:O (12.5)
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which has the solution in terms of Bessel functions

R = Zm(sr) (12.5)

where %, represents a general solution of parameter m. In order that this

solufion represent a wave inclined downstream, with no energy going inward

the particular solution that must be chosen is the second Hankel function

Hﬁ? due to the fact that it is asymptotic to e 1ST. The application of this

separation will not be discussed here, although an example will be given later.
It is possible to complete the separation of equation (12.2) in terms

of elliptic coordinates or in terms of parabolic coordinates. The first of

these could be applied to the solution on a strip of constant width either

1ying in the flow direction or made askew by the obligue transformation.

Similarly the second of these could be applied to solutions arising at the

edge of a half infinite sheet.

13. Separation of the Lateral Variable. In this method the lateral variable

X is separated by the equation

¢ = sin (kx +p) 5 (y,2) (13.1)

which yields from equation (6.13)

—
m—

-— 2
- - K = o De
cj)yy $ k ¢ (13.2)

y A -

This equation is of the form (10.2) for which Riemann's method may be applied,

with U = ¢ and the Riemann function

V= J, (ke e
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The derivation of this Riemann function will nof be described as it is well
known and is given in various texts.

This method may be applied for the investigation of planar systems,
periodic or not, with the use of Fourier's series or Fourier integrals.

14. Separation of the Azimuthal Variable. If in the cylindrical coordinate

form of the potential equation (6.14) a substitution is made

(t) = sn(me +3) gt)‘(r,z) | (14.1)

the function @ satisfies the equation

——

_— 2
G + 18 b, - TP =0 o2

If the further substitution is made

@ = 17‘—'—,,‘ U (14.3)

the resulting equation is in the form (10.2)

_ 7_ l/ -
U, - U, - &2U = o (14.4)

The Riemann function for this equation will be derived in & later section.

This method will be used for the investigation of bodies of revolution.

15. Separation in Conical Coordinates. The new coordinate will be introduced

into the cylindrical form (6.14) to replace the coordinate r

t = r/z | (15.1)

This quantity is the ratio of the tangent of the polar angle of the point in
Question relative to the origin to the tangent of the Mach angle. Equation

(6.14) with r eliminated and t introduced becomes



(1-t*) 4)“: + f(\-zt‘)c}i + —;t'—lcbee + 2¢z 4;ﬂ— z‘ézz =0 (15.2)

The substitution

¢ = 2" §(¢,0) (15.8)

yields the equation

| I

2 2

-t q) + -‘(l+2 n—ﬂt)@ - n(n- @ + — =0 (15.4)
(-t e tU ( t ] t* Yoo ]

This function may be called the velocity potential for generalized comnical
flow. If n = 1 the function describes conical flow; if in place of ¢> is

placed one of its cartesian derivatives, n = 0 describes conical flow.

If in the eqguation for n = 0 the substitution is made

28
t+S*

(15.5)

t:‘:.

equation (15.4) reduces to the polar coordinate form of the two-dimensional
Laplace's equation., This fact serves as the basis for the later treatment

of conical flow. If the same substitution is made in the equation forn = -1
the function 1[:{': & satisfies the same equation. It was pointed out by

R Jones (49) that these results were obtained in essence by W. Donkin in

1857 (52, p 357).

If the further substitution is made

@ = sin(me+p) T () (15.6)

the resulting equation for T is

()T + 5 (1+200€) T'= & (s w1 T= 0 157



The solutionsg of this equation will be investigated in the next section.
It should be noted that tﬁe axial velocity component is no longer in this
system of coordinates by the partial derivative of the velocity potential
with respect to z, as this derivative is now taken with t constant instead

of r.

— _ 1 15.8
W = ¢z °z'¢t_ (15.8)

The velocity compounents in the radisl and azimuthal directions are given by

i

.
q, = w= 3 ¢t (15.9a)

- I (15.9b)
Q= V = tz Ve

where u and v in this case are not cartesian velocity components but are
nevertheless mutually perpendicular velocity components normal to the flow
direction. This variestion in notation will be used only when there will be
no confusion with the more widely used noﬁation for which u and v are the

cartesian veloclty components.
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ITIT. Tundamentszl Flows in Conical Cocrdinates

16. Solutions ¢f the Differential Kguation. The differential equation for

T, (15.7), has four regular singular points. However, it is possible to
change the independent variable to t2 without introducing radicals. This
brings the equation into hypergeometric form, with the singularities in

terms of t:

Singularity Exponents Exponent difference
in t°
t =0 m, -m m
t =1 0, n+1/2 n+ 1/2
t = o -n, 1-n 1/2

The exponent difference in t€ is of importance in establishing when log-
arithmic golutions may oeccur. According to the theory of linear differen-
tial equations, logarithmic solutions may occur at t+ = O when m is an
integer, at t = + 1 when n + 1/2 is an integer, but never at t = 0O
Form = 0 or n + 1/2 = 0 logarithmic solutions must appear.

The singularity at t = * 1 represents the two Mach cones extend-

ing from the origin. Various ranges of t correspond to various regions of

flow:
Range of © Region of Flow
0£t<1 inside downstream cone
-1 <t <0 inside upstream cone
1 <t £0
e t < -1 outgide both cones

Of course t may be considered to change\sign within a Mach cone in the same

Renner as r in polar coordinates.
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Since m does not enter into the values of the exponents at
t=%21landt= @ the solutions are of the seme exponents regardless
of the value of m. Hence these exponents may be considered to be charac-
teristic of the solutions for ¢ from equation (15.4). An examination of
this equation shows that it is similar to Laplace's equation in two dimen-
sione in the vicinity of t+ = O, whence there is no singularity in equation
(15.4) other than that fundamental in polar coordinates. Similarly it is
clear that the singularity at t = @ alse arises only from the structure
of the coordinate system. Hence the equation for @ has a fundamental
singularity only at t = * 1, with exponents‘o and n + 1/2.

It is essential to classify solutions obtained from either
equation (15.4) or (15.7) according to their behavior at the point t = * 1.
Two types of solutions will be distinguished for the case where n + 1/2 is
not an integer: the first, designated as type I, has the exponent O at t = % 1
and has the property of being real and single-valued throughout the range of
t; the second, designated as type II, has the exponent n + 1/2 at t = £ 1 and
hags the property that it may represent a solution which exists only within
the Mach cones. Where n + 1/2 is an integer the situation is more complicated
and must be investigated separately in each particular case. The only general
statements that may be made are that for n + 1/2 = 0 the solution of that
exponent is not logarithmic and is of type II in the sense above, and that
for n + 1/2 < 0 the solution of exponent zero is not logarithmic and is of
type I.

The solutions about the origin are

m -n+Mm —n+m+|v
T e t F1( 2 , F3 ; t+m tz) (16.1a)

’

[}
_gm 2\t nim4y namez
=1 (l—-‘t ) P(“_{“ " - +m 'L"') (16.1b)

!
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~m “N-M ——n-m+j )
T=1 F( 7, % ;l—m;t‘) (16.2a)

- oMt h e
-t (-t) O F (h el e = I t‘) (16.2b)

e -

where the second form of each solution is obtained through the identity for
the hypergeometric functicn

" -a-b
F(a;b) C}Z) = ('“1§ F(C”Q,C*b,‘c; z) (16.%)

In order to separate the soluticns of the two types it is convenient to ex-

press the solutions about t2 = 1. These solutions are

- m -N+EM —n+rm+4)
_I_) T=t F( 7z, +7_ ;-n+9i)' I—'t") (16.4a)

- t~mF(—h{m, —n-{n-ﬂ )‘ _n+___;_-}' “__t'l) (16.4b)
‘ 1
]D T=1"(- 1)""}- (m:_”', "“;."1) na 3k ; |~t‘) (16.5a)
-m A\ h-m+l n-m42 - <
=AY TR (A R, ) (6s)

The solutions about t = o0 are of less interest but are given here

Ni—[-N+M  hm \ \

T = t '"( 2 2 I‘ z ) ?1) (16.6)
Net = [~n+m+| —n-mael i

T=1 f‘( Z, = ;3/7.)- tl)‘ (16.7)

By introducing the variable iz as a new variable into egquation
(6.14), Laplace's equation in three dimensions is obtained (36). The
Legendre function solutions for this equation are essentially the same as
the solutions in terms of T. Hence the T functions may be expressed in
ferms of Legendre functions of argument _either real and larger %than one

or imaginary. These solutions are
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= (-t ),1 P, [(‘ €) ] | (16.82)
T = (t»tl)hh Q:[(n—tzf'lzj _ (16.8b)

These have been extensively investigated for general values of the parameters,
particularly by Barnes. Reference may be made to Bateman (§§).
The solutions of type I in equation (16.4) for which m = |n| are
n

given by T = t%. In cylindrical coordinates the corresponding complete

solutiong are
¢ = r" sin (In16+ ) (16.9)

and represent two—dimensional cross-flow. Since for these solutions w = 0
the flow appears as an incompressible flow and the pressure is given only
by the quadratic terms in equation (4.2).

17. BRelations between the Solutions. As mentioned in section 9 equation

(6.12) is invariant under cartesian differentiation. Solutions of the type
of equations (15.3) and (15.6) expressed in cartesian coordinates and dif-
ferentiated with respect to these coordinates are still solutions of equa-
tion (6.13) or (15.2). This fact permits a given solution of parameters n

and m to yield solutions of parsmeters n - 1l andm,m + 1, orm - 1:
_ 1 net o ( —n.——-)
T(n,m) = nT-tT =-1t 7t} (17.1)

T(n-s’vmu) = %‘T -7

St L () e

1}

T(h-—l}l’n——l\ = r{"T—FT' = 't_m 3‘—‘—: ('tmT) (17 .2b)

In a similar manner solutions with the parameter n increased by one may be
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obtained by reversing equations (17.1) and (17.2) with suitable integrations.
In such a process the constant of integration is not arbitrary but must be
chosen so that the result is a valid solution. For n + 1/2 not an integer
the type of the solution is preserved in these processes.

These relations between contiguous solutions are not to be con-
sidered as recurrence relations, as no system has been established for
gspecifying solutions with respect to the multiplicative constant. The
relations between contiguous hypergeonetric functions may be uged to estab-
lish relations between T functions but these do not seem to be particularly
useful.

An integral relation connecting two solutions whose parameters
differ in value may be obtained either from the corresponding relation for
the Legendre functions or directly from equation (15.7). If Ty denotes a
‘solution corresponding to ny and my and Tp a solution corresponding to ng

and mp, the relation is
\ol -z(nerings)
3 2 LB 2
(mi-m)| £ Ot TT, dt
a.

b ~ (N ne+3)

+(n.—n1\(n.+n1+|)[ t ("—t—t‘ ‘T1| T‘L c‘t

Qa

“‘;":(h-rnﬂ —_— .
[ 3 '
= |t (1-t%) (Tlé\—é -, :;‘L_Z)
b
‘ 2 {{(h.+hz+\),___‘ -
+(n-n,) ' (1-t?) T (17.3)
a

Setting n] = ng Or my = mg, We obtain simpler equations as special cases which
may be used to obtain orthogonality relations between solutions.

18. Solutions with n and m Intesral. Since the general solution to eguation
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(15.7) involves both values of m it is convenient to consider m to be
positive and to express separately the solutions of positive and negative
exponent at the origin. TFor m and n integral three special cases gre dis-
tinguished according to the relative values of n and m:

case At -~ L n £ -m~1,

case B: - m < n £ m~1,

case 0: m £ n < oo

The distribution of these cases for small values of m and n is shown in the

table:
N -3 -2 -1 0 1 2
m
0 A A A c c c
1 A A B B c ¢
v 2 A B B B B v
3 L B B B B B B

From a consideration of equations (16.1) to (16.5) the forms of the
two types of solutions in the various cases may be found. For all solutions
except solutions I-A (i.e., solutions of type I in case A) and solutions II-~C,
the form is explicit in terms of a polynomial in t° or in (1 - t2). Solutions
I-A and II-C have 16garithmic singularities at t = 0 and are’discussed later.

The polynomial forms are expressed as follows where P indicates a polynomial:
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It should be observed that the solutions (16.2) are not well-defined when
m is an integer.
The logarithmic solutions I-A and II-C are most easily expressed

in terms of the Legendre functions, as in equation (16.8b). They are

i1

I-A T = (- t"‘)"h Q:ﬂi [(‘-ﬁi "{] (18.1a)

I-¢ T =6eQr[e-vei] 18.1%)

Where n is negative —n - 1 is used in place of n. The corresponding solutions
IT-A and I-C are given by the related Legendre polynomials. OQOther fomms for
the solutioﬁs may be obtained, including explicit forms for the logarithmic
solution (41).

The distribution of solutions with respect to the exponent m may be

seen from the following chart where m is allowed to be negative to indicate a

negative exponent:

m
N -3 -2 ~{ 6 (o) | vl 3
-3
Locaroweic Owne Sowvrion
Secunon I
-2
S | ‘
Two Sowuriows OveE Sowution
o Tano T ‘Mixep TypE
I
2 : LocARITHMIC One Sevrutiow
Sorutoy I




19. Solutions with n and m Half—lhtegral. The term half-integral will be

used to denote quantitieé differing from an integer by one half. Thus when
m and n are half-integrals the quantities m - 1/2 and n + 1/2 are integers.
For this case it will be seen that either equation (16.4) or (16.5) is not
well~defined, and that since n + 1/2 is integral the question as to the divi-
sion of the solutions into types I and II is undetermined as discussed in
section 16. In contrast with the case where m and n are integral the solu-
tions of different expoﬁents at the origin are now well-defined. The sane
classification with respect tc the relative values of n and m is made as in
the previous section. However, the behavior of the solutions is entirely
different for the various cases.

From an examination of the hypergeometric forms of the solutiouns
given in section 6 it is clear that there is a direct analogy between the
solutions for m and n integral and for m and n half-integral.r This is
expressed by considering the corresponding solution of different parameters

given by the relation
N+ = M . m = n 4—’5 ' (19.1)

Cases A and C now correspond to case B' for the related solution with changed
parameters and case B corresponds to cases A' and C'. Equations (16.1) and
(16.2) take the place of (16.4) and (16.5). The final relation between the

solutions obtairned is given by

T(m,h,t) =1 "0- 1)TT(n+-'z-’m~—,;-: ) .4;7-) (19.2)
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In this equation the solution of negative exponent at the origin is given
by the solution of type I; and the solution of positive exponent at the
origin is given by the solution of type II'. These relations between sclu-~
tions of integral exponents and solutions of half-integral exponents are
anaiogous to the corresponding relations for the Legendre functions as
described by Bateman (53).

The solutions in the various cases may be characteriged as follows:
In case A 211 solutions ﬁay be expressed in polynomial form analogous to the
polynemial forms of the preceding section. The solutions of both positive
and negative exponents at the origin are of exponent n + 1/2 at t = + 1.
The solution of O exponent at t = £ 1 is mixed with respect to the exponents
at the origin. 1In case C as in case A all solutions may be expressed in
polynomial form. The solutions of bofh positive and negative exponents at
the origin are of exponent O at t = £ 1. The solution of exponent n + 1/2
at t =+ 1 is mixed with respect to the exponents at the origin. In cagse B
the solutions of negative exponent at the origin are of exponent O or n + 1/2,
whichever is greater, at t = £ 1. The solutions of positive exponent at the

origin are logarithmic and are given by

_L R [CFESY
T=t0¢)" Q,, (%) 15:2)

=)

he distribution of solutions may be seen from the following chart where n is

allowed to be negative to indicate a negative exponent:
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20. Methods of Obtaining other Solubtions. The scale transformation and
rotation about the flow axis applied to the solutions obtained above will
not give essentially new solutions. On the other hand the oblique trans-
formation will produce new solutions in most cases. These solutions can
be expressed as solutions to equation (15.4) but not as solutions to
equation (15.7); in other words, they are @ solutions but not T solutions.
The method of superposition using equation (9.1) may be used to extend these
solutions.

For the solutions of type II a general relation may be given be-

tween solutions having the same value of m and different values of n. The

new solution will be formed from the equation analogous to (9.1)

z .
1-1
4’n” = [(z—z.) 4)'(2,)6]2' (20.1)
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Pig. 20.1 is given to illustrate the mammer in which equation (20.1) is

obtained.

Fig. 20.1. Buperposition of Type II Soluiions

Equation (20.1) may be re-expressed using the separation (15.3) as

n+1 .,t -1 n /
c]—;nﬂ =1 f(f"'{t‘".) (%') E_E(t.) d(?.) (20.2)
!

where l is the quantity by which the parsmeter n is increased. This gives

the relation between the corresponding T functions

Ye
To s O D W) e

{ -
In general it is more convenient to leave the integration in terms of the

variable l/t. The function that is expressed by the term in parentheses to
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the power | - 1 is defined in such a way as to be null for negative values

of the argument. Thus fér Z = =~1/2 the function must have a pulse of the

type discussed in section 10. TFor ! = 1 the well~known unit step function

is to be used. For ] - 1 negative the function that must be used consists

of a'pulse system at the origin, that for Z = O being the Dirac delta function,

and the others yielding differentiations. Some of these are illustrated in

-

2:3/2 ]'—: ‘/’L Z:-'/Z

Fig. 20.2.

Fig. 20.2. Functions used in the Superposition

2l. Interpretation of the Solutions. The solutions have been divided in

principle into two types, type I representing a solution throughout the
entire flow field, type II representing a solution which may be restricted
to lie only in the Mach cdnes. Interest in the solutions of type I is very
limited and only a very few elementary solutions such as those giving cross-

flow are used. The principal interest lies in the solutions of type II which,



by the simple expedient of droppingbthe soluti&n in the upstream Mach cone
as in section 11, represeﬁt solutions existing only within the gzone of
action of a single point.

The solution (II, -1, 0), that of type II withn = =1 andm = 0,
represents the source described by (11.2). Similarly the solution (11, -2, 0)
represents a dipole and the solution (II, -1, 1) is that for the infinitesimal
horseshoe vortex described by (11.4). The solution (I, 1, 1) gives a unifomm
crogs-flow that is usefui for representing angle of attack.

The solutions for which n = 1 give conical flow. The solution
(11, 1, 0) gives the flow about a right circular cone at zern incidence, while
the solution (II, 1, 1) with the (I, 1, 1) solubtion mentioned above represents

the effect of angle of attack. These two type II solutions are

(I[,',O) T = yJi-t* — cosh T (21.1a)

(E. 1) T ;1:1/7—_{:‘ —t cosh—'_’t“ (21.1b)

An example of a solution with m half-integral which corresponds to
~a case of interest is obtained by lettingm = ~1/2, applying an oblique trans-
formation, and extending the solution by equation (20,3) with | = 1. The
solutions of this type will be the eigensolutions found later in the study of
conical flow.

The golutions may also be considered to yield any of the cartesian
derivatives of the velocity potential with the valus of ﬁ decreased by 1. In
particular the solution for w may be obtained through eguation (17.1) or the

same eguation for (t in place of T.
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IV. Planar Systems

22. Genersl Considerstions. A planar system is defined as a system for

which the boundsry conditions may be satisfied on a plane parallel to the
flow direction. For the purposes of this development the plane is taken
tc be the x-z plane. The assumptions which are necessary for a system to
be regarded as a planar one are first that the inclination of the surface
of the body with respect to the plane is small and second that the distance
between the surface snd the plane ig small. This latter condition isjnot
unambiguously stated as it is necessary to specify a reference dimension
for the purpose of comparison. This reference dimension is essentisally
the wave length of the surface disturbances for the case considered here,
with ¥ =1f§i. These considerations are the same as for linearized planar
systems in subsonic flow.

With bodies that are relatively thick in comparison with the wave
length of the surface disturbances it is still possible to apply the concepts
of planar systems, except that the view which must be taken for the flow field
close to the system is different from that for the flow field at a distance
from the system. For the local field the plane considered must be a plane
parallel to the fundamental one but translated laterally sc as to approximate
the surface position. TFor the distant field the plane considered may be the
fundamental one but with the disturbances translated in the axial direction.

This point is illustrated in Fig. 22.1.
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Pig. 22.1. Planes for Local and Distant Flow Fields

It is advantageous to divide the flow field for a plaﬂér system
into symmetric and antisymmetric parts with respect to the x-z plane. This

separation is given by

H

CI?S [C\’ (y) + ¢(-—y)] (22.1)

¢ = % [¢(y)- ¢C—y)] (22.2)

Thus the net flow field may be given by the superposition of the field aris-
ing from a symmetric velocity potential and the field arising from an anti-
symmetric potential. The velocity components u and w have the same symmetry
properties as the velocity potential from which they are derived as they
arise from differentiations in the x-z plane. The velocity component v has
the cpposite symmetry properties from the velocity potentisl from which it
is derived as it arises from differentiation with respect to the direction

normal to the x~z plane.
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A discontinuity in a quantity across the Xx-z plane can only occur
when that quantity is antisymmetric. Thus for the symmetric velocity
potential, which will be referred to as descridbing a symmetric problem,

a discontinuity can occur only in the velocity component v. 8Since there
is no discontinuity in the quantity w which describes the pressvre s
symmetric problem or system is one which may have no 1lift distribution.
From the discontinuity in v there may be a variation in the thicknegs of
the body describing thelsystem. Hence the symmetric problem describes

g thickness distribution. Similarly, for an antisymmetric system dis-
continuities may occur in the velocity components u and w but not in v.
Therefore, such a system will correspond to a zero thickness distribution
and will represent s 1ift distribution.

The thickness and 1ift properties of a pianar system are thus sep~-
arated by these considerations of symmetry. The two systems have separate
boundary conditions, the symmetric problem being determined by the thick-
nesg distribution of the system, the antisymmetric problem being determined
either by the mean camber &istribution of the system or by the 1ift distribu-
tion. An example of thig division has already been given in section 8 for
a two~dimensional planar system.
| There must be a body in order that a discontinuity in either v or w
may be sustained. However, this is not true for the quantity u and this
feature describes an important characteristic of flow systems, that of the
existence of vortex sheets. From the vorticity relation (4.5b) the strength
of such a discontinuity in u will be constant in the z direction in any re-

gion of the x-z plane for which w = 0, as for the case where there is no body
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which may sustain 1ift. Hence, in linearized flow the strength of such
a vortex system will extend unchanged to infinity downstream from a bedy.
The general considerations on influence regions and the original undis-
turbed flow preclude sny vortex system upstream from a single Dbody.

An importent result of the existence of such vortex sheets is that
the obligue transformation may change the region over which a body is nec-
essary for a given solution, because of the fact that the quantities u and
w become linearly trangférmeé as descrived by equations (7.3). In a similar
fashion the requirement that a body be closed with respect to its thickness
distribution may be changed by the obligue transformation. Thus for a body
with a given planform the oblique transformation may be applied only where
there is no vortex sheet arising from the 1ift distribution and where ihe
condition of closure of the body will not be changed. The significant con-
sequence of these congiderations is that the z direction is a characteristic
direction of the flow field. This direction in the x~z plane, together with
the two directions which give the wave systems, describe three charscteristic
directions which are important in the consideration of the planforms of
planar systems.

By arbitrarily changing the sign of the velocity potential for y
negative a symmetric problem is changed into an antisymmetric problem and
vice versa. This reversal of the symmetry of a system is often helpful.
Thus there is an equivalence between two systems of opposite symmetry, the
planforms describing the two bodies not necessarily being the saﬁe. As a
result of this equivalence it is necessary to consider solutions only in the

upper half space for which y is positive.
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23, Basic Inteeral Relations. The method of Hadamard desgcribed in sec-

~ tion 10 will be applied to the derivation of basic integral relations con-
necting the velocity components on the upper side of the plane of a planar
gystem. The contour described will be extended sufficiently far upstréam

to place the surface closing the half Mach cone in a region of neo -disturb-
ance, so that the integration may be taken only over the x~z plane. Since
for this plane the direction of the conormal is perpendicular to the plane
the quantity in equation-(lO.S) which involves éhe derivative of the inverse

of the hyperbolic distance is zero and equation (10.5) reduces to

b = - [z 35w e

where the minus sizn comes from the fact that the direction of the conormal
is opposite to the y direction. The quantity R in this expression is given

by

R = +(Zo-2)- (Xo-x)* (23.2)

This integral is essentially a finite integral, as the region of integration
need only be taken a sufficient distance upstream to cover the distribution
of disturbances. Thus the order of integration may be changed arbitrarily,
no difficulty arising from the singularity in 1/R with reasonable conditions
imposed on the integrand. The integration may be carried out in either order,

the limits being
Xy + (25 = 2) | 25 2o = |25 = x| j+o

Xg = (25 = 2) I~ -oo -
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for integration with respect to x first or z first, respectively.
Eguation (23.1) is re-expressed in terms of the gz component of the

velccity

¢, - q-:: ﬂ %ﬁ dxdz (23.5)

This expression may be integrated by parts twice, the firet time taking the
x derivative of the term in ¢b and the second time taking the z integral of

this term. The result may be expressed

| Xo—X  QJV (23.4)
Wy = -V, + e J‘(R(zo_z) =Y dxdz

In a similar fashion the relation for the y component of the velocity may be

expressed with the aid of equation (6.13)

=~ [ &2 L ([ Ny
beo =~ all =R dxdz + E—Tf{;kﬂdxdl (23.5)

Integrating this expression twice by parts and combining the two resultant

integrals results in

'1 iz A
- — — dx d (23.8)

where a Cauchy principle value is to be taken across the singularity in x.
The two relations (23.4) and (23.6) are the fundsmental integral
relations desired, the first giving w as a function of v and the second

giving v as a function of w. The first may be considered an integral



equation in v for which the second is the solution and the second may be
‘considered an integral eqﬁation in w for whicL the first is the solution.
The expression (23.4) was first obtained by considering s distribution of
sources on a plane and (23.6) was first obtained by considering a distribu-
tion of infinitésimal horseshoe vortices on a plane. In this process it was
necessary to use some cf the concepts described in section 10 as to integra-
tion across singularifies. The method using Hadamard'e integral is more
direct. |

It is evident that the relations obtained reduce to equations (8.3)
with £ = O for two-dimensional flow. Another simple application of these
- relations is to the problem of cylindrical flow. Two cases must be dig—
tinguished relative to the inclination of the cylindrical system to the
characteristic wave direction. If the system is inclined at more than 45
degrees with respect to the flow direction thé influence region of a single
point includes only a finite portion of the cylindrical body. For this case
the normal velocity component Vn corresponds to a supersonic flow. Conversely,
if the cylindrical system is inclined at less than 45 degrees to the flow
direction the influence region of a point will include an infinite portion 0f»
the system lying upstream snd the normal velocity corresponds to a subsonic
flow. These two cases are illustrated in Fig. 23.1. For the second case
it is necessary to include the infinite portion of the system by a suitable
limiting process, by assuming the system finite and extending it to infinity.
The results of this application are not included here but they agree with
the results obtazined by considering the cylindrical flow from the simpler

point of view of section 3 and thus serve as a check on the vélidity of the

method.
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NORMAL SUPERSONIC.

NORMAL SUBSONIC

Fig. 23.1. Cylindrical Flow

24, (Classification of Planform Fdeses. The bounding edges of a planform

describing the body for a planar system will be classified with respect
to their orientation to the characteristic directions on the plane. This

classification is illustrated in PFig. 24.1.

Fig. 24.1. Supersonic Planform

L]
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The normal Mach number for an edge is defined as the Mach number corres-
ponding to the inclination of the edge according to the concepts of cylin-
drical flow. Thus if '\lf‘ is the inclination of the edge with respect to the
flow direction and the Mach number of the uniform flow is1r§- the normal
Mach number is given by-JE; sin1f‘. This normal Mach number will be defined
so that it is positive for a leading edge where the flow direction passes
from a region off the planform onto the planform and will be defined as
negative'for a trailing edge. Thus it is possible to divide all the edges
of a given planform into foﬁr types. These are: the supersonic leading
edge, edge Aﬁ in Fig. 24.1; the subsonic leading edge, edges AB and DE;

the subsonic trailing edge, BC and EF; and the supersonic trailing edge,
CF. With the definition of normal Mach number as given above these edges

are classified as shown in the table:

Supersonic Leading 1 < M,

Subsonic Leading O < Mn €I
Subsonic  Trailing -1 < Mn €O
Supersonic Trailing Mn (-

The special boundary cases which occur between those classified above may
be given special names. The case Mn = 1 may be denoted by the /‘trerm sonic
leading edge; the case M, = 0 may be called a side edge; and the casé

’Mn = -1 may be called a sonic trailing edge.

The planforms which may be constructed embrace a large variety of

these types of edges. In general planforms will belong to one of three
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types:‘ those having only supersonic edges, those having only subsonic
edges, and those having both supersonic and subsonic edges. The only
fundsmental distinction that will be made is with respect to the first of
these types. A planform having only supersonic edges will be termed a
"simple" planform. A planform having some subsonic edges will be termed
a "non-simple" planform. The significance of this classification will be
made clear in the next section. Examples of this classification of plan-

forms are given in Pig. 24.2.

4
S\, N O\

SIMPLE PLANFORM -/ \ %

NoNSIMPLE PLANFORMS

Pigs. 24.2. Planform Classification

25. Problems of the First and Second Kind. A fundsmental division of the

problems arising in the study of planar systems is made with respect to the
direct applicability of the integral relations derived in section 23. The
x-z plane is divided into two regions, region 1 consisting of the interior

of the planform and region 2 consisting of the remainder of the plane.
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For the symmetrical or thickness case the problem of the first kind
will be the problem of determining the.pressure distribution where the shape
of the body is known. For the antisymmetric or 1lift case the problem of the
first kind is the problem of determining the camber distribution where the
- lift distribution is known. In the symmetric case the shape of the body
determines the value of v in region 1. The condition of symmetry requires
that v = O in region 2. Hence the quantity v is known over the entire plane
and relation (23.4) gives fhe pressure distribution directly in both regionms.
Similarly in the antisymmetric case the guantity w is known over the entire
plane and relation (23.6) gives directly the camber distribution in region 1

and the downwash distribution in region 2.

V known W known
(20) (=0)
SYMMETRIC ANTISYMMETRIC

Fig. 25.1. Problems of the First Kind

For the symmetric case the problem of the second kind is the prob-
lem of determining the thickness distribution required to produce a given
pressure distribution on the body. For the antisymmetric case the problem
of the second kind is the’problem of determining the 1lift distribution where

the camber distribution of the body is known. In both of these caseg neither
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the quantity v nor the quantity w is known over the entire plane and the
integral relations of section 23 cannot be applied diredtly. The problem

here is mixed with respect to which guantity is known and which is unknown.

v known W known

SYMMGTRIC ANTISYMMETRIC

Fig. 25.2. Problems of the Second Kind

For the case of a simple planform, as defined in the previous section,
the region which does not lie in the zone of action of the planform is com~
pletely undisturbed, so that the quantity w is known in the symmetric case
and the quantity v is known in the antisymmetric case for this fegion, ‘The
process of reversing the symmetry described in section 22 may be applied.

The zone of influence of the planform has no points in common with the zone
of action. Hence if the value of the gquantity w in the symmetric case and
the quantity v in the antisymmefric case are set equal to zero in this zone
of action no change will be made in the solution of the problem on the plan-~
form. This modification of the problem with the reversal of symmetry changes
the proble@ of the second kind into a problem of the first kind. Thus any

problem of the second kind for a simple planform may be transformed into a
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problem of the first kind for the purpose of obtaining a solution on the
planform itself. This solution is of course incorrect in the zone of
action of the planform but:the correct solution there may be obtained by
first finding the solution;oﬁ the planform as described above and consider-
ing this as a known quantity in a problem of the first kind.

These concepts as to problems of the first and second kind apply
with equél validity to linearized subsonic flow. Of course the'concept of
a simple planform does not exist for this case.

26. Methods for the Problem of the First Xind. There are several methods

available for the solution of problems of the first kind. These may be
classified briefly as:

a. The method of sing&larities. In this method a distribution of
singularities is assumed over thé plane in order to represent the body.
Sources and sinks are used for the description of the thickness properties
and horseshoe vortices or dipoles are used for the description of the 1ift
properties. The resultant field from these singul;rities is obtained through
- the method of superposition. This is the method used by Schlichting, Puckett,
Jones, and others. A modification of this method which yields only the drag
will be described in a later section.

b. The method of integral relations. This is the method in which
the relations (23.4) and (23.6) obtained above are applied directly.

c. The method of von Karman. This is the method briefly described

above in section 12 in which the axial varisble is separated and the flow is

obtained through the use of Fourier integrals.
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d. The method of separation of the lateral variable. This is
the method introduced in section 13 for which a brief development will
be given later.

e. The method of superposition of simple solutions. In this
method the desired system ig obtained by the superposition of known solu~
tiong. These are generally solutions of conical @ype. Recently Lagerstrom

has applied this method to the solution of some problems of the second kind.
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V. Wing Theory - The Lift Problem

27. Integral Baustions for the Problem of the Second Kind. The relations

between v and w given in section 23 are not directly applicable to the
problem of the second kind which was discussed in section 25. It is pos-
sible to employ the concept of a change of variables in which the quanti-
ties that are known are considered to be one variable and the quantities
which are unknown are considered to be another variable. Thusg, for the
1ift problem that will be considered in this chapter one function will be
defined as v in region 1 and w in region 2. The other function will be
defihed as w in region 1 and v in region 2. The problem of the second
kind is solved if a relation is obtained expressing the second function
in terms of the first.

The mathematical question that arises in such a problem is first
whether sufficient information is available in principle for a completes
solution, and second whether the solution obtained is unique. TFor the
simple planform defined in sedtion 24 these qqestions are answered by the
solution procedure which was described in section 25.

The mathematical problem may be discussed in terms of the matrix
representations analogous to the integral expressions. Thus the integral

expressions (23.4) and (283.6) may be represented by

w=Av v= Bw (27.1)

These expressions may be rewritten in terms of the two regions as



w V,
w' ' (27.4)
2 Vs
V w
' - ' (27.3)
V2 W;

For the mixed problem which constitutes the problem of the second kind,

the formal solutions may be given

W, B.:‘ ‘B—' Brz Vv,

y (27.4)
V7_ ~A2'L A Zi A 22 WZ

v Av -AVAL (W
We BzB. Bn/ \v

(27.5)

These expressions are valid providing the diagonal sub-matrices involved
are nonsingular, which for the integral equations involved reguires that
the corresponding limited kernels have resolvents. However, if (27.5) has
zero eigensolutions equation (27.4) does not exist formally. TFor this case
some distributions of (Vl wg) may not be allowed and to any valid solution
of the form (27.4) may be added any of the zero eigensolutions of (27.5).
The answer to the mathematical problem as stated above may be
inferred from these congiderations of the corresponding matrix equations,
and they apply with equal validity to linearigzed planar systems in either
subsonic or supersonic flow. Apart from the possibility of eigensolutions,
sufficient information is available in the problem of the second kind for

the existence of a solution. Figensolutions to the problem may exist and
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hence the solution obtained is not necessarily unique. Since the charac-

ter of the solution depends upon the way in which the x~z plane is divided

into two regions, this character depends distinctively on the planform shape.
For the application of these concepts to the problem of determining

the 1ift on a wing with a known caﬁber distribution, Wy = 0 and the equation

which must be considered may be simplified to

-\
w, = B, v, (27.6)

Hence in terms of the integral equation the problem amounts to finding the
resolvent to the limited kernel represented by'Bll. This is equivalent to
finding the resolvent to A22 as the two inverse matrices are connected by
a simple relation.

28. General Behavior of the Lift Solution. In general, the flow in the

immediate vicinity of a planform edge can be considered to have locally
the properties of cylindrical flow except at corners or where a wave dis-
turbance intersects the edge. The justification for thig point of view is
made clear by considering that a scale transformation will make any edge
approach a straight line and will make the conditions along the edge ap-
proach those for cylindrical flow provided reasonable continuity conditions
are met. Considering conditions locally is the same as considering them ét
& given point as the scale transformation increases the size of the body
indefinitely. Thus the terms used to classify the planform edges‘in sec-
tion 24 should describe roughly the lbcal flow conditions.

As a result of the general considerations on zones of influence,
the conditions for locally cylindrical flow are met stribtly for a super-

sonic leading edge and the magnitude of the pressure at the edge is given
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immediately by the local anglé of attack. From the fact that no part of
tlhie zone of action of a supersonic trailiﬁg edge intersects the region
upstream the solution on the planform is not affected by the presence of
the edge.

In analogy with two-dimensional subsonic flow there will be in
general for a subsonic leading edge a ~1/3 power singularity in the pressure
on the wing and a corresponding singularity in the upwash velocity ahead of
the wing. As with the subgonic flow, the sirength of the singularity is
not determined by the local angle of attack. This singularity is termed
a bound vortex and has associated with it a force acting in the x-z plane
perpendicular to the edge. This force 1s termed the leading edge thrust.

A subsonic trailing edge mathematically may have the same type
of singularities as the subsonic leading edge. In two—=dimensional subsonic
flow the Kutta condition is applied whereupon no -1/2 power singularity may
exist at the trailing edge. Hence, by analogy from the subsonic case, it
may be expected that no bound vortek exists at a subsonic trailing edge,
and that the singularity in that vicinity generally should be of +l/2 order.

29, The Leading Hdge 8ingularity. The nature of the singularity at a sub-

sonic leading edge will be investigated. In order to show the behaéior of
the dependency on Mach number the flow will be considered at a general value
of M instead of at M =yE;. The geometry of the system which is considered
is shown in Fig. 29.1. The normal Mach number of the edge considered is

given by the equation

Mp =M sinf (29.1)
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A useful relation in terms 9f this normal Mach number is

YI-M3 = cos I-t] (29.2)
where

(29.3)

Fig. 29,1. The Leading Edge Singularity

The strength of the singularity is defined by a quantity € in

terms of the variation in upwash velocity

‘ t — - ’
v=Cx*= C Yeosy § - (29.4)

The velocity component in the x-z plane normal to the edge is given by the

expression

' ¢
q = c (- X )“/"‘ (29.5)
F o A=
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The velocity component w is then given with the aid of (29.2) by

- C .to
Yty Si-tE

The factor in M in equation (29.6) disappears for M =2 .

(29.6)

‘71
(—x)

W = (1r S&\“} =

The leading edge thrust may be expressed from equation (29.4)
and the results of subsonic theory. The force acting normal to the edge

per unit distence along the edge is equal to

~ C cost C .
=S, = s = Gr¢ —/—— (29.7)
F= 5. ¢ Yi-ng Y1-tZ

The component of thisg force in the x direction per unit distance in the
z direction is denoted by §, and has the same value as F. The component
of the force in the -z direction per unit distance in that direction is

the leading edge thrugt for the supersonic planform and is given by

e Clto (29.8)

Tz =F ey = == Vietd

In this expression the factor in M disappears for M =1ﬁ§~.

An expression will be obtained for the continuity of this lead-
ing edge singularity at a corner. The geometry of such a cérner ig shown»
in Fig. 29.2. The continuity of the leading edge singularity is obtained
by means of the condition that no discontinuity across a wave system may
be permitted for a velocity component parallel to the wave surface. In

this case, there may be no singularity in the upwash velocity along the



Fig. 29.2. Continuity of the Leading Edge Singularity

line OC. This velocity is expressed in terms of the strength of the
singularity before the corner by

Y
_sh g 2 (29.9)

sin (x-;)

-
V= Cl _J("os""l ?, = CI

where Z denotes the distance along the line OC, Equating the velocity as
obtained from the singularity of the forward portion of the edge to that

obtained from the downstream portion the relation is obtained

C‘z Sin o _coswh _ C:‘ C_Z‘ .
sn(x-%)  1-t, 1-to

(29.10)

i

This result shows how ths strength of the leading edge singularity changes

at a corner. The side forces from equation (29.7) are related by

(s.42)

I

T
S V"' o (29.11)
A ‘__to

Z
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and the leading edge thrusts are related by

A J“"’“ ~ L ]"_:"__‘EE (29.12)
Tz 't.o I-‘tg | - (Tz 'to l—tb

2

».

This éontinuity of the leading edge sihgularity could also have
been derived by the same method applied to the velocity‘component parallel
to the wave direction on the body. The results of this analysis confirm
those obtained by the method above. The validity of this relation has not
been checked over the Mach cone but should_hold true. The flow pattern
given will not be invariant under the scale transformation but will re~
produce itself with a factor dependent upon K. The flow presented is for
an infinite system with uniform singularities in the portions shead and
behind the downstream Mach cone extending from the corner. Although this
is a conical body the boundary conditions of section 3 are not satisfied
and the flow described is not a conical flow. For a general case where the
strength of the singularities are not uniform the results given for the
change of strength of the singularities will hold locally at the corner.

%0. Eigensolutions and the Kutta Condition. If the solution tb a wing

problem is not unique there must exist eigensolutions for the planform.
This is evident from the fact that where the solution is not unique there
must exist at least two distinct selutions for which the difference will
be an eigensolution. A planform will be considered to be divided into
three reglons, a, b, and c. Region a consists of all points on the plan-
form which have only supersonic leading edges Wiéhin their zones of

influence. In general this region is the zone of action of the supersonic
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leading edge. Region b is comprised of all points on the planform which
have subsonic leading edges in their zones of influence, but no subsonic
trailing edges. Region c consists of all points which have subsonic
trailing edgés in their zones of influence. These regions are shown in
Fig; 24.1. The solution for region a may be obtained by the method given
in section 25 for a simple planform snd therefore no gquestion of unique-
ness arises. Any eigensolutions which occur must lie only in the remaining
regions.

Due ﬁo the hyperbolic nature of the flow, an eigensolution may be
congidered to start at a point and extend into its zone of action. However,
an eigensolution may not start from a point in the interior of a planform.
This is true because the conditions at such a point are uniquely determined
if the solution in the zone of infiuence ig given and this solution cannot
be affected by an eigensolution starting from the point. Therefore, any
eigensolution which exists must start at a point on the subsonic edge.

The possibility of an eigensolution starting from a point on a
subgonic edge will be considered from a point of view of the local flow.

It will be assumed that the form of the eigensolution chssen is such that
it will be reproduced under a scale transformation with a factor propor-
tional to a power of K. With this assumptibn it is possible to superpose
the eigensolution along the edge so as to produce a locally conical flow.
Thus, the existence of an eigensolution may be taken to be equivalent ﬁo
the existance of a locally conical eigensolution.

As will be shown later in the chapter on conical flow an eigen-

solution may exist only where there is a subsonic trailing edge. These
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eigensolutions have a ~1/2 power singularity on the edge in analogy with

the two-dimensional subsonic circulation flow. Thus an eigensolution may
not start from 2z point on a subsonic leading edge but may start from any

point on a subsonic trailing edge. Eigensolutions with singularities of

order -2/2 or higher are not considered.

With reference to our classification of the regions on the plan-
form it may be stated that in region a the solution is¢ unique and is ob-
tainable by methods for problems of the first kind, in region b the solu-
tion is unique, and in region ¢ the solution is not unigue.

The Kutta condition for a supersonic planform specifies that no
infinity of ~1/2 order or higher may exist in the pressure distribution in
the vicinity of a subsonic trailing edge. This condition is permissible
from the versatility of the eigensolutions in removing a -1/2 power singu-
larity. It provides a uniqueness to the solution since once the solution
with the Kutta condition is obtained no eigensolutions may be superposed
withont destroying the condition. The Kutta condition influenceg the
solution only in region c.

An interesting point of discussion is with regpect to the condi-
tions at a side edge. Tor a side edge, even though there is a -1/2 power
singularity in the sense of a bound vortex, the singularity in the velocity
component w is of order +1/2 since the z direction is now parallel to the
edge. No conical eigensolution exists for a side edge. However, if a
side edge is changed in angle very slightly to form a trailing edge, the
continuity law indicates that the singularity in w which appears is weak.
The eigensolution which must be added to remove this singularity is weak

with regard to the magnitude of w.
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%1. Methods for Solution. One method for the solution of the problem of

the second kind is the method indicated by the development of section 27,
the solution of the integral equation. This involves getting the general
solution to the mixed integral equation for the planform by finding the
resolvent to the limited kernel represented by the matrix Byy. This method
corresponds fo method b.of section 26, but is of different order of difficuliy.
Because of the hyperbolic nature of the problem it is possible to
apply a step-by-step method to the 1ift problem. Since the only difficulties
in the problem afe associatéd with the solutions near an edge, it is unnec-
essary to consider the entire planform at one time. The geometry considered

for this discussion is ghown in Fig. 31.1.

Fig. 31.1. Step-by-Step Method

Tt is assumed that a complete solution has been obtained as far as the line
AB, 2nd that it is desired to extend this complete solution to the line CD.
The step that is taken is assumed to be sufficiently short that the line OF

may be considered to ‘be straight. The solution in the region AOEC may be



- -

obtained directly by equation (23.6). The solution in the region BOGD
may be obtained directly from equation (23.4). This leaves only the tri-
angle OBFG to be solved. A solution for this conical region musgt be ob-
tained which satisfies the proper boundary conditions in that region
itself and matches the other solutions on the lines OE and OG in the sense
used in obtaining the continuity for the leading edge singularity. TFor a
trailing edge the -1/2 power singularity must be destroyed at the start
and subsequent solutions must be used which have 2 +1/2 power singularity.
The details of thig solution method have not Been worked out, and the
computational problem promises to be difficult.

I% is possible to cobtain the solution to certain problems of
the second kind by the method of superposition of simple solutions analo-
gous to method e of sectionk26. The simplest examples of such solutions
are those for triangular wings (gg,gg;gg). A less trivial exsmple is one

due to Lagerstrom (48) which is depicted in Fig. 31.2.

(@]

Fig. 3l.2. Lagerstrom's Example
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In this case, the solution for the region AOCFE is obtained from the
conical triangular wing solution with vertex O; The solution for the
regions ABE and CDF are obtained by superposing conical flows with ver-
tices distributed along AB and G‘D which cancel the 1ift in the region off

the planform assumed in the original triangular wing solution.
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VI. The Drag of Arbitrary Systems

32. The Concept of Drag. The drag of a body in supersonic flow may be
considered to be composed of a perfect fluid drag and a real fluid drag.
Thé real fluid draé consists of drag which arises from shear forces and
from pressure forces resulting from boundary layer and separation. This
type of drag is not considered in this analysis. The perfect fluid drag
actually arises from energy losses through shock waves or turbulence but
for the purposes of the linearized theory no energy degradation is in-
volved. This perfect fluid drag for subsonic flow results only from the
distribution of 1ift and generallyiis termed the induced drag. It may

be considered to arise either from the effect of velocities induced on
the system by itself or from the energy transported away from the system
by the trailing vortex system. However, for supersonic flow perfect fluid
drag exists without the necessity for a lift distribution and may not be
consiéerad to arise only from the energy transportied away by the trailing
vortéx system.

The application of the methods derived in section S‘méyrbe used
with anyvclosed contour about the system in questiqn. It is generally
convenient to consider only two contours, one very close to the body and
the other at a great distance from the body. It is of conceptual value
to separate the drag.Of a supersonic system into various parts. However,
this must be done either on the basis of considering the local field with
the contour close to the body or the distant field with the coﬁfour at a

great distance from the body. The term induced which is familiar from
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drag considerations in subsonic flow implies a connection with velocities
induced in the vicinity of the system and hence should be used only with
the local flow concept of drag. The term wave which has been used in
connection with supersonic drag implies a relation with the wave system
emanating from a body ﬁnd hence should be used only with the distant flow
concept of drag. These two concepts should not be mixed and hence the
terminology wave-induced is inadvisable. }

The drag of a body as considered from tkhe point of view of the
local field is the drag which is calculated from the pressure forces acting
directly on the body, modified for the existence of a net mass flow if
necessary. For most systems'it is possible to express a body or system in
supersonic flow by means of a distribution of singularities. In this case
the drag from the point of view of the local flow arises from the mutusal
interaction of these singularities.

Following the concepts of section 5 the drag from the point of
view of the distant field may be considered as either the emsrgy or the
momentum transported away from the system. In an actual case the dis-
turbances are attenuated and the drag appearé as shock wave loss but the
linearized analysis is correct on the basis of unattenuated waves. The
flow in the distant field may be considered to arise from the totality
of singularities representing the system.

The singularities that will be used in the arnalysis have already
been described in section il. One of these elements is the unit source
represented by the potential |

- |

_ ' 32.1
¢ = 27z 111 ( )
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from which a local drag arises from the effect of an induced axial,veloci?y.
This is used to represent the thickness distribution of a planar system.

The condition of closure of a planar body is that the integral of the
source strength in the z direction be zero everywhere across the body. The
‘other singularities is the infinitesimal horseshoe vortex or lift element

represented by the potential

sin ©
¢ = zmeV zt Vi-¢2 (%2.2)

from which a drag arises from the effect of an induced velocity in the direc-
tion of the lift. This represents a singuiarity with 2 unit 1ift and is
used to represent s planar 1lift distribution. |

The reason for the existence of supersonic form drag is seen from
a consideration of the mutual influence of two sources. In subsonic flow
the mutual effect of two sources on one another will exactly cancel so that
no interaction dfag can arise. In supersonic flow if one source is in the
gzone of action of a second, the second cannot be in the zone of action of
the first and the interaction drag does not cancel in this case.
33. The First Reversed Flow Theorem. A theorem relating the drags of
va;ious subsonic systems is we11~khown as8 Munk's stagger theorem. This
theorem states that the drag of a subsonic system remains unchanged if the
-1ift elements representing the 1ift distribution of the system are staggered
arbitrarily in the axial direction. Such a theorem does not hold in super-
sonic flow but it is possible to obtain theorems relating the behavior of

a system with that of the same system with the flow reversed. The theorem
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obtained in this section is for a system composed of sources and 1ift
elements.

Under a reversal of the flow about a system of sources and 1lift
elements the strength of a source is defined to be the same in magnitude
but opposite in sign. A 1lift element under a reversalyof the flow is so
defined that the lift vector produced by the singularity remains unchanged.
In either case, this is equivalent to taking the negative of the solution
upstream which was canceled in the process described in section 11. The
drag is considered to arise from the totality of interactions between the
elements of the system. If the‘drag arising from the interaction between
two elements remains unchanged when the flow is reversed the total drag
remains unchanged. Therefore, it is only necessary to consider the mutual
effect of two singularities.

' The two singularities are considered with respect to the plane
passing through the two points tangent to the flow direction. If neither
of the points lies in the zone of action of the other the same is true with
the flow reversed and no interaction drag can occur for either case. If a
point is in the zone of action of a second point when the flow is reversed
this second point lies in the zone of action of the first. Three singular-
ities must be cohsidered: the source, designated/by A; a 1lift element nor-
mal to the plane including the points, designated by B; the 1ift element
parallel to the plane, designated by C. Any 1ift element may be considered
to be composed of a component B and a component C.

No interaction producing drag may occur between elements A and B;

this may be stated that the AB interaction is zero. Similarly the BC
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interaction is zero. That the interactions AA, BB, and CC have the same
drag when the flow is reversed follows directly from the symmetry of the
types of singularity. The interaction AC may be shown to have the same
drag with the flow reversed; this would be expected from the fact that the
1ift singularity may be obtained from the source singularity by differen-
tiating laterally and integrating axially.

The first reverse flow theorem may be stated: If a collection
of sources and 1lift elements is placed in a reversed flow with the signs
of the sources changed and the 1lift vectors unchanged the drag of the sys-
tem will remain unchanged. It should be noted that in general the geometry
of a body“represented by the system will change under such a reversal of
flow. It will apply with unchanged geometry to the thickness distribution
of a planar system or to a body of revolution with the slender bodyvapproxi-
sation. The theorem is essentially limited to finite systems. Another
proof will be given in section 38.

Por planar systems there is no interéction between the thickness
and 1ift distributions so that the consideration of interactidns of the
type AC is unnecessary. For the special case of planar two-dimensional flow
the pressure due to thickness is changed in sign. The pressure due to lift
is unchanged but the angles of the camber distribution giving the 1ift are
changed in- sign. TFrom the point of view of the method of von Karman dis-
sussed in section 12 the pressure distribution on a planar tﬁickness system
ronsists of two parts, one due to the Y, terms in the Hankel functions, and
me due to the J, terms. The terms in the velocity potential in Y, satisfy

she boundary conditions of themselves. The pressure distribution in Y,



produces no drag, and the entire drag of the system arises from the J,
pressure distribution. If the flow is reversed the first Hankel function
takes the place of the second. The pressure distribution in Y, is unchanged
while the pressure distribution in J, is changed in sign, giving the same
drag with the reversed flow. It is necessary that the s&stem congidered be
finite for this analysis. The reversed flow theorem for the thickness case
has been checked in detail for the delta wing of Puckett (35) by L. Friedman
and others of the theoretical aerodynamics group at the Aerophysics Labora-
tory of North American Aviation, Inc. It should be noted that the thickness
and 1ift drags of a planar system satisfy the reversed flow theorem separately.
For the nonplanar case two examples in two-dimensional flow are pre-

séented for illustration in Mig. 33.1 and 33.2.

NI
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ORIGWNAL  FLOW o FIRST THEOREM SELOND THEOREM

Pigy 33.1u E;ample-of Reversed Flow Theorem
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Fig. 33.2. Second Example

The second example is of particular interest in that it demonstrates that
negative 1lift may result from a positive angle of incidence.

34. The Second Reversed Flow Theorem. A reversed flow theorem relating
systems with the same geometfy rather than the same 1ift would be desirable.
Such a theorem may be obtained but is more limited than the first reversed
flow theorem.

Fof a planar system the first reversed flow theorem provides the
same geometry for a thickness digtribution. The seecond reverse flow theorem
for the cember distribution helds onrnly for simple planforms. ¥For a simple
planform there can be no interaction between the upper and lower surfaces.
Hence, the method of reversing the symmetry of the system used in section 25
gives the theorem from the application of‘the first reversed flow theorem
to the gystem with reversed symmetry. The failure of the closure condition
in this case is unimportant. For planar two-dimensional flow the theorems

are the same except for a change in the sign of the 1lift distribution.
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The 1ift curve slope of a simple planform is equal to the drag
of a flat plate divided by the square of the angle of attack, Since such
a planform will have Ehe same drag with the flow reversed the 1ift curve
slopes will be identical. This has been checked for the kite-shaped
planfcnh of‘the German Zitterrochen wing by R. Lew of North American (58).
Lagerstrom has given several examples of nonsimple planforms for which this
is aléo true. This suggests the possibility of a more general reversed
flow theorem relating to 1ift curve slopes.

The second reverge flow theorem holds generally for nonplanar
s&stems in two dimensional flow. This may be obtained easily from a con-
sideration of the interaction between planar systems comprising the system
as a whole. Examples of the application of this theorem are depicted in
Pig. 33.1 and 33.2.

A géneral nonplanar .system can be considered to consist of iso-

" lated interacting planar systems. For the application of the second reverse
flow theorem three conditions must be satisfied. The first condition is
ghat each of the individual planar systems must consist of a simple plan-
form. The second condition is thaﬁ there may be interaction betwseen single
surfaces only, that none of the leading edges of the simple planforms lie

in any of the zones of action of the other planforms. The third condition
ig that it is possible to symmetrize the system in the sense used in con-
gsidering simple planforms without introducing nonexigtent interactions. The
second condition is not necessary fgr two-dimensional flow as there is no
interaction between an element and the opposite surface of a_planar system

in this case.
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35. Basic and Induced Drag for Planar Systems. The drag of a planar
system is divided fundamentally into the drag due to thickness and the
drag due to 1lift. It is possible to make a separation of each of these
drags.into two types on the basis of the local flow field. This separa-
tion is made on a diffgrent basis for the 1ift drag from the thickness
drag and is derived from the fundamental relations (23.4) and (23.8).
ansequently. on the basis of a solution only in the upper half space two
'diétinct separations are/possible. From the results of section 5 the drag
may Ee obtained by integrating the quantity - vw over a plane immediately
above the planar system. If a thickness system is being considered the
drag is obtained by multiplying (23.4) by v and integrating; similarly for
a lift system the drag is obtained by multiplying (23.6) by w and integrating.

In deriving relation (23.4) from a planar distribution of sources
it is helpful to consider it as a limiting case of a spatial distribution
of sources. The first term in the expression for the éxial velocity arises
from the limiting process by which the spatial distribution is changed into
a planar one. This term depends only upon the local conditions and is
denoted as the "basic! term. The second term arises from the velocities
induced by the planar distribution of sources within the zone of influence
of the point in question. This term is an integral over a portion of the
plane and is denoted as the "induced" term. The temms in the expression for
the upwash velocity in relation (23;6) are obtained from a distribution of
1ift elements in a similar fashion.

The drag as calculated from these fundamental relations is natur—

ally divided into two terms, a basic drag and an induced drag. The basic
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drag is the drag that would be obtained from a two-dimensional calculation.
The induced drag may be either positive or negative. This separation of the
drag is for problems of the fi&st kind, no immedliate separation in terms of
the known quantities being available for problems of the second kind. The
first reversed flow theorem holds for each of these separated drag portioms.

For a nonsimple planform with -1/2 power singularities the separa-
tion on either basis fails because the integrals do not converge. For this
case the only possibility is to integrate the dreg from expression (23.4)
oﬁer the planform only and to correct this result for the leading sdge
thrust.

36. Yave and Xortéx Drgg. A consideration of the distant flow field per-
mits a separation of the drag of a system into two types. For the burposes
of this section the drag is considered to arise from the transport of
acoustical energy away from the system. The system is considered to con-
sist of sources and 1ift elements.

Since the only singularity in the flow field from a source lies
on the downstream Mach cone and from a 1ift elemént on the Mach cone and on
the axis, a finite system may be considered to be concentrated at a point
for a sufficiently distant observer not near either the Mach cone or the
axig. An investigation is made of the portion of drag represented by the
energy transported away within the cone t =1 - € and for the 1lift element
exterior to the cone t =€ .-

The distant surface considared is a plane perpendicular to the
flow direction at a distance z from the system, for which the area element

igs z2 t dt d6. Since both the source and the 1ift element are singularities
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. for which n = -1, the velocities are of the form £(%,8) 2 2. Squaring
these velocities and integrating across the area shows that the contribu-
tion of this portion of thé field to the drag is of the order z 2. For a
source the integration in t is from O to 1 - €; no matter how smail the
quantity € is chosen the drag represented by this integral may be made
as small as desired by making z sufficiently large. Thus the drag from

a finite system of sources may be considered to be concentrated as enérgy
near the Mach cone. For a 1lift element the integration in t is from ¢
to 1 - G./ The drag for & finite system of 1ift elements or for a general
finite system may be considered to consist of two parts, one concentrated
as energy near the Mach cone and the other as energy near the axis. These
drags are termed the "wave! and "vortex® drags, respectively. The condi-
tion that the drag of a system of the type considered in chapter III be
thus concentrated is that n < O.

Methods for the direct calculation of the wave drag are presented
in the nekt two sections. The energy in the vicinity of the Mach cone is
essentiélly that in a plane wave system; the flow field near the Mach cone
approaches ;,system of plane waves with increasing distance. For such a.
wave system, v = 0 and u = -w in the radial notation. The wave is weakly
attennated as a result of the radiasl expansion and the velocities in the wave
decrease in magnitude as r'%. From the result of Raleigh (26) half of the
energy in the system is acoustical kinetic energy and half is potential
energy. |

The vortex drag is so called because it is associated with the

energy in the trailing vortex system. It is sometimes called the induced
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drag in analogy with the equivalent subsonic drag, but as was pointed

out in section 32 this is really a misnomer as there is no connection
with the effect of local induced velocities. Munk's stagger theorem

holds for the vortex drag as is evident from the fact that staggering

the 1ift elements arbitrarily has no effect on the composition of the
trailing vortex system. This drag may be obtained by standard methods

- (24) for calculating the energy in an ihcompressible two-dimensional flow;,
esgsentially by integrating the gquantity 9¢§%areund line contours envel-
oping the individual vortex systems which comprise the system as a whole.
37. Lingar Source and Lift Distributions. As a prelininary to the method
of calculatiqn of the wave drag of an arbitrary finite system the wave
drag of a linear distribution of sources and 1ift elements is investigated.
The source strength per unit length is denoted by f and the lift strength

per unit length is denoted by The 1ift distribution is considered

L ve
o ot
to be divided into two components, denoted by &y and gy. The differential
expressions for the po'tential and the axial velocity in terms of z and t

are

-1 . -1
dé = ;f +1t smB 9y + t cosb 9, 4y (7.1)

2WZ /12

...-f| + t'sinG 9‘3, + "L—'coseﬂ;

29 z 1/.--tz

(37.2)

il

dw dz

Since only conditions very near the Mach cone are to be considered the ap-

proximations may be made:
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V=0 - UwW = W'Z (57.3&)
)
t' =1 {I-t% = +Z VIt (27.3b)

The variation with respect to aximuth angle is to be considered last and

the abbreviation

h = -9,sn6-g,s6 = f-9g (37.3c)

ig made, where g here denotes the component of the 1ift distribution in the
direction considered. |

The surface used for the calculation of the wave drag is a cylinder
of radius r and the integration is talken over the range near the Mach cone
exclnded in the considerations of section 36. The radiug must be chosen such
that €r is large compared with the length of the linear distribution. The
distribution is assumed to start at z = O and the variable z' = z - r is
introduced for the purpose of notation. The geometry of the system is

depicted in Fig. 37.1.
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- L - Z — — -
Z, z'

Pig. 37.1. Linear Source and Lift Distribution
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Using equations (37.3) the axial velocity component may be

expressed

_lI

\
W = - -———!—-_:: ___b_g_c_‘_zf_. (37.4)
297 +/2r Jz2.
-]

The dragz per unit aximuth angle is given by

er er
z' 7',
db _ pw'rdz' = iz ]h.,clzo hd2, | 4z (37.5)
de am N7-z, | |)¥2'-2,

o
]

which by rearrangement of the order of integration becomes

€r .2,
dD ¢ ! e dz'
16 — um == dz,dz 37.6
de Y42 l’\o hu z-‘/z!_zc./z-_z. ' o ( )
o o ° .
The integral in the brackets may be evaluated .
€er . &r |
dz' - z. - 2°...‘.‘._Zl
= cosh 2 = —jwlz-2)+ logCer (377
f (Z.-z°)(-z_‘_z.) za—w:—z, }ﬂ( L) Zl) ,o” ( )
Z, = .

The constant term in (37.7) gives no contribution to the drag, and the wave
drag per unit agzimuth angle is

®© ~Z,

b _ _ ¢

de TS '1:, !1'. [Oj(zo“zn) dz,dz, (37.8)

o © .
This is the same result as that obtained by von Karman (15) for a linear

source distribution. His method is not applicable to a 1ift distribution
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as it is based on a close contour rather than a distant one. An important
feature of this drag is that it is independent of the Mach number.
For a true linear distribution the total wave drag may be obtained

by expressing the product

= £ + + 9y 3y sin'e + 9y gy cos®e

(37.9)
+AsinG + Beos® + CsinO s O

and integrating with respect to 6. All the cross‘terms vanish in the inte-

gration and the total wave drag may be expressed

D

]

D+ +D (7.10)
+ v ﬂy Ix

The source distribution and the two components of the 1lift distribation are

noninteracting with respect to the wave drag. The vortex drag for a true

linear distribution of 1ift elements is infinite unless the net 1ift is zero.

38. The Galculation of Wave Drag. In the calculation of the wave drag of

an arbitrary system it is convenient to consider z ag a time variable for a
distant observer at a given value of r and €. The upstream Mach cones from
the positions of the observer represent surfaces of coincident signals in
the sense of Huygen's principle, disturbances from all points of which
arrive simultaneously. These surfaces are parallel planes in the vicinity
of the system under study. Trom the point of view of the observer it is
impossible to distinguish between two sources or 1ift elements of the system

which lie on the same plene and it is possible to represent the system by
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a linear distribution of singularities along a reference‘axis. All the
gsingularities lying on one of the planes of coincident signals are con-
sidered to be concentrated at the intersection of the plane with the axis.
The wavé drag contribution in terms of drag per unit aximuth angle may be
obtained by the equations of the preceding section for the direction given
by the coordinate © of the ohserver. ‘This quantity may be obtained as a
function of 8 and integrated to obtain the total wave drag of the system.

The wave drag as calculated with the floﬁ reversed according to
the definition of section 33 is the same as the original drag. The only
differences in the calculation are that the angles are changed by AT ,
that there is a change in the direction of the integration, and that there
is a change 'in the sign of the distribution. Since the distribution strength
appears twice in the integrand and there is no effect from the other factors,
the result for the drag is the same.

The vortex drag remains unchanged in a reversed flow as the vortex
system is changed only by a reflection. Thus the first reversed flow theorem
holds for the wave and vortex drags separately and therefore for the total
drag.

These considerations pertaining to the wave drag permit some general
conclusions as to the bebavior of a system as the Mach number approaches unity.
As M -1, the planes of coincident signals all approach planes perpendicular
to the flow direcfion, that is, to the séme set of planes. For the purposes
of wave drag the system approaches a true linear distribution which from the

preceding section has the following properties: the wave drag calculation is



simplified to that of a slender body of revolution in that the integration
with respect to © is unimportani; the drags from the source and 1ift com-
ponent distribumioﬁs become independent according to (37.10).

For a planar system the distribution in f is the same for a given
direction as for the opposite direction, with @ changed by . The distri-
bution in gy is the same in magnitude for a given direction ag for the
opposite direction but is changed in sign. There is no distribution in gx.
The contrivutions to the drag of opposite directions may be combined, in
which case it is seen that the cross terms cancel in the expression for
hyhy. This shows the noninteraction of the thickness and 1ift distribu~
tiong of a planar system in producing wave drag.

For a planar system the surfaces of coincident signals reduce to
the lines which are the intersections of these surfaces with the fundamental
plane. DPor the calculation of the wave drag it is necessary to obtain an
expression for the orientation of these lines to the flow direction. This
is measured by the angle P between the intersections and a perpendicular
to the flow direction. A surface of coincident signals is represented by
a line on a plane perpendicular %te the flow direction. This line is tan-
gent to the circle which represents the Mach cone of which the vertex is

the intersection of the surface with the axis, the point of tangency being

at the specified value of 8. The radius of this Mach éircle is ?7444g4
and the distance from the axis to the intersection of thé surface of co-
incident signals with the fundamental plane is equal to sec 6 times this
value. The tangent of the angle (3 is the ratio of z to this distance and

is given by
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fon f = VM1 cos © (38.1)

for a general value of the Mach number.

As an instructive example of the method of calculating the drag
the analysis for the half-arrowhead wing tr;ated by von Karman by the axial
variable method is given. This example is for a semi-infinite sysfem and
shows the necessity for care in applying these drag concepts to a system

which is not finite. The configuratibn treated is shown in Fig. 38.1.

<+ P >0 >

o -»

Fig. 38.1. Half-Arrowhead Wing
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This body has a diamond cross section with a chord length 2a in the
axial direction and a maximum thickness equal to 2adl. The body has
~no 1ift and is represented by a distribution of sources of strength
* 2XV per unit area. The equivalent linear source strength may be
expressed as the product of two factors, one containing the azimuthal

"dependence and the other the axial variation. Thus the source strength

is
,f = fw.,_ = fﬂ'{z (38.2)
1 - tanp3 tan I~ t5 cos ©®
where

N
]
1}

ZxV “ton , ©0<zla

2

il

- 2oV “tanv , @ < Z<2a (z3,3)

L]

The latter distribution substituted into equation (37.8) gives the drag per

unit azimuth angle at © = 17/2

(Yo V)

.22032
/'7-2

20 )y

2z

1

?V’za‘z 0(2 _’nnz,* (38.4)



- 98 -

The integration of the factor containing the dependence on the azimuth angle

gives
v
z 2
l
— - — 38.5
z (n—t,wse) 8. = (-2 (%8-9)

whence the total wave drag may be expressed

4 log2 2 |
D = I e sV ¥« tant ——— (38.6)
w ™ (1-¢2)¥-

In’this form the depeﬁdence on M appears only in the term t,. As the Mach
number approaches one the drag approaches a value dependent only on the
axial variation of the cross-sectional area. It must be emphasized that
for a system which.is not finite the wave drag does not in general comprise
the entire drag that would be calculated from the pressure distribution
which is true in this case.

A finite system is considered with the half-arrowhead at both
ends of a long cylindrical body. This body is assumed to be sufficiently
long that there is no interference between the disturbances from the two
ends of the body. No disturbance is propegated from the main part of the
body as the flow there is essentially a subsonic cylindrical flow. Sinée
the system is now finite the wave drag is the total drag and amounts to
2Dy, half coming from the’nose of the body and half from the tail.‘ An
investigation of the pressure drag of the body gives the same result
except that the pressure drag on the nose is 2ﬁw and there is no net

pressure drag on the tail. This apparent discrepancy disappears with the
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concept of energy transport along the body, as energy in the subsonic
cylindrical field which is being transported by the tangential velocity
component of the principal flow. An investigation of this cylindrical
field shows that the drag represented by this energy transport is equal to

ﬁw. The finite system with the energy flows is illustrated in Fig. 38.2.

v NS

//DW'

VI

Fig. 38.2. Energy Flow for Finite System

It may be noted that the similarity between equation (37.8) and the ex~
pression for the energy of a subsonic two-dimensional source distribution
thué aquires é physical significance.

The results of this analysis agree in all compérable details
with those of von Karman and Chang. The drag calculated from the J,
distribution for the semi~infinite system agress with the wave drag and

thus does not give the correct pressure drag. The Yo terms which produce



- 100 -

no drag for a finite system do give a drag for the semi~infinite system
which corresponds to the drag represented by the energy transported along
the body. The results for the complete arrowhesd wing check in a similar

way .
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VII. Conical Flow

39, Basgic Relations between Velocity Components. The first development
of linearized conical supersonic flow was presented by Busemann (20) in
1942. Since that time various other presentations have appeared (36,39,
derivation of the basic equations and the methods of application to
various examples. The treatment given here is essentially that of (gg)
and is made with special reference to planar systems. |
The equation for the velocity potential in conical flow is

obtained from (15.3) and (15.4) by setting n = 1

q,t ++ ¢ =o0 (89.1)

o+l

(1-t*) ¢tt +

From the relation (15.8) may be obtained the relation between the velocity

potential and the axial velocity w

b = —zt[ Wt‘f‘ +@] (89.2)

where C) is an arbitrary function of © and the integration is taken from
t = 1. After an integration by parts the radial velocity component is

given by

i

We dt
q, d;t = - f s + W, + O (39.3)
[ ]
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where wy is the value of w at t = 1, on the Mach cone. Similarly the

azimuthal velocity component is given by

wg dt
9_‘_ + @6 (39.4)

qe:_z—!{q)e:_[

If t is set equal to 1 in equation (39.1) a condition satisfied

by ¢ on the Mach cone is obtained

$ — (39.5)

from which can be derived the condition on

+ = 39.6
O * O +wi =0 (39.6)
This condition gives the relations
d[(W.+@),Cose -6, Smg} . = cos'® dw, (39.7a)
= sin® dw (39.7b)

d[(w.+@) sin® + 6, cos 9]

From the above relation the cartesian velocity components are given by

i

q,co88 -q_sin® = ~ "

T o
[ Wi cosB - & w9~.'.medt +rco$9dw'} (39.8a)
¥ '

[
: W, SinB+ 1w, s © .
V = q,5in6 +qgcos6 = - It 'tt e 4t +JSm6dWwJ (39.8D)
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with suitable arbitrary constants. These equations give the two cross ve-
locity components in terms of the axial component. The path of integration
is around the Mach circle to the desired azimuth angle and thence radially
to the desired value of t. \

The substitution (15.5), re-expressed as

t = 28 5= t (39.9)

V + Vi-t2

’

transforms equation (15.4) for the axial velocity component into Laplace's

equation in polar coordinates

W, +

{
A L = o 39,10
- s W, + wW. ( )

The relation between t and s is shown in Fig. 39.1. The quantity s is a

double~valued function of t and is real only for t 1.

t

l-O / S— *\1\

0 1.0 S

Fig. 39.1. Relation between t and s
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Introducing the complex variable

€ = Seie (39.11)

w must be the real part of an analytic function of € , the same being true

for u and v. Letting w' be the function conjugate to w so that

wriw' = f(e) (89.12)

the Cauchy-Riemann conditions may be expressed

- = 4w
Wg = 3 W, (39.132)
\ '
‘s‘We = =W, (39.13b)

Using the relations between t and s, the Cauchy-Riemann conditions (39.13),
; and the definitions of € and f, the cartesian velocity components may be

expressed by the integrals in the complex E plane

w = - &Q ('+eld‘f (39.14a)

ze
. I—-E:z d_f.
vV = “M L f"{{ (39.14b)

with suitable arbitrary constants. The path of integration is the same as

for equations (39.8). This contour may be deformed arbitrarily within
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restrictions imposed by the singularities of the integrands. These
;ntegral relations are the same as the one integral relation of Busemann.

Only the region inside the unit circle on the t plane, the region
for which the differential equation (39.10) is elliptic, is mapped on the s
plane, once inside the unit circle of the s plane.and once as a reflection
outside the unit circle. The region outside the unit circle of the t plane
is a region for which equation (39.10) is hyperbolic.

For the region outside the Mach circle the real characteristics

of equation (39.10) are given by
z Z | K4
(+-1)40° - e dt® = o (39.15)

which intéérates into
6 + sec’t = O (39.16a)

e -— sec"{;k = O (39.16D)

*
These are the equations for straight lines lying tangent to the Mach circle
in the t plane. Thus the Mach circle is the envelope of the characteristics.

These characteristics are illustrated in Pig. 39.2.
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CHARACTERISTICS

ﬁ/L
6,

f

, MAM CiRCLE

Fig. 39.2. Characteristics for Conical Flow

Introducing 67 and 65 as new independent variables into equation
(39.10) results in the equation

z
wW
2w = O (39.17)
36, 96,

which has a general solution of the fom

w= {(e) + ]2(92) | (39.16)

Since u and v satisfy equation (39.10) they must also have general solutions
of the seme form. However, these solutions are not independent. Using

equations (39.8) expressions analogous to (39.14) may be derived

J

,
w = —|(cos®, df, + coss, df,) (39.19a)

Vv = —Jr(sin e, df, + sinG, d)[z) (29.19b)
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with suitable arbitrary constants. The path of integration is the same
as for equations (39.8). Since the integrands are perfect differentials
the contour may be deformed arbitrarily within reasonable restrictions.

A convenient point of view which helps to clarify equations
(39.19) ie to consider u and v as being the components of a two-dimensional
vector cross velocity. If w changes on crossing a characteristic there oc-
curs a change in this vector velocity equal to the change in w and of
direction perpendicular to the characteristic.

The characteristic method given above is very similar to the same
method for linearized supersonic two-dimensional flow. -There the two veloc-
ity components are related and are each given as the sum of an arbitrary
function of a variable determining one family of characteristics and another
‘function of a variable detemining the other family. Such phenomena as the
reflection of a characteristic from a solid ﬁoundary are similar in the two
cases.

The above analysis has been established for the space which lies
downstream from the vertex with both z and t positive. For the space up-
stream from the vertex the most consistent way of extending the analysis
is to keep the definition (15.1) unchanged and to let t be negative. A
'physical gection taken normal to the flow upstream of the vertex will show
radius vectors proportional to -t and angles changed by the additive con-
stant AT, The sign of sec™} t in definitions (39.16) is also changed.

This apparent change in the definition of the angle must be kept in mind
in all cases where part of the body extends upstream from the vertex. Of

course no part of the body may lie within the upstream Mach cene.
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In the problem of determmining the flow about a given conical
body the boundary conditions which are given are conditions on the cross
velocity, on the velocity components u and v or ¢, and Qg . Two general
procedures are open: (1) to deétermine the solution directly in terms of
one of the cross velocity componenfs or of an sppropriate function of
them, applying the boundary conditions directly and obtaining the axial
velocity component where desired from the relations between the velocity
components; or (2) to translate certain of the béundary conditions into
conditions on the axial velocity component and to determine an appropriate
solution in terms of this component with arbitrary factors, evaluating the
factors later using the cross velocity boundary conditions, The first pro-
cedure might appear to be the better as’it is more direct. However, the
second method has the advantage that if only the pressure distribution is
desired and not the other cross velocity distributions, only one function
throughout space need be determined. Also, for many practical examples
encountered the functions giving w inside the Mach circle are of much
simpler form than those giving the cross velocity components.

The procedure of solution is as follows:

(a) The éolution in the region upstresm from the vertex is
obtained by using the method of characteristics if any part of the body
extends into this region. As a result of the condition that no part of
the conical body in question extends into the upstream Mach cone there will
be & zero solution for all velocity components within and on the Mach circle

in the upstresm t plane.
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(b) Using the results of (a) for boundary conditions at infinity
the solution in the region downstream from the vertex but outside of the
downstiream Madh cone is obtained by the method of characteristics. If a
solution from (a) is used the change in sign of t must be kept in mind.

(¢) Using the results of (b) for boundary conditions on the
Mach cone the solution within the downstream Mach cone is obtained by the
solution of a two-dimensional Laplace's equation using the relations ex-
pressed above.

This procedure will yield any desifed information on the flow
around a body of given shape provided the boundary conditions may be
established simply in terms of the cross velocity and the necessary
guadratures in the relations between velocity components may be carried
through.

40. Solution Method for E;ggg;;gxggégg, For planar systems a relation
between the velocity components v and w on the plane may be obtained from
the vorticity relation (4.5a). This relation on the t plane is

2V

= = - E;E (40.1)

g

)

|

v

and shows that a knowledge of v on the plane implies a knowledge of

On the axis, at € = 0, the relations (39.14) give the conditions that

0 for v finite and u continuous,

O for u finite and v continuous.

]

o
2R Sl

Hence if these conditions are to be met df = 0 at € = 0. In the case

of a vortex sheet lying on one side of the axis gﬁg# 0O and there is a
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discontinuity in uwu. If the body is such that there is a discontinuity
?IW
in v, 5% £ 0.
It is convenient to apply a conformal transformation to the
plane for the purposes of studying planar systems. This is the inverse

Joukowski transformation suggested by (89.9)

(40.2)

where the new variable z should not be confused with the axial coordinate.

Under this transformation the relations (39.14) become

w = mm [—Z'-_ af (40.3a)
—

V= — m [[‘/;2 df (40.2D)

With this mapping there is a return to physical coordinates on the real

axis which represents the plane and the mapping of the interior of the
unit cirele of the t plane becomes one-to—one. For this z plane the

relation (40.1) becomes

2w o .t 3v
an _{'__t-,_ a (4‘0.4)

It is of interest to consider the mapping of the unit circle
of the t plane onto the z plane in more detail. One method of graphically
carrying out the mapping for individual points may be devised easily from

the relation
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| i . ittt
7+

Sin (2] (40‘5)

A more instructive method is obtained from a consideration of the families

of curves defined by

t cos® = a (40.6a)

t sin® = b +i-a* (40.6b)

The first family of lines consists of vertical lines in the t plane and

is specified by a = constant. These lines transform into circles in the
- g°

z plane with centers at _l_iLEE_ and radii equal to 1 -ec The

28 2a
mapping of this family is illustrated in Fig. 40.1.

Fig. 40.1. Wepping of First Femily

In this figure the line ABC in the t plane is transformed inte the circle

with diameter BD in the z plane. The representative curve of the second
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family defined by b = constant is the upper half of an ellipse with major
axis between ~1 and 1 on the t plane and minor axis b, with which is

associated for convenience the lower half of a similar ellipse with minor

axis -~ V 1 e bz . These two curves transform into a circle in the 2

2B i
plane with center at i 1b1/‘,_'—bz) and radius (m,) . This mapping is

illustrated in Fig. 40.2.

Fig. 40.2. Mapping of Second Family

In this figure the semiellipses BAC and BDC in the t plane are transformed
into the circle in the z plane with diameter FG. The line BF is parallel
to OE and the distance AR is equal to Oﬁ. Since the two families of
circles in the z plane are invariant under the transformation (40.2) a

similar mapping exists for the € plane.
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The Mach circle is transformed into the real axis externmal to
the interval (-1,1), points on the circle going to the intersection of
a tangent with the real axis. Thus in Fig. 40.1 point A is transformed
into D. If no part of the solution extends upstream from the vertex so
that the solution is null at infinity in the t plane the method of char-
acteristices gives an exact correspondence between the solution on the
plane outside the Mach circle and the solution on the circle. For such
a cage the solution on the real axis of z is identical with the solution
on the physical plane over its entire range.

It should be noted that equation (40.3b) does not give an
immediate connection between the values of v and w on the plane since v
depends vwpon the imaginary part of f and, conversely, w depends upon the
function conjugate to v. Since the real and imaginary parts of an
analytic function are not independent it is possible to obtain relations

connecting v and w on the plane of the form

' | |
W = K dv | (40.75)

i

vV 7{ dw ' (40.7b)

where the range of integration is over the éntire real axis of the z plane
or around the upper Mach semicircle on the ¢t plane. These relations are
somewhat cumbersome and are not presented here but are analogous in conical
flow theory to the basic relations (23.4) and (23.6).

Problems of the first and second kind arise in the same manner

as described for the general case in section 25, problems of the first
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kind having'solutions given explicitly by equations (40.7). The analogy
to a simple planform is one which includes either all or none of the
interval within the Mach circle. From the fact that v and w satisfy the
potential equation problems of the second kind with ponsimple planforms
aie fundamentally siﬁpler than in the general case. In fact such problems
can be said to be trivial in the sense of the general problem.

The oblique transformation applied Yo conical systems leaves
each curve of the family b = constant unchanged and transforms each curve
of the family a = constant into another curve of the same family. As
indicated by equation (7.4) this amounts to a homographic transformation

in the z plane

z'-m

7 = (40.8)

I—mZ'
where m is real. ZEquations (40.3) may be shown to be invariant with the
aid of equations (7.3). The restriction of section 22 with regard to
vortex sheets may be translated into tﬁg df = O condition.
41. Planar Thickness Problemg. The solution to the general conical
thickness problem may be obtained by superposition from the solution of
a ‘basic thiékness distribution. This basic distribution represents a
triangular wedge-shaped body with the thick edge parallel to the flow

direction, illustrated in Fig. 41.1.
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Fig. 41.1. Basic Thickness Distribution

The boundary condition is that on the upper surface v = Vﬁ» for 0<t Lty
and v = O elsewhere. Two methods of solution are available, to obtain
the solution for v first and then for w, or to obtain the solution for
w first and then evaluate the multiplicative constant in terms of the
boundary condition.

Two cases may be distinguished for convenience as to whether
the leading edge is subsonic or supersonic, whether t, is less or greater
than one. TFor the first case 0{t,{1 and the body is entirely within the

Mach cone. PFor this case the solution is

- _2Ve t -t [1, vz a1
)(“ i 1-t2 tanh i+to 1-2 (41.1)

Consequently the solution for w on the plane is

ZVﬁ .to -\ |"'t° tet
T i tanh \+to -t

Y

-1 <t < t, (41.2a)

-1
=-EYE Lo tanh ¢/ 1*te -t t, <t (41.2b)

™ i-ts i—ts 1+t
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For the second case 1 < t,, the seclution is

_E _ ZVﬂ to =t 't,,—l‘ {+2 (41.3)

and the solution for w on the plane is

2~___._‘V-F _t =t ft,-1 1+t

- - - - 41.4
W= woViIog -t&h‘/’toi—l -t | <t < (41.42)
W= = (41.40)

e , etk

For either of these solutions the quantity df/dz at the origin depends only
upon Vf3 so that the condition df = O is automatically satisfied if the
angle of inclination of the final surface is continuous across the axis.
The solution outside the Mach cone in the.second case (41.4b) is the solu~
tion that would be obtained in that region by cylindrical flow methods.
These solutions have been obtained previously by Jones (27) and for the
case with lateral symmetry by Puckett (25) using different methods.

The basic conical relation (40.7a) giving w in terms of v may
be obtained directly using these solutions by superposing them with the
same vertex to obtain a general conical symmetric system. As this is a
problem of the first kind superposition may be used without particular
restriction and the solutions for a number of closed bodies may be ob-
tained by superpositions of conical flows with different vertices.

42. Planar 1ift Problemg. The problem of the first kind in the 1ift case

is analogous to that in the thickness case and is not discussed here in
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detail. The only essential difference lies in the consideration of the
condition df = O. In the thickness case continuity of v across the axis
assures that the condition is satisfied. In the 1ift case it is necessary
to impose the condition if a singularity in v or u is to be avoided. The
general solution to the 1ift problem of the first kind will yield the

form of the reiation (40.71).

Only the problem of the sécond kind is treated here, which is
the problem of determining the 1lift on a triangular wing where the camber
is known. The prcblems must be divided into four major cases according
to the leading and trailing edge configuration. These cases are:

I. Both edges lie inside the Mach cone. The designation I
refers to the case where both edges are leading edges, while I-K refers
to the case where one of the edges is a trailing edge. The designation
X implies that the Kutta condition is to be applied.

II. One edge lies inside the Mach cone and the other edge lies
qutside the Mach cone. The designation II refers to the case where the
edge inside the Mach cone is a leading edge, while II-K refers to the case
where thig edge is a trailing edge.

ITII. Both edges lie outside and on the same side of the Mach cone.
One of the edges is thus a trailing edge, and no part of the wing lies in’
the Mach cone. Such planfofms are simple.

IV. The two edges lie on opposite sides outside of the Mach cone.
Thus both are leading edges and the wing entirely traverses the Mach cone.

These are simple planforms.
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These cases are debicted in Fig. 42.1. Any of the limiting
cases that arise when an edge lies on the Mach cone or when an edge is
parallel to the flow direction may be derived from either of the two
cases described above which bound the limiting case. The flat plate

solutions for the four cases sre discussed below.

\ @
\
N7

L]
case 1V

t //
N \
< | NS N

cAsE I-K case [I-K cAsE ML

Fig., 42.1. Cases of Planar Lift Problems

Cases III and IV which are cases of simple planforms, are treated first.
Case II1: 1In this case the solution on the wing is obtained

completely by the method of characteristics. The 1ift for a wing with a

supersonic trailing edge depends only upon the leading edge position and

ig given by

d % = | (42.1)
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Since the trailing edge is supersonic the Kutta condition isg not applicable
but there is a vortex sheet behind the wing. The downwash is constant be-
hind the wing outside the Mach circle.

Case IV: Since this is a simple planform the solution may be
" obtained by applying directly the methods of section 41. The solution for
the flat plate at an angle of attack f3 is obtained by superposing two of
the second case thickness solutions. For a wing with a straight super-
sonic trailing edge the 1lift curve slope is independent of the positions
of the two leading edges and depends only upon the trailing edge angle.

This is

dCL ‘t'l
I.-‘— - _/—;-_7—:7 (42.2)

where tl here describes the inclination of the trailing edge. This result
of course follows from the second reverse flow theorem for 1ift curve
'slopes. This was observed first by Puckett (35) for a triangular wing
with complete lateral symmetry.

Case I: TFor this case the flat plate solution has a -1/2 power
singularity on both leading edges and satisfies the condition df = O at

the origin. The complete solution is

VO( t, +Z t-Z |
](z SE [t. 5 vt t2+ZJ (42.3)

where

\/ L 2le Jitiees (42.4a)

R

K = VO=22)0-7)

r

(42.4v)
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and E is the complete elliptic integral of tﬁe second kind. The form of
this solution was first found independently by W. Hayes and P. Lagerstrom.
An interesting feature of the solution is that the form is independent of
the Mach number.

The factor which determines the magnitude of the solution is

obtained by applying a homographic transformation of the form (40.8) with

-m = bl = tu"'tz (42.5)
"'—tqtz +'/I"t;"-¢l—ti‘ :

and applying Jacobi's imaginary transformation to the integral for v. This
factor was firgt obtained for the case with lateral symmetry by Stewart (36).
For a wing with a straight trailing edge nommal to the flow direction the
1ift curve slope is

dC, 2 (£ )

- = (42.6)
oo 2E(K}r

The details of the analysis for this and subsequent cases may be found in
(B7). The solution for the case with the t's very small was obtained by
Jones (§Q) by different methods.

| For the case with lateral symmetry with ty = to the results of

Stewart may be expressed

5 Vo [ 2t ] (42.7)

- 2 E[i7] Let-2n
d¢. _ 21t : (42.8)

de = gy
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The leading edge thrust may be calculated by the methods of.
section 29. For the wing with the straight trailing edge normal to the

flow direction the net drag may be expressed

tV-tr 4 tafi-ts
Cp = Cox |V = ot it (42.9)
y4 E(k) r (trFt.z,\
which for the wing with lateral symmetry becomes
T
Co = (U [ | o ek 42.10

Case I-K: Thig is similar to case I but differs in that the Kutta

condition is applied and the 4f = O condition is not met. The solution is

| 4+ttt VIt V-td

{ = Ve (42.11)

[EC) + bk TLL(k-59] F
where

\/ I—tita+ Vit Vietd

=1/ 2 (42.122)

k = =40t (42.12p)

' . “ t -t
k = ,‘/"’k = S (42.12¢)
i+t
b = — (42.124)

b = Yi-p? (42.126)
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Relations (42.10a2,b,d) are the same as relations (42.4a,b) and (42.5) for
case I but with the sign of ty changed. The function‘II; is Legendre's

complete elliptic integral of the third kind defined by

du \
H k - ) = (42.13)
°( ’ ) (1= B uU) Y-~ ktuy)
o

This quantity may be evaluated in terms of the incomplete elliptic integrals
of the first and second kinds by the formula for the interchange of argument
and parameter in Jacobi's integral of the third kiﬁd (55, p 523). Tor a
wing with a straight tralling edge normal to the flow direction the 1ift
curve slope is

dC = 27, (42.14)

d« (B + KKTL)r

Taking into account the leading edge thruét the drag coefficient for this

wing is

(E‘fb'klno)r

Cp = (L [I L ] (42.15)

Case II: TFor this case t1 > 0 and the condition df = 0 is applied.

The solution is

Af - ZVD( L.‘. -V-£| ' ‘tl"z -Ll"tl , z (42 16)
w e +t+t; 1-2 |+t v|+| V

For a wing with a straight trailing edge normal to the flow direction and the

leading edge not upstream from the vertex the 1ift curve slope is
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dC. -y 1/t.+tl

d 1y + (42017)

and the drag coefficient is

(42.18)

th'/""t;.' ]

CD = Cuo [‘ - M (art) YVt

Cage II-K: Here the Kutta condition is applied and df # O at the

origin. The solution is

t, 1-1 2t (42.19)

ZVh
f - -—’ﬁ'g( Ye:i an ‘/tr-'tw.‘ -z

For o wing with a straight trailing edge normal to the flow direction and
the leading edge not lying upstream from the vertex the 1lift curve slope is
(‘JCL 'é(

‘I;. - Ll V‘Ztl*“)(tl"—tl) ('42.20)

There is no leading edge thrust for this case and the drag equals the 1lift
times the angle of attack.

The solution for the general problem of a conical wing with an
arbitrary camber distribution may be obtained for case III by the method
of characteristics and for case IV by superposition of the solutions given
in section 41. PFor the other cases a general solution must consist of a
superposition of basic solutions with the same planform configuration

within the Mach cone. As a general rule it is necessary in superposing
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solutions for problems of the second kind to use solutions for the same
planform. Only the supersonic leading edge configurations may be dif-
ferent.

The eigensolutions whidh appear in connection with the Kutta

condition are, for case I-X

f=AVE,

and for case II-K

f=A \/;iil  (42.22)

The first of these is a particular solution which depends on the leading

edge position. The second of these is the general solution of section 30
which may be applied locally at any point on a subsonic trailing edge.
These solutions lie only within the Mach cone and have a zero distribution
of v along %he real axis of z. If the condition 4f = O had been imposed
in cases I-K and II-K instead of the Kutta condition there wéuld have been
no vortex sheets for these cases and the chordwise integral of the 1ift
would have been zero. |

0f particular interest are certain of the solufions of Lagerstrom
(48) in that they are solutions to problems of the second kind which are of
a different nature from those considered here. In these problems the 1ift
distribution desired is known over a portion of the span and it is reguired

that the upwash distribution be zero over the remainder. Such a problem is
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identical with the problem in the thickness case of determining the thick-
ness distribution for a desired pressure distribution. These solutions

may be used to remove the pressure distribution over a portion of a wing

and thus effectively change the planform.

43. Nonglana;jﬂgﬁggmg. A general conical body is represented by a con-
tour in the % plane. The perpendicular distance between the origin in the

t plane and a tangent to the contour at a point is a measure of the inclina-
tion of the body at that point to the flow direction. The lineariging as-
sumptinns require that this quantity is small. Thus it may be seen that"
except for the portion of the body near the axis a general body must lie along
planes passing through the axis. Boundary conditions of the type used for
planar systems may be applied on the body at a distance from the axis and the
‘general boundary condition of Busemann (20) needs to be applied only near the

axis. This general condition, that the relative velocity

O, = wl+e?) + v-en -2Ve (43.1)

has the body for a streamline in the € plane, is simplified near the axis in

that the relative velocity may be taken to be
N = u+iv - 2Ve (43.2)

A conical body may be termed "almost planar? if its only deviation
from a true planar system is in its shape near the axis. TFor such a body the

relative velocity in the z plane
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N, = uyiz® + iv(-22) - VzvigT (43.3)
may be expressed as

N = u+iv -z (43.4)

for application near the axis. The boundary conditions over the remainder
of the plane are the same as those treated in the previous three sections.
For general nonplanar conical bodies the planar similitude may

not be used and the general similitude of section 6 gives no change in the
shape of a body in the t plane assuming that t is defined so as to be one
on the Mach cone. It may be necessary to inclgde the u® + v terms in the
pressure near the axis.

 The simplest example of nonplanar flow is the flow abodt = cone,
for which solufions were obtained first by Karman and Moore (;g) and

Ferrari (16) by other methods. The solution with angle of attack is

{=Vp" bge + Vup (';el) (43.5)

vwhere the angle of attack is provided by a uniform side flow instead of by
moving the cone. The u? + v2 temms in the pressure are necessary in this
solution.

Examples of almost planar problems arise in the problem of the
interaction of a triamgular wing with a'conical body. ©Some of these are

being studied by the Aerophysics Laboratory at North American Aviation.



- 127 -

VIII. The Method of Separation of the Lateral Variable

44, TFundsmental Relations. This method consists gf the representation
of a planar system by the superposition of solutions that are periodic
in the lateral variable x. Such a solution is the sinusoidal source
whose potential distribution in its zone of action is given directly by
the Riemann function of section 13. The Riemann method ies applied to a
particular contour in the y-z plane, along the line y = 0 from z = - o
to z = 25 and thence along a characteristic. The contour is considered
to be closed by a line sufficiently far upstream that there is no dis-
turbance on the line. The integral along the z axis is expressed as an
integral from - o dbut it is to be understood that this is really from a
finite distance upstream. The contour for the Riemann method is shown

in Fig. 44.1

Fig. 44.1. Contour for Riemann Method
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Using equation (10.3) and the Riemann function (13.3) the result may be

expressed
z, é
o
@O = - J:,(kcz.-z)) 5—)7 dz _ (44.1)

By differentiating this expression with respect to z, the relation

ig obtained

(]

Zo
@z = - ﬂsyo + kfj.(k(zo-z)) @y dz (44.2)

Applying the result (44.1) to the y derivative of q: results using equation

- (13.2) in

é31,, b _j&);(k(zo-lﬁ) {ézz + klé] dz (44.3a)

which by two integrations by parts becomes

Q’y =7 ézo - kzj(L‘|+L)§ dz

(44.3b)

)
- ézo _ k[ J((k(zo»z)) gd‘z

oo (25~2)

A further integration by parts yields the relation

@5,9 - = (ﬁlo -k g.(ktzo-z)) é[r’z dz (44.4)
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where
X

S

BEquation (44.4) may be obtained directly from equation (44.2) by solving it
as a Volterra integral equation by means of Laplace transformations.
Equations (44.2) and (44.4) are the basic relations for the
sinusoidal solutions and are directly analogous to the basic relations for
planar systems (23.4) and (23.6). In each of these relations there is a
separation into a basic tefm and an induced term in the sense of section
%5. The induced terms give the variation from two-dimensional flow resultis.
If X = O the flow becomes two-dimensional and the induced terms vanish. The
periodicity may be made skew by means of the oblique transformation.

45, Periodic Solutions. If a number of identical finite systems are con-

sidered to be placed along a line in the x direction'with‘a uniform spacing
the result is a periodic system with a periodic solution. If the spacing
is made sufficiently great that no interaction between the systems is
possible the solution in the vicinity of any one of the systems is identical
with the solution that would hold for the isolated system. Thus it is pos-
sible to study the behavior of a finite system through a study of periedic
solutions.

The period of the system is choéén_ to be 2] ‘laterally. This
quantity is completely arbitrary as it may be changed for a given system
by the scale transformation. Solutions with this periodicity are those

with k = qu/l » Where m is an integer. The new variable 6 is introduced
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in place of x
& = — (45.1)

This should not be confused with the azimuthal variable. The complete

periodic solution is expressed in terms of a Fourier series

x> o0
(t) = ZA(y,Z,m) Cos MmO + Z B(yl'z’m) sinmB (45.2)
m=o m=4

where the A's and B's are functions of the type é . A separation of the
_solution on the basis of lateral symmetry is an immediate result, the cosine

terms giving the symmetric part

= 3[04+ den] (45.3a)

and the sine terms giving the antisymmetric part
\
q;m = 7 [(|>Cx) - ¢ C~¥)] ' (45.3b)

These two parts may be considered separately if desired.
The drag per period for the solution on the upper half space is

obtained by integrating - ¢ vw over the plane

1 0

D= -5 VoW, dzodx, = D, ‘”D; (45.4)

-1 =00
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The quantities v and w may be obtained from (45.2) and the derivatives of
the A's and B's expressed in terms of relation (44.2) or (44.4). The
célculation for the drag gives the basic drag Dp and the induced drag'ﬁi
separately. Since the basic drag is easily calculated by integrating the
two—-dimensional drag expression only the induced drag is considered. This

is given by

“D‘-_ = -9 Zmﬂ*I(-r%E‘ZO'Z))[AYAﬁ".BYBYOJC’Z.JZD (45.5)

for the thickness case and by

DC = ¢ i "Tg‘(r‘%ﬁ(Zo—Z))[AzAz, +Bsz,] dldzo (45.6)

for the 1ift case.

If the summation.is carried out before the integration the series
involved are Schldémilch series. Some of the results of the theory of these
series may be helpful in their evaluation. The original theory may be

expressed: 1if

{(9\ = Z a,, cos m6 (45.7)
m=0 .

the corresponding series with the Bessel function of zero order is

"ﬂ'/_L

q(e) = Féﬁ Qn j(,(me) = %J{(esin"lr)d%' (45.8)

()

The solution of this integral eguation for f is
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i,
'f(B) = 3‘(0) + 9} 91(9 Sin\}’)d{r (45.9)

For the purposes of the induced drag calculations two modified Schlémilch

series are needed. For these the theory may be expressed: if

F(e) = Z b Sin m @ (45.10)

the Schlémilch series are

,
Gie) = Z bmJ_.(me) = ['2_?- F(osin¥) siny d+ (45.11)
and
47/1
2 oy st
,&(Q) = Z 90’\19) = i F(G Sm"") m-d’\y" (45.12)

The solutions to the integral equations for F are

(" |
F(e) = 3—-9- QJG(esichH'J | (45.13)
R iy, |
Fe) = 3—5 _92[,1&'(95{n¢)s.'n¢d«r]- (45.14)

The procedure that may be followed in evaluating a Schlmilch series is to
evaluate the corresponding Fourier series (45.7) or (45.10) first and to

obtain the Schldmilch series through the appropriate integral relation.
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These results may be applied directly to the expression for the
potential on the axis, with x = 0, The terms in B do not enter and the

potential may be expressed

z

¢, = “Z Jo(miﬁlzo—z\)Ay dz (45.15)

m o /-

Evaluating the corresponding Fourier series by means of the cosine part of

equation (45.2) and using relation (45.8) the potential is given by
Zo Ty

¢o = 7 ,‘_2}_ (t>sy ((Zo-Z)simH el«}— dz . (45.186)

-0 [o]

This equation is identical with equation (23.1) énd this analysis serves as
an alternate derivation. The equation is independent of'Z and is therefore
unchanged if Z is changed or allowed to become very large. In a similar way
expressions identical with equations (28.4) and (23.6) may be obtained using
the modified Schlémilch relations.

As an example the induced drag of a symmetric prismatic body of
length [ in the x direction and of width a is calculated with the restric-
tion that a<(2 « This restriction is necessary in setting up the system
with the periodicity 22 in order that there be no interference. Such a body
is depicted in Fig. 45.1. If the surface of this body is given by a function

y(z) the boundary condition on the body may be expressed

- V! (45.17)
be - Vy (Z) )
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N e L 7 — N

Fig., 45.1. Finite Prismatic Body

Except for the m = O term which does not enter the expression for the
induced drag the even order terms in the Fourier expansion of ¢3 are
zerp and the other terms are given by

n

(45.18)

+1

A}I (zn+) = ,“z;_‘ Vy' g—')

The Schldmilch series that appears in the induced drag expression is evaluated

by equation (45.11) from the corresponding Fourier series (45,10)

af,
T (5 2om) 2
] Zo-2Z - £ !I -
Z Zn+1 T (4) sinf df (45.19)
° o
The induced drag may be evaluated
2V [
DL : ar yo'.y' dZdz°
o o .
a (45.20)
-?Vl o
— 3 2 -
= = ()] = o

(<]
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From the condition for closure of the body the induced drag is zero. This
result, that the drag of such a body is given by the two~dimensional expres-
sion alone, may be derived from conical flow theory by superposing conical
solutions along the edge.

46. Lateral Fourier Integrals. The Fourier series of the previous section

may be extended to Fourier integrals in the customary manner by letting

approach infinity. The correspondence is made

?A — +amw  q(y,z,k) (46.1a)

!B — zw  hl(yz k) (46.1b)

2. — jc\k (46.1c)

and the expression for the velocity potential (45.2) becomes

o
o0

- £ 2 : .
b= =9 coskx di + = [ h sinke dk (46.2)

i (]
where g and h are even and odd functions of k, respectively. This may be ex—

pressed in the complex form

| ~tkx
c‘) = T (‘3*”")6‘ dk (46.3)
with g and h given by
ckx
g+ih 21/;—'7-& ¢ e dx (46.4)
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The induced drag for the entire system is analogous to that of

equations (45.5) and (45.6) and is given by

2o O

D = -2y kj‘(k(zo,z))(933y°+ hyhro)olkdzdzo (46.5)

L

- -bto o
for the thickness case and by

o 27, ®

’_DC = 2¢ k9|(k(zo—z\)(gzﬂz,_,+ I"zhzo) dkdzdz, (46.6)
~0 —oo
for the 1ift case. It should be kept in mind that this is the drag for the
solution in the upper half space and should be doubled for the complete drag
of a finite system.

The Schldmilch series of the previous section become integrals
related to the Fourier-Bessel integréls. Analogous relations to the equa~
tions (45.7) to (45.14) hold and a similar procedure may be used for the
evaluation. For an integral in J, the corresponding Fourier integral with
the cosine in place of Jo may be evaluated and the original integral obtained
by the relation (45.8). Similarly integrals in Jy orS}l may be obtained
through equations (45.13) and (45.14) by evaluating the corresponding sine
integrals. Equation (45.16) and the similar relations identical with equa-

tions (23.4) and (23.8) may be obtained on this basis.
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IX. TFlow about Bodies of Revolution

47. General Considerations. For the flow about a body of revolution the

body is assumed to be placed at zero incidence to the flow direction and
the fundamental coordinates are taken to be cylindrical coordinates with
the same axis as the body. With such a system the boundary conditions
imposed are upon the radial velocity component g, or u, and are indepen-
dent of the azimuth anéle either in magnitude or in the value of r at which
the conditions are taken. No boundary conditions are imposed upon the
azimuthal velocity comﬁonent Qg or v. The flow field in which the body

is cqnsidered may consist §f the fundamental flow alone or may include

a disturbance flow of unspecified origin.

It is convenient to consider the entire flow divided according
to the separation of the azimuthal variable into superposed flows. The
solution for the flow about the body with no exterior disturbance con-
tains only terms for which m = 0, and the boundary conditions on the radial
velocity u are satisfied with this solution. This flow is termed the prin-
cipal flow. TFor a ducted body the internal and external solutions are to
be obtained separately and matched at the exit.

An external disturbance flow is divided into a number of parts,
each with a different value of m. For each of these the effect of the
body is to create an additional disturbance with the same value of m such
that the boundary condition u = 0 is met everywhere on the body.

Since bodies of revolution are not planar systems it is necessary

in general to include the quadratic cross velocity terms in the pressure.
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The inclusion of these terms is justified in that the linearization of
the pressure expression is not necessary and in general is not permitted |
for the linearization of the equation for the velocity potential. The
flow about a cone is an example where the quadratic terms are necessary.
For the problem of a body of revolution at an angle of incidence
there are two systems which may be considered: 1. The body may be con-
sidered to be placed in the uniform flow tilted at the angle of attack.
For this system the body does not fit the cylindrical coordinate system
and the boundary conditions are not simple. 2. The body may be considered
to lie in the wniform flow at zero incidence with a disturbance flow con-
sisting of a uniform cross flow of magnitude V sin X and an axial {low
- V(1 - cosX). This disturbance flow may be characterized by the equa-

tionsg

m=0 W = - ‘%VO(.Z ' (47.1a)
U = Vx sin0B (47.11)
m= |
Vo, = Vx cos © ' (47.1c)

These two systems give consistent results for the pressure including the
quadratic terms. Because of its much greater simplicity the second method
is used. An example of the comparison in simplicity is between the résult
of Busemann (20) for the cong at an angle of incidence and the result (43.5).
It should be noted that the axial disturbance flow w, strictly should be

included in the pressure. Since this pressure term ig constant there is no
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effect on any of the forces on the body. This flow automatically satis-
fies the w = O condition for the disturbance flow so that the entire angle
of attack problem is one for whichm = 1.

A sufficiently slender body in curved flight of a radius which
is 1érge compared with the length may be considered as a body with a
variable angle of attack.

The 1ift distribution on a body of revolution at an angle of
attack may be taken to be the force distribution normal to the axis.
The drag on the body is given by the pressure force in an axial direction
corrected for the axial component of the net 1ift. However, the drag is
given correctly by the energy flow considerations at a great distance
without the correction for the 1ift component. For a body which closes
to a point on the axis no net 1ift is possible since the vortex system
which this requires would be concentrated on the axis and would give an
infinite vortex drag. This apparently anomalops result, that a closed
body without a duct produces no net 1lift, simply means that the linearized
theory is inadequate to explain the lift on such a body. The theory is
apparently quite adequate for the 1ift distribution on a body which is
increasing in sigze for a sufficiently small angle of attack. For angles
of attack which are large compared with the wall angles or for bodies
which are decreasing in size, vortices are shed from the body before it
closes and extend downstream beside the body. This gives a finite vortex
system and provides a net 1ift. No criterion is available in this theory
to predict the manner of the shedding of these vortices as there is no
sharp edge such as the trailing edge of a planar wing %o serve as a separa-

tion point for the vortex system. The actual situation depends upon real
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fluid effects, upon boundary layer distribution and separation.

For a ducted body the sitiation is different. Although shed-
ding of vortices may occur in the manner described in the previous para-
graph it is possible for the system to have a finite net 1ift following
the 1inéarized theory. PFor this case a finite vortex system is éhed from
the tail of the body, this system consisting of variable cylindrical
vortex sheets. | |

The solution to the flow about a given body by any of the avail-
able methods usually involves integral equations of the Volterra type. It
should be noted that in the previous application of the Hadamard method to
general planar systems and the Riemann method for the separation of the
lateral variable the integral terms in the unknown quantities vanish. Such
integral equations of the Volterra type are always soluble in principle by
the use of step—by—step methods. This is unlike the subsonic casge fqr which
the integrai equations are not of the Volterra type.

The methods that are available for the solution of the flow about
a body of revolution are described briefly:

a. The classic method. In this method the system is assumed to
consist of a linear distribution of sources on the axis to represent the
principal'flow and with dipoles or lift elements to represent the angle of
attack disturbance (14,15,16,17). The basic equations for this distribution
are given in section 37 by equations (37.1) and (37.2). The approximations
made in that section in order to obtain conditions at a distance from the

body are not valid for the local flow. Recently further contributions have
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been made by Jones and Margolis (32) and by Lighthill (34). The interior
solutions for ducted bodies are obtained by superposing the solutions for
zero source strength or gero 1ift which form the imaginary parts of the
solutions of section 11.

For a body of revolution a singularity in the source strength
along the axis and the corresponding singularity in the velocity component
u differ invorder by 1/2 uniess this occurs on the axis in which case the
difference in ofder is 1. This is in contrast with a planar system for
which the singularity in the source strength distribution is the same as
that for the veloecity component normal to the plane.

b. Superposition of solutions of the T type. A body of revo-
lution may be represented by a superposition of selutions of the type con-
sidered in Chapter III for which m = O for the principal flow and m = 1
for the skew flow. Fgr the interior of a ducted body solutions are chosen
which have no contribution in the upstream Mach cone but which exist between
the Mach cones. Thisg method is essentially the ssme as method a. It has
advantages for numerical calculation over method a in that polynomial fit-
ting may be used to obtain a smooth solution and that solutions of appro-
priate type may be superposed at various stations as desired to conform
with irregularities in the body contour.

c. Method of Fourier integrals. The method of separation of
the axial variable may be applied through the use of Fourier integrals
or Laplace transformations. This method was applied by von Karman (15)
to the calculation of the. flow about a cylinder with ring—éhaped corruga~

tions.
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d. The method of characteristics. The nonlinearized method of
Sauer (7), Tollmien, or Guderley may be applied to the linearized theory.
Thisg methodiis practical only when a numerical calculation of the entire
flow field is desired and is feasitle only for the principal flow with
m = 0. ; |

e. Superposition of ring sources. A body of revolution may be
represented by a distribution of ring sources placed on the surface of
the body. For the skew flow appropriate variable source rings are used.
This meihod is egsentially the same as f.

f. The Riemann method. The method of Riemann described in
section 10 may be applied to the calculation of the flow about bodies of
revolution. This method is described later in this chapter.

48, ‘The Slender Body Approximation. For slender bodies of revolution an

approximation may be made in the method of satisfying the boundary condi-
tions which is analogous to the method used in planar systems. In this
case the boundary conditions are satisfied with respect to conditions in
the vicinity of the axis. The boundary conditions are not satisfied on
the axis. The treatment will be made for a general value of the Mach
number since information on the Mach number dependency of the solution is
obtained.

The relation between the source and 1ift element distributions
and the geometry of the body is obtained directly. The total source
strength at a given value of z may be equated to the velocity times the

cross-sectional area of the body

ffdz = Vare? (48.1a)
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cr the radial velocity component at a distance r from the axis may be

equated to the velocity times the slope of the body

mr'r f = w = Vf—é © (48.1b)

The total 1ift element strength at a given value of z is equal to‘the
linear dipole distribution strength. The velocity from this line dipole
at a distance r from the axis may be equated to the velocity times the

angle of attack

l Iy - -
f My dz = Un, = Vi, (48.1c)

2N
This yields the expressions for the distribution of f and g

f = zwVrg | (48.2a)

—

i
- dr
vy (3y = 4w Vr dz & (48.2b)

1]
C

Ix

(48.2¢)

The results of this theory may be summarized:
1. The pressure distribution due to the principal flow is de-
pendent upon the Mach number in both distribution and magnitude.

2. The drag on the body due to the principal flow is independent

of the Mach number.
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3. The pressure distribution due to angle of attack and the
resultant 1ift distribution is independent of the Mach number in both
magnitude and distribution.

4, fhe net 1ift is zero for a closed body and is independent
of the Mach number for a body which 1s not closed.

5. The wave drag due to 1lift may be neglected in comparison
with the wave drag due to the principal flow.

The condition of applicability for the slender body approxima-
tion may be stated that the radius of the body must be small compared with
the wave length of the disturbances. This wave length may be defined
roughly as the ratio of an average absolute value of the slope taken over
a length of the order of magnitude of the radius to the maximum value of
the second derivative ofvthe radius with respect to the axial distance.

The condition may be expressed

(é:
dzl/av.
a*r
dz*

r << (48.3)

As examples of the failure of the slender body approximation may be cited
the cylinder with ring-shaped corrugations of von Kamman and the finite
cone which ends in a semi-infinite cylinder. In the latter case the drag
which would be given by the slender body approximation is infinite and
the actual drag which is given directly by the pressure on the cone does
"have a Mach number dependency.

49, The lLinearized Method of Ghazggteristics. The linearized method of

characteristics is applied only to the principal flow. TFor this case the



- 145 =~

velocity potential is independent of © and from equation (6.14) sstisfies

the equation

'C‘)rr M Tl; (t)r - cbzz = o (49.1)

It should be noted that it is possible to express the velocity potentials

for m # 0 in similar forms. If the substitution

EP = =7 v (49.2)

is made in equation (14.2) the resultant equation is

| | +2mMm -
‘I’rr + —— «rk - «}u = o (49.3)

This is of the same form as (49.1). However, the boundary conditions are not
expressed in terms of the first derivative of this new function with respect

to r but in the derivative of the velocity potential

‘R, = (‘}r + t:"{") (49.4)

80 that the method must be modified to include the calculation of V.

The transformation of the independent variables is made

YI = Z +Fr ; (49%.5a)
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(49.5b)
!
£z = 7 (n+€) (49.5¢)
o
r= 7 (n-¢) (49.54)

the new coordinates ¥} and ¢ being constant along the two families of

characteristics. With this transformation the velocity components are
expressed

2
(t
o
N
1

b, + 4

(49.6a)
w = ¢r = ¢y, - ‘t’g (49.6b)
¢y’ = ’é‘ (W +u) (49.6¢)
‘t’}-- = '7'? (W" “) (49.64)
and the equation for the velocity potential (49.1) becomes
Ci) = M (49.7)
£y 2(y-%)

-

This equation permits a step~by-step computation of the flow field by means
of the equations
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dd’vz - %4:' ::? 4§ | dp=o - (49.8a)
cx(cf:ti :'7'1' 4:7 4’ dy  dg=o (49.8b)

the first equation being used to continue the solution along characteristics
for which Y is constant and the second along the similar lines § 1is
constant. ZEquations (49.8) may be expressed in terms of the original

guantities

i
n

—i- %—(dz~dr) , dz +d+

d(w+u) o (49.9a)

H

d(w._u) -i- %(dz-i—dl’) J dz-dr - o (49.91)

for the purpose of calculation without the transformation of the coordinate
systen,

| Equations (49.8a) and (49.8b) may be integrated directly to obtain
4)7 as\ an integral of be with a general function of ¥ and to obtain Cbg, as
an integral of ¢M with a general function éf f . These may be combined and
the boundary conditions applied to give integral equations for these two
guantities. However, these integral equations are in two variables and do
nﬁt appear to be of any particular value in computation.
50. Derivation of the Riemann Functions. The substitution (14.3) in the

separated equation for the velocity potential (14.2) is repeated here

—

$ = —f'—FU : C(50.1)
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with the resulting equation (14.4)

Yy - m"
r7_

Urr —Uzz + U = O (50'_2)

The transformation of the previous section is made and ylelds the equation

for U
m%- Yy
+ = o .
U‘s‘vz -9 (80.8)

The Riemann function is a solution of this equation which is equal to one
on the two characteristics leading from a point, on E‘ = a and on 37 = b.

The function equals one when

(§-a)(n-b) = o (50.4)

-

The form of the Riemann function was discovered originally by con-
sidering the product of equation (50.4) as an independent variable together
with r and finding a solution as a power series in this new variable with
coefficients that were functions of r. This process is not necegssary and
the form of the Riemann function may be inferred from general considerations.
" The Riemann function is assumed to be a function of a single variable, which
is to be zero on the two characterisiics through the point (a,b). The con-
siderations that are necessary to obtain the form of this variable are:

a. The quantity in equation (50.4) is a factor of the variable.

b. Equations (50.2) and (50.3) are invariant under a scale transg-

formation. Hence the variable is homogeneous of degree zero in the coordinates.
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¢. The Riemann function is unchanged if the variables a and b

are exchanged with ¥ and Y) , respectively.

a.

in(Y}—-‘g).

The desired variable may be expected to have a singularity

This behavior leads to a variable of the form

oo GzelD) (50:5)
(b-a)(n-5)

It is found that solutions for U which are functions of this variable alone

exist and satisfy the equation

l;(l~§)U" + (l~7~l¥)U‘ - (EL" -m?)U = OQ (50.6)

This gives immediately the Riemann function as a hypergeometric function

V = F(z-m ’:z"“"m;',-ﬁ)

(50.7)

For negative values of the argument the identity for the hypergeometric
function

F(a,b;(_;z): F(QC bC‘

may be employed to yield the alternative expressions for the Riemann function

Vo= (o) F(s-m s-m; 1. 25)

J " ] ~—'§ (50098‘)

——

Vo= (mg) F(pemdem;iig)  com
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The range of the variable with respect to the geometry of

the (z,r) plane is shown in Fig. 50.1.

o <1

Fig. 50.1. Range of the Variable &
The solution is assumed to be continued across the axis with r negative.

Expressing the results in terms of the 0ld variables with

b = Zo + o (50.10a)
Q = Zo -, - (50.100)

the fundamental variable is

(z-2.) - (r-r)

g = e (50.11)
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and its derivatives are

Z~-27
:z - — r°.. (50.12a)
o
Cr = - F-ro &
2rry r
(50.12b)

(z-2.)" + (r=1Y)
4rr,

no

-

Of particular interest is the value of this variable with the sign of r

dhanged. This is given by

2 2
Z(-r) = — (z2-20) = (r+r) —— (50.13)
urr, -
The Riemann functions have logarithmic singularities at ¢ =1
and half-integral singularities at & = oo . They are all expfessable in

terms of the complete elliptic integrals of the first and second kind

F(z,2;1;8) = 2 Ko (50.14a)
F(-4,4;1;2) = % E(z) (50 .14v)

with the aid of the identities for the hypergeometric function
(b-a)F = bF,, —akf, (50.158)

(b-a)(1-z)F = (b-c)F,_ —(a-c)F_ (50.15D)
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The derivative of the hypergeometric function may be expressed

CF': Q(E““F) = b(F,, —F) (50.16)

These equations give all the relations necessary to connect the hypergeo-

metric functions with parameter ¢ =1 and their derivatives.

51, Application of the Riemann Method. The contour taken for the applica-
tion of the Riemann method to an exterior flow field is similar to the
contour of section 44 with the important difference that the point (zq,r,)
may be taken at any point on the characteristic. This contour is illusﬁrated

in Fig. 51.1.

AN
N
8y,
N
AN
—— B N
\ 7/
- A XL/ - — - (z_zlo)

Fig. 5l.1. Riemann Contour for Exterior Field
The first part of the contour follows the body and is sufficiently close to a
line for which r is constant that the conormal may be taken in the r direction.

From the Riemann method the value of U at the point (z;,r) is given by
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z\
U = UV -V Uy (51.1)
' or Ir
With the substitution (50.1) and the further substitution

V = F ,9} (51.2)

equation (51.1) may be expressed

ﬁ@l = [((j_)g—g—-'}g—g)rdz (51.3)

This equation is an integral equation for @ with the nucleus
-— } '
rf, = (Ve - AV) L

This nucleus has different forms dependent upon the relative values of r,
and ry.

The coordinates of the fixed points satisfy the condition

The parameter )\ is defined by the equation
A = (z2,-n) — (zo-to)

(51.6
= 2(r-hr) )

Along the contour of the body (r - r1) is small in magnitude compared with
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(z =~ zl) and the variable ¥ may be expressed along this line from équa~
tion (50.11) as
(z-2)(z-2, + N)

& o= 2r (zrp «+ 2 (51.7)

and its r derivative

A -
2(2r+\)

Faef (51.8)

rg, =

Two particular cases are of interest. These are A = 0 for which

oy (i“:;‘)z (51.9a)
e, = - C (51.9b)
and A = oo for which
r = ZZZ4 (51.10a)
r
reg, = % - (51.100)

Any value of the parameter A may be used in the integral equation
except the value -2ry. The value A = oo has no singularity in the finite

field of integration and gives an integral equation for m = O similar to
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that of Lighthill (34). Where the path of integration crosses & =1 a
Cauchy principal value must be taken across the singularity.
For the interior flow in a ducted body a different contour is

necessary. This contour is illustrated in Fig. 51.2.

AN
\(zu, )

N\
AN
(z,)r) N

N
AN

Fig. 51.2. Riemann Contour for Interior Field

In this case the characteristic belongs to the other family and equations
(51.5) to (51.10b) may be retained with a change in sign of all the z terms.
For this case the integration across the & = 1 singularity cannot be
avoided and the singularity has a physical significance. Tﬁe integration
passes along the contour of the duct twice, once with r negative and once
with r positive. The solution ig symmetric with respect to r for m even
and is antisymmetric for m odd. Hence these two integrals may be combined.

These solution methods have not yet been éeﬁeloped in detail. It
is hoped that analytic solutions to" the Volterra integral equations for a

cylinder r = constant may eventually be found. These would extend the
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solution of Lighthill and permit an attack on more general problems.

52. Ying-Body Interaction. A fundamental problem in the general question

of wing-body interaction is that of the influence of a cylinder with its
axis in the flow direction upon the disturbance field of a source or 1lift
element. With the solution to this problem more general cases for which the
planar problem is one of the first kind may be obtained dy superposition.
One method would be to expand the flow field from the source or
1ift element by Fourier series around the axis of the cylinder and satisfy
the boundary condition u = O on the cylinder for each value of m. This
would require either the analytic solutions to the integral equations of
the previcus section or an axial superposition of solutions by Fourier inte-
grals according to the method of the separation of the axial variable.
The influence of a cylinder on the flow field of an axial sinu-
s0idal distribution may be obtained readily. The geometry is depicted in

Fig. B2.1.

Fig. b2.1. Cylinder and Sinuscidal Source
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The element lies at a distance R from the axis of the cylinder and has a
wave number s. The cylinder has a radius A. The velocity potential
function without the cylinder may be expressed from the results of section

12 for a general value of m

43 - e(.S‘.Zé LSZ{E‘:; me? R(r,) (52.1)

the function R being a Bessel function
(1) [} o t
R = Hm(sr) = J,.(sr')- tYm(S'r ). (52.2)

The addition theorem for the Bessel function (36) may be expressed for this

case

rs
(0]

= H(:(Sr') {i:: me'}

> H™%R) Srin (52.3a)
Zﬂ’ h~r§‘RJh (sr) {COS n9} r< R
J
o ) )
= Z J;‘_m(sR) H(:(sr) {f;:’ n 8} Fy R (52.30)
Nn=~ce ) .

An additional velocity potential caused by the cylinder is needed to satisfy

the u = 0 boundary condition on the cylinder

.S T, (5A) ”n
A = > h-m)H“"‘( )}-\ (sv){;sne} (52.4)
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For the region r > R the complete solution may be expressed using (52.1)

(-~ .
YooY
- S AT @) (e
¢ 2 Jh_"( R) {1 VT R h(Sr){czs"B}wz'm
4+

Jn (SA)

A sinusoidal source is given by the case m = O and the cosine terms are
utilized. A 1ift element normal to the plane including the“element and
the axis is given by the case m = 1 with the sine temrms. |

The problem of combining these solutions to represent a wing
involves integration with respect to s and R. It may be possible to obtain

the effect of the cylinder on the wave drag by simpler integrations.
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X. General Comments

53. Evaluation of the Theory. The conditions of applicability for the
linearized theory which were discussed in section 4 may be restated here.
These conditions are:

a. The inclination of the body surface X at every point must
be small. This limits.the theory to bodies which have surfaces inclined
at not more than about 5 degrees to the flow direction.

b. The transonic range must be avoided. This requires that the

guantity

X Y+l
K = (M) ( 2 ) (53.1)
be small. This further limits the permissible surface inclination where

the Mach number is close to unity.

c. The hypersonic range must be avoided. This requires that the
inclination of the surface times the Mach number XM be small. This limits
the permissible inclination where the Mach number is large. These consider;
ations indicate that the theory of linearigzed supersonic flow is of sufficient
accuracy for quantitative application only within a quite limited range of
Mach numbers and body shapes. The results should be valuable qualitatively
over a larger range. |

The principal experimental results that may be compared with the

linearized theory are not presented here as they are of a classified nature.
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Howéver, it‘may be said that the experimental verification so far available
is satisfactory and within the expeéted accuracy.

The results of the linearized theory serve as a guide in the de-
sign of bodies which must be capable of supersonic flight. The principal
conclusions are that such bodies must have small fineness ratios and should
be arranged in such a way»thaﬁ the interference effects will not be too
detrimental. As the transonic range is approached a rough estimate of the
behavior of a system may be obtained from the linearized considerations by
letting M approach 1. The concept of supersonic and subsonic leading edges
discussed in section 24 controls the leading edge shape in design.

0Of the new concepts introduced in this thegis the ﬁost important
include the concept of the application of the Kutta condition to supersonic
planforms, the concept of the reversed flow theorems and the concept of wave
drag and vortex drag. Amont the new methods introduced in the thesis are
the Legendre polynomial method for two—-dimensional flow, the application of
the Hadamard method to planar systems, the procedure for obtaining solutions
in conical coordinates, the method for the calculation of the wave drag, and
the application of the Riemann method to laterally periodic systems and to
solutions for the flow about bodies of revolution.

54. The Field for Future Study. Although many of the methods discussed in

this thesis need further refinement for detailed application to specific
problems, the theory presented is reasonably complete except with regard to
two major problems, One of these is the problem of the second kind for

antisymmetric planar systems which was termed the 1ift problem and treated
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in an introductory‘fashion in chapter V. The other is the problem of the
flow about general nonplanar systems. Some specialized cases of nonplanar
gsystems are discussed in sections 43 and 52. The general case probably
requires a three-dimensional method of characteristics somewhat analogous
to the method for bodies of revolution.

In order to evaluate properly the linearized theory further in-
vestigations toward the nonlinear theory are desirable. Of particular
advantage would be a second approximation theory for planar systems and
for bodies of revolution analogous to the second approximation of Bugemann
for two-dimensional problems. In analogy with Busemann's results it is
probable that these theories would be independent Qf the existence of shock
waves. Real fluid effects upon the linearized solutions should be inves-
tigated, for example the effect of the boundary layer on the pressure dis-
tribution of a body and the effect of shed vortices on a body of revolution
at an angle of attack.

Many of the methods presented in the thesis may be applied to
nonstationary linearized problems. Of these the principal probleﬁs that
may be attacked are those which are periodic in time. Such solutions may
be applied to flutter problems. It is expected that important differences
would exist between the stationary and the periodic solutions as in the

phenomena of drag concentration.
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